
MECHANISTIC STUDIES ON DIAMINE OXIDASE

A thesis presented in  part fu lfilm ent o f the 

requirements fo r the Degree o f 

Doctor o f Philosophy

by

Stephen Scott Gavin

Department o f Organic Chemistry 

University o f Glasgow

July 1995



ProQuest Number: 13832535

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 13832535

Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106- 1346



10ZW
)

IE aFxJtT I
imun;; -;r,T j 
u s M r r f  (



To m y wife Hazel and all m y family, 

One Love, One Blood.



ACKNOWLEDGEMENTS

I would like  to o ffe r my sincere thanks to Professor D. J. 

Robins fo r his guidance, both technically and personally, through 

the many challenges I have faced during my research. In  particular 

fo r his help and patience in  the w riting o f this thesis.

I am most grateful to Dr. A. Cooper fo r his assistance w ith  the 

biophysical work carried out as part o f this thesis.

I am also g ra te fu l fo r the help I received from  the 

departm ental technical sta ff during my studies. In particular, Miss 

I. Freer fo r the iso lation o f the crude pea enzyme and Mr. J. 

Tweedie fo r technical assistance in  the laboratory. Also, Dr. D. S. 

Rycroft, Mr. J. Gall and Mr. J. McIver fo r NMR spectra; Mrs. K. Wilson 

fo r elemental analysis; Mr. A. Ritchie fo r mass spectra and Mr. G. 

McCulloch fo r IR spectra.

The financ ia l support from  S.E.R.C. in  the fo rm  o f an 

Earmarked award is gratefully acknowledged.

My deepest thanks go to my friends and colleagues, both past 

and present, in  the unforgettable Henderson Lab. The memories o f 

my time there w ill live w ith  me forever. In particular, I must thank 

Greig, Paul, John and Henry fo r keeping me sane, and Gerry fo r his 

much needed help w ith  the computers.

Lastly, I dedicate this thesis to those in  my heart, my fam ily. 

To my m other Yolanda and father Patrick fo r the ir many years o f 

love and support. Most o f a ll to my w ife Hazel, fo r her endless 

encouragement and w ithou t whom my achievements would be 

meaningless.



ABBREVIATIONS

BSA Bovine serum albumin

BSAO Bovine serum amine oxidase

CBDC Cyclobutanedicarboxylic acid

CID Collision induced dissociation

DACCP Diaminocyclohexylcarboxyphthalic acid Platinum

(II)

DAO Diamine oxidase

DBU Diazabicyclo [5.4.0] undec-7-ene

DEAE Diethylaminoethyl

DEMO a-D ifluorom ethylornithine

DMAB 3-(Dimethylamino)benzoic acid

DMAP 4-Dimethylam inopyridine

DMF Dimethylformamide

DMSO Dimethylsulphoxide

DNA Deoxyribonucleic acid

DNPH 2,4-Dinitrophenylhydrazine

DOPA 3,4-Di hydroxy phenylalanine

EDTA Ethylenediaminetetraacetic acid

ee Enantiomeric excess

EPR Electron paramagnetic resonance

ESR Electron spin resonance

FAD Flavine adenine dinucleotide

FPLC Fast protein liqu id  chromatography

HPLC High performance liqu id  chromatography

IR Infrared

LSIMS Liquid secondary ion mass spectrometry

K m  Michaelis Menten constant



MBTH 3-Methyl-2-benzothiazolinone hydrazone

MGBG Me thy lglyoxalbis (guany lhydrazone)

NBT Nitroblue tetrazolium

NMR Nuclear magnetic resonance

ODC Ornithine decarboxylase

PQCL Pyrroloquinoline quinone

RNA Ribonucleic acid

SDS Sodium dodecyl sulphate

THF T etrahydrofuran

TOPA Topaquinone

UV U ltraviolet

Vis Visible

Vmax Maximum rate



TABLE OF CONTENTS

Page No.

CHAPTER 1. In tro d u c tio n  1

1.1 The Growing Importance o f Enzymes in  Organic

Synthesis 1

1.2 The Disadvantages o f using Enzymes and

Improvements using Im m obilisation Techniques 3

1.3 Diamine Oxidase 4

1.4 Polyamine Metabolism and Cell Growth 5

1.5 Inhib itors o f Polyamine Biosynthesis 7

1.6 Stereochemistry and Regiochemistry in  Reactions

Catalysed by Diamine Oxidase 8

1.7 A lkaloid Biosynthesis 9

1.8 Work Described In This Thesis 11

CHAPTER 2. A Review o f D iam ine Oxidase 12

2.1 Isolation and Purification o f Diamine Oxidase 12

2.2 The Role o f Copper w ith the DAO Enzyme 13

2.3 Early Proposals fo r Cofactors o f Diamine Oxidase 14

2.4 The History o f Pyrroloquinoline Quinone (PQQ) 15

2.5 Pyrroloquinoline Quinone as a Cofactor fo r

Copper Amine Oxidases 16

2.6 Using Oxygen to Improve the “Hydrazine Method” 17

2.7 Alternative Methods fo r Detecting Enzyme

Bound PQQ, 20

2.8 Naturally Occurring Forms o f PQQ, 22

iv



2.9 The Mechanisms Involved w ith PQQ 23

2.10 A Further Insight Into the Chemistry o f PQQ 28

2.11 Arguments Against PQQ.as a Cofactor for

Amine Oxidases 32

2.12 Current Understanding o f the Nature o f the Cofactor 40

2.13 Interaction o f the Prosthetic Groups in  Diamine

Oxidase 41

2.14 Assay Systems Used in  the Determination o f

Diamine Oxidase Activity 43

2.15 Substrate Specificity and the Active Site 47

2.16 Diamine Analogues Containing Group VI Atoms (O,

Se, Se) 51

2.17 Stereochemistry Involved in  Reactions Catalysed

by DAO 52

2.18 Regioselectivity and Stereoselectivity Involved

w ith the DAO-Catalysed Reaction 55

2.19 The Necessity o f Polyamines in  Cell Growth

and Replication 57

2.20 Inhibitors o f Diamine Oxidase 58

2.21 Synthetic Applications o f DAO 63

CHAPTER 3. Enzyme K inetics 6 6

3.1 Introduction 6 6

3.2 Michaelis-Menten Kinetics 6 6

3.3 Determination o f Vmax and Km by Experimental 

Methods 70

3.4 The Kinetics Involved w ith  Inh ib ition  73

v



CHAPTER 4. Mechanistic Studies on Diamine Oxidase 76

4.1 Introduction 76

4.2 Synthesis o f Deuterium Labelled Diamines 78

4.3 Results and Discussion 80

CHAPTER 5. Oxidation of Substituted Quinolines and

Pyridines By Pea Seedling Diamine Oxidase 90

5.1 Extraction and Partial Purification o f Diamine

Oxidase from  Pea Seedlings 90

5.2 The Determination o f Protein Concentration 91

5.3 The Assay Procedure 91

5.4 Substituted Quinolines and Pyridines as Substrates

fo r Pea Seedling DAO 93

5.4a Introduction 93

5.4b Synthesis o f the Substituted Quinoline and

Pyridine Derivatives 94

5.4c Results and Discussion 102

5.5 Inhib ition o f Diamine Oxidase by Quinoline

and Pyridine Derivatives 105

5.5a Introduction 105

5.5b Results and Discussion 107

CHAPTER 6 . Oxidation of Substituted Thiophenes and

Pyrroles By Pea Seedling Diamine Oxidase 111

6.1 Introduction 111

v i



6 . 2 Synthesis o f Substituted Thiophenes and Pyrroles 1 1 1

6 .2 a Synthesis o f Substituted Thiophenes 1 1 1

6 .2 b Synthesis o f Substituted Pyrroles 114

6.3 Results and Discussion 117

6.3a Substituted Thiophenes and Pyrroles as Substrates

fo r Pea Seedling DAO 117

6.3b Substituted Thiophenes and Pyrroles as

Inhib itors o f Pea Seedling DAO 1 2 0

CHAPTER 7. Use o f D iam ines in  the Synthesis o f

C isp la tin  Analogues 1 2 2

7.1 Introduction 1 2 2

7.2 Mechanism o f Action o f Cisplatin 123

7.3 Interactions o f Platinum Compounds w ith  DNA 125

7.4 Synthesis o f Cisplatin Analogues 127

7.4a Introduction 127

7.4b Synthesis o f cis-l,4-Diam inobut-2-ene 129

7.4c Synthesis o f Platinum Precursors and Cisplatin

Analogues 130

CHAPTER 8 . Experim enta l 137

8.1 General Details 137

8.2 Extraction o f Diamine Oxidase (EC 1.4.3.6 ) from

Pea Seedlings 138

8.3 Experimental fo r Chapter Four 145

8.4 Experimental fo r Chapter Five 156

v ii



8.5 Experimental fo r Chapter Six 181

8 . 6  Experimental fo r Chapter Seven 191

A ppendix 200

References 203

via



SUMMARY

To investigate the enzyme pea seedling diam ine oxidase our 

studies concentrated on three main areas: 1 . mechanistic studies o f 

the oxidative deam ination o f p rim ary diam ines catalysed by 

diamine oxidase; 2 . oxidation o f aromatic compounds w ith  amine 

side chains by pea seedling diamine oxidase; and 3. inh ib ition  o f pea 

seedling diam ine oxidase. To make use o f diamines synthesised 

w ith in  the research group a fourth  area was studied: 4. synthesis o f 

cisplatin analogues.

1. M echanistic Studies o f the D iam ine Oxidase-Catalvsed 

Deamination o f Diamines

Diam ine oxidase catalyses the oxidative deam ination o f 

diamines to the ir corresponding aminoaldehydes (Scheme A). To 

test the hypothesis that the diam ine oxidase-catalysed oxidation 

proceeds via an enamine intermediate (i) we prepared a number o f 

a,co-diamines labelled w ith  deuterium at the p-positions.

(i)nh2

nh2

Diamine Oxidase CHO

nh2

Scheme A
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The [2 H4 ]-labelled diamines and the corresponding unlabelled 

diamines were incubated w ith  pea seedling diamine oxidase and the 

products were trapped w ith  benzoy lace tic acid in  situ. (Scheme B). 

This gave substitu ted acetophenone products ( ii)  w hich were 

analysed by NMR and mass spectrometry. From a comparison o f the 

spectroscopic data we were able to show th a t the enamine 

intermediate (i) is not involved in  the enzymatic process.

Diamine Oxidase
Benzoylacetic Acid

NH

X NH2

X = H or D (“ )
n = 0 - 2

Scheme B

2. Oxidation o f Aromatic Compounds w ith  Amine Side Chains bv Pea 

Seedling Diamine Oxidase

A range o f qu ino line , pyrid ine , th iophene and pyrro le  

derivatives w ith  amine side chains were synthesised and tested as 

substra tes o f pea seedling d iam ine  oxidase using a 

spectrophotom etric assay which measures the hydrogen peroxide 

by-product o f the enzymatic reaction. From this assay V m a x  and K m  

values were obtained fo r the oxidation o f each substrate using 

diam ine oxidase. The V m a x  is the maximal rate o f oxidation and 

gives an indication o f the oxidation rate fo r the various substrates. 

The Km is a measure o f the strength o f the enzyme-substrate 

complex and determines the binding efficiency o f the substrate to 

the enzyme. Analysis o f this kinetic data provided in form ation on



the enzymatic process and the nature o f the pea enzyme's active 

site. Comparison o f the kinetic data obtained from  the various 

aromatic substrates enabled us to study the effect on the binding 

a ffin ity  and rate o f oxidation from  changes to the ring size o f the 

substrates. The role o f the second amine group was also explored 

using nitrogen heterocycles w ith amine side chains.

3. Inh ib ition  o f Pea Seedling Diamine Oxidase

Polyamines are known to be essential in  the growth and 

rep lication o f cells, and diam ine oxidase plays a key role in  the 

polyamine metabolism w ith  the oxidative deamination o f diamines. 

Inhib itors o f diamine oxidase should therefore have a considerable 

effect on the polyamine metabolism and hence cell growth. W ith 

this in  m ind inh ib ito rs o f diamine oxidase may possess im portant 

biological activity.

Compounds which were shown to be poor substrates bu t 

e ffic ien t binders o f the pea seedling diam ine oxidase from  our 

in itia l studies were tested as inhibitors. These tests were carried out 

using the same spectrophotometric assay as before, but which had 

been m odified to include the in h ib ito r. Most o f the compounds 

tested were found to in h ib it the diam ine oxidase-catalysed 

deam ination o f putrescine and were shown to be com petitive 

inhibitors.

4. The Synthesis o f Cisplatin Analogues

C isplatin  ( iii)  is a w ide ly used anticancer drug, bu t its 

therapeutic value is lim ited  by the number o f toxic side effects 

which it  exhibits. To make use o f the diamines available from  other



studies, we attem pted to make cisplatin  analogues w ith  various 

diamines used as bidentate ligands. As there were no examples o f 

unsaturated diamines being used in  cisplatin analogues we used cis-

1.4-diaminobut-2-ene (iv) which had previously shown antib io tic 

activity. We made our target compound cis-l,4 -d iam ino(d ich loro)- 

p latinum  (II) (v), bu t were unable to make our second target cis-

1.4-diam inobut-2-ene( 1,1-cyclobutanedicarboxylato)platinum  (II)



CHAPTER 1 

In tro d u c tio n

1.1 The G row ing Im po rtan ce  o f Enzymes in  S yn the tic  

A p p lic a tio n s

The significance o f enzymes in  organic synthesis has increased 

considerably over the past decade, w ith  enzym atic reactions 

frequently now being employed to effect transform ations that 

otherwise would be d ifficu lt to achieve by chemical means. 1

Enzymes are exceptionally versatile catalysts and enzyme 

catalysed reactions often offer significant advantages over chemical 

methods. Not only do they allow possible control o f stereochemistry 

and regiochem istry, bu t they are also extremely e ffic ien t in  that 

they can increase the rate o f reactions by over a m illion  times. The 

a b ility  o f enzymes to catalyse a broad range o f reactions in  very 

m ild conditions, at room temperature and in  aqueous conditions at 

neutra l pH make them an attractive option  when dealing w ith  

fragile organic molecules.

The use o f enzymes can provide methods fo r the preparation 

o f op tica lly  active compounds. For example, the reduction o f 2- 

m ethyl-2-propyl-l,3-cyclopentanedione (1) to (25, 35)-2-methyl-2- 

propy 1-3-hydroxycyclopentanone (2 ) using baker's yeast, 2 gives an 

enantiomeric excess (ee) o f 100% (Scheme 1.1). Reduction o f (1) by 

NaBH4  gives a m ixture o f the two racemates o f 2-m ethyl-2-propyl- 

3-hydroxycyclopentanone in  varying yields.
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baker's yeast ,0 H

(2S, 3S): 100% ee

Scheme 1.1

Drug manufacturers fin d  enzymes pa rticu la rly  beneficial in  

producing o p tica lly  active compounds from  ach ira l sta rting  

materials. They require to lim it the synthesis o f drugs to a single 

enantiom er, since only one enantiom er o f a racemic m ixture is 

generally responsible fo r the desired b io log ica l a c tiv ity . The 

unwanted enantiomer may in h ib it the desired effect o f the active 

isomer and /o r exhibit toxic side effects, as happened in  the case o f 

thalidom ide. W ith the ever increasing demand fo r more selective 

drugs enantiomeric p u rity  is becoming o f v ita l importance and it  

seems tha t enzymes have an im portan t role to play in  fu ture  

developments in  this area.

There is an increasing num ber o f com m ercially available 

biocatalysts w hich are capable o f catalysing a wide range o f 

bio transform ations. Although use o f isolated enzymes is generally 

favoured, whole organisms have been successfully employed as 

b io ca ta lys ts . The re d u c tio n  o f 2 -m e th y l-2 -p ro p y l- l,3 - 

cyclopentanedione (1) by baker's yeast in  Scheme 1.1 is a typical 

example where Saccharomyces cerevisiae is the p a rticu la rly  

versatile and easy to use m icro-organism which is made up o f a 

variety o f dehydrogenase enzymes.3a>b
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1.2 The D isa d v a n ta g es  o f  u sin g  E nzym es and

Improvements using Immobilisation Techniques

Although we are rap id ly discovering more ways to exploit the 

unique properties o f enzymes, there are some disadvantages in  

th e ir use as organic catalysts, especially in  industria l processes. 

Many enzymes are inactivated under extreme conditions, fo r 

example, at high temperatures or in  h ighly acidic or basic solutions. 

Also, enzymes generally function optim ally in  aqueous solutions, 

ra ther than the organic solvents usually required to  dissolve 

organic compounds. Moreover, enzymes are often inh ib ited by their 

substrates and th e ir products at concentrations below those 

considered necessary fo r an economical process.

In  recent years it  has been shown tha t the s tab ility  o f an 

enzyme can often be improved by making the molecule more rig id  

through m u ltipo in t attachment to a solid carrier. 4  This process is 

known as im m obilisation and may be considered as the physical 

separation, during continuous operation, o f the catalyst (enzyme) 

from  the solvent in  such a way tha t the substrate and product 

molecules may readily exchange between phases. 5 Separation o f the 

biocatalyst from  the solvent may be achieved by adsorption onto, or 

covalent b inding to, insoluble organic or inorganic supports. Not 

only can the enzymes be made stable to the conditions o f the 

in d u s tria l process b u t a batch reaction can more easily be 

term inated by the rem oval o f an insoluble biocatalyst. Also, 

contam ination o f the organic product by the enzyme prote in can 

norm ally be significantly reduced by immobilisation.

Various im m obilisation techniques are available to the organic 

chemist, fo r example; chelation, adsorption and gel entrapment.
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1.3 D iam ine Oxidase

Diamine oxidases (DAO, EC 1.4.3.6 ) catalyse the oxidative 

deamination o f a range o f prim ary diamines to the ir corresponding 

aminoaldehydes (Scheme 1.2). The mechanism by w hich the 

deamination takes place is not fu lly  understood. Current literature 

evidence w ill be reviewed in  Chapter 2.

H2N(CH2)nCH2NH2 + h 2o  + 0 2

Diamine Oxidase

▼

H2 N(CH2)nCHO + NH3 + H2 0 2

Scheme 1.2

Diamine oxidases are present in  a wide varie ty o f biological 

tissues, although two sources are p a rticu la rly  convenient. Pig 

kidney diam ine oxidase is commercially available in  a crude form  

and pea seedling diamine oxidase can be readily extracted from  1 0  

day old pea seedlings.6

Diam ine oxidases are copper-containing proteins. I t  was 

shown7 that removal o f the copper by dialysis w ith  chelating agents 

caused deactivation o f the enzyme and that the activ ity  is restored 

on the subsequent addition o f Cu2+.

The iden tity  o f the organic cofactor has remained a mystery 

fo r many years. The fact that reagents capable o f form ing carbonyl
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deriva tives were shown to in h ib it diam ine oxidases8 strongly 

suggested that the cofactor contained a carbonyl functionality. Early 

hypotheses centred around metal ions or pyridoxal phosphate as 

being the sole cofactor. However w ith  the development o f the 

hydrazine method , 9 opinions changed to consider the involvement 

o f pyrro loqu ino line  quinone (PQQ). Recently strong evidence has 

been published which suggests that PQQ, is not the cofactor and that 

topaquinone is the organic cofactor in  a number o f amine oxidases. 

The evidence relating to PQQ, and other possible cofactors involved 

w ith  amine oxidases w ill be discussed in  Chapter 2.

1.4 Polvamine Metabolism and Cell Growth

Diamine oxidase has a significant role to play in  the regulation 

o f cellular levels o f natural polyamines.

Crystals o f polyam ines were firs t described by Dutch 

m icroscopist Leeuwenhoek over three hundred years ago, and it  

took a fu rthe r two centuries to iden tify  the crystals as an organic 

base. This base was called spermine (4 ) . 10  Since then the study o f 

polyam ines has fa llen  short when compared to many other 

biochem ical topics. This is quite surprising since a ll plants and 

animals are thought to contain at least one polyamine, such as the 

w idespread polyam ines putrescine (3), sperm ine (4) and 

spermidine (5) and the less common polyamine cadaverine (6 ).

H2N(CH2 )4 NH2

(3)

H2 N(CH2 )3NH(CH2 )4 NH(CH2 )3NH2

(4)

H2N(CH2 )3 NH(CH2 )4 NH2

(5)

H2N(CH2 )5NH2

(6 )
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These natura l polyamines are believed to have many key 

physiological roles to play. However it  is the ir association w ith cell 

growth and replication that is the most im portant. The association 

between polyamines and cell growth stems from  the a b ility  o f 

polyam ines to  undergo ion ic  b ind ing  to nucle ic acids. A t 

physiological pH, the protonated form  o f these polyamines b ind 

strongly w ith  the phosphate anions o f the nucleic acids. This not 

only has a stabilising effect on DNA and RNA, bu t also speeds up 

every step o f the transcrip tion /transla tion  sequence. This is the 

process where in fo rm a tio n  coded by genes is used in  the 

manufacture o f proteins . 10

There are two m ajor pathways fo r polyamine biosynthesis. 

The firs t is the interconversion pathway which controls polyamine 

turnover by a cyclic process, and regulates intercellu lar polyamine 

levels. Decarboxylation o f the simple amino acid orn ith ine  by the 

enzyme o rn ith in e  decarboxylase (ODC) form s putrescine (3). 

Spermidine synthase then forms spermidine (5) from  putrescine, 

and th is is fo llow ed by the synthesis o f sperm ine (4) from  

sperm idine by the enzyme spermine synthase. These poly amines 

are then degraded by a process called catabolism. This occurs by a 

process o f N -acetylation follow ed by oxidative cleavage which 

converts spermine back in to  spermidine, and spermidine back into 

putrescine.

The second major pathway is term inal polyamine catabolism 

which is catalysed by Cu^+ dependent amine oxidases. Each diamine 

can be converted in to  its  corresponding am inoaldehyde by 

oxidative deam ination o f the prim ary amino group. The newly 

form ed aminoaldehyde is fu rthe r oxidised to the corresponding 

amino acid. These products and the N-acetylated polyamines are 

excreted in  urine.
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1.5 Inhibitors of Polvamine Biosynthesis

Development o f inh ib ito rs to polyamine biosynthesis in  the 

late 1970s allowed biochemists to examine what happens to a 

system when the concentration o f polyamines is s ign ifican tly  

reduced. M e rre ll-D ow  P harm aceutica ls synthesised a- 

d ifluo rom ethy lo rn ith ine  (DFMO) (7), which was found to b ind 

specifica lly and irrevers ib ly  to ODC, thus inactiva ting  it. This 

inh ib itio n  o f ODC led to a significant reduction in  the form ation o f 

polyamines which in  tu rn  inh ib ited cell p ro liferation in  various cell 

cultures, fo r example leukaemia cells . 10  This w ork showed that 

polyamines are indeed involved in  cell growth and replication, but 

the fact tha t this confirm ed the importance o f polyamines meant 

more research was requ ired  to realise the fu ll po ten tia l o f 

polyamine inhibition.

(7)

DFMO has subsequently been shown to possess very 

interesting antitum our activ ity  due to its irreversib le b inding to 

ODC. Since tum our cells p ro life ra te  rap id ly  they have a higher 

demand fo r polyamines than norm al cells, therefore inh ib itio n  o f 

polyamine biosynthesis has a more detrim ental effect on tum our 

cells.

Equally as in te resting  are the results obta ined from  

experiments using p lan t systems. As w ell as the ODC pathway,
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plants possess another pathway fo r polyam ine biosynthesis via 

arginine and the enzyme arginine decarboxylase. However this is 

not the case fo r fungi which only possess the ODC pathway. So, i f  a 

particu la r fungus infects a p lant (or crop), treatm ent w ith  DFMO 

should lead to death o f the fungus, while the plant (or crop) w ill be 

unaffected. This was shown to be the case when Rajam and Galston 

showed that DFMO had an inh ib ito ry effect on the growth o f several 

fung i on a rtific ia l media. Further w ork in  co llaboration w ith  

W einstein showed tha t DFMO very e ffective ly contro lled  rust 

infection in  several types o f beans. 10

Since diamine oxidase is also involved in  the determ ination o f 

ce llu la r levels o f polyam ines i t  w ould seem a reasonable 

assumption that inh ib itio n  o f diamine oxidase may lead to useful 

antitum our and/or antifungal activity.

The kinetics o f enzyme inh ib ition  are discussed in  Chapter 3, 

and the testing o f various compounds as inh ib ito rs o f pea seedling 

DAO is described in  Chapters 5 and 6 .

1.6 Stereochem istry and R egiochem istrv in Reactions 

Catalysed by Diamine Oxidase

Diamine oxidases are o f low specificity acting upon a broad 

range o f both monoamines and diamines. During deamination o f an 

amine by DAO, a proton is removed from  the prochira l methylene 

group adjacent to the n itrogen (Scheme 1.3). The absolute 

stereochemistry associated w ith  this loss has been determ ined by 

various methods.
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Hr

NH
NH

Scheme 1.3

Use o f a wide range o f substrates enantiom erically labelled 

w ith  e ither deuterium  or tr itiu m  has consistently demonstrated 

that the deamination o f amines catalysed by DAO is accompanied by 

the loss o f the pro-5 hydrogen . 11” 13

Santaniello et al.14 studied the regioselectivity o f the DAO 

catalysed reaction. They showed that using pea seedling DAO, both 

(R)- and (5j-2-m ethylputrescine were regioselectively oxidised at 

the less hindered C-4 position. This is in  contrast to pig kidney DAO 

where the re g io ch e m is try  d iffe re d  depend ing  on the 

stereochemistry o f the substrate. These topics w ill be discussed 

fu rther in  Chapter 2.

1.7 Alkaloid Biosynthesis

Alkaloids are organic compounds containing nitrogen, usually 

as part o f a heterocyclic system, and they are o f lim ited d istribution 

among liv ing  organisms. 15 Alkaloids are found in  plants and mosses, 

and some are known to have useful pharmaceutical properties, fo r 

example morphine (8 ) isolated from  the opium poppy.
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HO,

HO

( 8 )

P yrro liz id ine  alkaloids are b icyclic compounds which are 

wide-spread in  plants, and homospermidine (9) has been shown to 

be a key intermediate in  the ir biosynthesis. The in itia l steps in  the 

conversion o f homospermidine into  pyrro liz id ine alkaloids possibly 

involve oxidation o f the prim ary amino groups. It has been shown 

tha t incubation o f hom osperm idine w ith  DAO and subsequent 

reduction o f the like ly  product, 1 -fo rm ylpyrro liz id ine  leads to the 

pyrrolizid ine alkaloid trachelanthamidine (10) (Scheme 1.4) . 16

1. DAO
H2N(CH2)4NH(CH2)4NH2

2. Reduction

(9) ( 10)

Scheme 1.4

This use o f diamine oxidase as an isolated enzyme may prove 

to be a convenient method in  the synthesis o f a wide range o f new 

alkaloid analogues.
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1.8 Work Described in this Thesis

A series o f N -alkyl and C-alkylputrescines were tested as 

substrates o f diamine oxidase by Frydman et al.17 They suggested 

tha t oxidative deam ination o f putrescine (3) catalysed by DAO 

proceeds through an enamine intermediate. We decided to test this 

hypothesis by preparing a,co-diamines strategically labelled w ith  

deuterium  to m onitor the reaction. The products o f the enzyme 

reactions were coupled w ith  benzoylacetic acid in  situ to form  

phenacyl products. These compounds were analysed by NMR and 

MS, and the results are discussed in  Chapter 4.

In  order to obtain inform ation on the active site o f the DAO 

enzyme, a range o f aromatic amines have been synthesised fo r 

testing as substrates and /o r inh ib ito rs o f DAO. Following on from  

previous w ork invo lv ing  pyrid ine  derivatives, we synthesised a 

range o f quinoline and pyrid ine derivatives w ith  an alkylamine side 

chain. These were tested as substrates and /o r inh ib ito rs  o f pea 

seedling DAO and the results are described in  Chapter 5.

Our studies then focused on the “ rc-excessive” arom atic 

systems o f thiophenes and pyrroles. A range o f thiophene and 

pyrro le  derivatives w ith  an alkylam ine side chain have been 

synthesised and tested as substrates a n d /o r in h ib ito rs  o f pea 

seedling DAO. The results are discussed in  Chapter 6 .

In  o rder to make use o f the wide range o f diam ines 

synthesised w ith in  the research group, attempts were made to 

synthesise analogues o f the well known antitum our drug cisplatin. 

It was hoped to use these diamines as bidentate ligands in  a range 

o f new platinum  compounds. This work is described in  Chapter 7.
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CHAPTER 2 

A Review of Diamine Oxidase

2.1 Isolation and Purification of Diamine Oxidase (DAO)

Although diamine oxidases are common in  nature, there is at 

the present time only two convenient methods fo r the ir isolation. 

Crude DAO enzyme can be extracted from  pig kidney and a purer 

form  o f the enzyme can be extracted from  young pea seedlings. The 

DAO content o f the pea seedlings is at a maximum between 7 and 

16 days after germ ination , 18 although activ ity varies depending on 

the variety o f pea.

A procedure fo r the pu rifica tion  o f pea seedling DAO was 

developed by H ill, 6 where most o f the unwanted m aterial was 

removed by precipitation w ith  a m ixture o f chloroform  and ethanol 

(1:2). The enzyme was then isolated by p re c ip ita tio n  w ith  

ammonium sulphate and then precipitation at pH 5 by the method 

o f Tabor. 19 I f  h ighly pure enzyme is required it  can be obtained by 

chromatography on hydroxyapatite DEAE-cellulose columns.

Diamine oxidase has been purified  from  pea epicotyls by the 

method o f polyacrylam ide gel electrophoresis (PAGE) . 2 0  The DAO 

was p u rifie d  to hom ogeneity by colum n chrom atography on 

phosphocellulose and then MGBG-Sepharose, resulting in  a 32 fo ld 

increase in  specific a c tiv ity . The p u rifie d  enzyme showed 

absorption maximum at 280 nm and 500 nm. These procedures 

were developed using crude DAO which had been treated w ith  5% 

protam ine and then concentrated w ith  65% saturated ammonium 

sulphate .21
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The molecular weight o f the purified  DAO enzyme was found 

to be 180 0 0 0  which agreed w ith  previously reported results. 2 1 >22 

Sodium dodecylsulphate (SDS) gel electrophoresis gave a single 

band o f m olecular weight 85 000. These results strongly suggest 

that the DAO enzyme consists o f two identical subunits as in  the 

other copper-containing amine oxidases. 2 3 *24

More recently a quick and easy method fo r pu rify ing  pea 

seedling DAO was developed . 2 5  The m ethod was o rig in a lly  

developed fo r studying the interaction o f p lant growth substances 

and cell w all polysaccarides2 6  and was subsequently m odified to 

p u rify  DAO. This method involves packing the pea seedlings in to  a 

syringe barre l and attaching the barre l to a perista ltic pump to 

wash the seedlings w ith  d istilled  water fo r 30 m in. The seedlings 

are then vacuum in filtra te d  w ith  10 mM potassium phosphate 

buffe r o f pH 7 fo r 5 m in. The DAO enzyme is isolated by buffer 

exchange in to  20 mM potassium phosphate o f pH 6  and 1 mM EDTA 

followed by FPLC on a cation exchange column.

2.2 The Role o f Copper w ith  the DAO Enzyme

In h ib ition  studies o f diamine oxidase w ith  various chelating 

ligands, such as cyanide, suggested th a t the enzyme is a 

m etalloprotein and that inh ib ition  takes place because these ligands 

act as carbonyl reagents . 2 7  Spectrographic analysis o f h igh ly  

purified  pea seedling DAO showed that copper and manganese were 

the trace elements present in  largest amounts. 28 The copper content 

was 0.08-0.09%, while the manganese was approximately 0.01%.

M a n n 2 8  found th a t the DAO enzyme was in h ib ite d  by 

d ie thy ld ith ioca rbam ate  because o f the rem oval o f copper.
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Subsequent add ition  o f Cu(II) ions led to reactivation o f the 

enzyme.

In h ib ition  o f DAO is also caused by chelating ligands which 

include salicylaldoxim e and 8 -hydroxyquinoline, although this 

in h ib itio n  can be reversed by the addition o f a number o f metal 

ions. Reversal appears to depend on the a b ility  o f the metal ion to 

displace the chelating ligand attached to the enzyme bound copper, 

leaving the active, copper-containing protein. These results suggest 

that copper may form  part o f the prosthetic group o f the enzyme.

The debate on the role o f copper in  these enzyme reactions 

continues to be inconclusive. Electron paramagnetic resonance (EPR) 

experiments2 9  failed to detect changes in  the copper oxidation state 

during the enzymatic process. This has led to suggestions that Cu(II) 

may act as a Lewis acid ; 3 0  tha t i t  has an in d ire c t role in  the 

catalysis;31 or that it  serves a structural role . 32

It was thought that no Cu(I) was present in  diamine oxidase, 33 

however, recent new evidence suggests there may be a Cu(I) state 

present as a catalytic interm ediate . 3 4  This area w ill be discussed 

later.

2.3 Early Proposals for Cofactors o f Diamine Oxidase

The nature o f the prosthetic groups involved w ith  diam ine 

oxidase has proved illusive to researchers over the last 30 years 

and studies continues to th is day. Early studies3 5  showed tha t 

diam ine oxidase is in h ib ite d  by reagents capable o f form ing 

derivatives w ith  carbonyl groups. Yamada and Yasunobu8 showed 

complete in h ib itio n  o f DAO by hydroxylam ine and semicarbazide. 

This suggests tha t the active site contains some sort o f carbonyl 

group. It was suggested by Mann28 that this carbonyl group forms a
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complex w ith  copper and th is complex makes up the prosthetic 

group o f the DAO enzyme.

Previous evidence had suggested that both anim al diamine 

oxidase3 6  and pea seedling diam ine oxidase3 7  contain pyridoxal 

phosphate. However, since hydrogen peroxide is a by-product o f the 

DAO catalysed reactions, it  was thought tha t the enzymes were 

flavoproteins. Studies by Kapeller-Alder3 8  and Goryachenkova3 9  

concluded tha t flav in  adenine dinucleotide (FAD) was part o f the 

prosthetic group o f both anim al and p lan t diam ine oxidases. 

However, Mann2 8  had concluded that the absorption spectrum o f 

h igh ly p u rified  pea seedling DAO was not typ ica l o f an enzyme 

containing pyridoxal phosphate or FAD.

In 1984 two independent groups reported that bovine plasma 

amine oxidase contained pyrro loqu ino line  quinone (PQQ) as the 

cofactor. 9 *4 0

2.4 The History o f Pyrroloquinoline Quinone (POO)

I t  was not u n til 1964 th a t substantial evidence fo r the 

involvement o f PQQ, (11) became available. During work on bacterial 

glucose dehydrogenase by Hauge,41 a cofactor possessing d ifferent 

characteristics from  w ell established cofactors was observed. 

Spectral studies by Hauge indicated that a naphthoquinone was 

present in  the structure o f the unknown cofactor.

Electron spin resonance (ESR) techniques used by Duine and 

co-workers indicated the presence o f an organic free radical which 

had properties sim ilar to those o f an o-quinone. Examination o f the 

fine structure o f the ESR spectrum revealed the presence o f two 

n itrogens. Suitable  q u a n titie s  were then  iso la te d  from  

m ethylotrophic bacteria fo r structure elucidation by Duine and co­
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w orkers . 4 3  C onfirm ation tha t the cofactor was indeed PQQ, was 

provided by X-ray characterisation o f an acetone adduct o f the 

cofactor.44

C0 2H

h o 2c HN—^

h o 2c  n

o

( 11)

2.5 Pyrroloquinoline Quinone as a Cofactor for Copper 

Amine Oxidases

Indications that PQQ, exists in  a covalently bound form  in  

amine oxidases resulted from  w ork carried out on m ethylam ine 

dehydrogenase . 4 5  The remarkable s im ila rity  between this enzyme 

and copper-containing amine oxidases led to the suggestion that 

PQQ, may be a cofactor fo r this class o f enzymes.

The two independent reports mentioned previously were by 

Lobenstein et a/ . 9 and by Ameyama et al.40 The la tte r group found 

spectral sim ilarities between PQQ, and chromaphores isolated from  

bovine plasma amine oxidase. Lobenstein et al.9 overcame problems 

o f detaching the covalent cofactor from  the pro te in  by treating 

bovine serum amine oxidase w ith dinitrophenylhydrazine (DNPH) to 

give a stable adduct. This adduct was stable enough to survive 

enzyme proteolysis, and comparisons showed tha t the isolated 

product was identical to the hydrazone prepared from  authentic
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PQQ, and DNPH. The derivatised product was shown to be 

homogenous by HPLC and it  was found to have an iden tica l 

retention tim e and absorption spectrum to that o f the model PQQ- 

DNPH product. This evidence in  fact showed pyridoxal phosphate 

was not the cofactor as the absorption spectrum o f this adduct was 

quite d iffe ren t to that obtained by incubating pyridoxal phosphate 

w ith  DNPH. Proton NMR studies on the derivatised product gave the 

structure as the monohydrazone (12) formed at the C-5 o f PQQ.46

p o 2H

HN

h o 2c

NH

(12)

A fluorescing product was form ed by degradation o f the 

isolated product (12) in  alkaline solution .9 This fluorescing product 

had identical chromatographic properties to those o f the compound 

obtained d ire c tly  from  PQQ. Subsequent app lica tions o f the 

“hydrazine method” suggest that PQQ is the second cofactor fo r a 

number o f d ifferent amine oxidases.

The nature o f the cofactor fo r pig kidney diamine oxidase was 

studied by Duine and co-workers . 4 7  They form ed a hydrazone 

derivative w ith  DNPH which after proteolytic degradation produced
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a com pound possessing the same chrom atograph ic and 

spectroscopic properties as authentic derivatised PQQ. This 

approach has been used by Duine and co-workers to demonstrate 

that many mammalian oxidases contain PQQ, but has not been used 

fo r pea seedling diamine oxidase.

Glatz et a/ . 4 8  have however shown that pea seedling diamine 

oxidase has the a b ility  to form  derivatives w ith  a num ber o f 

reagents known to interact w ith  PQQ. The fluorescence spectrum o f 

p u rified  DAO showed emissions consistent w ith  tha t o f a PQQ- 

containing enzyme. A dd ition  o f dim ethoxyaniline to the enzyme 

showed the existence o f a o-quinone by the characteristic 

absorbance (>500 nm), which is consistent w ith  an o-quinone whose 

carbonyl groups are located on an aromatic ring .49

2.6 Using Oxygen to Improve the “Hydrazine Method”

Although the “hydrazine method” had proved useful, there 

were concerns over the extremely low yields o f the isolated adduct. 

In itia l studies9 gave yields as low as 6 % o f the DNPH derivative and 

it  was suggested tha t the hydrazone was the result o f a reaction 

between DNPH and a PQQ im purity.

Reinvestigation by Duine and co-workers4 6  found that the 

desired hydrazone was a m inor product in  the reaction between 

DNPH and the enzyme. The major product was a coloured compound 

possessing com pletely d iffe re n t properties from  th a t o f the 

hydrazone (12). In itia lly  this compound was not identified, bu t it  

was discovered that, by carrying out the derivatisation under an 

oxygen atmosphere, the desired hydrazone was obtained at a yield 

10 times that o f norm al conditions. A fter studying conditions fo r 

hydrazone form ation, i t  was realised that treatm ent o f the enzyme
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w ith DNPH in itia lly  resulted in  almost complete form ation o f the azo 

compound (13) and not hydrazone (12) (Scheme 2.1).

NH

( 11)

h o 2c  h n

h o 2c OH

NH

Scheme 2.1

However, this azo compound (13) can be converted in to  the 

desired hydrazone (12) at high concentrations o f oxygen (Scheme 

2.1) . 5 0  Thus, by carrying out the in itia l derivatisation in  an oxygen 

atmosphere the overall method can be s ign ifican tly  im proved. 

