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Summary

The work presented in this thesis is concerned with how particle acceleration can take 

place in the context of dynamical magnetic reconnection in collisionless coronal plasmas. 

The energy production mechanism in solar flares has been a long standing problem of 

solar physics. The mechanism th a t provides the energy during solar flares is thought 

to be magnetic reconnection. However, timescales from different models disagree. Most 

m agnetohydrodynamic models do not explain the high energy particles observed during 

solar flares and most collisionless models fail in th a t they do not account for the dynamic 

evolution of the solar flare environment.

This thesis is divided in seven chapters. I will summarise each chapter individually 

C hapter 1 contains a brief overview of the properties of the Sun and the structure of 

its atmosphere. Then follows a much more detailed discussion of energetic phenomena in 

the Sun concentrating primarily on solar flares and solar noise storm s, and their m anifest

ations in the electromagnetic spectrum  and production of high energy particles.

An introduction to magnetic reconnection is given in C hapter 2. M agnetic reconnection 

is defined as the process whereby plasma flows across a surface th a t separates regions 

containing topologically different magnetic field lines. We briefly discuss some of the 

m ost im portant models for magnetic reconnection. The models are divided in hydro- 

m agnetic and collisionless models. We also discuss mechanism for particle acceleration in 

cosmic plasmas. The mechanisms of particle acceleration are: diffusive shock acceleration, 

stochastic acceleration and electric field acceleration. I review some mechanism of particle 

accelaration in X-type neutral points and their implications for energy distributions pro

duced.

In C hapter 3 we present the results of a non self-consistent calculation for collisionless 

magnetic reconnection. First we assume the form of the electric and m agnetic fields, a



procedure which is not necessarily self-consistent. The magnetic field is taken to have 

an X-type neutral point. Two cases for the imposed electric fields are considered, one 

constant and the other time-varying. The amplitude of the electric field is treated  as 

a param eter. We calculate the particle orbits in these fields and the resulting energy 

distributions and show th a t protons and electrons may gain relativistic energies in times 

< Is  for plausible (small) electric field amplitudes and active region magnetic fields. We 

note the effectiveness of acceleration of protons and electrons varies according to the 

frequency of oscillation invoked. It seems tha t electrons, when they are accelerated, are 

accelerated more rapidly than  protons, although numerical lim itations prevented us from 

investigating this possibility in full. Protons are accelerated to 7  ray producing energies. 

In Chapter 4 we formally derive an analytical description for the tim e and space de

pendence of a linear incompressible, azimuthally symmetric disturbance propagating in a 

medium with a neutral point. In deriving the expression for the m agnetic disturbance we 

follow Craig and McClymont (1991) fairly closely. There are however the im portant differ

ences between our treatm ent and theirs: we recast the problem in dimensionless variables 

for consistency with the integration of the particle orbits, and introduce a slight restriction 

on the possible modes of interest. The la tte r has the consequence th a t the final, hyper- 

geometric function form of the solution is always exact (cf. Craig, 1994). Also we give 

heavier emphasis than other work to the numerical evaluation of the eigenfunctions. We 

use this description to study the detailed form and behaviour of reconnective eigenvalues, 

as a preliminary step in addressing the problem of the particle orbits.

In the C hapter 5 we study particle orbits in the presence of such a disturbance. A general 

feature of the orbits is th a t particles remain relatively close to the  neutral point during 

the integration time of 1 second. The particles th a t are accelerated to  high energies are 

those th a t are trapped close to  neutral point area. This happens for specific values of 

the ‘resistivity’ owing to  the spatial form of the electric and m agnetic field perturbation. 

Particle orbits are calculated for the fundam ental and higher eigenmodes.

In C hapter 6  we a ttem pt to m atch the MHD and test particle calculations. To do this 

we compare the energy loss of the wave during 1 second and the energy gained by the 

particles during the same time. For all the vaues of the resistivity investigated, the wave 

loses energy much faster than  the particles gain energy. The calculations presented in 

this C hapter force us to re-examine the nature of ‘resistivity’. Particles trapped for long



periods near the neutral point are freely accelerated and clearly extract energy from the 

wave. However, they do not contribute to the resistivity. Despite the difficulties in defining 

the ‘correct’ value of the ‘resistivity’, we have dem onstrated th a t the passage of such a 

reconnective disturbance may accelerate protons to 7  ray producing energies, and certainly 

to energies where they could play a role in energy transport.
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Chapter 1

Solar M agnetic A ctivity and 

Flares

In this first chapter I give a brief description of solar phenomena tha t are related to my 

research. I s ta rt by describing the place where these phenomena take place, the solar 

corona and the chromosphere. Then I talk about the phenomenon itself, the solar flare. 

I am trying to give an idea of the complexity of the phenomenon by describing briefly 

its m anifestations in different parts of the electromagnetic spectrum. Then I concentrate 

more on discussing the most energetic of its manifestations, in hard X-rays, 7 -rays and 

energetic particles.

1.1 T he Solar C hrom osphere

The chromosphere is th a t part of the solar atmosphere lying between the tem perature 

minimum and T=25000 K, in which the tem perature increases outwards. It is split into 

two, the lower and the upper chromosphere (Athay, 1986). The lower chromosphere lies 

between the tem perature minimum and the first plateau in the tem perature a t about 6000 

K (after the standard  semi-empirical quiet Sun model of the chromosphere by Vernazza, 

A vrett and Loeser, 1981). In this region the magnetic flux tubes th a t are anchored in the 

photosphere are well confined by the gas pressure, so the larger part of the plasm a is free 

from m agnetic fields. As one moves upwards, and the tem perature rises, the density and 

pressure drop and so the magnetic flux tubes expand. This magnetically dom inated part 

is called upper chromosphere.

1
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Radiation from the chromosphere is dominated by emission and absorption lines. There 

is strong emission in the Ho line, which gives the eclipsing chromosphere a beautiful red 

color. The calcium K line at 3933 Ais also strong and it indicates a tem perature of 6000 

K. O ther lines come from the highly ionised states of magnesium, carbon and potassium  

and they indicate regions with a tem perature of ~  10000 K. The chromosphere is optically 

thin and all the photons generated in this region escape (except the Lyman series).

1.2 T h e Solar C orona

The corona is th a t part of the solar atmosphere above the visible photospheric layer and 

the chromosphere. It reaches tem peratures of the order of a million degrees or more. 

It can be divided into two components: the quiet corona, which is present throughout 

the solar cycle, and the ‘active’ corona which is the sum of the different active regions 

present in the corona at any time. A very puzzling question not yet answered is what is 

heating the corona. Since the corona is so much hotter than  the underlying photosphere 

(tem perature of the photosphere is 5800 K), the mechanisms th a t heat the corona must be 

non-thermal. Several mechanisms have been proposed to heat the corona, and the subject 

is very controversial (see Zirker 1993). These mechanisms include wave (usually Alfven) 

heating, electric currents, with or without magnetic reconnection (to be discussed later), 

and MHD turbulence.

The ‘active’ corona was not always known. When studies of the corona advanced in the 

sense th a t the Sun was observed outside eclipses from space borne experiments, one could 

see th a t there is always a lot of structure in the corona. Observations showed th a t there 

exist very detailed structures which have large local variations in intensity, (see figure 

(1.1)) One of the most im portant sources of nOnuniformities in the solar corona are the 

so called active regions. Active regions are observed to  be sites of several dynamical 

phenomena on the Sun, where large amounts of energy are released (see later in this 

chapter). Solar flares are one class of these phenomena. Others are: coronal mass ejections 

(which have been thought to cause flares in some cases), prominence eruptions, radio noise 

storm s, etc. Stars th a t have similar atmospheric layers to our Sun (in particular outer 

convective envelopes) exhibit very energetic phenomena like solar flares (Pallavicini, 1993). 

In soft X-rays the corona emits therm ally and can be viewed directly, since the contribution
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Figure 1.1: X-ray image of the Solar Corona, showing active regions, the quiet corona and 
coronal holes. This image was acquired by the Soft X-ray Telescope on the Yohkoh solar 
research spacecraft. (Gabriel 1992)
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from the lower atmosphere is negligible. When the corona is observed in soft X-rays two 

distinct regions appear. Those in which the magnetic field is predominately open appear 

relatively dark and are known as coronal holes. Here the plasma is outflowing and gives 

the solar wind. Those in which the magnetic field is closed consist of myriads of coronal 

loops. Small intense features called X-ray bright points are scattered over the whole disk.

1 .2 .1  P r o m in e n c e s

Prominences are really chromospheric phenomena, although they extend to  the corona 

and are sometimes the site of very energetic events. A traditional way of looking at the 

chromosphere of the Sun is by a Lyot filter with bandpass of 1/4 of an Angstrom  usually. 

At the center of the line, the Sun appears totally without features during minimum and 

with a lot of plages and filaments when at maximum. Prominences extend 50000 km or 

more above the photosphere when observed in H a  and Ca K lines at the limb of the Sun. 

W hen observed on the disk they are in absorption, are called filaments and appear dark. 

Away from active regions we find the most common prominences. They are high, bladelike 

quiescent prominences and can last for months. They begin their lives as small active 

region filaments which are located either along the magnetic inversion line between the 

two main polarity regions or at the edge of an active region where it meets a surrounding 

area of opposite polarity. As the active region declines, the prominence grows in size and 

moves towards the nearest pole. Direct measurements of the prominence m agnetic field 

(using Zeeman and Hanle effects) give values of 5-10 G in quiescent prominences.

The plasma confined in the prominence magnetic field is at t ~  7000 K, which is cooler 

than  the surrounding plasma at the same height but its density is higher ( 1 0 10— 1 0 11cm 3). 

Typical prominence dimensions are 200000 km length, 50000 km height and 6000 km 

width. Studies of line widths in quiescent prominences indicate substantial turbulence near 

their tops, whereas motions near the prominence bottom  are smaller and the structu re  is 

also more sharply defined (Priest 1982).

Filam ents can be observed to fade away. They are formed within extended volumes of 

low coronal emission called filament cavities. They are situated along neutral lines of the 

longitudinal magnetic field (i.e. in regions of horizontal field).

Close to active regions, one often observes m atter condensing and falling, particularly into 

sunspots. Even quiescent filaments and prominences contain plasma moving at high speed
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(downflowing motion ~  5 km sec-1 ).

Active prominences are usually located in active regions and are usually associated with 

flares. They are dynamic, violent motions and have lifetimes of only minutes to hours. 

Both their magnetic field and their density are much higher than those of quiescent prom 

inences. In active region filaments m aterial is seen flowing along the filament axis, and 

generally into a sunspot located at one end of the structure (Priest 1982),

1 .2 .2  A c t iv e  r e g io n s

When new emerging flux starts  to emerge from below the photosphere of the Sun (emerging 

flux region), the atm osphere is heated and produces an X-ray bright point. Most of this 

flux fades away in less than a day. In some though (especially those close to the equatorial 

plane) magnetic flux keeps emerging and an active region is formed. Active regions are 

bipolar and at first give rise to a small Ha: plage connected by a few small filaments. 

After a couple of days, the bipolar region typically consists of a pair of sunspots joined 

by a system of dark loops. The sunspots have opposite polarity. This region evolves more 

and in a fully developed active region there can be a complex group of sunspots in the 

photosphere.

The size of a fully developed region can be 200000 km across and it extends up to the 

corona. It is surrounded by photospheric faculae (brightenings) while its upper part ap

pears as an X-ray enhancement. During all this time m aterial falls down near both ends 

of the loops at 50 km s-1 . The active region decays slower than  it emerges. Typically 

after four solar rotations it has disappeared leaving behind a dark quiescent filament th a t 

sometimes can erupt and cause a two-ribbon flare.

In the photosphere the most intense concentrations of magnetic flux show up as sunspots. 

Even after the disappearance of a sunspot an active region can remain active. The en

hanced magnetic field can persist for weeks or months. Active region filaments, which may 

have formed when the active region was quite young, become more prominent and increase 

in size as the region develops. Such filaments always lie along a magnetic inversion line. 

M ajor solar flares usually occur near the peak of an active region’s development, when 

sunspots are present and when the magnetic structure is more complex (Priest 1982). 

The corona above active regions possesses a density and tem perature th a t are typically 

enhanced by factors of 1 0  and 2  respectively, actual values being 1 0 10 cm - 3  and in excess
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of 3 X 106 K respectively. This makes the active coronet visible in white light at the limb 

during eclipses and also in EUV, X-ray and radio wavelengths against the disk.

1.3 In trodu ction  to  Solar Flares

In the present chapter I will discuss the very interesting phenomenon of solar flares and 

processes associated with them , from an observational viewpoint.

A flare is a phenomenon of the solar atmosphere th a t produces rapid increases in the 

electromagnetic radiation from gam m a rays to radio wavelengths and high energy particles 

up to  GeV. Its spatial extent is usually 104 to 105 Km. The to ta l energy released during 

a flare varies from 1028 to  1032 ergs. Complex energy release and transport processes are 

involved. The stored energy of the coronal magnetic field is thought to be responsible for 

solar flares. In figure (1.2) we can see the basic time behaviour of flare emission in a wide 

range of frequencies (Zirin 1988).

An initial ’’preflare” brightening lasting generally a few minutes (but up to tens of hours 

in some cases) can usually be detected in EUV and soft X-ray radiations. The peak 

intensity is reached, in most cases, during the flash phase. Impulsive spikes of emission 

are often seen in metric and microwaves, EUV and hard X-rays during the flash phase. 

These spikes have time scales of seconds or less and the impulsive phase generally lasts 

for a few minutes. He* and soft X-ray emission may continue to increase for 10-20 minutes 

after the flash phase. The gradual decrease of the flare may last up to  several hours.

In the visible part of the spectrum  the He* is strongly affected by a flare. The characteristic 

feature of a flare is a very fast increase in brightness followed by a much slower decay. We 

observe the most intense and optically thick portion of a flare in the center of an H a line. 

The net H a emission in the maximum phase of a large flare is of the order 1026 erg/sec. 

In the white light the flare emission does not exceed the emission of the solar disk. This 

is not the case however for the EUV, X-ray and radio emission. In these wavelengths the 

flare emission exceeds th a t em itted by the whole solar disk integrated.

An im portan t type of flare is the so called two-ribbon flare. In such an event, changes in 

the large-scale arrangem ent of the active region can typically be observed well before the 

flash phase. The active region filament th a t often marks a m agnetic neutral line of the 

active region, begins to move about noticeably. The flash phase of such an event in H a
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Figure 1.2: The appearance of a flare in different wavelengths as it develops with time. 
There is great variation in tin1 duration and complexity of various phases. In a large event 
the preflare phase lasts, typically 10 minutes, the impulsive phase a minute, the flash 
phase o minutes, and the main phase an hour (Zirin IONS) .
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is marked by the brightening of two narrow ribbons. When the event is also imaged in 

EUV or soft X-rays we see th a t the H a brightenings are happening at the footpoints of 

an arcade of bright coronal loops tha t go over the neutral line (Foukal (1990)).

The largest two-ribbon flares can involve energies of 1032 ergs or more. These energies are 

partitioned between therm al energy of plasma observed in soft X-rays, EUV and strong 

visible lines, nontherm al energy of charged particles accelerated to the GeV range and 

kinetic energy of plasma and associated shock waves propagating out from the sun. Now 

1 0 32 ergs of energy in a few minutes is a very impressive rate  of energy release but is still 

insignificant in comparison with the Sun’s bolometric luminosity. So, solar flares are not 

as significant as some stellar flares, where we can see the consequences on the light curve 

of the star (Pallavicini 1986).

From soft X-ray images of the solar corona it was realized th a t the structure of the corona 

is dom inated by magnetic fields. Using vector m agnetographs we can reconstruct the geo

m etry of these fields in the photosphere and then, assuming a potential field, extrapolate 

into the chromosphere and the corona. Little convincing evidence exists of substantial 

change in the observed fields even after m ajor flares (see later in this chapter); moreover 

only a small fraction of the magnetic energy stored in the observed fields has to be released 

to account for a flare.

Despite the difficulties in proving it, there seems to be a relation between flares and 

magnetic fields. For example, large flare occur more often in active regions whose magnetic 

fields are relatively complex. Sunspots of type 6 (umbrae of opposite polarity in single 

penum bra) are those tha t show the most frequent activity (flaring). Also, there is no 

other form of energy stored in the corona th a t is adequate to produce solar flares (see e.g. 

Brown and Smith 1980).

In soft X-rays the flaring plasma occupies a closed loop, or system of parallel closed loops 

called an arcade. Loops seem to be aligned or they consist of magnetic flux tubes, full 

of plasm a, th a t is trapped by the presence of the magnetic field. These flux tubes cross 

over the active region neutral fine and connect to photospheric footpoints with opposite 

polarity, on either side of the neutral line. From the flash phase images it is indicated tha t 

very hot plasma exists in these loops with tem peratures as high as 10 — 20 X  106 K and 

densities, found from emission measure and from EUV line intensity ratios, can be as high 

as 1 0 13 cm -3 .
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Many flares produce microwave bursts whose time behaviour is generally very similar 

to the impulsive hard X-rays bursts (for a comprehensive review see MacKinnon 1983) 

Microwaves are most intensely emitted in those loop footpoints and condensations which 

are also brightest in H a and soft X-rays. The emission must be gyrosynchrotron radiation 

by relativistic particles, possibly the same ones th a t produce the hard X-rays also (see eg 

Klein, T rottet and Magun 1986).

1 .3 .1  M a g n e t i c  f ie ld  C h a n g e s  d u r in g  flares

The most common flare producing field configuration is characterised by strong shear 

across the polarity inversion line. An inversion, or ‘neutral’ line is a locus across which the 

line of sight field component changes sign. The field near such an inversion line is far from 

potential and holds an ample amount of energy for flares. A magnetic field is potential if 

the current density vanishes everywhere and contains the minimum energy within a closed 

volume, if the perpendicular component on the surface is prescribed (minimum energy 

theorem ). Thus a magnetic field with non zero currents but the same perpendicular 

component on the boundary should contain more energy than  the potential field.

The formation of sheared configurations leading to  flares often involves relative motion, 

and even collisions, of sunspots of opposite polarity (Moore and Rabin 1985). In a detailed 

study of the magnetic shear and flares along the inversion line, Hagyard et al. (1984) found 

th a t the points of flare onset were where both the magnetic shear and the field strength 

were greatest. This suggests th a t a flare is triggered when the magnetic shear stress 

exceeds some critical amount. This can be achieved either by the overall development of 

the sheared configuration or by local interaction of a small dipole emerging into a larger 

sheared field. A flare in the larger extent configuration is triggered at the site of the 

intruding dipole (Moore et al. 1984). If the flare energy comes from the sheared magnetic 

field then some long lasting magnetic change in the field should result as well. Lasting 

m agnetic changes have proven to be slight and difficult to detect in most flares. In a few 

cases, lasting changes have been observed in a sequence of photospheric m agnetogram s 

(Paterson and Zirin (1981), Tanaka (1978)) not always in the best interest of contem porary 

solar flare theories (Paterson and Zirin (1981).

It is often observed th a t a flare brightens, within observational lim itations, in the same 

position and exhibiting the same geometrical outline as a previous flare in th a t region.
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Such flares have been studied extensively, based on the point of view th a t the form of the 

magnetic field configuration is a determining factor in the process th a t lead to  a flare and 

th a t there is a rebuilding of the stressed magnetic filed after such successive flares (Moore 

and Rabin 1985).

As I mentioned before magnetic fields on the Sun and stars are measured by the Zeeman 

and Hanle effects. The Zeeman effect is produced when a magnetic field removes the 

degeneracy of an atom ic level, and instead of a single emission or absorption line, we 

observe more. These are located symmetrically about the position of the undisturbed 

fine.

Resonance polarization is affected by the presence of a magnetic field in a radiating plasma. 

This is called the Hanle effect. The resulting polarization depends on the direction of the 

polarization of the exciting radiation as well as on both the direction and strength  of the 

magnetic field (see discussion in Stenflo 1994).

1 .3 .2  R a d io  O b s e r v a t io n s

Radio observations in m eter wavelengths provide direct information on radiation from 

beams, plasm a and shock waves starting  from the flare region. During flares radiation in 

the radio band is observed usually in the form of bursts. In (1.3) we see a description of 

the radio spectrum  of a flare. For a full discussion of the radio emission of the quiet and 

active Sun see Dulk (1985), and McLean and Labrum (1985).

There are,

• Type I bursts, which are long lasting (hours to days) noise storm s th a t happen 

above active regions and are not generally connected with flares. Their emission is 

continuum and their frequencies in the range 50-400 MHz. Their production is a bit 

of a mystery, but their high brightness tem perature and close to 1 0 0  % polarization 

are best understood in term s of plasm a oscillations excited by energetic electrons. I 

will discuss noise storms later.

• Type II bursts which are connected with large flares and are not very frequent. 

Their usual in terpretation is th a t they are plasma emission excited from MHD shock 

wave tha t propagates outward from the flare. They are connected with Type IV 

bursts, which radiate due to  gyrosynchrotron. Type IV bursts have frequencies from
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microwaves to a few kHz. There is a component of Type IV bursts the so called 

moving, observed at 10-100 MHz. Their emission lasts a few tens of minutes as the 

source moves outward from the corona to a few solar radii.

• Type III bursts are the most common. Their frequencies range from a few tenths of 

kHz to hundreds of MHz. The highest frequencies of Type III bursts are caused by 

oscillation in the low corona and the lowest by oscillations in the interplanetary space

near 1 AU. Type II I bursts are generated by stream s of mildly relativistic elect

th a t propagates through the solar corona and excite plasm a emission (Langmuir 

waves). The frequency decreases as they move outwards from the corona. Some are 

closely correlated to the impulsive phase of the flare and there is sometimes a good 

time correlation with Hard X-ray bursts. Most of them occur without the presence 

of a flare.

• Type V bursts are continuum emission which are sometimes observed after Type III 

bursts. They might be associated with very intense particle beams.

M illimeter-interferometer observations of flares are used to study the MeV electrons accel

erated in flares. This is an im portant observation especially for small and m oderate flares 

th a t don’t produce observable 7  rays. In a large number of flares, the impulsive phase 

emission at millimeter wavelengths consists of a rapid rise, sharp peak, and exponential 

decay. It is thought to be produced from the gyromotion of MeV electrons in the coronal 

m agnetic field (W hite, 1994).

1 .3 .3  S o ft  X -r a y s

The emission of flares in X-rays is usually divided into two components, a non-therm al 

one in hard X-rays, with photon energy above 20 KeV and a therm al one in soft X-rays, 

with photon energy below 20 KeV. The range of soft X-rays lie between 1 and 1 0  A and 

it consists of Bremsstrahlung (free-free) continuum, bound-free continuum and spectral 

lines, typically due to  highly ionised species of metals such as C a18+ and Fe24+. Therm al 

electrons are possibly responsible for flare emissions with tem perature around 107 K. The 

highly ionised sta te  of this hot plasm a combined with the strong magnetic fields restrict 

transport of energy or mass across field lines. As a result the soft X-ray flare appears 

composed of energetically isolated flux tubes of enhanced tem perature and density.
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Soft X-ray lines provide a valuable diagnostic of conditions (tem perature, density, velocity) 

in flaring atmospheres. In a typical flare the soft X-rays manifest three phases: a preflare 

stage of gradual, weak brightening, an impulsive phase of rapidly increasing flux and 

brightness, and a main phase when the emission gradually decreases. It is during the 

impulsive phase th a t the tem perature and emission measure of the soft X-ray plasma 

increase most rapidly and the tem perature reaches 107 K. The emission measure usually 

reaches its highest value at the end of the impulsive phase and some times can continue 

to increase during the main phase as well.

The mechanism th a t is invoked to explain the increase in coronal emission measure is 

chromospheric evaporation. Antonucci et al (1982) found blueshifted components of emis

sion lines Ca XIX and Fe XXV, which indicate the upward motion of soft X-ray em itting 

m aterial. Fisher, Canfield and McClymont (1984) showed th a t the velocity amplitudes 

corresponding to these blueshifted components are consistent with chromospheric evapor

ation (see also Feldman (1994) for an opinion against chromospheric evaporation). The 

emission lines of the highly ionised species are very broad during the impulsive phase 

which suggests th a t there are turbulent motions of several hundred kilometres per second 

(Phillips 1986). The rise time of the soft X-ray flare leads to inform ation about energy 

input and fall times are simply related to cooling mechanisms.

1 .3 .4  H a r d  X - R a y s

First observations of solar flare hard X-rays came from balloon-borne and rocket-borne 

experiments and they already showed the close time coincidence between hard X-ray and 

microwave bursts (Peterson and Winckler, 1959, Chubb et al. 1966). Later instrum ents 

include the Hard X-ray Imaging Spectrometer (HXIS) and the Hard X-ray Burst Spec

trom eter (HXRBS) on the SMM satellite (review by Dennis 1985) and lately the HXT on 

Yohkoh satellite (Kosugi 1994). The impulsive hard X-ray burst tim e profile exhibits one 

or more spikes, which can last a few tens of seconds (e.g. Kane and Anderson, 1970 and 

Hoyng et al. 1976). Better time resolution though has shown th a t the hard X-ray bursts 

can fluctuate much faster than  th a t and timescales down to a  few tens of ms have been 

suggested (e.g. Kiplinger et al. 1983). An example of very fast variations is given in fig. 

(1.4) (Dennis, 1985). Although such variations are not a common phenomenon, they are 

used to invoke upper limits to the timescales of the acceleration mechanisms. (See also
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Brown, Loran, and MacKinnon 1985, who discuss their statistical reality.)

‘The principal theoretical flare problem is th a t of sufficiently rapid prim ary energy release’ 

as Brown, Smith, and Spicer (1981) put it. Hard X-rays are observed with such intensities 

th a t, given the standard interpretation of them  as coflisional brem sstrahlung from high 

energy electrons in the flare plasma, energy release rates as high as 1 0 30 ergs/sec are 

required to accelerate the em itting electrons during the impulsive phase. Such energy 

release rates are extremely challenging theoretically given the magnetic field strengths and 

configurations believed to exist in the corona. It is for this reason th a t increasing emphasis 

is being placed on observations of impulsive phase phenomena at all wavelengths where 

such evidence is found.

The spectra of hard X-ray bursts have most often been described by a power law i.e. the 

X-ray intensity 1(e) at photon energy e is

/(<0 ~ T 7  ( 1 -1 )

where 7  is a positive number. Some bursts are best fit by a therm al type spectrum. The 

spectrum  of the burst can change with time ( usually a soft-hard-soft pa ttern ) (Hoyng 

et al. 1986). The determ ination of the spectrum of the particles th a t produce the hard 

X-rays depends on the tem perature and density of the plasm a distribution with which 

the particles are interacting and also on the model assumed. From the events recorded 

on SMM instrum ents Dennis (1985) gives a review of the statistical properties observed. 

F irst, the 152-158 day periodicity, which was initially noticed by Rieger et al (1985). 

Second, the differential spectrum  obtained from all events recorded with HXRBS (Hard 

X-Ray Burst Spectrom eter) above ~  30 keV between launch and the beginning of 1985, 

can be well represented by an expression of the form

N ( P )  =  110P - 1 '8 Flares (counts s - 1  day)- 1 , (1-2)

where N(P) is the rate  of flares detected with peak rate  P above background m easured 

with HXRBS as the sum of the rate  of all channels. And third, the value of 7  was found 

to  range from r\j 3 to 8 .

There are also im portant questions such as the directivity of the bursts and their polariz

ation. Any directivity of the hard X-ray bursts could be a key diagnostic of the electron 

population th a t is believed to produce them . This is because brem sstrahlung is em itted 

preferentially in the direction of the incident electron (see Dennis and Schwartz 1989). This
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is true for relativistic electrons. For non-relativistic electrons the radiation is isotropic (see 

Brown (1975) for discussion).

1 .3 .5  G a m m a  R a y s  an d  H ig h  E n e r g y  P a r t ic le s

A typical flare gam m a ray line spectrum  consists of several prom pt nuclear de-excitation 

lines from elements of the solar atmosphere (Fe, Mg, Ne, Si, C, 0 )  with energies mostly 

between about 1 and 7 MeV. This line spectrum is superimposed on a continuum made 

of the same kinetically broadened de-excitation lines and of a brem sstrahlung component 

extending above IMeV. For a fraction of events this last component has been detected 

above 10 MeV and for an even smaller number to a few hundred MeV (R am aty and 

M urphy 1987).

The hard X-ray and 7 -ray continuum is believed to be electron-ion brem sstrahlung, the 7 - 

ray lines and neutrons result from nuclear interactions, the microwaves are most probably 

gyrosynchrotron emission, and the longer wavelength radio emission is plasm a wave emis

sion of various types. All of these emissions are produced before the accelerated particles 

lose their energy to the solar atm osphere, and, consequently, they contain the greatest 

am ount of information available about how the particles were accelerated.

Spacecraft observations of high energy particles in space manifest the acceleration pro

cesses on the Sun, provided tha t we understand their propagation from the Sun. The 

fraction of particles detected at the earth  depends strongly on their initial position on 

the Sun. Since the transverse particle diffusion across the magnetic field is small in in ter

planetary space, the particles essentially propagate along magnetic field lines. So, strong 

particle events should be observed when the flare region is at the foot of the m agnetic field 

line th a t directly connects the earth  to the Sun (Svestka 1976).

Neutrons can be produced in the photosphere from proton-proton (p-p), proton a-particle 

(p -a ), and a  particle -a particle (a -o ) reactions. A fraction of the neutrons produced 

during solar flares can escape and are detected at the E arth  before they decay. The 

neutrons arrive at the E arth  minutes after the 7  rays photons. Because neutrons don’t 

in teract with the interplanetary magnetic field, what we see at the E arth  is close to what 

is produced at the Sun. It is difficult though to know what we see. The tim e-dependent 

neutron flux at the E arth  depends on the accelerated particle energy spectrum  and angular 

distribution on the Sun.
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The calculation of the neutron energy spectra is model dependent (Ram aty and Murphy, 

1987). The neutrons tha t remain at the Sun can either decay or can be captured by nuclei. 

