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Sum m ary

The aim of this thesis is to explore the application of feed forward neural networks, and other 

numerical methods, to the prediction and analysis of solar terrestrial time series. The three time 

series under scrutiny are the sunspot number, the 10.7cm solar flux and the geomagnetic K p index. 

Each tim e series will be predicted and examined on time scales of days, months and years. As the 

work of the thesis unfolds, new perspectives on the time series of interest will be afforded, fueling the 

prediction intiatives of the later Chapters. New techniques for analysing time series are proposed 

and applied, as well as some new methods of using neural networks to make predictions.

C hapter 1 reviews the three main fields of interest. The first field is th a t of the statistical theory 

of time series modelling. The basic concepts and terminology are introduced, followed by a review 

of various time series models and prediction schemes. The more recent topic of neural networks 

is the second reviewed field. Again the basic ideas are introduced, and the defining equations of 

feed forward neural networks are stated along with a complete description of the training algorithm  

known as back propagation. To link these first two fields I suggest how the neural network can be 

viewed as a statistical time series model. Next, the current understanding of the solar terrestrial 

environment is reviewed, starting  with an overview of solar activity, with particular attention paid 

to the phenomena associated with the solar cycle. The terrestrial environment is then discussed, 

focussing on how the Sun and its activity affects the E arth ’s magnetic field. Finally, a selection of 

past a ttem pts a t predicting solar terrestrial tim e series are described and discussed.

C hapter 2 is where the analysis of the three time series is documented. The work of this chapter 

is concerned with providing an impression of m atters such as: the accumulation and form atting of 

the data; the search for periodicities; the nature of any periodicities; the non-stationarity of sunspot 

number; the stationary aspects of sunspot number; the auto-correlation of the time series; the cross

correlation of the time series, especially in relation to the Sun’s influence on the Earth; and the 

use of wavelet transform  in analysing tim e series. A part from being of intrinsic interest in itself,
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this work provides a familiarity with the data  that will directly and indirectly fuel the prediction 

initiatives of the following chapters.

Chapter 3 is an exploration of feed forward neural networks and back propagation. In this chapter 

some simple FFNNs performing some simple problems are investigated, as well as the (not simple) 

training algorithm, back propagation. For several cases it is shown what networks can, and cannot, 

be expected to do because of lim itations of numbers of neurons or the activation function used. It 

is also shown th a t back-propagation is not always reliable as a training algorithm, as it sometimes 

completely fails in training networks to perform tasks th a t they should be able to perform in theory. 

An im portant new method, tha t of analytic training, is also introduced. This m ethod shows how to 

“tra in” a neural network to perform any analytic function, by way of constructing and solving a set 

of linear equations.

Chapter 4 further bridges the gap between neural network methods and the statistical models of 

time series. In this chapter, various artificial time series are predicted using neural networks, and in 

a few cases, analytic training is used to prescribe what the minimum requirements are for a network 

to be able to predict a given class and order of statistical time series model. The ability to compare 

theory and practice makes the results of this chapter very interesting. At the end of the Chapter, 

the problem of delayed prediction is highlighted. Delayed predictions are predictions in which events 

in the time series (such as peaks or troughs) are predicted late.

Chapter 5 documents the results of using networks to predict the solar-terrestrial time series. 

First of all, a search of network architectures is performed for each of the fifteen time series: sunspot 

number, solar flux and K p index, each in five formats: daily, smoothed daily, monthly, smoothed 

monthly and yearly. Then the most successful networks from this search are trained further to see 

if any improvement is possible. After this the possibilities of probing deeper into the future are 

investigated by iterating networks on their own predictions and by training networks to predict 6 

steps ahead. For all the best predictions, uncertainties of prediction and levels of bias are estim ated 

from residual histograms and tabulated in Tables 5.20, 5.21 and 5.22. Finally some attention  is paid 

to the choice of training set.