Indeed, this improved method has been used to provide evidence o f 

covalently bound PQQ,in a wide range o f enzymes.51’52
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2.7 Alternative Methods for Detecting Enzyme Bound POO

A number o f other approaches have been employed to detect 

PQQ, in  copper amine oxidases. Dooley and co-workers53 carried out 

the f irs t de ta iled  s tru c tu ra l characterisation fo r hydrazone 

derivatives o f mammalian amine oxidases. Using resonance Raman 

spectroscopy techniques, com parisons were made between 

derivatives prepared d ire c tly  from  e ither PQQ, o r pyridoxa l 

phosphate and those obtained from  bovine and porcine plasma 

amine oxidases. The observed frequencies and relative intensities 

fo r these derivatives were in  close agreement to those o f the PQQ. 

derivatives. These studies provided more evidence tha t PQQ or a 

derivative thereof is a cofactor fo r the amine oxidases, and that 

pyridoxal phosphate is not a cofactor.

Resonance Raman spectroscopy has been used by other 

groups fo r structure elucidation o f cofactors . 5 4 ’ 55  However, these 

studies have been questioned because the absorption spectra 

obtained may have been due to the azo compound (see 2 .6 ) and not 

the desired hydrazone.

Labelling studies examining the active site cofactor fo r bovine 

plasma am ine oxidase were carried  ou t by H artm ann and 

Klinm an .5 6  The enzyme was incubated w ith  a high concentration o f 

14c-labelled amine substrate followed by reduction o f the Schiff 

base interm ediate w ith  [3 H ]-labelled sodium cyanoborohydride. 

This resulted in  sto ichiom etric incorpora tion  o f 1 4c-lab e lled  

substrate in to  the enzyme, b u t no incorpora tion  o f 3h. It was 

thought that these observations were consistent w ith  the presence 

o f PQQ. A fter reduction the substrate-cofactor complex would be 

labelled w ith  tritium . However, the PQQ adduct possesses an acidic
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proton at the C-5 position a to the C-4 carbonyl, and enolisation 

would lead to loss o f the 3h  label (Scheme 2.2).

HN

Enzyme + [ C]-Substrate

Reduction w ith  

[3H]-NaCNBH3

HN HN

H0 2C OH

H2C

Scheme 2.2

Due to the apparent widespread occurrence o f PQQ, in  enzymes 

there was a need fo r a new, fast analytical method fo r detection and 

quantitative analysis o f PQQ, in  biological samples. A system was 

developed by C itro et al.57 where antibodies could react w ith  both 

free and prote in  bound PQQ, to produce a specific antibody which 

allowed detection o f PQQ,in len til amine oxidases.

D irect methods fo r detection o f PQQ, using carbonyl reagents 

were both insensitive and inaccurate according to Gallop and co­

workers . 5 8  They developed a h igh ly sensitive colourim etric assay
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fo r detecting PQQ, in  cell extracts. I f  PQQ, is present in  greater than 

nanomolar quantities a significant background formazan colour is 

detected. This is due to reduction  o f PQQ, by glycine to its 

hydroquinone and then reoxidation by n itroblue tetrazolium  (NBT) 

which regenerates PQQ, and formazan.

However, th is method has been critic ised 5 9  because o f the 

re a c tiv ity  o f PQQ, w ith  ce rta in  am ino acids lead ing to  

decarboxylation o f the amino acid and form ation o f unreactive 

oxazole condensation products. Therefore, i t  is questionable 

whether the assay is quantitative fo r quinoproteins which require 

proteolysis to detach the cofactor.

2.8 N a tu ra lly  O ccurring Forms o f POO

A ll mammalian quinoproteins so fa r investigated have been 

shown to contain PQQ, in  a covalently bound form . The cofactor is 

believed to be anchored to the protein by an amide or ester bond 

via a carboxylic acid grouping.

Spectroscopic studies o f PQQ, in  aqueous solution have shown 

the presence o f two interconverting species. Under these conditions, 

an e q u ilib riu m  state is believed to exist between PQQ, and its 

hydrated form  (14), caused by the high reactiv ity  o f the C-5 

carbonyl group towards nucleophiles.

HN

(14)
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Two natura lly occurring forms o f PQQ, have been discovered 

so far, the hydroquinone form  PQQ(2H) (15) and a radical form  

PQQH- (16). It is un like ly  tha t these form s w ill be present at 

physiological pH since reoxidation o f these compounds can occur in  

aerobic conditions at pH >4 . 6 0  However, they are able to exist when 

bound to proteins because o f the increased stability associated w ith 

the prote in  environm ent and the shielding effect which prevents 

oxygen attack.

OH h o 2c oh

OH o-

(15) (16)

2.9 The Mechanisms Involved with POO

Early efforts to investigate the reaction mechanism in  a PQQ- 

co n ta in in g  enzyme have m a in ly  focused on m ethano l 

dehydrogenase. Covalent adducts have appeared consistently in  

studies o f the mechanism and several research groups have 

reported activation o f PQQjdependent enzymes by either ammonia 

or prim ary amines. 6 1 ’62  This led to a proposed interm ediate (17) 

being involved in  the mechanism, formed via the interaction o f an 

amine w ith PQQ. 63
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NHR

(17)

A reaction mechanism was suggested by Forrest et al.63 in  

which attack o f the amine interm ediate (17) by an alcohol would 

lead to production o f a carbinolam ine derivative (Scheme 2.3). 

Subsequent oxidation o f th is derivative produces the desired 

aldehyde, as well as an am inoquinol containing nitrogen at the C-4 

position, as the reduced form  o f the cofactor.

NHR

NHR

Scheme2.3 OH
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The above reaction scheme has one m ajor drawback in  that 

the reactive intermediate is formed via nucleophilic attack at the C- 

4 carbonyl. Existing studies6 4  have shown that the C-5 carbonyl has 

a higher reactivity towards nucleophilic attack compared to the C-4 

carbonyl. Taking this in to  consideration, an alternative mechanism 

can be w ritte n  where in itia l form ation o f a hemiacetal at C-5, 

followed by substrate oxidation, leaves PQQ, in  a reduced quinol 

form  (Scheme 2.4).

OH
HO OH

Scheme 2.4

An analogous mechanism has been proposed fo r amine 

oxidation which supports the observation that the quinol form  o f 

PQQ,is the major product o f the enzymatic reaction (Scheme 2.5).
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HO NH

Hydrolysis

NHOH

OH

Scheme 2.5

These sim ilar mechanisms were thought to be an adequate 

representation fo r the role o f PQQ in  both classes o f enzyme. 

However, there is a fundam ental difference between amines and 

alcohols. Amines are able to  generate stable S ch iff base 

intermediates w ith  PQQ. Bruice and co-workers65 proposed a m inor 

pathway fo r PQQ-catalysed amine oxidation (Scheme 2.6) w ith  this 

fact in  m ind. Studies o f the nitrogen transfer from  substrate to 

cofactor during  the cofactor reduction w ould be required to 

establish which o f the two mechanisms occurs w ith  amine oxidases.
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OH
HO NH N+H

/  \

OH

Scheme 2.6

It has been reported by Taylor et al.66 that under anaerobic 

conditions, amine oxidations using porcine plasma amine oxidase 

produce a burst o f ammonia. This result appeared to rule out the 

latter suggestion o f an aminotransferase mechanism (Scheme 2.6), 

since there is no ammonia produced from  this pathway. However, 

later studies on the comparison between native enzyme and 

in h ib ite d  enzyme during  the ox ida tion  process showed no 

significant difference in  ammonia release. 6 7  This suggests that it  is 

non-specifically bound ammonia that is being released during the 

enzymic process.

Ruis et al.6S used a quench technique and a sensitive assay fo r 

ammonia detection to show clearly that ammonia release, during 

the enzymic oxidation o f benzylamine, correlated w ith  the enzymic 

re-oxidation and not benzaldehyde form ation. From these results it  

is deemed tha t the aminotransferase mechanism (Scheme 2.6)
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provides a more legitim ate description o f how PQQ, is involved in  

the oxidation o f amines by enzymes.

2.10 A Further Insight into the Chemistry o f PQQ

The mechanisms described so far, fo r the in teraction  o f 

amines w ith  PQQ, appear to be o f a sim ilar nature to that o f known 

interactions o f amines w ith  pyridoxal phosphate. In both cases the 

Schiff base is formed and the proton is then removed from  C -l by a 

base catalysed reaction. A possible d iffe rence in  the two 

mechanisms may be in  the fate o f the a-hydrogen during substrate 

oxidation (Scheme 2.7).

PYRIDOXAL PHOSPHATE: 

HQ C H3 ,c h 3
1,3-@ shift

H
c = n

OH

Scheme 2.7
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The pyridoxal phosphate-substrate complex undergoes a 1,3- 

p ro to trop ic  sh ift whereas the a -d icarbonyl s tructure  o f PQ& 

promotes proton transfer to the oxygen o f the C-4 carbonyl.

Further experiments carried out to investigate this concept 

focused on bovine plasma amine oxidase. Lovenberg and Beaven6 9  

noted that enzymic oxidation o f phenylethylam ines by plasma 

amine oxidases gave rise to a product which had undergone 13- 

hydrogen exchange (Scheme 2.8). It was found that this exchange 

was kinetically rapid compared to the rate o f the cofactor reduction. 

Further k ine tic  studies showed tha t the transfer o f reducing 

equivalents from  substrate to cofactor requires to be reversible 

and, that a subsequent step to cofactor reduction is pa rtia lly  rate 

lim iting . As a consequence o f the kinetic inequality, i t  was proposed 

that the bovine plasma amine oxidase functioned via a two base 

mechanism.

T +i
f y c{»
\ = /  c h 2n h 2

■ J  ►
\ = /  c = o

O2 H2O2
/

H

Scheme 2.8 + n h 3

Subsequent studies on pH dependency o f bovine plasma 

amine oxidase led to the observation tha t identica l pKa values 

existed fo r both the exchange process and the substrate oxidation 

process. 7 0  This result implies strongly tha t an identical residue was 

involved in  both steps. Strong support fo r this theory was recently 

provided by a series o f stereochemical probes in to  the reaction .71 I f  

the two base theory is to be discounted then another explanation 

fo r the kinetic inequality must be found.
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Current theories have returned to a 1 ,3 -p ro to trop ic  sh ift 

sim ilar to tha t observed w ith  pyridoxal phosphate. This proposal 

has been incorporated in to  a mechanism in  which a Schiff base 

complex is form ed between the substrate and PQQ, (Scheme 2.9); 

followed by oxidation o f the substrate via a proton abstraction 

mechanism; and transfer o f both hydrogen and nitrogen from  C -l o f 

the substrate to cofactor in  the reductive ha lf reaction.

c o o h

HOOC HN HOOC HN

HOOC HOOC

BiH

HOOC HNHOOC HN

HOOCHOOC

JC=C
OA

COOH

COOHCOOH

h 2o  Er-1'

▼
ErJ>

Scheme 2.9
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Scheme 2.9 shows the proposed mechanism fo r bovine plasma 

amine oxidase, in  which a single active site residue, EB1 catalyses 

both substrate oxidation and exchange. Eo-S1 is the Schiff base 

complex between the amine substrate and C-5 o f the cofactor; Eo-I 

is the transien tly  form ed carbanionic interm ediate; Er.P is the 

product Schiff base, involving 1,3-prototropic sh ift from  substrate 

to cofactor; E r.I' is the enamine formed in  the course o f hydrogen 

exchange from  the p-carbon. 70

Although this mechanism seemed best equipped to explain 

reported observations, certain aspects o f it  had to be justified . 

Namely, the postulated mechanism seems at firs t to contradict the 

results o f Hartmann and Klinm ann5 6  (Section 2.7), who noted the 

loss o f a tritiu m  label from  C-5 through a proposed enolisation 

process. It has been suggested that enolisation is a slow process 

w ith in  the product-im ine complex and only occurs after hydrolysis 

o f this interm ediate (Scheme 2.10). This is in  agreement w ith  the 

proposed mechanism.

+ NH

Enolisation

OH
Scheme 2.10

n h 2
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Another feature o f the mechanism which had to be confirmed 

was the protonation at the C-5 position. This process appears to be 

unfavourable, preventing the form ation  o f the stable aromatic 

product (18) that would be formed from  the reaction o f the amine 

substrate and PQQ. However, the form ation o f this product m ight be 

expected to reduce significantly the rate o f hydrolysis, contrary to 

the observed kinetics which show that the rate o f hydrolysis is fast 

relative to other steps.

c o o h

HOOC HN

HOOC OH

(18)

2.11 A rgum ents A ga ins t POO as a C o facto r fo r  Am ine 

Oxidases

Although there is much evidence in  support o f PQQ, as the 

organic cofactor in  enzymes, there was a concern about the lack o f 

d irect evidence fo r the presence o f PQQ, at the active site o f a 

mammalian protein. An active site cofactor-containing peptide has 

been isolated from  pig kidney diam ine oxidase , 4 6  however the 

extremely poor yie ld obtained (0 .1 %) lim ited the characterisation to 

amino acid sequencing.
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These results have subsequently been questioned and recent 

work by Hoi and co-workers has cast doubt over the nature o f a 

num ber o f cofactors previously reported to be PQQ,.7 2  X-Ray 

d iffraction  studies on methylene dehydrogenase from  Thiobacillus 

versutus have produced d iffrac tion  patterns which indicate the 

presence o f an active site dicarbonyl which lacks the pyrid ine ring 

found in  PQQ. This contradicts the earlier work o f Duine and co­

workers on methylamine dehydrogenase. 50

In 1991 Ito  e ta l. reported the crystal structure o f galactose 

oxidase, previously claimed to contain PQQ. 73 They observed a 

crystal structure  w hich showed a ll e lectron density could be 

accounted fo r by the known prim ary structure o f the prote in and 

solvent ions in  solution. There was no density observed which 

corresponded to PQQ.

In 1990 Janes eta l.74 obtained direct evidence supporting the 

argument that PQQ was not the cofactor in  mammalian protein. 

They isolated an active site cofactor-containing protein from  bovine 

serum amine oxidase (BSAO). W ith a high yie ld (40%) and relatively 

small size o f protein, a complete structura l analysis was achieved. 

The result o f th is analysis led to the suggestion tha t the organic 

cofactor fo r BSAO was topaquinone (TOPA) (19), and not PQQ.

h 2n — c — COOH

c h 2

o h

(19)
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The cofactor-containing peptide was derivatised, as before, 

w ith phenylhydrazine to yield the stabilised phenylhydrazone. M ild 

enzymic proteolysis o f the derivatised BSAO and pu rifica tion  by 

HPLC produced the desired peptide in  40% yield. The sequence o f 

the purified peptide was shown to be;

-Leu-Asn-X-Asp-Tyr- 

Since only one amino acid was detected at each round o f peptide 

sequencing, it  was concluded that the cofactor had a single, stable 

poin t o f attachment to the protein. The sequence was verified  in  

subsequent peptide preparations and fo r a ll the spectroscopic 

characterisations. The spectroscopic techniques used included (a) 

mass spectrom etry; (b) UV/Vis spectroscopy; and (c) lH  NMR 

spectroscopy.

(a) Peptide characterisation bv mass spectrometry (MS)

Studies using liqu id  secondary ion mass spectrometry (LSIMS) 

gave a molecular ion (MH+) o f m /z  807.5 fo r the phenylhydrazone 

pentapeptide isolated from  BSAO. I f  the cofactor was in itia lly  

derivatised w ith  [l-15N ]-phenylhydrazine, then a molecular ion o f 

m /z  808.5 was obta ined. This re su lt ind icates th a t the 

phenylhydrazone m oiety is preserved in  the isolated peptide. 

Derivatisation o f the carboxylic acid groups w ith  acidic hexanol 

produced a new MH+ at m /z  975.5. Since derivatisation o f each acid 

group should give rise to an increase o f 84.1 daltons, the observed 

difference o f 168.2 daltons corresponds exactly to the form ation o f 

two ester linkages. Therefore, i t  would appear that two carboxylic 

acid groups are present in  the isolated peptide. As both o f these 

groups are present in  the pentapeptide backbone (at Asp and at the 

carboxyl term inus) i t  would appear tha t no more free carboxyl
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groups are present in  the cofactor. Although one o f the carboxylic 

acid groups could conceivably be involved in  an amide linkage w ith 

the peptide itself, the absence o f the remaining two groups would 

seem to rule out the presence o f PQQas the cofactor in  this enzyme.

Subsequent studies on the dihexyl derivative o f the penta- 

peptide led to an accurate mass measurement o f m /z  974.5123, 

which on subtraction o f the two hexyl derivatives, le ft a mass o f 

806.3245 fo r the peptide. Further subtraction o f the accurate 

masses fo r the known amino acid components o f the peptide gave a 

value o f 283.0967 fo r X. This is not consistent w ith  a PQQ, type 

structure.

Computer perm utations o f the elemental composition gave 

five em pirical form ulae fo r X which were w ith in  ±5 ppm o f this 

value. However, only one value, C1 5 H 1 3 N3 O3 , was compatible w ith 

both the UV/Vis absorbance properties o f the active site cofactor 

and the presence o f a phenylhydrazone in  X. Two possible 

structures (2 0 ) and (2 1 ) are compatible w ith  this em pirical formula.

- h n — c — c —
- h n — c — c —

c h 2
I
o

c h 2

N«a /*N H

o

(20 ) ( 21 )
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High energy co llis ion  induced d issociation (CID) mass 

spectroscopy was used to examine the derivatised pentapeptide in  

an attem pt to distinguish between the two structures above. The 

results obtained from  the spectra allowed a tentative assignment o f 

the active site cofactor in  BSAO to be TOPA (19).

(b) Peptide characterisation by UV/Vis spectroscopy

Janes et al. observed ^ m a x  at 448 nm fo r the 

phenylhydrazone-derivatised bovine serum amine oxidase, which 

was consistent w ith  previous w ork .7 4  This value correlates w ith  the 

expected value fo r the phenylhydrazone derivative o f PQQ, and has 

been cited in  the past as evidence fo r the presence o f PQQ. However, 

Janes et al. have shown that there is a sh ift o f ca. 14 nm to 434 nm 

fo r the Xmax o f the isolated peptide derivative. This new value 

correlated w ith  the observed ^m ax fo r the phenylhydrazone 

derivative o f topaquinone. It was suggested that the effect o f the 

protein side chain is to sh ift the value o f Xmax to an absorbance 

which, by coincidence, corresponds to that obtained fo r PQQ.

(c) Peptide characterisation by NMR spectroscopy

As fin a l confirm ation  o f the structure o f the active site 

cofactor, proton NMR studies o f the pentapeptide were undertaken. 

In itia lly  in  D2 O, the spectrum produced was consistent w ith  a 

pentapeptide backbone and tyrosine side chain. In addition to these 

were three fu rthe r resonances at 8  6.9, 7.2 and 7.5, which had an 

in tegration ra tio  o f 1:1:4.5 respectively. The equivalent protons 

were in itia lly  believed to be due to the phenylhydrazone ring and 

the rem aining two protons were associated w ith  the cofactor.
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However, decoupling experiments using a nitrophenylhydrazone 

derivative showed that the signal at 5 7.2 could be attributed to the 

phenylhydrazone ring . Thus only one p ro ton  resonance was 

observed fo r the cofactor when the sample was run  in  D2 O. This is 

not surprising since the C-5 proton o f TOPA lies between an enol 

and a ketone, w hich in  the presence o f D2 O w ould undergo 

tautomerism  to form  a deuteriated cofactor w ith  a single proton 

resonance (Scheme 2.11).

ODOH

Scheme 2.11

Confirm ation was given by running the pentapeptide sample 

in  H2 O, providing a spectrum which produced an unambiguous 

characterisation o f the cofactor structure. These findings have far 

reaching consequences in  relation to other enzymes considering it  is 

like ly  that a ll copper amine oxidases have a common cofactor. I f  

TOPA is in  fact the common cofactor, how was its structure confused 

w ith  that o f PQQ?

To prove the presence o f PQQ, as the cofactor evidence had 

relied on the isolation o f phenylhydrazone derivatives obtained 

from  the studied enzyme which coeluted on HPLC w ith  authentic 

samples o f PQQ, phenylhydrazones. Janes et al. suggested that a 

derivative o f TOPA phenylhydrazone, form ed from  BSAO during 

proteolysis, may coelute w ith  the phenylhydrazone o f PQQ. 75 This 

may occur because topaquinones undergo a rap id intram olecular
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cyclisation giving rise to products (22) and (23) which closely 

resemble two o f the rings o f the PQQ,structure (Scheme 2.12).

COOH COOHH2N —CH— COOH  I
c h 2

NHNH(1) Cyclisation HO.

(2) Oxidation

OHOH

(23)( 2 2 )(19)

Scheme 2.12

These compounds closely resemble the structure o f PQQ, but it  

would be un like ly  that the ir phenylhydrazone derivatives would 

coelute w ith  PQQ derivatives. However, these compounds are highly 

reactive and are expected to form  Michael adducts w ith  a range o f 

nucleophilic compounds. Since proteolysis o f oxidatively damaged 

proteins results in  form ation o f high concentrations o f glutamate 

(24), it  may be possible that after such a process sufficient amounts 

o f glutamate would be present to form  a Michael adduct w ith  

compound (23). Also, the fact that there are two nucleophilic sites 

in  glutamate may promote the form ation o f a stable six membered 

ring  v ia  a second M ichael add ition . This com pound, a fte r 

subsequent elim ination o f H2 O and oxidation produces a compound 

which would be anticipated to possess matching properties to that 

o f PQQ(Scheme 2.13).
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COOH

NHHO,

H 02C
N — NH— OA

(24) (23)

COOH

NHHO.
COOH

N— NH— <D
HOOC

COOH

HOOC
OH NH

HOOC

(1) E lim ination o f H20
(2) Oxidation

COOH

HOOC
NH

HOOC N— NH— O

(25)
Scheme2.13
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Janes et al.75 suggested that proteolysis o f phenylhydrazone 

derivatives o f copper amine oxidases would result in  the form ation 

o f compound (25). This would have sim ilar retention times on HPLC 

to PQQ, phenylhydrazone derivatives, and provides an explanation 

for the confusion which has surrounded the nature o f the organic 

cofactor fo r copper amine oxidases for many years.

In subsequent studies Janes e ta / . 75  investigated the iden tity  

o f the active site cofactor in  porcine plasma, porcine kidney and pea 

seedling amine oxidases. Using resonance Raman spectroscopy on 

radiolabelled p -n itrophenylhydrazone derivatives o f a ll three 

enzymes, the intensity o f the signals and the relative peak position 

o f the isolated peptides were superimposable on those o f a model 

derivatised topaquinone.

On the basis o f these findings and the earlier results regarding 

BSAO, 7 4  Janes concluded tha t topaquinone is like ly  to be the 

carbonyl-containing cofactor in  a ll copper amine oxidases.

2.12 C urren t U nderstanding o f the Nature o f the C ofactor

The work by Janes et a l74> 75 has significantly shifted the bias 

towards TOPA as the cofactor in  copper amine oxidases. However, 

some doubts s till exist over the presence o f this compound at the 

active site.

F irstly, TOPA is neurotoxic7 6  and since this tox ic ity  has been 

traced to the redox properties o f the compound, i t  would seem 

unusual that the same properties would enable i t  to perform  as an 

active site cofactor.

Secondly, how could TOPA arise in  the enzyme? It could 

conceivably be incorporated via the oxidation o f an active site 

tyrosine, or since DOPA is a natura lly occurring amino acid, via
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direct incorporation in to  the growing chain. I f  tyrosine oxidation is 

the mechanism fo r TOPA form ation, is it  perform ed by a second 

enzyme or a lternative ly, do the active site m etal atoms in  the 

copper containing amine oxidases play a catalytic role in  the event?

In lig h t o f the evidence discussed, it  would appear that some 

questions rem ain unanswered in  re la tion  to the nature o f the 

cofactor. Further purification and crystallisation o f these enzymes is 

required and X-ray studies need to be carried out on the purified  

enzymes. U ntil this is done confirm ation o f the iden tity  o f the active 

site cofactor cannot take place.

2.13 Interaction o f the Prosthetic Groups in Diamine 

Oxidase

Although the structure o f the active site cofactor fo r diamine 

oxidase has not been confirm ed, i t  appears to contain a redox 

cofactor. The invo lvem ent o f copper in  amine oxidases was 

discussed earlier. In  1991 new evidence77 suggested the function o f 

copper in  these enzymes was to catalyse a two electron oxidation o f 

substrates by molecular oxygen. However, it  is un like ly that a single 

copper centre, only capable o f undergoing a one electron change 

(Cun/Cui), can catalyse a two electron transfer from  a substrate to 

02.
Also in  1991 evidence was presented fo r the appearance o f a 

Cu(I)-semiquinone from  the substrate reduction o f amine oxidases 

under anaerobic conditions . 3 4  This Cu(I)-semiquinone was proposed 

as the catalytic interm ediate which reacts d irectly  w ith  the 0 2  and 

is capable o f undergoing a two electron oxidation.

EPR spectra l changes accom panying the a d d itio n  o f 

appropriate amines to several amine oxidases, including pea and pig
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diamine oxidases, were observed and shown to be sim ilar. Since the 

EPR spectrum is independent o f the enzyme and substrate used, the 

radical must be associated w ith  a moiety that is conserved among 

the amine oxidases examined. A ddition o f cyanide to the reduced 

form  o f the enzyme produced a significant enhancement o f this 

signal. This observation is in  accordance w ith  the presence o f the 

proposed intermediate since cyanide would have a stabilising effect 

on the Cu(I)-semiquinone through its interaction w ith  Cu(I). These 

results have led to the development o f a p lausib le reaction 

mechanism which presents well-precedented roles fo r both copper 

and the quinone (Scheme 2.14).

RCHO

,Q re d

"Cu (II)Cu (II)

2  H

Cu (I)Cu (II)- O

Scheme 2.14

In Scheme 2.14 the species in  the brackets is a hypothetical 

interm ediate, shown to emphasise the possib ility o f a sequential 

one electron step in  the reduction o f 0 2 . Qox is the oxidised quinone; 

Q,is the semiquinone; Qred is the two electron reduced quinone.
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The Cu(I)-semiquinone state o f amine oxidase has not been 

detected before because this state is apparently in  equilibrium  w ith 

the Cu(II)-reduced quinone. Internal electron transfer from  copper 

to semiquinone is favoured by low tem peratures, and since 

previous work used low temperature EPR spectroscopy to study the 

copper centre, the semiquinone was missed. Further study is 

needed to gain an insight in to  whether the quinone is actually 

bonded to the copper or whether the substrates in teract at the 

metal centre.

2.14 Assay Systems Used in the Determination o f Diamine 

Oxidase Activity

D uring the oxidative deam ination o f diam ines to th e ir 

corresponding aminoaldehydes, the rate o f conversion provides a 

direct measure o f the activ ity  o f the enzyme. This technique was 

developed over a number o f years, and a variety o f assay systems 

have been used fo r this purpose . 7 8 -8 1  The uptake o f oxygen during 

the enzymic reaction was the centre o f early studies, and systems 

were developed to determ ine diam ine oxidase a c tiv ity  by the 

manometric measurement o f the oxygen uptake . 82

Several o ther methods were developed w hich re lied  on 

trapping the organic product from  the enzymic reaction. Using the 

production o f ( 1 -pyrro line) (26) from  the oxidative deamination o f 

putrescine (3) (Scheme 2.15), Holmstedt and Tham 83  determ ined 

the a c tiv ity  o f the DAO enzyme. The a d d itio n  o f o- 

aminobenzaldehyde (27) to the enzymic m ixture, giving a yellow 

compound, allows the rate o f fo rm ation  o f 1 -pyrro lin e  to  be 

measured spectrophotomerically (Scheme 2.15).
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DAO
CHO

(3)

OHC

(27)(26)

X 430 nm
OH

Scheme 2.15

Holmstedt et al. 8 4  subsequently calibrated th is assay using 

known quantities o f Y-aminobutanal, in  the more stable acetal form. 

This procedure allowed the activ ity measurements to be calculated 

in units o f micromoles per mg o f enzyme per hour. This allowed 

comparisons to be made between this method and those dependent 

on oxygen uptake.

A later, more rapid and sensitive colourim etric method fo r the 

assay o f DAO was described by Naik et al.S5 This procedure 

involved the reaction o f 1 -pyrroline (26) w ith  n inhydrin  reagent, in  

acidic medium, to form  a coloured complex w ith  Xmax o f 510 nm. 

Pec and Pavlikova8 6  augmented th is w ork using cadaverine
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(producing 1-piperideine) to calculate DAO activity. However, there 

is a drawback to these procedures in  that substrates are lim ited  to 

putrescine and cadaverine in  order to get the required products o f

1 -pyrroline and 1 -piperideine.

Frydman et al.17 developed an assay system fo r determ ining 

the rates o f oxidation o f N-alkylputrescines by DAO. This method 

involved trapping the oxidation products (i.e. the aminoaldehydes) 

w ith  3-m ethyl-2-benzothiazolinone (MBTH) (28) to  y ie ld  a bis­

hy drazone cation having a Xmax at 660 nm (Scheme 2.16).

2 x N — NH2 RHN CHO

(28)

Oxidation

NHR

N =  N — C = N  —

Scheme 2.16

Procedures have been developed fo r the measurement o f 

hydrogen peroxide, a common product which is formed during a ll 

DAO reactions. A peroxide coupling reaction was developed by
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Booth and Saunders87  in  which hydrogen peroxide, in  the presence 

o f peroxidase, rapidly oxidises guaiacol leading to the production o f 

a b row n/red  solid from  which 2 ,2 '-d ih yd roxy-3 ,3 f-d im ethoxy- 

biphenyl (29) can be isolated.

MeO OH OH OMe

(29)

S m ith 8 8  used th is reaction to determ ine the a c tiv ity  o f 

diamine oxidases, developing a colourimetric procedure utilising the 

peroxidase/guaiacol assay which had been adapted to determine 

the hydrogen peroxide formed in  the course o f amine oxidation. 

However, there are complications associated w ith  th is assay. The 

guaiacol oxidation products include certain quinones which are 

h ighly reactive . 87 These may combine w ith  other compounds in  the 

reaction m ixture changing the chromagen, enzyme or substrate and 

could seriously in h ib it the enzymic process. It is also known that 1- 

pyrro line , formed by incubation o f putrescine w ith  DAO, may be 

oxidised fu rth e r in  the presence o f peroxidase. Despite these 

potential complications the stoichiometry obtained w ith  the various 

substrates suggests tha t the method provides a reliable estimate o f 

DAO activity.

In 1985 Stoner8 9  reported an im proved spectrophotom etric 

assay fo r the measurement o f DAO activity. This procedure, again 

based on the amount o f hydrogen peroxide formed during diamine 

oxidation, involved a peroxidase-coupled assay. In the presence o f 

hydrogen peroxide, 3-m ethyl-2-benzothiazolinone hydrazone
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(MBTH) (30) reacts w ith  3-(dim ethylam ino)benzoic acid (DMAB) 

(31) producing a purp le  indam ine dye w ith  a characteristic 

absorbance maximum at 595 nm (Scheme 2.17). Stoner has shown 

that this assay is e ffic ient fo r the measurement o f diamine oxidase 

activ ity  w ith  histam ine as substrate. However i t  has since been 

shown to be effective in  activity determ inations using a wide range 

o f substrates.90̂ 91 The kinetic studies discussed later in  this thesis 

were carried out using this assay system.

COOH

+

(30)

H 2 0 2  from  the 
DAO reaction

(31)

Peroxidase

t
\

N =  N
n +c h 3 \  /

c o 2h

N (CH3)2

^max 595 nm

Scheme 2.17

2.15 Substrate Specificity and the Active Site

In order to gain inform ation on the active site o f both pea 

seedling and pig kidney diamine oxidase, it  is necessary to examine 

the substrate specificity o f these enzymes. A lthough both enzymes 

have shown a broad substrate tolerance during studies by various
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groups, it  appears tha t there are some differences regarding the 

active site geometries o f the two enzymes.

Mann92 has shown that partia lly purified  preparations o f pea 

seedling diam ine oxidase catalyse the oxidation o f a wide range o f 

substrates including the amino acids lysine and orn ith ine. These 

observations were confirm ed by Werle et al.,93 by showing that 

these compounds among others were oxidised by h igh ly purified  

DAO. However, Costa et a l94 failed to observe the oxidation o f lysine 

by pig kidney diamine oxidase.

Frydman e ta l.17 studied the oxidation o f a range o f N- and C- 

alkylated putrescine derivatives by both p lant and animal diamine 

oxidases. These studies showed tha t N -ethyl-, N -propyl- and N- 

butylputrescine were a ll e ffic ien tly  oxidised by both p lan t and 

mammalian form s o f the enzyme, whereas N -m ethylputrescine 

surprisingly showed a very low rate o f oxidation in  both cases. The 

C-alkylputrescines were generally poorer substrates than the 

corresponding JV-alkyl-derivatives w ith  1,4-d im ethylputrescine 

fa iling to be oxidised by either enzyme. The specificity o f diamine 

oxidase towards 1 -propylputrescine was sign ificantly d iffe ren t fo r 

the two enzyme forms, w ith  the substrate being oxidised well by 

pea seedling d iam ine oxidase and poo rly  oxid ised by the 

mammalian form . This result, combined w ith  the fact th a t 1- 

m ethylputrescine and 2 -m ethylputrescine are oxidised at very 

d ifferent rates by p lant and mammalian DAO, appears to im ply that 

differences exist at the active sites o f these two enzyme forms.

M a c h o la n 9 5  used a series o f experim ents in vo lv in g  

hydroxydiam ines in  an a ttem pt to  h ig h lig h t the apparent 

differences in  the behaviour o f the two enzyme forms. He showed 

that the b inding affin ities fo r 3-hydroxypentane-1,5-diamine (32),

2-hydroxybutane- 1,4-diam ine (33) and 2-hydroxy pentane-1,5-
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diamine (34) were significantly d iffe ren t towards the two forms o f 

DAO. He also found that 3-hydroxypentane-1,5-diamine (32) binds 

w ith  the lowest a ffin ity  o f the three substrates to pea seedling DAO, 

but has the highest a ffin ity  o f the three w ith  pig kidney DAO. These 

results demonstrate that the active site o f the two forms may have 

structural differences.

OH OH

(32) (33)

h 2n

OH

(34)

The studies carried out by Frydman et al.17 have since been 

repeated by Robins and co-w orkers9 0  using the im proved 

spectrophotom etric assay o f Stoner. 8 9  Contrary to the findings o f 

Frydman, Robins and co-workers found tha t N -m ethylputrescine 

was a good substrate fo r both plant and animal DAO. In fact, the N- 

methylputrescine was oxidised significantly faster than the N-ethyl 

and N-propyl derivatives.

The work o f Robins and co-workers was extended to the area 

o f cadaverine derivatives .91 They showed that 2-methylcadaverine 

(35), 3-m ethylcadaverine (36), 3,3-dim ethylcadaverine (37), 3- 

h y d ro x y -3 -m e th y lc a d a v e rin e  (3 8 ) and  m e s o -2 ,4 -  

dimethylcadaverine (39) are a ll substrates o f pa rtia lly  purified  pea 

seedling DAO.
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c h 3

NH NH2

(36)(35)

.O H

H2N

(38)(37)

(39)

There appears to be a progressive decrease in  the rate o f 

oxidation as the size o f the substituents increases. It was found that

3-hydroxy-3-m ethylcadaverine (38) was a better substrate than 

3,3-dim ethylcadaverine (37). From th is resu lt i t  was fe lt tha t 

incorpora tion  o f a polar substituent in to  the backbone o f the 

substrate leads to a more efficient enzymic process.

It has also been shown by Equi et al.96 tha t a series o f a,co­

diamines w ith  chain lengths varying from  2  to 1 2  are oxidatively 

deaminated by pea seedling DAO. An association drawn between 

chain length and binding a ffin ity  suggested that the most e fficient 

binders possessed carbon chain lengths between 4 and 7, w ith  the 

best binders being the natura l substrates (putrescine C4  and 

cadaverine C5 ). The rate o f oxidation was also shown to be strongly 

dependent on chain length, w ith  the natural substrates being most 

efficiently oxidised.
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2.16 D iam ine Analogues C onta in ing Group V I Atom s

(0 , S, Se)

A range o f thiodiam ines and th e ir oxygen analogues have 

been shown by Cragg et al.97 to be oxidised by DAO. Pea seedling 

DAO was found to oxidise lanthionam ine (40), whereas pig kidney 

DAO oxidises homocystamine (41) and homolanthionamine (42).

Corda et a l98 examined a range o f seleno-analogues as 

substrates o f pig kidney DAO. They observed that selenocystamine 

(43) and selenolanthionamine (44) were e ffic ien tly oxidised by the 

enzym e. S e le n o -h o m o cys ta m in e  (4 5 ) and  se leno- 

homolanthionamine (46) were also shown to be substrates o f pig 

kidney DAO, although the ir rates o f oxidation were found to be 

significantly lower than that o f selenolanthionamine (44).

Monoamines such as benzylamine are also substrates o f DAO, 

although rates o f oxidation observed fo r these compounds are lower 

than fo r the corresponding diamines. It  is believed tha t the 

presence o f the second amine group is essential fo r e ffic ien t 

reaction. However, these results together w ith  the w ork discussed 

in 2.15 h ighlight the broad substrate tolerance o f DAO.

n h 2

X = S (42) 
X = Se (46)

X = S (40) 
X = Se (44)

h2n
n h 2

X = S (41) 
X = Se (45)

X = Se (43)
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2.17 Stereochem istry Involved in Reactions catalysed by 

DAO

It is not only im portant to understand the mechanism fo r the 

DAO catalysed reaction, bu t also the stereochemistry involved. The 

absolute stereochemistry o f the abstraction o f a hydrogen atom 

from  the p roch ira l methylene group has been determ ined by a 

variety o f methods. An im portant factor in  a ll these methods was 

the availab ility o f substrates which were labelled stereospecifically 

w ith  tr itiu m  or deuterium  at the methylene group and whose 

absolute stereochemistry had been determined by correlation w ith  

compounds o f known chira lity.

In  1974 Battersby et a l.12 synthesised (R )- and (S)- 

[methylene-^HiJbenzylamines (47) in  greater than 95% ee fo r both. 

These were used in  three experiments involving the incubation o f 

pea seedling DAO w ith  (a) 100% (7?Mmethylene-3Hi]benzylamine, 

(b) 100% ^-[m ethylene-^H ilbenzylam ine  and (c) a 50:50 m ixture 

o f the above isomers.

v

[J x / r ' nHj |

1

(47)

The product isolated from  experiment (a) showed complete 

retention o f the tr itiu m  label whereas in  experim ent (b) on ly a 

fraction  o f the o rig in a l tr itiu m  label remained. The resu lt o f 

experiment (c) was consistent w ith  the previous two experiments, 

w ith  approxim ately 50% o f the tritiu m  label s till retained. These
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results showed that pea seedling DAO abstracts the pro-S hydrogen 

from  the methylene group o f benzylamine. Since these studies were 

carried out many groups have set out to try  and understand the 

stereochemistry behind the DAO catalysed deamination reaction.

Using deuterium  NMR spectroscopy Richards and Spenser11 

carried out investigations o f the stereochemistry involved in  the 

deamination o f cadaverine by pig kidney DAO. They prepared (S)- 

[ 1 -2H l]cadaverine, (R )-[l-^U i] cadaverine and [ 1,1 -2H2 ]cadaverine 

in  high configurational purities. The products from  the enzyme 

catalysed oxidation o f these substrates were trapped w ith  o- 

am inobenzaldehyde and led to  the fo rm a tio n  o f 3 -(3 ?- 

am inopropyl)quinone (48) (Scheme 2.18). The products obtained 

from  using (R)-[ 1 -2 h i] cadaverine and [1,1-2H 2 ] cadaverine as 

substrates both showed two signals in  their deuterium  NMR spectra, 

whereas w ith  (^-[l-Z H lJcadave rine  as substrate on ly one signal 

was observed fo r the product. From these studies it  was clear that 

the pro-S  hydrogen from  C -l o f cadaverine was lost during the 

oxidative deamination w ith  DAO.
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Scheme 2.18

Battersby et a l. "  also studied the stereochemistry involved in  

the oxidative deamination o f cadaverine using pea seedling DAO. [1- 

3 H]-Labelled cadaverine was incubated w ith  pea seedling DAO, and 

the aminoaldehyde product was converted in to  the more stable 5- 

am inopentan-l-ol in  the presence o f an alcohol dehydrogenase. This
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am inoalcohol was also a substrate o f DAO and was fu rth e r 

deaminated and then reduced, leading to pentane-1 ,5-diol.