The dominant capture reactions are 1 H { n ^ ) 2H  and 3 77e(n,p)3H , and they take place 

predom inantly in the photosphere. The l H capture produces the 2.223 MeV line wh;ch 

is a ttenuated  at the limb. This is because the neutrons must thermalize before capture, 

and this process takes place in the low photosphere. Observations of this line can set 

constrains on the 3H e / H  ratio because it affected by the capture on 3He  (R am aty and 

Murphy, 1987). The line is very narrow and the width results from therm al broadening in 

the photosphere.

Positrons result from the decay of radioactive emitting nuclei (e.g., n C,  13N ,  1 50 ,  

1 9Ne) ,  de-excitation of nuclei (16O,4 0 C a), and decay of 7r+ mesons, all of which are pro

duced from the interaction of accelerated protons and heavy nuclei with the ambient 

plasma. Relativistic electrons can also produce positrons by pair production. Positrons 

resulting from the P+ emitting nuclei have typical energies of ~1 MeV, while positrons 

resulting from the pion decay have energies of ~  30 MeV. Direct annihilation produces 

two 0.511 MeV 7  rays per positron. The number of 0.511 MeV photons escaping from the 

Sun depends on several factors but it doesn’t seem to be limb darkened. The width of 

the 0.511 MeV line depends on the tem perature the density and the degree of ionization 

(R am aty and Murphy, 1987 and references therein).

The bulk of the observed 7  ray emission between 4-7 MeV result from nuclear de-excitation 

lines (Forrest, 1983). The angular distribution of the emission is nearly isotropic (Ramaty,

1986). The decay of 7r mesons leads to the production of broad band gam m a ray emission 

extending to high energies (>  100 MeV).

From the analysis of electromagnetic radiations and energetic particles observed in flares, 

some authors suggest th a t not all particles are accelerated to their final energies at the 

same time. There appears to be a first phase acceleration which produces mostly nonre- 

lativistic electrons and a second phase acceleration which accelerates ions and electrons to 

relativistic energies. It is not clear whether these two phases are m anifestations of different 

acceleration mechanisms or whether they are due to the evolution in space and time of 

the same mechanism modified by different energy loss and particle transport processes. 

The hypothesis of different acceleration process competes with the suggestion th a t, because 

of the different environment in which the gradual flares occur, the accelerated particle
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distributions evolve in a different way than during impulsive events. Maybe electrons are 

more effectively trapped during gradual flares (Dennis 1988).

A way to  learn the tem poral evolution of an acceleration process is by the observed time 

dependence of gam m a ray fluxes. The 2.223 MeV line is delayed because of the finite 

capture time of the neutrons in the photosphere (Wang and Ramaty, 1974) and the 0.511 

MeV line is delayed mostly because of the finite lifetimes of the various positron em itting 

nuclei. Bremsstrahlung, most nuclear line emission, and 7r° decay emission, are produced 

essentially instantaneously at the time of the interaction of the particles. So, they can be 

used as indicators of the time dependence of the acceleration and interaction processes. 

The tem poral relationship between the fluxes in the different energy ranges gives indica

tions on the relationship between ion and electron acceleration, and acceleration of different 

ions. Delays and coincidence between different channels have been observed. For example, 

in the 1982, February 8  flare the maxima in the energy bands from 0.04 to 25 MeV are 

simultaneous to within ~ 2  seconds (Kane et al 1986). This means th a t electrons and ions 

are accelerated to tens of MeV energies in less than 2 seconds. In the 1982, June 3 flare 

the flux above 100 MeV and the flux from 4.1 to 6.4 MeV peak simultaneously to  within 

~  16 seconds. This suggests th a t the acceleration time of protons from tens of MeV to a 

GeV is less than 16 s.

E nergetics

The most direct diagnostics of high energy particles on the Sun are hard X-ray and gam m a 

ray emission. Typical values of the number of nontherm al electrons involved in the pro

duction of hard X-ray emission are of the order 1036 — 1037 electrons above 25 KeV for 

impulsive flares and greater than  1038 electrons for long duration gradual events (Brugg- 

m an et al. 1993). The energy content then in the nontherm al electrons (>  25 KeV) is 

thus of the order of 1 0 30 ergs for impulsive flares , up to 1 0 31 ergs for gradual flares and so 

represents a large fraction of the to ta l flare energy. Hoyng et al. (1976) gave 1039 electrons 

above 25 keV and up to 1032 ergs for gradual flares.

G am m a ray observations have shown th a t energetic ions can be produced very promptly, 

within a few seconds of the nonrelativistic electrons (Chupp et al. 1982). So, they are not 

a signature of second phase acceleration as was thought before the launch of the SMM. 

The to ta l numbers of protons inferred from gamm a ray line observations depend on the
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abundances in the proton interaction region, but typical values lie in the range of 1 0 3 0 —1 0 33 

protons above 30 MeV. These protons are energetically insignificant in the flare as a whole 

but lower energy ones have almost no radiative signatures and could be energetically 

significant (MacKinnon 1989).

1 .3 .6  S i te  o f  E n e r g y  R e le a s e

From Skylab, Howard and Svestka (1977) observed in soft X-rays a complex of activity. 

The basic components of the activity were interconnected sets of magnetic field lines, 

which retained their identity during the life of the active region. However the visibility of 

individual loops in these connections was greatly variable and typically shorter than  one 

day. Each brightening of a coronal loop in X-rays seemed to be related to  a variation in 

the photospheric magnetic field near its footpoint. Only loops (rarely visible) connecting 

active regions with rem nants of old fields can be seen in about the same shape for many 

days. The interconnecting X-ray loops do not connect sunspots.

The flare occurrence and the loop brightening seem to be two independent consequences of 

a common triggering action, th a t is emerging of new flux. In an old active region, growing 

and brightening of X-ray loops can be seen quite often without any association with a flare 

event. Thus the absence of any flare in the chromosphere does not necessarily mean tha t 

the overlying coronal active region is quiet and inactive. The final decay of this complex 

of activity was accompanied by the penetration of a coronal hole into the region where 

the complex existed before.

Currently, there is no direct way to determine the magnetic field strength and config

uration in the corona, only the photospheric and chromospheric fields being measured 

from the Zeeman splitting of emission lines from various partially-ionised a,toms gener

ally at tem peratures much less than 106 K. These photospheric fields can be extrapolated 

into the corona assuming either a potential field or a ‘force-free’ field, neither of which is 

appropriate fo a flare situation.

Observations show th a t a flare is most likely to occur in an active region where the magnetic 

shear is the greatest, thus implying th a t there is considerable twist in the magnetic field 

lines of the loop. So, it may well be th a t the flare energy is derived from the dissipation 

of the poloidal component of the field in the loop produced by a current along the loop. 

Such theories though are very speculative because the uncertainty in measurem ents of the
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to ta l magnetic field in an active region is generally greater than or of the same order as 

the energy released in the flare. Thus, while definite before-to-after magnetic changes have 

been detected in a few flares (e.g., Moore et al., 1984), in no case has it been shown th a t 

the observed change quantitatively accounts for the flare energy (Moore, 1988).

There is hope tha t future microwave observations made with high spatial resolution at 

many frequencies can provide a means of determining magnetic field strengths in the 

corona and transition zone.

1.4 P ossib le  Solar Flare C lassification  Schem es

Solar flares are frequently classified as single loop, compact type and H a two ribbon type, 

these types most probably being the extremes of a wide distribution. A feeling one gets 

by looking at different flares at different wavelengths is th a t no two flares are alike, in 

their signatures anyway. So, the classification schemes tha t appear in the literature are 

likely to fall into the trap  of adjusting the classification to the flare model desired. Here 

I will try  to give some general guidelines of classification specially from the high energy 

emission tha t I am interested in.

Before observations in X-rays were obtainable, flares were classified by their optical ap

pearance, usually in H a emission line. So, the area of the solar surface tha t brightened 

was measured and flares were classified according to their size. Later, measurements of 

intensity were included also. When Skylab data  became available, Pallavicini et al. (1977) 

classified flares into a) compact flare loops, b) point like flares and c) large, diffuse flare 

loop systems from their appearance in X-rays. Since then a lot of in-between cases have 

been observed.

The Hinotori satellite was in operation from February 1981 to  October 1982. It made 

observations in soft and hard X-rays and gamm a rays, though hard X-ray imaging was 

possible only in relatively intense flares. In most flares hard X-ray sources are in the 

corona 104k m  or more above the solar surface. If the flare takes place in a magnetic loop 

the brightest location of the soft X-rays is near the top of the loop or all the loop brighten. 

Hinotori found th a t Hard X-ray sources show a variety of forms.

After the Hinotori observations, flares were classified by Tanaka (1983) into three types.
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• Type A (Hot Therm al Flares). These flares produce a superhot component of tem 

perature 3-4 107 K, tha t emits hard X-rays in the range E < 40 keV and strong Fe 

XXVI lines. The hard X-ray time profile shows a gradual rise and fall similar to the 

soft X-ray profile. The hard X-iay source is compact (<  5000 Km). The spectrum 

is soft ( 7  is 7-8). Radio emission is weak.

• Type B (Impulsive Flares). These show typical impulsive hard X-ray bursts con

sisting of rapidly varying spikes em itted from the low corona, including the loop 

footpoints. The spectral index 7  is 3-7. The later phase of some flares evolves to 

a more gradual time profile with softer spectrum ( 7  5-8) and to a more compact 

source structure located at a higher altitude.

• Type C (G radual Hard Flares) These flares show a long-lived (>30 min) burst with 

a broad peak or peaks showing no impulsive variation. The source is located high in 

the corona (h > 4 xlO 9 cm) and can be identified with large extended loops. The 

spectrum  is very hard, is well characterised by a power law ( 7  ~  2.5-4), and shows 

system atic hardening with time. Microwave emission is very strong.

A more recent classification scheme, combining Hinotori and Solar Maximum Mission 

(SMM) results was introduced by Bai and Sturrock (1989).

From their X-ray appearance solar flares have been divided into two classes. As we know, 

flare associated hard X-ray and radio emission usually lasts between tens of seconds and 

several hours. Based on the different durations of these emissions two extreme cases of 

flares have been distinguished: impulsive and gradual (or extended) hard X -rays/radio 

bursts (Bai and Dennis 1985).

G radual hard X-ray and radio bursts flares are characterized by their long duration, 

sm ooth time profiles, time delays between peaks at different hard X-ray energies and 

microwaves and radiation from extended sources in the low and middle corona.

The distinction between impulsive and gradual hard X -rays/radio bursts flares is not 

always evident. Nakajim a (1983), using microwave imaging and hard X-ray spectral ob

servations, showed th a t gradual and impulsive signatures may occur simultaneously, but at 

different location. This underlines the influence of the environment where the emission is 

produced on the tem poral and spectral evolution of the radiation and serves as a warning 

against the generality of classification schemes.
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Figure 1.5: HXRBS time profiles ami spectral evolution of the thermal Hard X-ray flare 
on 2 December 10S(). The time profile o( the 29-59 keV range is gradual, with some 
contribution from a spiky nonthermal component. T hat of 58-132 keV is more spiky. For 
power law fits, the spectral indices are large. For thermal fits, the tem perature is about 
b x 10' K. Both pure power law fits and pure thermal fits result in large \ 2 values, which 
indicates that the X rays might be a combination of thermal and nontherm al emissions 
(Bai and Sturrock 19^9).
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The differences between the two classes of flares, impulsive and gradual, are not only of 

timescale or morphology (Cane et al. 1986). The energetic particles observed in space 

from impulsive events exhibit abundance enhancements (Reames 1990) and these flares 

are also called 3 He-rich events because they were originally identified by a 3 H e/4Ile ratio 

of 0.1-10 which is a huge increase over the coronal value of ~  5 x 10- 4 . These events are 

also characterized by enhanced Fe/C and 4 He/H ratios, are associated with 2-100 keV 

electron acceleration and type III radio bursts, and possess impulsive hard X-ray and 

gam m a ray emission. Gradual Flares have large proton fluxes, are associated with Type 

II radio emission, produce coronal mass ejections, have small 4 He/H ratios, and do not 

exhibit 3 H e/4He or Fe/C  enhancements. One interpretation of these observations (Lin

1987) is th a t the particles from impulsive flares originate in the region of prim ary energy 

release and th a t particles from gradual flares are accelerated by a coronal or interplanetary 

shock.

1.5 Solar O bservations from  YOHKOH

The Yohkoh satellite has as its prim ary scientific objective the understanding of solar 

flares. It has two instrum ents tha t observe in soft X-rays: the SXT (Soft X-ray Telescope) 

and BCS (Bragg Crystal Spectrom eter). The soft X-ray radiation as we know is principally 

em itted by therm al radiation processes. Yohkoh has observed the evolution of hot plasmas 

in the corona both in flares and outside flares. It also carries two types of instrum ents 

dedicated to the study of high energy aspects of solar flares, the Hard X-ray Telescope 

(HXT) and the hard X-ray and 7  ray spectrometers.

The Soft X-Ray telescope (SXT) on board the Yohkoh satellite has obtained a very large 

quantity  of images of active regions throwing new light on the geometry of flare occurrence. 

From these da ta  one realises th a t active regions evolve constantly. Loop structures often 

show sudden brightenings and drastic changes, which one would like to explain as res

ults of reconnection events. Loops with initially complicated structures, develop to more 

simplified loops (parallel loops sometimes). There are strong suggestions (Cheng and Ac

ton 1994) th a t magnetic connections change in a way th a t two originally unrelated loops 

appear related, th a t is when simultaneous brightenings appear at two distant footpoints. 

The interaction of crossing loops leads to the relaxation of the originally stressed fields
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and their disappearance, thus the reconfiguration of the magnetic field topology. After the 

interaction these loops could fade away (possibly drained of their hot m aterial) and other 

loops initially not populated by plasma are then filled with heated gas and so become 

visible. A very interesting result is th a t there are a few events where the hard X-ray and 

microwave emission is present but no therm al (soft X-ray) component is present (Yaji et 

al. 1994). Hudson (1994) gives a summary of interesting results and discoveries of Yohkoh 

both  in flares and outside flares.

Energy-dependent structure of hard X-ray flare sources is clearly detected. In lower en

ergies one can see the whole flaring loop, and as one goes to higher energies, hard X-ray 

emissions tend to concentrate at the loop footpoints. The source varies impulsively which 

means th a t spikes are seen on the to ta l flux. But in the impulsive phase of several limb 

flares, in addition to the double footpoints a hard X-Ray source is found above the soft 

X-ray loop, at an altitude of more than 104 km above the photosphere. The source is 

weaker than the footpoints but is definitely of impulsive nature, as it is inferred from the 

tem perature and the emission measure needed in order to be of therm al origin. This is a 

very im portant result. It is thought tha t we probably observe an acceleration site (M asuda 

1994).

A highly dynamic nature of the solar corona is revealed. Large-scale changes in coronal 

structures are seen much more frequently than anticipated from the Skylab observations 

with lower time resolution. On the smaller end of the size spectrum , active regions and 

X-ray bright points show frequent brightenings, which might well be the soft X-ray coun

terpart of hard X-ray microflares. W hether this burst energy release associated with the 

microflares can account for the heating of the corona is an im portant issue under invest

igation.

Everyone th a t has watched the movies from the SXT, has been amazed by the complexity 

of the structures observed in the corona. When the resolution increases, more fine structure 

can be observed.

1 .5 .1  A  C a r t o o n

A few cartoons of flare models are shown here. The first one Fig. (1.6) shows the emission 

produced during a flare. In Fig. (1.7) we see the emerging flux mechanism of Heyvaerts 

et al. (1977) for a small flare (a single loop flare). In Fig. (1.8) is the generally accepted



CHAPTER 1. SOLAR MAGNETIC A C T IV IT Y  AND FLARES 25

scenario for two-ribbon flares (Priest, 1982).

1.6 N o ise  S torm s

W hen the Sun is observed in m etre and decameter wavelengths long-lasting solar radio 

emission consisting of thousands of shortlived spikes superimposed on a slowly varying 

continuum is seen. This type of storm  which is usually called noise storm  lasts from hours 

to  days, and this long duration is one way of distinguishing this kind of emission from 

other solar radio emission. Noise storms are usually observed above sunspots with large 

magnetic fields (see e.g. McLean and Labrum, 1985).

Storms consist of numerous short lived bursts, so it is plausible to assume th a t each of 

these bursts corresponds to an acceleration event. The acceleration should persist for a 

long time in a small volume in the corona. Type I bursts is believed to  be some form of 

fundam ental plasma frequency. Melrose (1980) developed a Type I emission theory based 

on the assumptions th a t, the emission mechanism is fundam ental plasma emission and 

is due to coalescence of Langmuir waves with low-frequency waves (ion-sound or lower- 

hybrid waves), and the exciting agency for the Langmuir waves is a population of energetic 

particles trapped in a closed magnetic structure over an active region. The source of the 

electrons tha t produce the noise storms is unspecified.

1.7 Flare em ission  from  stars

Stellar radio flares are defined as variable radio emission from stellar mass objects which 

is possibly produced by explosive releases of magnetic energy. Such flares have been found 

in the following stars: late-type main-sequence stars (dMe and dKe stars), detached, 

semi-detached and contact close binaries (RS CVn, Algol-type and W UM a-type stars, 

respectively), X-ray binaries, pre-main-sequence stars (T Tauri and protostars), m agnetic 

A p/B p stars, and late-type giants and supergiants.

Some X-ray binaries show radio jets. In the case of SS433 the jets consist of individual 

knots travelling at constant speed of 0.26 c along a precessing axis. These knots a tta in  

their maximum radio brightness at a distance of a few 1 0 15 cm from the nucleus, and 

subsequently fade away on a time scale of days as the knots travel outwards. The radio 

spectral index is always between -0 . 6  and -0 . 8  and indicates optically thin synchrotron
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emission (Kuijpers, 1989).

RS CVn type binaries are probably the most common kind of radio detected stars. Their 

radio emission is intense, highly variable, and often circularly polarised. They are m oder

ately close binary stars with periods 1-30 days. One star is usually G type or later. Seme 

have variable visible and UV emission, and dark areas (maybe sunspots) covering much of 

the star. They most probably have intense magnetic fields, which are induced by tidally 

enforced rapid rotation. For many systems the fields of the two stars probably interact in 

the intervening medium (Uchida and Sakurai, 1983).

Magnetic fields in the sun are typically measured from the difference in absorption line 

profiles obtained in opposite circular polarizations from magnetically sensitive transitions. 

This m ethod has failed for stars due to cancellation effects. Robinson (1980) proposed tha t 

the average m agnitude of the stellar photospheric magnetic field could be derived from a 

careful study in unpolarised light of the enhanced Zeeman broadening of a magnetically 

sensitive line compared with another spectral line very similar in shape and form ation, 

but with smaller magnetic sensitivity. Since Zeeman broadening increases with the square 

of the wavelength, infrared lines should have more pronounced broadening.

1.8 E m ission  From SS433

SS433 was first recognised as an optical object and later it was found th a t it shows variable 

emission in radio waves and X-rays. Also it shows strong emission lines in some unexpected 

wavelengths. Emission lines from hydrogen and helium exhibit very large Doppler shifts 

both red- and blue-shifted which move symmetrically around a central position in a period 

of 164 days. A second period of 13 days is also observed.

SS433 is thought to  be a binary system the first companion being an early type star and 

the second a compact object ie neutron star or black hole. An extended and thick accretion 

disk is thought to  exist around the compact object. W50 is thought to  come from the 

supernova explosion th a t created the compact object of the binary system. The system 

must be a close binary. The second period of thirteen days in the da ta  is thought to  be 

the orbital period of the binary system

The most popular model for the understanding of the behaviour of this object assumes 

the existence of two oppositely directed relativistic beams coming out of this object. The
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derived velocity of the beams is about 0.26c. The observed period of 164 days is believed 

to be the precession period of the relativistic beams. The kinetic luminosity of the beams 

is more than 1 0 39 erg/sec which means th a t the mass loss rate  is more than 1 0 ~ 6 solar 

masses per year. The early type star has a wind of speed uw = 500 Km/sec.

There is a strong H a luminosity of 1035 erg/sec within 1015 cm from SS433. The optical 

spectrum  of SS433 shows Balmer, Paschen, Brackett and Hel lines but it doesn’t show any 

Hell in the jets. So the tem perature of the optical em itting area must be about 104 K. 

Since the forbidden lines are missing the density of the jets must be more than  1 0 7 /cm 3. 

Since the lines are so narrow the cone half-angle of the jets must be less than  0.03 rad.

1 .8 .1  R a d ia t iv e  in s ta b i l i t y  in t h e  j e t s  o f  S S 4 3 3

Work on wind collisional heating and radiation cooling processes in the jets of SS433 

is presented here as well. The fact tha t the transient ‘bullet’ phenomenon and m ajor 

variability seen in the optical spectrum  of SS433 are essentially absent in X-ray d a ta  from 

the ‘inner’ jets seems to preclude their being ‘tru e ’ bullets (i.e. comprising interm ittent 

large mass ejections). In Brown et al (1994) we have dem onstrated th a t the density 

conditions in the jets of SS433 are such th a t small variations in the jet density, angle, 

idling factor, or wind density, can cause the wind heated jets to switch between hot and 

hot/cool regimes. Because of radiative instability the inner jet is not allowed to cool down 

to optical tem peratures so the optical jets vanish with negligible change in the inner X-ray 

je t (for jet param eters see Brown et al 1991).



Chapter 2

M agnetic Reconnection and 

Particle Acceleration

2.1 In trodu ction

Magnetic reconnection is one possible mechanism for conversion of magnetic energy. As 

such, is one possible mechanism by which energy may be released in the flare process. 

Magnetic fields containing X-type neutral points are probable configurations for magnetic 

reconnection. Reconnection taking place in such X-type neutral points, is an im portant 

ingredient in the open magnetosphere model (Dungey 1961). Dungey (1953) showed that 

the MHD equations could be solved at a magnetic neutral point which was also a stagna

tion point of the flow assuming th a t the conductivity was infinite and ignoring pressure 

gradients.

A m ajor question is whether magnetic reconnection can proceed quickly enough to explain 

the observed rapidity of energy release in solar flares. Energy should be released in tens 

of seconds. The mechanism should give rise to fast particles, up to relativistic energies 

in timescales of seconds. A large proportion of the magnetic energy must go into these 

particles, and enough of them  should be produced to account for the observed signatures. 

These requirements do not just apply to reconnection, but to any proposed flare model. 

Since in astrophysical plasmas the magnetic Reynolds number is very big ( R m ~  108 or 

higher for solar flares, R m ~  1011 for the solar wind and the m agnetosphere) a change 

in the magnetic field such as discussed by magnetic reconnection would not be possible. 

Each plasm a would flow in its own configuration, and wherever plasmas with different

31
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magnetic topologies met (eg the solar wind and the ea rth ’s magnetosphere) the boundary 

layers would remain unchanged. This is of course true but not quite. W hen the magnetic 

Reynolds number is defined the size of the region in consideration is used. However, the 

size at the region where two distinct (magnetically) plasma populations approach can be 

very small. This will allow diffusion to take place and plasma to  flow across the boundary 

layers causing release of the magnetic energy of the plasma.

2.2  M agn etic  energy

M agnetic fields arise as a result of electric charges in motion; th a t is currents. M agnetic 

energy storage arises when a current system, driven by electromotive forces -i.e. voltage- 

does work against the voltages included by the build-up of the current system itself. The 

work is stored in the magnetic field associated with the currents and can be regained by 

allowing the current to decay. To m aintain the stored magnetic energy the system must 

have the ability to create new magnetic energy or to permit its transport in the system 

at a rate  greater than  the rate  of transform ation of magnetic energy into other forms of 

energy.

2 .2 .1  M a g n e t i c  e n e r g y  s to r a g e  an d  c o n v e r s io n  in t h e  so la r  a t m o s p h e r e

The problem of storage and conversion of magnetic energy on the Sun has been investigated 

primarily in the context of solar flares but also in the context of coronal heating. We 

expect stars to be hottest in the center and progressively cooler at larger and larger radii. 

It is generally agreed th a t the source of energy by which the solar corona is heated to 

tem peratures 1 0 0  times the tem perature at photosphere level is ultim ately the convective 

motion of the very dense plasma in the photosphere. However, it is still uncertain what 

the mechanisms are by which th a t energy is first transm itted  to the corona, and then 

dissipated to provide the necessary heating (Heyvaerts 1985). The corona though is much 

ho tter than  the underlying chromosphere and photosphere. The original view was th a t the 

corona is heated by acoustic waves propagating from the photosphere. Recent estim ates 

have excluded this idea and have led to the conclusion th a t magnetic activity is responsible 

for the high coronal tem peratures. The storage of energy in this magnetic field can be 

thought of as a slow process where the field evolves through a sequence of force-free
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configurations, each time ending in a higher energy state (Low, 1982).

Magnetic flux tubes with trapped plasma are the most likely configuration for magnetic 

energy conversion. In fact, active and passive processes from the magnetic field point of 

view, clearly correspond to phenomena taking place perpendicular and parallel to the flux 

tubes respectively.

Today, in general, we do not have enough detailed, simultaneously obtained information 

about small scale structures or dynamics to distinguish between m any possibly similar 

interactions and configurations. We still lack good resolution of the 3D plasma, velocity 

and magnetic field profiles on 100-1000 Km spatial scales.

2 .2 .2  F orm  o f  th e  m a g n e t ic  fie ld

As we said the place where the magnetic energy is converted into other forms cf energy, 

lies close to neutral points. In a first approximation the magnetic field of bipolar sunspot 

groups in the chromosphere may be regarded as a magnetic dipole field. Neutral points 

arise if two or more such groups are present at places where the magnetic fields of individual 

spot pairs have opposite directions. A neutral point can arise for example between two 

parallel directed currents. Suppose tha t the magnetic field is given by (Syrovatskii, 1981)

B (x , y )  = V x [A(x,y)ez]. (2.1)

This describes a 2-D configuration in which

V • B =  0 (2.2)

is autom atically satisfied. We can rewrite A ( x , y )  in the form

A(x,  y ) =  a n x 2 +  a 22y2• (2.3)

It is clear th a t three different types of singular lines are possible, depending on the values 

of the coefficients a n  and a 22.

1. A singular line of 0  type, if a n  • a 22 < 0. In this case, the transverse magnetic field 

lines take the form of ellipses, an encircling singular line, while the real field lines 

take the form of spirals coiling around the singular line.

2. A singular line of X type, if a n  • a 22 > 0. In this case the transverse field has a 

null point of X type at the singular line, and the singular line is the intersection
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of two surfaces, dividing the vicinity of the singular line into topologically different 

regions. The field lines in every region cannot be transform ed by a continuous small 

deformation into field lines of any of the other regions.

3. Singular lines of shear type, if a n  - 0 2 2  = 0. In this case, the transverse field lines are 

all parallel, and the vector B(:c, y ) smoothly changes in m agnitude and reverses when 

crossing the singular line. Lines of this type are typical for the shear magnetic field. 

In such a field the field lines He on parallel magnetic surfaces and change direction 

smoothly from one surface to  another.

For a discussion of 3-D magnetic field reconnection see Lau and Finn (1990, 1991).

2.3 M H D  E quations

In conducting liquids or dense ionized gases the collision frequency of different species 

(electrons, ions) is sufficiently high for a wide range of frequencies of an applied electric 

field so th a t Ohm ’s law in its simple form is valid j =  <tE where E =  E ' + yzB (E ' is the 

electric field when the plasma is at rest, v is the plasma bulk flow velocity.)

Under the action of applied fields the electrons and ions move in such a way th a t apart from 

a high frequency jitte r , there is no separation of charge. Electric fields arise from motion 

of the fluid which causes a current flow, or as a result of time-varying magnetic fields or 

charge distribution external to the fluid. The mechanical motion of the system can then 

be described in term s of a single conducting fluid with the usual hydrodynamic variables 

of density, velocity and pressure. At low frequencies the displacement current is ignored. 

This approxim ation is then called the m agnetohydrodynamic (MHD) approximation.

The Equations of M agnetohydrodynamics are the following: First, Maxwell’s equations 

(here in CGS units):

V X B = (2.4)

V x E  =  - J f  (2.5)

V B  = 0  (2 .6 )

V • E = 47rp (2.7)

where p and j are the change and the current density. Then the m omentum equation,



CHAPTER 2. MAGNETIC RECONNECTION AND PARTICLE A C C E L E R A T IO N S

where several force terms can be included

p —  = force density.
dt

(2 .8 )

The generalized Ohm ’s law
m P d\
^ ^ E  +  v x B - v j  (2.9)

where an inertial term  has been included, the pressure gradient and the Hall effect are 

om itted. O hm ’s law is a rigorous consequence of the Boltzmann equation. An equation 

of sta te  for the gas closes this set of equations.

Equation (2.8) has on the right hand side, the Lorentz (magnetic) force, the effect of the 

electric field, pressure term , collisions term . For an extensive discussion of the equations 

of MHD see Priest (1982).

The MHD approxim ation has two special cases: the kinematic and strong field approxim a

tion. We have the kinematic approximation when the evolution of relatively weak magnetic 

fields is controlled by flows controlled by non-magnetic forces (this is thought to  be im port

ant in the photosphere and convection zone of the Sun) and the strong field approxim ation 

when the magnetic field is strong enough to control the plasma motion (corona). Strong 

field conditions exist in stellar and planetary atmospheres. This approach usually implies 

a given magnetic field and its time evolution; the induction equation th a t we now discuss, 

gives the velocity field.

In d u ction  E quation

The so-called induction equation governs the evolution of magnetic fields in the MHD 

regime. Many im portant conclusions can be derived from it. It may be derived as follows. 