Chapter 6 explores three new ways of using feed forward to predict tim e series. The first is the 

wavelet filtered prediction m ethod, in which a FFNN is trained to predict wavelet filtered tim e series, 

given inputs from the original tim e series. The idea underlying this approach is tha t, by separating 

the various time scales of the tim e series, it is easier for the network to identify the scales on which 

its behaviour is predictable. The second new method involves using a genetic algorithm  to train
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networks to avoid the problem of delayed prediction. Finally the prospect of using networks th a t 

take inputs from two time series simultaneously is investigated.

C hapter 7 draws together the results of the preceeding chapters to provide a more general, and 

digestible, sum m ary of what has been achieved by the work of this thesis. It also proposes new 

avenues of research and makes suggestions of how the various methods used in this thesis could be 

improved upon. To end the thesis a prediction of the maximum of cycle 23 (and 24!) is made.

A ppendix A deals with various results which do not belong anywhere else in the thesis. In 

particular a more general description of analytic training is given, showing how to train  I - H - 0  feed 

forward neural networks.

A ppendix B lists and discusses the C computer program used to train the networks.



Pre-A m ble

Finally, I wish to give the reader some understanding of the thoughts tha t have determined the style 

in which I present this thesis.

I have chosen to write the bulk of this thesis in the first person for two reasons: to highlight 

ideas and work th a t are my own; and to remind the reader that, sometimes at least, what is being 

stated  is subjective. The latter is not a “get-out clause” for any mistakes on my part, but has arisen 

from my frustation in distinguishing fact from opinion in the many scientific documents th a t I have 

read to date.

In writing this thesis, I have tried to repeat the most im portant ideas as often as possible, so 

th a t the reader is not required to perform great feats of memory. For similar reasons, I have tried to 

include references and cross-references where-ever possible. On the odd occassion, I m ight introduce 

ideas or concepts before fully defining a1! the terms involved. This is primarily to put things in 

context, w ithout the burden of excessive detail. As with many texts, this might require a “two pass” 

reading of some sections: one pass to obtain a feeling for the work and another to gather the details.

The quotes a t the head of each Chapter all have relevance to the m aterial within. In some cases 

the link may be apparent only to me, but I assure the reader that a link does exist.
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NN Neural Network

FFNN Feed Forward Neural Network

BP Back Propagation

GA Genetic Algorithm

W FP Wavelet Filtered Prediction

AR Auto Regressive

MA Moving Average
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Chapter 1

Introduction

“Nasty” Jack Regan

The aim of this thesis is to investigate the prediction of solar-terrestrial time series. Examples 

displayed in Fig. 1.1 are Sunspot number, 10.7 Solar Flux and K p index of Geomagnetic Activity. In 

each case the complexity of the underlying physical system prohibits predictions of the time series by 

constructing a physical model. Instead predictions of the future of one of these time series must rely 

solely on the history of tha t time series and perhaps the histories of other related time series. This 

approach has been the subject of a whole branch of statistics which first emerged in the 1920s, with 

the bulk of the ground-breaking work occurring in the 1960s and 1970s e.g. Box and Jenkins (1970). 

Until the mid 1980s most studies were confined to linear models of stationary tim e series (these 

terms are defined in Section 1.2). This was justified to some extent because many apparently non- 

stationary time series could be transformed in some way so tha t they became stationary. However the 

time series mentioned above are manifestly non-stationary and are not easily reduced to stationarity 

(see 1.2.3) so most of the “classic” work on time series is not applicable. In the last ten years these 

statistical ideas have been extended to analyzing non-stationary time series directly, e.g. Priestley 

(1988), though much of this research is still in progress and so is scattered throughout various 

journals and proceedings. I hope th a t this thesis will provide an accessible interpretation of at least 

some of these ideas, dem onstrating their application.

The explosion of interest in Neural Networks in the last decade following the invention of the 

Back Propagation training algorithm by Rum elhart et al. (1986) has provided another m ethod for 

predicting time series. T hat is, a Neural Network maybe trained on a history of da ta  to make

1



C H A P T E R  1. INT RODUCTI ON 2

300

250

200

150

100

1950 1955 1960 1965 1970 1975 1980 1985 1990
Year

300

250

200

150

100

50

0  1------- 1------- 1------- 1------- 1------- 1---- —L------- 1—
1950 1955 1960 1965 1970 1975 1980 1985 1990

Year

350

300

250

200

150

100

1950 1955 1960 1965 1970 1975 1980 1985 1990

Figure 1.1: Three im portant solar-terrestrial time series in m onthly form at over the la tte r half of 
the twentieth century: a) Sunspot Number b) Solar Flux c) K p Geomagnetic Index.