This resolved the problem  ariising w ith  the symmetry o f the 

substrate, which means e ither o f tthe two amino groups can be 

oxidised in itia lly  by the DAO enzyme. Since stereospecific loss o f the 

methylene hydrogen through two deaminations should lead to 

either complete loss or retention o f the tritiu m  label, depending on 

its stereochemistry, the results were easily interpreted. W ith the 

tritiu m  label occupying the S-poisition on C -l o f cadaverine, 

Battersby’s group observed only trace amounts o f tr itiu m  in  the 

fina l product. The com plem entary result was obtained w ith  the 

label occupying the R-position on C-2 o f cadaverine, w ith  complete 

retention o f the tritiu m  label in  the fin a l product. Again on the basis 

o f these results, Battersby and co-workers concluded that the pro-S 

hydrogen is indeed abstracted during the oxidation process.

Subsequent to these findings, it  has been shown that loss o f 

the pro-S hydrogen is associated w iith the DAO catalysed oxidation 

o f a wide range o f substrates, 1 3 -1 00  fo r example (S )-l-am ino [l-3H ]- 

heptane. 101 This stereochemical consistency w ith  such a wide range 

o f substrates has led to the assum ption tha t a ll DAO catalysed 

oxidations result in  the loss o f the pro-S hydrogen.

2.18 R eg iose lec tiv itv  and S te re o se le c tiv ity  In vo lve d  w ith  

the DAO-Catalvsed Reaction

Santaniello et al. studied the regioselectivity fo r the DAO- 

catalysed oxidation o f racemic 2 -m ethylputrescine using both pig 

kidney and pea seedling DAO. 14 As discussed earlier the oxidation 

product could be trapped w ith  o-aminoaldehyde and subsequent
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oxidation  w ould lead to fo rm ation  o f l ' -  o r 2 f-me th y  1-2,3- 

trimethylene-4(3F/)-quinazolone (49) or (50).

0 0

I I , ) — c h 3
^  ^ — 

N

(49)

c h 3
^  N

(50)

The lH  NMR spectrum o f the product from  the pig kidney 

DAO reaction showed two doublets at 5 1.24 and 1.46 o f the same 

intensity, whereas the product from  the pea seedling DAO reaction 

gave one doublet at 8  1.24. On the basis o f th is observation, 

Santaniello and co-workers concluded tha t pea seedling DAO 

catalyses the oxidation o f 2 -m ethylputrescine in  a regioselective 

manner, whereas the pig kidney DAO lacks this regioselectivity . 14

Santaniello and co-workers then studied the stereospecificity 

o f the reaction using (R)- and (S)-2 -methylputrescines as substrates 

fo r both pea seedling and pig kidney DAO. The (R)- and (S)-2- 

m ethylpu trescines were synthesised fro m  (R)- and (S )-3 - 

m ethyladipic acid respectively . 102 The products were trapped w ith  

o-aminobenzaldehyde as before, and a quantitative analysis was 

performed using HPLC.

From the results it  was found that pea seedling DAO catalyses 

the deamination o f 2 -methylputrescine at the less hindered amino 

group, independent o f the configuration o f the substrate used, since 

for both isomers, compound (50) was essentially the only detectable 

product. W ith pig kidney DAO however, the oxidation is dependent 

upon the ch ira lity  o f the substrate. W ith the (R)- isomer, i t  is the C-
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1 am ine w h ich  is oxid ised to fo rm  the correspond ing  

aminoaldehyde (95%), whereas w ith  the (S)-isomer it  is the less 

hindered amine that is oxidised. This result suggests that fo r pig 

kidney DAO, the active site is more sensitive to the stereochemical 

configuration o f the substrate, and in  fact the pig kidney DAO is 

stereoselective.

It is possible therefore to conclude that the active sites o f 

diam ine oxidases from  p lan t and anim al sources are certa in ly 

d ifferent. This area would benefit from  fu rthe r w ork in  order to 

understand fu lly  the differences between these two enzymes.

2.19 The N ecessity o f Polvam ines in  C e ll G row th  and 

R ep lica tion

Polyamines are required fo r optim al growth in  a ll liv ing  cells 

which have so fa r been examined. Many studies have shown that 

rap id ly growing cells have higher levels o f polyamines than slowly 

growing or inactive cells. I t  is also known tha t the polyam ine 

content o f cells increases before an increase in  DNA, RNA and 

protein content.

A fter adm inistration o f inh ib ito rs o f polyamine biosynthesis, 

the levels o f putrescine (3) and spermidine (5) fa ll rap id ly. This 

decrease is noticed especially in  rap id ly  rep lica ting cells where 

there is a dramatic inh ib ition  o f growth and replication. It is clear 

therefore that polyamines are im portant to growth and replication 

o f a ll liv ing  cells and that inh ib ito rs o f polyamine biosynthesis can 

have a dram atic effect on the concentration o f polyamines in  

rapidly pro liferating cells. 10403
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2.20 In h ib ito rs  o f D iam ine Oxidase

The in h ib itio n  o f enzyme activ ity  by specific compounds is 

im portant because it  serves as a m ajor control mechanism in  many 

metabolic pathways. In fact the action o f many drugs is to in h ib it 

enzymic pathways. Inh ib ition  can also provide an insight in to  the 

mechanistic action o f enzymes.

There are two m ain types o f in h ib itio n , reversible and 

irreversib le . In  irrevers ib le  in h ib itio n  the in h ib ito r is e ithe r 

covalently linked to the enzyme or is so tigh tly  bound in  some other 

way tha t it  releases very slowly. In  contrast to this, reversible 

inh ib ition  involves a rapid binding/dissociation equilib rium  o f the 

inh ib ito r and enzyme.

There are two main forms o f reversible in h ib itio n  and the 

simplest form  is com petitive inh ib itio n . In  com petitive in h ib itio n  

the inh ib ito r mimics the substrate and binds to the active site o f the 

enzyme, thus preventing the substrate from  binding to the same 

active site. A competitive in h ib ito r dim inishes the rate o f catalysis 

by reducing the proportion o f enzymic molecules that have a bound 

substrate . 104

The other form  o f reversible in h ib itio n  is non-com petitive 

inh ib ition . In this form  the inh ib ito r and substrate can both bind to 

the same enzyme molecule. Since there is no overlap o f b inding 

sites, a non-competitive inh ib ito r decreases the turnover number o f 

an enzyme ra the r than reducing the p ro p o rtio n  o f enzyme 

molecules that have a bound substrate (Scheme 2.19).
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There are also more complex types o f in h ib itio n  that may be 

encountered. “Mixed inh ib itio n ” shows features o f both competitive 

and non-competitive models, and coupling (acompetitive) inh ib ition  

is a specific form o f mixed inh ib ition  occurring when the inh ib ito r is 

bound into the same subsite as the substrate but the inh ib ito r binds 

only to the enzyme-substrate complex and not w ith  the free 

enzyme. Partia l non-com petitive in h ib itio n  occurs where the 

presence o f the in h ib ito r does not affect the b ind ing  o f the 

substrate, bu t the rate o f breakdown o f the enzym e-inh ib itor- 

substrate complex is slower than the breakdown o f the enzyme- 

substrate complex. 147

A study o f inh ib ito rs o f DAO could effectively shine ligh t on 

the physiological role o f the DAO enzyme and possibly lead to a 

variety o f drug candidates. Also measuring the rates o f reaction at 

d ifferent concentrations o f substrate and in h ib ito r would help to 

d istinguish between the in h ib itio n  mechanisms o f the various 

candidates.

There are six d iffe rent types o f compounds that are known to 

inh ib it DAO. These types are:

1 . enzyme inactivators;

2 . copper chelating agents;

3 . substrate analogues;
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3. substrate analogues;

4. substrate inhibitors;

5. product inhibitors;

6 . suicide substrates/inhibitors.

The firs t three are the most common and w ill be discussed in  

greater depth.

1. Enzvme in a c tiva to rs : These in h ib ito rs  no rm a lly  act by 

irreversib le in h ib itio n  and lead to partia l or to ta l loss o f enzyme 

activ ity. The mode o f deactivation o f the enzyme depends on the 

a b ility  o f the in h ib ito r to react w ith  the carbonyl functiona lity  o f 

the active site o f the enzyme. Phenylhydrazine, hydroxylam ine and 

semicarbazide have a ll been shown to in h ib it DAO by th is 

mechanism . 28

2. Copper chelating agents: It has been shown that by the addition 

o f substrates capable o f d isrupting the catalytic function o f Cu(II) 

tha t both  p lan t and anim al DAO have been in h ib ite d . These 

chelating agents b ind to the copper present at the active site o f the 

enzyme. 8 -Hydroxy quinoline, sodium diethyldithiocarbam ate, 2,2- 

b ip y rid y l, l : 1 0 -phenanthroline and sodium cyanide act in  th is 

manner.

Also Pec and Haviger1 0 6  have shown tha t sodium azide 

inh ib ited pea seedling DAO. They concluded that the azide forms an 

inactive complex w ith  the enzyme substrate and suggested that the 

b ind ing  o f the substrate to the active site o f the enzyme gives 

access to the central Cu^+ ion on which the azide, as ligand, is 

bound.

3. Substrate analogues: Effective inh ib ito rs  often resemble the 

structure o f the natural substrate. Comparison o f structure activ ity 

relationships between substrates and inh ib ito rs o f DAO have shown
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tha t a subtle change in  the structure o f a compound may have 

dramatic effects towards reactivity w ith  the DAO enzyme.

The structural relationships between DAO inh ib ito rs and two 

substrates, putrescine (3) and histam ine (51) were explored by 

Bieganski e ta l. 1 0 7  in  the 1980s. They noted that histam ine was a 

substrate fo r both pea seedling and pig kidney DAO and decided to 

examine the effects o f histamine analogues on the oxidation process. 

These studies concentrated on two classes o f compounds: (a) 

compounds w ith  structures resembling histam ine and having a 

fu rth e r reactive amine group, fo r example (52) and (53); and (b) 

compounds combining a histamine structure and an aliphatic amine 

structure, fo r example (54).

y ^ . C H 2CH2NH2 

v— NH

/ V  ^ c h 2o n h 2
h nw

(51) (52)

.c h 2c h 2n h n h 2
HNw

x h 2c h 2n h c h 2c h 2n h 2
HNw

(53) (54)

Compounds (52) and (53) were found to be potent inh ib itors 

o f both pea seedling and pig kidney DAO. This result showed that 

the presence o f the im idazole ring could lead to in h ib itio n  o f pea 

seedling DAO contrary to earlier work which suggested imidazole 

derivatives only inh ib ited mammalian DAO. Compound (54) showed 

selective inh ib ition  o f pea seedling DAO, and this was thought to be 

due to the presence o f the aliphatic diamine side chain on the ring
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system. This resu lt again h ighlights the difference between the 

active site o f the two enzymes.

The in h ib ito ry  effects o f a range o f 4,5-dihydroim idazole 

derivatives on the catalytic oxidation o f l,4-diam ino-2-butene w ith  

pig kidney DAO was reported by Pec and Hlidkova . 108  They showed 

that natazolin (55), fentolam in (56) and anatazolin (57) are a ll non­

com petitive inh ib ito rs  o f pig kidney DAO, whereas 2-methyl-4,5- 

dihydroim idazole (58) showed no inh ib ito ry  effects. This ruled out 

the possibility that the inh ib ition  noted fo r the other analogues was 

due to Cu(II) chelation w ith  the dihydroim idazole ring system.

c h 2R
R= —NR =

(55) (56)

OH

R=-V~0
?H* (57)

(58)R = H

Another group o f compounds which are pa rticu la rly  potent 

inhibitors o f both plant and animal DAO are the amidines, especially 

aminoguanidine (59 ) . 10 9  The incorporation o f an amidine grouping 

has led to a range o f DAO inhibitors, such as MGBG (60).110

NH HN NH

(59) (60)

page 62



4. Substrate in h ib ito rs : In  many enzymes the rate o f oxidation 

increases to a maximum value over a lim ite d  lower range o f 

substrate concentrations, bu t at higher concentrations the rate 

decreases w ith  the expected maximum rate not being achieved. The 

rate o f reaction may actually drop at very high concentrations and 

this occurrence is known as substrate inh ib ition . This occurs w ith  

many d ifferent enzymes, including DAO. 111

This may be due to a number o f factors, fo r example high 

substrate concentrations may increase the ionic strength o f the 

aqueous reaction m ixture or may interfere w ith  the b ind ing o f a 

coenzyme.

5. Product inh ib ito rs : This occurs where the product o f the enzyme 

reaction in h ib its  the forw ard process. In  one type o f product 

in h ib itio n  the reverse reaction, i.e. where the products are 

converted back in to  substrate, competes w ith  the forward reaction 

so th a t product form ation is reduced. Another type o f product 

inh ib itio n  occurs when the product combines w ith  the enzyme, or 

other reactive components o f the system, and this slows the rate o f 

forward reaction.

6 . Suicide substra tes/inh ib ito rs: This is a type o f in h ib ito r which 

uses the binding specificity and catalytic mechanism o f the target 

enzyme fo r chem ical activation. This transform s a norm ally 

harmless reversible inh ib ito r in to  a powerful irreversible inh ib ito r.
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2.21 Synthetic Applications o f DAO

The fact that DAO catalyses a functional group transform ation 

which is extrem ely d iffic u lt to carry out chem ically makes this 

enzyme increasing ly im portan t. An example o f th is  is the 

convenient synthesis o f a range o f bio logically active alkaloids by 

Cragg and Herbert. 112 They used pea seedling DAO as a catalyst in  a 

key step during  the synthesis o f cryptopleurine (61) and other 

phenacyl derivatives.

Enzymatic oxidation o f suitable diamines, followed by in  situ 

condensation o f the cyclic im ine w ith  a benzoylacetic acid 

derivative, led to a range o f synthetica lly useful interm ediates. 

3 f,4 f-D im ethoxy-2-(2-p iperid inyl)acetophenone (62) found in  

Boehmeria plactyphylla  can be synthesised easily using DAO and is 

an im portant intermediate in  the synthesis o f cryptopleurine (61). 

The d irect synthesis o f this intermediate (62) was accomplished by 

condensation o f 3,4-dim ethoxybenzoylacetic acid (63) w ith  a '- 

p ip e rid in e , 1 1 3  generated in  situ  from  the catalytic oxidation o f 

cadaverine w ith  DAO (Scheme 2.20). Subsequent condensation o f

(62) w ith  substituted phenylacetaldehydes and then several ring 

closures led to the form ation o f cryptopleurine (61).

Analogues o f these alkaloids can be made easily by either 

using a d iffe re n t diam ine, benzoylacetic acid deriva tive , or 

substituted phenylacetaldehyde derivative. These small alterations 

in  the synthetic route may open the way to the preparation o f new 

biologically active analogues.

The m ethod o f coupling DAO oxida tion  products w ith  

benzoylacetic acid derivatives was used in  mechanistic studies 

during this project and is discussed in  Chapter 4.
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CHAPTER 3

Enzvme Kinetics

3.1 Introduction

The rate o f catalysis ( V )  fo r most enzyme reactions varies 

w ith  substrate concentration ( [S]) and almost a ll enzyme-catalysed 

reactions show a firs t order rate dependence p rov id ing  tha t 

substrate concentra tions are low. However, as substrate 

concentrations increase the rate o f catalysis approaches a lim it 

( V m a x )  w hich cannot be exceeded regardless o f substrate 

concentrations (Graph 3.1).

max

\
Reaction Rate 

(V) 1/2 V,max

Substrate Concentration
( [ S ] )

Graph 3.1 Reaction rate (V)vs. Substrate concentration ([S]).

3.2 Michaelis-Menten Kinetics

In  1913 Michaelis and Menten proposed a simple model to 

account fo r the kinetic characteristics described above. The main 

feature o f this mechanism is the binding o f the substrate (S) to the
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enzyme (E) to form  a necessary enzyme-substrate interm ediate 

complex (ES) (Scheme 3.1). The ES complex can either dissociate to 

regenerate E and S w ith  a rate constant k 2, or i t  can go on to form  

the product (P) w ith  a rate constant kcat- The dotted arrows in  

Scheme 3.1 indicate the possible complexity o f several intermediate 

steps between ES and the form ation o f product P.

k i ^cat
E + S ES ...........E + P

k 2

Scheme 3.1

The use o f th is simple model allows an expression to be 

obtained which relates the rate o f catalysis to the concentrations o f 

substrate and enzyme and the rates o f the ind ividual steps.

The model starts w ith  the assumption that since the product 

is formed in  the second step only, the rate o f form ation o f product 

and hence the overall rate o f reaction is given by:

V = kcat[ES] (3.1)

This is followed by an expression o f [ES] in  terms o f known 

quantities, and the rates o f form ation and breakdown o f the ES 

complex are derived by:

Rate o f form ation o f ES = k i [E] [S] (3.2)

Rate o f breakdown o f ES = (k2 + kcat)[ES] (3.3)
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Under steady state conditions the rate o f form ation o f the ES 

in te rm ed ia te  is equal to  the rate o f breakdown, and the 

concentrations o f interm ediate ES rem ain constant w hile the 

concentrations o f the starting m aterial and products are changing. 

Thus:

k i [E] [S] = (k2+ kcat )[ES] (3.4)

This equation is rearranged to give an expression fo r [ES] as 

shown in  (3.5), sim plified by defining a new constant, the Michaelis 

constant (K m ), as shown in  (3.6), and then substitu ting K m  in to

equation (3.5) as shown in  (3.7).

[ES] = [E] [S ]/{(k2  + kca t)/k i} (3.5)

Km= (k2  + kcat ) /k i (3.6)

PES]=[E][S]/Km (3.7)

Provided tha t the concentration o f enzyme is very much 

sm aller than the substrate concentration, as is norm al, the 

concentration o f uncombined substrate [S] is very nearly equal to 

the to ta l concentration o f substrate. The concentration o f free 

enzyme [E] is equal to the to ta l enzyme concentration [Et ] less the 

concentration o f the enzyme-substrate complex [ES]. Thus:

[E] = [ET] - [ES] (3.8)

Substituting equation (3.8) into equation (3.7) gives:
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[ES] = ([EX] - [ES])[S]/KM (3.9)

Solving this equation fo r [ES] gives:

DES] = DEt][S]/([S] + Km) (3.10)

Substituting the expression fo r [ES] into equation (3.1) gives:

V = kcat[ET][S]/([S]+KM) (3.11)

The maximal rate o f catalysis, Vmax, is achieved when the 

enzyme sites are saturated w ith  substrate, that is when [S] is much 

greater than Km so :

[S]/([S] + Km) = 1 (3.12)

This then gives the equation:

V m a x  =  k c a t [ E T ]  (3.13)

Substituting equation (3.13) in to  equation (3.11) leads to 

equation (3.14):

V = Vmax[S]/([S] + Km) (3.14)

The shape o f the curve in  Graph 3.1 can now be explained by 

this equation. A t low substrate concentrations, i.e. [S] «  K m , equation

(3.14) becomes:

V = Vmax[S]/KM (3.15)
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This means the rate o f reaction is d irectly proportional to the 

concentration o f the substrate. However, this is not the case when 

the substrate concentration is high, i.e. when [S] »  Km , equation

(3.14) then becomes:

V  =  V m a x  (3.16)

A t this stage the rate is at a maximal and is independent o f 

the substrate concentration. From equation (3.14) we can achieve a 

defin ition o f Km - When [S] = Km :

V = Vm ax/2 (3.17)

Therefore, [S] = Km when the rate o f reaction is at h a lf o f its 

maximal rate.

3.3 D eterm ination  o f Vmax and K _̂ by Experim ental 

M ethods

I f  the enzyme reaction obeys the kinetics shown in  Scheme 

3.1, then both V m a x  and Km can be derived from  the rates o f 

catalysis measured at d iffe rent substrate concentrations. However, 

Graph 3.1 o f the Michaelis-Menten equation, rate ( V )  vs. substrate 

concentration [S], is not entire ly satisfactory fo r the determ ination 

o f V m a x  and Km- I f  there are not three consistent points on the 

plateau o f the curve at d iffe ren t substrate concentrations then 

accurate values cannot be obtained. Also, since the line is a curve 

and approaches V m a x  slowly, it  is d iffic u lt to judge exactly where 

the lim it is.
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In  1934 Lineweaver and Burk11 5  overcame this problem  by 

sim ply inve rting  the o rig ina l M ichaelis-Menten equation, thus 

making the graph a stra ight line. The Michaelis-Menten equation

(3.14) then becomes:

(1 /V ) = KM/V max( 1 /  [S]) + 1/Vmax (3.18)

The Lineweaver-Burk p lo t o f 1 /V  vs. 1/[S ] as shown in  Graph 

3.2  leads to a straight line w ith  a gradient Km/Vmax and intercept 

on the y-axis 1 /V max- Thus the k ine tic  param eters can be 

determined from  the graph.

1 /V
■slope = Km/V jmax

intercept = 1 /V]max
intercept = -1/K]

1/[S]

Graph 3.2 Lineweaver-Burk Plot. 1 /V  vs. 1 / [S].

However, the accuracy o f the Lineweaver-Burk p lo t has been 

questioned. A simple po in t o f fact is that the graph often has to be 

redrawn because o f unexpectedly long extrapolations. A more 

im portan t p o in t is tha t i t  gives undue weight to low substrate 

concentrations w hich are the least accurate values. Also, the 

double-reciprocal p lo t distorts experimental errors which occur in
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the prim ary observations o f V, making it  d iffic u lt to judge which 

points are the most accurate.

The Eadie-Hoftsee p l o t 1 1 6 d i 7  i s n o t  en tire ly  free from  

d istortion, bu t is less severely affected than the double-reciprocal 

plot. This p lo t as shown in  Graph 3.3 is derived by m ultip ly ing  both 

sides o f the Lineweaver-Burk equation (3 .18 ) by V.Vmax giving:

V . V m a x ( l / V )  =  { ( K M / V m a x ) ( l / [ S ] ) } V . V m a x  +  ( 1 / V m a x )  V . V m a x

This equation can be sim plified to give:

V = -KM(V /[S]) + Vmax (3 .19)

Again the p lo t from  the equation is in  the form  o f a straight 

line. A p lo t o f V vs. V /[S] gives a gradient o f -Km and the intercept 

on the y-axis, V m a x .

intercept = V,max

slope = -K]V

intercept =
- /K mmax'

V/[S]

Graph 3.3 Eadie-Hoftsee Plot, V vs. V/[S].

The Hanes p lo t118 provides an additional check on accuracy o f 

the data which are plotted. This is obtained by p lo tting [S ]/V  vs. [S] 

(Graph 3 .4 ). This gives a straight line w ith  a gradient 1 /V max and

page 72



an in tercept on the y-axis o f K M /V max- The requ ired k ine tic  

parameters can then be obtained directly from  the graph.

slope = 1/V,max

intercept = KM/V]maxintercept = -K]

Graph 3.4 The Hanes Plot, [S]/V vs. [S].

Experim entally i t  is best to consider values from  a ll three 

linear plots in  order to achieve the best estimate o f Vmax and Km - A 

wide range o f substrate concentrations is required to m inim ise 

errors and it  has been found that substrate concentrations ranging 

from  3 times Km to 1/8 o f Km achieve this most effectively.

3.4 The Kinetics Involved with Inhibition

As discussed earlier there are two main types o f inh ib ition , 

reversible and irreversible, which can then be subdivided in to  more 

specific form s o f in h ib itio n . Reversible in h ib itio n  is sp lit in to  

com petitive and non-com petitive in h ib itio n . It  is possible to 

distinguish between competitive and non-competitive inh ib ition  by 

measuring the rate o f enzymic catalysis at various substrate and 

inh ib ito r concentrations.
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I f  we consider the Lineweaver-Burk equation (3.18) in  an 

enzyme system which contains a competitive inh ib ito r, the equation 

changes to equation (3.20).

(1 /V ) -  KM /Vmax(l/[S]) + 1/Vmax (3.18)

(1 /V ) = KM/Vmax(l + [I]/K i)l/[S ] + 1/Vmax (3.20)

Where [I] is the in h ib ito r concentra tion and Ki is the 

dissociation constant o f the enzyme-inhibitor complex.

The in tercept on the y-axis o f the p lo t o f 1 /V  vs. 1 /[S ]  

(Lineweaver-Burk p lo t) is identical w ith  or w ithout the presence o f 

inh ib ito r. The intercept o f the y-axis corresponds to the Vmax and it  

is therefore unaffected by a competitive in h ib ito r (Graph 3 .5 ). This 

shows th a t com petitive in h ib itio n  can be overcome by high 

substrate concentrations, because at this po in t v irtu a lly  a ll active 

sites are fille d  by substrate.

+ Competitive inhibitor

No inh ib itor present

1/V

intercept = V,max

1/[S]

Graph 3.5 How Competitive Inh ib ition  Affects The Lineweaver-Burk 

Plot.
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As shown in  Graph (3.5) there is a difference in  the gradients 

o f the two lines. The gradient o f the competitive inh ib itio n  p lo t is 

given by:

(slope)V(slope) =1 + [I]Ki (3.21)

(slope )i = the gradient o f the line when the competitive

inh ib ito r is present

(slope) = the slope o f the line w ithout inh ib ito r

I f  we now consider the Lineweaver-Burk p lo t fo r an enzyme 

system which contains a non-com petitive in h ib ito r, the V m a x  is 

decreased by V m a x *  which gives an increase in  the y-axis intercept 

(Graph 3.6). The gradient in  the presence o f in h ib ito r is equal to 

KM/Vmax*, and differs from  the gradient w ith  no in h ib ito r present 

by a factor Vmax*- In the simplest cases Km is not altered in  the 

presence o f non-competitive inhibitors.

+ Noncompetitve inhibitor

No inh ib ito r present

1/V

1 / [ S ]

Graph 3.6 How Non-Competitive Inh ib ition  Affects The Lineweaver- 

Burk Plot.
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CHAPTER 4

M echanistic Studies on D iam ine Oxidase

4.1 In tro d u c tio n

Frydm an et af. 1 7  studied the DAO-catalysed oxidative 

deam ination o f a series o f AT-alkyl- and C-alkyl-putrescines. W ith 

the surp ris ing  exception o f N -m ethylputrescine  (62), these 

putrescine derivatives were a ll found to be substrates o f DAO and 

were oxidised to the ir corresponding aminoaldehydes. Cooper et 

al.9 0  repeated this work using an im proved assay procedure, and 

dem onstrated tha t N-m ethylputrescine (62) was in  fact a good 

substrate fo r both pea seedling and pig kidney DAO.

R
when R = CH3 (62)

c h 3

Figure 4.1 N-alkyl- and C-alkyl-putrescines used in  the 
study o f Frydman et al.17__________________________

R -  CH3; C2H5 ; n-C3H7; n -C ^g  

c h 3

Following this work Equi et ai.9 6  obtained kinetic data fo r the 

DAO catalysed oxidation o f a,co-diamines w ith  chain lengths ranging



from  2-12 carbons. The highest rates o f oxidation were observed 

fo r chain lengths 4-6, which combined w ith  kinetic data suggested 

that a fte r in itia l attachment o f the substrate to the enzyme, the 

amine at the other end o f the chain m ight also become attached to 

the enzyme thus creating a cyclic conformation fo r the diamine.

Frydman and co-workers noted that 1,3-dim ethylputrescine 

(63) was a very poor substrate fo r pea seedling and pig kidney 

DAO. They suggested that oxidation o f putrescine (3) proceeds via 

an enamine intermediate (64) (Scheme 4.1), which is formed by the 

abstraction o f hydride from  the C-2 o f putrescine, w ith  subsequent 

tautomerism  and hydrolysis o f the resulting im ine producing the 

aldehyde product. They suggested that 1,3-dimethylputrescine (63) 

sterica lly hinders the form ation o f th is interm ediate (64), thus 

accounting fo r the poor substrate activity o f (63) towards DAO.

nh2

(64)

CHODAO

Scheme 4.1

To test this hypothesis we prepared a,©-diamines containing 

deuterium  labels at the (3-positions, so tha t the loss or retention o f 

deuterium  in  the products o f the DAO-catalysed oxidative 

deamination could be followed by NMR and mass spectrometry.
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4.2 Synthesis o f D euterium  Labelled D iam ines

The starting po in t o f the mechanistic study was to make the 

required [2 H4 ]-labelled diamine substrates and the corresponding 

unlabelled diam ines, a ll as the d ihyd roch lo ride  salts. These 

substrates were: [2,2,3,3-2H 4]-putrescine (65); [2 ,2,4,4-2H 4]- 

cadaverine (6 6 ); [2,2,5,5-2H4]-l,6-hexanediam ine (67); putrescine 

(3); cadaverine (6 ) and 1,6-hexanediamine (6 8 ).

y X nh2

( < C
,n h 2

r V
X

n =1, x = H (3) n =1, x = D (65)
n =2, x = H (6 ) n = 2, x = D (6 6 )
n =3, x = H (6 8 ) n =3, x = D (67)

Unlabelled diamines (3), (6 ) and (6 8 ) were readily available 

as th e ir free bases, and could be converted easily in to  th e ir 

corresponding dihydrochloride salts by partition ing  the free base 

between dichloromethane and 6 M hydrochloric acid fo r two hours.

The three 2H4-labelled oc,G>-diamines (65), (6 6 ) and (67) were 

prepared by incorpora tion  o f the 2 H4 -labels in to  the d in itr ile  

starting  m aterials succinon itrile  (6 8 ), g lu ta ro n itrile  (69) and 

adipon itrile  (70). Subsequent reduction o f the n itrile  functiona lity 

followed by acid ification gave the desired 2 H4 -labelled diam ine 

products.
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(6 8 ) (69) (70)

The deuterium  labels were incorporated in to  the d in itr ile  

compounds by heating them at reflux w ith  D2 O in  the presence o f a 

strong non-nucleophilic base, diazabicyclo[5.4.0]undec-7-ene, to 

exchange the a-protons (Scheme 4.2 ) . 101 This process was repeated 

to ensure >95% deuterium  [2H4] incorporation in to  the d in itriles. 

M onitoring o f incorporation was achieved by using 1h NMR and 13c 

NMR spectroscopy, noting the loss o f any relevant proton or change 

in  carbon signals. For example, the lH  NMR spectrum  fo r 

g lu taron itrile  gave proton resonance at 8  2.15 (tt, 2H) and 5 2.65 (t, 

4H), whereas the lH  NMR spectrum o f [2H4 ]-g lu ta ro n itrile  gave a 

proton resonance o f 8  2.15 (s, 2H), w ith  no resonance at 8  2.65, 

showing clearly that [2 H4 ]-labelling had taken place.

Reduction o f the [2H4 ]-labelled d in itr ile  compounds to the 

corresponding [2H4]-labelled diamines (65), (6 6 ) and (67) was then 

carried out in  a m odification o f a reported procedure , 1 1 9  w ith  

borane dim ethylsulphide complex in  THF, followed by heating to 

reflux in  6 M HC1 to form  the dihydrochloride salts (Scheme 4.2). 

Incorporation o f the label in  each [2H 4]-d iam ine p roduct was 

estimated from  the integrals o f their corresponding lH  NMR spectra 

and were found to be 98 ± 2% 2 H4  fo r [2,2,3,3-2H4]-putrescine (65), 

96 ± 2% fo r [2,2,4,4-2fl4]-cadaverine (6 6 ) and 93 ± 2% fo r [2,2,5,5- 

2H4]-l,6-hexanediam ine (67). Deuterium incorporation was also 

confirmed by microanalysis and mass spectrometry.
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CNNC NC CN

n = 0  (6 8 ) 
n = 1 (69) 
n = 2 (7 0 )

2. 6 M HC1, 
55-60%

1. BH3/
DMS,
THF

n = 0 (65) 
n = 1 (6 6 ) 
n = 2 (6 7 )

Scheme 4.2

4.3 Results and Discussion

Once the diam ine substrate has undergone oxidative 

deamination to the aminoaldehyde product, the amine functionality 

attacks the carbonyl and an intram olecular cyclisation occurs to 

fo rm  a cyclic im in e .1 2 0 »1 2 i * i 2 2  This causes problem s w ith  

characterisation and identifica tion  o f the products as these cyclic 

imines have a tendency to trim erise in  basic or neutral solution. In 

order to capture these cyclic imines a trapping agent, benzoylacetic 

acid (71), was employed.

OH

(71)

Benzoylacetic acid (71), a (3-keto acid, was obtained from  base 

hydrolysis o f the (3-ketoester e thy l benzoylacetate. However,
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decarboxylation o f the p-ketoacid (71) occurs readily above 25 °C, 

therefore care was taken to ensure that this d id  not occur. Synthesis 

o f (71) im m ediately before use and storage in  a freezer helped to 

minimise the amount o f p-ketoacid lost by decarboxylation.

The iso la tion  o f diam ine oxidase from  pea seedlings is 

described in  Chapter 5. Each unlabelled diam ine (3), (6 ) and (6 8 ) 

and each corresponding [2H4 ]-labelled diamine (65), (6 6 ) and (67) 

was incubated w ith  pea seedling diam ine oxidase, catalase and 

benzoylacetic acid (71) in  phosphate b u ffe r (pH 7) at 25 °C 

(Schemes 4.3 and 4 .4 ) . 1 2 3  Catalase was required  to  remove 

hydrogen peroxide w hich exhibits in h ib ito ry  effects on DAO. 

Trapping o f each corresponding cyclic im ine w ith  the benzoylacetic 

acid (71) in  situ  produced substituted acetophenones, e ither 

unlabelled (72), (73) and (74) or [2H4]-labelled (75), (76) and (77).

nh2

DAO
NH

NH2

n = 0 (3) 
n = 1 (6 ) 
n = 2  (6 8 )

n = 0(72) 
n = 1(73) 
n = 2 (74)

Scheme 4.3

DAO

NH
NH,

n = 0 (75) 
n = 1 (76) 
n = 2(77)

n = 0 (65) 
n = 1 (6 6 ) 
n = 2 (67)

Scheme 4.4
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The percentage yie ld  fo r these reactions varied w idely, w ith  

no real pattern or reason being apparent. A possible reason may 

have been small changes in  the pH at which the reaction was 

carried out, since the pH affects both the rate o f deamination and 

the rate at which benzoylacetic acid decarboxylates. Although the 

pH was adjusted when necessary, the reaction was carried out over 

24 hours and it  was not possible to m onitor the reaction constantly.

The product p '^ '^ '^ '-^ ^ j^ -p y rro lid in ^ -y la c e to p h e n o n e

(75) (Figure 4.2) was produced in  76% yield from  [2H4 ]-putrescine

(65). The product (75) was pu rified  by preparative th in  layer 

chromatography and the p u rity  was checked by HPLC. The ^H 4  

content o f the product (75) was estimated to be 96 ± 2% by analysis 

o f the integrals fo r the protons in  the lH  NMR spectrum o f (75).

For the *H  NMR spectrum o f the unlabelled product 2- 

pyrro lid in -2-y lace tophenone (72) a com plex o f signals was 

observed at 5 1.30-1.70 fo r the protons at the 3'- and 4'-positions o f 

the p y rro lid in y l ring  (Figure 4.2). Whereas the corresponding 

signals fo r the protons on the 3'- and 4'-positions o f (75) (Figure

4.2) were barely visib le  at 8  1.30-1.90. The protons at the 5'- 

position o f (75) were observed as a doublet o f doublets at 8  2.98. 

Even the 2'-H protons and 8 -H protons, which were not on the 

p y rro lid in y l ring, had been greatly s im plified to an ABX system 

made up o f eight lines at 8  3.25 and a doublet o f doublets at 8  3.64.

8 1 -6  
> ^ \ 7 / Ph

0

\ 5 ' __ NH
x = H, (72)
x = D, (75)

Figure 4.2
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Figure 4.3: a. NMR spectrum for (75); b. NMR spectrum for 

(76).

Furtherm ore, evidence that all four deuterium  were still 

present after oxidation was strengthened by the -H NMR spectrum 

of the labelled product (75) (Figure 4.3a). This showed four 

separate signals at 5 1.38, 1.72, 1.79 and 1.96, for the -H 4 label, 

which were all of almost equal intensity. Finally, comparison of the 

mass spectra for (72) and (75) (Figures 4.4a and 4.4b) confirmed 

the presence of the four deuterium atoms, with unlabelled (72)
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having peaks at m /z  190 (M+ + 1) and 189 (M+), whereas labelled 

product (75) had major isotopic species with peaks at m /z  194 (M+ 

+ 1) and 193 (M+).

a. TO

wii450

tSr/

'TO
189

lu ll-
90 JS O

i«3

88

11 li 19 O

‘̂ 3

',7*

iOO
U*M. Jl .J.

iso aoo i f d

Figure 4.4: a. Mass Spectrum of (72), b. Mass Spectrum of (75).

The product [3,,3 ',5T,5,--H 4]-2-piperidin-2-ylacetophenone 

(76) (Figure 4.5) was produced in 70% yield from [2H4]-cadaverine

(66). Again, the product (76) was purified by preparative thin layer 

chromatography and the purity was checked by HPLC. Comparison 

of the lH  NMR spectra of the unlabelled product 2-piperidin-2-
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ylacetophenone (73) and (76) indicated that the ^H4  content o f (76) 

was 97 ± 2%.

The I f f  NMR spectrum o f unlabelled (73) showed a complex 

m u ltip le t at 8  1.31-1.75 fo r the 6 H at the 3'-, 41- and 5f-positions o f 

the p iperid ine ring (Figure 4.5 and Figure 4.6). Whereas, w ith  the 

lH  NMR spectrum o f 2 ̂ - la b e lle d  (76) the protons at the 4'- 

position were present as an AB system at 8  1.25 and l.62 , and the 

signals fo r the protons at the 3f- and 5 '- positions were absent 

(Figure 4.5 and 4.7). Also the signal fo r the proton at the 2'-position 

which was present as a doublet o f trip le ts fo r (73), sp lit by the 

protons at the 31- and 8 - positions, was present as a doublet o f 

doublets at 8  2.66 fo r (76). Signals for the remaining four protons o f

(76) were overlapping and were present as a complex m u ltip le t at 8  

2.99-3.14.

1-6

X//„ NH

x = H, (73) 
x = D, (76)

Figure 4.5
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Figure 4.6: NMR spectrum of (73)
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Figure 4.7: lH NMR spectrum of (76).
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In the 2h NMR spectrum o f (76) (Figure 4.3b) fou r signals 

w ith  approxim ately the same in tensity were observed at 5 1.35, 

1.49, 1.61 and 1.68. The mass spectrum  o f (76) also showed 

evidence o f the four deuterium atoms w ith  major iso topic species at 

m /z  208 (M+ + 1) and 207 (M+), compared w ith  unlabelled (73) 

having peaks at m /z  204 (M+ + 1) and 203 (M+).

F inally, the product [3 ,,3 ,,6 ,,6 '-2H 4]-2-azacycloheptanyl- 

acetophenone (77) was produced in  75% y ie ld  from  [2H 4]-1,6- 

hexanediamine (67). The product (77) was purified  by preparative 

th in  layer chromatography and the p u rity  was checked by HPLC. 

The 2 h 4  content o f the product (77) was estimated to be 96 ± 2%.

The 1 H NMR spectra fo r b o th  the u n labe lled  2- 

azacycloheptanylacetophenone (74) and 2H4-labelled (77) were 

complex in  the region 8  1.0-1.60. However, in  the spectrum o f (77) 

the signals fo r this region integrated fo r four protons compared to 

eight in  the corresponding spectrum o f (74). The 2h NMR spectrum 

fo r (77) showed four signals o f almost equal in tensity at 8  1.20, 

1.27, 2.35 and 2.58. Comparison o f the mass spectra o f (74) and

(77) confirm ed the presence o f the 2H4-labelled species, w ith  

unlabelled (74) having m ajor isotopic species at m /z  218 (M+ + 1) 

and 217 (M+), compared w ith  2H4-labelled (77) having peaks at 

m /z  222 (M+ + 1) and 221 (M+).

Thus the enzym e-catalysed ox ida tive  deam ination  o f 

specifically tetradeuteriated samples (65), (6 6 ) and (67) by pea 

seedling diamine oxidase, and subsequent trapping o f the products 

in  situ  using benzoylacetic acid (71) produced acetophenone 

derivatives (75), (76) and (77), which were a ll almost en tire ly 

tetradeuteriated. From these results i t  is clear tha t the oxidative 

deamination o f a, co-diamines catalysed by DAO cannot involve an 

enamine intermediate since at least some o f the label would be lost
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i f  this enamine was formed. The work described in  this chapter has 

been published . 177

This resu lt helps to underline the need fo r more w ork on 

mechanistic studies o f diamine oxidase. It also highlights the need 

fo r a more defin ite  characterisation o f the organic cofactor fo r 

diamine oxidase in  order to gain a better understanding o f the part 

which it  plays in  the enzymatic oxidation process.
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CHAPTER 5

Oxidation o f Substituted Quinolines and Pvridines By Pea

Seedling Diamine Oxidase

5.1 Extraction and Partial Purification o f Diamine Oxidase 

from Pea Seedlings

As discussed earlier, there are two convenient sources o f DAO. 