We s ta rt with Maxwell’s equations, Am pere’s law (where we neglect the displacement 

current term  ( l / c ) d E / d t ,  one can do th a t if one assumes tha t the fluid velocities are much 

smaller than  the speed of light and low frequency oscillations of the electric field compared 

to  timescales of the system (Jackson, 1965)), Faraday’s law together with O hm ’s law,

V X B (2 .10 )

V x E

E

l d B
c dt  
v x B
 +  m

(2 .11)

(2 .12)
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Substituting E in Faraday’s law from Ohm ’s law gives

dB
^ -  =  V x ( v x B ) - c V x  (77]) (2.13)

and eliminating j between this and Am pere’s law, we get

dB nc2 c2
=  v x  (v x  B) -  4 - V  x  (V x  B) -  — V 77 x  (V x  B). (2.14)

eft 47T 47t

Things become simpler if we assume th a t the resistivity is uniform at least in the area we

are interested in. By using the following vector identity

V x (V x B) =  V (V  • B) -  V 2B (2.15)

and G auss’s law for the magnetic field

V • B = 0 (2.16)

we get the induction equation

— = V x (u x B) +  v - V 2 B. 12.17)
dt  v~ 4?r “ 7

We will try  to understand this equation by considering the magnetic flux enclosed by a 

contour C

4> =  J  J  B ■ dS, (2.18)

where 5  is a surface bounded by the contour C. L et’s assume th a t the contour C moves

with the plasma, after some time dt the contour will be displaced to  C ’. Any change in

the m agnetic flux through this contour will be due either to time variation of B during dt 

or due to  flux th a t was lost through the boundary defined from the movement of C (see

figure (2.1)). An element d\ is defining and area dS = d\ x ydt as it moves. The change in

the m agnetic flux will then be

= j  J  ^  • dSdt -  <j> B • (d\ x ydt). (2.19)

Using some vector identities and Stokes’s theorem in the second term  of the right hand 

side, we have
t  f  <9B

W / s [w - v x ( x x B ) 1 - d s - ( 2 - 2 0 )

So, if the plasm a is perfectly conducting (77 =  0) the magnetic flux through the contour C 

is constant in time. This is called the ‘frozen in’ condition in a plasma.
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B(t + dt)

dS,

vdt

B(t)

F ig u re  2.1: A su r fa ce  S b o u n d e d  by a  c o n t o u r  C a n d  m ov in g  wi th  th e  p l a s m a .  A f t e r  a  
sm a l l  t i m e  in t e r va l  dt.  t h e  su r fa ce  has  d e f o r m e d  to S'.  b o u n d e d  by C". t h e  d i f f e rence  in 
t h e  m a g n e t i c  flux t h r o u g h  S'  f rom t h a t  th r o u g h  S  ar ises  from two causes :  a  c h a n g e  in th e  
s t r e n g t h  o f  R a n d  th e  e s c a p e  o f  flux th r o u g h  th e  walls def ined by th e  fluid s t r e a m l i n e s .  
T h e  a re a  ve c to r  dS lor th e  wall e l em en t  show n is g iven by d\  x  vdt.
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2.4 M agnetic R econn ection

M agnetic reconnection is a phenomenon of considerable importance in solar system plas

mas. In the large scale magnetic fields of the solar corona, magnetic reconnection results 

in flares and in the smaller scale magnetic fields maybe in coronal heating which leads to 

the outflow of the solar wind. Reconnection in the m agnetotail of the E a r th ’s m agneto

sphere can cause large scale magnetic reconfiguration, which is associated with auroral 

substorms. Also, reconnection in laboratory plasmas can cause m ajor disruption to the 

plasm a confinement (Cowley 1985).

The process may also play an im portant role in astrophysical plasmas in systems such 

as accretion disks and generally in current sheets formed in interstellar and intergalactic 

space (Kuijpers 1993).

D efin ition

M agnetic field line merging, or reconnection, is the process whereby plasm a flows across a 

surface th a t separates regions containing topologically different magnetic field fines (Va- 

syliunas (1975)). The m agnitude of the plasma flow is a measure of the merging rate. 

The magnetic merging process enables the magnetic field to act as an energy source for 

the plasma. A more recent discussion by Schindler et al. (1988) gives as definition the 

‘Breakdown of magnetic connection due to a localised nonidealness’ for general magnetic 

reconnection. This allows a finite B to remain after the reconnection (see also Axford 

1984).

2 .4 .1  M a in  fe a tu r e s

The basic principles behind magnetic reconnection can be understood by looking at the 

induction equation and the form of the Lorentz force

|  =  V x ( u x B )  +  7?V2B (2.21)

where 77 is the magnetic diffusivity. This equation describes how the magnetic field changes 

in time due to  the effects of transport by the plasma flow and diffusion. The ratio  of the 

two term s in the r.h.s. of this equation is the magnetic Reynolds number
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which is very large for most astrophysical plasmas because the length scales for changes 

in the magnetic field are large. For example, R m is 108 for the solar flare problem and 

1011 for magnetospheric phenomena. So, the magnetic field lines are ”frozen-in” to the 

fluid which means th a t the magnetic field lines are convected along with the flow or the 

m agnetic flux tubes are moving and carrying with them  the plasma they contain. Which 

of the two is applicable in a particular situation depends on whether there is a kinematic 

or a strong field approximation.

The Lorentz force (or magnetic force) which is perpendicular to the magnetic field (so any 

plasm a acceleration parallel to the magnetic field must be caused by other forces) is given

by

Fl = j x B  (2.23)

and when we substitute in j from Ampere’s Law

47r B 2
— j x B  =  V x B x B  = (B-  V)B -  V ( — ). (2.24)

The first term  on the right hand side represents the effect of magnetic tension parallel to 

the magnetic field of m agnitude B 2 per unit area. The second term  represents the effect 

of magnetic pressure.

In regions of high magnetic field gradient (which could mean the encounter of two distinct 

plasm a populations), however the length scale L is very small and so the second term  in 

the induction equation can become im portant and the field can diffuse rapidly through 

the plasm a on a time scale
T2

r  =  — , (2.25)
V

where rj is the resistivity of the medium which though generally small in astrophysical 

plasmas (values of 1 0 - 1 8  are not unheard of) can locally acquire an im portan t value, 

particularly through anomalous resistivity in turbulence (eg Papadopoulos 1976). One 

can picture the field lines diffusing through the plasm a down field gradients, in such a 

way as to reduce the gradients. The plasma and the velocity field are no longer coupled. 

This not only alters the topology of the field, but also releases a  great am ount of magnetic 

energy since the tension in the newly reconnected field lines accelerates the plasm a away 

from the reconnection site at approximately the Alfven speed

B
uA -   r

(47rp ) 2
(2 .26)
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So, depending on the value of Reynolds number one can have convection of the magnetic 

field with the flow or diffusion of the magnetic field lines through the flow, or an inter

mediate situation if the magnetic Reynolds number gets some interm ediate values. In 

most astrophysical plasmas R m 1 prevails so th a t different magnetically plasm a pop

ulations won’t interact unless something else happens. For example two different plasma 

populations are the solar wind and ea rth ’s magnetosphere (or any other planetary mag

netosphere). These two meet in the interplanetary medium and they reach an equilibrium 

sta te  where both populations remain separate. They should remain separate in this way 

for ever if the ‘frozen-in’ condition stands. But in such a close approach the length scale 

for consideration in the induction equation is not the same as before but reduces signific

antly. So, diffusion phenomena in a localised small region are im portant and this is why 

magnetic reconnection is an im portant mechanism (Jardine 1991).

The coupling of the plasma flow and the transport of magnetic flux arises from the equation 

of the electric field, as discussed before

F  +  ^ - ^ 0  (2.27)
c

where y is the bulk flow velocity of the plasma, i.e. the particle m omentum flux density 

divided by the mass density. Equation (2.27) is expected to be approximately true in most 

cosmical plasmas. It implies th a t any plasma flow across magnetic field lines is associated 

with an electric field. In particular, a plasma flow across the separatrix is associated with 

an electric field lying in the separatrix surface at right angles to  B. So, th a t such an 

electric field occurs is thus an alternate way of stating th a t magnetic merging is occurring. 

At the intersection of the two branches of the separatrix, the component of v X B along 

the X line becomes zero. Then (2.27) becomes inapplicable, since several term s have been 

neglected at the right hand side on the ground of them being small in comparison with 

v x B .  One of these term s is the effect of finite resistivity, whose inclusion changes (2.27) 

to  the ordinary O hm ’s law. So, when one is sufficiently close to  the neutral line

E =  nj. (2.28)

Thus E is related to the plasm a flow across the separatrix. Hence for a given magnetic 

configuration the electric field along the X line is proportional to the merging rate.
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2 .4 .2  S p o n ta n e o u s  a n d  D r iv e n  R e c o n n e c t io n

A distinction often made in the literature is tha t between spontaneous and driven re

connection. Spontaneous reconnection is said to occur when a system whose external 

param eters are only slowly changing becomes unstable giving rise to reconnection with 

a ra te  tha t is not controlled from outside. Driven reconnection refers to  an open system 

where plasma and magnetic field are injected and extracted, and the reconnection rate  is 

determined in this way. Biskamp (1986) argues tha t the distinction is overemphasised and 

th a t the basic mechanism is the same. The second one perm its higher resolution of the 

reconnection region, which is regarded as a small section of a spontaneously reconnecting 

one.

2 .4 .3  C u rren t S h e e ts

One candidate topology, th a t has received considerable a ttention, where reconnection 

might happen is a magnetic field with an X-type neutral point.

B =  B 0(yx  +  xy  +  B z z) (2.29)

(see 2.2.2). Usually B z is considered to be very small or is completely ignored, so a two 

dimensional system with a well defined x-type neutral line is considered. Dungey (1953) 

discussed the possibility of ’discharges’ occurring close to a neutral point like this which 

would result in particle acceleration. The possibility of particles in a small region reaching 

very high energies by absorbing energy from a large surrounding region is of more interest 

than the m oderate heating of the m aterial in a large region. The growth of the current 

density is opposed by the electromagnetic forces everywhere in a magnetic field except 

near a neutral point. In the neutral point a small initial perturbation will lead to the 

form ation of a discharge th a t cannot be balanced by the electromagnetic forces.

A current sheet may be defined as a non-propagating boundary between two plasmas, with 

the dom inant magnetic field component tangential to the boundary. The tangential field 

components are arb itrary  in m agnitude and direction, subject only to the conditions th a t 

the to ta l pressure be continuous

»+S=»+g- ( 2 - 3 o )

If the sheet is curved significantly, additional magnetic tension term s need to be included.
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A  current sheet (Fig. 2.2) is rather like a shock wave, in the sense th a t it may be regarded 

as a discontinuity separating two regions where the equations of ideal MHD hold. Also its 

w idth and the details of its interior are determined by diffusive processes. However, the 

similarity ends there. Unlike shocks, current sheets do not propagate. They diffuse away 

in time and jets of plasma come out of their ends at Alfvenic speeds.

As we said an X-type neutral point in a magnetic configuration tends to be locally unstable, 

provided th a t the sources of the field are free to move (Dungey, 1953). Let us consider 

the equilibrium current free field

B x = y, By = x. (2.31)

The field strength increases with distance from the origin, so the hyperbolae are situated 

closer and closer together. Any element of plasma, such as the one shown near the x-axis 

experiences a magnetic tension due to  the outwardly curving field lines. This force acts 

outwards from the origin and is balanced by a magnetic pressure force, which acts inwards 

because the magnetic field strength weakens as one approaches the origin. If the field 

becomes distorted to the form

B x = y, By =  a 2x, (2.32)

where a 2 > 1 , and the hyperbolae change to

y2 — a 2x 2 = constant  (2.33)

then the separatrices close up like a pair of scissors. On the x-axis the field lines are closer 

together so th a t the magnetic pressure has increased. But they also have smaller curvature 

than  before, so th a t the magnetic tension has increased less than the pressure. The forces 

don’t balance anymore and the X-type point collapses to a current sheet (Priest, 1981).

2.5 M odelling  o f  M agnetic  R econ n ection

There are two paths to reconnection theory which have been developed almost independ

ently in the past: the MHD approach which is directly applicable to collisional solar 

coronal plasmas, and the single particle motion in model electromagnetic fields approach
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F ig u re  2.2: a )  A c u r r e n t  sheer  ac ross  which th e  m a g n e t i c  field r o t a t e s  f ro m B i  to  Bo .  
I>) A n e u t r a l  c u r r e n t  shee r ,  in who se  ce n t r e  the  m a g n e t i c  lield vani shes  a n d  th e  p l a s m a  
p r e s s u r e  is
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F ig u r e  'J.d: T he  m a g n e t i c  Held lines nea r  an  X - t y p e  n eu t ra l  [joint, a)  in e<[ui l ibrinm w i t h  
no c u r r e n t  a n d  b) aw a y  I rom et[ 11 ilihri 11 m wi th  a un i fo rm cu r r en t
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F ig u re  2.4: T h e  format  ion o f  a c u r r e n t  sheer  f rom a co n f ig u r a t io n  ini t ia l ly c o n t a i n i n g  an 
X - t y p e  ne u t ra l  point  in S yr o v a t s k i i ' s  Hare mode l .  T h e  so ur ces  of  the  field ha v e  m o v e d  a 
d i s t a n c e  h an d  cause  th e  field lines a t  l a rge  d i s t an c es  (/• >  /y)  to  move  as i n d i c a t e d  by th e  
a r r o w e d ,  d as h ed  lines, ( ' l o s e  to the  ne u t ra l  point th e  field lines a re  g r e a t l y  d i s t o r t e d  so as 
to  form a. c u r r e n t  she e t ,  s ince  no r eco nne c t ion  is a l lowed.  T w o  regions  ( c r o s s - h a t c h e d )  o f  
c o m p r e s s e d  p la sm a  a re  fo rm e d  on the  y-axis  a n d  one  ne a r  th e  n e u t ra l  po in t .  T h e  p l a s m a  
in th e  rest ol the  sheer  is r aref i ed ,  as shown by the  h o r i z on ta l  s h a d i n g  ( F r o m  S yr o v a t s k i i .  
L !)b()).
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which is applicable to collision free solar wind and magnetospheric plasmas and maybe in 

the high corona.

The hydromagnetic models often make the simplifying assumption th a t the plasm a flow is 

incompressible, which is equivalent to the assumption th a t (3 >  1 , i.e. the plasm a pressure 

is much bigger than the magnetic pressure.

On the other hand, single particle models often neglect the therm al speed in the velocities 

of the incoming (to the reversal field region) plasma particles; this is equivalent to  assuming 

th a t (3 <C 1. W ithin the reversal region (3 is of the order one.

2 .5 .1  H y d r o m a g n e t ic  M o d e ls

In the paragraphs to follow I discuss specific hydromagnetic models of m agnetic recon

nection th a t have been im portant in the development of the understanding of this phe

nomenon.

P ark er-S w eet M odel

This was the first model for how reconnection might take place (Sweet, 1958, Parker, 

1963). Their system is two dimensional and steady sta te  and the inflow m agnetic fields 

are antiparallel and of equal strength. The plasma is assumed to be incompressible and 

the density of the medium uniform everywhere. The plasma flows in towards the current 

sheet in both sides with V{ and flows out parallel to the current sheet with velocity V0 

(see fig. 2.5). The half width of the current sheet is calculated by assuming th a t there is 

a balance between the inflow magnetic flux and the flux annihilated in the current sheet 

due to diffusion. V B 0 ~  B 0/( f i0al)  which gives

l ^  A —  (2.34)
RoVV

They also assume th a t the width of the current sheet has the same value for all the length 

L and by using the conservation of mass they get (the density is thought to  be constant)

V0l = VtL (2.35)

All the reconnection rate  determines is how much plasm a is accelerated to  the  inflow 

Alfven speed per unit time.
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F ig u re  2.o: S ke t eh  o f  th e  field an d  (low co u l ig u r a t io n  (sol id lines a n d  a r r o w s  respe c t i ve l y )  
a s s u m e d  in th e  S w e e t - P a r k e r  Mode l .  T h e  c u r r e n t  she e t  (difFusion reg ion)  s h o w n  h a t c h e d ,  
has  th e  smal l  ha l f - wid th  I set  by th e  .^cale o f  di f fus ion over  its whole  h a l l - l e n g th  L. t h e  
l a t t e r  being a s s u m e d  to be equa l  to th e  >>cale size ol th e  s y s t e m  ((. .owley,  L08o).
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W hen the inflow speed is calculated they get

VAi
v < -  —A ~  (2-36)

V

which means tha t reconnection proceeds very slowly in this model and cannot account for 

the timescales of energy release in solar flares since R m ~  108 or bigger in the solar flare 

problem. The reason th a t reconnection proceeds slowly in this model is th a t the plasma 

can flow into the boundary region from a large area, but is allowed to leave only from a 

very narrow area.

P e tsc h e k ’s M od el

A very significant contribution to the understanding of magnetic reconnection came from 

Petschek (1964). He realised th a t an MHD slow mode compressional wave could also be 

used to decrease the magnetic field strength and increase the plasma energy.

The slow wave speed in the incompressible limit is

=  ( 2 - 3 7 )

where B nom is the magnetic field component normal to the wave front.

The configuration Petschek proposed is shown in figure(2.6). He pointed out th a t since 

m aterial is ejected symmetrically along the X-axis, the origin must be a fluid stagnation 

point. Two waves (slow mode shocks) are standing in the plasm a flow on both sides of 

the neutral fine and they confine the plasma outflow regions. The diffusion region is now 

much smaller than  the one proposed in the Parker-Sweet model. The width is the same 

but the length of the diffusion region is not comparable to  the size of the system anymore. 

This happens if we allow the inflow velocity of the plasma to be comparable to the Alfven 

speed. This can be seen from the continuity equation

L* ~  (2.38)
V i

where one assumes incompressible flow and outflow speed of the size of the Alfven speed. 

Thus, if the inflow speed is much less than  VAi the length of the diffusion region is much 

larger than  its width as it was assumed in the Parker-Sweet model. But if the inflow speed 

is comparable to  the Alfven speed then the length of the current sheet is much reduced. 

A slow shock is an oblique shock, where the magnetic field has components both parallel 

and perpendicular to the shock front (Fig. 2.7) The basic property of a slow shock is tha t
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F ig u re  '2.b: S ketch  of  the  m a g n e t i c  field a n d  p l a s m a  (low con f igu ra t ion  ( sol id  l ines a n d  
a r r o w s  respe c t i ve l y )  in th e  P e t sc h ek  r e c o nn ec t i on  so lu t ion .  A sma l l  ce n t r a l  d i f fus ion reg ion  
o f  l e ng th  L“ s u r r o u n d i n g  th e  n e u t ra l  line b i fu rca te s  in to tw o  s t a n d i n g  wave  c u r r e n t  sh e e t s  
in th e  d o w n s t r e a m  (low ( c u r r e n t  c a r r y in g  regions a r e  sh ow n h a t c h e d ) .  M o s t  o f  t h e  inf lowing 
pla.-una is ac ce le a r t e d  to flow rap idly  ( ~  V’.\,) a l on g  th e  b o u n d a r y  be t wee n  t h e  tw o  inflow 
regions  as it crosses these s t a n d i n g  waves  (Cowley.  19tfo).
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the magnetic field is refracted towards the shock normal and its strength reduces as the 

shock front passes by.

In this model the magnetic merging can be regarded as the collision of two jets of plasma 

carrying oppositely directed magnetic fields. In the vicinity of the neutral line they ap

proach each other at a speed, th a t no m atter how small, is still bigger th a t the MHD slow 

wave and hence their collision is expected to give rise to  slow shocks. Since slow shocks 

cannot propagate perpendicular to the magnetic field, they must remain attached  to the 

diffusion region.

In Petschek’s model reconnection can occur a t any rate, with the outflow region responding 

to  accommodate variations in the plasma inflow. So, the reconnection can take place at 

any ra te  up to an upper limit. The plasma outflow is not confined in a small region but 

takes place in an expanding ‘scissors’ area whose angle will change as the inflow velocity 

is changing. Detailed treatm ent (see Vasyliunas 1975) shows th a t the upper limit on the 

inflow velocity is

=  I s r f c -  ( 2 ' 3 9 )

Since the maximum rate depends only logarithmically on the Reynolds number it is much 

faster than the Parker-Sweet one. This also determines the term  ‘fast reconnection’. In 

‘fast reconnection’ the global energy dissipation rate  depends only logarithmically on the 

plasm a resistivity. One problem with this mechanism is whether fast particles can be 

generated in numbers and energy range observed during flares.

S on n eru p ’s M od el

Sonnerup’s (1970) model for reconnection discuss what happens in the convection region 

but did not discuss what happens in the diffusion region. The diffusion region is absent 

in his model. The solution which assumes an incompressible plasma, is constructed from 

regions of uniform magnetic field and plasma velocity separated by the plane wave dis

continuities standing in the plasm a flow. The condition for the existence of these waves 

are the same as in Petschek’s model, and their angles are determined by the requirement 

th a t both  the magnetic field and the fluid velocity are ro ta ted  by ninety degrees between 

the inflow and outflow regions. In order to succeed in this at least two standing waves are 

necessary in each quadrant of the solution.

If solutions in the wave model of reconnection as discussed by Petschek exist over a wide
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(a) Slow Shock (b) Intermediate Wave

IS:!

(c) Fast Shock

F ig u r e  2. i : T h e  c h a n g e  in m a g n e t i c  held d i rec t ion  rliar a r e  c a u se d  by t h e  t h r e e  t v p e s  of  
obli( | i ie wave  ( P r i e s t .  19N2). I lie axis a re  set  up in a f r a m e  o f  r eference m o v i n g  w i t h  t h e  
shoc k .  S u b s c r ip t s  1.2 d e n o t e  r espec t ive ly  the  values a h e a d  ol a n d  beh ind  th e  f ron t .
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F ig u re  2.S: S o n n e r u p  s Mode l .  M a g n e t i c  field lines a r e  s by solid l ines,  s t r e a n l i n e s  
by l o n g - d a s h e d  lines an d  t h e  s t a n d i n g  waves  by s h o r t  d a s h e d  lines.  T h e  inf low n iav  be  
c o n s id e r e d  to t a ke  place  b e rw ee n  p lane paral lel  walls ( sh ow n  h a t c h e d ) ,  wh i l e  t h e  ou t f lo w  
ta k e s  p lace  t h r o u g h  g a p s  in th e  walls.  The o u t e r  waves  o r i g i n a t e  a t  t h e  g a p  ed g e s ,  a n d  
th e  w id th  ol the  g a p s  d e t e r m i n e s  the  inflow (a nd  r e c o n n e c t io n )  r a t e .  T h e  c e n t r a l  di f fus ion 
region is not  r ep re se n te d .

77
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range of inflow speeds (reconnection rates), then what actually determines the reconnection 

ra te  in any given situation. An answer to this question is th a t the overall reconnection 

ra te  is determined by the external boundary conditions of the physical system. This does 

not preclude the possibility tha t more local conditions could influence the system over 

shorted timescales.

R ecen t D evelop m en ts

Forbes and Priest (1987) discuss the role of boundary conditions in both analytical and 

numerical solutions of steadily driven reconnection. According to this work a lot of the 

contradictory results in steadily driven reconnection are due to particular boundary con

ditions. Many puzzling questions have been raised by numerical experiments on recon

nection, because these experiments don’t always agree with the behaviour predicted by 

Petschek. Often the central current sheet is much longer th a t the Petschek analysis pre

dicts, and the inflow towards the X line diverges rather than  converges. Also the pres

sure variations in the inflow can be many orders of m agnitude larger than  those in the 

Petschek model. Lee and Fu (1986) and Priest and Forbes (1986) recognised th a t much of 

the unusual behaviour in the numerical experiments of reconnection is due to boundary 

conditions.

As was originally noted by Vasyliunas (1975), the behaviour of a reconnection solution 

depends strongly on whether the boundary conditions give rise to a slow-mode or a fast

mode expansion in the inflow region. Forbes and Priest (1987) show th a t many of the 

numerical experiments have boundary conditions which produce a slow-mode expansion 

in the inflow region rather than a fast-mode expansion. Since the fast mode expansion is 

an essential feature of the Petschek solution, it is not too surprising th a t these numerical 

experiments do not behave like the Petschek solution.

S yrova tsk ii’s M od el

The concept of current sheets originally discussed in the Parker-Sweet model was sub

sequently investigated by Syrovatskii (1971, 1981). He envisaged a mechanism th a t would 

involve the dynamics of individual particles which would affect the process of magnetic 

reconnection. This process is called dynamic magnetic reconnection. The X-type neutral 

point leaves equilibrium and relaxes to a current sheet. T hat happens since the boundary
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is free to move. The solutions are exponential growing.

If the assum ption of magnetohydrodynamics is violated in the nonadiabatic region then 

the medium will not admit the current density necessary for quasistationary conservation 

of field gradients. An electric induction field will appear, which will have two im portant 

consequences. First, the field E is not directly associated with the plasma displacements 

and can appear in a coordinate system fixed relative to the plasma. This would imply the 

destruction of the freezing-in property, which is fundam ental for MHD, and leads to  the 

condition th a t an electric field is absent in coordinates based on the conducting medium. 

The violation of the freezing-in property implies the possibility of lines of force slipping 

relative to  the medium, closing up, and so on. In this case the process is not associated 

with Joule dissipation, and may operate in a collisionless plasma.

Second, the electric field is directed along the current j, and thus it will perform positive 

work on the charged particles, increasing their energy. It is this process th a t will be 

capable of converting magnetic energy into kinetic energy of the particles, the distinctive 

dissipation th a t it is called dynamic dissipation. Its distinction from Joule dissipation 

is primarily tha t in the case of dynamic dissipation there is no simple proportionality 

between the current density j and the intensity of the electric field E. If the criterion is 

violated the current density will reach saturation and the field energy will be expended in 

increasing the to tal energy e =  v/(m 2c4 -f- c2p2) of the particles. Particle acceleration will 

proceed along the null lines.

C raig and M cC lym on t approach to  P e tsc h e k ’s m odel

In an attem pt to understand Petschek’s mechanism Craig and McClymont (1991, 1993), 

have presented a linear model of magnetic reconnection th a t gives the right timescales. A 

serious problem with Petschek’s mechanism is the matching to the solution in the diffusion 

region, which is treated  very approximately by Petschek. Craig and McClymont (1991, 

1993) develop a linear theory for the dissipation of the free energy of the magnetic field in 

small disturbances imposed on the potential field of an X-type neutral point.

They study a closed system, with no magnetic flux or plasm a entering or leaving the 

volume. The perturbation of the vector potential is set constant on the boundary, which 

means th a t the current and the Lorentz force vanish there. Only the m  = 0 azim uthal 

modes correspond to topological reconnection, all other modes are current free. The
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reconnection process is oscillatory. W hat this means is tha t a current sheet is formed due 

to the perturbation th a t after a few oscillations relaxes to the initial potential field (see 

Fig (2.9)). The reconnection rate  scales as ( ln ^ )2, so the reconnection is ‘fas t’. Detailed 

discussion of this model is presented in Chapter 4.

2 .5 .2  C o llis io n le s s  M o d e ls

I am going to discuss now reconnection in plasmas tha t are collision free, th a t is th a t 

the mean free path  for particles’ collisions (or close encounters) is bigger than  the size of 

the system. Here single particle motion in electromagnetic fields is considered. The elec

trom agnetic fields should be appropriate to reconnection and self-consistency conditions 

should be applied. Certain effective conductivities may become im portant whenever scale 

lengths of the the system consider are small compared to the mean free path.

Dungey first (1953) described single particle field motion in an X-type field geometry with 

an electric, field along the X-line.

In the absence of collisions (classical) two mechanisms have been proposed to  limit the 

current close to the neutral line, anomalous resistivity and particle inertia. Anomalous 

resistivity results as strongly localised current close to an X-line builds up and goes un

stable. The finite time th a t a particle spends in the weak magnetic field region limits the 

maximum velocity th a t it can acquire. In this case energy is carried out of the system 

by accelerated particles. In this work we will be discussing the role of particle inertia in 

determining and controlling the rate  of the reconnection.

B urkhart et al. (1991) present the results of an analytic and numerical investigation of the 

structure  of the X line during steady magnetic reconnection in collisionless plasm a. To ob

tain  a self-consistent description of steady collisionless reconnection one needs to  consider 

the feedback effect of the accelerated particles on the initial vacuum m agnetic field, which 

is a nonlinear problem. Their simplifying assumptions are the following: i) two dimen

sional (2-D) magnetic field of X-type geometry, ii) invariance of the system in the direction 

of the inductive electric field, iii) small tem perature of the injected particles. They assume 

a highly elongated current carrying dissipation region with a strongly deformed magnetic 

field in the vicinity of the neutral line, and they calculate the ion trajectories inside the 

dissipation region. Knowing these trajectories, they close the system of equations, and so 

obtain  scaling relations for nonlinear collisionless reconnection.
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H arris M odel

An exact solution of the Vlasov equations was found by Harris (1962) which describes a 

layer of plasma confined between two regions of oppositely directed magnetic field. The 

electrons and ions have Maxwellian distributions on the plane where the magnetic field 

vanishes.

W hen the simplest magnetic field configuration containing a field reversal area is con

sidered with no electric field imposed then the trajectories for ions look like the ones in 

figure (2.10). The orbits for electrons are obtained if the direction of motion is reversed. 

In the vicinity of the neutral sheet the field varies approximately linearly with V  due to 

a uniform current, before becoming constant with distance away from the current sheet. 

Outside the neutral sheet the particle orbits are circular (in projection). But when the 

particles enter the field gradient area things change. From the drift theory we know th a t a 

gradient in the magnetic field gives rise to drift motion. This drift motion is adiabatic. If 

however the particle’s orbit crosses the neutral line then a snake like orbit is observed and 

the particle starts  moving along the neutral line, having an oscillatory motion. Electrons 

and ions drift into opposite directions. So, a current is set up in which both electrons and 

ions contribute. W hen no electric field is present an equilibrium will be set up. To have 

an equilibrium, two conditions must exist. First the amplitude of the particle oscillation 

should be the same so th a t charge neutrality exists. The second is th a t their am plitude 

must m atch the thickness of the current sheet. Once this particle population is set up

it will carry this current indefinitely, provided th a t the current sheet is infinite. There is

no field annihilation and no conversion of energy between the plasma and the field taking 

place here.