C H A P T E R  1. IN TR O D U C TIO N 3

predictions of the future. This m ethod is initially very appealing, not ju st because of the romantic 

notion th a t you are dealing with an electronic brain, but also because it appears so much simpler than 

the theory behind statistical time series modelling. However, these early illusions quickly dissolve 

when one realizes th a t a NN can be soberly called generalized non-linear regression and tha t the 

supposedly magical action of a network learning is little more than a least squares minimization 

using gradient descent. The simplicity of the method too is an illusion because there are so many 

free param eters to be determined, e.g. the number of units or neurons in the network and how they 

should be connected. If one then accepts a popular class of NNs such as a two-layer feed forward 

NN trained by standard back-propagation using a m omentum term, then there are still equally 

perplexing decisions to be made: e.g. how many units should be in each layer, how should the 

data  be presented during training and what values of learning rate and mom entum  param eter are 

best? Even once a NN has been trained to predict a given time series with some accuracy nagging 

questions remain unanswered: how is it making its predictions and what do the values of weight 

connections mean in relation to the time series? In this study I hope to answer these questions, 

though in the main the answers will be of numerical derivation. I also wish to investigate new 

ways of making time series predictions with NNs, several new methods are discussed in C hapter 6 

which uses a NN to predict components of a time series on different time scales, the components 

being obtained from a wavelet transform ation of the time series. In Chapter 6 I describe a genetic 

algorithm  training scheme and how its flexible nature allows it to cure a problem which can occur 

when using back-propagation to train NNs to predict time series.

Below I present the list of questions tha t I shall address in this thesis:

•  Which designs of Neural Network make the best prediction of the following time series: Sunspot 

Number, 10.7cm Solar Flux, K p Geomagnetic Index?

• On what time scales is it feasible to make predictions of these series and can cross-correlation

between them  and other time series prove beneficial?

•  How should prediction accuracy be judged? W hat is the criteria for success?

• For multi-layer feed forward NNs, how many layers are needed and how many units are needed

in each layer for best prediction accuracy?

•  If using back propagation, what are the best values for the learning rate e and the m om entum  

a ?  Is an adaptive param eter scheme useful?
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• W hat is the best method of data presentation e.g. sequential or non-sequential presentation 

of patterns? Should the time series be pre-processed in any way, e.g. log or exp transforms?

• Is Back Propagation the best training algorithm or could some other method, e.g. a genetic 

algorithm, be advantageous?

•  How is the NN making the predictions? More specifically, can anything be learned from the 

state of the weight connections after training is finished?

• How do NNs compare with other methods in terms of prediction accuracy, e.g. nearest neigh

bour, linear prediction filters, other non-neural, non-linear methods?

• How do NNs relate to the classes of statistical methods in existence?

W hilst I have stated above tha t the initial buzz of Neural Networks may quickly wear off, over 

time I have come to realise that the subject is both stim ulating and interesting, especially when 

fused with challenges of time series prediction. Unlike others, I have decided to dispense with 

the terminology that is intended to separate the mathem atical networks from the biological. For 

example, I will use the term neuron, not unit, and I shall not prefix the words “neural network" 

with “artificial'’ . I do this for two reasons. Firstly because there is no fear of confusion in this thesis,

I shall be exclusively dealing with the m athem atical variety of network. Secondly because, in some 

small way at least, terminology can serve to enthuse and even inspire.

1.1 G eneral C onsiderations

A tim e series is defined to be a sequence of values representing the state of some system at a number 

of different times. In this thesis I shall only consider time series tha t are recorded at equal time 

intervals.

Let x t represent the time series in question and let it extend from x i ,  the first observation, 

to x t , the most recent observation. By causality x t can only depend on the values at previous 

times, x\ . . . x t~\ and of course previous unobserved values; such a series is sometimes called non- 

anticipative. It is therefore natural to make a prediction of x t , represented by x t , by forming a 

function of some of the series’ history x t_ i .. . x t - \  i.e.