However, due to the low specific a c tiv ity  o f the commercial pig 

kidney product, accurate data are d iffic u lt to obtain using enzyme 

from  this source. Therefore, only pea seedling DAO was used in  this 

study.

Pea seedling DAO was extracted and p u rifie d  using the 

m ethod described by H ill. 6 Pea seedlings from  the “Fillbasket” 

variety were grown fo r ca. 10 days. The extraction method depends 

on removing most o f the unwanted m aterial from  the crude extract 

by precip ita tion w ith  a 2:1 m ixture o f chloroform  and ethanol. The 

enzyme was then precip ita ted using ammonium sulphate and 

contrary to the observations o f H ill, separation o f the solid occurred 

only after being le ft overnight. The procedure was then carried out 

as reported  by H ill in c lud ing  fu rth e r am m onium  sulphate 

precipitations and dialysis. The p u rity  o f the enzyme at this stage 

was adequate fo r our purposes and fu rthe r purifica tion  steps used 

by H ill were not undertaken. The protein obtained was taken up in  

phosphate buffer (pH 7) and stored in  0.5 m l aliquots in  the freezer 

at ca. -20 °C. The enzyme was found to be stable fo r several months 

w ith  very little  loss o f activity. Further details o f the purifica tion  o f 

the enzyme are discussed in  Chapter 8 .
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5.2 The D ete rm ina tion  o f P ro te in  C oncentra tion

The determ ination o f prote in concentration was carried out 

using the method o f Sedmak and Grossberg. 1 2 4  This method relies 

on the conversion o f Coomassie b rillia n t blue G in  d ilu te acid from  a 

brown/orange colour in to  an intense blue colour w ith  the addition 

o f protein. The method was carried out using bovine serum albumin 

(BSA) as the prote in standard (1 mg o f BSA is equivalent to 1 mg o f 

protein).

The absorbances o f the m ixture at A620 (blue) and A465 

(brown/orange) were recorded fo r various concentrations o f BSA 

and a standard graph was obtained by p lo tting  A620/A 465 vs. 

protein concentration. The absorbance was measured approximately 

20 minutes after the Coomassie reagent was added to the protein 

sample and the A 620/A 465 was then measured fo r a range o f 

enzyme samples o f varying d ilu tion . A standard graph was then 

used to determ ine the concentration o f prote in  by measuring the 

absorbance ratios (Appendix).

This assay system fo r the d e te rm ina tion  o f p ro te in  

concentration was found to be h igh ly reproducible and was shown 

to detect less than 1 \ig o f albumin.

5.3 The Assay Procedure

There have been many assay systems developed fo r the 

measurement o f DAO activity, as discussed in  Chapter 2.14. For our 

w ork i t  was necessary to  be able to determ ine the rates o f 

enzym atic reaction fo r a va rie ty  o f substrates. Therefore we 

required an assay system which involved the measurement o f a 

common factor and which was not restricted by the requirem ent o f
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1 -pyrro line  (or 1 -piperideine) form ing as the oxidation product. 

The spectrophotomeric assay developed by Stoner8 9  was found to 

be a reliable method which was convenient fo r our studies.

The assay involves a coupled reaction w ith  hydrogen 

peroxide, a by-product o f the catalytic reaction, and 3-m ethyl-2- 

benzothiazolinone hydrazone (MBTH) (30) w ith  an acceptor, 3- 

(dim ethylam ino)benzoic acid (DMAB) (31) (see Chapter 2, Scheme 

2.17). The MBTH is oxidatively coupled to DMAB in  the presence o f 

hydrogen peroxide and peroxidase, form ing a stoichiometric amount 

o f indam ine dye having an absorption m aximum at 595 nm 

(Scheme 2.17). The rates o f reaction were determined d irectly from  

the spectrophotometer, w ith  in itia l ca libration carried out using 

standard solutions o f hydrogen peroxide.

Stoner showed tha t MBTH (30) was an in h ib ito r o f DAO and 

that th is in h ib itio n  was both time and concentration dependent. 

However, he kept this in h ib itio n  to a m inim um  by contro lling the 

concentration o f the MBTH. In add ition, i t  was found tha t this 

inh ib ito ry  effect could be fu rthe r reduced by adding the substrate 

im m ediately a fte r the add ition  o f enzyme, thus reducing the 

incubation time o f the enzyme w ith  MBTH.

Using th is spectrophotom eric assay system, most o f the 

compounds tested were found to e xh ib it M ichaelis-M enten 

behaviour. 1 1 4  Rate data were analysed fo r Vmax and Km by least 

square fitt in g  o f Lineweaver-Burk1 1 5  (1 /V  vs . 1 /[S ]), Eadie- 

Hofstee1 1 6 ’ 1 1 7  (V vs. V/[S ]) and Hanes1 1 8  ([S ]/V  vs. [S]) plots. The 

experiments were carried out three times using each substrate and 

the data are quoted as an average o f the nine determinations.
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5.4 S ubstitu ted  Q uino lines and P vrid ines as Substrates fo r

Pea Seedling DAO 

5.4(a) In tro d u c tio n

Diamine oxidase not only catalyses the oxidation o f diamines 

to th e ir corresponding aminoaldehydes, i t  also catalyses the 

oxidation o f selected prim ary monoamines to the corresponding 

a ldehydes . 9 4  The w ork carried out in  our group has m ain ly 

concentrated on aliphatic prim ary diamines as substrates fo r pea 

seedling DAO. Equi et a l96 studied the effects on the rate o f 

oxidation and binding a ffin ity  when the chain length o f the diamine 

substrate or the substituent groups on the diamine backbone were 

changed. However, more recently Barr studied aromatic diamines 

and compounds which contained only one prim ary amine group . 126 

A range o f compounds was studied, such as (am inoalkyl)pyridines, 

which contained two nitrogens, bu t only one prim ary amine was 

present capable o f undergoing enzymatic oxidation.

Our aims were to expand the study and to undertake kinetic 

studies on a range o f sim ilar compounds in  order to gain an insight 

in to  the role o f the second amine group during the DAO catalysed 

oxidation. We also wished to find  out i f  the nature o f the second 

amine group has an effect on the b inding a ffin ity  o f the substrate, 

or i f  i t  plays a more im portan t role in  setting o ff the oxidative 

deamination process.

In  order to carry out our aims we synthesised a number o f 

substituted quinolines and pyridines, concentrating on m ethyl-, 

ethyl- and propyl-am ine derivatives. We also synthesised a number 

o f pyrro le  and thiophene derivatives, and th is w ork w ill be 

discussed in  Chapter 6 .
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5.4(b) Synthesis o f the S ubstitu ted  Q u ino line  and P vrid ine

D erivatives

To begin w ith  we decided to attem pt the synthesis o f 2-, 3- 

and 4-qu ino ly le thylam ine  (Scheme 5.1a), o r i f  th is fa iled  to 

synthesise 2 -h yd ro xy-2 '-, 2 -hyd roxy-3 '- and 2-hydroxy-4 '- 

quinolylethylam ine (Scheme 5.1b). The reason behind this decision 

was that Barr had attempted to make 2-, 3- and 4 -pyridy le thy l- 

amine (Scheme 5.1c) and had fa iled . 12 6  However, it  was found that

2-hydroxy-21-, 2-hydroxy-3?- and 2-hydroxy-4f-pyridyle thylam ine 

(Scheme 5.Id ) were suitable alternatives fo r the study on the role 

o f the second amine in  the deamination process. We also decided to 

attem pt the synthesis o f 2-, 3- and 4-pyridylpropylam ine and 2-,

3- and 4-quinolylpropylam ine.

(a) (b)

(d)

Scheme 5.1

The starting materials fo r the synthesis o f a ll the substituted 

quinolines were the corresponding quinolinecarboxaldehydes and 

either nitrom ethane or nitroethane. Condensation o f nitroethane
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w ith  2 -qu inolinecarboxaldehyde in  the presence o f a base, 

potassium fluoride, gave 2-hydroxy-2-(2,-quinolyl)nitroethane (78) 

as a racemic m ixture in  the form  o f an orange/red solid (Scheme

5.2).

A t th is  stage attem pts were made to try  and induce 

dehydration in  the n itro-a lcohol (78) to y ie ld  the corresponding 

nitro-alkene (79) which could then be reduced in  acidic conditions 

to give 2-(2f-qu ino lyl)e thylam ine d ihydroch lo ride  (80) (Scheme

5.2). Our firs t attem pt was to use the procedure which Barr had 

found gave some indications o f nitro-alkene form ation by iNM R 

spectroscopy. 126 This procedure was to treat a solution o f the n itro- 

alcohol (78) w ith  acetic anhydride and 4-dime thy lam ino-pyridine 

(DMAP) over a period o f 20 hours. However, the resulting product 

was a dark green solid which rap id ly decomposed on standing and 

showed no indication o f being the nitro-alkene (79).

The next attem pt to induce dehydration involved heating the 

nitro-a lcohol (78) at re flux in  an acid solution in  the presence o f 

activated m olecular sieves. This procedure yie lded the starting 

n itro -a lcoho l as the corresponding hydroch lo ride  salt. Other 

attempts using POCI3  or base-catalysed elim ination w ith  NaOH also 

failed to yie ld  nitro-alkene (79).

We then decided to try  known p r o c e d u r e s 1 2 7 *1 2 8  which had 

been successful in  the synthesis o f thiophene nitro-alkenes and 

which we had used to make several thiophene derivatives (see 

Chapter 6 ). The firs t attem pt using NaOH to fac ilita te  the base 

condensation between 2 -quinolinecarboxaldehyde and n itro - 

methane and then acid-catalysed elim ination from  the intermediate 

proved unsuccessful, giving the hydrochloride salt o f nitro-alcohol

(78). Changing the base to N-amylamine and storing the reaction
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m ixture in  darkness fo r 14 days gave starting  m aterials after 

separation on a silica gel column.

Having made several unsuccessful attempts at synthesising 

the n itro-a lkene (79) and therefore being unable to use the 

proposed rou te  to  make the re q u ire d  p ro d u c t 2 -( 2  

quinolyl)ethylam ine dihydrochloride (80) (Scheme 5.2), it  was then 

decided to reduce (±)-2-hydroxy-2-(2f-quinolyl)nitroethane (78) to 

the corresponding diamine and examine this as a substrate fo r DAO. 

The cata lytic reduction o f (78) to y ie ld  (±)-2 -h y d ro x y -2 -(2 '- 

quinolyl)ethylam ine was carried out using anhydrous ammonium 

formate as a source o f hydrogen in  situ, w ith  1 0 % palladium  on 

carbon as a catalyst. 1 2 9  The crude amine was then partitioned  

between dichloromethane and 6 M HC1 to give (±)-2-hydroxy-2-(2f- 

quinolyl)ethylam ine as the dihydrochloride salt (81) (Scheme 5.2).

TrOH, 70%

(78)
OH

Dehydration

1. NH4 C02 H, 
45% 10% Pd/C

2. 6 M HC1
(79)

Reduction

(80)
Scheme 5.2
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In  s im ila r procedures 3-quinolinecarboxaldehyde and 4- 

quinolinecarboxaldehyde were converted in to  the dihydrochloride 

salts o f ( l^ -h y d ro x y ^ -^ '-q u in o ly O e th y la m in e  (82) and (±)-2 - 

hydroxy-2-(4f-quinolyl)ethylam ine (83) respectively.

HO
OH

2cr

2cr

(82) (83)

The condensation o f n itroe thane  w ith  2-, 3- and 4- 

quinolinecarboxaldehyde gave (± )-3 -hyd roxy-3 -(2 '-qu ino ly l)-2 - 

nitropropane (84), (±)-3-hydroxy-3-(3f-qu ino ly l)-2 -n itrop ropane  

(85) and (± )-3 -h yd ro xy -3 -(4 '-q u in o ly l)-2 -n itro p ro p a n e  ( 8 6 ), 

respectively, a ll as m ixtures o f diastereoisomers (Scheme 5.3). Due 

to the d iffering reactivities o f the quinolinecarboxaldehydes and the 

d iffering  physical forms o f the product nitro-alcohols the reaction 

procedure fo r condensation o f each quinoline-carboxaldehyde w ith  

nitroethane was altered as required.

The reduction o f nitro-alcohols (84), (85) and (8 6 ) was carried 

out using medium pressure catalytic hydrogenation, the pressure 

between ca. 40-60 p.s.i. depending on the reactiv ity o f the n itro - 

alcohol and 10% Pd/C was used as the catalyst. The crude amines 

were filte red  to remove the catalyst and 5M HC1 was added to each 

filtra te  yie ld ing (±)-3-hydroxy-3-(2f-quinolyl)propyl-2-am ine (87), 

(± )-3 -h yd ro xy -3 -(3 f-qu ino ly l)-p ropyl-2 -am ine  (8 8 ) and (±)-3- 

hydroxy-3-(4f-quinolyl)propyl-2-am ine (89) a ll as dihydrochloride 

salts and m ixtures o f diastereoisomers (Scheme 5.3). Products (87)
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and (8 8 ) had ratios o f diastereoisomers o f approxim ately 3:1 

estimated from  th e ir 13c NMR spectra, w hile the 13c NMR 

spectrum fo r product (89) showed a single racemate.

N CHO

KF, CH3CH2 NO: 

TrOH, 61%

(84)

40%

1.H 2 (g), 
10% Pd/C

2. 5M HC1

(85)

-►

(86) 
Scheme 5.3

(89)
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The condensation o f nitroethane w ith  2-, 3- and 4-pyridine- 

carboxaldehyde gave the n itro-a lcohols (± )-3 -h yd ro xy -3 -(2 '- 

p y rid y l)-2 -n itrop rop an e , (± )-3 -h yd ro xy -3 -(3 '-p y rid y l)-2 -n itro - 

propane and (± )-3 -h y d ro x y -3 -(4 '-p y rid y l)-2 -n itro p ro p a n e  

respectively, which were subsequently reduced using catalytic 

hydrogenation to y ie ld  (± )-3 -h yd ro xy -3 -(2 '-p y rid y l)p ro p y l-2 - 

amine (90), (±)-3-hydroxy-3-(3I-pyridyl)propyl-2-am ine (91) and 

(±)-3-hydroxy-3-(4 f-pyridyl)propyl-2-am ine (92) respectively as 

the ir dihydrochloride salts after treatment w ith  HC1. These products 

were m ixtures o f two racemates and the ratios o f each were 

estimated from  the corresponding 13c NMR spectra. Product (90) 

was estimated to be a 3:1 mixture, product (91) was estimated to be 

a 3:2 m ixture and product (92) showed one racemate w ith  only 

traces o f the other racemate.

H3ft

OH
1

HO. Js.
R

nh3 f/ J R 1 2cr

N

0H 2cr

N
H

nh3

2cr
N
H

(90) R=CH3 

(97) R=H
(91) R=CH3 

(98) R=H
(92) R=CH3 

(99) R=H

We also synthesised (±)-2-hydroxy-2-(2,-pyridyl)e thylam ine 

(97), (± )-2 -h yd ro xy -2 -(3 f-pyridy l)e thy lam ine  (98) and (±)-2- 

hydroxy-2 -(4 f-pyridyl)ethylam ine (99) in  order to use them as a 

com parison in  the k ine tic  studies. These compounds were 

synthesised from  th e ir corresponding pyridinecarboxaldehydes 

using the same procedure as before.
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To synthesise the quinolylmethylam ines we firs t attempted to 

reduce the corresponding readily available quinolinecarbonitriles. 

H ow ever the  p rocedu re  used by B a rr1 2 6  to  reduce 

pyridinecarbonitriles, namely catalytic hydrogenation at ca. 60 p.s.i. 

in  the presence o f Raney nickel, 130 produced the hydrochloride salt 

o f each quinolinecarbonitrile after acidification (Scheme 5.4).

( T ^ T
1. H2 /  Raney nickel, 

EtOH n
V

N
^  2. HC1

CN

— ►
. + A  .nh3

N v
H 2CI-

Scheme 5.4

An alternative route via the amide was used in  place o f the 

carboxylic acid. Isobutylchloroform ate and trie thy lam ine  were 

added to a solution o f 2 -quinolinecarboxylic acid in  acetonitrile. 

This formed an anhydride in  situ which upon addition o f acetonitile 

saturated w ith  ammonia gave 2-quinolinecarboxamide (93) in  87% 

yie ld  (Scheme 5.5 ) . 131 Reduction o f the 2-quinolinecarboxam ide 

(93) was carried out by heating at reflux w ith  1M BH3  solution in  

THF to give the crude amine . 132 Treatment o f the crude amine w ith 

6 M HC1 gave 2-quinolylm ethylam ine d ihydrochloride (94) in  45% 

yield (Scheme 5.5).
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0

1. CH3CN, Et3N, 
C1C02CH2CH(CH3 ) 2

--------------------- ►
, 0 H  2. CH3CN/NH3

87%
(93)

n h 2

0

45%

1

1. 1M BH3/THF

2. 6 M HC1

1

Scheme 5.5

^  N
H

(94)

n h 3

2c r

Using the same procedure w ith 3-quinolinecarboxylic acid and

4 -qu ino lineca rboxy lic  acid as s ta rtin g  m ateria ls gave 3- 

quinolylm ethylam ine dihydrochloride (95) and 4-quinolylm ethyl- 

amine dihydrochloride (96) respectively.

(95) (96)
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5.4 (c) Results and D iscussion

Using Stoner's spectrophotom eric assay system89, kinetic 

parameters fo r the enzymatic deamination o f each substrate were 

obtained, and the data are summarised in  Table 5.1. Errors fo r each 

substrate are quoted as an average o f computer generated errors 

calculated from  nine determinations o f kinetic data.

S ubstra te Km Vmax

Putrescine (3) 1.21 (±0.40) 1157 (± 200)

Cadaverine (6 ) 0.23 (±0.06) 2325(± 390)

(±)-2 -hydroxy-2 -(2 '- 

quinolyl)ethylam ine (81)

0.30 (±0.07) 1 . 8  (± 0 .2 )

(±)-2-hydroxy-2-(3 '- 

quinolyl) ethylamine (82)

0.35 (±0.09) 1.4 (±0.2)

(±)-2-hydroxy-2-(4 '- 

quinolyl)ethylam ine (83)

1.05 (±0.19) 1.7 (± 0.2)

(±)-2 -hyd roxy-2 -(2 '- 

pyridyl)ethylam ine (97)

0.24 (± 0.04) 3.8 (±0.2)

(±)-2-hydroxy-2-(3f- 

pyridy 1) ethylamine (98)

0.27 (± 0.05) 0.9 (± 0.2)

(±)-2-hydroxy-2-(4f- 

pyridyl)ethylam ine (99)

0.90 (± 0.10) 3.6 (± 0.2)

2-quinolylm ethylam ine (94) 0 . 1 0  (± 0 .0 2 ) 4.0 (±0.1)

3-quinolylm ethylam ine (95) 0.63 (± 0.10) 7.8 (± 0.2)

4-quinolylm ethylam ine (96) 0.16 (± 0.03) 5.5 (±0.2)

Table 5.1- Formulae numbers refer to the d ihydrochloride salts o f 

each substrate, the form  in  which they were tested. Km values are 

in  units o f mM and Vmax values are in  units o f jim ol mg- lh “ l.
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The compounds (± )-3 -h y d ro x y -3 -(2 f-q u in o ly l)-, (± )-3 - 

h y d ro x y -3 -(3 '-q u in o ly l)- and (± )-3 -h y d ro x y -3 -(4 '-q u in o ly l)- 

propy 1-2-amine dihydrochloride, (87), (8 8 ) and (89) respectively, 

were a ll found to be extremely poor substrates o f the pea seedling 

DAO. (±)-3-Hydroxy-3-(2f-pyridy l)-, (± )-3 -hydroxy-3-(3 '-pyridy l)- 

and (±)-3-hydroxy-3-(4f-pyridyl)propyl-2-am ine d ihydrochloride, 

(90), (91) and (92)) respectively, were also found to be poor 

substrates o f the pea enzyme. As such they d id  not display classical 

M ichaelis-Menten behaviour; therefore we were unable to make 

accurate determinations o f Km and Vmax-

From the data in  Table 5.1 i t  is obvious th a t a ll the 

compounds tested are oxidised at rates which are much slower than 

those o f the natural substrates, putrescine (3) and cadaverine (6 ). 

However, the Km values are somewhat d iffe ren t, w ith  a ll the 

substrates b ind ing strongly to pea seedling DAO and having a 

greater b ind ing  a ffin ity  fo r the pea enzyme than putrescine. 

Surprisingly, 2-quinolylm ethylam ine (94) and 4-quinolylm ethyl- 

amine (96) both have a greater b inding a ffin ity  fo r the pea enzyme 

than cadaverine.

This resu lt strengthens the suggestion by Barr1 2 6  tha t the 

presence o f a second prim ary amine group is no t required fo r 

substrate binding, and that Km values are dependent only on the 

in itia l interaction o f one prim ary amine group w ith  the pea enzyme 

and are independent o f the nature o f the second amine group.

From a comparison o f the kinetic parameters o f the hydroxy-

2 -pyridylethylam ines and hydroxy-2 -quinolylethylam ines, i t  can 

be seen that although the rate o f oxidation has decreased by about 

a h a lf w ith  the 2 '- and 4 '- qu ino line  derivatives, the b ind ing  

affinities o f the pyrid ine derivatives are only m arginally lower than 

tha t o f the qu ino line  derivatives. This is also the case when
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comparing the k inetic parameters o f the quinolylm ethylam ine 

substrates w ith  those o f pyridylm ethylam ines prepared and tested 

by Barr (Table 5.2) . 126

S ubstra tes Km Vmax

2  -py rid y  lme thy lamine 0.04 (± 0.01) 8 . 6  (± 0 .2 )

3 -py rid y  lme thy lamine 0.40 (± 0.06) 19 (± 2)

4-pyridylm ethylam ine 0.06 (± 0.03) 1 0  (± 2 )

Table 5.2- Results fo r pyridylm ethylam ines prepared and tested by 

Barr. 126  Km values are in  units o f mM and Vmax values are in  units 

o f gmol m g 'lh " l.

It  m igh t be expected tha t the steric effect o f the extra 

aromatic ring in  the quinoline derivatives (81)-(83) and (94)-(96) 

would make binding to the active site o f the enzyme more d ifficu lt. 

However, as seen from  Tables 5.1 and 5.2, the decrease in  binding 

a ffin ity  appears to be re la tive ly  sm all when com paring the 

quinoline derivatives w ith  the corresponding pyrid ine derivatives. 

This result suggests that the active site cofactor fo r the pea seedling 

DAO is contained w ith in  an enzyme cavity which is large in  nature 

and therefore can accommodate the larger rin g  size w ithou t 

affecting the binding.

Com parisons between the k in e tic  param eters o f the 

methylamines as a group to that o f the hydroxyethylam ines as a 

group, show tha t the methylamines are generally oxidised at a 

faster rate and b ind to the pea enzyme more e ffic ien tly  than the 

hydroxyethylam ines. Barr showed that the hydroxyl group has no 

influence on the catalytic process and therefore is not the cause o f 

these differences . 126  A possible reason could lie in  chain lengths o f
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the substrates. As discussed in  Chapter 4.1 the highest rates o f 

oxidation occur w ith  linear diamines o f carbon chain length 4-6. 

However, w ith  these pyrid ine and quinoline derivatives, the highest 

rates appear to occur when the distance between the nitrogens is 

three carbons. From this result it  seems unlikely that the creation o f 

a cyclic conform ation, as suggested by Equi et a l. 9 6  fo r linear 

diamines, occurs in  the catalytic process o f these pyrid ine  and 

quinoline derivatives. This suggests tha t although these aromatic 

substrates b ind to the same active site as linear diamines, they may 

experience a d ifferent catalytic process.

5.5 Inhibition  o f Diamine Oxidase bv Q uinoline and  

Pvridine Derivatives

5.5 (a) Introduction

The assay system used fo r the inh ib ition  studies was the same 

peroxidase-coupled procedure developed by Stoner e ta /, as we had 

used earlie r. 8 9  The method was altered sligh tly by the addition o f 

in h ib ito r to the assay m ixture. Each study consisted o f fo u r 

experiments at various concentrations o f in h ib ito r, the firs t o f 

which was a blank experiment w ith  no in h ib ito r present to provide 

a standard fo r comparison. The assay w ith o u t in h ib ito r was 

in itia te d  w ith  the add ition  o f enzyme im m ediately followed by 

substrate. In  the assay w ith  in h ib ito r present, the in h ib ito r was 

added after the addition o f enzyme and before the addition o f the 

substrate. This avoided oxidation o f the substrate occurring before 

the addition o f the inh ib ito r could take place.

The kinetics o f inh ib ition  were discussed earlier in  Chapter 3. 

In com petitive inh ib itio n  the intercept on the y-axis (Vmax) o f the
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Lineweaver-Burk p lo t ( 1 / V  vs. 1 /  [S]) is independent o f in h ib ito r 

concentrations, showing that Vmax is unaffected by com petitive 

in h ib itio n . The difference in  gradient between the plots w ith  

in h ib ito r and w ithout inh ib ito r gives an indication o f the efficiency 

in  the binding o f the substrate when the in h ib ito r is present. This 

can be represented by the equation,

Km*/K m= 1+[I] Ki (5.1)

where [I] is a fixed concentration o f inh ib ito r, Ki is the inh ib itio n  

constant and Km * is the apparent b ind ing  constant when a 

competitive inh ib ito r is present.

The apparent b inding constant K m *  was obtained at various 

concentrations o f substrate at a fixed concentration o f in h ib ito r [I] 

and then substituted in to  equation 5.1. This gave a value fo r the 

in h ib itio n  constant Ki which is a measure o f the strength o f the 

enzym e-inhibitor complex and thus shows the effectiveness o f the 

particular in h ib ito r being studied. For these studies three d ifferent 

concentrations o f inh ib ito r were used to calculate K m *  values and Ki 

is the average o f nine determinations.

There are many d ifferent types o f inh ib ition , as discussed in  

Chapter 2, and each type has its own characteristics. Compounds 

which are oxidised by the pea enzyme at a slow rate bu t which bind 

well to the active site possess the necessary characteristics to be 

e ffective com petitive  in h ib ito rs . Both the h yd ro xyq u in o ly l- 

ethylam ine substrates (81)-(83) and the quinolylm ethylam ine 

substrates (94)-(96) possess these characteristics and thus were 

chosen fo r our inh ib itio n  studies. We also repeated the inh ib itio n  

studies o f Barr on the hydroxypyridylethylam ines (97)-(99 ) . 126
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5.5 (b) Results and Discussion

Each system exhibited M ichaelis-Menten kinetics when a 

fixed concentration o f in h ib ito r was used in  the peroxidase-coupled 

assay w ith  putrescine as the substrate. The in itia l experim ent in  

which putrescine was oxidised w ith  no in h ib ito r present was 

followed by three fu rthe r experiments in  the presence o f a fixed 

concentra tion o f in h ib ito r. The concentrations chosen were 

determ ined by the b ind ing  a ffin ity  o f the in h ib ito r and were 

generally equal to the K m , 2  x K m  and 4 x K m  o f the inh ib ito r. Ki 

values were calculated as discussed in  Chapter 5.5 (a) and are 

reported as an average o f nine determ inations. Errors fo r K[ are 

quoted as an average o f the computer generated errors calculated 

for each concentration o f inhibitor.

Table 5.3 shows the Ki values in  mM fo r the compounds 

studied. The lower the value o f Ki the better the in h ib itio n  

properties o f the particular inh ib itor.
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In h ib ito r K i

(±)-2 -hydroxy-2 -(2 f- 

quinolyl)ethylam ine (81)

2.09 (± 0.69)

(±)-2-hydroxy-2-(3f- 

quinolyl)ethylam ine (82)

2.38 (± 0.84)

(±)-2-hydroxy-2-(4 '- 

quinolyl)ethylam ine (83)

2.99 (± 0.89)

(±)-2 -hydroxy-2 -(2 f- 

pyridyl)ethylam ine (97)

1.60 (± 0.46)

(±)-2-hydroxy-2-(3?- 

pyridyl)ethylam ine (98)

1.93 (± 0.53)

(±)-2-hydroxy-2-(4f- 

pyridyl)ethylam ine (99)

2.65 (± 0.85)

2-quinoly lme thy lamine (94) 1 . 0 2  (± 0.28)

3-quinoly lme thy lamine (95) 2.27 (± 0.77)

4-quinolylm ethylam ine (96) 1.53 (± 0.45)

2  -py rid y  lme thy lamine 0.32 (± 0.09)

3 -py rid y  lm ethy lamine 1.55 (± 0.46)

4-pyridylm ethylam ine 0.54 (± 0.11)

Table 5.3- Ki values are reported in  units o f mM and are the values 

obtained when inh ib ito rs  were tested on the pea seedling DAO 

catalysed deamination o f putrescine. Formulae numbers refer to the 

d ihydrochloride salts o f each substrate, the form  in  which they 

were tested. Samples o f 2-, 3- and 4-pyridylm ethylam ine were 

synthesised and tested by Barr. 126
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A ll o f the compounds tested were found to be com petitive 

inh ibitors o f the pea seedling DAO oxidation o f putrescine. The Vmax 

o f each oxidation was re la tive ly unaffected by the presence o f 

in h ib ito r, whereas the Km values increased w ith  increasing 

concentrations o f inhibitor.

The quinolylmethylam ines (94)-(96) had the lowest Ki values 

as a group apart from  the pyridy lm ethylam ines. W ith  the 

quinolylm ethylam ines as inh ib ito rs there was a notable reduction 

in  the rate  o f o x ida tion  o f putrescine a t low  substrate 

concentrations. Although the reduction o f the rate was not as great 

as that obtained fo r the pyridylm ethylam ines which were tested by 

B a rr , 1 2 6  th is can be explained by the differences in  b ind ing 

a ffin ities. Since the pyridylm ethylam ines have lower Km values 

(g rea te r b in d in g  a ffin itie s  to  DAO) than  those o f the 

quinolylmethylam ines, the pyridylm ethylam ines are more like ly  to 

show a greater a ffin ity  fo r the pea enzyme when competing against 

putrescine fo r the active site.

This difference in  Ki values due to the binding affin ities o f the 

inh ib ito rs can also be seen w ith in  the quinolylm ethylam ine group.

3-Quinolylmethylam ine (95) had the lowest binding a ffin ity  fo r the 

pea seedling DAO and was found to be the poorest in h ib ito r o f the 

DAO-catalysed oxidation. 2-Quinoly lme thy lamine (94) was the best 

in h ib ito r o f the group and had the highest b inding a ffin ity  fo r the 

pea enzyme. Another reason fo r the poor in h ib itio n  showed by 3- 

quinolylm ethylam ine (95) could lie  in  the fact that i t  is a better 

substrate fo r DAO than either 2 -quinolylm ethylam ine (94) or 4- 

quinolylm ethylam ine; thus the overall rate o f oxidation could be 

slightly increased by the oxidation o f 3-quinolylm ethylam ine.

Comparison o f the data obtained from  study o f the hydroxy- 

2 -qu ino ly le thylam ines and the hyd roxy-2 -pyridy le thy lam ines
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show s im ila r results to those o f the q u in o ly l- and p y rid y l- 

m ethylam ines. 2-H ydroxy-2-(2 '-pyridyl)e thylam ine (97) and 2- 

hydroxy-2-(3 f-pyridyl)e thylam ine (98) are better inh ib ito rs than 

the three hydroxy-2-quinolylethylam ines (81), (82) and (83). Also 

the two compounds which had the lowest binding affin ities fo r the 

pea DAO, 2 -hyd roxy-2 -(4 ,-qu ino ly l)e thy la m in e  (83) and 2- 

h y d ro x y -2 -(4 '-p y rid y l)e th y l-a m in e  (99) were the poorest 

inhibitors.

Looking at the data in  Tables 5.1 and 5.3 obtained from  the 

quinoline and pyrid ine derivatives, i t  can be seen tha t the extra 

steric bu lk o f the quinoline ring plays a part in  the decrease o f both 

substrate activ ity  and inh ib itio n  properties. The fact that the steric 

bu lk  has less influence on the Km and Ki values than the Vmax 

values again suggests it  is the catalytic process which is affected by 

the change in  size and not the binding a ffin ity.
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CHAPTER 6

Oxidation o f Substituted Thiophenes and Pyrroles By Pea

Seedling Diamine Oxidase

6.1 Introduction

Our aim in  this part o f the study was to compare the binding 

a ffin itie s  and rates o f oxidation o f substituted thiophenes and 

pyrroles w ith  those o f the pyrid ine and quinoline derivatives tested 

earlier. From these kinetic studies we could see i f  the change in  

electronic properties from  a “ rc-deficient” aromatic ring  to a “n- 

excessive” aromatic ring has a bearing on how the substrate binds 

to the enzyme, and i f  the rate o f oxidation is affected by electronic 

effects. The steric effects o f the d iffe ren t aromatic ring sizes can 

also be compared between the quinoline, pyrid ine  and pyrro le  

derivatives.

A comparison o f thiophene and pyrrole derivatives could help 

in  the efforts to fin d  out i f  the nature o f the second amine group 

has an im portan t role to play in  the binding and oxidation o f the 

substrate. The d irect substitu tion o f nitrogen in  the pyrroles fo r 

su lphur in  thiophenes means that we are able to see i f  a second 

amine is required fo r e ffic ien t b ind ing  and oxidation  o f the 

substrate.

6.2 Synthesis o f Substituted Thiophenes and Pyrroles 

6.2(a) Synthesis o f Substituted Thiophenes

2-(2'-Thienyl)ethylam ine is a very im portant component in  a 

number o f d ifferent biologically active materials. 133 These materials
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possess a n tib a c te ria l, 1 3 4  an tifunga l and anti-hypertensive 1 3 5  

activ ity among others. Due to this interest there has been a number 

o f d iffe ren t synthetic routes described fo r the synthesis o f 2 -(2 '- 

th ienyl) ethylamine.

The most recent route was by Harrington and Sanchez133 in  

1993 which was based on the oxygen to nitrogen m igration o f a 

th ieny la lcoho l linked  to a cyanuric ring  (Scheme 6 a). Base 

hydrolysis o f the isocyanurate and subsequent decarboxylation 

libe ra ted  the th ienylam ine. However, th is  m ethod was not 

convenient due to the high temperatures tha t were used in  the 

m igration stage o f the reaction. Instead we decided to use an older 

method developed by King and Nord in  1949136 which is based on a 

sim ilar reaction o f an aldehyde to that used fo r the synthesis o f the 

substituted pyridines and quinolines in  Chapter 5.

1. -70°C, n-BuLi, THF 
 ►
2. 25°C, CyCl3OH

230°C,
n-Bu4PBr

cyci3 = i  J

Th = 2-Thienyl

reflux, NaOH

Scheme 6 a
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The sta rting  m ateria l fo r th is synthesis o f substitu ted 

thiophenes was the corresponding thiophenecarboxaldehyde and 

again e ith e r n itrom ethane o r n itroe thane . Reaction o f 2- 

thiophenecarboxaldehyde and nitroethane, w ith  sodium hydroxide 

as the base, gave the sodium salt o f the 2 -thiophenenitroalcohol 

interm ediate (97) (Scheme 6.1). Treatment w ith  ice/water and 4M 

HC1 caused dehydra tion  o f in term ed ia te  (97) to  give the 

unsaturated compound 2-(2f-th ienyl)n itroethene (98) as yellow 

crystals in  75% y ie ld . 136 Reduction o f 2-(2f-thienyl)nitroethene (98) 

w ith  1M LiAlH 4  in  THF gave a crude amine which was partitioned 

between d ich lorom ethane and 6 M HC1 to produce 2 -(2 '- 

th ienyl)e thylam ine (99) as the hydrochloride salt in  60% yie ld  

(Scheme 6.1).

e x CHO
+ CH3N02

MeOH

NaOH
n
(97)

75%

OH

Na+
O"

H20 /  4M HC1

(99) 

Scheme 6.1

NH3c f

1. LiAlH4/THF

^  2. 6MHC1, ^  ' n ° 2

60% (9 8 )

Using the same procedure 3-thiophenecarboxaldehyde was 

converted in to  2-(3 '-th ienyl)n itroethene (100) and subsequently 

reduced w ith  ITAIH 4  to give 2 - (3 '- th ie n y l)e th y la m in e  

hydrochloride (101) in  an overall y ie ld  o f 81.5% (Scheme 6.2). 

S im ilarly, 2- and 3-thiophenecarboxaldehyde were condensed w ith
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nitropropane and the nitroalkenes were then reduced to give (±)-3 - 

^ '-th ie n y ljp ro p y l^ -a m in e  ( 1 0 2 ) and (± )-3 -(3 '-th ienyl)p ropyl-2 - 

amine (103), respectively. Both products were isolated as the ir 

hydrochloride salts and as racemic mixtures.

CHO
1. MeOH, NaOH

(100)2. H2 0 / 4M HC1, 
80%

( 101)

Scheme 6.2

(103)

6.2(b) Synthesis o f Substituted Pyrroles

In  order to make the alkylpyrroles required fo r our studies 

we firs t had to make the pyrrolecarboxaldehydes which would be 

condensed w ith  the nitroalkanes. The regioselective synthesis o f 

pyrro le  derivatives has been the subject o f much w ork in  past 

y e a r s .137d38 The regioselective in troduction  o f 2-acyl substituents 

in to  pyrroles can be achieved by a number o f common routes, fo r 

example Vilsm eier-Haack fo rm y la tio n 1 3 9  or d irect e lectrophilic
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substitu tion . 1 4 0  However, this is not the case fo r synthesis o f 3-acyl 

derivatives which has proved to be more d ifficu lt. Typical routes 

involve the in troduction  o f an electron w ithdraw ing group at C-2 

fo llow ed by e lectroph ilic  substitu tion  at C-4 and subsequent 

rem oval o f the 2-substituent. 141» 142 Some 1-alkyl-3-acylpyrroles 

were also obtained in  m oderately good yields by acid catalysed 

isom erisation o f the corresponding 2-substituted pyrro les . 14 3  A 

more recent synthesis by Kakushima et a l. 14 4  invo lving an AICI3 - 

catalysed Friedel-Crafts acylation o f l-(phenylsu lphonyl)pyrro le

(104) was carried out w ith  high yields and high regioselectivity at 

both the 2- and the 3-position o f pyrrole. However, attempts by 

Kakushima et al. to apply the ir method to introduce fo rm yl groups 

selectively had failed.

We adopted the method o f Kakushima et al.144 to make 1- 

(phenylsulphonyl)pyrrole-2-carboxaldehyde (105) (Scheme 6.3). 

Using l-(phenylsu lphonyl)pyrro le  (104) and 1,1-dichlorom ethyl 

m ethyl ether in  a Friedel-Crafts acylation gave (105) as white 

needles a fte r recrysta llisa tion  in  80% y ie ld . Condensation o f 

nitrom ethane w ith  l-(phenylsu lphonyl)pyrro le -2 -carboxaldehyde

(105) in  the presence o f ammonium acetate crystals gave l '-  

(phenylsulphonyl)-2-(2f-pyrrolyl)nitroethene (106) in  65% yie ld . 178 

Reduction o f (106) by 1M LiAlH4  in  THF and subequent addition o f 

HC1 to the reaction m ixture  gave 2 -(2 '-p y rro ly l)e th y la m in e  

hydrochloride (107) in  55% yield (Scheme 6.3).
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A1C1

C1CH2CH2 C1, 80%

S02Ph

(104)

1. LiAlHVTHF

2. HC1, 55%

(107)

Scheme 6.3

The Clauson-Kaas m ethod14 5  is used to convert 2-acyl-2,5- 

dim ethoxytetrahydrofurans in to  2-acyl-1-phenylpyrroles. We used 

the method o f Hamdan and Wasley179  who adapted this procedure, 

starting w ith  2,5-d im ethoxy-3-form yltetrahydrofuran (108) and 

heating at reflux w ith  benzenesulphonamide (109) and glacial acetic 

acid to give the 3-acyl product, l-(pheny lsu lphony l)pyrro le -3 - 

carboxaldehyde (110) in  51% yie ld  (Scheme 6.4). Condensation o f 

( 1 1 0 ) w ith  nitromethane in  the presence o f glacial acetic acid gave 

l'-(p h e n y lsu lp h o n y l)-2 -(3 ,-pyrro ly l)n itroe thene  (111) as yellow 

crystals in  73% yield. Reduction o f (111) using 1M UAIH4  in  THF 

produced a crude amine, which after treatm ent w ith  HC1 gave 2-(3'- 

pyrrolyl)ethylam ine hydrochloride (112) in  42% (Scheme 6.4).