S p e iser ’s O rbits

Speiser (1965) discussed particle trajectories in simple linear current sheets. In the simplest 

case of a current sheet, with the magnetic field given by

B = - B - J  (2.40)
a

and the electric held given by

E = - a z \  (2.41)
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particles of both charges, enter the reversal region and they oscillate in between the op

positely directed magnetic field regions. They can thus increase their energy indefinitely. 

He then added a small perpendicular magnetic field of the form

B = -  ^ y )  (2.42)

where rj is assumed to be a small quantity, which caused particles to leave the reversal 

region after a few oscillations. Ions and electrons move in opposite directions both  con

tributing to  the current.

Speiser (1970) qualitatively analyses Ohm ’s law including both inertial and collisional 

term s and calculates the effective conductivity. Ohm ’s law is approxim ated by

(2.43)
nez ut  oc

where ac is the collisional conductivity. The effective conductivity is equal to  the collisional 

conductivity when we consider times much bigger th a t the collision time. If on the other 

hand we consider times much smaller than  the collision time then the conductivity becomes 

arbitrarily  small, depending on the lifetime of a particle in the system. Consequently, the 

inertial term  in O hm ’s law which is usually ignored in MHD become im portant. The same 

argum ent stands for the characteristic distance as well.

2 .5 .3  R e s is t iv e  I n s ta b il it ie s

Resistive instabilities are different from MHD modes in th a t finite resistivity is required 

to produce them. The treatm ent of resistive instabilities is in general more complex 

than  the MHD ones, because the resulting differential equations are fourth order, and 

the im portant modes are spatially localised an a small neighbourhood centered around 

the singular surface k • B =  0, or result from modes which are singular in the  absence 

of dissipation. The significance of the singular surface derives from the fact th a t when 

the resistivity is finite, the plasma is completely detached from the m agnetic field in a 

small region around the singular surface. Such an effect enables the system to go from 

states of high potential energy to states of neighbouring lower potential energy, which 

are not accessible without dissipation. In particular the energy realised when going from 

the higher potential state  to  the lower potential sta te  thermalizes the m agnetic field and 

generates directed kinetic energy.
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The general development of the theory of resistive instabilities began with the work of 

Furth, Killeen and Rosenbluth (1963). Resistive instabilities such as the tearing mode 

instability lead to the formation of several X-type neutral points which have magnetic 

’islands’ in between. Configurations like this help to carry m aterial away from the recon

nection region at a substantial rate which increases the reconnection rate. Spicer (1976, 

1977) pointed out th a t the reconnection regions in the presence of the tearing instability 

may overlap and so increase the number of X-type neutral points. The tearing-mode in

stability develops on a timescale which is typically the geometrical mean (rd r^ ) 1/ 2 of the 

diffusion time and the Alfven travel time r^ .

2.6 P artic le  A cceleration

2 .6 .1  O b se r v a t io n a l E v id e n c e  for  A c c e le r a te d  P a r t ic le s

Because in situ measurements are not possible, the existence of fast particles in solar flares 

must be inferred from their consequences. These are electromagnetic, continuum and line 

radiation, over the whole spectrum  from radio to gamm a rays, and fast particles detected 

in the interplanetary medium. From these observations one must infer the spatial, spectral 

and tem poral characteristics of the particles. The detection of fast particles in space is 

usually done by measuring energy spectra over some range, pitch angle distributions of 

the particles and mass distributions.

A m ajor problem of relating the particle observational da ta  to the spectrum  of the fast 

particles at the sun, or determining the timing of the acceleration process, is the propaga

tion effects. There may be strong interactions involved, such as MHD turbulence in the 

solar wind and even acceleration existing in the interplanetary medium. The spectrum  

observed at the satellite depends also on time, being harder at the beginning of the obser

vation when the faster particles have arrived. It also depends on the m agnetic connection, 

th a t is if there are magnetic field lines connecting the satellite with the flaring part of 

the corona. Also effects of propagation, storage and release in the corona are of great 

im portance.

Proton energy spectra at 1 AU when the observations are done at maximum particle 

intensity, under good magnetic connection conditions, usually show a power law shape 

from 20 MeV to 80 MeV with a spectral index between 2.5 and 3.7 (Heyvaerts, 1981).
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Steeper spectra are observed when the magnetic connection is not good, which could result 

from an energy dependence of particle escape from the corona.

2 .6 .2  P a r t ic le  A c c e le r a t io n  M e c h a n ism s

Any viable acceleration mechanism should be able to account for the timescales of electron 

and proton acceleration, their energy spectra, the to tal numbers or ratios of accelerated 

particles and it must be able to give a large fraction of the flare energy in the form of 

accelerated particles. As we have already mentioned, what gives energy to  accelerated 

particles is the magnetic field, through some induced electric field developed in some 

(resistive) MHD process (Heyvaerts 1981).

The acceleration mechanism must operate on a timescale of seconds to produce electrons 

with energies in excess of 10-20 keV, possibly with a power-law spectrum, at a rate  of up 

to  103 7 s_1. It must convert the available magnetic energy into these fast particles with an 

efficiency up to 50%. It must probably he in the corona and it must be able to produce 

MeV ions, or there must be a related mechanism that can do that.

A nother view is tha t the acceleration mechanism must energize in bulk more than 1038 

electrons to a relaxed (possibly Maxwellian) distribution with tem perature > 108 K. 

EssentiaUy ah acceleration mechanisms rely on electric fields. These can be produced 

inductively either over an extended region in the reconnection process, or locahy in the 

fluctuations associated with various sorts of plasma oscillations. For reviews on particle 

acceleration see Heyvaerts, (1981), Forman et al. (1986) and for a link with impulsive 

phenomena see MacKinnon (1986).

D iffu sive  Shock A cceleration

A first order Fermi process functions in diffuse shock acceleration. Essentially one has a 

shock moving along the magnetic field. The fraction of particles th a t move fast enough can 

cross and recross the shock front, thus gaining energy (Kuijpers, 1993). A different shock 

acceleration mechanism relies on the ’grad B’ drift of a charged particle along the shock 

front for a shock moving perpendicular to the magnetic field. Particles with cyclotron 

radii larger than  the shock front thickness gain enough energy by the electric field at the 

shock. This is called the shock drift acceleration (Decker 1988).
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S toch astic  A cceleration

Stochastic acceleration of particles in turbulent fields is defined as the process th a t causes 

particles to  change their energy in a random  way with many increases and decreases th a t 

lead finally to acceleration. Stochastic acceleration of ions can result from Alfven waves 

with wavelengths of the order of the ion gyroradius. Furthermore, for resonant scattering, 

ions have to be moving with velocity equal to or larger than the Alfven speed and electrons 

m ust have u > 43Va to scatter from whistlers (Melrose, 1974). The characteristic spectra 

obtained from such a mechanism can fit the observational da ta  (see Ram aty and Murphy, 

1987). Ambrosiano et al. (1989) found th a t particles can be accelerated to high energies 

from turbulent reconnecting magnetic fields (Vlahos 1989).

E lectric  fields A cceleration

As we know direct electric fields can accelerate particles. Such fields are associated with 

magnetic reconnection in the vicinity of neutral points and current sheets (Syrovatskii, 

1981). Particle acceleration is possible also when the electric field is parallel to the m ag

netic field (Colgate, 1978). Parallel electric fields arise from the interruption (due to 

plasm a instabilities) of the parallel currents associated with twisted magnetic flux tubes 

and from the formation of double layers (Alfven and Carlquist (1966), Spicer (1982)). 

D.C. (or at least slowly varying) electric fields will be produced inductively during the 

reconnection process. But what is the response of a plasma to an imposed electric field? 

This depends on the m agnitude of the electric field. Collisions of the plasm a electrons will 

oppose acceleration from the electric field. Only those electrons for which this ‘frictional’ 

force is smaller than the force from the electric field will be accelerated. The m agnitude 

of the ‘frictional’ force falls off with increasing velocity. So for any specified value of the 

electric field there will be a critical value of electron velocity above which electrons are 

freely accelerated out of the bulk of the plasma. The field for which this critical velocity 

equals the therm al velocity is called the Dreicer field (Dreicer, 1959), E d and is given by

E d =  ^  (2.44)
a d

where e is the electronic charge (e.s.u.), A is the Coulomb logarithm  and Ad is the Debye 

length (cm). For E  > E d , collisions cannot m aintain a steady state , and the bulk of the 

plasm a will runaway. For E  < E d some fraction of electrons in the tail of the distribution
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is accelerated out of the bulk. This fraction is approximately

TLr 1 f 1 r / E  n . i / o  E  .9 . .
—  =  2 e x p { - - [ ( — )V» _  _ ] » >  (2 .45)

where n is the density of the bulk plasma, and n r is the density of runaway electrons. The 

fraction of runaway electrons falls off with decreasing E roughly as e x p ( ^ ) .

2 .6 .3  E v o lu t io n  o f  P a r t ic le  D is tr ib u t io n s

In the kinetic theory of plasmas the properties of particles are described by distribution 

functions whose evolution is determined by kinetic equations. Many different modes of 

waves can be created in a plasma. If these waves are weakly dam ped waves then the 

kinetic equations of the plasma can be averaged over these fluctuations. One finds the 

averaged kinetic equations then, which are sometimes called quasilinear equations. 

Consider a distribution of particles of species a  (where a  is e for electrons and i for ions) 

with charge qa and mass m a . The distribution of particles can be described in term s of 

the density of representative points for particles in the 6 -dimensional x — p phase space, 

where x is the position vector and p is the m omentum of the particle. A kinetic theory 

description of a plasma is based on a set of kinetic equations th a t describes how the 

distribution functions evolves due to wave-particle and particle-particle interactions.

T h e V lasov  E quation

The basic equations of the kinetic theory of plasmas are called the Vlasov Equations. They 

are the following:

• A set of equations which is formally identical to a set of Boltzmann equations for

each species of particles:

d d d dfa (x,T>,t)
^■dt +  ~ ' dx  +  +  u X ^  =  d f — ĉo11 (̂2 '46')

where / a (x, p, /) is the single particle distribution function for species a. The right

hand side is the effect due to collisions so in a collisionless plasm a it is neglected.

• A pair of equations giving the charge and current density in term s of the single 

particle distribution functions:

J (x, t)

^ 2 < l a  / a ( x , p , f ) d 3 X,
a

J  /a (x ,P ,f )u d 3X

(2.47)

(2.48)
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where the sum is over all species of particle.

• Maxwell’s equations here in CGS units:

4tt
V x B =  — j (2.49)

1 <9B
= " c H  (2 '50)

V B  =  0 (2.51)

V - E  = 4trp. (2.52)

The source term s p and j are identified with those in previous equations. In the Vlasov 

equations B and E are the self-consistent fields, which are functionals of the distribution 

functions. Despite its apparent simplicity, the this set of equations is a set of nonlinear, 

coupled, integro-differential equations for the distribution functions / a (x ,p , t).

The Vlasov equation conserves particles, and the probability remains constant. The Vlasov 

equation has a wide variety of stationary states. T hat is there are many solutions f ao that 

satisfy d f ao/ d t  = 0. These states are often called m eta equilibria, since they are only 

equilibria on a timescale short compared with collision time. A stationary  sta te  must 

satisfy
r \  r \

{ U - -  +  ga x[E +  u x B] • —  }/ao(x, p) = 0. (2.53)

A procedure for generating a general solution of (2.53) is found by defining x '(f ') , u ^ /')

as the orbit of a particle of charge q , mass m, in the field E, B, with the orbit (x ',u ')

intersecting the point in phase space (x, u) at time t' = /.If a (x ',u /), 6 (x ',u ') , ..., are

constants of the motion of the particle, they satisfy

da . da 8 m '  da ^
d f  = u - ^  + ^ - ^  =  ° (2-54)
db . db du' db . .
d f  = +  =  (2-55)

Then any function

fa  o =  / q o K x ' , ^ ) , ^ , ^ ) , . . . ]  (2.56)

satisfies (2.53) a t t' = /, and thus any function

f a o =  f a o[a(x, u), 6 (x, u ) , ...] (2.57)

of the constants of the motion of a particle is also a stationary-state  distribution for an 

assembly of particles, according to the Vlasov equation. In many cases, the distributiori
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f a is controlled by external fields and the constants of motion for a particle in these fields 

can be used to construct stationary states.

The entropy is constant in a Vlasov plasma. This is consistent with the fact th a t the 

Vlasov equation neglects the process (binary collisions) which causes statistical systems 

to  increase their entropy and evolve toward a Maxwell-Boltzmann distribution.

2 .6 .4  C a lc u la t io n s  o f  P a r t ic le  E n e r g y  S p e c tr u m

A ttem pts have been made to calculate the energy spectrum  of particles accelerated in 

neutral sheets. In the absence of stochastic processes such as Coulomb collisions or wave- 

particle interactions, the phase space distribution function satisfies Liouville’s theorem. 

The density of particles in phase space is constant on phase space trajectories. There

fore given the initial distribution of injected particles and solutions of particle orbits, the 

momentum  distribution function of particles leaving the acceleration region can be cal

culated (Friedman, 1969; Bula.nov and Sasarov, 1976; Bulanov 1980). Friedman (1969) 

presented a numerical study of particle trajectories in a Petshek field configuration, with 

a constant electric field which gives an exponential energy distribution for the accelerated 

particles. The particles are distributed randomly around the x-line with a therm al velocity 

distribution.

Bulanov and Sasarov (1976) solve the equations of motion approxim ately in the region 

where particles are not magnetised. They use th a t to estim ate approxim ately the time 

th a t a particle will spend close to the neutral point area before it is expelled. The energy 

th a t particles gain in a magnetic field containing an X-type neutral point depends on how 

close to the neutral point they s tart (so if they s tart a t the neutral point they gain an 

infinite am ount of energy). They find tha t when the initial distribution of particles is 

uniform in space, the spectrum  is exponential in energy or in a fractional power of the 

energy.

Bruhwiler and Zweibel (1992) study particle trajectories near a magnetic X-line when a 

strong component of the magnetic field along the X-line is present. W hen they compare 

their results with those of Bulanov and Sasarov (1976), they find th a t the characteristic 

energy of accelerated particles scales very differently with the physical param eters of the 

problem. Both distributions have an exponential spectrum, but the Bulanov and Sasarov 

(1976) spectrum  is slightly harder energy spectrum  than Bruhwiler and Zweibel (1992)
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spectrum .

M atthaeus et al (1984) analyse particle orbits in MHD fields which evolve and reconnect 

in the presence of finite amplitude fluctuations. As they point out, the short tim e tha t 

particles spend near an X-type neutral point is viewed as a lim itation of this configuration 

for accelerating charged particles. They find however th a t turbulent fluctuations appearing 

near the reconnection zone can trap  test particles in the strong electric field region for long 

enough times to produce significant acceleration.

2.7  O rbits

The motion of charged particles is an essential ingredient of fully understanding plasma 

properties in a collisionless environment. In systems where the charged particle Larmor 

radii are much smaller than any spatial length scales, the particle motion can be ap

proxim ated by adiabatic invariance theory. Adiabatic invariance may also be applicable 

if the time variation of the system is sufficiently slow relative to  the gyroperiod. If the 

Larmor radii are much greater than any spatial length scales one may be able to  assume 

unmagnetised particle motion. However, if the Larmor radii and spatial length scale are 

comparable, then the particle motion is difficult to analyse. If in addition particle-particle 

or wave-particle interactions exist (generally referred to as collisions) then the complexity 

of the particle motion is further increased. Particle motion (even without collisions) is 

particularly complex if the system of interest consists of both adiabatic and non-adiabatic 

regions.

A different approach is to consider families of orbits and phase space topology of the 

system rather than  individual orbits. Chen and Palmadeso (1986) showed th a t there 

are only two global constants of motion in the m agnetotail geometry and th a t particle 

m otion is not integrable. Using the Poincare surface of section technique, they found th a t 

the phase space is divided into disjoint regions occupied by dynamically distinct classes of 

orbits. Based on the partitioning of phase space they proposed a process called ’differential 

m em ory’, which can significantly influence the time evolution of plasma distributions. This 

process arises from the property th a t different phase space regions are characterised by 

widely separated time scales, so th a t the respective phase space regions can retain memory 

of the existing population of particles for different lengths of time. The time scales referred
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to here are the accessibility time, the time for orbits far away from the mid plane to  reach 

various regions of the phase space. The dynamical system is chaotic in the sense th a t the 

outgoing conditions exhibit sensitive dependence on the incoming conditions (Chen 1992).

C h aotic  properties

M artin (1986) used the Lyapunov characteristic exponents (LCEs) to show th a t orbits 

passing near an X-line are chaotic. In particular M artin (1986) suggested th a t chaotic 

particle motions can serve as effective dissipation (”chaotic resistivity” ) in a collisionless 

environment. In th a t case estimates of the Lyapunov exponent (which measures the ra te  at 

which nearby orbits diverge) may provide a chaotic dissipation time-scale. This is because 

the LCE measures the time it takes for the system to randomize and therefore may play 

a similar role to the collisional frequency in a collisional plasma. Doxas et al. (1990) 

used J.E  (calculated numerically) to study the effects of collisionless chaotic conductivity. 

They calculated the power transfer (J.E) for groups of test particles and they argued tha t 

irreversible heating occurs as a result of chaotic particle motion. They had a uniform 

electric field imposed in collisionless conditions. The characterisation ”chaotic scattering” 

requires specific dem onstration. One must first define suitable asym ptotic initial and 

final states which are regular and then show th a t the final states sensitively depend on 

the initial states. See Eckhardt (1988) for a brief review of chaotic scattering. For an 

extensive discussion of nonlinear dynamics of particles in magnetic reconnection see Chen 

(1992).



Chapter 3

M odel for Particle Acceleration in 

Dynam ic M agnetic Reconnection

3.1 In troduction

A considerable number of studies of particle acceleration in collisionless reconnection by 

the test particle approach exist. In most of these studies the electric and m agnetic fields 

are specified and do not depend upon the particle response (e.g. M artin, 1986, B urkhart 

et al. 1990, 1991). The test particle approach can be justified in a number of situations 

relevant to collisionless reconnection. F irst, if the plasma density is low enough, then the 

current carried by the particles will have a negligible effect on the magnetic field. Also, the 

test particle approach can be justified for a  collisionless tail of particles even when there is a 

collisional background plasma whose response determines the reconnecting fields. A recent 

test particle study focussing on the particle density and current density of the electron 

and ion species and the relationship with the driving electric field was done by B urkhart 

et al. (1990) and was later generalised to include self-consistent effects by B urkhart et al.

(1991).

Under the assum ption th a t a ’D C’ electric field accelerates particles, M artens (1988) dis

cuss the acceleration of particles in the solar corona, arguing th a t this is completely colli- 

sionless. This is justified by the fact th a t the mean free paths of protons and electrons in 

the solar corona are (for energies E p and E e)

68
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Â = npJ ( i n A ) ^ 10l° " llc m  ^

where np is the proton density and is 1 0 lo cm~3, and In A (~  20) is the Coulomb logarithm. 

He uses observational indications for the electric field present in the current sheet such as 

given by Kopp and Poletto (1986) and estimates the acceleration lengths (of the order 104 

cm for electrons of 30 kev and 105 cm for protons of 200 keV) to be much smaller than  

the mean free path.

One should have strong electric fields in order to  accelerate particles. The existence of 

strong electric fields of order 102 Volts/cm  in flares has been widely recognised from 

studies of Stark broadening of high Balmer lines in flares. Reports of values as high as 

7 x 102 Volts/cm  exist (see Foukal et al. 1986, for references and different interpretations 

of the line broadening). Kopp and Poletto (1986) calculate an electric field of 10 — 102 

Volt/cm  from the observed lateral velocity of the Ho ribbons and the photospheric line 

of-sight magnetic field. Foukal et al. (1987) find an upper limit to the electric field of 5-10 

Volts/cm.

In this chapter I present the results of a non self-consistent calculation for collisionless 

magnetic reconnection. We s tart with the assumption of electric and magnetic fields, so 

this is not necessarily self-consistent. The magnetic field is one containing an X-type 

neutral point. Two cases of imposed electric fields are considered, one constant and 

the other time-varying. We calculate the particle orbits in these fields and the energy 

distributions th a t result. In the following chapters we use the linear analysis of dynamic 

m agnetic reconnection of Craig and McClymont (1991), to calculate the electromagnetic 

fields present. Then we calculate the motion of particles in these electromagnetic fields. 

Recall the gist of eg the Craig and McClymont (1991) linear description of dynamic re

connection. A disturbance propagating from the boundary of the system behaves like an 

MHD wave, travelling with the local Alfven speed, until it reaches the neutral point. In 

the dissipation region surrounding the neutral point resistivity becomes im portant. The 

wave resembles a ‘diffusive’ disturbance as it propagates across the neutral point, and the 

electric field associated with it becomes significant. W hen the electric field is significant, 

particles can get a net acceleration.

Since we will be considering the particle acceleration consequences of a linear, reconnective

disturbance, we may pick our test particles from an isotropic, homogeneous distribution. In
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other words, we consider the influence of a linear disturbance on particles draw n from the 

background distribution. This is in contrast to particle studies of nonlinear reconnection, 

where consistency demands consideration of the motion of particles into the dissipation 

region. In most studies particles are injected in two opposite quadrupoles of the X-point 

and they subsequently are driven, by the E x B  drift due to an imposed constant electric 

field, to cross from the nonadiabatic region or miss it depending on their initial conditions. 

The obvious problem with the 2-D X-type neutral point is the size of the system  in the 

Z-direction. If a particle is somehow trapped around the nonadiabatic region then  it can 

get accelerated for ever. We understand th a t this is an im portant problem, bu t consider 

a full 3-D treatm ent to be beyond the scope of the present work.

3.2  E quations o f  m otion

We adopt an idealised magnetic field containing an X-type neutral point:

B = j j - ( y x  + xy).  (3.2)

The current density vanishes for this field configuration. The field lines are the solutions 

of the ^  ^ which are hyperbolae y2 — x 2 = const. No B z component of the magnetic

field is included. The x-line (neutral line) lies along the z-axis. The field m odulus is

|B| =  B 0~  (3.3)

where x 2 +  y2 =  r 2.

Note th a t this configuration has no natural scale length. Requiring the field to  have a 

value of 1 0 2 gauss at a typical active region distance of 1 0 9 cm from the neu tral point, 

fixes only B 0/ D  — 10- 7  gauss cm- 1 . We are free to use other considerations to  fix one of 

B 0 and D  independently, as we do below in introducing dimensionless variables.

An electric field is imposed in the 2  direction and is restricted to  the neutral point area. 

We will consider the effects on particle acceleration from two forms of electric field imposed 

on the X-type neutral point. F irst, we will consider a constant electric field and second, a 

time varying electric field.

The equations th a t we solve numerically are the relativistic (particles are expected to 

acquired relativistic velocities) equations of motion in the observer’s reference frame:
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d p 1
J U - 9 ( E + - ( u x B ) )  (3.5)

3 .2 .1  D im e n s io n le s s  p a r a m e te r s  an d  e q u a t io n s

We will normalize distances to D  and times to the gyroperiod at r = D.  We denote this 

timescale by rp and r e for electrons and protons respectively. As noted above, D  is as yet 

undetermined. It turns out to be convenient in this relativistic calculation to choose D  

such th a t velocities are normalised to the speed of light. This has the consequence th a t 

D  takes different values D e and D p for electrons and protons respectively, such th a t

Dp = ( ^ D e. (3.6)
m e

Specifically, with B 0/ D  = 10-7 , we find D e = 1.3 x 105 cm and D p = 5.6 X 106 cm.

W ith our choices of E and B the Lorentz equations (3) and (4) become in dimensionless

units:

dx _ px
IT ~ UX ~at 7

dy _ py—  =  uy = —
dt 7

dz_ _  _ _  pz_
dt Uz 7

dpx 
dt 

dpy
dt 

dpz 
dt

— —(.xu.

t y u z

E 0 +  e(xux + yuy) (3.7)

where 7 = (1 +  px2 + py2 ~+pz2) 2 and e =  + 1  for protons, e = — 1 for electrons. E 0 is 

the true value of the electric field and E 0 =  E 0D i / B 0D  is the dimensionless electric field, 

the suffix i is e for electrons and p for protons. The kinetic energy of the particles in 

dimensionless units is Ekin =  7 — 1 . Equations (3.7), with appropriate initial conditions 

describe the motion of a particle.

3 .2 .2  C h a r a c te r is t ic  t im e s c a le

The maximum velocity th a t a particle can acquire in a collisionless plasm a during m ag

netic reconnection can be estim ated by the characteristic lifetime of the particle in the
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nonadiabatic region. In all these calculations the particle crosses the neutral point area 

once or is not trapped in th a t region for times bigger than the characteristic timescale. 

The usual way to estim ate the characteristic timescale is first estim ating the effectively 

unm agnetised region as a region of size

( 3 ' 8 )

where U{ is the particles velocity of the i species and is the gyrofrequency at the

location A,- (Sonnerup, 1971). Near the X-line, fij(Aj) ~  fi'-A{, where the prime denotes 

a derivative th a t can be evaluated along x  or y , because of the symmetry. So,

A. ~  (^1 )V» (3.9)

which is the geometric mean of the Larmor radius in the asym ptotic magnetic field and 

the characteristic magnetic scale length. W ithin a region, A p and A e of the X-line, the 

protons and electrons are effectively unmagnetised and decouple from the magnetic field. 

The characteristic lifetime ti of particles in the unmagnetised region A x{ is simply given 

by

U ~  ~  (3.10)
Uthi UX

It has been suggested th a t this lifetime in the unmagnetised region can be regarded as 

an effective collision time for electrons and protons in a collisionless plasma (Rusbridge, 

1971, Galeev et al. 1978).

We call the radius of the unmagnetised region the ’adiabaticity radius’. Inside this radius 

is where the electric field becomes significant.

3 .2 .3  P a r a m e te r s , I n it ia l  C o n d it io n s

We sta rt the integration of particle orbits at t= 0  and with the particles positioned ran 

domly in a box with the following size

-1 .0  < zO < 1 . 0  (3.11)

-1 .0  < yO < 1 . 0  (3.12)

zO =  0.0. (3.13)

The initial velocities of the particles are picked randomly from a Maxwellian distribution 

of tem perature 5 x 106 A”, a typical coronal value. This corresponds to initial therm al 

energy of 0.65 keV.
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We consider only small values for E 0, corresponding to the passage of a disturbance in the 

linear regime (cf Craig and McClymont). Values of 0.01 or 0.001 are used in the actual 

calculation. The value 0.001 corresponds to electric field = 5.88 X  10- 4  s ta tvo lt/cm . These 

are m oderate values for the electric fields present in the solar atm osphere (see Foukal et 

al. 1986).

The electric field becomes significant where non-adiabatic motion of particles results in 

inertial resistivity. A rough indication of the size of the region is thus given by the 

‘adiabaticity’ radius rad (MacKinnon and Petkaki, 1995 and 3 .2 .2 ), the distance from the 

neutral point at which the Larmor radius equals the magnetic field scale length. For 

T > rad, particles move adiabatically. The ‘adiabaticity’ radius depends on the particle 

mass and velocity perpendicular to the magnetic field, u_l, and is given by

,m c D u \  . i

(In a sense this definition is circular, in tha t u±_ must be evaluated at r acf, but it suffices 

for order of m agnitude.) Note the mass dependence of rad- Specifically, for electrons 

and protons of the same energy, the electron gyroradius is ( ^ ) 2 smaller than  the proton 

gyroradius. We use the gyroradius of a therm al proton as a guide to the size of the 

dissipation region. In practice we take this to be 10 times rad for a therm al proton, 

recognising th a t non-thermal particles will also contribute to inertial resistivity. So, the 

adiabaticity radius for protons is of the order 2 X  105 cm. The adiabaticity radius is much 

smaller than  the proton mean free path  in the corona. During the time th a t the particle 

moves close to the neutral line, collisions are unlikely. In fact the to ta l size of system  th a t 

we consider is smaller or of the order of the mean free path expected in the corona for 

protons of 200 keV. So, during the time th a t the particles cross the neutral point and get 

accelerated, they don’t collide with other particles.

The to ta l real time of the integration corresponds to 0.05 seconds for electrons and 1 s 

for protons. Since the tim estep for electrons is ( ^ £ )2  times smaller for electrons than  for 

protons, ( ^ e )2  times more steps are needed to achieve the same real time. This makes the 

calculation very long. Approximate m ethods of calculating the orbits of electrons should 

be used. For example, when an electron is moving along the separatrices then its motion 

is adiabatic and the guiding centre approxim ation might be used. The problem with this 

is th a t changing to the guiding center calculation one loses phase information.
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C on d ition s for ad iabatic m otion

A usual criterion for the particle’s motion to be considered adiabatic when the m agnetic 

field is constant in time is tha t its gyroradius be much smaller than  the scale length of the 

magnetic field
I B  I

Pg ^  | | ' (3.15)

Since the magnetic field discussed here has | B  |=  r and | V B  |=  1 then in order for 

the motion of a particle to be adiabatic its gyroradius should be much smaller than its 

distance from the neutral point.

One interesting thing to see here is the distribution of initial conditions (positions and 

velocities) of particles th a t gain energies versus those th a t don’t gain energies. We discuss 

briefly here some results th a t are presented later in this chapter. T hat is the calculation 

with the time-varying electric field (see sec. 3.4). The protons tha t then gain most energy 

lie initially inside the nonadiabatic region and along the separatrices. Few of the rest 

increase their initial energy significantly and those th a t do have initial gyroradii th a t 

bring them  inside the nonadiabatic region. In Figures (3.1) and (3.2) we show these 

distributions. The to ta l number of particles present is 6000. In Fig. (3.2) we see th a t 

some of the particles th a t don’t gain energy lie along the separatrices. This is because 

all the final distributions of protons for the different frequencies for the electric field have 

been included. The same pattern  is not observed for electrons. This is because of the 

way the electrons are ejected. They all feel the presence of the electric field when the 

calculation starts.