Xt =  P ( x t- I ,  . . -X't-ut)
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The time param eter is included explicitly so that, for example, a deterministic mean can be ex

pressed. The residuals, rt , are then

rt = x t -  P ( x t- i ,  .

Suppose tha t P ( x t - i , . ■ - x t - i , t )  is a bad predictor of x t) then the residuals will retain the unex

plained structure of x t . This means the rt ’s cannot be independent, so by this reasoning the ideal 

predictor function, P q  is such that

at = x t -  P0 (x t- i , .. . x t_ u t) (1.1)

where {at } is an unpredictable time series with zero mean and with all the at ’s independently distrib

uted (see Section 1.2). Note that this says that the time series has an “explainable” deterministic 

component, described by P q  and an “unpredictable” stochastic component represented by at . A 

further and more aesthetic requirement for P q  is that in accordance with Occam’s Razor it should 

be as simple as possible which amongst other things implies that it should use as small a number of 

inputs, 7, as possible.

The predictor function as defined above assumes that x t may be written as a function of the 

previous values of the time series. A more general definition would be

P o i x t - j , .. . x t , a t- j , . . .a t , t)  = 0 ( 1 .2 )

where the development of x is influenced by the input of the history of another time series a. So 

th a t even if the form of P q  is discovered, extracting a prediction from it is not a trivial task because 

the values of this other time series might not be readily available. To simplify m atters, almost all 

proposed time series models consider a to be white noise with constant mean and variance.

From here on the predictor function is abbreviated to P(I , t ) .

The problem is now to find P ( I , t )  and to determine if it satisfies Eqn. (1.1) (or more generally 

Eqn. 1.2) on all sequences of the observed data  x\ .. . x t - The larger T  — 7, the easier it becomes 

to verify th a t the residuals are independent. Naively one might assume some param etrisation of 

the predictor function i.e. P(I ,  t, c*i,.. ., a/v) and treat the problem as the solution of the set of 

nonlinear equations:

P(  7, 7 + 1  , a i , . . . ,  aw ) = x i  + 1
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Figure 1.2: A 10th order polynomial in time is fitted to a time series from t = 0 . . .9. Its predictions 
are of course meaningless hut this simple example illustrates the point that using a predictor function 
with too many free parameters can fit the observed data perfectly without having any generalization 
to newly acquired data.

which is a set of T  — I  equations in N  unknowns. By having N  > T  — I  the implicit function 

theorem says tha t it may be possible to solve (1.3) and thus make perfect predictions inside the 

realm of the known data. This of course will almost certainly fail as a predictor when applied to 

new data. A simple example using only explicit time dependence illustrates this in Figure 1.2. This 

is a fundamental problem when using Neural Networks and is referred to as Generalization, see 

Section 1.4.1.

To re-emphasize the most im portant point:

when searching for Po( I , t ) given the observed data, one must bear in mind that the predictor 

function is not required to predict the time series Xt but to predict only the deterministic component.
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1.2 The S tatistica l D escription o f T im e Series

In this section I wish to review the established statistical concepts and methods involved in the

analysis of Time Series. Since I lacked any real knowledge of statistics at the outset of my Ph.D.

study I will start my discussion with a brief review of some basic statistical concepts.

1.2.1 Basic Statistical Concepts

Let a random variable, X ,  represent some measure of a stochastic process, and let x denote a 

realization of X  or measurement of tha t process1 X  has a distribution described by its probability 

density function or p.d.f ., p(x),  which is defined so that

Pr. of X in (x, x +  dx) = p(x) dx 

The expectation of a function of the random variable X ,  E[f (X)]  is then defined as

p O O

E [ f { X ) ] =  /  f {x )  p(x) dx 
Jo

also the mean of A', p x  *s defined as

W  = £[.V]

and the variance of A', is defined as

4  =  Var[E] =  £ [(X  -  £ [A ])2] =  £ [X 2] -  E{A’]2

Quantities involving higher order terms in X ,  referred to as higher order moments of the distribution, 

can also be defined but usually a partial description of a stochastic process in terms of its mean 

and variance is sufficient. If a process is a Gaussian or normal  process then all the moments can be 

expressed in terms of the mean and variance and therefore the mean and variance are a complete 

description of the process.