Condensation o f l-(p h e n y lsu lp h o n y l)p y rro le -2 -ca rb o x - 

aldehyde (105) and l-(phenylsulphonyl)pyrrole-3-carboxaldehyde
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( 1 1 0 ) w ith  n itroethane fa iled  to produce the corresponding 

pyrrolylnitropropenes.

CHO
g. AcOH, reflux

51%och3 o = s = o  

nh2 

(109)(108)

g. AcOH 
73%

1. LiAlHVTHF
2. HC1, 42%

( 112 )

Scheme 6.4

6.3 Results and D iscussion

6.3 (a) S ubstitu ted  Thiophenes and Pyrroles as Substrates 

fo r Pea Seedling DAO

Using the same spectrophotomeric assay method as was used 

w ith  the quinoline and pyrid ine derivatives, i.e. Stoner's method , 89  

we obtained kinetic parameters fo r the DAO oxidative deamination 

o f each substrate. The data are summarised in  Table 6.1.
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Experiments were carried out three times using each substrate and 

the data are quoted as an average o f the nine determ inations. 

Errors are quoted as an average o f com puter generated errors 

calculated from  nine determinations o f kinetic data.

S ubstra te KM Vmax

Putrescine (3) 1.21 (± 0.40) 1157 (± 200)

Cadaverine (6 ) 0.23 (±0.06) 2325(± 390)

2 -(2 f-thienyl)ethylam ine (99) 0.42 (±0.09) 5.2 (±0.3)

2  - (3' -th ieny l) ethy lamine 

( 1 0 1 )

0 . 6 6  (± 0 .1 ) 3.3 (± 0.2)

2 -( 2  '-pyrro lyl)ethylam ine 

(107)

0.35 (±0.06) 18 (±3)

2-( 3 '-p yrro ly l) ethy lamine 

( 1 1 2 )

0.49 (±0.09) 15 (±2)

Table 6.1- Formulae numbers refer to the hydroch loride  and 

d ih yd ro ch lo rid e  salts fo r th ie n y l and p y rro ly l substrates 

respectively, the form  in  which they were tested. Km values are in  

units o f mM and Vmax values are in  units o f jxmol m g~ lh"l.

As observed w ith  the corresponding quinoline and pyrid ine 

derivatives, (±)-3-(2 '-th ienyl) propyl-2-am ine (102) and (±)-3-(3*- 

th ien y l)p ro p y l-2 -a m in e  (103) were found to be very poor 

substrates o f pea seedling DAO. This meant they d id  not display 

classical Michaelis-Menten behaviour and we were unable to make 

accurate determinations o f Km and Vmax-

Again a ll o f the compounds tested were oxidised by the pea 

enzyme at a rate which was much slower than that o f the natural 

substrates. The b ind ing a ffin ities fo r a ll o f the active substrates
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were low er than tha t o f cadaverine, b u t h igher than tha t o f 

putrescine. As w ith  the p y rid y l substrates (97)-(99) and qu ino ly l 

substrates (81)-(83) and (94)-(96), the optim um  distance between 

heteroatoms fo r highest oxidation rate appears to be three carbons. 

2-(2f-Thienyl)ethylam ine (99) has a slightly higher rate o f oxidation 

than 2-(3'-thienyl)ethylam ine (101) and 2-(2 '-pyrro lyl)ethylam ine 

(107) has about the same rate as 2-(3f-pyrro lyl)e thylam ine (112). 

This is again in  contrast to the optim um  chain length o f four to six 

carbons fo r linear prim ary diamines.

It is clear from  the data in  Table 6.1 that the rate o f oxidation 

o f the p y rro ly l substrates is approxim ately fou r times that o f the 

th ienyl substrates. However, the binding a ffin ities o f the p y rro ly l 

substrates are about the same as those o f th e ir th ie n y l 

counterparts. This shows that although the presence o f a second 

nitrogen is im portant in  the overall catalytic process, the absence o f 

a second nitrogen has little  affect on the binding o f the substrate to 

the active site o f the pea enzyme. Because a second nitrogen is not 

required fo r e ffic ien t b inding to the DAO enzyme, th is opens up 

many new areas fo r study in to  potential inh ib ito rs o f DAO w ith  the 

chance o f finding biologically active compounds.

From a comparison o f the kinetic parameters in  Tables 5.1 

and 6 . 1  i t  is also clear that the pyrrolylethylam ines are oxidised by 

pea DAO about ten times faster than the rates o f oxidation fo r 

hydroxy-2 -qu ino lyle thylam ines and approxim ately fo u r times 

faster than the rates o f oxidation fo r hydroxy-2 -p yridy le thy  1- 

amines. The reason fo r these differences in  oxidation rates could be 

due to e ither the decrease in  steric bu lk  going from  qu ino ly l 

substrates to p y rro ly l substrates, or it  may be due to the change in  

electronic properties from  a “^-deficient” aromatic ring  to a “n- 

excessive” arom atic ring. However, since there is also a general
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decrease in  oxidation rate when comparing the p y rid y l substrates 

w ith  the quinolyl substrates, it  seems more like ly that the reduction 

in  steric bu lk plays a larger part in  the increased oxidation rate o f 

the pyrro ly l substrates than the electronic properties o f its aromatic 

ring.

6.3 (b) S ubstitu ted  Thiophenes and Pyrroles as In h ib ito rs  

o f Pea Seedling DAO

The assay system used fo r the in h ib itio n  studies was a 

m odified version o f Stoner's method8 9  and was the same method 

used fo r in h ib itio n  studies o f the qu ino line  and p yrid in e  

derivatives. Each system exhibited M ichaelis-Menten kinetics fo r 

the peroxidase-coupled assay w ith  putrescine as the substrate. Ki 

values were calculated as discussed in  Chapter 5.5 (a) and are 

reported as an average o f nine determ inations. Errors fo r Ki are 

quoted as an average o f the computer generated errors calculated 

for each concentration o f inhibitor.

In h ib ito r K i

2-(2'-thienyl)ethylam ine (99) 1.43 (± 0.42)

2-(3f-thienyl)ethylam ine (101) 1.91 (± 0.55)

2-(2 '-pyrrolyl)ethylam ine (107) 1.33 (±0.36)

2-(3 '-pyrrolyl)ethylam ine (112) 1.56 (± 0.48)

Table 6.2- Ki values are reported in  units o f mM and are the values 

obtained when inh ib ito rs  were tested on the pea seedling DAO 

catalysed deamination o f putrescine. Formulae numbers refer to the 

d ihydrochloride salts o f each substrate, the form  in  which they 

were tested.
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As w ith  the quinoline and pyridine derivatives, the thiophene 

and pyrrole derivatives were found to be com petitive inh ib ito rs o f 

the DAO oxidation o f putrescine.

There was a notable reduction in  the rate o f oxidation o f 

putrescine at low substrate concentrations fo r a ll the substrates 

tested. The best results were achieved fo r 2 -(2 '-p y rro ly l)e th y l- 

amine (107) and 2-(2f-thienyl)ethylam ine (99). This result was to 

be expected since the b ind ing a ffin ities o f these two substrates 

were higher than those o f 2-(3 '-pyrro lyl)e thylam ine (112) and 2- 

(3 '-th ienyl)e thylam ine (101). It is also w orth  noting tha t the Ki 

values fo r these compounds may have been affected by the ir own 

oxidation during the assay procedure. This means they may have 

lower Ki values than those recorded.

Comparison o f the kinetic data in  Tables 5.3 and 6.2 shows 

that overall the methylamines are the best inh ib ito rs  o f a ll the 

substrates tested. Their high binding a ffin ity  w ith  the pea enzyme 

would account fo r th is result. The reason behind th e ir h igher 

b inding a ffin ities and thus the ir increased in h ib itio n  properties 

appears to be the smaller side arm o f the substituent m ethyl group 

compared to the ethyl group. Due to time restraints we were unable 

to synthesise and test the th ienyl- and pyrrolyl-m ethylam ines. By 

considering previous results these compounds are like ly  to be 

better inh ib ito rs  than the corresponding th ieny l- and p y rro ly l- 

ethylamines.
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CHAPTER 7

Use of Diamines in the Synthesis o f Cisplatin Analogues

7.1 Introduction

The classic coordination complex c is-d iam m ined ich lo ro - 

platinum  (II) (113), better known as cisplatin, has been the subject 

o f much attention over recent years because o f its activ ity  towards 

certain types o f tum ours . 1 4 6 ’ 147 Details o f the mechanism o f action 

o f this antitum our drug are s till not fu lly  understood, bu t there is 

evidence to indicate that the biological activ ity is due to binding o f 

cisplatin to DNA thus inh ib iting replication.

During studies in  the early 1960s, Rosenberg e ta / . 148 noticed 

a curious phenomenon when an electric fie ld  was applied across 

platinum  electrodes immersed in  E. coli cells which were growing in  

the presence o f ammonium chloride. The bacteria d id  not divide 

norm ally but grew in to  filam ents up to 300 times th e ir norm al 

length. An electrolysis product from  the electrodes, shown to be cis- 

[P t(N H 3 ) 2 C I4 ] (114), was responsible fo r th is  e ffec t. 1 4 9  

Subsequently, other platinum  complexes, including cisplatin, were 

found to induce filamentous growth in  bacteria.

It was suggested that since these active platinum  compounds 

suppressed cell d ivision w ithout k illin g  the bacteria, then they may 

halt the rapid growth o f tum our cells w ith  little  toxic ity to the host 

an im al. 1 5 0 ’ 15 1  On testing cisplatin  was found to be particu la rly  

active against a wide varie ty o f tumours and c lin ica l tria ls  were 

subsequently started.

Now one o f the most w idely used anticancer drugs in  the 

world, both by itse lf and in  combination chemotherapy, 147 cisplatin
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has been used successfully in  the treatm ent o f bladder, lung, head 

and neck, and especially testicu lar and ovarian c a n c e rs .152*153 

However, severe toxic side effects from  cisplatin  have lim ited  its 

use in  chemotherapy.

Efforts to reduce tox ic ity  and to give a broader range o f 

therapeutic a c tiv ity  led to c is -d ia m m in e ( 1 , 1 -c y c lo b u ta n e - 

dicarboxylato)platinum  (II) (115), known commonly as carboplatin, 

which has sim ilar activ ity  to that o f cisplatin, bu t is less toxic . 1 5 4  

Other second generation drugs include malonatoplatinum (116) and 

DACCP (117).

a ^ n h 3

Pt
/  \

Cl nh3

(113)

Cl

Cl

Cl
I

Pt
I
Cl

(114)

nh3

nh3

■ o  ^ n h 3

o  nh3

(115)

o
II
c-

h2

\  / -
R

/  \
0  N"

H2

(116)

\  /  
R

/  \h o2c

o
(117)

7.2 Mechanism o f A ction  o f C isp la tin

Both c isp la tin  and the corresponding tran s -isom er o f 

diam minedichloroplatinum  (II) have two labile chloride ligands and 

two amine ligands that are ine rt to substitution under biological 

cond itions . 15 5  However, trans-diam m inedichloroplatinum  (II) is
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inactive, as are the trans-isomers o f most o f the biologically active 

platinum  complexes. Monofunctional complexes, fo r example chloro- 

diethylenetriam ineplatinum  (II), containing jus t one labile ligand 

are also inactive towards most tumours. These findings suggest that 

chemical reactions o f the p la tinum  complexes responsible fo r 

antitum our activ ity  require b ifunctiona l attachm ent to biological 

molecules.

Other agents which produce filamentous growth in  bacteria, 

such as hydroxyurea and UV radiation, are known to in h ib it DNA 

synthesis.156 Thus, a sim ilar mechanism was suggested fo r platinum  

a n titu m ou r com pounds. This theory was strengthened by 

experiments measuring the rates o f synthesis o f DNA and RNA in  

cells treated w ith  c isp la tin  by m onitoring the incorpora tion  o f 

radiolabelled precursors. A t therapeutic doses o f cisplatin, DNA 

synthesis was p re fe re n tia lly  in h ib ite d  over RNA and p ro te in  

synthesis.157*158 The inactive trans-isomer inh ib ited  DNA synthesis 

to only a m inor extent at sim ilar doses. These results suggest that 

selective in h ib itio n  o f DNA synthesis is responsible fo r cisplathTs 

antitum our activity. Specifically, cisplatin is thought to b ind directly 

to DNA, rendering it  unsuitable as a template fo r replication.

Possible reasons behind the inactiv ity  o f trans-isomers and 

the activ ity o f the cis-isomers are thought to be due to d ifferentia l 

cellular uptake rates fo r the two isomers and/or repair o f the ir DNA 

adducts. Another possib ility is that adducts form ed on DNA by cis- 

isomers are inherently more effective at inh ib iting  replication than 

those o f the trans-isomers.

page 124



7.3 In teractions o f P latinum  Compounds w ith  DNA

The surface o f the DNA double helix is characterised by major 

and m inor grooves and is composed o f repeating deoxyribose 

phosphodiester units attached to alternating purine bases, adenine 

and guanine, and pyrim id ine  bases, cytosine and thym ine. The 

double helix is stabilised by hydrogen bonds between guanine and 

cytosine and between thym ine and adenine (Figure 7.1). The major 

groove o f DNA is at the top o f each base pair and the m inor groove 

is at the bottom.

n— H

H— NIN

ThymineAdenine

S =sugar

H— N

N— H

Guanine Cytosine

Figure 7.1

Under neutral conditions, p latinum  binds to the N-7 atom o f 

guanine, the N-7 and N -l atoms o f adenine, and the N-3 atom o f 

cytosine (Figure 7 .1).159 The atoms which are involved in  base
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pairing, i.e. N -l o f adenine and N-3 o f cytosine are less available fo r 

b ind ing  than the more exposed sites in  the grooves. Also 

electrostatic po ten tia l calculations ind icate th a t the guanine 

carbonyl group enhances the basicity o f the N-7 atom, while the 

amino group in  adenine reduces the relative basicity o f the N-7 

atom .160’^ 1 In conclusion the N-7 atom o f guanine is exposed on 

the surface o f the m ajor groove making i t  very accessible to 

platinum  binding, and it  is also the most basic nitrogen relative to 

the other bases.

Once the p latinum  has bound to a base there are several 

d iffe re n t ways in  which b ifunctiona l b ind ing  can take place. 

B ifunctional b ind ing to two sites on a single base, cross-links 

between two bases on opposite strands o f the helix, DNA-protein 

cross-links and intrastrand cross-links between two bases on the 

same DNA strand have a ll been proposed as being responsible fo r 

the antitum our activ ity  o f cisplatin. Interstrand cross-linking o f 

DNA was thought to be the most like ly  o f these b ind ing modes to 

explain the activity o f cisplatin.162 However, during experiments to 

correlate interstrand cross-linking w ith  cyto toxic ity  o f cisplatin, 

none o f these studies measured the amount o f in trastrand cross- 

linking among the cisplatin-DNA adducts.163 Also long term  studies 

o f cancer patients suggested tha t patients who benefited from  

c isp la tin  treatm ent had measurable in tra s tra n d  cross-links 

compared w ith  patients who were not cured w ith  cisplatin.164 It has 

been suggested that the intrastrand cross-linking affects the DNA 

base sequences, thus in h ib itin g  DNA replication, leading to cell 

death.165 Further work on the chemical and structura l nature o f 

DNA cross-linking w ith  p la tinum  compounds is required to help 

find  the cause o f cisplatin antitum our activity.
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7.4 Synthesis o f C isp la tin  Analogues

7.4(a) In tro d u c tio n

A cisplatin analogue can be described by a structure (Figure

7.2), where X is a leaving group and A is an amine or other firm ly  

bound ligand. The X group is m ainly responsible fo r so lub ility o f the 

complex. When A is kept unchanged, the nature o f X determines the 

rate o f its substitution, and thus the antitum our effectiveness o f the 

a n a l o g u e .  1 6 6 d 6 7  Useful an titum our properties are norm ally 

associated w ith  interm ediate la b ility  o f the Pt-X bonds. Complexes 

w ith  h igh ly  lab ile  ligands are very toxic, w hile strongly bound 

ligands give rise to kinetically ine rt complexes. The exception to this 

rule is the bidentate dicarboxylate ligands. Also, the la b ility  o f a 

leaving group depends, in  part, on the nature o f the ligand trans to 

it  (due to the “ trans -effect” ).168

\  /
P t

/  \
Figure 7.2

The role o f the two A groups is less clear, bu t since they are 

relatively d iffic u lt to replace it  is assumed that they accompany the 

p la tinum  atom to the b io log ical target. This means tha t they 

represent a m ajor facto r in  governing the pharm acokinetic 

behaviour, the penetration in to  the cells and the interaction w ith
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DNA. A number o f non-leaving groups have been used, m ainly 

amines, from  simple ammonia to cyclic aliphatic amines.

Few cisplatin  analogues incorporating linear diamines had 

been reported, and these were m ain ly restricted  to 5- o r 6- 

membered rings when bidentately bonded to platinum . Nowatari 

prepared some 7-membered chelates and several o f these, 

particu larly those containing substituted putrescines, showed high 

therapeutic ratios towards L I 210 cells in  mice.169

The aim o f our work was to use putrescine derivatives which 

had already been shown to possess antib iotic activ ity as therapeutic 

ligands in  platinum  complexes. W ith no examples o f unsaturated 

diamines being used in  platinum  complexes, we decided to use cis-

l,4-diam inobut-2-ene (118) (unsaturated putrescine) as a starting 

point fo r our synthesis o f cisplatin analogues. Our target compounds 

were therefore, c is-l,4 -d iam inobut-2 -ene(d ich lo ro)p la tinum  (II)

(119) and cis-diam inobut-2-ene( 1', 1 '-cyclobutanedicarboxylato)- 

platinum  (II) (120).

o —c,

o - c

( 120)(119)(118)
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7.4(b) Synthesis o f cis- 1 .4 -D iam inobu t-2 -ene

Previous syntheses o f putrescine and cadaverine derivatives 

had been carried out w ith in  our research group by Equi125 by 

converting dimesylate compounds into  diazides, and then catalytic 

reduction o f the diazides to y ie ld  the diamines. However, in  this 

work we used a more convenient method which d id  not involve the 

use o f unstable azides.

Methanesulphonyl chloride was added to a solution o f cis-but- 

2-ene-l,4-dio l in  THF in  the presence o f triethylam ine to give cis-

l,4-dim ethylsulphonylbut-2-ene (121) in  85% yie ld  (Scheme 7.1). 

Reaction o f dimesylate (121) w ith  potassium phthalim ide gave cis- 

diphthalim idobut-2-ene (122) in  very poor yields o f less than 10% 

(Scheme 7.1). Problems w ith  the in s o lu b ility  o f potassium  

phthalim ide were s ligh tly  im proved by using the phase transfer 

catalyst tetram ethylam m onium  brom ide, however th is fa iled to 

improve the yield. This reaction was carried out at 100 °C and since 

the dimesylate (121) was unstable and decomposed quickly at room 

temperature i t  is like ly  that the high temperature o f reaction was 

responsible fo r the poor yields.

We then used the method o f Feigenbaum and Lehn,170 which 

again uses potassium phthalim ide, but starts w ith  a dibrom ide. To 

make the dibrom ide, phosphorus tribrom ide was stirred  w ith  cis- 

but-2-ene-l,4-d io l at 0 °C giving cis-l,4-d ibrom obut-2-ene (123) 

as a colourless o il in  81% y ie ld  (Scheme 7.1). Treatm ent o f 

d ibrom ide (123) w ith  potassium phtha lim ide  and a cata lytic 

amount o f potassium iodide gave cis-diphthalim idobut-2-ene (122) 

in  62% yield. Cleavage o f the phthalim ide groups was achieved by 

heating at re flux w ith  a 1:1 m ixture o f concentrated HC1 and glacial
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acetic acid to give cis- 1,4-diam inobut-2-ene in  78% y ie ld  as the 

dihydrochloride salt (124).

OMsOH
( 121)

OMsOH

K+ NPhth. ,TBAB, 

DMF 100°C 

< 10%

K+ NPhth., KI NPhth
(122)

NPhth

(123)

c. HC1 /c . AcOH, 

130°C, 78%Ms = — S-CHa

K+ NPhth = +K- N

(124)

Scheme 7.1

7 .4(c) S ynthesis o f P la tin u m  P recursors and C isp la tin  

Analogues

To make the c isp la tin  analogues there are two or three 

common platinum  complexes which are a ll combined w ith  diamines 

by various methods to y ie ld  the analogues. The common starting 

material fo r these precursors is potassium tetrachloroplatinate (II)

(125).
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An aqueous solution o f potassium tetrachloroplatinate (125) 

and dim ethylsulphoxide was allowed to stand u n til the solution 

turned yellow and yellow crystals appeared. These yellow crystals 

were filte red  then washed w ith  water to give cis-d ich lo ro -b is - 

(d im ethylsu lphonyl)p la tinum  (II) (126) in  70% y ie ld  (Scheme

7.2).171 The silver salt o f 1,1-cyclobutanedicarboxylic acid (127) 

was prepared by s tirrin g  1,1-cyclobutanedicarboxylic acid w ith  

NaOH resulting in  the sodium salt, which was subsequently stirred 

in  darkness w ith  AgN03 fo r 24 hours.

Reaction o f cis-dichloro-bis-(dim ethylsulphonyl)platinum  (II)

(126) w ith  the silver salt o f 1,1-cyclobutanedicarboxylic acid (CBDC)

(127) in  darkness fo r 24 hours gave the p latinum  complex cis-bis- 

dim ethylsulphonyl( 1, l-cyclobutanedicarboxylato)platinum (II)

(128) as colourless crystals in  59% yield (Scheme 7.2). Two attempts 

were then made to complex (128) w ith  cis- 1 ,4-d iam inobut-2-ene 

(124). The firs t attem pt was to add the diam ine (124) to a hot 

aqueous solution o f platinum  precursor (128) and s tir the m ixture 

at reflux.172 The resulting product was a black solid which appeared 

to be the p la tinum  complex c is -1 ,4 -d ia m in o b u t-2-ene(1 ', 1f- 

cyclobutanedicarboxylato)platinum (II) (120) from  the in fra -red 

and mass spectra (Scheme 7.2). However, th is solid contained 

platinum  metal im purities and was insoluble in  a ll common solvents 

making purification extremely d ifficu lt.

The second attem pt was to heat the platinum  precursor (128) 

w ith  diam ine (124) at 40 °C. This should form  a monodentate 

intermediate172 which would then be heated at reflux fo r 6 hours to 

form  the product c is-l,4 -d iam inobut-2 -ene(C B D C )p la tinum (II)

(120) (Scheme 7.2). This method proved unsuccessful, w ith  starting 

materials being retrieved and no evidence o f product (120) by 

spectroscopic analysis.
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/  \

(125)
(126)

C-OH 1. NaOH, H20
2. AgN03, 
darkness

C-OH C-O'Ag

Intermediate
H20,
100°C

( 120)
Scheme 7.2

In an attem pt to fin d  out i f  these problems were caused by 

the c is - l,4 -d iam inobu t-2 -ene  (124) o r w hether i t  was the 

experimental procedure, we repeated the firs t method combining 

the platinum  precursor (128) w ith  1,4-diaminobutane (putrescine) 

(3) and w ith  trans-(-)-l,2-diam inocyclohexane. Reacting putrescine
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(3) and (128) gave colourless crystals o f cis- 1,4-diam inobutane- 

( l ,, l l-cyclobutanedicarboxylato)platinum  (II) (129), bu t in  a very 

poor y ie ld  o f 10%. trans-(-)- 1,2-Diam inocyclohexane also gave 

colourless crystals in  67% yie ld  when combined w ith  (128), which 

were shown to be the lite ra tu re  compound c is -(tra n s -(-)-1,2- 

diaminocyclohexane)(1', 1 f-cyclobutanedicarboxylato)platinum  (II) 

(1 3 0 ).172 However both o f these products were only sparingly 

soluble in  water and were also d ifficu lt to purify.

(129) (130)

A lthough attempts to make the required complex cis-1,4- 

diam inobut-2-ene (CBDC)Pt (II) (120) had proved unsuccessful, 

analysis o f the black product had appeared to suggest that (120) 

was present along w ith  other p latinum  im purities. Encouraged by 

these signs and the success in  making (130), we adopted a d ifferent 

approach to the synthesis o f (120). We decided to add the cis-1,4- 

diaminobut-2-ene (124) d irectly to the platinum  salt instead o f via 

the dime thy lsulphoxide precursor (128).

Again starting w ith  potassium tetrachloroplatinate (II) (125), 

we heated cis-l,4-diam inobut-2-ene (124) to 50 °C, m aintaining a 

neutral pH w ith  NaOH u n til no fu rther adjustment was required. As 

the reaction m ixture cooled to room temperature an orange/brown 

precipitate o f cis-d ich lo ro (l,4 -d iam ino bu t-2 -e ne )p la tin u m  (II)

(119) was formed in  83% yield (Scheme 7.3).173 This compound was 

only sparingly soluble in  water and could not be purified further. So
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the crude solid was suspended in  water and heated to 50 °C w ith  

the sodium salt o f 1,1-cyclobutanedicarboxylic acid, and then the 

reaction m ixture was heated at reflux fo r 15 hours. The product on 

cooling was a sim ilar black solid to that o f the product from  the firs t 

two methods; it  was insoluble and therefore impossible to purify.

C CL Cl m2 0i
NH* + \ R /  H20, pH 7 ,50°C ^  f ~  W

c / \ ,  83% S O '

(124) (125) (119)

Na2+ CBDA" /  
100°C

c
o

H2 II

N\  / ° - \
/  R\  /  N o - ch2 ii

o

0
Scheme 7.3 (120)

The inso lub ility  o f the target compounds (119) and (120) had 

not only caused problems w ith  p u rifica tio n  methods, b u t the ir 

in so lu b ility  m eant tha t they were o f lim ite d  use as poten tia l 

antitum our agents. In  order to progress any fu rth e r w ith  these 

compounds we had to address the inso lu b ility  problem  and the 

easiest way to do this was to find  an alternative leaving group.

Kawai e t a/.174 have shown that the enol form  o f 2,4-dioxo- 

pentanoic acid (131) (Figure 7.3) acts as a bidentate ligand w ith  

platinum  compounds. Also there are two possibilities fo r binding o f

2 ,4 -d ioxopentano ic  acid to  p la tin u m , g iv in g  e ith e r the

page 134



acetylacetonate form  (Figure 7.3a) or the a-hydroxycarboxylate 

form  (Figure 7.3b). The acetylacetonate form  showed high water 

solubility due to the existence o f a carboxylate ion.

o o
II II

O OH
II 1

II
O

II
0

(131)

\  /  

II 1
o  o AO O \

(a, 8
II

(b )  °

Figure 7.3

We decided to synthesise 2,4-dioxopentanoic acid (131) and 

then combine it  w ith  the p la tinum  complexes conta in ing the 

diam ine cis-l,4 -d iam inobu t-2 -ene  (124) thus im proving  the 

solubility.

2,4-Dioxopentanoic acid (131) was obtained from  acetone in  

two steps. Condensation o f acetone w ith  d im ethyl oxalate gave 

m ethyl 2,4-dioxopentanoate (132) (Scheme 7.4).175 Base hydrolysis 

o f m ethyl ester (132) w ith  NaOH afforded the product 2,4- 

dioxopentanoic acid (131) in  30% yield.

A t th is stage the desired platinum  complex cis- 1,4-diam ino- 

but-2 -ene(2-hydroxy-4-oxo-2-pentanoato)p la tinum  (II) (133) 

could be prepared by treatm ent o f either d in itra to (l,4-d iam inobut- 

2-ene)platinum  (II) or d ihydroxo(l,4-d iam inobut-2-ene)p latinum
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(II) (Scheme 7.4). However, due to time constraints we were unable 

to continue w ith  the synthesis.

MeCbCCCbMe ,OMe
MeMe Me NaOMe, MeOH, 

68%
(132)

nh2

,OH
Me

Me
(131)

Pt(OH)2
(133)

Scheme 7.4

A lthough in so lu b ility  o f the target compounds (119) and

(120) caused problems and hindered the synthesis o f suitable drug 

candidates, there is p lenty o f scope fo r fu ture development. There 

are a number o f diamines made w ith in  the group by Cook et al.176 

w hich have shown an tifunga l a c tiv ity  and can be used as 

alternative ligands to cis-l,4-diam inobut-2-ene (124). W ith this in  

m ind and w ith  the importance o f find ing  less toxic antitum our 

drugs than those available today, studies should continue in to  

try ing  these diamines as possible ligands fo r incorporation in to  

cisplatin analogues.
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CHAPTER EIGHT

Experimental

8.1 General Details

M elting  po in ts were measured on a K o fle r hot-stage 

apparatus or a Gallenkemp melting po in t apparatus. Boiling points 

refer to the oven temperature using a Kugelrohr apparatus. In fra  

red spectra were obtained on Perkin Elmer 580 and P I000 

spectrometers. Nuclear magnetic resonance spectra were recorded 

on a Perkin Elmer R32 spectrometer operating at 90 MHz, or a 

Bruker WP200-SY spectrometer operating at 200 MHz (5h ) or 50.3 

MHz (5c). The m u ltip lic itie s  o f the 13c NMR spectrum  were 

determined using DEPT spectra w ith  pulse angles o f 0 = 90° and 0 = 

135°. Spectra were recorded w ith  e ither tetram ethylsilane at 0 

ppm or the NMR solvent as the internal standard and J values are 

approxim ations measured from  the corresponding NMR spectra. 

Electron im pact mass spectra were obtained using Kratos MS 12 or 

MS 902 spectrometers. Elemental analyses were perform ed w ith  a 

Carlo-Erba 1106 elemental analyser.

Analytica l and preparative th in  layer chromatography were 

carried out in  the solvent stated on Merck Kieselgel 60F plates o f 

0.25 mm and 2 mm th ickness resp ec tive ly . D iam ine 

d ihydrochlorides were detected using n in h yd rin  and a ll other 

compounds by iodine, van illin /2M  H2S04/Et0H or the Dragendorff 

reagent. Chromatographic pu rifica tion  was carried out by flash 

column chromatography using Merck Kieselgel 60 (70-230 mesh) or 

ICN S ilica  32-66 (60 mesh). H igh Perform ance L iq u id
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Chromatography (HPLC) was carried out on Spectra-Physics SP8800 

and P4000 pumps and detection was obtained on UV2000 and 

Spectra 100 u ltrav io le t detectors. The HPLC solvent system used 

was methanol and water (70:30) on a reverse phase silica column 

w ith an octadecylsilane bonded phase.

A ll solvents were p u rifie d  using standard techniques.180 

Tetrahydrofuran (THF) and d ie thyl ether were dried by d istilla tion  

from  sodium -benzophenone im m edia te ly before use, and 

dichloromethane was dried by d istilla tion  over calcium hydride; a ll 

these distillations were carried out under nitrogen. Organic solvents 

were dried using either anhydrous sodium sulphate or anhydrous 

magnesium sulphate, and solvents were removed under reduced 

pressure below 50 °C.

8.2 Extraction o f Diamine. _Qxidase__LEC 1.4.3.6) from Pea 

Seedlings6

Step 1

Pea seeds (500 g), varie ty 'F illbasket1, were soaked in  tap 

water fo r 24 h. The water was changed ca. 4 times. The pea seeds 

were then sown th ick ly  in  Perlite (4-6 cm deep) and covered in  

Perlite (1-2 cm). They were allowed to germinate and grow in  the 

dark fo r 10-14 d u n til the shoots were 5-10 cm ta ll. Note: the 

Perlite was kept moist throughout but not too wet since th is was 

found to reduce germ ination. The shoots were stripped o f the ir 

roots, washed free o f growing medium, drained and weighed (1-1.5 

kg). The harvested shoots were kept cool throughout the follow ing 

operation. The peas were m inced using a pre-cooled W aring
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blender. They were then strained through cotton mesh and the 

juice was squeezed out. The solid residue was mixed w ith  0.1 M 

potassium phosphate buffer (pH 7, 1 m l/g  o f material) and the juice 

was squeezed out as before. A second extraction using the same 

potassium phosphate buffer (0.5 m l/g  o f m aterial) was performed. 

The total extract (2-3 litres) was cooled to < 5 °C.

S tep 2

Ethanol/chloroform  (2:1 v /v , 30 m l per 100 m l o f extract) 

was cooled to -10 °C and added to the extract over 30 min. Care 

was taken to ensure that the temperature o f the extract d id  not rise 

above 5 °C during this addition. The m ixture was allowed to stand 

fo r ca. 1 h at 0-5 °C a fter which the inactive precipitate was 

removed by cen trifuga tion  at 3000-4000 g fo r 20 m in. The 

supernatant liq u id  was collected and saturated w ith  ammonium 

sulphate (45 g/100 m l) and the temperature was allowed to rise to 

10 °C. A solid separated and floated. The lower liqu id  was siphoned 

o ff and discarded. The slurry was centrifuged at 3000 g fo r 10-15 

m in. The curd collected was mixed w ith  0.02 M phosphate buffer 

(pH 7, 400-500 ml) and allowed to stand overnight.

Step 3

The so lu tion  was stirred  fo r 1.5 h at 15-18 °C and the 

precipitate was removed by centrifugation at 3000-4000 g fo r 20 

m in. The supernatant was again saturated w ith  amm onium  

sulphate (200-300 g) and le ft fo r 1.5 h at 8-10 °C. It was then 

centrifuged at 3000-4000 g fo r 20 m in. The curd was mixed w ith  

0.2 M phosphate buffer (pH 7, 20 m l). The dialysis tubing was pre­
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soaked in  d istilled  water fo r ca. 2h. The solution was dialysed in  a 

30 cm tube (diameter 15 mm) fo r 2-3 h w ith  cold running water. 

Dialysis was then carried out w ith 0.005 M phosphate buffer (pH 7, 

1 litre ) over 36 h at 0-4 °C. The buffer was changed twice during 

this period.

Step 4

The dialysed m aterial was centrifuged at 3000 g fo r 10-20 

m in to remove inactive precipitate. The supernatant liq u id  was 

adjusted to pH 5 by slow addition o f 0.05 M acetic acid at ca. 5 °C 

then allowed to stand fo r 1 h at 0-4 °C . The precip ita te  was 

collected by centrifugation and tritu ra ted  w ith  water (20 m l). The 

pH was adjusted to pH 7 using 0.05 M potassium hydroxide to 

dissolve the precipitate and then to pH 5 w ith  0.05 M acetic acid. 

The so lution was le ft fo r 1 h and centrifuged to collect the 

precipitate. The precipita te obtained was taken up in  0.01 M 

phosphate buffer (pH 7, 1 m l/100 g o f seedlings harvested). It was 

stored in  the freezer (in  0.5 m l batches) at ca. -20 °C and was stable 

fo r many months.

The yie ld  was ca. 30 mg per kg o f peas. Protein concentration 

was ca. 8 mg per m l o f enzyme so lu tion  [See Appendix fo r 

calculation].

D eterm ination o f Protein Concentration124

Coomassie b rillia n t blue G was prepared as a 0.06% (w /v) 

solution in  3% perchloric acid. The solution was stirred overnight 

and filte red to remove any undissolved material.
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A standard graph was determ ined using Bovine Serum 

Album in (BSA, 1 m g/m l phosphate buffer pH 6.3).

A typical cuvette contained;

1 ml

1000 jul - x gl

X(ll

Dye

Distilled water

BSA

where x = 5 to 50 \xl

The experim ent was carried out twice and the average p lo t 

was used to determine the prote in concentration o f the unknown 

DAO samples (replacing BSA w ith  DAO in  the cuvette) [See 

Appendix].

Spectrophotom etric Assav89

The kinetics o f the DAO-catalysed oxidation o f putative 

substrates were determ ined according to the method o f Stoner.89 

This involved a peroxidase-coupled assay (horseradish peroxidase, 

EC 1.11.1.7, from  Sigma) to m onitor continuously the hydrogen 

peroxide released during diamine oxidation at 25 °C; using 70 mM 

phosphate b u ffe r (pH 6.3), in  the presence o f 3 -m ethyl-2- 

benzothiazolinone hydrazone (MBTH) and 3-(d im ethylam ino) 

benzoic acid (DMAB). Oxidative coupling generated stoichiom etric 

quantities o f an indam ine dye w ith  a characteristic absorbance 

maximum at 595 nm. Rates were determ ined d ire c tly  in  the 

spectrophotometer.
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Stock solutions were prepared as follows;

DMAB 18 mM (29 .7  m g /1 0  m l

phosphate buffer pH 6.3)

MBTH 0.6 mM (12.9 m g/100  m l

d istilled  water)

Peroxidase 0.68 mg/2 m l phosphate buffer

pH 6.3

Pea Seedling DAO 0.03-0.06 m g/m l phosphate

buffer pH 6.3 

A typical 1 cm path length cuvette contained;

2.5 m l Phosphate buffer pH 6.3

100 \i\ MBTH

170 jil DMAB

50 \i\ peroxidase

25 \l\ pea seedling DAO

300 \i\ substrate o f varying concentrations

Method fo r making up substrates o f varying concentrations:

From a stock solution, typ ically 5 m l o f 40 mM substrate solution in  

phosphate buffer.

Required Cone. Amount o f Sample Amount o f Buffer

40mM 500gl o f 40mM Ogl

30mM 375gl o f 40mM 125|nl

20mM 250gl o f 40mM 250|il

lOmM 5xl25=625gl o f 

40mM

5x 375= 1875 |l i1

8mM 400g,l o f lOmM lOOgl

6mM 300|il o f lOmM 200|il

4mM 200gl o f lOmM 300|il
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2mM lOOgl o f lOmM 400\l\

Im M 5x50=250|il o f lOmM 5x450=2250gl

0.8mM 400[il o f Im M lOOgl

0.6mM 300gl o f Im M 200gl

0.4mM 200gl o f Im M 300gl

0.2mM lOOgl o f Im M 400|xl

O.lmM 50|il o f Im M 450|il

The reaction was in itia ted by the addition o f standard enzyme 

to the th e rm a lly  e q u ilib ra te d  reaction  m ix tu re , fo llow ed 

im m ediately by substrate add ition , therefore m in im ising  the 

possible inh ib ito ry  effects o f extensive preincubation o f DAO w ith  

the chromogenic agents.89 In itia l rates were determ ined over a 

range o f substrate concentrations from  the linear absorbance 

changes observed during the firs t m inute o f the reaction. Rate data 

were analysed fo r Km  and Vmax by least squares fittin g  o f Eadie- 

Hofstee116>117 (V against V /[S ]), Lineweaver-Burk115 (1 /V  against 

1/[S]) and Hanes ([S]/V against [S]) plots.

A ll experiments were carried out three times w ith  a ll data 

quoted being the mean o f nine determinations.

The v a lid ity  o f the assay system had previously been 

checked ,125 w ith  the fo rm ation  o f the indam ine dye being 

calibrated using standard solutions o f hydrogen peroxide.

Inhibition Studies

The assay system used fo r inh ib itio n  studies was the same 

method as above but w ith  the addition o f various concentrations o f 

inh ib ito r. The potential inh ib ito r was added to the reaction m ixture
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after DAO addition but always before the addition o f the substrate. 

Also fo r in h ib ito r studies 100|xl o f d is tilled  H2 O was added to the 

firs t run only. This is to compensate fo r the extra 100|il o f inh ib ito r 

added when running the rest o f the inh ib ito r studies.