3 .2 .4  N u m e r ic a l  M e th o d  an d  t e s t s

Due to the complexity of the orbits, their calculation cannot be done analytically. For in

tegrating the ordinary differential equations (ODEs) describing the motion of the particles, 

we use the Bulirsch-Stoer m ethod. This is a well known m ethod for obtaining high accur

acy solutions for ODEs with minimal com putational effort (Press et al., 1992). A single 

Bulirsch- Stoer step takes the integration from x to a point x +  H  where H  is the step 

a ttem pted . It uses the modified midpoint m ethod to advance a vector of dependent vari

ables y(x)  from a point x to a point x +  H  by a sequence of n substeps each having size 

h = H / n .  So, this single step which is quite large consists of many (tens or hundreds)
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X-Y  initial positions of protons

-1 - 0.8 - 0.6 - 0.4 - 0.2 0 0.2 0.4 0.6 0.8 1
X-position

F i g u r e  3 . 1 :  I n i t i a l  p o s i t i o n s  o f  p r o t o n s  t h a t  i n c r e a s e  t h e i r  e n e r g y  m o r e  t h a n  1 0 %  d u r i n g  

t h e i r  m o t i o n  i n  t h e  e l e c t r o m a g n e t i c  f i e l d s  d i s c u s s e d  h e r e .  T h e i r  i n i t i a l  s p a t i a l  d i s t r i b u t i o n  

i s  v e r y  d i s t i n c t i v e  a l o n g  t h e  s e p a r a t r i c e s  a n d  t h e  n o n a d i a b a t i c  r e g i o n .  F o r  m o r e  i n f o r m a 

t i o n  o n  t h e  p r o t o n  m o t i o n s  a n d  e n e r g i e s  s e e  s e c t i o n  3 . 4 .
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X-Y initial positions of protons
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F i g u r e  3 . 2 :  I n i t i a l  p o s i t i o n s  o f  p r o t o n s  t h a t  d o  n o t  i n c r e a s e  t h e i r  e n e r g y  m o r e  t h a n  1 0 %  

d u r i n g  t h e i r  m o t i o n  i n  t h e  e l e c t r o m a g n e t i c  f i e l d s  d i s c u s s e d  h e r e .  T h e i r  i n i t i a l  s p a t i a l  

d i s t r i b u t i o n  is v e r y  d i s t i n c t i v e  a w a y  t h e  s e p a r a t r i c e s  a n d  t h e  n o n a d i a b a t i c  r e g i o n .  F o r  

m o r e  i n f o r m a t i o n  o n  t h e  p r o t o n  m o t i o n s  a n d  e n e r g i e s  ( s e e  s e c t i o n  3 . 4 ) .



CHAPTER 3. MODEL FOR PARTICLE ACCELERATION 77

substeps which are finally extrapolated to zero (see Stoer and Bulirsch (1980)).

The m ethod contains three key ideas. The first is Richardson’s deferred approach to the 

limit. Consider the final answer of a numerical calculation as itself being an analytic 

function of an adjustable param eter like the stepsize h. T hat analytic function can be 

probed by performing the calculation with various values of h, none of them  being neces

sarily small enough to give the accuracy th a t we want. When we know enough about the 

function, we fit it to  some analytic form. Then we can evaluate the function at h = 0. 

The second idea has to do with what kind of fitting function to use. Bulirsh and Stoer first 

recognised the strength of the rational function extrapolation in the Richardson’s deferred 

approach to the limit. Rational function fits can remain good approximations to analytic 

functions even after the various terms in powers of h all have comparable magnitudes. 

The third idea is the use of the modified midpoint m ethod where the error function is 

strictly even, allowing the rational function or polynomial approxim ation to be in terms 

of the variable h2 instead of just h.

The im portant issue for discussion here is the energy conservation. W hen no electric field 

is present the energy of the particles should be conserved. T hat is very easy to see from 

the equation of motion. Taking the dot product of both sides with the particle’s velocity 

we have

u • =  — qu • E +  - u  • (u x B) (3.16)
dt c

which gives

I m ^  =  - ?U- E  (3.17)

the second term  in the right hand side being equal to zero. W hen no electric field is 

present the kinetic energy should be conserved. I have done several testing runs of the 

integration routine to see if energy is conserved when no electric field is present. For 

different accuracies of the integration routine I have calculated the initial and final energy 

of the particles. They should be identical if no error comes into the calculation. But since 

the calculation is numerical, I checked if the error was small.

In fig. (3.3) and (3.4) I have plotted the final energy of 1000 protons versus the absolute 

error (Ac =  Ef{nai — Einitiai) for different accuracies of the integration routine. Ac is 

multiplied by 106 for plotting reasons. From these graphs one can see th a t the absolute 

error is small.
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In fig. (3.5) and (3.6) I have plotted the final energy of 1000 protons versus normalised error 

(A €/Einitiai = {Ejinai — Einitial)/ Einitial) for different accuracies of the integration routine. 

The normalised error is always small and decreases as the accuracy of the integration 

routine increases.

A nother im portant question here is how different do individual orbits look when the ac

curacy of the calculation is changed. When the orbits don’t leave the adiabatic region 

then they are identical over the integration time in consideration. When multiple cross

ings from the adiabatic region take place then the orbits diverge in time. In the example 

shown here, the orbits look identical for the first half of the integration time and diverge 

after th a t (see fig. (3.7) and (3.8)). Even if we increase the accuracy of the integration 

routine by a few orders of m agnitude, orbits crossing the neutral point area several times 

will not be exactly the same. Also, very high accuracy would make the integration routine 

too tim e consuming to be useful. I refer once more to the discussion by M artin (1986) on 

the properties of X-type neutral points.

High accuracy of the integration routine is not necessary however, because here we are 

interested mainly in the energy distribution coming out of the system rather than  in single 

orbits. W hen I plot the initial energy distribution over the final energy distributions (final 

meaning after integration time of 1 sec, th a t is 5360 tim esteps), they look almost identical. 

Very small changes can be seen, th a t are not significant. The shape of the distribution does 

not change (see fig. (3.9) and (3.10)). Also statistical analysis of the results does not give 

significant differences (see fig. (3.11)). Thus, while individual orbits may not be correctly 

calculated, statistical properties of the distribution of test particles are adequately given.

3.3 S teady  S ta te  R econ n ection

We sta rt by calculating the energy distributions th a t result when a constant electric field 

is imposed on a magnetic field containing an X-type neutral point. Calculations like the 

one th a t follows have been done before e.g. M artin (1986), B urkhart et al 1990. M artin 

(1986) studied the behaviour of particle orbits close to  an X-type neutral point. He 

observes th a t when the particle has access to the neutral point the motion is erratic as 

shown by numerical integrating particle orbits. The system of equations is nonintegrable, 

so the motion could be chaotic. Questions we want to ask here are: i) what do individual
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Figure 3.3: Final energy versus absolute error of 1000 protons after 5360 timesteps with
zero electric field. Top diagram is for 10~5 accuracy and the bo tto m  for 10_<> accuracy.
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Figure 3.4: Final energy versus absolute error of 1000 protons after 5360 t im esteps with
zero electric field. Top diagram is for 10-8 accuracy and the bo tto m  for 10“ 10 accuracy.
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Figure 3.5: Final energy versus normalised error of 1 protons after 5360 t im esteps wit
zero electric field. Top diagram  is for 10_r> accuracy and the bo tto m  for 10-6  accuracy.
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Figure 3.6: Final energy versus normalised error of 1000 protons after 5360 timesteps with
zero electric field. Top diagram is for 10~8 accuracy and the bo ttom  for 10~1() accuracy.
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F i g u r e  3 . 7 :  O r b i t  o f  a  p r o t o n  i n  a n  X - t y p e  m a g n e t i c  f i e l d  w i t h  E = 0 .  T h e  i n i t i a l  p a r t  o f  t h e  

o r b i t  i s  s h o w n  h e r e ,  b e f o r e  t h e  p a r t i c l e  c r o s s e s  t h e  n e u t r a l  p o i n t  a r e a .  F o r  t w o  d i f f e r e n t  

a c c u r a c i e s  o f  t h e  i n t e g r a t i o n  r o u t i n e  ( 1 0 —8 a n d  1 0 - 6 ) t h e  o r b i t s  a r e  i d e n t i c a l .  T h e  o r b i t s  

l i e  o n  t o p  o f  e a c h  o t h e r .
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Figure 3.8: Orbit of a pro ton  in an X-type magnetic field with E = 0 . The par t  of the
orbit shown here, is the continiuation of fig. (3.7). For two different accuracies of the
integration routine (10-8  and 10- 6 ) the orbits are not identical.
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and the distribution after integration tim e of 5360 timesteps. The distributions lie almost 
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Figure 3.10: Histograms of the normalised error in the energy of protons for different
accuracies when the electric field is zero. The integration time is 5360 timesteps. The
error is generally reduced with increasing accuracy of the integration routine.
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particle orbits look like in the present magnetic configuration, ii) how are they different 

from previous calculated ones, iii) what do the energy distributions look like and iv) what 

does this imply for the mechanism discussed. We are going to  try  to  answer these questions 

in the following sections. The difference from previous calculations is th a t we restrict the 

electric field close to the neutral point. The particles are not carried into the nonadiabatic 

region by some flow velocity, in the case of single particle dynamics by the E x  B drift. 

The particles have initial therm al velocities of the order of those th a t is expected in the 

solar corona. So, m any different initial conditions for the particles are tried.

A constant ad hoc electric field is applied

E = E 0z f ( x , y )  (3.18)

where f ( x , y ) restricts E to a region of width d surrounding the neutral point, and E 0, 

and d are treated  as free param eters. We take

f ( x , y )  = H ( d - \ x \ ) H ( d - \ y \ )  (3.19)

where, H  is the Heaviside function.

3 .3 .1  T y p ic a l O rb its

Each orbit tha t I have calculated is different from every other because of the many different 

initial conditions tried but also because of the diffusive properties of the X-type neutral 

point (see discussion in section (3.2.4). In fig. (3.12) we see part of the orbit of an electron 

in the magnetic field containing an X-type neutral point with a constant electric field 

imposed. The electron starts  close to the neutral point and drifts outside the nonadiabatic 

region due to E x B  drift. There is a net acceleration during this part of the motion. The 

electric field is restricted in an box of side 34 of electron units (see eq. (3.14) and the 

discussion th a t follows), so is present in all of the area shown in fig. (3.12).

In fig. (3.13) we show part of the orbit of a proton in the model magnetic and electric field 

discussed in the previous section. After mirroring a few times in relative magnetic gradients 

the proton starts  moving on field lines th a t get closer and closer to the separatrices. This 

particular one will eventually m irror and return  the neutral point. The electric field is 

restricted to a box of side 0.8 (in proton units) around the neutral point (see eq. (3.14) 

and the discussion th a t follows).
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3 .3 .2  E n e r g y  D is tr ib u t io n s

In the constant electric field case only the distributions for protons have been calculated. 

The reason for th a t was the appearance of an instability in the numerical routine in the 

boundary between the area where the electric field is applied and where the electric field 

is zero. In future work, the reasons for this instability will be investigated and methods 

to  remove it will be considered. Preliminary investigations have shown th a t the abrupt 

switch-off of the electric field is probably causing this problem.

Starting with a number of protons randomly distributed around the X-type neutral point 

area, I calculated the distribution resulting after the particle orbits are followed for 5360 

tim esteps (which is 1 sec). This is a time th a t is relatively easy to achieve computationally 

but also gives a feeling about the efficiency of the mechanism. The following values for the 

electric field m agnitude have been used, i) E 0 = 0.01, ii) E 0 =  0.001, and iii) E 0 — 0.0001. 

In fig. (3.14) we see these distributions along with the initial energy distribution.

In table (3.1) we see the percentage of the final distribution th a t gets accelerated for 

different values of the m agnitude of the constant electric field. I calculate the percentage 

of particle for which
Efinal ~  ^initial >  cm s ia n t  ( 3  2 0 )

& i n i t i a l

where constant  takes the values 1 , 10 and 100. In column one we see the percentage of 

the final distribution th a t doubles its initial energy. In column two we see the percentage 

of the final distribution th a t increases its initial energy by 1 0  times and in column three 

the percentage of the final distribution th a t increases its initial energy by 100 times. In 

column four we see the percentage of the final distribution th a t a tta ins energies greater 

than  IMeV. W hen E 0 = 0.01 then the highest energy aquired by protons is 160 MeV. W hen 

E 0 =  0.001 then the highest energy aquired by protons is 19 MeV. In both cases about 

30 % of the final distribution is acquiring energies higher than  IMeV. W hen E 0 =  0.0001 

then the highest energy acquired is 5 MeV. 6  % of the final distribution has energies above 

1 MeV.

In fig. (3.15) we see the initial energy distribution of 1042 protons and their final d istri

bution, for E=0.001. In histogram  iii) we see the initial distribution of those protons th a t 

gain more then 1 0 % energy and in histogram iv) we see the final energy distribution of 

those protons th a t gain more than 10% energy. So, one can see th a t the particles th a t 

get accelerated come from all parts of the initial Maxwellian, not only from the tail. The
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Figure 3.14: Final energy distributions for protons for constant electric field. Histogram i) 
shows the initial Maxwellian distribution. Histograms ii) to iv) show the final distribution 
of protons for decreasing value of the electric field. In ii) there are 547 protons, in iii) 1042 
and in iv) 1004. Total integration time for all the distributions is 5360 tim esteps.
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M agnitude 1 1 0 1 0 0 > 1 MeV
0 .0 1 27 % 27 % 27 % 27 %

0 .0 0 1 30 % 30 % 29 % 28 %
0 .0 0 0 1 2 2  % 15 % 1 2  % 6 %

Table 3.1: Percentage of accelerated protons after 5360 timesteps in constant electric field

same is true for the distributions produced for the other two values of the electric field.

3 .3 .3  D is c u s s io n  o f  t h e  r e su lt s

W hen a constant electric field is imposed on an X-type neutral point in an area around the 

neutral point, then the initial maxwellian distribution of protons injected inside this area, 

results in distributions like those in fig. (3.14). These distributions are not power laws as 

previously was thought, see e.g. Bulanov and Sasarov (1976) and Bruhwiler and Zweibel

(1992). In both of these calculations the particles are assumed to cross the neutral point 

only once.

The initial distribution splits into two distinct parts after the particle orbits have been 

calculated for 1 second. The lowest energy one comprises the protons th a t don’t get 

accelerated significantly. The highest energy component comprises the protons th a t are 

affected by the presence of the electric field (see table (3.1)). Protons are able to  cross 

the neutral point area a number of times depending on their initial conditions. So, they 

encounter the electric field more than  once and we have a Fermi type acceleration. More 

detailed discussion of this effect is presented in the next section.

3.4  M od el for P article A cceleration  in D ynam ic R eco n n ec

tion

We are going to examine now the consequences for particle acceleration when a sinusoidal, 

ad hoc electric field is applied on an X-type neutral point. The form of the electric field 

is the following

E = E 0 sin( u t ) z f ( x ,  y) (3.21)

where f ( x , y ) again restricts E to the nonadiabatic region surrounding the neutral point,

as discussed in section (3.2.3).
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Figure 3.15: Final energy distributions for protons for constant electric field. Histogram  
i) shows the initial Maxwellian distribution. Histograms ii) shows the final distribution of 
1042 protons for E=0.001. Total integration time for all the distributions is 5360 tim esteps. 
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The dimensionless equations of motion th a t we integrate numerically are the following.

dx
dt

_ - _ Px
— ^X —

7
(3.22)

dy_
dt

Py= My =  —
7

(3.23)

dz
dt

- _ Pz — —

7
(3.24)

dpx
dt

=  — € X U Z (3.25)

dpy
dt

= € j } U z (3.26)

dpz
dt

= e(xux -  yuy) +  eE0sm(cot) (3.27)

where E 0 = E 0D i / B 0D  and the suffix i is e for electrons and p  for protons.

The free param eter here is the frequency of oscillation of the electric field which we denote 

by co. We take values of co such tha t 1/1000 < co < 500.

3 .4 .1  C o m m e n t  on  t h e  n u m e r ic a l  m e t h o d

To check the numerical m ethod I have done the following test. I have integrated the 

trajectories of 1000 protons for 5360 timesteps and for frequency of the electric field co = 1, 

for different accuracies of the integration routine. As I mentioned before individual orbits 

change but the final distribution keeps the same shape, as one can see in fig. (3.16). The 

accuracies tried are (corresponding to the histograms in fig. (3.16)) ii) 10—5, iii) 10—6, iv) 

1 0 - 7, v) 1 0 -8 , and vi) 1 0 “ 9.

3 .4 .2  O r b it s

The orbits are shown here in projection on the X-Y plane and superimposed on the 

magnetic field lines (Fig. 3.17). Away from the neutral point area the particles s ta rt 

moving closer and closer to the separatrices. They actually move more and more strictly 

along particular field lines, but all field lines tend to the separatrices as the distance from 

the neutral point becomes very large. The gyroradius becomes smaller and smaller as the 

particle moves away from the neutral point. The mirroring effects are clear once more. 

The complexity of the orbit close to the neutral point area is clear, too.

In figure 3.18 we see two orbits. The top one is the orbit of a proton th a t was obtained 

when the frequency of the electric field applied in the non-adiabatic area was co = 1 0 2,
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Figure 3.16: Final energy distributions for protons for frequency=l of the electric field. 
Histogram  i) shows the initial Maxwellian distribution. Histograms ii) to  iv) show the 
final distribution of 1000 protons for increasing accuracy of the integration routine. Total 
integration time for all the distributions is 5360 timesteps.
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a slowly varying field. The proton crosses the non-adiabatic area several times mostly 

increasing its energy. After an integration time of about 1 second its initial energy has 

increased by a few hundred thousand times. In this graph only the part of the p ro ton ’s 

orbit close to  the neutral point is visible. The particle actually goes a long distance (up 

to  1 2 0  dimensionless distance units for this one) but mirrors and so crosses and recrosses 

the neutral point. Sometimes when a particle goes on such an expedition it doesn’t come 

back but leaves the box of integration, and so is lost from the system. Only particles with 

large energy gains can escape, the rest are trapped at least in this collisionless calculation. 

The second orbit in figure 3.18 is an orbit of a particle tha t doesn’t gain any energy (its 

energy doesn’t increase within the limits of accuracy of our calculation). The reason is 

th a t it is positioned initially away for the non-adiabatic region and also its initial energy 

is small so th a t its gyroradius doesn’t cross the neutral area. Of course between the two 

examples are several interm ediate situations.

3 .4 .3  M a g n e t i c  M o m e n t

The modulus of the component of the particle’s velocity parallel to the magnetic field is

“ II =  J T \ -  (3-28)

So in dimensionless units
UxV T UyX .W|| = xy ^  y (3.29)

where r =  y /(x2 +  y2) is the modulus of the magnetic field in dimensionless units. The 

modulus of the perpendicular component to the magnetic field of the particle’s velocity is 

given by

(3.30)

The modulus of the perpendicular velocity is given by

M ±2 -  - W t l  +  (3.31)

The m agnetic moment is a quantity th a t is constant when the motion of the particle is 

adiabatic (see for example Chen 1984) and is given in dimensionless units by
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We have calculated the evolution of magnetic moment for several particles with different 

initial conditions. In fig. (3.19) we see the orbit of proton in the X-type magnetic field 

with no electric field present. The orbit has adiabatic and nonadiabatic behaviour. The 

energy of the particle is conserved. The magnetic moment though is nearly conserved 

when the particle moves along separtices. In fig. (3.20) we see the orbit of a proton tha t 

stays adiabatic during all of its orbit. The reason for tha t is th a t its orbit does not cross 

from the nonadiabatic region. It magnetic moment is conserved. In fig. (3.21) we see the 

orbit of a proton in time varying electric field th a t has both adiabatic and nonadiabatic 

parts. Every time the particle crosses from the neutral point area the magnetic moment 

is not conserved, but is changing. Such study of the magnetic moment shows clearly the 

episodes of adiabatic and non-adiabatic behaviour.

3 .4 .4  P r o p e r t i e s  o f  t h e  A c c e le r a t io n  M e c h a n is m

The kinetic energy of the particle is calculated after the end of a specific time along with 

final positions and velocities. Recall tha t the unit of energy here is the rest mass energy 

(m e2) of the particles. For electric field fluctuation frequencies in a certain range we find 

th a t the energy distributions have two peaks (see figure 3.30). The protons th a t gain the 

most energy lie there. We observe th a t the particles th a t gain the most energy are the ones 

th a t initially are positioned close to the separatrices of the hyperbolae y2 — x 2 = const 

and close to the neutral point; these are the particles whose trajectories are most likely to 

take them  through the non-adiabatic region.

The particles in our calculation spend a short period of time close to  the neutral point 

but they get trapped in the magnetic configuration and cross the neutral point a number 

of times (see figure 3.18). Thus multiple encounters with the neutral point, which do not 

take place in steady reconnection with the electric field present everywhere, result in a 

Fermi-type acceleration. This occurs indepedently of the time-dependence of the electric 

field and has been noted also in section (3.3.3) A similar phenomenon has been noted for 

a  multiple neutral point configuration by Kliem (1994).

The am ount of acceleration th a t particles get depends on the time they spend close to  the 

neutral point (see 3.2.2). The crossing time of a particle from the nonadiabatic region is 

given in rough estim ation, by
, 2 ?'ad  a d  / Qt cr ~  ------  ~ ------- (O.OO j

^x , y  Hth
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Figure 3.19: Orbit of a proton in the X-type magnetic field with no electric field present. 
The orbit has adiabatic and nonadiabatic behaviour. The energy of the particle is con
served. The evolution of its magnetic moment both in time and in space are very in ter
esting.
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Figure 3.20: Orbit of a proton in the X-type magnetic field with time varying electric field 
present. The orbit stays adiabatic, since the particle is far enough from the neutral point 
region and the gyroradius is small compared to the scale length of the magnetic held. The 
energy of the particle is conserved.
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Figure 3.21: O rbit of a proton in the X-type magnetic field with time varying electric field
present. T he orbit stays adiabatic away from the neutra l point. Near to  the neutra l  point
nonad iabatic  behaviour is clearly dem onstra ted . T he partic le’s energy is not conserved.
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where ux<y is the velocity projection in the x-y plane. This is assumed to be roughly equal 

to the therm al velocity. So,
2.828cZ> 1/ 2 m ^/4  

t c r ~ { eB 0 } EV4- (3 '34)

It turns out th a t particles with the same energy satisfy

tcrp = fc re( — )* =  280/cr (3.35)p m p

where tCTp is the proton crossing time and tCTe is the electron crossing time. The crossing 

tim e is the time th a t the particle needs to cross the non-adiabatic region (see Sec. 3). One 

would expect th a t in order to get particles effectively accelerated (or decelerated since 

the sign of the electric field is not constant) we need Z# >  tCT where Z# is the period of 

fluctuation of the electric field.

Protons gain most energy from the most slowly varying electric field (see figure 3.30) as 

expected. For frequencies greater than  u  = 1 their initial energy distribution does not 

change significantly in the time scale of the integration (lsec  for protons). The electrons 

on the other hand seem to gain most energy when 10 < u  < 500 (see figure 3.27) which is 

close to  r e - 1  and the electron crossing time.

So, the presence of relatively low frequency electric fields in the adiabatic region does 

not seem to increase the energy of electrons significantly at least not in the tim e of our 

calculation. From the way we pick our initial conditions the electrons s ta rt closer to  the 

neutral point. But since the true area where the electric field is applied, for both species is 

calculated from the proton adiabatic radius, electrons see an area much larger than  their 

adiabaticity radius where the electric field is present. Some of them  sta rt their motion 

outside the adiabaticity radius and their motion is immediately adiabatic. In this case the 

presence of the electric field does not increase their energy. They move with the E x  B 

drift. They bounce between two points of the magnetic field (see Fig. 3.22), and they 

don’t recross the nonadiabatic region.

3 .4 .5  E n e r g y  D i s t r ib u t io n s

As we have already said the kinetic energy of the particles here is given in term s of their 

rest mass energy Ekin =  7  — 1. The rest mass energy for protons is 939 MeV and for 

electrons 0.511 MeV. It is now obvious from fig. (3.30) th a t protons acquire very high 

energies.
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Figure 3.22: Projection of the orbit of an adiabatic electron. The electric field frequency
is 500.
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In fig. (3.23) we see the initial energy distribution of 1042 protons and their final distri

bution, for E=0.001 and frequency^ 1/100. In histogram iii) we see the initial distribution 

of those protons th a t gain more then 1 0 % energy and in histogram  iv) we see the final 

energy distribution of those protons th a t gain more than  10% energy. So, one can see that 

the particles tha t get accelerated come from all parts of the initial Maxwellian, not only 

from the tail. The same is true for the distributions produced for the other frequencies of 

the electric field (see fig. (3.24)).

In Fig. 3.25 we see the mean values of the final distributions of protons for different 

frequencies of the electric field. In the top graph only the energies of the particles tha t 

increase their initial energy by more than 10%, are present. The mean energy increases 

when the frequency of the electric field decreases. In the bottom  graph the mean final 

energies of the whole distribution are presented.

As we said before due to  com putational lim itations the integration time for electrons is 

only 11500 timesteps. W ith B 0 = 100 gauss, this corresponds to  0.05 seconds. The 

distributions tha t result are significantly different from the initial maxwellian as can be 

seen in fig. (3.26).

W hen the calculation is done for 1 / 20th of a second for protons also we see th a t the change 

in the initial distribution is not as significant as the one in the electron distribution (fig. 

3.28). The evolution of the proton distribution is more significant after 1 /  10th of a second 

and 1 second integration time (fig. 3.29 and 3.30 respectively). In other words our results 

suggest th a t, when the frequency is suitable, electrons are more rapidly accelerated than  

protons. Clearly, this might have observable consequences, but numerical lim itations 

prevent us from more extensive investigation.

In fig. (3.31) I plotted the mean value of the final distributions versus the frequency of the 

electric field for the three different integration times. I repeated the same calculation and 

analysis for E 0 = 0.01. In fig. (3.32) we see the final distributions of protons for different 

values of the frequency of the electric field and E 0 =  0.01. In fig. (3.33) the results for 

E 0 =  0.01 and E 0 = 0.001 are compared.

In tables (3.2), (3.3) and (3.4) we see the percentage of the final distribution th a t gets 

accelerated for different values of the frequency of the electric field and for m agnitude 

0.001. I calculate the percentage of particles for which

E  f i n a l  ~  E i n m a i . . .  / 0  OA, \—-—  -------------  > constant (3.36)
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Figure 3.23: Final energy distributions for protons for time-varying electric field. Histo
gram  i) shows the initial Maxwellian distribution. Histograms ii) shows the final distri
bution of 2000 protons for E=0.001 and frequency=1/100. Total integration tim e for all 
the distributions is 5360 tim esteps. In iii) we see the initial distribution of those protons 
th a t gain more then 1 0 % energy and in iv) we see the final energy distribution of those 
protons th a t gain more than  1 0 % energy.
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Figure 3.24: Final energy distributions for protons for constant electric field. Histogram 
i) shows the initial Maxwellian distribution. Histograms ii) shows the final distribution 
of 2000 protons for E=0.001 and frequency=1/1000. Total integration tim e for all the 
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frequency decreases. The m agnitude of the electric field is 0.001.
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Figure 3.28: Final distributions of protons, for different values of the electric field. All the
distributions are taken after 268 timesteps. The magnitude of the electric field is 0.001.
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Figure 3.29: Final distributions of protons, for different values of the electric field. All the
distributions are taken after 536 timesteps. The magnitude of the electric field is 0.001.
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Figure 3.30: Final proton distributions for different frequencies of the electric field. In 
i) the initial gaussian distribution is shown. The m agnitude of the electric field is 0.001. 
The to ta l integration time is 5360.
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Figure 3.32: Final proton distributions for different frequencies of the electric field. The 
m agnitude of the electric field is 0.01. The to tal integration time is 5360.
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where constant is , 1, 10 and 100. In column one we see the percentage of the final 

distribution tha t doubles its initial energy. In column two we see the percentage of the 

final distribution th a t increases its initial energy by 1 0  times and in column three the 

percentage of the final distribution that increases its initial energy by 100 times. In 

column four we see the percentage of the final distribution th a t has energy greater than  

IMeV for protons and 20 KeV for electrons. The highest energies for each distribution 

are shown in column five.

So, the initial distribution of electrons seems to get accelerated to hard X-ray producing 

energies in less than  1 / 2 0 th  of a second in the presence of a time varying electric field. 

W hen the frequency of the electric field is 50 then 90 % of the initial gaussian acquires 

energies bigger then 20 KeV and the highest energy observed is 1.65 MeV. On the other 

hand proton distributions get accelerated to 7 -ray producing energies in less than  1 sec. 

For frequency of the electric field 1/1000 15 % of the initial gaussian gets to energy bigger 

th a t 1 MeV. The highest energy observed is 15.5 MeV.

Frequency 1 1 0 1 0 0 > 20keV MeV
1 / 1 0 8 6  % 26 % 2.4 % 7.1 % 0.14

1 89 % 56 % 12.3 % 32 % 0.38
1 0 98 % 92 % 67 % 8 6  % 0.9
50 97 % 94 % 8 6  % 90 % 1.65

1 0 0 69 % 54 % 41 % 51 % 1.15
500 25 % 19 % 6  % 16 % 0.27

Table 3.2: Percentage of accelerated electrons after 0.05 seconds

Frequency 1 1 0 1 0 0 > 1 MeV MeV
1 / 1 0 0 0 30 % 29 % 2 2  % 15 % 15.5
1 / 1 0 0 30 % 28 % 2 0  % 5 % 7.0
1 / 1 0 30 % 27 % 2 0  % 6  % 5.0

1 2 0  % 8  % 1 % 0 % 0.18
1 0 0.4 % 0  % 0  % 0  % 0.0038

1 0 0 0  % 0  % 0  % 0  % 0.0047

Table 3.3: Percentage of accelerated protons after 1 second

3 .4 .6  R a d ia t io n  L o sse s

For a given particle velocity the power radiated is proportional to m ~ 2, so radiation losses 

are more im portan t for electrons than  for protons. For an isotropic distribution of electron
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Frequency 1 1 0 100 > 1 MeV
1 / 1 0 0 0 1 0  % 2 .2  % 0.3 % 0  %
1 / 1 0 0 15 % 13.6 % 8 . 6  % 1 .1  %
1 / 1 0 15.2 % 11.3 % 6 . 1  % 0  %

1 8.7 % 1 .2  % 0  % 0  %
1 0 0  % 0  % 0  % 0  %

1 0 0 0  % 0 % 0  % 0  %

Table 3.4: Percentage of accelerated protons after 0.05 seconds

velocities, the synchrotron radiation losses are given

P  = - r02c B 2/y2(32 =  1 .1  x 10~lb B 2^ 2 (32 erg/sec (3.37)

where r0 =  e2 /m ec2 is the classical electron radius and (3 = u /c  (Tucker 1975). So the 

lifetime of a 10 MeV electron (much higher energy than  the ones calculated here) in a 

100 gauss magnetic field, is ~  3000 seconds, much longer than the times considered in 

our calculation. So, our conclusion is th a t we can ignore synchrotron radiation losses. 

Brem sstrahlung losses are even less im portant.

3.5  C onclusions and D iscussion

In this work we investigate the likely particle acceleration consequences of dynamic, col- 

lisionless reconnection. We have shown th a t protons and electrons may gain relativistic 

energies in times < Is; for plausible (small) electric field amplitudes and active region 

magnetic fields. Later in this thesis we will a ttem pt to  tie this approach self-consistently 

to  an MHD description of the passage of a wave. Before discussing some consequences of 

this, we note some limitations of our calculation. F irst, this is a test particle approach. 

Particles do not interact with each other, nor do they influence the background field. In 

particular, the particle distribution including the accelerated component may well be un

stable to growth of various sorts of waves. Obviously such wave growth would influence the 

motion of particles, but we neglect this possibility. We neglect also radiation losses. In the 

solar corona this is not a serious neglect (even for 10 MeV electrons the radiative energy 

loss time is ~  3000 seconds), but elsewhere in the cosmos it could become significant.

In the presence of a spatially uniform magnetic field, no particles would gain energy in 

the spatially uniform, temporally oscillating electric field we have invoked here. The finite 

width of the nonadiabatic region allows particles to gain or lose some energy randomly
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before returning to adiabatic motion. Together with repeated encounters with the dissip

ation region, the consequence of mirrorings in the extended configuration, this results in a 

Fermi-type, ’stochastic’ acceleration. It is im portant to emphasize th a t this takes place for 

purely geometrical reasons, without any resonant interaction of wave and particle. There 

is no threshold for this sort of acceleration, unlike resonant interaction with low-frequency, 

MHD waves. The necessity for protons particularly to have threshold energies of around 25 

KeV is a well known difficulty when such mechanisms are invoked (eg Form an et al., 1986). 

Our results indicate th a t low-frequency waves may themselves perform the ’first-step’ ac

celeration, if they propagate in a coronal structure including a neutral point. This may 

occur independently of, or simultaneously with, the resonant cascade scenario of Miller 

and Vinas (1993). Possible difficulties with the number of pre-accelerated particles may 

be obviated if many neutral points are present (cf Kliem, 1994), although such a situation 

obviously needs separate investigation.

We note the effectiveness of acceleration of various species varies according to  the frequency 

of oscillation invoked. In particular, electron energies are maximized when 10 < u  < 500

and proton energies for frequencies less than u  = 1 . This finding might bear on the

apparent variation of electron/proton ratios in flares (M urphy and R am aty 1987) and the 

phenomenon of ‘electron-only’ flares (Rieger, 1989). More definitive statem ents will need 

a proper treatm ent involving a more realistic wave.

It seems th a t electrons, when they are accelerated, are accelerated more rapidly than

protons, although numerical lim itations prevented us from further investigating this pos

sibility.

Svestka and Hick (1986) present an event with a correlation between the hard X-ray 

variation and radio noise storm  variation. This could mean th a t the same population of 

electrons is causing them  both. This population could result from small scale reconnection 

events in the corona after the main phase of a flare (in the case of the observation referenced 

here several hours after the flare), with fast particles possibly produced as in this chapter. 

In the solar corona neutral points or sheets must join smoothly on to their surroundings. As 

a result, if electrons s tart to move adiabatically at quite low field strength , they may face an 

’uphill b a ttle ’ trying to proceed to the wider corona. Non- to  mildly- relativistic electrons 

accelerated at a neutral point will possibly encounter very large m irror ratios, which will 

contain them  in the corona. We suggest th a t this may offer an explanation of coronal



CH APTER 3. MODEL FOR PARTICLE ACCELERATION 121

hard X-ray sources ( Hudson 1978, Tsuneta at al 1984), addressing both acceleration and 

effective containment. We investigate this possibility in MacKinnon and Petkaki (1995).



Chapter 4

Analytical and Numerical 

Evaluation of an MHD  

Disturbance in an X -type Neutral 

Point

In this chapter we formally derive an analytical description for the time and space de

pendence of a linear incompressible, azimuthally symmetric disturbance propagating in 

a medium with a neutral point. We use this description to study the detailed form and 

behaviour of reconnective eigenfunctions, as a preliminary to  addressing particle orbits. In 

the next chapter we study particle orbits in the presence of such a disturbance, and con

sider the fast particle distributions produced and the timescales involved. The description 

of the disturbance involves an arbitrary  scalar resistivity, and the Chapter 6  a ttem pts its 

self-consistent evaluation.

4.1 B ackground and A ssu m p tion s

In the previous chapter we studied charged particle orbits in a general way, in prescribed 

electrom agnetic fields. Here we are going to use the analysis of Craig and McClymont 

to  study the consequences for particle orbits from the relaxation of a pertu rbed  potential 

m agnetic field containing an X-type neutral point. Because of the azim uthal sym m etry

122
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of the system being considered it is convenient to use a cylindrical system of coordinates. 

The magnetic field is as before 2-D and the field lines are anchored at the boundary. In 

the equations of MHD we ignore gas pressure and viscosity. The resistivity of the medium 

is assumed constant and the mass density uniform. In the first instance we assume that 

such a scalar resistivity adequately describes the collisionless ’inertial’ resistivity operating 

at the neutral point.

In deriving the expression for the magnetic disturbance we follow Craig and M cClymont 

(1991) and Craig (1994) fairly closely, m ajor differences being: recasting of the problem 

in our set of dimensionless variables, for consistency with the integration of the particle 

orbits, and some slight restriction on the possible modes of interest, with the consequence 

th a t the final, hypergeometric function form of the solution is always exact (cf. Craig, 

1994). Also there is a heavier emphasis here than in other work on numerically evaluating 

the eigenfunctions.

4.2  Form ulation o f  E quations

As we said the formula tha t gives the equilibrium magnetic field containing an X-type 

neutral point is

B = ^ j j ( y x  + xy).  (4.1)

The calculations th a t we want to do are easier in cylindrical coordinates. It will tu rn  out

th a t it is easier for example to use the m ethod of separation of variables.

In polar coordinates we have:

x = rcos(f) (4-2)

y =  rsin</> (4-3)

and also

r = cos 4>x +  sin 4>y (4.4)

4> = — sin 4>x +  cos 4>y. (4-5)

So in cylindrical coordinates
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The magnetic field can be given by the curl of a vector potential

B = x A (4.7)

where A =  because our system is essentially a 2-D one, z being an ignorable coordinate. 

One can easily prove th a t the potential giving the field (4.6) is

r 2
’F =  — — cos 2(f) +  V'lp (4-8)

where ^  is a scalar potential. So, the magnetic field is

B =  x Vz.  (4.9)

I am going to use the vector potential to rewrite the induction equation and the m omentum 

equation. First we make these two equations dimensionless. The induction equation is:

8B c2
—  = V x (u x B) +  V 2B. (4.10)
dt  4tra " v J

The quantity
c2

we call here the resistivity of the medium (usually the resistivity is defined as rj = 1 /a ) ,  a  

is the conductivity of the medium. The velocity is again normalized to the speed of light 

for  consistency with the previous calculations. The normalization of distance and time is 

so th a t c =  dPlTp (please see chapter 3). As before a tilde above a quantity  means th a t it 

is normalised. So, the induction equation becomes

^ V x ( i i x B ) +  - ^ - V 2B.  (4.12)
dt  cdv

The quantity

r,= f -  (4.13)
cap

is the dimensionless resistivity which is something like the magnetic Reynolds number only

the velocity is the speed of light and the size of the region is our distance unit. We will

get back to  this later.

We substitu te in eq. (4.12) the magnetic field in the form of eq. (4.9). After using the 

following vector identities

A x (B x C) =  (A  • C )B  -  (A  • B )C  (4.14)
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Real and Imaginary Parts of Eigenvalues
250

’imaginary’
2 0 0

150

1 0 0

50

0
8 10 12 142 4 6

llog(1 /resistivity)!
Figure 4.1: Plot of the 1 / k (i.e. ’damping tim e’) and I/to (i.e. frequency) versus | 1 /log 7 71 
for n=0.
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and

V x V(f> = 0, (4.15)

the fact th a t has only a z-component, and after integration over a surface S we get the 

following equation

—  + u-  V ^  = r)V2^  (4.16)

where a potential function th a t is added in the right hand side of eq. (4.16) is ignored.

By using the Lagrangian time derivative eq. (4.16) becomes

D^l
—  = ijV2*- (4.17)

The fluid momentum  equation in the absence of an electric field is

du 1. _ , x
p -  =  - j x B .  (4.18)

This equation in dimensionless variables gives

du - ~ ,
- ,  = A V x B x B  (4.19)
dt

where the constant A  is
a   dp (4.20)

Here ua is the Alfven velocity at the boundary of the  system. Typically we take B 0 = 100

gauss and the number density n =  10locm -3 (see also chapter (6).

The current density is given by

J =  f V x B  (4.21)
47T

and after substituting (4.9) it becomes in dimensionless form

j  = V x B  = - V 2y z .  (4.22)

So the right hand side of eq. (4.19) becomes

V x B  x B = - V 2$ V $ .  (4.23)

So the dimensionless equation of motion after inserting the vector potential becomes

n ?/
= - ^ V 2 $ V ^ . (4.24)

Dt
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We are going now to make a linear expansion of equations (4.17) and (4.24). L et’s assume 

th a t

$  =  +  (4.25)

where is a first order term. We do the same with the fluid velocity u,

u = u0 +  u\ (4.26)

only here we know th a t the system starts from equilibrium so th a t uQ = 0. By using the 

following facts

s t  = 0 ^

V 2tf0 =  0, (4.28)

ignoring second order terms and writing out fully the Lagrangian derivative we get from 

eq. (4.17)

+  (4.29)

Now we take the time derivative of eq. (4.29) which gives

^ | 1 +  («1 - V ^ M V 2®!. (4.30)

We go back now to eq. (4.24) and write out fully the Lagrangian derivative in the left 

hand side
r)i)i

+ (u • V)u = - A V 2VVV.  (4.31)
dt

But we have

u =  u\ (4.32)

and if we make a linear expansion of eq. (4.31) we get

= - A V 2Wi V V 0. (4.33)
dt

So now combining eq. (4.30) and (4.33) we get

1 -  (.4V 2$ i V $ 0 • V )tf0 = t)V2^ i . (4.34)
dt 2

Obviously

( V ^ - V ) ® ,  = |V®„|2, (4.35)
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so eq. (4.34) with eq. (4.35) gives

d 2V
-  f jV2V = ^ |V $ 0|2V 2^ . (4.36)

d t2 

Now

|V®0|2 = f 2 (4.37)

so, the final equation which we will be trying to find solutions to is

d 2W
—  -  i)V2® =  .4r2V 2®, (4.38)

where we have dropped the suffix 1 and $  will denote the perturbed potential from now 

on.

4 .2 .1  S o lu t io n s

I am going to  look for solutions of eq. (4.38) of the following form

$  = extf ( r ) e im<l>, (4.39)

where we have dropped tildes from dimensionless quantities t = t, A is complex, f ( r )  is 

complex and m is integer. We are going to  insert this solution to  eq. (4.38). We have

$  =  \ 2eXtf { r ) e im4>, (4.40)

V 2$  =  +  ^ !Z ) \ e Xteirn4> -  ^ \ e Xtf ( r ) e im<l>, (4.41)
r or  o r 1 r l

and

V 2® = ( 1 ^  +  -  ^ L e xtf ( r ) e im*. (4.42)
r or Or1 r z

Combining eq. (4.40), (4.41), and (4.42) the following terms cancel

e \ t e i m 4 >  ( 4 . 4 3 )

and we get after a bit of algebra

0,1 df  d2f .  , X2r2 2\ r r  \ (A A
r { - r T r + d ^ ) = {A ^ W x  + m ) f { r ) - (4 '44)

For m  =  0 eq. (4.44) becomes

r (r f ' ) '  =  ) / ( r )- (4 -45)A  ~T „ o
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Real and Imaginary Parts of Eigenvalues, n=32
3

imaginary +

2.5
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Figure 4.2: Plot of the 1 / k (i.e. damping time) and l/u> (i.e. frequency) versus | 1/log?] | 
for n=32.
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This equation governs the evolution of the radial component of the solution. P utting  

m  — 0 we concentrate on those solutions th a t have no azim uthal dependence (because the 

ones with azim uthal dependence are not ”reconnective” modes (Craig and McClymont 

1991, 1993)). I am going to make the following change of variable

Ar 2
—  = (4.46)

where z  is a complex variable. So, we have

df  df  dz 2Ar  df
dr dz  dr rjX dz

and
d2f  d2f rdz  2 t df  d2z d2f 4 A 2r2 2A  df

(4.47)

dr2 d z2 ^dr^ ^  dz dr2 dz2 f]2X2 fjX dz  ^  ^

Combining eq. (4.47) and (4.48) we get

z ( 1 _ z ) 0  +  ( 1 _ z ) |  =  _ A l / ( z )  ( 4 . 4 9 )

which has the same form as

z(l ~ + (c -  (a + (I + l )z)~fz -  aPf(z) (4-50)

which is the general form of the hypergeometric equation. By comparing (4.49) and (4.50) 

we see th a t

c — 1 (4.51)

and

a  +  (3 +  1 =  1 (4.52)

so th a t

a  =  - p .  (4.53)

Also by comparing the right hand side of eq. (4.49) and (4.50) we see tha t

«/? = (4-54)

In general we have complex numbers so,

a  =  p  + (4.55)

0 = -(/> +  *£) (4.56)

A = —k +  iu.  (4.57)
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From the previous formulae it can be easily seen that

“ 2 = £  (4-58)

so th a t

(p + t 0 2 = { 4A  ■ (4.59)

If we equate the real and imaginary parts of eq. (4.59) we get the following formulae for

p, £, k, and u

2 s-2 k2 ~ u2P2 - e  = (4.60)
KCJ

*  = ~ U -  ( 4 - 6 1 )

W hen these equations are solved for p and £ we get

K . LJ ,
a  - — + 1 (4.62)

(3 = —— r (4.63)

2  y J A  2  y / A

K . U
% J A  ~  %% J A

So the solution is 2 4̂ (a , /5, c, z) with a , /?, c and, z given by the previous equations. Hence

forth we write

f ( r )  = 2  F i (a ,P ,c , z ( r ) )  = f Re{r) +  i f Im{r) (4.64)

where f Re and / / m are real valued functions. At r = 0, the boundary condition, tha t

/  remains finite, is guaranted by the adopted 2 E1 form of the solution. At r = 1 the

boundary condition

$  = 0 (4.65)

determines the value of k and uj.

4 .3  C alcu lation  o f  th e  resistiv ity

A very im portant physical quantity  here is the resistivity. It is this th a t allows m agnetic 

field lines to reconnect. We are assuming th a t the medium is collisionless. So, we cannot 

use the collisional resistivity as given for example by Spitzer (1962). Collisional resistivity 

depends only on the electron mass
m ec2u

r) =  — (4.66)
nee2

where v  is the collision frequency.
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In chapter (6) we attem pt to find a value of resistivity by demanding consistency between 

single particle and MHD approaches. Here we are concerned only with the particle accel

eration consequences of a reconnective disturbance, so we need only a rough estim ate of 

the likely order of m agnitude of the resistivity.

We estim ate the resistivity in the following way. Instead of calculating the tim e between 

collisions we calculated the time a particle of 1 KeV takes to cross the neutral point once, 

i.e. to cross the adiabaticity area around the neutral point as given by eq. (3.33). From 

equations (4.11) and (4.13) and our form of making the physical quantities dimensionless, 

we see th a t

’  =  4 ^ V  (4 '67)

2nez
Now a  is given by

a -  — t (4.68)
m e

as proven by Speiser (1965), where t is the crossing time in the nonadiabatic region. We 

use these rough estimates to get an idea of the order of m agnitude of the resistivity of the 

plasm a in the reconnection region. If in the formula (4.68) we use the proton mass instead 

of the election as B urkhart et al. (1990) do, then the value of the resistivity is much 

larger (m p/ m e times larger). The way we estim ated the resistivity here gives a serious 

underestim ate of the value of the resistivity, as we will see later. This is because particles 

cross the neutral point area more than  once.

Particle o rb its’ details will show th a t some of them  get trapped around the neutral point, 

instead of just simply transversing it. The value of the resistivity th a t we get for 1 KeV 

proton (when the electron mass is used in (4.68)) is fj =  1.7 X 10-14 in our dimensionless 

units. The value of the resistivity th a t we get for 1 KeV proton (when the proton mass is 

used in (4.68)) is fj = 3.1724 x 10-11 in our dimensionless units. The value of the resistivity 

for 1 KeV electron is 77 =  2.08 X 10-10 in our dimensionless units.

4.4  N um erica l M eth od

To calculate the eigenmodes using the hypergeometric function required very tedious nu

merical work. First of all one should evaluate the hypergeometric function. The hypergeo

m etric function is defined by using the analytic continuation of the hypergeom etric series
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(Abram ovitz and Stegun, 1964),

_ . . . a(3 z a ( a  +  I)l3(j3 +  1) z 2
2F1(a,(3,c ,z)  =  1 +  —  - +  ^  +  --- (4.69)

a (a  + 1 ) . . . ( q + j -  1 + l ) . . . ( / ?  +  j  — 1 ) zJ ^
c (c +  l ) . . . ( c  +  j -  1) j \

Then we need to  find the values of k and u  for which

2F1(a,(3,c ,z)  = 0 (4-70)

at the boundary with a, (3 and c given by (4.62), (4.63), and (4.51). Using some initial 

guess of those values one can find the eigenvalues of the hypergeometric function for 

different values of the resistivity. The value of the hypergeometric function has to  be zero 

at the boundary (r =  1) and equal to one at the centre (r  =  0). Since the hypergeometric 

function is complex, a system of two equations has to be solved to find the eigenvalues.

Re(2F1( a , p , c , z ) )  = 0 (4.71)

I m ( 2Fi(oL,(3,c,zj) =  0

where z is evaluated at r = 1. We solve this system of equations by using Broyden’s m ethod 

as implemented by Press et al. (1992). This is a global m ethod for solving systems of 

nonlinear equations when the analytic derivatives are not available. This m ethod uses an 

approxim ation to the Jacobian. Such methods are also called secant methods since they 

reduce to the secant method in one dimension.

4.5  B ehaviour o f  th e  Solution

Fundam ental solutions of eq. 4.49 are those which are zero at the boundary. Assuming 

completeness, all other solutions can be constructed in term s of those (eg Roach 1982 and 

Craig and McClymont (1993) regarding completeness). The boundary is at distance

n  = ^  ~  178 (4.72)
dp

in our dimensionless units. In most of the graphs th a t follow, though most distances 

are normalised to D the size of the system. The real part has the values //?(1) =  0

and J r ( 0) =  1. The imaginary part is / / ( l )  =  0 and / /(0 )  =  0. These are the boundary
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conditions used to calculated the eigenvalues. Distance equal to 1 corresponds to  the outer 

limit of the area in consideration and value equal to zero is the neutral point.

The graphs discussed in this section show the behaviour of the real and imaginary part 

of the hypergeometric function. For each value of the param eter 77 we get different eigen

values. In figure (4.1) we have plotted the inverse of the real and imaginary part of the 

eigenvalues of the system, k is the real part of the eigenvalue and is the dissipation term . 

uj is the imaginary part of the eigenvalue and is the oscillatory term . All the eigenvalues 

are for the fundam ental (n=0), for different values of the resistivity 77. As one can see from 

this graph there is a value of the resistivity beyond which dissipation effects dom inate over 

the oscillatory behaviour. In figure (4.2) we see the same behaviour but for eigenvalues of 

order n=32.

In fig. (4.3) we see the hypergeometric function for the first four {n =  0 to  n = 3) 

eigenvalues for 77 =  3.1724 X 10- 1 1  (this is the value of the dimensionless resistivity). As n 

increases the eigenvalues get closer and closer together (see tables (4.1) and (4.2). Energy 

considerations will fix the amplitude of the disturbance (see chapter 6 ), which is a free 

param eter.

n K UJ

0 0.0072244 0.11774
1 0.02345 0.36797
2 0.04013 0.62336
3 0.05688 0.88031
14 0.25181 3.76103
15 0.27042 4.02792
2 2 0.40338 5.91417
28 0.52046 7.55169
32 0.59982 8.65208
33 0.61981 8.92812
34 0.63985 9.20459
35 0.65995 9.48138

Table 4.1: Eigenvalues of the hypergeometric function for 77 =  3.1724 x 10 11

In fig. (4.4) the hypergeometric function is plotted versus the distance from the neutral 

point, for the first four eigenvalues. The function is calculated for different resistivities. 

As the resistivity increases, so does the size of the diffusion region where dissipation is 

im portan t. In figures (4.5) and (4.6) the hypergeometric function is plotted versus distance 

from the neutral point for higher eigenvalues (n=22, n=28, n=32 and n=50). Both the
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F i g u r e  4 . 4 :  T h e  h y p e r g e o m e t r i c  f u n c t i o n  i s  s h o w n  f o r  t h e  f i r s t  f o u r  e i g e n v a l u e s  f o r  q =

3 . 1 7 2 4  X 1 0 ~ n  ( e t a = 1 0 ( - l l ) c u r v e ) ,  q =  3 . 1 7 2 4  x  1 0 ~ 10 ( e t a = 1 0 ( - 1 0 )  c u r v e ) ,  a n d  //

4 . 1  7 2 1  x  1 0 ~ 9 ( e t a — 1 0 ( - 9 )  c u r v e ) .  T h e  v a l u e  o f  t h e  r e s i s t i v i t y  i s  g i v e n  i n  o u r  d i m e n s i o n l e s s  

u n i t s .  T h e  r e a l  p a r t  o f  t h e  h y p e r g e o m e t r i c  f u n c t i o n  i s  s h o w n  h e r e .  A s  t h e  r e s i s t i v i t y  

i n c r e a s e s  s o  d o e s  t h e  s i z e  o f  t h e  d i f f u s i o n  r e g i o n  w h e r e  d i s s i p a t i o n  i s  i m p o r t a n t .  T h e  

b o u n d a r y  i s  a t  r = l .  I n  g r a p h  1 )  w e  t h e  r e a l  p a r t  o f  t h e  h y p e r g e o m e t r i c  f u n c t i o n  f o r  n = 0 ,  

i n  g r a p h  2 )  f o r  n = l ,  i n  g r a p h  .3) f o r  n = 2 ,  a n d  f o r  g r a p h  4 )  f o r  n = 3 .



CHAPTER 4. ANALYTICAL AND NUMERICAL EVALUATION 137

n K LO
0 0.01375 0.16104
1 0.07821 0.86674
4 0.14475 1.58624
15 0.55463 5.70483
20 0.75683 7.64675
24 0.88149 8.82694
26 0.96583 9.61923
27 1.00834 10.0169
31 1.22410 12.0195
32 1.26786 12.4226

Table 4.2: Eigenvalues of the hypergeometric function for 7] = 3.1724 X 10 8

real and the imaginary part are shown. As n increases the eigenvalues get closer and closer 

together.

In fig. (4.7) we plot the real part of the hypergeometric function against distance from 

the neutral point for resistivity values a) r] = 3.1724 x 10-6 and b) r] = 3.1724 x 10-7 and 

for n=32. As the resistivity increases one sees the increase in the m agnitude of the spatial 

fluctuations and also the fact tha t the dissipation becomes im portant at a bigger distance 

from the neutral point.

4.6  M od el E lectric and M agnetic fields

Once the hypergeometric function is calculated we can use the eigenmodes to calculate 

the perturbation in the magnetic field and the induced electric field. First calculate the 

electric field from Faraday’s law

V x E = - - ^  (4.73)
c dt  v '

where

Bj =  V x z . (4.74)

is the perturbation. After integration of the two sides of equation (4.74) the electric field 

reads

E = - l ^ - 2  (4.75)
C  Ot

and in dimensionless form

1  --US*-
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Figure 4.5: T he eigenvalues of the hypergeometric function for rj =  3.1724 X 10~u  n= 22
(top) and n = 2 8  (bo ttom ).  Both the real and imaginary par t  of the hypergeometric function
are shown here. The boundary  is at r = l .
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Figure 4.6: The eigenvalues of the hypergeometric function for 77 =  3.1724 x 10- 1 1  n=32
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Figure 4.7: The values of the real part of the hypergeometric function for a) 77 =  3.1724 x
10- 6  and b) 7 7 =  3.1724 x 10- 7  for n=32. The boundary is at r = l.
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A potential term  should be added here but because of our initial conditions it is zero (no 

electric field present initially). So, an electric field is present in the Z direction whose form 

is given by

Ef'z = exp(-«*)[«(cos(a;*)/Re -  sin(o;f)//m) +  w(cos( u t ) f Im + sin(u>t)fRe)\ (4.77)
h/oJ-J

where ^  =  exp(A /)/ since we ignore the azimuthal dependence. Equation (4.77) is the 

real part only.

The components of the magnetic field perturbation are then given by 

B \x =  ~  exp(-Kt)[K(cos{ajt)f'Re -  s i n +  u;(sin(u) t ) fRe +  c o s M ) / |m)] (4.78) 

and

Bly = I Tj exP (“ ^ M C0 SM )/f le  -  sinM ) / /m )  +  w( s i n M ) / r 6 +  cos (u t ) f 'Im)] (4.79)

In fig. (4.8) we see the tem poral evolution of the magnetic field perturbation  at two 

different spatial points, at r = 0  (top) which is the neutral point and at r = l  (bottom ) 

which is the boundary. The size of the magnetic field is reduced dram atically at r = l .  So 

the m agnitude of the magnetic field at r = l ,  has to be multiplied by 1 0 12 for illustration 

purposes.

In fig. (4.9) we see the spatial evolution of the magnetic field perturbation for different 

phases during one period of oscillation. We see the magnetic field at T = 0 , T = l /4 ,  T = l /2 ,  

T = 3 /4  and T = l ,  where T is the period of the oscillation.

In fig. (4.10) we see the magnetic field perturbation for 77 =  3.1724 x 10- 1 1  and for 

eigenvalues n=0, n= 3, n=15 and n=32.

In fig. (4.11) we see the spatial evolution of the electric field for 77 =  3.1724 x 10- 1 1  and 

n= 0, for different phases during one period of oscillation. We see the electric field at T = 0 , 

T = l /4 ,  T = l /2 ,  T = 3 /4  and T = l ,  where T  is the period of the oscillation.

In fig. (4.12) we see the electric field for 77 =  3.1724 x 10- 1 1  and for eigenvalues n= 0, n= 3 , 

n=15 and n=32.

In chapter (5) we will see th a t the spatial structure of the magnetic and electric fields will 

complicate particle orbits beyond the ‘simple’, heuristic ones in chapter (3). In particular 

we will see th a t the magnetic perturbation tends to trap  particles near the neutral point, 

enhancing the effective resistivity.
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F i g u r e  4 . 8 :  T h e  t i m e  e v o l u t i o n  o f  t h e  m a g n e t i c  f i e l d  p e r t u r b a t i o n  f o r  rj =  3 . 1 7 2 4  X 1 0 - 1 1  

a n d  n = 0 , l , 2 , 3  i n  o u r  d i m e n s i o n l e s s  u n i t s .  T h e  t o p  g r a p h  i s  s h o w s  t h e  b e h a v i o u r  o f  t h e  

m a g n e t i c  f i e l d  w i t h  t i m e  a t  r = 0 ,  t h e  b o t t o m  a t  r = l .  T h e  v a l u e s  a t  r =  1 a r e  m u l t i p l i e d  b y  

1 0 1 2 . T h e  p e r t u r b a t i o n  a m p l i t u d e  d e c r e a s e s  w i t h  t i m e .  T h i s  i s  d u e  t o  t h e  d i s s i p a t i o n  c l o s e  

t o  t h e  n e u t r a l  p o i n t .