The typical reaction m ixture in  the cuvette was :

2.5 m l Phosphate buffer pH 6.3

100 \il MBTH

170 \i\ DMAB

50 gl peroxidase

25 \il pea seedling DAO

100 \il inh ib ito r (added before substrate)

300 g l substrate o f varying concentrations
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8.3 Experim ental fo r Chapter Four

General Procedure (A) fo r the Synthesis o f r^H ^ l- la b e lle d  

D in itrile s  from  Non-labelled Species. 10 1

Deuterium oxide (35 ml, 99.3 atom % 2h), 1,4-dioxane (10 ml) 

and diazabicyclo[5.4.0]undec-7-ene (364 mg, 4.56 mmol) were 

added to the d in itrile  (45.6 mmol) in  a 100 m l round bottom  flask. 

The m ixture was stirred and heated to reflux fo r 24 h. The reaction 

m ixture was then cooled and the solvent was removed in  vacuo to 

yie ld  an amorphous white solid that so lid ified  on standing. 1 M 

Hydrochloric acid was added to dissolve the amorphous white solid 

and to make the resulting solution acidic. The acidic solution was 

extracted w ith chloroform  (5 x 25 m l), dried (Na2S04), filtered, and 

the solvent was removed in  vacuo to y ie ld  a second amorphous 

white solid. The solid was recrystallised from  hot benzene to yie ld 

the product as a white material. This process was repeated giving 

93-98% [2H4] incorporation.

[2 ,2 ,3 ,3  -2  H 4]-S  uccin o n i tr ile

Succinonitrile  (6 8 ) was labelled w ith  deuterium  to give 

[2,2,3,3-2H 4]-succinonitrile using general procedure (A). White 

crystals were obtained, 75%; Rf 0.25 (CHCI3 ); Umax (CHCI3 ) 3010, 

2250, 1460 and 1070 cm "l; 5c(CDQ3) 116.42 (2 £N); m /z  84 (M+), 

82, 56 (100%), 54 and 42; Found: M+> 84.0617. C4 D4 N2  requires M, 

84.0625.

page 145



[2 , 2 , 4 ,4 -2  H 4]-G lu  ta ro n i tr ile

G lu ta ro n itrile  (69) was labelled w ith  deuterium  to give 

[2 ,2 ,4 ,4-2H 4]-g lu ta ron itrile  using general procedure (A). W hite 

crystals were obtained, 72%; Rf 0.30 (CHCI3 ); Umax (CHCI3 ) 2990, 

2880, 2250, 1450 and 1050 cm "!; 8 h  (200 MHz, CDCI3 ) 2.15 (s, 2H); 

5C(CDC13) 33.11 (£H2 ), 116.42 (2£N); m /z9 8  (M+), 96, 70 (100%), 

46, 38 and 28; Found: M+> 98.0780. C5 H2 D4 N2  requires M, 98.0782.

[2 ,2 ,5 ,5 -2 H 4] -A d ip o n i tr ile

A d ip o n itrile  (70) was labelled w ith  deuterium  to give 

[2 ,2 ,5 ,5 -2H 4 ]-ad ipon itrile  using general procedure (A). W hite 

crystals were obtained, 70%; Rf 0.32 (CHCI3 ); Um ax (CHCI3 ) 3005, 

2990, 2250, 1450 and 1070 c n r l; 8h  (200 MHz, CDCI3 ) .1.80 (s,4H); 

5C (CDCI3 ) 27.72 (2£H2), 116.44 (2£N); m /z  112 (M+), 110, 8 6 , 61, 

55, 44 (100%) and 28; Found: M+> 112.0940. C6 H4 D4 N2  requires M, 

112.0939.

General Procedure (B) for the Synthesis of r2H al-labe lled  

Diam ine D ih yd ro ch lo rid e  Salts from  T2h 4.1-labelled 

Dinitriles119

An oven dried, 50 m l round bottom flask containing a septum 

capped in le t and a magnetic stirring  bar was equipped w ith  a 12" 

Vigreux column. A 10 m l round bottom  flask was fitte d  to the end 

o f the receiver. The whole system was assembled under nitrogen, 

w ith  the outle t connected to a source o f nitrogen to m aintain an
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ine rt atmosphere. The flask was charged w ith  the [ 2H4 ]-labelled 

d in itrile  (15 mmol) and dry tetrahydrofuran (1.5 m l), and brought 

to reflux. Then borane-dim ethyl sulphide complex in  THF (16 ml, 

32 mmol) was added dropwise over a period o f 10 m in. The 

dim ethyl sulphide d istilled o ff and was collected in  the 1 0  m l round 

bottom  flask. This gave a clear residue w hich was le ft fo r 15 

m inutes and then allowed to cool to room tem perature. 6  M 

Hydrochloric acid (18 m l, 41 mmol) was added dropwise at firs t 

(care was taken because H 2  gas was evolved essentia lly 

immediately follow ing each addition o f acid) u n til no more H 2  was 

evolved. The reaction m ixture was then heated under reflux fo r 30 

min. The resultant clear solution was cooled to 0 °C giving a white 

precipitate o f boric acid. The solution was filte red, and the filtra te  

was concentrated to approxim ately 5 to 10 m l g iving a second 

precipitate o f boric acid which was filte red  off. MeOH (10 m l) and 

conc. HC1 (2-3 drops) were added to the filtra te  in  order to remove 

any boric acid as the borate m ethyl ester. The resulting solution 

was evaporated to dryness giving a creamy white solid o f diamine 

d ihydroch loride. The solid was crystallised from  95% aqueous 

ethanol.

[ 2 , 2 , 3 , 3 - 2 H 4] -B u ta n e -1 ,4 -d ia m in e  (P u tre s c in e )  D ih y d r o ­

c h lo rid e  (6 5 )

[2,2,3,3-2H4]-Succinonitrile was reduced to [2,2,3,3-2H4]-l,4- 

putrescine dihydrochloride (65) using general procedure B. White 

crystals were obtained, 55%; m.p. >250 °C; Umax (KBr disc) 3075, 

3025, 2010, 1605,1473, 1395, 1335, 1170 and 1145 cm-1; 8h(200 

MHz, D 20) 2.85 (b r s, 4H); 8c  (D2 O) 23.86 (quintet, 2£D2), 39.57
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(2£H2); Found: C, 29.08; H, 6.20; D, 4.90; N, 16.98%. C4 H1 0 D4 N2 CI2  

requires: C, 29.10; H, 6.12; D, 4.87; N, 16.97%.

[ 2 ,2 ,4 ,4 - 2H 4] -P e n  ta n e -1 ,5 -d ia m in e  ( C a d a v e r in e )  D ih y d r o ­

ch lo rid e  (6 6 )

[2,2,4,4-2H4]-G lutaronitrile was reduced to [2,2,4,4-2H4]-l,5- 

cadaverine dihydrochloride (66) using general procedure B. White 

crystals were obtained, 60%; m.p. >250 °C; Um ax (KBr disc) 3080, 

2000, 1600, 1475, 1160 and 1145 c n r l;  5h (200 MHz, D2 O) 1.25 

(br s, 2H), 2.79 (b r s, 4H); 5c (D2 O) 23.08 (CD2£H2CD2), 26.28 

(quintet, 2£D2CH2N), 39.85 (2£H2N); Found: C, 33.61; H, 6.73; D, 

4.48; N, 15.72%. C5 H1 2 D4 N2 CI2  requires: C, 33.52; H, 6.70; D, 4.47; N, 

15.64%.

[2 ,2 ,5 ,5 -2 H 4 ]-H e x a n e -l,6 -d ia m in e  D ih y d ro c h lo r id e  (6 7 )

[2,2,5,5-2H4]-Adiponitrile was reduced to [2,2,5,5-2H 4]-l,6- 

hexanediamine d ihydrochloride (67) using general procedure B. 

W hite crystals were obtained, 57%; m.p. >250 °C; Umax (KBr disc) 

3080, 3020, 2000, 1600, 1475, 1175 and 1145 c m 'l; 8h (200 MHz, 

D20) 1.25 (s, 4H), 2.83 (s, 4H); 8c(D20) 25.67 (CD22£H2CD2), 26.59 

(quintet, 2£D2CH2N), 40.07 (£H2N); Found: C, 37.30; H, 7.26; D, 4.02; 

N, 14.54%. C6 H 1 4 D4 N2 CI2  requires: C, 37.31; H, 7.25; D, 4.14; N, 

14.51%.
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General Procedure (C) fo r  the Conversion o f Diamines (free

base) into Diamine Dihvdrochloride Salts

The free base o f each diam ine (6 mmol) was suspended 

between dichloromethane (80 m l) and 6 M hydrochloric acid (50 

m l) fo r 2 h. The aqueous layer was separated from  the 

d ich lorom ethane and washed w ith  a fu rth e r 150 m l o f 

dichloromethane before being evaporated to dryness leaving the 

d ihydrochloride salt as a white solid. The d ihydroch loride  was 

crystallised from  aqueous ethanol (95%) and acetone.

B u ta n e -1 ,4 -d ia m in e  (P u tresc in e) D ih y d ro c h lo r id e  (3 )

The free base o f putrescine was converted in to  the 

corresponding dihydrochloride using general procedure C. W hite 

crystals were obtained, 85%; m.p. >250 °C; Umax (KBr disc) 3400- 

3300, 3100-2900, 2560, 2040, 1470 and 1450 cm-1; 8h (200 MHz, 

D20) 1.60-1.90 (complex, 4H) and 2.95-3.10 (complex, 4H); m /z  89 

(M+ +1), 88 (M+), 72 and 30 (100%); Found: C, 29.84; H, 8.82; N, 

17.43%. C4 H1 4 N2 CI2  requires: C, 29.81; H, 8.70; N, 17.39%.

P e n ta n e -1 ,5 -d ia m in e  (C ad av erin e ) D ih y d ro c h lo r id e  (6 )

The free base o f cadaverine was converted in to  the 

corresponding dihydrochloride using general procedure C. White 

crystals were obtained, 95%; m.p. >250 °C; Umax (KBr disc) 3600- 

3400, 3200-2800, 2570, 2030, 1600 and 1475 c n r1; Sh (200 MHz, 

D20) 1.35 (complex, 2H), 1.60 (complex, 4H) and 2.90(t, 4H); 5c 

(D20) 23.50 (N(CH2)2£H2), 27.70 (NCH2CH2) and 40.04 (N£H2); m/z
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103 (M+ +1), 102 (M+), 86 and 30 (100%); Found: C, 34.09; H, 9.04; 

N, 16.07%. C5 H1 6 N2 CI2  requires: C, 34.28; H, 9.14; N, 16.00%.

H e x a n e -1 ,6 -d ia m in e  D ih y d ro c h lo r id e  (6 8 )

The free base o f hexane-1,6-diamine was converted to the 

corresponding dihydrochloride using general procedure C. W hite 

crystals were obtained, 79%; m.p. >250 °C ; 8h (200 MHz, D2 O) 1.26 

(tt, 4H), 1.51 (tt, 4H), 2.83 (t, 4H) 8 c (D2 O) 26.24 (2£H2CH2CH2N), 

27.63 (2£H2CH2N), 40.53 (2£H2N); m /z  117 (M+ +1), 116 (M+), 101 

and 30 (100%); Found: C, 37.99; H, 9.63; N, 14.77%. C6 H 1 8 N2 CI2  

requires: C, 38.09; H, 9.52; N, 14.81%.

B enzoylacetic  A c id  (7 1 )

Ethyl benzoylacetate (1.92 g, 10.0 mmol) was stirred in  2.5% 

aqueous potassium hydroxide solution (175 m l) fo r 48 h. The 

solution was washed w ith  ether (3 x 45 m l), cooled to 5 °C and 

acidified w ith  d ilu te  H2 SO4  and fu rthe r extracted w ith  d ie thy l 

ether ( 6  x 75 m l). The la tte r combined ether extracts were dried 

(Na2S04), filte re d , and evaporated to dryness under reduced 

pressure at room  tem perature to y ie ld  a lig h t yellow  solid o f 

benzoylacetic acid, 75%, which was stored at below 0 °C and used 

w ithout purification, Umax (nujol) 3100-2600, 1750, 1670, 1600, 

1520, 1420, 1280, 1145 and 1025 cm’ l ;  8 h  (CDCI3 ) 3.99 (s, 2H), 

7.35-7.55 (m, 3H), 7.95 (dd, 2H); m /z  121,120,115 (100%) and 77.
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General Procedure (D) for Oxidative D eam ination o f

Diam ines using Diamine Oxidase and the Subsequent 

Coupling with Benzoylacetic Acid123

A solution o f benzoylacetic acid (320 mg, 1.96 mmol), diamine 

hydrochloride (0.1 M aqueous solution, 20 m l) and 0.02 M sodium 

phosphate buffe r (pH 7, 7 m l) was prepared. The pH was adjusted 

to 7. Catalase (0.2 mg) and pea seedling DAO (300 gl, ca. 200 mg, 

enzyme activ ity  1200 units per mg) were added. The solution was 

incubated on a shaker at 25 °C fo r 24 h. The pH o f the reaction 

m ixture was m onitored and readjusted to neu tra lity  as necessary. 

The solution was then acid ified w ith  d ilu te  su lphuric acid and 

washed w ith  d ie th y l ether (4 x 30 m l) to remove any excess 

benzoylacetic acid. The aqueous solution was basified w ith  conc. 

ammonia and extracted w ith  chloroform  (3 x 30 m l). The combined 

organic extracts were dried (Na2S04), filte red  and evaporated to 

dryness under reduced pressure yielding the product as an oil. The 

oils were purified  by preparative TLC in  the solvents stated and the 

purity  o f each was checked by HPLC.

Note: Yields fo r these reactions varied greatly and so attempts 

were made to optim ise the conditions. The times were varied 

between 12-48 h and the pH was adjusted using sodium  

dihydrogen phosphate buffer.
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2-Pyrrolidin-2-ylacetophenone (72)

Using putrescine d ihydroch lo ride  (3) as the substrate in  

general procedure D gave 2-pyrrolidin-2-ylacetophenone (72) as a 

yellow o il, 61%; R f 0.40 (CHCl3 /MeOH/c.NH3 , 80:19:1), Rt 2.85 m in 

(MeOH/H20, 70:30); Umax (film ) 3680, 3020, 2400, 1680, 1635, 

1600, 1525 and 1215 cm’ l ;  8h  (200 MHz, CDCI3 ) 1.30-1.70 

(complex, 4H), 2.35 (b r s, 1H), 3.50 (complex, 5H), 7.35-7.60 

(complex, 3H) and 7.93 (dd, 2H); 5c (CDCI3 ) 23.92 (£H2 (CH2 )2 N), 

30.74 (CH2 CH2 N), 41.93 (£H2 CO), 45.06 (£H2 N), 55.21 (£HN), 128.08 

(2Ar-C), 128.57 (2Ar-C), 133.36 (Ar-C), 136.20 (Ar-C) and 197.70 

(C=0); m /z  190 (M+ +1), 189 (M+), 170, 105, 84, 70 (100%) and 28; 

Found: M+, 189.1154. C1 2 H1 5 NO requires M, 189.1155.

2 -P ip e rid in -2 -y la c e to p h e n o n e  (7 3 )

Using cadaverine d ihydroch loride  (6 ) as the substrate in  

general procedure D gave 2-piperidin-2-ylacetophenone (73) as a 

yellow o il, 87%; R f 0.43 (CHCl3 /MeOH/c.NH3 , 80:19:1), Rt 2.73 m in 

(MeOH/H20, 70:30); Umax (film ) 3690, 3020, 2400, 1685, 1600, 

1520, 1215, 1020 and 930 c m 'l;  8h (200 MHz, CDCI3 ) 1.31-1.75 

(complex, 6 H), 2.68 (dt, 1H), 3.03-3.14 (complex, 4H), 3.43 (br s, 

1H), 7.35-7.51 (complex, 3H) and 7.92 (dd, 2H); 8 c  (CDCI3 ) 24.37 

(£H 2 (CH2 )2 N), 25.47 (£H 2 CH2 N), 32.15 (£H 2 CHCH2 CO), 45.03 

(£H 2 CO), 46.57 (£H 2 N), 127.97 (2 Ar-C), 128.53 (2Ar-C), 133.18 

(Ar-C), 136.85 (Ar-C) and 199.15(C=0); m /z  204 (M+ +1), 203 (M+), 

202 (M+ - 1), 186, 105, 98, 84 (100%), 77, 43 and 28; Found: M+, 

203.1289. C1 3 H1 7 NO requires M, 203.1310.
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2-Azacycloheptan-2-ylacetophenone (74)

Using hexane-1,6-diam ine d ih yd ro ch lo rid e  (6 8 ) as the 

substrate in  general procedure D gave 2-azacycloheptan-2- 

ylacetophenone (74) as a lig h t brow n o il, 50%; R f 0.40 

(CHCl3 /M eOH/c.NH 3 , 80:19:1), Rt 2.70 m in (MeOH/H20, 70:30); 

Umax (film ) 3670, 3010, 2395, 1680, 1600, 1515, 1215, 1015 and 

925 cm- l ;  8 h  (200 MHz, CDCI3 ) 0.91-1.56 (complex, 8 H), 2.09 (br s, 

1H), 2.31-2.71 (complex, 3H), 2.95-3.00 (complex, 1H), 7.21-7.48 

(complex, 3H), 7.85 (dd, 2H); 8 C 25.44 (£H 2 (CH2 )2 N), 27.25 

(£H 2 (CH2 )3 N), 30.86 (£H 2 CH2 N), 36.54 (£H 2 CHCH2 CO), 46.16 

(CH2 CO), 46.90(£H2N), 55.16 (£HN), 128.21 (2Ar-C), 128.50 (2Ar-C), 

133.03 (Ar-C), 136.80 (Ar-C) and 199.05 (C=0); m /z  218 (M+ + 1), 

217 (M +), 200, 113, 105 (100%), 98, 43 and 28; Found: M+, 

217.1470. C1 4 H1 9 NO requires M, 217.1466.

[ 3 ' ,3 ' ,4 I, 4 '-2  H 4]-2 -P y rro lid in -2 -y la c e to p h e n o n e  (7 5 )

Using [2,2,3,3-2H 4]-l,4-putrescine d ihydrochloride (65) as 

the substrate in  general procedure D gave [3 f,3 f,4 f,4 f-2H 4]-2 - 

p y rro lid in -2-y lace tophenone (75) as a brown o il, 76%; R f 0.42 

(CHCl3 /M eOH/c.NH 3 , 80:19:1), Rt 2.87 m in (MeOH/H20, 70:30); 

Umax (film ) 3690, 3020, 2400, 2225, 1680, 1620, 1600, 1520, 

1420, 1215, 1020 and 930 cm -l; 5h (200 MHz, CDCI3 ) 2.98 (dd, 2H), 

3.25 (ABX system, octet, 2H), 3.64 (dd, 1H), 4.00 (br s, 1H), 7.45 

(complex, 3H) and 7.94 (dd, 2H); 8 c(CDCl3 ) 44.20 (£H 2 N), 45.69 

(£H2 CO), 54.48 (£HN), 127.90 (2Ar-C), 128.01 (2Ar-C), 133.11 (Ar- 

C), 136.72 (Ar-C) and 199.15 (C=0); 8 d  (CHCI3 ) 1.38, 1.72, 1.79 and 

1.96; m /z  194 (M+ + 1), 193 (M+), 192 (M+ - 1), 174, 105, 8 8 , 74
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(100%), 73 and 28; Found: M+, 193.1404. C1 2 H1 1 D4 NO requires M, 

193.1404.

[3 ',3 * ,5 ',5 '-2 H 4 ]-2 -P ip e r id in -2 -y la c e to p h e n o n e  (7 6 )

Using [2,2,4,4-2H4 ]-cadaverine d ihydrochloride (6 6 ) as the 

substrate in  general procedure D gave [3 ,,3',5,,5,-2H4]-2-piperidin- 

2-ylacetophenone (76) as a b row n o il, 70%; R f 0.42 

(CHCl3 /M eOH/c.NH 3 , 80:19:1), Rt 2.85 m in (MeOH/H2 0 , 70:30); 

Umax (film ) 3690, 3020, 2400, 1680, 1600, 1525, 1420, 1220, 1015 

and 930 cm -l; 8 h  (200 MHz, CDCI3 ) 1.25 (AB system, 1H), 1.62 (AB 

system, 1H), 2.52 (br s, 1H), 2.66 (dd, 1H), 2.99-3.14 (complex, 4H), 

7.40-7.59 (complex, 3H) and 7.94 (dd, 2H); 8 c (CDCI3 ) 24.22 

(CH2 CD2 CH2 N), 45.50(£H2N), 46.60 (£H 2 CO), 52.55(£HCH2CO), 

127.94 (2Ar-C), 128.51 (2Ar-C), 133.11 (Ar-C), 136.94 (Ar-C) and 

199.50 (C=0); Sd (CHCI3 ) 1.35,1.49,1.61 and 1.68; m /z  208 (M+ + 1), 

207 (M+), 190, 105, 8 8  (100%), 77, 43 and 28; Found: M+, 207.1558. 

C1 3 H1 3 D4 NO requires M, 207.1561.

[3 ',3 ' ,6 ' ,6 '-2 H 4]-2 -A za c y c lo h e p ta n -2 -y la c e to p h e n o n e  (7 7 )

Using [2,2,4,4-2H4 ]-hexane-1,6-diamine dihydrochloride (67) 

as the substrate in  general procedure D gave [3 ',3 f,6,,6f-2H4]-2- 

azacycloheptan-2-ylacetophenone (77) as a brown o il, 75%; Rf 0.38 

(CHCl3 /M eOH/c.NH 3 , 80:19:1), Rt 2.69 m in (MeOH/H20, 70:30); 

Umax (film ) 3680, 3015, 1680, 1600, 1525, 1215, 1020 and 930 

cm-1; 8h  (200 MHz, CDC13 ) 1.17-1.67 (complex, 4H), 2.21 (b rs, 1H), 

2.38-2.73 (complex, 3H), 3.05 (dd, 1H), 3.15 (complex, 1H), 7.41- 

7.55 (com plex, 3H) and 7.93 (dd, 2H); 8 c (CDCI3 ) 25.16 

(CH2 CD2 CH2 N), 27.00 (£H2 CD2 CHN), 46.19 (£H 2 CO), 46.78 (£H2 N),
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55.02 (£HN), 127.97 (2Ar-C), 128.51 (2Ar-C), 133.00 (Ar-C), 137.18 

(Ar-C) and 199.69 (C=0); 8d(CHC13) 1.00-1.80 (complex); m /z  222 

(M+ + 1), 221 (M+ +1), 215, 117, 105 (100%), 102, 77, 43 and 28; 

Found: M+, 221.1718. C1 4 H 1 5 D4 NO requires M, 221.1717.
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8.4 Experim ental fo r Chapter Five

Synthesis o f O u ino lv l and P vridv l Ethvlam ines

(±)z2 -H y d ro x y ^ -^ '-q u in o lv D e th v la m in e  D ih v d ro c h lo rid e

m i

(± )-2 -H y d ro x y -2 -(2 t-q u in o ly l)n itro e th a n e  (7 8 )

2-Q uinolinecarboxaldehyde (730 mg, 4.67 m m ol) was 

dissolved in  isopropanol ( 2 0  m l) w ith  vigorous stirring  and to this 

solution was added potassium fluoride (12.5 mg) and nitromethane 

(0.56 ml, 9.35 mmol). A fter stirring  at room temperature fo r 4 h 

the solution was heated to 40-50 °C fo r a fu rthe r 1 h. The solvent 

was removed in  vacuo below 50 °C to yie ld  (±)-2 -hydroxy-2 -(2 '- 

quinolyl)nitroethane (78) as an orange/red solid. Purification on a 

silica gel column (hexane/ethyl acetate, 2:3) produced the pure 

product as a ligh t orange solid, 70%; Umax (KBr disc) 3500-3100, 

1600, 1550 (strong), 1380, 1100 and 830 cm-1 ; 8 h  (200 MHz, 

CDCI3 ) 4.85 (dd, Jax 4 Hz JBx 8  Hz, 1H), 5.28 (ABX system, JAB 14 Hz 

Jax 4 Hz JBx 8  Hz, 2H), 7.56-8.05 (complex, 5H) and 8.37 (d, 1H); 8 c 

(CDCI3 ) 72.16 (CHOH), 81.45 (CH2 NO2 ), 119.52 (Ar-C), 127.51 (Ar-

C), 128.49 (Ar-C), 128.65 (Ar-C), 129.62 (Ar-C), 130.62 (Ar-C),

138.04 (Ar-C), 147.74 (Ar-C) and 159.96 (Ar-C); m /z  219 (M ++1), 

218 (M+), 158, 143 (100%), 128, 115, 102, and 75; Found: M+, 

218.0687. C1 1 H1 0 N2 O3  requires M, 218.0683.
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( ± ) - 2 - H y d r o x y - 2 - ( 2  ’-q u in o ly l ) e th y la m in e  D ih y d r o c h lo r id e

(8 1 )

(± )-2 -H ydroxy-2-(2 f-qu ino ly l)n itroe thane  (78) (1 g, 4.59 

mmol) was dissolved in  d ry methanol (50 m l) in  a three necked 

round bottom  flask equipped w ith  a n itrogen balloon. To the 

solution was added 10% Pd/C catalyst (0.4 g) and anhydrous 

ammonium formate (1.45 g, 23.0 mmol). The m ixture was stirred 

under nitrogen at 25 °C fo r 15 h. The m ixture was then d ilu ted 

w ith  d ie th y l ether (50 m l), filte re d  through a Celite pad and 

evaporation o f the solvent in  vacuo gave the crude amine. The 

crude amine was partitioned between dichloromethane (50 m l) and 

6  M HC1 (30 m l) and stirred  fo r 2 h. The aqueous layer was 

separated, washed w ith  CH2 CI2  ( 1 0 0  m l) and evaporated to dryness 

to yie ld  the dihydrochloride salt (81) as a brown solid which was 

recrystallised from  ethanol and acetone, 45%; m.p. >250°C; Umax 

(KBr disc) 3625, 3150-2600, 1620, 1560 and 835 cm -l; 5h (200 

MHz, D 2 O) 3.37 (ABX system, Jab 14 Hz Jax 4 Hz JBx 8  Hz, 2H), 5.53 

(dd, Jax 4 Hz JBX 8  Hz, 1H), 7.52-8.01 (complex, 5H) and 8.64 (d, 1H); 

8C(D20) 44.58 (CH2 NH2 ), 67.65 (£HOH), 120.28 (Ar-C), 120.75 (Ar-

C), 129.93 (Ar-C), 130.13 (Ar-C), 130.53 (Ar-C), 136.33 (Ar-C), 

138.09 (Ar-C), 148.93 (Ar-C) and 157.29 (Ar-C); m /z  262 (M+ +1), 

232, 129 (100%) and 36.
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(+)-2 -H vd ro xv -2 -(3 t-q u in o ly l)e th v la m in e  D ih v d ro c h lo rid e

m i

(± )-2 -H y d ro x y -2 -(3 r-q u in o ly l)n itro e th a n e

3-Q uinolinecarboxaldehyde (730 mg, 4.67 m m ol) was 

dissolved in  isopropanol (25 m l) w ith  vigorous s tirring  and to this 

solution was added potassium fluoride (12.5 mg) and nitromethane 

(0.56 m l, 9.35 m m ol). The so lu tion  was s tirre d  at room  

temperature, and a fte r 5 h a w hite precip ita te  appeared. The 

solution was allowed to s tir fo r a fu rther 2 1  h after which the white 

precipitate was filte red  and the filtra te  was concentrated to 5-10 

m l to give a second white precipitate, which was filte red. The two 

batches o f (± )-2 -hyd roxy-2 -(3 f-qu ino ly l)n itroe thane  were 

combined and washed w ith  ether, and then used w ithou t fu rthe r 

purification, 85%; Umax (KBr disc) 3400-3000, 1570 (strong), 1530, 

1380,1090, 790 and 770 c m ' l ;  8h  (200 MHz, CDCI3 ) 4.89 (dd, Ja x  4 

Hz Jbx 8  Hz, 1 H), 5.75 (ABX system, Ja b  14 Hz J a x  4 Hz J BX 8 Hz, 2H), 

7.57-8.07 (complex, 4H), 8.41 (d, 1H) and 9.03 (d ,lH ); 8 c(CDCl3 ) 

69.69 (£HOH), 82.03 (£H2N02), 127.70 (Ar-C), 128.52 (2Ar-C), 

128.92 (Ar-C), 129.94 (Ar-C), 130.34 (Ar-C), 134.02 (Ar-C), 148.88 

(Ar-C) and 150.11 (Ar-C); m /z  219 (M+ +1), 218 (M+), 157,143,128 

(100%), 115, 101, and 75; Found: M+, 218.0736. C1 1 H1 0 N2 O3  

requires M, 218.0688.

( ± ) - 2 - H y d r o x y - 2 - ( 3 '-q u in o ly l ) e th y la m in e  D ih y d r o c h lo r id e

(8 2 )

(± )-2 -H yd roxy-2 -(3 '-qu ino ly l)n itroe thane  (580 mg, 2.66 

mmol) was dissolved in  d ry methanol (75 m l) in  a three necked
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round bottom flask equipped w ith  a nitrogen balloon. To the 

solution was added 10% Pd/C catalyst (0.3 g) and anhydrous 

ammonium formate (832 mg, 13.2 mmol). The mixture was stirred 

under nitrogen at 25 °C fo r 24 h. The m ixture was d ilu ted w ith 

diethyl ether (50 ml) and then filtered through a Celite pad and 

evaporation o f the solvent in  vacuo gave the crude amine. The 

crude amine was partitioned between dichloromethane (40 ml) and 

6  M HC1 (25 m l) and stirred fo r 2 h. The aqueous layer was 

separated, washed w ith CH2 CI2  (75 ml) and evaporated to dryness 

to yield the dihydrochloride salt (82) as a dark red solid which was 

recrystallised from  ethanol and acetone, 38%; m.p. >250 °C; Umax 

(KBr disc) 3500-3200, 3100-2650, 1615, 1550 and 835 cm -l; 5h 

(200 MHz, D20) 3.47 (ABX system, Jab 14 Hz Jax 4 Hz Jbx 9 Hz, 2H),

5.53 (dd, Jax 4 Hz Jbx 9 Hz, 1H), 7.62-8.09 (complex, 4H), 8.95(d, 1H) 

and 9.01 (d, 1H); 8 c (D2 O) 45.67 (£H 2 NH2 ), 67.36 (£HOH), 120.79

(Ar-C), 130.24 (Ar-C), 131.27 (Ar-C), 135.29 (2Ar-C), 136.30 (Ar-C), 

137.75 (Ar-C), 143.27 (Ar-C) and 145.49 (Ar-C); m /z  262 (M+ +1), 

129 (100%) and 36.

(+)-2-H vdroxy-2-(4,-qu inoly l)ethvlam ine D ihvdrochloride

m i

(± ) -2 -H y d ro x y -2 -(4  r-q u in o ly l)n itro e th a n e

4-Quinolinecarboxaldehyde (730 mg, 4.67 mmol) was 

dissolved in  isopropanol ( 2 0  ml) w ith vigorous stirring and to this 

solution was added potassium fluoride (12.5 mg) and nitromethane 

(0.56 ml, 9.35 mmol). The solution was stirred at room temperature 

fo r 48 h after which time a white precipitate appeared. The
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precipitate was filtered and the filtra te  was concentrated to 5-10 

ml to give a second white precipitate, which was filtered. The two 

batches o f (± )-2 -hydroxy-2 -(4 '-qu ino ly l)n itroe thane  were 

combined and washed w ith  ether, then used w ithou t fu rthe r 

purification, 55%; Umax (KBr disc) 3600-2900, 1590, 1550 (strong), 

1370, 1100, 870 and 760 cm-1; 8 h  (200 MHz, CDCI3 ) 4.76 (dd, Jax4 

Hz Jbx 9 Hz, 1H), 6.32 (ABX system, Jab 13 Hz Jax 4 Hz Jbx 9 Hz, 2H),

7.64-7.87 (complex, 3H), 8.00-8.24 (dd, 2H) and 8.92 (d ,lH ); 8 c 

(CDCI3 ) 67.86 (£HOH), 81.66 (£H2N02), 119.46 (Ar-C), 123.53 (Ar- 

C), 125.72 (Ar-C), 127.91 (Ar-C), 130.05 (Ar-C), 131.13 (Ar-C),

145.98 (Ar-C), 148.60 (Ar-C) and 151.21 (Ar-C); m /z  219 (M++1), 

218 (M+), 157, 143, 129, 115, 101, and 75 (100%); Found: M+, 

218.0623. C1 1 H1 0 N2 O3  requires M, 218.0701.

( ± ) - 2 - H y d r o x y - 2 - ( 4 f - q u in o ly l )e th y la m in e  D ih y d r o c h lo r id e

(8 3 )

(±)-2 -H ydroxy-2-(4 '-qu ino ly l)n itroe thane (240 mg, 1.10 

mmol) was dissolved in  dry methanol ( 2 0  ml) in  a three necked 

round bottom  flask equipped w ith  a nitrogen balloon. To the 

solution was added 10% Pd/C catalyst (0.1 g) and anhydrous 

ammonium formate (377 mg, 5.99 mmol). The mixture was stirred 

under nitrogen at 25 °C for 15 h. The m ixture was dilu ted w ith  

diethyl ether (40 ml) and then filtered through a Celite pad and 

evaporation o f the solvent in  vacuo gave the crude amine as a 

ye llow  o il. The crude amine was p a rtit io n e d  between 

dichloromethane (50 ml) and 6  M HC1 (25 ml) and stirred for 2 h. 

The aqueous layer was separated, washed w ith  CH2 CI2  (75 ml) and 

evaporated to dryness to yield the dihydrochloride salt (83) as a 

light green solid which was recrystallised from ethanol and acetone,
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precipitate was filtered and the filtra te  was concentrated to 5-10 

ml to give a second white precipitate, which was filtered. The two 

batches o f (± )-2 -hydroxy-2 -(4 f-qu ino ly l)n itroe thane were 

combined and washed w ith  ether, then used w ithou t fu rthe r 

purification, 55%; Umax (KBr disc) 3600-2900, 1590, 1550 (strong), 

1370, 1100, 870 and 760 cm-1; 8 h (200 MHz, CDCI3 ) 4.76 (dd, Jax4 

Hz Jbx 9 Hz, 1H), 6.32 (ABX system, Jab 13 Hz Jax 4 Hz JBX 9 Hz, 2H),

7.64-7.87 (complex, 3H), 8.00-8.24 (dd, 2H) and 8.92 (d ,lH ); 8 c 

(CDCI3 ) 67.86 (£HOH), 81.66 (OT2 NO2 ), 119.46 (Ar-C), 123.53 (Ar- 

C), 125.72 (Ar-C), 127.91 (Ar-C), 130.05 (Ar-C), 131.13 (Ar-C),

145.98 (Ar-C), 148.60 (Ar-C) and 151.21 (Ar-C); m /z  219 (M++1), 

218 (M+), 157, 143, 129, 115, 101, and 75 (100%).

( ± ) - 2 - H y d r o x y - 2 - ( 4 ' - q u in o ly l ) e t h y la m in e  D ih y d r o c h lo r id e  

(8 3 )

(±)-2-H ydroxy-2-(4 '-qu ino ly l)n itroe thane (240 mg, 1.10 

mmol) was dissolved in dry methanol ( 2 0  m l) in  a three necked 

round bottom  flask equipped w ith  a nitrogen balloon. To the 

solution was added 10% Pd/C catalyst (0.1 g) and anhydrous 

ammonium formate (377 mg, 5.99 mmol). The mixture was stirred 

under nitrogen at 25 °C for 15 h. The m ixture was d ilu ted w ith 

diethyl ether (40 ml) and then filtered through a Celite pad and 

evaporation o f the solvent in  vacuo gave the crude amine as a 

ye llow  o il. The crude amine was p a rtit io n e d  between 

dichloromethane (50 ml) and 6  M HC1 (25 ml) and stirred for 2 h. 

The aqueous layer was separated, washed w ith CH2 CI2  (75 ml) and 

evaporated to dryness to yield the dihydrochloride salt (83) as a 

light green solid which was recrystallised from ethanol and acetone, 

54%; m.p. >250 °C; Umax (KBr disc) 3600-3150, 3100-2750, 1615,
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1530, 850 and 780 cm-1; 5h (200 MHz, D2O) 3.21 (ABX system, JAB

13 Hz Jax 4 Hz Jbx 9 Hz, 2H), 5.81 (dd, Jax 4 Hz Jbx 9 Hz, 1H), 7.66-
8.14 (complex, 5H) and 8.89 (d, 1H); 8c  (D2O) 45.13 (CH2NH2 ),

66.52 (CHOH), 119.78 (Ar-C), 121.87 (Ar-C), 124.73 (Ar-C), 126.49 

(Ar-C), 131.41 (Ar-C), 135.75 (Ar-C), 137.74 (Ar-C), 144.72 (Ar-C) 

and 159.11 (Ar-C); m /z  188, 159, 130 (100%) and 36.

(±) -2 -H v d ro x v -2 - (2 '-p y r id y P e th v la m in e  D ih v d ro c h lo r id e

1971

(±)-2-Hydroxy-2-(2 '-p y rid y l)n i troe thane

2-Pyridinecarboxaldehyde (1.0 g, 9.35 mmol) was dissolved 

in isopropanol (10 ml) and to this solution was added KF (25 mg) 

and nitrom ethane (1.12 ml, 18.7 mmol). After stirring at room 

tem perature for 3 h the solution was heated to 40 °C for a further 1 

h. The solvent was removed in vacuo to yield (±)-2-hydroxy-2-(2'- 

pyridyl)nitroethane as a red oil. Purification on a silica gel column 

(hexane/ethyl acetate 2:3) produced the pure product as a orange 

solid, 80%; Umax (KBr disc) 3600-2960, 1600, 1548, 1440 and 1377 

(strong) cm-1; §H (200 MHz, CDCI3 ) 4.70 (dd, Jax 4 Hz JBx 8 Hz, 1H),

5.11 (ABX system, Jab 14 Hz Jax 4 Hz Jbx 8 Hz, 2H) and 7.29-8.54 

(complex, 4H); 6c  (CDCI3 ) 71.91 (CHOH), 81.57 (CH2N02), 121.58

(Ar-C), 123.80 (Ar-C), 137.90 (Ar-C), 149.51 (Ar-C) and 159.76 (Ar- 

C); m /z  168 (M+), 121, 103, 79 (100%), 52; Found: C, 50.00; H, 4.76; 

N, 16.67%. C7H8N2O3 requires: C, 50.01; H, 4.74; N, 16.60%.
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used without further purification, 90%; Umax (KBr disc) 3610-3150, 

2980-2810, 1600, 1575 (strong), 1380 and 620 cm-1; 5h (2oo MHz, 

CDC13) 4.60 (dd, Jax 4 Hz Jbx 9 Hz, 1H), 5.43 (ABX, Jab 13 Hz Jax 4 Hz 

Jbx 9 Hz, 2H) and 7.76-8.58 (complex, 4H); 6c (0 X 1 3 ) 70.50 (£HOH), 

80.71 (£H2N02), 120.86 (Ar-C), 123.23 (Ar-C), 137.27 (Ar-C),

148.85 (Ar-C) and 156.67 (Ar-C); m /z  168 (M+), 121 and 36 (100%).

(± )-2 -H y d ro x y -2 -(3  '-p y r id y l)e th y la m in e  D ih y d ro c h lo r id e

(98)

(±)-2-Hydroxy-2-(3'-pyridyl)nitroethane (1.2 g, 7.15 mmol) 

was dissolved in  methanol (120 ml). To this was added 10% Pd/C 

catalyst (0.48 g) and the mixture was hydrogenated at ca. 60 p.s.i. 

at 25 °C for 14 h. The solution was then filtered through a Celite 

pad and 5 M hydrochloric acid (50 ml) was then added. Evaporation 

o f the solvent gave the crude dihydrochloride salt (98) which was 

recrystallised from ethanol and acetone, 65%; m.p. > 250 °C; Umax 

(KBr disc) 3490-3280, 3050-2740, 1630, 1600 and 640 cm -l;5 H  

(200 MHz, D20) 3.18 (ABX system, Jab 13 Hz Jax 4 Hz Jbx 9 Hz, 2H),

5.14 (dd, Jax 4 Hz Jbx 9 Hz, 1H) and 7.94 (complex, 1H) and 8.25- 

8.80 (complex, 3H); 5c(D20) 45.45 (£H2NH2), 67.16 (£HOH), 128.40

(Ar-C), 140.03 (Ar-C), 141.48 (Ar-C), 141.90 (Ar-C) and 145.59 (Ar- 

C); m /z  139 (M+ +1), 109 (100%), 78 and 36; Found: C, 39.67; H, 

5.56; N, 13.33%. C7 H1 2 N2 OCI2  requires: C, 39.81; H, 5.69; N, 13.27%.
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(+)-2 -H v d ro x y -2 -(4 ,-p v r id y l)e th v la m in e  D ih v d ro c h lo r id e

1391

(± ) -2 -H y d ro x y -2 -(  4  '-p y r id y l)n i troe  th ane

4-Pyridinecarboxaldehyde (2.0 g, 18.7 mmol) was dissolved 

in isopropanol (20 ml) and to this solution was added KF (25 mg) 

and nitromethane (2.24 ml, 37.4 mmol). The mixture was stirred 

for 24 h at room temperature giving rise to a yellow solution. The 

solvent was removed in  vacuo  leaving (±)-2-hydroxy-2-(4'- 

pyridyl)-nitroethane as a red/orange oil. Purification on a silica gel 

column (ethyl acetate 1 0 0 %) gave an orange solid which was used 

w ithout fu rthe r purification, 70%; Umax (KBr disc) 3550-2720, 

1605, 1550 (strong), 1380 and 610 cm *l; 8h  (200 MHz, CDCI3 ) 4.54 

(dd, Ja x  4  Hz J bx 9  Hz, 1 H), 5.48 (ABX system, Jab 13 Hz J a x  4 Hz J bx 

9 Hz, 2H), 7.40 (d, w ith  fine splitting, 2H) and 8.57 (d, w ith  fine 

splitting, 2H); 8 c(CDCl3 ) 69.41 (£HOH), 81.10 (£H2N02), 121.12

(2Ar-C) 148.63 (2Ar-C) and 149.92(Ar-C); m /z  168 (M+), 121 

(100%) and 36.

( ± ) - 2 - H y d r o x y - 2 - (  4 r- p y r i  d y l )  e th y  la m  in  e D ih y d r o c h lo r id e

(9 9 )

(±)-2-Hydroxy-2-(4f-pyridyl)nitroethane (1.0 g, 5.96 mmol) 

was dissolved in  methanol (75 ml). To this was added 10% Pd/C 

catalyst (0.4 g) and the mixture was hydrogenated at ca. 40 p.s.i. at 

25 °C for 25 h. The solution was then filtered through a Celite pad 

and 5 M hydrochloric acid (40 ml) was added. Evaporation o f the 

solvent in  vacuo gave the crude dihydrochloride salt (99) which 

was recrystallised from ethanol and acetone, 75%; m.p. > 250 °C;

page 164



Umax (KBr disc) 3320-3200, 3070-2600, 1630, 1605, 1465, 800 

and 670 c m 'l;  5h (200 MHz, D20) 3.15 (ABX system, Jab 13 Hz Jax 4 

Hz Jbx 9  Hz, 2H), 5.16 (dd, Jax 4 Hz Jbx 9 Hz, 1H), 8.02 (d, w ith fine 

splitting, 2H) and 8.60 (d, w ith fine splitting, 2H); 5c (E>20) 45.11 

(£H2NH2), 68.79 (£HOH), 125.64 (2Ar-C), 142.32 (2Ar-C) and

161.68 (Ar-C); m /z  139 (M+ +1) and 109 (100%), 80, 36; Found: C, 

39.90; H, 5.75; N, 13.30%. C7 H1 2 N2 OCI2  requires: C, 39.81; H, 5.69; 

N, 13.27%.

Synthesis o f Q uino lv l and Pvridvl Propvlamines

General Procedure (E) fo r the Synthesis o f N itropropanes

Aromatic carboxaldehyde (18.7 mmol) was dissolved in  

isopropanol and to this solution was added KF (25 mg) and 

nitropropane (2.28 g, 37.4 mmol).

( i)  The mixture was stirred for 4 h at 55-60 °C and subsequently 

fo r 1 h at room temperature producing a yellow solution. The 

solvent was removed in  vacuo to yield the aromatic nitropropane 

as an o il. The o il was then purified  on a silica gel column 

(hexane/ethyl acetate 2:3).

( i i)  The m ixture was stirred at room temperature fo r 24 h, the 

solvent was removed in  vacuo to yield the aromatic nitropropane 

as an o il. The o il was then purified  on a silica gel column 

(hexane/ethyl acetate 1:1).

( i i i )  The m ixture was stirred at room temperature fo r 24 h after 

which time a white precipitate appeared. The solution was stirred 

for a further 24 h and then filtered. The filtra te  was concentrated 

to 5-10 m l yielding a second precipitate which was filtered. The
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two batches o f aromatic nitropropane were combined and washed 

with ether, then used without further purification.

(±)-3-Hydroxy-3-(2T-qu ino ly l)-2-n itropropane (84)

Using 2-quinolinecarboxaldehyde in  general procedure E(i) 

gave a racemic m ixtu re  o f (±)-3-hydroxy-3-(2'-quinolyl)-2- 

nitropropane (84), in  a 3:1 ratio as an orange oil, 61%; Umax (KBr 

disc) 3400-2945, 1620, 1555 (strong), 1390, 1110, 790 and 770 

cm~l; 5h (200 MHz, CDCI3 ) Major Diastereoisomer, 1.39 (complex, 

3H), 4.60 (complex, 1H), 5.11 (complex, 1H) and 7.49-8.21 (complex, 

6 H); 5c (CDCI3 ) Major Diastereoisomer, 16.04 (CH3 CHNO2 ), 74.94 

(CHOH), 86.95 (CHNO2 ), 118.75 (Ar-C), 122.13 (Ar-C), 129.72 (Ar-C),

129.82 (Ar-C), 130.76 (Ar-C), 131.04 (Ar-C), 137.90 (Ar-C), 147.80 

(Ar-C) and 157.00 (Ar-C); 5h (200 MHz, CDCI3 ) M inor 

Diastereoisomer, 1.42 (complex, 3H), 4.71 (d, 1H), 5.28 (complex, 

1H) and 7.49-8.21 (complex, 6 H); 5c (CDCI3 ) Minor Diastereoisomer,

16.18 (CH3 CHNO2 ), 74.99 (CHOH), 87.01 (CHNO2 ), 118.80 (Ar-C),

122.18 (Ar-C), 129.81 (Ar-C), 129.90 (Ar-C), 130.82 (Ar-C), 131.10 

(Ar-C), 137.94 (Ar-C), 148.01 (Ar-C) and 157.08 (Ar-C); m /z  233 

(M+ +1), 232 (M+), 157, 128 (100%), 115, 102, and 75.

(±)-3-Hydroxy-3-(3 '-qu inolyl)-2-n itropropane (85)

Using 3-quinolinecarboxaldehyde in  general procedure E(ii) 

gave a racemic m ixture  o f (±)-3-hydroxy-3-(3'-quinolyl)-2- 

nitropropane (85), in  a 3:1 ratio as an orange oil, 88%; Umax (KBr 

disc) 3590-2930, 1620, 1560 (strong), 1390, 1055, 1035, 790 and 

760 cm - l ;  5h (200 MHz, CDCI3 ) Major Diastereoisomer, 1.35
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(complex, 3H), 4.69 (d, 1H), 5.70 (complex, 1H), 7.70-9.04 (complex, 

6 H); 5c(CDCl3) Major Diastereoisomer, 16.10 (CH3 -CHNO2 ), 73.52 

(CHOH), 87.18 (CHN02), 127.61 (Ar-C), 128.21 (Ar-C), 128.43 (Ar-C),

128.98 (Ar-C), 130.06 (Ar-C), 131.72 (Ar-C), 134.05 (Ar-C), 148.91 

(Ar-C) and 150.12 (Ar-C); 5h (200 MHz, CDCI3 ) M inor 

Diastereoisomer, 1.40 (complex, 3H), 4.72 (d, 1H), 5.73 (complex, 

1H), 7.70-9.04 (complex, 6 H); 8 c (CDCI3 ) M inor Diastereoisomer, 

16.16 (CH3 -CHNO2 ), 73.62 (CHOH), 87.23 (CHNO2 ), 127.69 (Ar-C), 

128.33 (Ar-C), 128.50 (Ar-C), 129.09 (Ar-C), 130.16 (Ar-C), 131.78 

(Ar-C), 134.12 (Ar-C), 149.00 (Ar-C) and 150.19 (Ar-C); m /z  233 

(M+ +1), 232 (M+), 157 (100%), 128, 115, 101, and 75; Found: M+, 

232.0797. C1 2 H1 2 N2 O3  requires M, 232.0871.

(± )-3 -H y d ro x y -3 -(4 '-q u in o ly l) -2 -n itro p ro p a n e  (8 6 )

Using 4-quinolinecarboxaldehyde in general procedure E(iii) 

gave (±)-3-hydroxy-3-(4f-quinolyl)-2-nitropropane (8 6 ) as a white 

powder, 65%; Umax (KBr disc) 3590-3150, 1620, 1560 (strong), 

1380, 1070, 1035 and 770 cm '1; 8 H (200 MHz, CDCI3 ) 1.35 (d, J 2 

Hz, 3H), 4.65 (d, J 6  Hz, 1H), 5.74 (complex, 1H) and 7.60-8.16 

(complex, 4H), 8.45 (d, 1H) and 9.12 (d,lH ); 8 c  (CDCI3 ) 16.16 (CH3 - 

CHN02), 71.20 (CHOH), 87.85 (£HN02), 120.08 (Ar-C), 124.00 (Ar-C),

125.64 (Ar-C), 127.38 (Ar-C), 129.48 (Ar-C), 130.17 (Ar-C), 145.79 

(Ar-C), 148.09 (Ar-C) and 150.47 (Ar-C); m /z  233 (M+ + 1 ), 232 

(M +), 157, 129 (100%), 102, and 75; Found: M+, 232.0838. 

C1 2 H 1 2 N2 O3  requires M, 232.0846.
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(± )-3-Hydroxy-3-(2'-pyridyl)-2-nitropropane

Using 2-pyridinecarboxaldehyde in  general procedure E(i) 

gave a racemic m ix tu re  o f (±)-3-hydroxy-3-(2 '-pyridyl)-2- 

nitropropane, in  a 3:1 ratio as an orange oil, 74%; Umax (KBr disc) 

3560-2945, 1600, 1555 (strong), 1395, 1110, 795 and 770 cm-1; 5h 

(200 MHz, CDCI3 ) Major Diastereoisomer, 1.44 (complex, 3H), 4.80 

(d, 1H), 5.42 (complex, 1H) and 7.26-7.80 (complex, 4H); 8 c(CDCl3 ) 

Major Diastereoisomer, 15.58 (CH3 -CHNO2 ), 74.96 (CHOH), 87.56 

(CHN02), 122.16 (Ar-C), 123.84 (Ar-C), 137.39 (Ar-C), 149.16 (Ar-C) 

and 156.60 (Ar-C); 8 h (200 MHz, CDCI3 ) Minor Diastereoisomer, 1.47 

(complex, 3H), 4.88 (d, 1H), 5.50 (complex, 1H) and 7.26-7.80 

(complex, 4H); 5c (CDCI3 ) M inor Diastereoisomer, 15.63 (CH3 - 

CHN02), 75.02 (CHOH), 87.64 (£HN02), 122.25 (Ar-C), 123.95 (Ar-C), 

137.45 (Ar-C), 149.28 (Ar-C) and 156.68 (Ar-C); m /z  183 (M++1), 

136, 118, 107, and 79 (100%).

(± ) -3 -H y d ro x y -3 -(3 f-p y r id y l)-2 -n itro p ro p a n e

Using 3-pyridinecarboxaldehyde in  general procedure E(ii) 

gave a racemic m ix tu re  o f (±)-3-hydroxy-3-(3 '-pyridyl)-2- 

nitropropane, in  a 3:2 ratio as an orange oil, 81%; Umax (KBr disc) 

3600-3000, 1590, 1555 (strong), 1390, 1095 and 770 c n r l ;  §H 

(200 MHz, CDCI3 ) Major Diastereoisomer, 1.47 (d, 3H), 4.83 (d, 1H),

5.53 (complex, 1H), 7.33-8.19 (complex, 4H); 8c (CDCI3 ) Major 

Diastereoisomer, 15.32 (CH3-CHN02), 72.68 (CHOH), 87.75 (CHNO2 ), 

123.61 (Ar-C), 135.15 (Ar-C), 147.04 (Ar-C), 148.31 (Ar-C) and

153.24 (Ar-C); 5h (200 MHz, CDCI3 ) Minor Diastereoisomer, 1.50 (d, 

3H), 4.87 (d, 1H), 5.60 (complex, 1H), 7.33-8.19 (complex, 4H); 8c 
(CDCI3 ) M inor Diastereoisomer, 15.40 (CH3 -CHNO2 ), 72.80 (CHOH),
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87.83 (CHN02), 123.72 (Ar-C), 135.21 (Ar-C), 147.09 (Ar-C), 148.39 

(Ar-C) and 153.31 (Ar-C); m /z  183 (M+ +1), 182 (M+), 135, 117, 107 

(100%) and 78; Found: M+, 182.0641. C8 H 1 0 N2 O3  requires M, 

182.0684.

(± ) -3 -H y d ro x y -3 - (  4  '-p y r id y l) -2 -n i tro p ro p a n e

Using 4-pyridinecarboxaldehyde in  general procedure E(iii) 

gave (±)-3 -hyd roxy-3 -(4 '-pyridy l)-2 -n itrop ropane  as a white 

powder, 83%; Umax (KBr disc) 3620-3005, 1605, 1555 (strong), 

1395, 1075, 830 and 620 c m 'l;  Sh (200 MHz, CDCI3 ), 1.32 (d, J 4 Hz, 

3H), 4.87 (d, J 6  Hz, 1H), 5.38 (complex, 1H), 7.45 (d, 2H) and 8.59 

(d, 2H); 8 C (CDCI3 ) 15.78 (£H3-CHN02), 73.74 (£HOH), 87.72 

(£HN02), 122.33 (2Ar-C), 149.68 (Ar-C) and 149.76 (2Ar-C); m /z  

183 (M+ +1), 182 (M+), 135, 117, 107 (100%), 94 and 78; Found: M+, 

182.0615. C8 H1 0 N2 O3  requires M, 182.0680.

General Procedure (F) fo r  the Reduction o f N itropropanes 

to Propvlamines

The aromatic nitropropane (2.98 mmol) was dissolved in 

methanol (50 ml). To this was added 10% Pd/C catalyst (0.2 g) and 

the mixture was hydrogenated at ca. 40-60 p.s.i. at 25 °C for 15-24 

h. The solution was then filtered through a Celite pad and 5 M 

hydrochloric acid (25 ml) was added. Evaporation o f the solvent in  

vacuo gave the crude dihydrochloride salt and recrystallisation 

was attempted from ethanol and acetone.
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( ± ) - 3 - H y d r o x y - 3 - ( 2 ' - q u i n o l y l ) p r o p y l - 2 - a m i n e  D ih y d r o ­

c h lo rid e  (8 7 )

Using (±)-3-hydroxy-3-(2,-quinolyl)-2-nitropropane (84) in  

general procedure F gave a racemic m ixture o f (±)-3-hydroxy-3- 

(2'-quinolyl)propyl-2-amine dihydrochloride (87), in  a 3:1 ratio as 

a brown solid, 40%; m.p. >250 °C; Umax (KBr disc) 3600, 3100-2740, 

1605, 1550 and 840 cm - 1 ; Sh  (200 MHz, D 2 O) Major 

Diastereoisomer, 0.94 (d, 3H), 3.40 (complex, 1H), 5.40 (d, 1H) and 

7.41-8.09 (complex, 6H); 5c (D2 O) Major Diastereoisomer, 16.08 

(CH3 -CHNH2 ), 49.54 (CHNH2), 71.02 (CHOH), 118.34 (Ar-C), 121.29 

(Ar-C), 130.12 (Ar-C), 130.38 (Ar-C), 131.61 (Ar-C), 133.10 (Ar-C),

135.52 (Ar-C), 143.99 (Ar-C) and 158.71 (Ar-C); Sh  (200 MHz, D2 O) 

Minor Diastereoisomer, 0.99 (d, 3H), 3.42 (complex, 1H), 5.45 (d, 1H) 

and 7.41-8.09 (complex, 6H); 5c (D2 O) Minor Diastereoisomer, 16.17 

(CH3 -CHNH2 ), 49.60 (CHNH2), 71.10 (CHOH), 118.39 (Ar-C), 121.38 

(Ar-C), 130.16 (Ar-C), 138.47 (Ar-C), 131.70 (Ar-C), 133.15 (Ar-C),

135.63 (Ar-C), 144.11 (Ar-C) and 158.78 (Ar-C); m /z  202, 130 

(100%) and 36.

( ± ) - 3 - H y d r o x y - 3 - ( 3 1- q u in o ly l ) p r o p y l - 2 - a m in e  D ih y d r o ­

c h lo rid e  (8 8 )

Using (±)-3-hydroxy-3-(3f-quinolyl)-2-nitropropane (85) in  

general procedure F gave a racemic m ixture o f (±)-3-hydroxy-3- 

(3'-quinolyl) propyl-2-amine dihydrochloride (88), in  a 3:1 ratio as 

a cream solid, 35%; m.p. >250 °C; Umax (KBr disc) 3610, 3075-2770, 

1600, 1545 and 785 cm ’ l ;  8h (200 MHz, D 2 O) Major 

Diastereoisomer, 1.00 (d, 3H), 3.45 (complex, 1H), 5.46 (d, 1H), 7.67-

7.85 (complex, 3H), 8.61 (dd, 2H) and 8.88(d, 1H); 8c (D20) Major
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Diastereoisomer, 17.56 (CH3 -CHNH2 ), 51.39 (CHNH2 ), 6 6 . 2 1  (CHOH), 

128.44 (Ar-C), 128.99 (Ar-C), 129.23 (Ar-C), 129.78 (Ar-C), 130.86 

(Ar-C), 131.11 (Ar-C), 134.20 (Ar-C), 149.13 (Ar-C) and 160.06 (Ar- 

C); 8 h  (200 MHz, D2 O) M inor Diastereoisomer, 1.12 (d, 3H), 3.51 

(complex, 1H), 5.50 (d, 1H), 7.67-7.85 (complex, 3H), 8.67 (dd, 2H) 

and 8.93(d, 1H); 8 c (D2 O) M inor Diastereoisomer, 17.62 (CH3 - 

CHNH2 ), 51.47 (CHNH2 ), 66.30 (CHOH), 128.53 (Ar-C), 129.03 (Ar-C), 

129.30 (Ar-C), 129.86 (Ar-C), 130.95 (Ar-C), 131.24 (Ar-C), 134.30 

(Ar-C), 149.18 (Ar-C) and 160.10 (Ar-C); m /z  203, 130 (100%) and 

36.

(± ) - 3  - H y d r o x y - 3 - ( 4 r-q  u in  o l y l )  p r o  p y l - 2 - a m in  e D ih y d r o ­

c h lo rid e  (8 9 )

Using (±)-3-hydroxy-3-(4l-quinolyl)-2-nitropropane (8 6 ) in  

general procedure F gave (±)-3-hydroxy-3-(4f-quinolyl)propyl-2- 

amine dihydrochloride (89) as a white solid, 77%; m.p. >250 °Q 

Umax (KBr disc) 3650-3620, 3100-2600, 1620, 1545 and 780 cm-1; 

8 h  (200 MHz, D2 O) 0.92 (d, 3H), 3.38 (complex, 1H), 5.35 (d, 1H), 

7.49-7.89 (complex, 4H), 8.01 (dd, 1H) and 8.72(d, 1H); 8 c (D2 O)

16.11 (CH3 -CHNH2 ), 53.13 (CHNH2 ), 70.43 (CHOH), 120.76 (Ar-C), 

122.01 (Ar-C), 125.34 (Ar-C), 127.15 (Ar-C), 131.37 (Ar-C), 135.88 

(Ar-C), 138.11 (Ar-C), 144.66, (Ar-C) and 158.86 (Ar-C); m /z  202, 

130 (100%) and 36.

( ± ) - 3 - H y d r o x y - 3 - ( 2 l- p y r i d y l ) p r o p y l - 2 - a m i n e  D ih y d r o ­

c h lo rid e  (9 0 )

Using (±)-3-hydroxy-3-(2'-pyridyl)-2-nitropropane in general 

procedure F gave a racemic m ixture o f (±)-3-hydroxy-3-(2'-
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pyridy l)p ropy l-2-amine dihydrochloride (90), in  a 3:1 ratio as a 

light green solid, 75%; m.p. >250 °C; Umax (KBr disc) 3620, 3100- 

2500, 1620, 1550 and 830 cm‘ l ;  5h (200 MHz, D 2 O) Major 

Diastereoisomer, 1.20 (d, 3H), 3.57 (complex, 1H), 5.04 (d, 1H), 7.84- 

8.50 (complex, 3H) and 8.59 (d, 1H); 5c (D2 O) M ajor 

Diastereoisomer, 15.79 (CH3 -CHNH2 ), 52.48 (CHNH2 ), 71.14 (CHOH), 

126.59 (Ar-C), 127.97 (Ar-C), 142.52 (Ar-C), 148.13 (Ar-C) and

153.90 (Ar-C); 5h (200 MHz, D 2 O) Minor Diastereoisomer, 1.26 (d, 

3H), 3.60 (complex, 1H), 5.11 (d, 1H), 7.84-8.50 (complex, 3H) and

8.64 (d, 1H); 8c (D2 O) Minor Diastereoisomer, 15.83 (CH3 -CHNH2 ), 

52.55 (CHNH2), 71.18 (CHOH), 126.66 (Ar-C), 128.04 (Ar-C), 142.60 

(Ar-C), 148.21 (Ar-C) and 153.98 (Ar-C); m /z  152, 123, 109 (100%), 

93, 80 and 36.

( ± ) - 3 - H y d r o x y - 3 - ( 3 f- p y r i d y l ) p r o p y l - 2 - a m i n e  D ih y d r o ­

ch lo rid e  (9 1 )

Using (±)-3-hydroxy-3-(3'-pyridyl)-2-nitropropane in  general 

procedure F gave a racemic m ixture o f (±)-3-hydroxy-3-(3'- 

pyridy l)p ropy l-2-amine dihydrochloride (91), in  a 3:2 ratio as a 

creamy white solid, 32%; m.p. >250 °C; Umax (KBr disc) 3300-3560, 

3200-2700, 1600, 1560 and 770 cm-1; sH (200 MHz, D2 O) Major 

Diastereoisomer, 0.91 (d, 3H), 3.28 (complex, 1H), 4.98 (d, 1H), 7.71 

(complex, 1H) and 8.13-8.59 (complex, 3H); 8c (D2 O) Major 

Diastereoisomer, 15.64 (CH3 -CHNH2 ), 51.70 (CHNH2 ), 72.56 (CHOH), 

130.37 (Ar-C), 141.47 (Ar-C), 141.58 (Ar-C), 141.96 (Ar-C) and 

144.23 (Ar-C); 5h (200 MHz, D 2 O) Minor Diastereoisomer, 0.98 (d, 

3H), 3.33 (complex, 1H), 5.06 (d, 1H), 7.80 (complex, 1H) and 8.13-

8.68 (complex, 3H); 8c (D 2 O) Minor Diastereoisomer, 15.71 (CH3 - 

CHNH2), 51.80 (CHNH2 ), 72.62 (CHOH), 130.46 (Ar-C), 141.50 (Ar-C),
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141.63 (Ar-C), 142.09 (Ar-C) and 144.30 (Ar-C); m /z  151, 123, 109, 

93, 80 (100%) and 36.

( ± ) - 3 - H y d r o x y - 3 - ( 4 l- p y r i d y l ) p r o p y l - 2 - a m i n e  D ih y d r o ­

ch lo rid e  (9 2 )

Using (±)-3-hydroxy-3-(4f-pyridyl)-2-nitropropane in  general 

procedure F gave (±)-3-hydroxy-3-(4I-pyridyl)propyl-2-am ine 

dihydrochloride (92) as a sticky green solid, 69%; Umax (KBr disc) 

3710-3320, 3200-2600, 1605, 800 and 670 c m 'l;  8h  (200 MHz, 

D20) 0.86 (d, 3H), 3.21 (complex, 1H), 4.63 (d, 1H), 7.35 (d, 2H) and

8.39 (d, 2H); 8c (D 2 O) 15.72 (CH3 -CHNH2 ), 52.86 (£HNH2 ), 73.10 

(£HOH), 126.31 (2Ar-C), 142.29 (2Ar-C) and 161.40 (Ar-C); m /z  

152, 123, 109, 80 (100%) and 36.

Synthesis of Ouinolylmethylamine Dihvdrochlorides

General Procedure(G) for the Synthesis o f Amides from  

Acids131

NH3(g) was bubbled through acetonitrile (approx. 20 ml) until 

the aceton itrile  was saturated (15-20 m in). The qu ino line  

carboxylic acid (1.34 g, 7.74 mmol) was partia lly  dissolved in  

acetonitrile (60 ml) (not the basified solution) and trie  thy lamine 

(1.2 equivalents, 9.29 mmol) was added as the acid dissolved. 

Isobutylchloroformate (1.2 equivalents, 9.29 mmol) was added at 

-5 °C, slowly over a few min. This forms the anhydride in  situ. 

After waiting for 5 min the acetonitrile saturated w ith  NH3  (20 ml) 

was added giving a white precipitate. This mixture was left at 0 °C 

for 2 h. The white precipitate was filtered and the filtra te  was
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concentrated to dryness giving a creamy white solid. The solid was 

taken up in ethyl acetate (25 ml) and washed w ith  dilute sodium 

bicarbonate. The organic layer was dried (Na2S04), filtered and 

evaporated to dryness to yie ld  a white solid, which was used 

without further purification.

2 -Q u in o lin ec a rb o x a m id e  (9 3 )

Using 2-quinolinecarboxylic acid in  general procedure G gave

2-quinolinecarboxamide (93) as a creamy white powder, 86%; Umax 

(KBr disc) 3430, 3200-3050, 1690, 1620, 1560, 875 and 770 cm-1; 

8h  (200 MHz, CDCI3) 6.78 (br s, 2H), 7.37-7.84 (complex, 5H) and 

8.49 (d, 1H); 8c (CDCI3) 120.31 (Ar-C), 125.48 (Ar-C), 126.20 (Ar-C),

126.53 (Ar-C), 127.60 (Ar-C), 127.95 (Ar-C), 135.37 (Ar-C), 143.85 

(Ar-C), 155.76 (Ar-C) and 169.74 (C=0); m /z  173 (M+ +1), 172 (M+), 

156, 128, 79 (100%) and 28; Found: M+, 172.0611. C1 0 H 8 N2 O 

requires M, 172.0633.

3 -Q u in o lin ec a rb o x a m id e

Using 3-quinolinecarboxylic acid in  general procedure G gave

3-quinolinecarboxamide as a white powder, 80%; Umax (KBr disc) 

3435, 3150-3050, 1690, 1615, 1550 and 690 cm "1; 5h (200 MHz, 

CDCI3 ) 6.69 (br s, 2H), 7.36-7.78 (complex, 4H), 8.31 (d, 1H) and 

9.00 (d, 1H); 8 c (CDCI3 ) 126.42 (Ar-C), 127.26 (Ar-C), 127.32 (Ar-C), 

127.99 (Ar-C), 128.34 (Ar-C), 132.60 (Ar-C), 134.17 (Ar-C), 147.53 

(Ar-C), 149.74 (Ar-C) and 169.92 (C=0); m /z  172 (M+), 156, 128, 79 

(100%) and 28; Found: M+, 172.0645. C1 0 H 8 N 2 O requires M, 

172.0638.
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4-Quinolinecarboxamide

Using 4-quinolinecarboxylic acid in general procedure G gave

4-quinolinecarboxamide as a white powder, 89%; Umax (KBr disc) 

3435, 3150-3050, 1690, 1615, 1550, 875 and 760 cm-1; 8h (200 

MHz, CDCI3 ) 6.60 (br s, 2 H), 7.41-7.60 (complex, 3 H), 7.82-7.97 (dd, 

2 H) and 8.73 (d ,lH ); 8 c(CDCl3 ) 118.80 (Ar-C), 120.69 (Ar-C),

122.06 (Ar-C), 125.83 (Ar-C), 128.82 (Ar-C), 129.47 (Ar-C), 143.59 

(Ar-C), 146.30 (Ar-C) and 149.07 (Ar-C) and 169.02 (C=0); m /z  173 

(M+ +1), 172 (M+), 157, 128, 79 (100%) and 28; Found: M+, 

172.0580. C1 0 H8 N2 O requires M, 172.0630.

General Procedure (H) fo r  the Synthesis o f  Amines fro m  

Amides13 2

To a solution o f 1 M BH3  in  THF (23.2 ml, 23.2 mmol) was 

added the quinolinecarboxamide (1 g, 5.81 mmol) in  THF over a 15 

m in period, m aintaining the temperature at 0 °C during the 

addition. The solution was brought to reflux and maintained for 24 

h, then the solution was allowed to cool. Hydrochloric acid ( 6  M) 

was added slowly (dropwise at first) until no more H 2  was given o ff 

and the solution was at pH 1. The THF was removed at atmospheric 

pressure and the H 2 O was removed under reduced pressure to 

yield a white solid. MeOH (10 ml) and conc. HC1 (2-3 drops) were 

added to the filtrate in order to remove any boric acid as the borate 

methyl ester. The resulting solution was evaporated to dryness 

giving a creamy white solid o f diamine dihydrochloride. The solid 

was crystallised from 95% aqueous ethanol.
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2-Quinolylmethylamine Dihydrochloride (94)

Using 2-quinolinecarboxamide (93) in  general procedure H 

gave 2-quinoly lm ethylam ine d ihyd roch lo ride  (94) as white 

crystals, 45%; m.p. >250 °C; Umax (KBr disc) 3340-3200, 2950, 

1605, 1575, 1490, 870 and 770 cm-1; gH (D2 O) 4.61 (s, 2H), 7.64-

7.98 (complex, 5H) and 8.32 (d, 1H); 5c(D20) 41.66 (£H2N), 120.52 

(Ar-C), 124.21 (Ar-C), 125.97 (Ar-C), 127.01 (Ar-C), 128.46 (Ar-C), 

129.78 (Ar-C), 137.12 (Ar-C), 147.52 (Ar-C) and 158.38 (Ar-C); m /z  

158, 143, 129, 79 (100%) and 28; Found: C, 51.91; H, 5.22; N, 

12.13%. C1 0 H1 2 N2 CI2  requires: C, 51.95; H, 5.19; N, 12.12%.

3 -Q u in o ly lm e th y la m in e  D ih y d ro c h lo r id e  (9 5 )

Using 3-quinolinecarboxamide in  general procedure H gave 3- 

quinolylmethylamine dihydrochloride (95) as white crystals, 37%; 

m.p. >250 °C; Umax (KBr disc) 3290-3170, 2950, 1610, 1570, 1490, 

790 and 770 cm "l; 8h (D2 0 ) 4.49 (2H, s), 7.36-7.81 (complex, 4H), 

8.26 (d, 1H) and 8.87 (d, 1H); 8c (D2 O) 40.42 (£H2N), 123.27 (Ar-C), 

123.96 (2Ar-C), 124.55 (2Ar-C), 125.51 (Ar-C), 126.72 (Ar-C),

130.07 (Ar-C), 143.63 (Ar-C) and 145.40 (Ar-C); m /z  231 (M++1), 

157, 143, 128, 79 (100%) and 28; Found: C, 51.94; H, 5.24; N, 

12.10%. C1 0 H1 2 N2 CI2  requires: C, 51.95; H, 5.19; N, 12.12%.
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4-Qjuinolylmethylamine D ihydroch loride  (96)

Using 4-quinolinecarboxamide in  general procedure H gave 4- 

quinolylmethylamine dihydrochloride (96) as white crystals, 52%; 

m.p. >250 °C; Umax (KBr disc) 3390-2960, 1620, 1580, 1485 and 

620 cm-1; §H (D2 0) 4.59 (2H, s), 7.49-7.61 (complex, 3H), 7.93-8.02 

(dd, 2H) and 8.85 (d, 1H); 5c (D2 O) 42.83 (CH2 N), 120.43 (Ar-C), 

121.51 (Ar-C), 123.18 (Ar-C), 125.38 (Ar-C), 129.94 (Ar-C), 134.16 

(Ar-C), 136.75 (Ar-C), 143.42 (Ar-C) and 156.93 (Ar-C); m /z  231 

(M+ +1), 158, 128, 79 (100%) and 28; Found: C, 51.90; H, 5.21; N, 

12.14%. C1 0 H1 2 N2 CI2  requires: C, 51.95; H, 5.19; N, 1 2 .1 2 %.

Attempted Synthesis o f Z -^-O u ino lvD n itroe thene  (79)

1st A ttem p t: From 2-Q uino linecarboxa ldehyde using NaOH 

as Base

2-Q uinolinecarboxaldehyde (1.73 g, 11 m m ol) and 

nitromethane (693 mg, 11 mmol) in  MeOH (20 ml) were kept at 10- 

15 °C while NaOH solution (460 mg in  1.6 m l o f H2 O, 7 M) was 

added very slowly dropwise. The reaction m ixture went dark red 

immediately, turning yellow/brown after being allowed to stand for 

15 min. Ice water was added to the solution, and the solution was 

then added to HC1 (approx. 20 m l o f 4 M) giving a green solution. 

The acidic solution was concentrated to 5 ml yielding a light creamy 

solid which was filtered off. Total weight o f solid was 1.66 g; [note 

the white solid appeared to be the HC1 salt o f (±)-2-hydroxy-2-(2?- 

quinolyl)nitroethane (78), soluble in H2 O and not in  CHCI3 ]; 5h (200 

MHz, D 2 O) 4.98 (ABX system, Jab 11 Hz Jax 3 Hz Jbx 7 Hz, 2H), 5.86
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(dd, Jax 3 Hz Jbx 7 Hz, 1H), 7.58-8.01 (complex, 5H) and 8.76 (d, 1H); 

8C (D20) 68.04 (£H2NC>2), 79.60 (£HOH), 119.99 (Ar-C), 120.85 (Ar-

C), 129.01 (Ar-C), 129.89 (Ar-C), 130.88 (Ar-C), 136.12 (Ar-C), 

138.22 (Ar-C), 148.37 (Ar-C) and 157.09 (Ar-C); m /z  219 (M++1), 

218 (M+), 171, 158, 143, 129 (100%), 115, 101, and 77.

2 n d  A t te m p t:  F ro m  2 -Q u in o lin e c a rb o x a ld e h y d e  u s in g  N -  

A m y la m in e  as Base

2-Quinolinecarboxaldehyde (849 mg, 5.40 mmol) was 

dissolved in MeOH (20 ml), then nitromethane (329 mg, 5.40 mmol) 

and N-amylamine (47 mg, 0.54 mmol) were added. The mixture 

was stored in  a dark place at room temperature fo r 14 d giving a 

dark coloured solution. The solvent was removed in  vacuo to yield 

a dark oil. Purification on a silica gel column (hexane/ethyl acetate 

2:3) gave starting materials.

3 r d  A t t e m p t :  D e h y d r a t i o n  o f  2 - H y d r o x y - 2 - ( 2 ' -

q u in o ly l)n it r o e th a n e  ( 7 8 )  u s in g  A c e tic  A n h y d r id e  a n d  4 -  

D im e  th y la m in o p y rid in e

2-H ydroxy-2 -(2 f-qu inolyl)n itroethane (78) (0.65 g, 2.98 

mmol) was dissolved in  acetone (30 ml) and to this was added 

acetic anhydride (0.31 g, 3.04 mmol) and DMAP (5 mg). The 

solution was stirred at room temperature for 20 h, then filtered and 

evaporated under reduced pressure leaving a dark  solid. 

Purification on a silica gel column (hexane/ethyl acetate 1:1) gave a 

dark green solid which decomposed imm ediately on standing 

leaving a black tar which was insoluble in  a ll common organic 

solvents.
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4 th  A tte m p t:  D e h y d r a t io n  o f  2 - H y d r o x y - 2 - ( 2 ' - q u in o ly l ) -  

n itro e th a n e  (7 8 )  u s in g  M o le c u la r  S ieves a n d  H y d ro c h lo r ic  

A cid

2-Hydroxy-2-(2,-quinolyl)n itroethane (78) (900 mg, 4.13 

mmol) was dissolved in dry THF (50 ml) which contained activated 

molecular sieves. The solution was heated at reflux overnight. The 

solution was then cooled and HC1 (50 ml, 5 M) was added. The 

stirred solution was again heated at reflux fo r a fu rther 4 h. After 

cooling the solution was filtered and evaporated to dryness under 

reduced pressure leaving only the hydrochloride salt o f the starting 

material.

5 th  A tte m p t:  D e h y d r a t io n  o f  2 - H y d r o x y - 2 - ( 2 ' - q u in o ly l ) -  

n itro e th a n e  (7 8 )  us ing Sodium  H y d ro x id e

2-Hydroxy-2-(2,-quinolyl)nitroethane (78) (0.32 g, 1.2 mmol) 

was dissolved in THF (30 ml) and NaOH (15 ml, 5 M) was then 

added. The mixture was then heated at reflux fo r 24 h after which 

it  was cooled and the solvent was removed in  vacuo  leaving an 

orange oil. Purification on a silica gel column (hexane/ethyl acetate, 

2:3) gave an orange solid. This solid was starting material.

6 th  A tte m p t:  D e h y d r a t io n  o f  2 - H y d r o x y - 2 - ( 2 ' - q u in o ly l ) -  

n itro e th a n e  (7 8 )  using Phosphorus O xych lo rid e

A solution o f 2-hydroxy-2-(2f-quinolyl)nitroethane (78) (0.32 

g, 1.2 mmol) in  pyridine (12 ml) was cooled to 0 °C and POCI3  (20 

ml, 21.4 mmol) was added dropwise. The m ixture was stirred 

overnight at room temperature and then decomposed by the
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cautious addition o f H 2 O (10 ml). The solution was extracted w ith 

diethyl ether (2 x 20 ml), and washed w ith  H 2 O (2 x 20 ml) then 

brine (2 x 20 m l). A fte r d ry ing (Na2S04) the solution was 

evaporated to dryness leaving a black sticky solid which was 

insoluble in  a ll the common solvents. TLC showed at least six 

different compounds. Purification was not undertaken because o f 

the insolubility o f the solid.
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8.5 Experimental for Chapter Six

Synthesis o f  T hienvl and Pvrrvl E thvlam ines and  

Propvlamines

General Procedure (T) for the Synthesis o f Nitro Vinvl- 

Thiophenes136

In a 3-necked round bottom flask fitted w ith  a thermometer, 

m echan ica l s t ir re r  and a se p a ra to ry  fu n n e l, the 

thiophenecarboxaldehyde (3.70 g, 33 mmol) and nitroalkane (33 

mmol) were dissolved in  MeOH (10 ml). The solution was stirred 

and the temperature was kept between 10-15 °C while a solution 

of NaOH (1.4 g in  5 m l o f H2 O, 7 M) was added slowly. A bulky 

precipitate formed during the addition o f base. A fte r 15 m in 

standing the pasty mass was converted into a clear solution by the 

addition o f ice/water. This clear solution was then slowly added to 

a beaker o f HC1 (20 ml, 4 M) giving a coloured precipitate. The 

precipitate was filtered and recrystallised from hexane.

2 - ( 2 r-T h ie n y l)n itro e th e n e  (9 8 )

2-Thiophenecarboxaldehyde and nitromethane (2.00 g, 33 

mmol) were used in  general procedure J to give 2-(2 '- 

thienyl)nitroethene (98) as yellow crystals, 75%, m.p. 77 °C ( l i t ,136 

m.p. 79-80 °C); Umax (KBr disc) 3105, 3090, 1620, 1520, 1320, 

1180, 970, 950 and 725 cm-1; 8h (200 MHz, CDCI3 ) 7.14 (dd, J 4Hz, 

J 5Hz, 1H), 7.44 (d, J 14Hz, 1H), 7.45 (ddd J 0.7Hz, J 4Hz, J 1Hz, 1H), 

7.56 (dt, J 5Hz, J 1Hz, 1H) and 8.12 (dt, J 14Hz, J 0.7Hz, 1H); 8c
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(CDC13) 128.90 (Ar-C), 131.71 (£HNC>2), 132.15 (Ar-C), 133.73 (Ar- 

C), 134.74 (Ar-C) and 135.28 (£HCHN02); m /z  156 (M+ +1), 155 

(M+), 109, 97, 84 and 28 (100%); Found: M+, 155.0021. C6 H5 NO2 S 

requires M, 155.0029; Found: C, 46.38; H, 3.16; N, 9.03%. C6 H5 NO2 S 

requires: C, 46.45; H, 3.23; N, 9.03%.