CHAPTER 4. ANALYTICAL AND NUMERICAL EVALUATION 143

I
%

I

0.025

>02

0.015

0.01

-0.006

-0.01

•0.015

•0.02
0.0001 0.001 0.01 0.1 10 100 1000

002

0.015

0.015

0.014

0.01

0.000

0002

0 0001 0 001 10 100 1000

0

•0.004

•0.005

•0.008

-0.01

•0.012

•0.014

•0.016

0.0001 001

0.002

•0.002

-0.01

-0014

•0015 1— ■
<001 10

0016

0.014

0.012

001

0.006

0.002

Figure 4.9: The spatial evolution of the magnetic field for rj = 3.1724 x 10-11 and n=0. 
The distance is given in our dimensionless units. The magnetic field is shown in different 
phases. Its restriction to  the vicinity of the neutral point, and also the dam ping effect can 
be seen. One period is shown, and times refer to phase of the period.
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Figure 4.10: The spatial evolution of the magnetic field perturbation for 77 =  3.1724 x 10~u  
and n= 0, n= 3, n=15 and n=32. The distance is given in our dimensionless units, so the 
boundary is at r=178. The restriction of the perturbation close to  the neutral point can 
be seen.
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F i g u r e  4 . 1 1 :  T h e  s p a t i a l  e v o l u t i o n  o f  t h e  e l e c t r i c  f i e l d  f o r  r] =  3 . 1 7 2 4  x  1 0 - 1 1 a n d  n = 0 .  I "he  

d i s t a n c e  i s  g i v e n  i n  o u r  d i m e n s i o n l e s s  u n i t s ,  t h e  b o u n d a r y  i s  a t  r = 1 7 8 .  T h e  e l e c t r i c  f i e l d  i s  

s h o w n  i n  d i f f e r e n t  p h a s e s .  O n e  c a n  s e e  t h e  d a m p i n g  e f f e c t  ( t h e  m a g n i t u d e  d e c r e a s e s  w i t h  

t i m e ) .  O n e  p e r i o d  i s  s h o w n ,  a n d  t i m e s  r e f e r  t o  p h a s e  o f  t h e  p e r i o d .
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F i g u r e  4 . 1 ‘2 :  T h e  s p a t i a l  e v o l u t i o n  o f  t h e  e l e c t r i c  f i e l d  f o r  r/ =  3 . 1 7 2 4  X 1 0 - 1 1  a n d  n = 0 ,  

n = 3 ,  n = 1 5  a n d  n = 3 2 .  T h e  d i s t a n c e  i s  g i v e n  i n  o u r  d i m e n s i o n l e s s  u n i t s ,  s o  t h e  b o u n d a r y  

i s  a t  r = 1 7 8 .
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4 .7  T im esca les

I am going to estim ate the Alfven wave travel time for the boundary to  the diffusion 

region. Craig and McClymont (1991) give an estim ate of the size of the diffusion region 

as

rdiff  =  a 771 /2  (4.80)

where a is of order unity and 77 is the resistivity and where the distance has been normalised 

to  D = 109 cm. Then the crossing time is

f D  dr
tA = —  (4.81)

J r d i f f  U A

where uA — B / y/{4'Kp) is the Alfven speed and B  = B 0r / D  the m agnitude of the magnetic 

field. So, the crossing time is

d
tA = y/(4irp)— [ln D -  In rdif f] (4.82)

-&0

where rdiff  is given in cm now. In table (4.3) we see the size of the diffusion region and the 

relevant crossing times for different values of the resistivity. The resistivity is given in our 

dimensionless units. Value of the dimensionless resistivity of 3.1724 x 10- 1 1  corresponding 

to resistivity 7.436 X  10- 1 4  sec. All the calculations of the resistivity and timescales are 

based on the assumption tha t the number density of the medium is 1 0 10 protons cm -3 . 

W hen the density decreases so do the oscillation and decay times. All the calculations are 

done assuming B 0 =  100 gauss at the boundary.

In table (4.4) we see the decay and oscillation times for different resistivities for n=0. As

decay tim e I use the time for exp(—Kt) = 0.368 ( th a t is t = 1 /k ). For rj = 3.1724 x 10- 4

the decay time is faster than  the oscillation period. In fig. (4.5) we see the decay and 

oscillation times for different resistivities for n=32.

4.8  C onclusions and D iscussion

In this chapter we calculated numerically the eigenmodes resulting from the Craig and 

M cClymont (1991) analysis of an MHD disturbance in an X-type neutral point. Also, we 

calculated the electric field and the magnetic field perturbation  resulting and showed their 

spatial and tem poral structure. We showed the dependence of the solution on the value 

of the resistivity. In the chapter (5) we use the electromagnetic fields calculated here,
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V rdif f  (cm) tA (sec)
3.1724 x 10“ n 4.94 x 103 56
3.1724 x 1(T10 1.56 X 104 50.7
3.1724 x 10"9 4.94 x 104 45.4
3.1724 x 10“8 1.56 x 105 40.13
3.1724 x 10“ 7 4.94 x 105 34.85
3.1724 x 10"6 1.56 x 106 29.6
3.1724 x 10“5 4.94 x 106 24.3
3.1724 x 10“4 1.56 x 107 19

Table 4.3: Alfven crossing times for different resistivities.

V \ / k (sec) 2t: / u) (sec)
3.1724 x 10"11 634 244
3.1724 x 10"10 523.5 222.5
3.1724 x 10"9 423 200.6
3.1724 x 10"8 333 178.6
3.1724 x 10"7 253.6 156.6
3.1724 x 10"6 184.5 134.4
3.1724 x 10“ 5 126 112.2
3.1724 x 10"4 78.5 90

Table 4.4: Decay and oscillation times for different resistivities for n=0.

to calculate particle orbits. We will find tha t the detailed structure of the eigenmodes 

produces new features of particle orbits.

V 1 / k (sec) 27t/ lo (sec)
3.1724 x 10"14 13.9 4.4
3.1724 x 10"13 11.9 4
3.1724 x 10 -12 10 3.8
3.1724 x 10"11 7.64 3.5
3.1724 x 10"10 6.14 2.84
3.1724 x 10"9 4.8 2.65
3.1724 x 10"8 3.6 2.3
3.1724 x 1 0 -7 2.6 2

Table 4.5: Decay and oscillation times for different resistivities for n=32.



Chapter 5

Particle Orbits in Reconnecting  

Electrom agnetic Fields

The solar coronal magnetic field is constantly evolving either through equilibrium states or 

due to dynamic events. In the real solar corona, a superposition of several eigenfunctions 

will be present, as the magnetic structure responds to the various timescales on which the 

boundary is perturbed. In this and the next chapter we consider a more idealised prob

lem. We use the eigenfunctions calculated in chapter 4 to study the particle acceleration 

consequences when a single eigenfunction is present. In this chapter we give examples of 

particle orbits in the presence of eigenfunctions, and describe generic features of particle 

behaviour.

5.1 E quations o f  m otion

I am going to use the electromagnetic field calculated in the previous section to study 

particle trajectories. I want to see if the presence of the reconnective mode discussed in 

chapter (4) will change the particles energy significantly, and more specifically if it results 

in particle acceleration to energies th a t are observed during energetic phenomena in the 

Sun. As was discussed in chapters one and two during flares we observe hard  X-ray bursts 

and 7  continuum th a t are widely believed to result from electron-proton Brem sstrahlung 

and also 7  ray lines from high energy (more than 10 MeV) protons.

To calculate the orbits we integrate the relativistic equations of motion as before using

149
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the space- and time- dependent fields acquired in chapter (4). The system still has z- 

translation. The full six equations of motion to be integrated are the following (see (4.77), 

(4.78), and (4.79))

dx 
dt 
dy 
dt 
dz 
dt 

dpx 
dt 

dpy
dt 

dpz 
dt

where 7  =  (1 +  px2 +  py2 4- Pz2) 2 and e =  + 1  for protons, e =  - 1  for electrons. B y and 

B x are given by the following

B y =  x[l-\-A0- ^  exp(—Kt)[K,(cos(ut) f Re — sm(oj t) fjm)pu(s'm(uj t) fRePcos(ut)  (5.2)

and

B x = y [ l - A 0^e x p ( -K t ) [ K ( c o s ( u j t ) f ,Re- s m ( u t ) f i m)+u>(sm(L)t)f,Re-\-cos(ujt)f,Irn)]] (5.3)

where A 0 is the amplitude of the perturbation. E  is given by

E  -  A 0[exp(-Kt)[K(cos(ujt)fRe -  sin{ u t ) f Im) +  Lo(cos(Lot)flTn +  sin(cut)fRe)]]. (5.4)

We calculate the orbits for different values of the resistivity, different eigenmodes and 

different amplitudes.

5 .1 .1  S m a l l  B z

Certain features of the particle orbits appear at first to be possibly an artifact of our 

pure 2-D treatm ent. A fully 3-D treatm ent is well beyond the scope of our present work. 

However some estim ate of the effects of relaxing the 2-D assum ption is possible via an ad 

hoc incorporation of a nonzero 2 -component of the magnetic field. So, a B z component in 

the magnetic field is sometimes included in the equations of motion which become:

Px_
1

P y
U y  =  ~  

1
Pz

U z  =  —
7

 ̂ ^ z

  £ Bnr U 9

  E  T  E^ByUjr T  B XUy) (5.1)
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dx Px
dt — UX —

7
dy P y

dt
= Uy =

7
dz

E i
dt — UZ —

7

dpx
dt

= —eBy Uz T Uy Bz

dpy
dt

=  t B x u z ux B z

dpz
dt

= E  + e(By ux T B.

5.2  O rbits in th e  recon nectin g  field

As we said before the amplitude of the perturbation discussed in chapter (4) is a free 

param eter. We fix the amplitude by energy considerations (see chapter 6). There is a 

dependence of the amount of energy th a t particles gain on the size of the am plitude of the 

perturbation. The orbits presented here are for different amplitudes. One common feature 

of these orbits is th a t the particles don’t move very far away from the neutral point area 

during the integration time which is usually 1 second but can be 2 and 3 seconds. So, we 

have particles confined in the corona close to an area where they can get accelerated.

In fig. (5.1) we show the orbit of a proton in the electromagnetic field resulting from the 

analysis in chapter 4 when the resistivity is 77 =  3.1724 x 10- 1 1  (which is the smallest 

value of the resistivity th a t we use) for the fundam ental eigenvalue (n=0). After a brief 

nonadiabatic period close to the neutral point the particle s tarts  drifting outside the 

nonadiabatic region (E x B drift). Figure (5.2) shows an orbit when the resistivity is 

77 =  3.1724 x 10 11 and n=32. The particle’s energy does not change significantly. The 

‘wobbling’ of the orbit is due to  the spatial structure of the eigenvalues (see fig. (4.10) 

and (4.12)). The complexity of the fields increases when the eigenvalue increases.

In fig. (5.3) we see the orbit of a nonadiabatic proton for 77 =  3.1724 x 10~ 7 and the 

fundam ental eigenvalue, n=0. The particle is trapped in the neutral point region and is 

gaining energy very fast. W hen we integrate the orbit of a proton with exactly the same 

initial conditions but for 77 =  3.1724 X  10- 6  and n= 0, we don’t get similar results. The 

particle is accelerated close to the neutral point but it is not trapped in the neutral point
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Figure 5.1: Orbit of a proton in the model electromagnetic field th a t  results for rj =
3.1724 x 10“ 11 and n= 0 . This particle gains some energy.
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area as before. After a short period it is expelled.

The form of the electric and the m agnetic field for resistivities 77 =  3.1724 x 10- 7  and 

rj = 3.1724 x 10- 6  and n=0 is shown in fig. (5.4) and (5.5). The form of the magnetic field 

perturbation  will help us understand the particle orbits. So, for the lower value of the 

resistivity rj = 3.1724 x 10- 7  the m agnitude of the magnetic perturbation is bigger. One 

can see th a t from the form of magnetic perturbation in equations (5.2) and (5.3). The 

m agnitude of the magnetic perturbation depends on the inverse of the resistivity. So, when 

the resistivity increases, the size of the dissipation region increases but the m agnitude of 

the magnetic perturbation, which traps particles near the neutral point, decreases. The 

combined effect of the two results in particles being trapped at the neutral point area for 

values of the resistivity close to  the value rj = 3.1724 x 10-7 . For smaller values of the 

resistivity fewer particles are trapped (see also discussion in chapter 6 ). Now, one has to 

consider the fact th a t for smaller values of the resistivity the electric field is smaller. So, 

the acceleration is smaller.

In fig. (5.6) we see the orbit of a proton in the model electromagnetic field th a t results for 

rj = 1.3006 x 10- 6 , r) = 2.6012 x 10-6 , and n=0. All other conditions are kept the same 

(initial positions and velocities, and am plitude). The projection on the X-Y plane and 

X-Z plane are shown here. The orbits are very different. The one for rj = 1.3006 x 10- 6  

(log ij = 5.886) shows the effect of trapping close to  the neutral point and the one for 

rj =  2.6012 x 10- 6  (log 77 =  5.585) shows no trapping.

In fig. (5.7) we see the energy versus x position and energy versus time for the particle 

discussed in (5.6). In fig. (5.8) we see the spatial evolution of the magnetic field pertu rb 

ation for rj = 1.3006 X 10—6, rj = 2.6012 x 10-6 , the two values of the resistivity discussed. 

It is clear th a t the change in the position of the magnetic perturbation  maximum results 

in a dram atic decrease in the efficiency of trapping near the neutral point.

In fig. (5.9) we see the orbit of a proton in the electromagnetic field produced when 

71 — 3.1724 x 10- 6  for the fundam ental eigenvalue n= 0. This particle’s orbit is adiabatic, 

its energy does not change significantly during the integration time.

5 .2 .1  S m a l le r  A m p l i t u d e

We calculated some particle orbits for a smaller am plitude of the perturbation . The 

am plitude of the perturbation used here is a factor of a/ 1 0  smaller than  the previous ones
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Figure 5.3: Orbit of a proton in the model electromagnetic field th a t  results for 7/ =
3.1724 x 10—' and n=0 .
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Figure 5.4: The spatial evolution of the  electric field for r/ =  3.1724 x 10“ ' and  ij =
3.1724 x 10-6 for eigenvalue n=0 . The distance is given in our dimensionless units, the
boundary  is a t r=178.
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Figure 5.6: Orbit of a proton in the model electromagnetic field th a t  results for rj =
1.3006 x 10- 6 , rj = ‘2.6012 x 10-f\  and  n= 0 . The projection on the X-Y plane and  X-Z
plane are shown here. All initial conditions are the same.
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Figure 5.7: Orbit of a proton in the model electromagnetic field th a t  results for i) =
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x position and  energy versus time are shown here. All initial conditions are the same.
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the boundary  is a t r=178.
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in this section. In fig. (5.10) we see the orbit of a proton in the electromagnetic field 

resulting from four different values of the resistivity when every other condition is kept 

the same (initial position and velocity, eigenmode, amplitude). The resistivities used are 

77 =  3.1724 x  10“ 9, T) =  3.1724 x  10"8, 77 = 3.1724 x  1(T7, 77 =  3.1724 x  1(T6 and the 

eigenmode n=0. For 77 =  3.1724 X 10- 9  the encounter with the adiabatic region is very 

brief, it increases for 77 =  3.1724 X 10“ 8. For 77 =  3.1724 x  10- 7  the particle gets trapped 

close to the neutral point and gets freely accelerated during the integration time. When 

the resistivity is 77 =  3.1724 x  10- 6  the trapping effect doesn’t persist, as happened when 

the am plitude was bigger. In fig. (5.11) the electric field is shown as viewed by the particle 

during its motion for all four resistivities. When the resistivity is 77 =  3.1724 X 10- 7  the 

particle sees an almost constant electric field. In fig. (5.12) the energy of the particle is 

p lo tted  versus x-position for all four resistivities. Close to the neutral point area is where 

the particle’s energy changes.

5 .2 .2  O r b it s  for n = 3 2

In fig. (5.13) we see the orbit of a proton in the electromagnetic field produced when 

the resistivity is 77 =  3.1724 x  1 0 " ', and 77 =  3.1724 x  10- 6  for the eigenvalue n=32. All 

o ther initial conditions ?re left the same (initial position, velosity and am plitude). The 

orbits are different. The particle does not increase its energy significantly. The orbits are 

not adiabatic since several crossings from the neutral point take place. The trapping of 

particles observed when n —0, does not happen now. For 77 =  3.1724 x  10- 7  we can see the 

’wobbling’ of the orbit. For 77 =  3.1724 x  10- 6  one cannot see the same ’wobbling’ in the 

orbit. The position in respect to the neutral point where the perturbation is present (see 

fig. (4.7) moves further out as the resistivity increases. The m agnitude of the magnetic 

perturbation  decreases as the resistivity increases. These two effects make the presence of 

the m agnetic perturbation  when 77 =  3.1724 X 10- 6  unim portant for the particle’s orbit. 

So, the particle’s orbit is such as if the magnetic perturbation is not present.

5 .2 .3  3 - D  m a g n e t i c  f ie ld

In fig. (5.3) the particle moves in an area of almost constant electric held. It is trapped  in 

the nonadiabatic region and continuously increases its energy during the integration time. 

It is almost a free acceleration A similar effect was observed by Speiser (1965) and was
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Figure 5.10: Orbit of a proton in the model electromagnetic field th a t  results for 77 —

3.1724 x  10- 9 , 77 =  3.1724 x  10- 8 , 77 -  3.1724 x  10"7, 77 = 3.1724 x  10~r> and  n= 0 .
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Figure 5.11: Orbit of a proton in the  model electromagnetic field th a t  results for T] =
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CHAPTER 5. PARTICLE ORBITS IN RECONNECTING 167

thought to be a result of the (2-D) form of the magnetic field. When a small component 

of the magnetic field was added in the z-direction, the particles were expelled from the 

neutral point region. When we try  the same initial conditions as in fig. (5.3), with a 

small component of the magnetic field in the z-direction little difference to  the orbit was 

observed. The particle was not expelled from the neutral point area. The m agnitude of 

the B z component was chosen to  be comparable to the size of the electric held. Even when 

much bigger values were tried very little difference was noticed. Of course to  draw any 

conclusions here one needs to calculate a reasonable amount of orbits in the presence of 

the B z component. However, such a treatm ent is an ad hoc expedient in the absence of 

a full 3-D treatm ent. We choose not to pursue this expedient at present, anticipating a 

fuller 3-D treatm ent in the future.

W hen a small B z component is added, for the orbits given in fig. (5.9), the orbit does not 

change significantly. The energy th a t the particle gain changes slowly as the size of the 

B z grows. It is clear th a t particle behaviour arises primarily from the spatial form of the 

eigenfunctions, rather than  from our 2-D simplification.

5.3  C onclusions and D iscussion

A general feature of the orbits is th a t particles remain relatively close to the neutral 

point during the integration time of 1 second. This is true for the low (n=0) and the 

high eigenvalues (n=9 and n=32) th a t we calculated orbits for (even those th a t do not 

gain much energy). The particles th a t are accelerated to  high energies are those th a t are 

trapped  close to neutral point area (see fig. 5.12). The particles are freely accelerated by 

the electric field. The radius of the orbit is decreased as the energy increases. We observe 

a compression of the acceleration region (see also Burkhart et al. (1991)).

During the integration time th a t we use the form of the magnetic and electric fields, for 

the fundam ental eigenvalue n= 0, don’t change very significantly, since the timescale for 

decay and oscillation of the eigenmodes discussed here are much longer (see (4.7)). So the 

fields shown in figures (5.4), (5.5), and (5.8) could be considered almost constant in time. 

W hen the resistivity has a value from rj = 3.1724 x 10-7 to  about rj = 1.3006 X 10-6 , 

particles are trapped close to  the neutral point where they get accelerated to more than  a 

few hundred times their initial energy. In chapter 4 we discussed the trapping of particles
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close to the neutral point due to geometric effects (magnetic mirroring) which led to a 

‘Ferm i’ type acceleration. In this chapter we saw the trapping of particles due to the 

interaction with waves.

More thorough discussion about these properties we give in the next chapter. For the 

eigenvalues n=32 the particle energy do not increase their energy a lot during the integ

ration time. Still some are accelerated but not at the rates found for n=0. This is due to 

the spatial form of the electric and magnetic field perturbation. The fields m agnitude is a 

rapidly changing function of position. Also, particles are not trapped close to the neutral 

point anymore.

Implications for the particle energy distributions and the consistency of microscopic and 

macroscopic approaches will be drawn in the next chapter.



C hapter 6

M atching of the M HD and Test 

Particle Calculations

6.1 In trodu ction

In chapter 4 we introduced the MHD description of a disturbance in a medium with a 

m agnetic neutral point. In chapter 5 we described the characteristics of particle orbits 

in the presence of such a disturbance. In both calculations the scalar resistivity was an 

assumed param eter of the problem.

W ith our test particle calculations thus in an advanced state , we explore here the possibility 

of obtaining rough consistency of the test particle and MHD descriptions. We try  to do 

this by adjusting the resistivity until the particles gain energy at the same rate  th a t the 

wave loses it. Of course this cannot give a complete description of the wave, but it might 

prove useful for estim ation of timescales, particles energy, etc.

In practice such matching proves impossible, for reasons th a t throw light on the lim itations 

of a  MHD description with scalar resistivity. Following the discussion in chapter 5 we 

restrict attention to  only one eigenmode at a time.

6.2  E nergy in th e  E lectrom agn etic  W ave

We normalise the wave energy to the to ta l energy of the background field which is

W  = —  f  B BdV. (6.1)
87t J

169
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Per unit length in the z direction this is

B l  f 2* , ,  f D . B 2D 2B* f t*  f u  B ZD Z
^ " • = 8f l  d* L  rdr=^ ~  ( 6 ' 2 )

Taking B 0 =  100 gauss and size of the region D  =  109 cm this is 1.25 x lO 21 ergs/cm .

The energy in the wave is the sum of the magnetic and the mechanical energy

= \ [I  I f d v + /  ( 6 -3)
where p is the plasm a density, and u is the wave velocity. We normalise here the magnetic 

field perturbation to  B 0 and the velocity to  the Alfven velocity, using the normalization 

of Craig and McClymont (1991). So,

B  =  B 0VW (6.4)

and

£ .  i - w

■ § • ’- (“ >

Inserting equations (6.4) and (6.5) into (6.3) we get the following expression for the energy 

of the wave per unit length

W  = i \ \ J [ W ?  + v 2\ d V ,  (6.6)

where, d V  =  rdrd(j> (Craig and W atson, 1992). We have already assumed th a t the hyper- 

geometric function is azimuthally symmetric and th a t there is no dependence on 2 . So,

one can calculate the energy per unit length in z. The gradient of the m agnetic field is

given by

(6.7)
dr

Remembering the change of variables from eq. (4.46) and using the fact th a t *4=1 when 

the normalization of Craig and McClymont is used, we get

V® =  e*‘^  F i ( a , p , c ; z )  (6.8)
V* 2

which is (Abram ovitz and Stegun, 1964)

 o7* cy3
V $  = eAi —  - z -  F a(a  +  l , / ? + l , c + l ; z ) .  (6.9)

T ) A  C  2
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The velocity m agnitude is given from the induction equation (Craig and W atson, 1992) 

by

and by using the right hand side of 4.45 and

$  = A ex‘f ( r ) ,

we get

So,

and

u = — e f i r ) .  
ri  + T)\n  !

(V S )2 =  +  /£ , ) ]

, 2 =  . - ^ y  + J y M L  + f L ) ,
( ( r 2 -  tjk)2 +  uj2r]2)

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

Substituting equations (6.13) and (6.14) into eq. (6.6), normalizing r in units of D and 

integrating over 0, the integral for the energy becomes

Wr r 7/ =  e-2*< B ^ D 2 1 /•'. i  r
2 Jo

( « ! + £ ) r 3{fg  + f L )  + ( J  + s y u L  + J L )
4 rj* ( ( r 2 — t j k ) 2  +  u j 2 t} 2 )

dr

(6.15)

which gives the energy of the wave per unit length (per cm here) at a given time. The 

energy is given as a function of the resistivity and for the order of the eigenvalue. Of 

course W wave should be multiplied by the amplitude of the wave. We are free to fix th a t 

from energy considerations.

In fig. (6.1) we plot the value of the following integral

Wr  v  7 /

Jo
(«2 + “2) , , f,2 , W2, , («2 + ̂ y ( f l e  + f L )

o r  \ J R e  +  J i m )  H--------------------------------------------------- dr (6.16)
4rjI ' ( ( r2 - j ;K ) 2 +  u V )

for different values of the resistivity and for different eigenvalues. As, the eigenvalue 

increases so does the value of this integral. Also the integral increases with increasing 

resistivity. So, in order to  have the same energy in the wave for different resistivities and 

eigenvalues we have to adjust the amplitude of the wave. This is im portant primarily to 

ensure th a t we stay in the linear regime.
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Figure 6.1: Energy of the perturbation versus the resistivity for n=0, n=15, n=32.
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6 .2 .1  E n e r g y  in  t h e  W ave

We calculate the energy distributions th a t result when the perturbations on the electric 

and magnetic field are included. We integrate the equations of motion of the particles with

the new electromagnetic fields. First we have to calculate the amplitude of the disturbance. 

Recall from the previous section th a t we choose to  fix the to ta l energy of the wave as 77

field energy the wave should have. So, W wave as given by (6.15) for t= 0  is set equal to the 

desired energy,

ration as above. There is equipartition in the energy at t= 0 . We use one eigenmode at a 

time.

From now we call on the energy in the wave E wave. So, if the initial energy in the wave is 

Ewave 1 after time t the wave has lost energy due to damping (1 — exp(—2n t ) )E wave which 

m ust have been absorbed by the particles.

In table (6.1) we see the values of amplitudes for different values of the resistivity. In the 

first column we have the logarithm  of the resistivity. In the second column the amplitude 

of the perturbation when the energy in the wave is 1 0 % of the equlibrium magnetic field 

energy. In column 3 we have the am plitude of the perturbation when the energy in the 

wave is 1 % of the equlibrium magnetic field energy. To be in the linear regime the amount 

of energy th a t the particles gain as a function of the wave energy shouldn’t change when 

the am plitude changes.

6 .2 .2  E n e r g y  in  t h e  P a r t ic le s

In the calculations presented in this chapter, we use protons only. The reason is th a t the 

calculation for electrons is very time consuming and we need to develop faster integration 

m ethods for calculating electron orbits for a  time comparable to the proton integration

is varied. To do th a t we decide at the onset what fraction of the equilibrium magnetic

w a v e (6.17)
8

where 0 is the fraction of the energy of the background field. So, we have

1 Z*1
(am plitude)2-  /

2 Jo ( ( r 2 — 77ft) 2 +  u 2r}2)
(6.18)

The left hand side of eq. (6.18) (without the amplitude) we calculate by numerical integ-
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log(?7) amplitude ( 1 0 %) amplitude ( 1 %)
-10.613 0.736 0.233
-8.613 0.67 0 . 2 1 2

-7.613 0.63 0.199
-6.613 0.59 0.187
-5.613 0.55 0.174
-4.613 0.5 0.158
-3.613 0.448 0.142

Table 6.1: Amplitudes of the wave for different resistivities for n= 0 and for two initial 
wave energies.

time. Also our earlier results suggest th a t electrons will not be energetically dominant 

(see Galeev et al. 1978).

We calculate the energy th a t the particles gain in the following way. We assume as we 

already said th a t the density n0 of the plasma is uniform. We s tart the particles in a 

certain area S  around the neutral point. The energy gain per test particle is

<£> =  4  E [ £ . - ( A J ) - £ , •(<>)] (6.19)
1=0

where N is the number of particles in our calculation, A t  is the integration time, and E  

is the energy of the particles. Because the particles are initially uniformly distributed in 

the area S , the energy gain of all the particles in this area is nS(S) .  We attem pt to  find a 

value of the resistivity 77 such th a t the quantity nS(E)  equals the energy lost by the wave. 

We pick the area S  so th a t most of the energy gaining particles lie within it.

6 .2 .3  N o t e  on  t h e  n u m e r ic a l  m e t h o d

For these calculations further tests on the numerical m ethod were performed. In the 

equations of motion we included the perturbation on the magnetic field but not the electric 

field. Thus particle energy should be constant. In tables (6.2) and (6.3) we see some 

statistical analysis of the results. One can see th a t the moments of the initial distributions 

don’t change during the integration time of 5360 tim esteps. The initial distributions are 

random ly drawn from a maxwellian of tem perature 5 X 106 K.

In fig. (6.2) we show the initial and final distributions for 77 =  3.1724 x 10-11, n=0 

and E 0 = 0.736 (i, ii), for 77 =  3.1724 x 10-8 , n=0 and E 0 =  0.63 (iii, iv) and for 77 =

3.1724 x 10- 6 , n= 0 and E 0 =  0.55 (v, vi). The energy in the magnetic field perturbation
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is assumed to  be 10% of the equilibrium magnetic energy in all cases. Similar results were 

found for different values of the resistivity tha t are not presented here.

log(?7) average s.dev. variance
-10.613 -6.32217 0.4223 0.1783
-7.613 -6.31688 0.3998 0.1599
-5.613 -6.31897 0.4190 0.1756

Table 6.2: Initial distribution statistics

log(77) average s.dev. variance
-10.613 -6.32187 0.4223 0.1783
-7.613 -6.31670 0.3999 0.1599
-5.613 -6.31876 0.4190 0.1756

Table 6.3: Final distribution statistics

6.3 E nergy D istr ib u tion s

6 .3 .1  F u n d a m e n t a l  E ig e n m o d e ,  n = 0

We sta rt by calculating the particle acceleration consequences of the the fundam ental 

eigenmode, n=0. We fix the ambient plasma density to 1010 particles per cm3. This

is im portant because the constant A  depends on the number density and this changes

the value of the eigenvalues in our units. Smaller density with constant magnetic field 

( B 0 =  100 gauss at the boundary) means increased Alfven velocity. The decay and 

oscillation times of the eigenmodes decrease (see also section 4.7), and the m agnitude of 

the electric and magnetic field perturbation increase.

The area around the neutral point where particles are released is defined by

-0 .4  < zO < 0.4

-0 .4  < y0 < 0.4.

This area is S  = 2 X 1013cm2. All particles are released on the z — 0 plane. Different initial 

release areas have been tried too, for statistical reasons. The particles are released with 

initial velocities randomly drawn out of a Gaussian which approxim ates a Maxwellian of 

tem perature  5 x 106 K.
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Figure 6.2: Initial and final distributions of protons. The final distributions are acquired 
after 5360 integration tim esteps. In i) and ii) we have the distributions for 77 =  3.1724 x 
10-11, n= 0  and E 0 =  0.736. In iii) and iv) we have the distributions for 77 =  3.1724 X 10~8, 
n= 0  and E 0 = 0.63. In v) and vi) we have the distributions for 77 =  3.1724 x 10- 6 , n= 0  
and E n =  0.55.
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The time of the calculation was 5360 timesteps (which as we have already mentioned 

corresponds to  a real time of 1 second). The amplitude of the wave is calculated by 

assuming th a t the energy in the perturbation is 1 0 % of th a t of the equilibrium magnetic 

field, which is E wave = 1.25 X 1020 erg/cm .

log(7?) energy in the wave energy in the particles ratio

-10.613 3.9 x 1017 1.32 x 1014 3.4 X 10"4
-8.613 5.9 x 1017 2.25 x 1014 3.8 x 10"4
-7.613 7.5 x 1017 6.52 x 1014 8.7 x 10"4
-6.613 9.8 x 1017 2.2 x 1015 2.25 x 10"3
-5.613 1.35 x 1018 5.5 x 1013 4.07 x 10~5
-4.613 1.98 x 1018 4.3 x 1013 2.17 x 10"5
-3.613 3.125 x 1018 6.73 x 1013 2.15 x 10~5

Table 6.4: Energy in the wave and the particles for different resistivities, for n=0.