2 -(3 '-T h ie n y l)n itro e th e n e  (1 0 0 )

3-Thiophenecarboxaldehyde and nitromethane (2.00 g, 33 

mmol) were used in  general procedure J to give 2-(3 '- 

thienyl)nitroethene (100) as yellow crystals, 80%, m.p. 88-89 °Q 

Umax (KBr disc) 3105, 1630, 1525, 1320, 1165, 970, 960 and 790 

cm-1; 8h ( 2 0 0  MHz, CDCI3 ) 7.27 (dd, J 5Hz, J 3Hz, 1H), 7.41 (ddd, J 

0.6Hz, J 5Hz, J 1Hz, 1H), 7.46 (d, J 14Hz, 1H), 7.73 (dd, J 3Hz, J 1Hz, 

1H) and 7.98 (dd, J 14Hz, J 0.6Hz, 1H); 8C (CDCI3 ) 124.99 (Ar-C),

128.15 (Ar-C), 132.31 (CH£HN02), 132.92 (Ar-C), 132.57 (Ar-C) and 

136.66 (£HCHN02); m /z  156 (M++1), 155 (M+), 108, 97, 84 and 45 

(100%); Found: M+, 155.0025. C6 H5 NO2 S requires M, 155.0031; 

Found: C, 46.16; H, 3.16; N, 9.03%. C6 H5 NO2 S requires: C, 46.45; H, 

3.23; N, 9.03%.

3 - (2  '-T h ie n y l)-2 -n itro p ro p -2 -e n e

2-Thiophenecarboxaldehyde and nitropropane (2.48 g, 33 

mmol) were used in  general procedure J to give 3-(2*-thienyl)-2- 

nitroprop-2-ene as yellow crystals, 60%, m.p. 65 °C ( lit.,136 m.p.

68.5 OQ; Umax (KBr disc) 3105, 3090, 1640, 1515, 1330, 1300, 975, 

930 and 715 cm-1; 8h (200 MHz, CDCI3 ) 2.53 (s, 3H), 7.17 (dd, J 4Hz, 

J 5Hz, 1H), 7.42 (d, J 4Hz, 1H), 7.63 (d, J 5Hz, 1H) and 8.28 (s, 1H); 8c 

(CDCI3 ) 14.19 (£H 3 ), 127.27 (Ar-C), 128.23 (Ar-C), 131.89 (Ar-C),
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134.90 (CHCCH3N02), 135.14 (CH£CH3N02), and 144.23 (Ar-C); m /z  

170 (M++ 1), 169 (M+), 112, 97, 84 and 45 (100%); Found: M+, 

169.0202. C7 H7 NO2 S requires M, 169.0207; Found: C, 46.62; H, 

4.12; N, 8.21%. C7 H7 NO2 S requires: C, 46.70; H, 4.14; N, 8.28%.

3-(3 '-Thienyl)-2-n itroprop-2-ene

3-Thiophenecarboxaldehyde and nitropropane (2.48 g, 33 

mmol) were used in  general procedure J to give 3-(3'-th ienyl)-2- 

nitroprop-2-ene as ligh t brown crystals, 6 8 %, m.p. 67-68 °C; Umax 

(KBr Disc) 3105,1630,1520, 1315, 975, 940 and 775 cm-1; gH (200 

MHz, CDC13) 2.51 (s, 3H), 7.24 (dd, J 3Hz, J 5Hz, 1H), 7.49 (d, J 3Hz, 

1H), 7.80 (d, J 5Hz, 1H) and 8.12 (s, 1H); 8 c  (CDCI3 ) 15.07 (£H3 ), 

123.36 (Ar-C), 124.17 (Ar-C), 131.45 (Ar-C), 133.78 (£HCCH3N02),

135.25 (CH£CH3N02), and 145.29 (Ar-C); m /z  170 (M+ + 1 ), 169 

(M+), 123 112, 97 and 45 (100%); Found: M+, 169.0214. C7 H7 NO2 S 

requires M, 169.0206; Found: C, 46.58; H, 4.15; N, 8.19%. C7 H7 NO2 S 

requires: C, 46.70; H, 4.14; N, 8.28%.

General Procedure (K) for the Reduction o f Nitro Vinvl- 

Thiophenes and Pyrroles to Amines using LiAlHa

A flame dried 50 m l round bottom flask, under nitrogen, was 

charged w ith 1 M LiAlH4  in  THF (20 ml, 20 mmol). A solution o f the 

n itro  v iny l thiophene or pyrrole (1.65 mmol) in  THF (25 ml) was 

added slowly over a few m in so as to cause gentle reflux. The 

reaction was stirred (1 h for thiophenes, and 24 h for pyrroles) and 

then a few drops o f H20 were added cautiously. Sodium potassium 

tartrate ( 3 5  ml, 2 0 % aqueous soln.) was added to break up the salts. 

The organic layer was separated and the aqueous layer was washed
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with ether (5 x 50 ml). The combined organic extracts were dried 

(Na2S04), filtered and the solvent was removed in  vacuo  to give the 

free amine as an o il. The o il was p a rtitio n e d  between 

dichloromethane and HC1 as in  general procedure C to give the 

hydrochloride salt. Recrystallisation was from absolute alcohol w ith 

the addition o f ether un til the solution became cloudy, followed by 

boiling un til the solution became clear and subsequent cooling to 

allow crystallisation.

2 - ( 2 r-T h ie n y l)e th y la m in e  H y d ro c h lo rid e  (9 9 )

Using 2-(2f-thienyl)nitroethene (98) in  general procedure K 

gave 2-(2'-thienyl)ethylam ine hydrochloride (99) as dark green 

crystals, 60%, m.p. 201-203 °C (lit.,136 m.p. 200-202 °C );umax (KBr 

disc) 3300-2600 (strong), 1600, 1390, 785 and 770 cm-1; gH (200 

MHz, D20) 2.74 (t, 2H), 3.01 (t, 2H), 6.89 (d, 1H), 7.02 (d, 1H), 7.18 

(d, 1H); 8C (D20) 27.63 (CH2CH2NH2), 40.24 (£H2NH2), 127.58 (Ar- 

C), 131.85 (Ar-C), 132.92 (Ar-C) and 134.74 (Ar-C); m /z  127, 109, 

98 (100%), 45 and 30; Found: C, 44.13; H, 6.22; N, 8.49%. C6 H1 0 CINS 

requires: C, 44.04; H, 6.12; N, 8.56%.

2 - ( 3 t-T h ie n y l)e th y la m in e  H y d ro c h lo rid e  (1 0 1 )

Using 2-(3'-thienyl)nitroethene (100) in  general procedure K 

gave 2-(3'-thienyl)ethylamine hydrochloride (101) as dark green 

crystals, 83%, m.p. 213-214 °C; Umax (KBr disc) 3250-2560 

(strong), 1600, 1420, 1395, 790 and 760 c m 'l; 8h (200 MHz, D2 O)

2.82 (t, 2H), 3.13 (t, 2H), 6.92 (d, 1H), 7.10 (d, 1H), 7.29 (d, 1H); 5c 

(D2 O) 28.21 (CH2CH2NH2), 40.87 (£H2NH2), 123.96 (Ar-C), 127.95 

(Ar-C), 128.92 (Ar-C) and 137.57 (Ar-C); m /z  127, 110, 98, 45 and
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30 (100%); Found: C, 43.89; H, 6.29; N, 8.43%. C6 H1 0 CINS requires: C, 

44.04; H, 6.12; N, 8.56%.

(+ )-3 -(2 '-T h ie n y l)p ro p y l-2 -a m in e  H y d ro c h lo rid e  (1 0 2 )

Using 3-(2f-thienyl)-2-nitroprop-2-ene in  general procedure 

K gave (±)-3-(2l-thienyl)propyl-2-am ine hydrochloride (102) as 

dark brown crystals, 51%, m.p. 139-140 °C (lit.,136 m.p. 143-144.5 

°C); Umax (KBr disc) 3210-2700 (strong), 1605, 1490, 1475, 1390, 

790 and 770 cm_l ;  8h (200 MHz, D2 O) 2.69 (ABX system, 14 Hz 

Jax 4 Hz JBX 8 Hz, 2H), 2.99 (dd, Jax 4 Hz JBX 8 Hz, 1H), 6.84 (d, 1H),

7.10 (d, 1H), 7.23 (d, 1H); 8c (D 2 O) 27.63 (CH2CHNH2), 40.24 

(CHNH2), 126.36 (Ar-C), 131.19 (Ar-C), 132.27 (Ar-C) and 133.84 

(Ar-C); m /z  141, 128, 98 (100%), 58, 45 and 30; Found: C, 47.15; H, 

6.60; N, 8.01%. C7 H1 2 CINS requires: C, 47.31; H, 6.81; N, 7.88%.

(± )-3 -(3 '-T h ie n y l)p ro p y l-2 -a m in e  H y d ro c h lo rid e  (1 0 3 )

Using 3-(3'-thienyl)-2-nitroprop-2-ene in  general procedure 

K gave (±)-3-(3'-thienyl)propyl-2-amine hydrochloride (103) as 

brown crystals, 62%, m.p. 149-150 °C; Umax (KBr disc) 3260-2500 

(strong), 1600, 1500, 1390, 790 and 770 cm '1; 8 h  (200 MHz, D2 O) 

2.73 (ABX system, JAB 13 Hz Jax 4 Hz Jbx 8  Hz, 2H), 3.09 (dd, Jax 4 

Hz Jbx 8  Hz, 1H), 6.90 (d, 1H), 7.12 (d, 1H), 7.34 (d, 1H); 8 C (D2 O) 

29.27 (CH2 CHNH2 ), 41.77 (£HNH2 ), 124.69 (Ar-C), 128.50 (Ar-C),

129.16 (Ar-C) and 138.78 (Ar-C); m /z  141, 127, 98, 58, 45 and 30 

(100%); Found: C, 47.23; H, 6.59; N, 7.97%. C7 H 1 2 CINS requires: C, 

47.31; H, 6.81; N, 7.88%.
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1 -(P h e n y ls u lp h o n y l)p y rro le -2 -c a rb o x a ld e h y d e  (1 0 5 )

To a stirred ice-cooled mixture o f 1-phenylsulphonyl pyrrole 

(104) (2.59 g, 12.5 mmol) and alum inium chloride (3.93 g, 29.5 

m m ol) in  1 ,2 -d ich lo roe thane was added dropw ise 1 , 1 - 

d ichloromethyl methyl ether (2.00 g, 17.5 mmol). The resulting 

solution was stirred at 0 °C for 3 h and then poured into a mixture 

o f ice and water. The organic layer was separated and the aqueous 

layer was washed w ith dichloromethane (3 x 50 ml). The combined 

organic extracts were washed w ith  water and then brine, dried 

over MgS04, and concentrated under reduced pressure to give a 

dark o il which solidified on standing overnight. Purification on a 

silica gel column (hexane/CHCl3 , 20:80, Rf 0.40) followed by 

recrystallisation (ethyl acetate/hexane, 95:5) gave white needles, 

80%; m.p. 79 °C  (lit.,144 m.p. 78-79 OQ; Umax (KBr disc) 3140, 1670, 

1480, 1190, 1140, 750, 725 and 590 c m 'l ;  8 h  (200 MHz, CDCI3 )

6.39 (dd, 1H), 7.14 (complex, 2H), 7.46-7.66 (complex, 3H), 7.82- 

7.95 (complex, 2H) and 9.94 (s, 1H); 8 c (CDCI3 ) 113.71 (Ar-C), 

120.72 (Ar-C), 124.99 (Ar-C), 126.67 (Ar-C), 127.39 (Ar-C), 129.35 

(Ar-C), 129.48 (Ar-C), 129.57 (Ar-C), 134.58 (Ar-C), 135.86 (Ar-C) 

and 178.69 (C=0); m /z  236 (M+ +1), 235 (M+), 207, 141,115 and 77 

(100%); Found: M+, 235.0301. C1 1 H9 NO3 S requires M, 235.0304.

I -(P h e n y ls u lp h o n y l)p y rro le -3 -c a rb o x a ld e h y d e  (1 1 0 )

2,5-Dimethoxy-3-formyltetrahydrofuran (108) (2.00 g, 12.5 

mmol), benzenesulphonamide (109) (1.96 g, 12.5 mmol) and glacial 

acetic acid (25 ml) were combined and heated at reflux vigorously 

at 130 °C for 4 h and the solution turned dark. The acetic acid was 

then removed in  vacuo leaving a black oil. To remove any traces o f
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acid the o il was dissolved in diethyl ether, washed w ith 5% NaHC03 

solution, water and then brine. The solution was dried (Na2S04), 

filte red , treated w ith  charcoal, filte red  th rough Celite and 

evaporated under reduced pressure to yie ld  a yellow oil. The o il 

was recrystallised (diethyl ether/hexane, 1:1) 51%, m.p. 58-59 °C 

(lit.,178 m .p . 57_58 o q ; \>max (KBr Disc) 3120, 1680, 1480, 1180, 

1060, 725, 620 and 590 cm-1; 8 h  (200 MHz, CDCI3 ) 6.56 (dd, 1H),

7.10 (complex, 1H), 7.34-7.49 (complex, 4H), 7.80-7.95 (complex, 

2H) and 9.71 (s, 1H); 8 c (CDCI3 ) 110.78 (Ar-C), 122.39 (Ar-C), 

127.13 (Ar-C), 127.72 (Ar-C), 128.41 (Ar-C), 129.12 (Ar-C), 129.41 

(Ar-C), 129.78 (Ar-C), 134.83 (Ar-C), 134.95 (Ar-C) and 185.35 

(C=0); m /z  236 (M+ +1), 235 (M+), 141, 116 and 77 (100%); Found: 

M+, 235.0305. C1 1 H9 NO3 S requires M, 235.0306.

General Procedure (L) fo r  the Synthesis o f N itro  V in v l- 

Pvrroles1 7 9

( i)  (P heny lsu lphony l)pyrro lecarboxa ldehyde  (10 m m ol), 

ammonium acetate crystals (7.00 mmol) and nitroalkane (10 ml) 

were combined and heated at reflux for 3 h. The excess nitroalkane 

was then evaporated under reduced pressure giving a black 

residue. The residue was dissolved in  ethyl acetate (25 ml) and 

washed w ith  dilute NaHC03 solution and brine. The organic layer 

was separated, dried (Na2S04) and filtered, then treated w ith  

charcoal, filte red through Celite and evaporated under reduced 

pressure to yield a yellow oil. The oil was then recrystallised from 

diethyl ether.

( ii)  (Phenylsulphonyl)pyrrolecarboxaldehyde (10 mmol) and 

nitroalkane (15 mmol) were dissolved in glacial acetic acid (20 ml) 

and heated at reflux overnight. The solvent was then evaporated
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under reduced pressure and the residue was worked up as w ith  

procedure (i).

1 '- (P h e n y ls u lp h o n y l)-2 -(2 '-p y rro ly l)n itro e ih e n e  (1 0 6 )

l-(P henylsu lphonyl)pyrro le-2-carboxa ldehyde (105) and 

n itro - methane (0.915 g, 15 mmol) were used in  general procedure 

L(ii) to give l ,-(phenylsulphonyl)-2-(2l-pyrro lyl)n itroethene (106) 

as yellow crystals, 65%; m.p. 126 °C ( lit . , 179 m.p. 126-128 °C); Umax 

(KBr disc) 3140, 1625, 1540, 1370, 1190, 1170, 1150, 1140 and 

990 cm_l ;  8 h  (200 MHz, CDCI3 ) 6.28 (complex, 1H), 7.02 (complex, 

3H), 7.40-7.59 (complex, 3H) and 7.80-7.89 (complex, 3H); 8 c 

(CDCI3 ) 112.65 (Ar-C), 119.72 (Ar-C), 120.08 (CHNO2 ) 122.17 (Ar- 

C), 125.35 (Ar-C), 126.48 (Ar-C), 127.22 (Ar-C), 128.96 (Ar-C),

129.08 (Ar-C), 130.61 (CHCHNO2 ), 132.13 (Ar-C) and 133.27 (Ar-C); 

m /z  279 (M+ +1), 278 (M+), 262, 207, 141 and 77 (100%); Found: 

M+, 278.0350. C1 2 H1 0 N2 O4 S requires M, 278.0353.

1 '- (P h e n y ls u lp h o n y l)-2 -(3 '-p y rro ly l)n itro e th e n e  (1 1 1 )

l-(P henylsu lphonyl)pyrro le -3-carboxaldehyde (110) and 

nitrom ethane (0.915 g, 15 mmol) were used in  general procedure 

L(i) to give l ,-(phenylsulphonyl)-2-(3f-pyrro lyl)n itroethene (111) 

as yellow crystals, 73%; m.p. 125-126 °C ( lit . , 179 m.p. 125-127 °C); 

Umax (KBr disc) 3125, 1540, 1380, 1185, 1175, 1095, 1065 and 980 

c m 'l; 8 h  (200 MHz, CDCI3 ) 6.51 (complex, 1H), 7.06 (complex, 2H), 

7.29-7.43 (complex, 4H) and 7.78-7.93 (complex, 3H); 8 c (CDCI3 )

109.26 (Ar-C), 119.47 (C.HNO2 ), 120.14 (Ar-C), 126.02 (Ar-C),

127.19 (Ar-C), 127.84 (Ar-C), 128.95 (Ar-C), 129.36 (Ar-C), 129.91 

(Ar-C), 132.70 (£HCHNC>2 ), 133.11 (Ar-C) and 134.18 (Ar-C); m /z
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278 (M+), 262, 207, 141 and 77 (100%); Found: M+, 278.0321. 

C1 2 H 1 0 N2 O4 S requires M, 278.0357.

A t t e m p t e d  S y n th e s is  o f  l ' - ( P h e n y is u lp h o n y i ) - 3 - ( 2 ' -  

p y rro iy l) -2 -n itro p ro p -2 -e n e

l-(P henylsu lphonyl)pyrro le -2-carboxa ldehyde (105) and 

nitroethane (1.125 g, 15 mmol) were used in  general procedure 

L(i). The product was a brown o il which was shown to be the 

starting aldehyde; 5h (200 MHz, CDCI3 ) 9.94 (s, 1H); m /z  235 (M+), 

207, 141, 115 and 77 (100%). [Note: the temperature and time o f 

re flux were increased, bu t again the starting aldehyde was the 

major product. Conditions in  general procedure L(ii) were also tried, 

but failed.]

A t t e m p t e d  S y n th e s is  o f  l ' - ( P h e n y ls u lp h o n y l ) - 3 - ( 3 ' -  

p y r r o iy l) -2 -n i  tro p ro p -2 -e n e

l-(P henylsu lphonyl)pyrro le-3-carboxa ldehyde (110) and 

nitroethane (1.125 g, 15 mmol) were used in  general procedure 

L(i). The product was a yellow o il which showed two spots by TLC 

(hexane/ CHCI3 , 20:80, Rf 0.26 and Rf 0.38). Purification by silica 

gel colum n w ith  the same solvent system gave the sta rting  

aldehyde as the m ajor product; 5h (200 MHz, CDCI3 ) 9.71 (s, 1H); 

m /z  235 (M+), 207, 141, 115 and 77 (100%).
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2 -(2 ,-Pyrrolyl)ethylamine Hydrochloride (107)

Using L iA lH 4  to  reduce l f-(phenylsulphonyl)-2-(2f-

pyrro ly l)n itroe thene  (106) in  general procedure K gave 2-(2 '- 

pyrro lyl)e thylam ine hydrochloride (107) as a lig h t brown solid, 

55%; Umax (KBr disc) 3380, 3220-3100, 1580, 725 and 590 c m 'l; 

SH (200 MHz, D20) 2.81 (t, 2H), 3.12 (t, 2H), 6.34 (complex, 1H), 7.17 

(d, 1H), 7.25 (d, 1H), 7.93 (s,lH); m /z  111, 94, 80 and 69 (100%).

2 -(3 '-P y rro ly l)e th y la m in e  H y d ro c h lo rid e  (1 1 2 )

Using U A IH 4  to  reduce l'-(phenylsu lphonyl)-2 -(3 f-

pyrro ly l)n itroe thene (111) in  general procedure K gave 2-(3 '- 

pyrro lyl)e thylam ine hydrochloride (112) as a brown solid, 42%; 

Umax (KBr disc) 3360, 3200-3100, 1570, 750 and 600 cm_l ;  5h 

(200 MHz, D2 O) 2.73 (t, 2H), 3.09 (t, 2H), 6.84 (d, 1H), 7.11 (s, 1H),

7.20 (d, 1H), 7.89 (s,lH); m /z  111, 94, 80 and 69 (100%).
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8 . 6  Experim ental fo r Chapter Seven

Synthesis o f C isplatin  Analogues 

Synthesis o f cis-1 .4-D iam inobut-2-ene (119) 

c is-l,4 -D im ethylsu lphonylbu t-2 -ene (121)

cis-But-2-ene-l,4-dio l (2.29 g, 0.026 mol) was dissolved in  

d ry THF (50 m l) and the solution was cooled to -78 °C under 

nitrogen. Methanesulphonyl chloride (4 ml, 0.052 mol) was added 

w ith  stirring  followed by the slow addition o f triethylam ine (5.25 g,

0.052 mol) over 5 m in. The m ixture was allowed to reach room 

tem perature and le ft s tirrin g  overn ight g iving a th ick  w hite 

so lu tion. The m ix was poured onto ice /w ater (150 m l) and 

extracted w ith  dichloromethane (3 x 75 m l). The combined organic 

extracts were dried (MgS04), filte red  and the solvent removed in  

vacuo  leaving a lig h t brown o il. W hite crystals o f c is -1,4- 

d im ethylsu lphonylbut-2 -ene ( 1 2 1 ) crystallised from  the o il, were 

recrystallised from  d iethyl ether and stored at 0 °C, 85%, Umax (KBr 

disc) 2950,1615,1350 and 1175 c m 'l; 8h(200MHz,CDC13) 3.05 (s, 

6 H), 4.80 (d, 4H), 5.95 (complex, 2H); 5C (CDCI3 ) 29.82 (2 £H3 ), 38.09 

(2 £H2 CH), 127.63 (2£HCH2); m /z 96 ( 1 0 0 %), 77 and 56.

cis-l,4 -D ibrom obut-2-ene (123)

Phosphorus tribrom ide (10 ml, 0.11 mol) was cooled to 0 °C 

and cis-but-2 -ene-l,4 -d io l (12 g, 0.13 mmol) was added slowly 

over a 3 h period. This gave a dark brown solution which was
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stirred overnight. The m ixture was cooled to 0 °C and cold water 

(50 m l) was added slowly to hydrolyse any excess phosphorus 

trib rom ide . The organic layer was separated and d ilu ted  w ith  

d ie thyl ether (50 m l). A fter washing w ith  NaHC03 solution (3 x 20 

m l) the organic layer was dried (Na2S04) and evaporated under 

reduced pressure to give cis-l,4-dibrom obut-2-ene (123) as a 

colourless oil, 81%; Umax (th in  film ) 2950, 1630 and 690 cm~l; 8 h  

(200 MHz, CDCI3 ) 4.00 (d, 4H) and 5.88 (complex, 2H); 8 c (CDCI3 ) 

35.30 (2 £H2 CH), 127.35 (2£HCH2); m /z  134, 104 (100%), 76 and 54.

c is -l,4 -D iph tha lim idobu t-2 -ene  (122)

A solution o f potassium phthalim ide (8.5 g, 46 mmol) in  DMF 

(100 m l) was heated to 50 °C and potassium iodide (0.40 g, 2.41 

m m ol) was added. W ith  the reaction s tirrin g  ra p id ly  cis-1,4- 

dibromobut-2-ene (123) (5.00 g, 23 mmol) was added slowly. The 

suspension was s tirred  at 60 °C fo r 16 h then poured onto 

ice /w a te r (150 m l) and extracted w ith  large quantities o f 

dichlorom ethane (7 x 100 m l). The dichlorom ethane was dried, 

filte red  and evaporated under reduced pressure, leaving behind 

residual DMF from  which cis-l,4 -d iph tha lim idobut-2 -ene  (122) 

precipitated after 2 h at 0 °C. The solid was filtered, washed free o f 

DMF w ith  d ie th y l ether (20 m l) and dried, leaving c is-1 ,4 - 

diphthalim idobut-2-ene (122) as a white powder, 62%; Umax (KBr 

disc) 3200-2950, 1765, 1710, 1620, 1150 and 720 c m 'l; 8 h  (200 

MHz, CDCI3 ) 4.54 (d, 4H) and 5.70 (complex, 2H); 5C (CDCI3 ) 34.61 

(CH2 N), 123.30 (Ar-C), 123.61 (Ar-C), 127.00 (£HCH2 ), 132.43 (Ar- 

C), 133.95 (Ar-C), 134.33 (Ar-C) and 167.87 (N£0); m /z  346 (M+), 

204,132,104, 76 (100%) and 54.
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cis-l,4-Diaminobut-2-ene Dihydrochloride (124)

A 1:1 m ixture o f concentrated hydrocloric acid (60 m l) and 

glacial acetic acid (60 m l) were added to cis-l,4-d iphthalim idobut-

2-ene (122) (5.00 g, 14 mmol) w ith  s tirring . The m ixture was 

heated at re flux fo r 30 h after which time it  was allowed to cool to 

room temperature. This resulted in  a precipitate o f phthalic acid 

which was removed by filtra tio n . The filtra te  was concentrated (5- 

1 0  m l) by evaporation yielding a second precipitate o f phthalic acid 

w hich was again filte re d  o ff. The rem aining filtra te  was d ilu ted  

w ith  glacial acetic acid (50 m l) and addition o f d ie thyl ether (50 m l 

added in  10 m l portions) gave a w hite precip ita te  o f cis-1,4- 

d iam inobut-2-ene d ihyd roch lo ride  (124). The precip ita te  was 

washed w ith  ether and crystallised from  aqueous ethanol, 78%; m.p. 

>250 °C; Umax (KBr disc) 3500-3300, 3100-3200, 1620, 1600, 1060 

and 780 c m 'l; 5h (200 MHz, CDCI3 ) 3.82 (d, 4H), 5.94 (complex, 2H) 

and 7.75-7.95 (complex, 8 H); 8 c(CDCl3 ) 37.05 (£H 2 N) and 127.84 

(£HCH2 ); m /z  87, 85, 69 (1 0 0 %) and 54.

S y n t h e s i s  o f  P l a t i n u m  P r e c u r s o r s

c i s -D ic h lo ro -b is (d im e th y ls u lp h o n y l)p la t in u m ( II)  (1 2 6 )

Potassium tetrachloroplatinate(II) (125) (1.04 g, 3.00 mmol) 

was dissolved in  water ( 1 0  m l) giving a red solution, and dim ethyl 

sulphoxide (0.70 g, 9.00 mmol) was then added. The solution was 

allowed to stand and turned yellow  over a period o f 15 m in 

followed by the growth o f yellow crystals after 40 m in. The crystals 

were filte red  o ff and then washed w ith  water, ethanol and ether.
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The crystals were then placed on a vacuum pump to d ry  fo r 4 h, 

70%; Umax (KBr disc) 3040, 3015, 2920, 1157, 1134, 1020, 430, 

380, 335 and 310 cm-1; 8h  (200 MHz, D2 O) 3.70 (s, 12H); m /z  199, 

78, 63 (100%) and 45; Found: C, 11.26; H, 2.89; S, 15.11%. 

Cl2PtC4Hi202S2 requires: C, 11.37; H, 2.84; S, 15.17%.

S ilv e r  S a lt o f  1 ,1  -C yc lo b u ta n e d ic a rb o x y lic  A c id  (1 2 7 )

1,1-Cyclobutanedicarboxylic acid (2.00 g, 14 mmol) was 

dissolved in  water (50 m l) and NaOH (1.12 g, 28 mmol) was added 

w ith  s tirring . When a ll the NaOH had dissolved (approx. 5 m in), 

silver n itra te (4.76 g, 28 mmol) was added and the m ixture was le ft 

s tirring  in  darkness overnight. When the reaction was opened to 

lig h t a white precipitate had formed which was filte red  off, dried 

and quickly used w ithout fu rther purification, 47%; Umax (KBr disc) 

1670, 1650, 1320 and 1300 c m '1; 8 h  (200 MHz, D2 O) 1.86 

(complex, 2H) and 2.69 (t, 4H).

c is - B is - d im e t h y ls u lp h o n y l ( l , l  -c y c lo b u ta n e d ic a r b o x y la to ) -  

p la t in u m ( I I )  ( 1 2 8 )171

cis-D ichloro-bis(dim ethylsulphonyl)platinum (II) (126) (0.88 

g, 2 . 1  mmol) and the silver salt o f 1 ,1 -cyclobutanedicarboxylic acid

(127) (0.75 g, 2.1 mmol) were stirred in  water (150 m l) at room 

tem perature and le ft in  darkness fo r 2 2  h g iv ing a creamy 

precipitate. The solid was filte red  o ff and the filtra te  concentrated 

to ca. 5 m l giving the product (128) as colourless crystals, 59%; m.p. 

200 °C dec ( lit . , 171 m.p. 201 °C dec); Umax (KBr disc) 3000, 2940, 

2920, 1660, 1610, 1410, 1340, 1330, 1140, 1115 and 1025 cm-1; 

8 h (200 MHz, D20) 1.90 (complex, 2H), 2.79 (t, 4H) and 3.58 (s,
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1 2 H); 5c (D2 0 ) 16.10 (CH2 CH2 CH2 ), 30.95 (2 £H 2 C), 44.02 (4 £H3 ), 

57.38 (£C=0) and 181.24 (2£=0); Found: C, 24.24; H, 3.86; S, 12.86%. 

PtCloHl806S2 requires: C, 24.34; H, 3.65; S, 12.98%.

cis-1,4-D iam inobut-2-ene(d ich lo ro)p la tinum (II) (119)

cis-l,4-D iam inobut-2-ene (124) was p a rtia lly  dissolved in  

water (10 m l) and the solution taken to pH 7 w ith  d ilu te  HC1. 

Potassium tetrachloroplatinate(II) (125) was dissolved in  water (10 

m l) and added to the neutral solution. The m ixture was heated to 

50 °C and the pH o f the solution kept at 7 by the addition o f d ilute 

NaOH. When there was no fu rther change in  the pH the reaction was 

allowed to cool to room temperature. This gave cis- 1,4-diaminobut-

2-ene(dichloro)platinum  (II) (119) as an orange/brown solid which 

was then washed w ith  water, ethanol and ether. The solid was only 

sparingly soluble in  water and was insoluble in  a ll common organic 

solvents, 83%; Umax (KBr disc) 3400-3100, 1640, 1620, 710, 335 

and 310 cm_l ;  m /z  87, 85, 71 and 54 (100%).

G eneral Procedure (M ) fo r  the Synthesis o f c is -  D iam ino 

(1 . l-cvc lobu taned ica rboxv la to )p la tinum (II) C o m p le x e s ^

( i)  To a ho t aqueous so lu tion  (10 m l) o f cis-bis-dim ethyl- 

s u lp h o n y l( l',lI-cyclobutanedicarboxylato)platinum (II) (128) (0.25 

g, 0.50 mmol) was added the diamine (0.50 mmol) in  water (3 m l). 

The m ixture was stirred at 100 °C fo r 6  h then le ft to cool yielding 

a precipitate, which was filte red and dried.

( ii)  Diamine (0.68 mmol) was added to an aqueous solution (40 

m l) o f c is-b is-d im ethylsu lphonyl(r,lf-cyclobutanedicarboxylato)- 

p la tinum (II) (128) (0.33 g, 0.68 mmol) and the m ixture was stirred
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at 40 °C fo r 1 h. The water was removed in  vacuo at 40 °C leaving 

a solid which was washed w ith  ethanol and then ether. The solid 

was then dissolved in  water (10 m l) and heated at 100 °C fo r 6  h. 

A fter cooling to room temperature the product precipitated.

c i s - 1 , 4 - D i a m i n o b u t a n e ( l \ l  '-c y c lo b u ta n e d ic a r b o x y la to ) -  

p la t in u m ( I I )  (1 2 9 )

Using 1,4-diaminobutane (3) in  general procedure M (i) gave 

cis-1,4-diaminobutane( 1', 1 ,-cyclobutanedicarboxylato)-platinum(II) 

(129) as colourless crystals, 10%, m.p. >250 °C; Umax (KBr disc) 

3600-3300, 1650, 1615, 1380, 910 and 780 cm-1; 8 r  (200 MHz, 

D2 O) 1.62-1.87 (complex, 4H), 1.90 (complex, 2H), 2.79 (t, 4H) and 

2.91-3.06 (complex, 4H); m /z  142, 114 (100%), 82 and 45.

c i s - f t r a n s - ( - ) - l , 2 - D ia m in o c y c lo h e x a n e ) ( l ' , l  '-c y c lo b u ta n e -  

d ic a rb o x y la to )p la t in u m (II)  (1 3 0 )

Using trans-(-)-l,2-diam inocyclohexane in  general procedure 

M (i) gave cis-(trans-(-)-l,2 -d iam inocyclohexane)(l',l,-cyclobutane 

dicarboxylato)platinum (II) (130) as colourless crystals, 67%, m.p. 

278-280 °C dec ( lit . , 172  m.p. 280 °C dec); Umax (KBr disc) 3600- 

3200, 1640, 1370, 1180, 1120, 1070, 1025, 910 and 780 cm-1; 8h 

(D 2 O) 1.09-1.38 (complex, 4H), 1.60 (d, 2H), 1.88 (complex, 2H), 

2.12 (d, 2H), 2.40 (complex, 2H) and 2.84 (t, 4H).
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A t te m p te d  S y n th e s is  o f  c is -1 ,4 -D ia m in o b u t -2 -e n e (  1 ',1  

c y c l o b u t a n e d i c a r b o x y l a t o ) p l a t i n u m ( I I )  ( 1 2 0 )  u s in g

G e n era l P ro ced u re  M  ( i )

Using cis-1,4-diam inobut-2-ene (124) in  general procedure 

M (i) gave a black solid which appeared to be cis-1,4-diaminobut-2- 

e n e (l,, l ,-cyclobutanedicarboxylato)platinum (II) (120) by spectro­

scopic analysis, bu t was insoluble in  a ll common solvents and 

fu rthe r purifica tion  was not possible; Umax (KBr disc) 1640, 1615, 

1380 and 910 c m 'l; m /z  142, 114, 87, 82, 69 and 54 (100%).

A t te m p te d  S y n th e s is  o f  c is - 1 ,4 - D ia m in o b u t - 2 - e n e ( l  ',1 '- 

c y c lo b u  t a n e d ic a r b o x y la  to  )  p la  t in  u m  ( I I )  ( 1 2 0 )  u s in g

G e n era l P ro ced u re  M  ( i i )

Using cis-1,4-diam inobut-2-ene (124) in  general procedure 

M (ii) gave a brown precipitate which was shown to be cis-bis- 

dim ethylsulphonyl( 11,1 f-cyclobutanedicarboxylato)platinum(II)

(128) by spectroscopic analysis; 8 h  (200 MHz, D2 O) 1.90 (complex, 

2H), 2.79 (t, 4H) and 3.58 (s, 12H).

A t te m p te d  S y n th e s is  o f  c is - 1 ,4 -D ia m in o b u t -2 -e n e (  1 ',1  -  

c y c lo b u ta n e d ic a r b o x y la to )p la t in u m (II )  ( 1 2 0 )  f r o m  c i s - 1 , 4 -  

D ia m in o b u t-2 -e n e (d ic h lo ro )p la t in u m (II)  (1 1 9 )

A  suspension o f cis-1,4-diam inobut-2-ene(dichloro)platinum  

(II) (119) (0.35 g, 1.00 mmol) in  water (50 m l) was heated to 50 °C 

and a solution o f the sodium salt o f 1 ,1 -cyclobutanedicarboxylic 

acid (127) (0.19 g, 1.00 mmol) in  water (10 m l) was added w ith  

s tirring . The m ixture was refluxed fo r 15 h and then allowed to
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cool. A black solid was filte red  and washed w ith  water. The solid 

was insoluble in  a ll common solvents and so was not pu rified  

further; Umax (KBr disc) 1630, 1615, 1370, 910 and 710 c m 'l.

Synthesis o f 2.4-D ioxopentanoic A cid175

M e th y l 2 ,4 -d io x o p e n ta n o a te  (1 3 2 )

Acetone (8.5 m l) and dimethyloxalate (13.7 g, 0.12 mol) were 

gradually added to a stirred  d ry  methanol solution ( 1 0 0  m l) o f 

sodium m ethoxide (9.41 g, 0.174 mmol) and the m ixture was 

heated at re flux fo r 3 h. A fter the m ixture was cooled to room 

temperature the solvent was concentrated under reduced pressure 

and the resu lting residue acid ified w ith  d ilu te  HC1. The acidic 

so lu tion was extracted w ith  e thyl acetate (3 x 75 m l) and the 

combined organic extracts were washed w ith  water and brine, 

dried (MgS04) and filtered. The solvent was removed in  vacuo to 

give a lig h t coloured residue w hich was crysta llised  from  

ethanol/hexane, 6 8 %; m.p. 96 °C ( lit . , 175 m.p. 98 °C); Umax (KBr 

disc) 1730, 1640, 1440, 1280, 1024 and 975 cm-1; gH (200 MHz, 

CDCI3 ) 2.30 (s, 3H), 3.90 (s, 3H), 6.39 (s, 1H), 14.42 (br s, 1H); Found: 

C, 50.12; H, 5.60%. C6 H8 O4  requires: C, 50.00; H, 5.56%.

2 ,4 -D io x o p e n ta n o ic  A c id  (1 3 1 )

M ethyl 2,4-dioxopentanoate (132) (2.57 g, 16.2 mmol) was 

dissolved in  methanol (30 m l) and 2 M NaOH solution (20 m l) was 

added. The m ixture was stirred at room temperature fo r 5 h and 

the solvent was then removed under reduced pressure. The 

resulting residue was acid ified w ith  9 M HC1 to pH 1 and then
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extracted w ith  d ie thyl ether and the solvent removed in  vacuo. The 

residue was recrysta llised from  carbon te trach lo ride  to give 

colourless crystals, 30%; m.p. >250 °C ( lit . , 175 m.p. 282 °C dec); Umax 

(KBr disc) 3300-3200, 1690, 1640, 1280, 660 cm-1; m/ z 1 3 0  (M+), 

113, 85 and 57 (100%).

page 199



Appendix

See Experimental Section for method

T a b le  1 (a ): S ta n d a rd  P ro te in  C o n ce n tra tio n s  an d  A 620/ A 465 

Readings (1)

Prote in  C ontent (mg) A465 A620 Afi20/A46.S

Â 2QZA4̂ _
(B lank)

50

40

30

25

20

15

10

5

0.317

0.366

0.476

0.512

0.526

0.555

0.606

0.637

0.971

0.886

0.783

0.740

0.623

0.638

0.550

0.479

2.54

1.90

1.12

0.92

0.66

0.63

0.39

0.23

Blank 0.613 0.320 0.00
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Appendix (cont.)

See Experimental Section for method

Table 1 (b): Standard Protein Concentrations and A 6 2 0 /A 4 6 5  

Readings (2)

Protein Content (mg) A465 A 6 2 0 A 620/A 46S

A 6 20 /A 46S

(Blank)

50

40

30

25

20

15

10

5

0.424

0.445

0.463

0.490

0.504

0.589

0.598

0.682

1.003

0.920

0.868

0.782

0.737

0.662

0.578

0.486

1.80

1.50

1.31

1.03

0.90

0.56

0.40

0.23

Blank 0.681 0.384 0.00
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Appendix (cont.)

See Experimental Section for method

Table 1 (c): Standard Protein Concentrations and Average A6 2 0 /A 4 6 5  

Readings from  Table 1 (a) and 1 (b)

Protein Content (mg) A620/A465 -

A6 2 0 /A 4 6 S (Blank)

50 2.17

40 1.70

30 1.22

25 0.98

20 0.78

15 0.60

10 0.40

5 0.23

Blank 0.00
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