In table 6.4 we present the results for different values of the resistivity. In the first column 

we see the logarithm  of the resistivity (which is given in our units). In the second column 

we see the energy th a t the wave loses due to damping in 1 sec (in units of erg/cm ). In 

the th ird  column we see the energy in the particles after 1 sec (in units of erg/cm ). In the 

fourth column we see the ratio of the energy in the particles to the energy th a t the  wave 

loses.

Certain features are apparent here. First the energy th a t the wave loses during 1 second 

increases as the resistivity increases. This is obvious from table 4.4 where the decay and 

oscillation times of the eigenmode n=0 are given for different values of the resistivity. The 

integration time of 1 second is obviously much smaller than  the decay and oscillation times 

of the eigenmode n= 0, for number density n = 1 0 locm - 3 . So, we expect th a t the shape 

and the amplitude of the wave do not change very significantly during the tim e of our 

calculation.

A nother feature is th a t the ratio  of the energy in the particles to the energy th a t the 

wave loses increases as the resistivity increases but only up to  77 =  3.1724 x 10- 7 . After 

th a t value of 77 the amount of energy th a t the particles gain decreases suddenly when 

rj = 3.1724 x 10- 6  and remains almost constant after tha t. The energy th a t particles gain 

cannot account for the energy th a t the wave loses, for any value of 77.

In fig. (6.3) we plotted the final distributions of 1000 protons (number of particles in each 

distribution). From this graph we see tha t the shape of the proton distribution changes
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Figure 6.3: Final distributions of protons. The final distributions are acquired after 5360 
integration tim esteps, for the following values of the resistivity: a) t] = 3.1724 x 1 0 " 11, b) 
rj = 3.1724 x 10"9, c) 77 =  3.1724 x 10"8, d) 77 =  3.1724 x 10"7, e) 77 =  3.1724 x 10“ 6, and 
f) 77 =  3.1724 x 10-5 . The fundam ental eigenmode, n= 0  is used in the calculation. The 
energy in the wave was 1 0 % of the equilibrium magnetic field energy.
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as the resistivity increases but again only up to resistivity 77 =  3.1724 x 10-7 . After th a t 

little difference from the initial gaussian can be seen.

In fig. (6.4) we have plotted the mean energy of the distributions shown in fig. (6.3) 

versus the logarithm  of the resistivity. The errorbars are the variance of each distribution 

on the mean energy. In table 6.5 we can see the numbers for mean energy, the variance, 

the skewness and kurtosis of the distributions in fig. (6.3). As the resistivity increases 

from 77 = 3.1724 x 10- 1 1  to 77 = 3.1724 X 10 7 so do the mean energy and the variance of 

the distributions. A tail of high energy particles is developed. W hen the resistivity takes 

the value 77 =  3.1724 x 10- 6  or above then no tail of high energy particles is developed. 

The mean energy of the distribution decreases and so does the variance.

log(77) mean energy variance skewness kurtosis
-10.613 -6.2648 0.2264 2.0996 -3.5615
-8.613 -6.2472 0.2504 1.9966 -2.8001
-7.613 -6 . 2 2 1 1 0.3304 1.7379 -1.2560
-6.613 -6.1716 0.5307 1.3713 -1.3978
-5.613 -6.2580 0.2017 2.2245 -4.3336
-4.613 -6.2664 0.1978 2.2459 -4.4717

Table 6.5: Mean of the logarithm of energy, Variance, skewness and kurtosis of the final 
distributions, for n = 0  and for the different values of the resistivity for the distributions in 
fig. (6.3).

In table (6 .6 ) we see the percentage of the final distribution th a t gets accelerated for 

different values of the resistivity. I calculate the fraction of particles for which

Efina‘ ~ E'niiial >  constant (6 .2 0 )
-£/ i n i t i a l

where constant  takes the values 0.1,1, 10 and 100. In column one we see the fraction of 

the final distribution th a t increases its initial energy by 0.1 (10%). In column two we see 

the fraction of the final distribution th a t doubles its initial energy. In column three we see 

the fraction of the final distribution th a t increases its initial energy by 10 times. In column 

four the fraction of the final distribution tha t increases its initial energy by 100 times. In 

column five we see the highest energy th a t protons acquire during the calculation.

Several features can be seen in table (6 .6 ). F irst, as the resistivity increases from log(77) = 

— 10.613 to  log(77) =  —4.613 (for higher values, too) the fraction of the distribution th a t 

gets therm alised increases. For log(77) =  —6.613 we get the higher energy particles. For 

this value of the resistivity the highest fraction of the distribution increases energy by
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Figure 6.4: Mean of the logarithm  of energy of the final distributions of protons versus 
the logarithm  of the resistivity. The final distributions are acquired after 5360 integration 
tim esteps, for the following values of the resistivity: a) rj = 3.1724 x  10—11, b) r] = 
3.1724 X 10~9, c) 77 =  3.1724 x  10~8, d) 77 =  3.1724 x  10"7, e) 77 =  3.1724 x  10"6, and 
f) 77 =  3.1724 x  10- 5 . The fundam ental eigenmode, n=0 is used in the calculation. The 
energy in the wave was 10% of the equilibrium magnetic field energy. The errorbars are 
the variance on the mean energy. The enrgy is given in units of the protons rest mass.
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more than  100 times.

log(77) > 10% > 1 > 10 > 100 MeV
-10.613 0.322 0.061 0.02 0.002 0.06
-8.613 0.372 0.073 0.026 0.003 0.08
-7.613 0.373 0.088 0.043 0.014 0.19
-6.613 0.37 0.108 0.07 0.041 0.27
-5.613 0.436 0.11 0.005 0 -
-4.613 0.50 0.073 0.001 0 -

Table 6 .6 : Fraction of final distribution th a t is accelerated by 0.1,1, 10 and 100 times. 
The distributions are shown in fig. (6.3).

We investigate now how the energy distributions change for the values of the resistivity 

between the values 77 =  3.1724 x  10~7 and 77 =  3.1724 X 10-6 . The values of the resistivities 

th a t we calculate distributions for are: a) rj = 9.1042 x  10~7, b) 77 =  1.17054 X 10-6 , c) 

77 =  1.3006 x  10"6, d) T) -  1.43066 x  10"6, e) 77 =  1.56072 x  10“ 6, and f) 77 =  2.6012 x  10~6. 

In fig. (6.5) we see the final distributions for these values of the resistivity.

Similar features as before are observed. The energy th a t the particles gain increases with 

resistivity between 77 =  9 . 1 0 4 2  x  1 0 - 7  and 77 =  1 . 4 3 0 6 6  x  1 0 - 6  and then decreases again. 

So, particles gain the most energy when the resistivity takes the value 77 =  1 . 4 3 0 6 6  X 1 0 - 6 . 

The highest ratio  of the energy th a t the particles gain to the energy th a t the wave loses 

is 4 . 6  x  1 0 - 3 . In table 6 . 7  we show the values for energy lost by the wave, energy gained 

by the particles and their ratio for the distributions in fig. ( 6 . 5 ) .  Again the energy gain 

of the particles is much smaller than the energy th a t the wave loses during the 1 second 

of our calculation.

log (77) energy in the wave energy in the particles ratio
-6.041 1.13 x  1018 3.6 x  1015 3.2 x  10~3
-5.932 1.16 x  1018 3.9 x  1015 3.4 X 10"3
-5.886 1.18 x  1018 4.51 x  1015 3.8 x  10~3
-5.844 1.2 x  1018 5.5 x  1015 4.6 x  10"3
-5.807 1.22 x  1018 4.81 x  1015 4.0 x  10“ 3
-5.585 1.31 x  1018 6.012 x  1013 4.6 x  10"5

Table 6.7: Energy in the wave and the particles for different resistivities, for n= 0. The 
distributions are shown in fig. (6.5).

In fig. (6 .6 ) we plotted the mean of the logarithm  of the energy of the distributions in 

fig. (6.5) versus the logarithm  of the resistivity. The errorbars are the variance on the
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Figure 6.5: Final distributions of protons. The final distributions are acquired after 5360 
integration tim esteps, for the following values of the resistivity: a) 7} = 9.1042 x 1 0 - 7, b )  
t] = 1.17054 x 10~6, c) 7] = 1.3006 x 10"6, d) 77 =  1.43066 x 10“ 6, e) 77 =  1.56072 x 10“ 6, 
and f) 77 =  2.6012 x 10-6 . The fundam ental eigenmode, n= 0  is used in the calculation. 
The energy in the wave was 10% of the equilibrium magnetic field energy.
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mean energy of each distribution. As before we have an increase in the mean energy and 

the variance when the resistivity increases from 77 =  9 . 1 0 4 2  x  1 0 - 7  to 77 = 1 . 4 3 0 6 6  X 1 0 “ 6 . 

After th a t the mean energy and the variance decreases again.

log(77) mean energy variance skewness kurtosis
-6.0408 -6.1270 0.6183 1.2704 -1.1315
-5.9316 -6.1080 0.6545 1.2348 -1.1845
-5.8859 -6.0937 0.6920 1.2009 -1.1600
-5.8445 -6.0588 0.7568 1.1483 -1.3701
-5.8067 -6.0888 0.6882 1.2042 -1.2136
-5.5848 -6.2746 0.2143 2.1565 -4.0101

Table 6 .8 : Mean Energy, Variance, skewness and kurtosis of the final distributions, for 
n = 0  and for the different values of the resistivity for the distributions in fig. (6.5).

log(77) > 1 0 % > 1 > 1 0 > 1 0 0 MeV
-6.0408 0.360 0.119 0.086 0.055 0.3
-5.9316 0.375 0.116 0.095 0.062 0.29
-5.8859 0.382 0.14 0 .1 0 0.074 0.3
-5.8445 0.412 0.146 0.107 0.08 0.3
-5.8067 0.403 0.137 0.091 0.069 0.3
-5.5848 0.247 0.074 0.003 0 .0 0 1 0 .0 1

Table 6.9: Fraction of final distribution tha t is accelerated by more than  0.1, 1, 10 and 
100 times. The distributions are shown in fig. (6.5).

In fig. (6.7) we plotted the energy lost by the wave after 5360 timesteps as a function of 

the resistivity. Also in the same graph we have plotted the energy gain of the particles for 

the same time as a function of the resistivity. Both energies are normalised to  the initial 

wave energy.

The resistivity was treated  as a param eter in our calculations. We were increasing the 

value of the resistivity trying to m atch the wave energy loss to  the particles energy gain. 

As the resistivity was increasing, so was the size of the diffusion region. This means th a t 

the adiabaticity radius is defined by assuming the presence of higher energy particles. 

One would expect th a t as the resistivity increases so should the energy th a t particles gain 

until a value of the resistivity is found where the energy lost by the wave m atches the 

energy gained by the particles. For fig. (6.7) this is obviously not the case. In chapter 5 

we saw th a t the details of the particle orbits are very im portant. Up to 77 =  1.43066 X 10-6 ,
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Figure 6 .6 : Mean Energy of the final distributions of protons versus the logarithm  of 
the resistivity. The final distributions are acquired after 5360 integration tim esteps, for 
the following values of the resistivity: a) 77 = 9.1042 x  10- 7 , b) 77 = 1.17054 x  10- 6 , c) 
77 = 1.3006 X 10-6, d) 77 = 1.43066 x  10“ 6, e) 77 = 1.56072 x  10~6, and f) 77 = 2.6012 x  10"6. 
The fundam ental eigenmode, n= 0  is used in the calculation. The energy in the wave was 
10% of the equilibrium magnetic field energy. The errorbars are the variance on the mean 
energy.
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equilibrium magnetic field energy.
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some particles are trapped close to the neutral point region and they are performing a field- 

free acceleration by the electric field (see section 5.2). For higher resistivities, the diffusion 

region increases so much th a t the perturbation is totally insignificant compared to the 

background magnetic field. For higher resistivities more particles are heated (increases 

their energy by 1 0 %) but very few are accelerated to high energies.

6 .3 .2  E ffe c t  o f  th e  A m b ie n t  D e n s ity

A different value of the ambient density gives a  completely new set of eigenvalues for the 

same value of the resistivity. So, even though the spatial form of the eigenmodes does not 

change, the m agnitude of the electric and magnetic field perturbations change. Also, the 

decay and oscillation times change. In fact, the decay and oscillation times decrease with 

decreasing density. Recall the definition of constant A  in section 4.2

^ u4 - di -  (6-21>

Here U& is the Alfven velocity at the boundary of the system. When the ambient density 

decreases the Alfven velocity increases. In fig. (6 .8 ) we see final distributions for the 

same spatial form of the electric and magnetic field perturbations (those shown in figures 

( 5 . 4 )  and ( 5 . 5 ) )  but for different values of the ambient density. The values of the ambient 

density and the corresponding resistivities are: (a) 1 0 6  cm - 3  ( 7 7  =  3 . 1 7 2 4  X 1 0 - 5 ) ,  (b) 

1 0 s  cm" 3 ( 7 7  =  3 . 1 7 2 4  x  1 0 “ 6 ) ,  (c) 1 0 9  cm " 3 ( 7 7  =  1 . 0 0 3 2  x  1 0 " 6 ) ,  and (d) 1 0 1 0  cm " 3 

( 7 7  =  3 . 1 7 2 4  x  1 0 “ 7 ) .  Decreasing the density produces a greater proportion of high energy 

particles, but fails to  remedy the discrepancy between wave and particles.

6 .3 .3  In c r e a s in g  th e  in te g r a t io n  t im e

Since the energy th a t the wave loses does not m atch the energy th a t the protons gain 

during the time of 1 sec th a t we use in our calculation, we have tried longer integration 

times. Maybe the matching of the energies could be done after averaging over longer 

times.

In fig. (6.9) we the final distribution of protons for different integration times. The 

resistivity is 77 =  1.0032 x  10~ 6 and the ambient density is 109 cm -3 . The spatial form of 

the electric and magnetic fields is the same as for 77 = 3.1724 x  10- 7  when the ambient 

density is IO10 cm - 3 . The decay time of the wave is ~  81 sec and the oscillation tim e is
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Figure 6 .8 : Final distributions of protons. The final distributions are acquired for differ
ent densities and different resistivities but for the same spatial form of the electric and 
m agnetic fields. The fundam ental eigenmode, n= 0 is used in the calculation. The en
ergy in the wave was 10% of the equilibrium magnetic field energy. The ambient density 
is (a) 106 cm ’ 3 (77 =  3.1724 X 10"5), (b) 108 cm " 3 (77 =  3.1724 x  lO-6 ), (c) 109 cm " 3 

(77 =  1.0032 x  10"6), and (d) 1010 cm " 3 (77 =  3.1724 x  10"7).
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~  49 sec. The distribution was plotted after a) 0.25 sec, b) 0.5 sec, c) 1 sec, d) 2 sec, e) 5 

sec, and f) 8  sec. Longer integration times are too time consuming computationally, and 

were not attem ped. W hen the particles are followed for longer times, we see th a t some of 

them  gain very high energies. The highest energy th a t they gain for the t = 8  sec is ~  110 

MeV. As we see 8  sec is a significant fraction of the oscillation period. The particles keep 

on increasing their energy during this time. Still the to ta l energy of the distribution does 

not m atch the energy lost by the wave.

In fig. (6.10) we have plotted the energy lost by the wave for times a) - f) and the energy 

gain by the particles for the same times. Both energies were normalised to the initial 

energy in the perturbation. As the integration time increases the particles gain energy 

faster than  the wave loses energy.

However, even after the averaging over longer integration times the energy th a t the wave 

loses does not m atch the energy th a t particles gain.

6 .3 .4  H ig h e r  E ig e n m o d e s

W hen the resistivity is rj = 3.1724 x 10- 1 1  and the eigenvalue is n=32, then the m agnitude 

of the perturbation  has to be E 0 = 4.3 X 10- 4  so th a t the wave energy is 10% of the 

equilibrium magnetic field energy. After 5360 tim esteps, the wave loses, 2.88 X 1019 erg/cm  

and the particles gain 2.71 x 1013 erg/cm . The ratio of the two is 9.4 x 10~7. If we compare 

this with the result for the same value of the resistivity but for n= 0  (see table 6.4) we see 

th a t for the higher eigenvalue the particles gain less energy during the same time. The 

wave loses more energy during the time of our calculation (decay and oscillation times for 

n=32 and num ber density 1010 cm - 3  are given in table 4.5). So, the fraction of the wave 

energy th a t particles absorb is much smaller than  when the eigenmode is n=0. The main 

reason th a t particles don’t gain as much energy is th a t they are not trapped  close to  the 

neutral point anymore.

We had similar results for the same eigenmode but for lower ambient density. The following 

two examples are for ambient density of 109 cm -3 . W hen the resistivity is 77 =  1.0032 x 

10- 6  and the eigenvalue is n= 9 , then the m agnitude of the perturbation  has to be E 0 — 

1.56 x 10- 2  so th a t the wave energy is 10% of the equilibrium magnetic field energy. After 

5360 tim esteps, the wave loses, 5.68 X 1019 erg/cm  and the particles gain 1.67 X 1014 

erg/cm . The ratio  of the two is 2.94 x 10- 6 .
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Figure 6.9: Final distributions of protons. The final distributions are acquired for 77 =
1.0032 x 10- 6  after a) 1340 tim esteps, b) 2680 tim esteps, c) 5360 tim esteps, d) 11720 
tim esteps, e) 26800 tim esteps, and f) 42880 tim esteps. The fundam ental eigenmode, n=0 
is used in the calculation. The energy in the wave was 10% of the equilibrium m agnetic 
field energy. The ambient density is 109 cm-3 .



E
n

e
r
g

y

CHAPTER 6. MATCHING OF THE MHD AND TEST  PARTICLE 190

0.0001

le -0 5

le -0 6

1000.1
Time

Figure 6.10: Enegry loss of the wave versus tim e and Energy gain of particles versus time 
for the distributions of protons in fig. (6.9).
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For n=32 and the same value of the resistivity, the m agnitude of the perturbation  is 

E 0 = 2 x 10-5 . After 5360 tim esteps, the wave loses, 1.14 x 1020 erg/cm  and the particles 

gain 2.45 X 1012 erg/cm . The ratio of the two is 2.15 X 10-8 .

So, as the eigenvalue increases the energy tha t the wave loses in a specific am ount of 

tim e increases, but the energy th a t particles gain in the same tim e decreases. No higher 

eigenmodes than  n=32 where tried. In fig. (6.11) we see the initial and final distributions 

of protons for 77 =  1.0032 x 10- 6  after 5360 timesteps. The eigenmodes n= 9  and n=32 

were used in the calculation. The ambient density is 109 cm- 3 . Very little change from 

the initial distribution can be seen in both  cases (even less when n=32).

6.4  C heck o f  L inearity

To be in the linear regime, the amplitude of the disturbance shouldn’t change the results. 

To test th a t we calculated the amplitudes assuming th a t the wave has 1% of the equilibrium 

m agnetic field energy. The amplitudes for several values of the resistivity and for number 

density 1010 cm - 3  are given in table 6.1. Using these amplitudes we calculated particle 

distributions for different values of the resistivity and we compared the results with those 

in section 6.3.

6 .4 .1  n = 0

The energy th a t the wave has at t= 0  is E wave = 1.25 X 1019 erg/cm .

log(77) energy in the wave energy in the particles ratio
-6.613 9.8 X 1016 1.3 X 1014 1.33 X 10" 3

-5.613 1.35 x 1017 1.08 x 1 0 13 8 X 10" 5

Table 6.10: Energy in the wave and the particles for different resistivities, for n=0. E wave = 
1.25 x 1019 erg/cm .

Again by increasing the resistivity by one order of m agnitude from 77 =  3.1724 x 10- 7  

to rj = 3.1724 x 10-6 , the to ta l energy th a t particles gain decreases significantly. W hen 

the resistivity is 77 =  3.1724 x 10“ 6 more particles are heated (increase their energy by 

10%) but no high energy particles are produced. In table 6.10 we see the energy lost by 

the wave, the energy gained by the particles and their ration for these two values of the 

resistivity. Although the ratio are not exactly the same as those in table 6.4, they are so
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Figure 6.11: Final distributions of protons. The final distributions are acquired for rj =
1.0032 x 10-6 after 5360 tim esteps. Two eigenmodes were used in the calculation, n=9 
and n=32. The energy in the wave was 10% of the equilibrium magnetic field energy. The 
ambient density is 109 cm - 3 . In this graph the initial distributions of the particles are 
shown too.
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in order of magnitude.

Thus it appears th a t we are generally in the linear regime in th a t our results are fairly 

independent of the wave amplitude

6 .4 .2  A m b ie n t  d e n s ity  o f  109 cm - 3

We checked linearity for lower densities too. In table 6 . 1 1  we see the results for 77 =

1 . 0 0 3 2  x  1 0 - 6  and 77 =  1 . 0 0 3 2  X 1 0 - 5  for the fundam ental eigenmode. The spatial form 

of the wave is the same as for 77 =  3 . 1 7 2 4  X 1 0 - 7  to 77 =  3 . 1 7 2 4  X 1 0 - 6 , when the ambient 

density is 1 0 10 cm -3 .

The decrease in the particles energy gain is observed once more when we go from 77 =

1 . 0 0 3 2  x  1 0 " 6  to 77 — 1 . 0 0 3 2  x  1 0 " 5 .

log(77) energy in the wave energy in the particles ratio
-5.999 3.075 x  1016 2 . 2  x  1 0 14 7.2 x  10" 4

-4.999 2 .1 1  x  1 0 17 3.52 x  1012 1.7 X 10“ 5

Table 6.11: Energy in the wave and the particles for different resistivities, for n=0. The 
values of the resistivity are 77 =  1.0032 x  10- 6  and 77 = 1.0032 x  10-5 . E wave = 1.25 x  1019 

erg /cm  and n = 1 0 9 cm-3 .

6.5  C onclusions

The calculations presented in this chapter force us to re-examine the nature o f ‘resistivity’. 

Particles trapped  for long periods near the neutral point are freely accelerated and clearly 

ex tract energy from the wave. However, they do not contribute to  the resistivity (cf 

section 4.3). Perhaps a more correct description of the form of the resistivity might 

proceed retaining the d )/d t  term  in Ohm ’s law (2.9).

Irrespective of difficulties in defining the ‘correct’ value of the ‘resistivity’, we have demon

stra ted  th a t the passage of such a reconnective disturbance may accelerate protons to  7  

ray producing energies (see section 1.3.5), or at least to energies where they could play a 

role in energy transport (see Brown et al. 1990).

The fraction of high energy protons depends on the ambient density. The highest energy 

particles are produced when the ambient density has the smaller value.



Chapter 7

Conclusions and Future Work

The work presented in this thesis is an a ttem pt to  understand the micro-physics of particle 

acceleration in the central area of the reconnection (where kinetic phenomena are im

p o rtan t) and tie it to the behaviour of the larger active region area using a magnetic 

configuration th a t contains an X-type neutral point.

F irst we calculated particle orbits in a magnetic field containing an X-type neutral point 

with a time varying electric field imposed. The acceleration mechanism does not act only 

on the tail of the Maxwellian distribution but on a large fraction of it. The effectiveness 

of acceleration of protons and electrons varies according to the frequency of oscillation 

invoked. W hen electrons are accelerated, they are accelerated more rapidly than protons. 

We calculated numerically the eigenmodes resulting from the Craig and McClymont (1991) 

analysis of an MHD disturbance in an X-type neutral point. Also, we calculated the electric 

field and the magnetic field perturbation resulting and showed their spatial and tem poral 

structure. We used these fields to calculate particle orbits and particle distributions. 

Our aim was to m atch the MHD calculation with the test particle calcualtion. This has 

not proved possible for the form of scalar resistivity th a t we used in our calculations. 

However high energy protons are produced from such a linear reconnective disturbance. 

The fraction of high energy particles increases as the ambient density decreases.

As a next step we would like to  investigate the behaviour of a linear reconnective d isturb

ance when a time dependent form of the resistivity is assumed. We will be interested on 

the effect on particle acceleration of such a disturbance.

194
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7.1 D evelop m en t o f  Self-C onsisten t R econ n ection  M odels

Particles get trapped in the magnetic field configuration tha t contains an X-type neut

ral point and some of them  (the most unmagnetised initially) after crossing the neutral 

point several times gain a significant amount of energy. The ones th a t don’t a tta in  high 

energies seem to get heated. The X-type neutral point geometry discussed above is very 

enlightening but simple in comparison with the complexity of the solar corona. In order 

to  simulate a realistic magnetic field configuration (3-D) several steps are required. First, 

a more realistic magnetic field configuration is one where a small ‘norm al’ component of 

the m agnetic field is present at the neutral point. A second step thus would be to  use 

the geometry discussed in Van Tend and Kuperus (1978) and more exactly in Forbes and 

Isenberg (1992). The Forbes and Isenberg (1992) magnetic field is a model for the field in 

the corona with a current sheet present. It is m athematically tractable yet significantly 

more realistic than  a simple magnetic field containing an X-type neutral point. I will 

study the case where the current sheet breaks up into many neutral points (for instance as 

a consequence of the tearing mode instability) and consider both particle orbits near the 

sheet and the fates of particles in the wider coronal environment (MacKinnon and Petkaki 

1995). Particles accelerated in one X-type neutral point could proceed to a second stage 

of acceleration or into multiple stages of acceleration (Kliem 1994).

Further development of the integration schemes for particle trajectories is needed. An 

a ttem p t will be made to use symplectic integration schemes in order to achieve higher 

accuracy and reduce the com putation time (Yoshida 1993). This is very im portant for 

calculating the details of electron orbits for a time comparable to the time th a t proton 

orbits are calculated.

7.2 D evelop m en t o f  C urrent S heets

From observations we know th a t the footpoints of the bipolar magnetic field in the solar 

corona are anchored in the photosphere and the convection zone, and are moved around 

and mixed random ly by the motions in the convective zone. It is possible th a t several 

‘tangential discontinuities’, th a t is current sheets or X-type neutral points, are produced 

due to this motion. W hen the development of the calculation th a t I describe in the previous 

paragraph  is clear and well understood I will a ttem pt to see how a magnetic configuration
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th a t contains several X-type geometries is evolving when magnetic reconnection occurs 

in more th a t one neutral points. If energy is released in some neutral points then this 

can trigger similar processes in others near by. A point could be reached where such a 

configuration becomes unstable and catastrophic energy release occurs on a large scale.

7.3 Solar N o ise  Storm s

Signatures of particle acceleration are found in noise storms in the corona. At th a t time the 

corona is not flaring and the mechanism th a t could cause this particle acceleration is not 

clear. The possibility of small scale magnetic reconnection as a mechanism for producing 

high energy particles tha t cause noise storms becomes very apparent. New emerging 

m agnetic flux could cause the small scale reconnection. A small scale enhancement in 

hard  X-rays should be observed at about the same time as noise storm s but has not been 

detected yet. The possibility exists th a t the hard X-rays are observed first and after a 

small delay the energetic electrons propagate into the corona exciting plasm a waves. This 

part of the work would be a continuation of what I have been doing with Dr N. Vilmer 

and will be done in collaboration with her. I will look at observations of Hard X-rays 

(BATSE data), Soft X-rays (GOES data) and radio observations in the decimetric and 

m etric band with the Nancay RadioHeliograph in order to confirm this hypothesis or to 

find a possible relationship.

7.4  A n a ly tic  ca lcu lations o f  P article O rbits

Using M athieu functions one can approxim ate the trajectories of particles close to the 

neutral point in the presence of a timevarying electric field. Such approxim ate trajectories 

might form the basis of a more self-consistent calculation.

7.5  C haotic  C ond u ctiv ity

A numerical integration m ethod should respect the conservation of energy and of the 

volume of phase space in an integrable Hamiltonian system. A symplectic in tegrator may 

be constructed th a t does conserve the above mentioned quantities (Yochida 1993). But 

for non-integrable systems one cannot expect to conserve energy in each step (Ge and
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M arsden, 1988). Despite this fact there is an advantage for symplectic schemes when a 

m ethod of constant time step is used. The Bulirsch-Stoer is a variable step m ethod so is 

not appropriate for using in symplectic integrators. If one uses the adiabatic description 

of the motion away from the neutral point area then a method with constant step could 

be used inside the region where chaotic properties are observed.

We would like to  calculate the chaotic characteristics of particles orbits in time-varying 

electrom agnetic fields rigorously. Im portant tools in the study of chaos are: particle tra 

jectories, Lyapunov characteristic exponent, the Painleve property (which implies integ- 

rability if it stands) and the Poincare surface of section plots. Calculation of chaotic con

ductivity would be the objective of calculating the chaotic characteristics (M artin  1986). 

If chaotic motion can indeed produce the collisionless resistivity necessary for reconnection 

then it is a mechanism of central importance in the modelling of solar flares. Collective ef

fects such as wave-particle interactions could also be im portant in determining the chaotic 

conductivity.

7.6 R econ n ection  in nonzero B z

Prelimilary investigations have shown th a t when a significant component of the magnetic 

field is present along the X-line then the particles do not cross from the neutral line 

more than  once in the presence of an ad hoc time varying electric field. The multiple 

passage of a particle through the neutral point is not observed any more. Instead the 

particle gets injected from the nonadiabatic area and leaves the system very quickly. This 

happens faster as the perpendicular component of the magnetic field increases. Thorough 

investigation of the consequences on particle acceleration from an ad hoc tim e varying 

electric field will be a ttem pted  in future work.

In the presence of wave as discussed in Chapters 4 and 5 preliminary results have shown 

th a t particle orbits are not influenced significantly. Understanding of the particle orbits 

details in the presence of finite B z component requires a fuller 3-d treatm ent.
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