If dealing with two random variables A” and Y  then further concepts are needed to describe their 

inter-dependence. The joint distribution of A”, Y is then given by the joint p.d.f. p(x,y) so that:

Pr. of X  in (x, x +  dx) and Y  in (y, y +  dy) =  p(x, y) dx dy

1 In th is  th es is  I sh a ll u se  u p p er  case  le tte r s  to  d en o te  a ra n d o m  variab le , an d  low er ca ses  le tter s  to  d e n o te  a
rea liza tio n  o f  a  ran d om  variab le . T h e  (u n fo r tu n a te ) e x ce p t io n  to  th is  rule is th e  a t  w hich  is a  ran d om  variab le  
rep re sen tin g  a  w h ite  n o ise  tim e  series va lu e a t tim e  t.
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The covariance of X and Y, Cov[X,Y]  is defined as

Cov[X , Y] =  E[(A  -  E[X]){Y  -  E[Y])] = E[XY]  -  E[X]E[Y]  

and the correlation of X and Y, Co rr[ X , Y] is defined as

Co rr[X , Y] = C o v j X ^ ] ^
y /V ar [X ] Var[Y]

Note tha t Cov[X,  ±A ] =  ±Var[X]  so tha t Corr[X,Y]  is between —1 and 1.

Generalizing to N  random variables, one can talk about the joint distribution of X \ ,  X 2 , . . . ,  X ^  

and its jo in t p.d.f. p(x 1 , x%,. . . ,  x n ). Each of these variables has its own mean and variance and the 

notion of covariance can be extended to describe the inter-dependence of several variables at once.

1.2.2 T im e Series

Statistically speaking, an observed sequence of a time series, £ 1,. . . ,  x j ,  is viewed as as being the 

realization of T  random variables, X \ , . . . ,  X t  ■ I shall refer to the random variables, X t , as being the 

time series and the observed values, £ f, as being a realization of the time series. The auto-covariance 

function of the time series is defined to be Cov[Xt , A't+j,] and likewise the auto-correlation function 

is defined as Corr[Xt , Xt+k]- Each member of the time series is a random variable A't , which has 

a mean and variance and these together with the inter-dependences of a sequence of N  time series 

values are completely described by the joint distribution of X t , • • •, XN+t - 1 • If the jo in t distributions 

of Xt , ■ ■ •, Xjv+t-i  for all possible Z’s are the same and if this is true for any choice of N  then the 

time series is said to be strictly stationary. A natural consequence of this is th a t the means and 

variances of all the elements of the time series are the same, i.e.

E [ X t] = p 

VarlXt] = a 2
:i-4)

where p. and cr are independent of time. Also a strictly stationary time series must have

Cov[Xt , X t+k] =  Cov[Xs , X s+k] 

because A 't,. . . ,  X t+k and X s , . . . ,  X s+k have the same joint distribution. So that

Cov[Xu X t+k] = 7 k (1-5)

that is the auto-covariance only depends on the lag k. Notice tha t 70 =  cr2, the covariance at zero 

lag, is ju st the variance of the time series.
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A less stringent and more practical definition of stationarity is that of weak stationarity, where 

only equations (1.4) and (1.5) are satisfied. In terms of moments of the jo in t distributions, this can 

be viewed as stationarity of order 2. If the joint distributions of sequences of a weakly stationary 

time series are Gaussian then the time series is actually strictly stationary. In general, though,

Strict Stationarity => Weak Stationarity

In what follows, unless stated otherwise, I use the term stationarity to refer to weak stationarity.

A very im portant but simple time series is the independent white noise tim e series tha t I shall 

denote by at . It is defined so tha t each at is independently distributed which means that

Cov[at ,a t+k] =  0

for all non-zero k. If E[at] and Var[at] are independent of time then at is a stationary white noise 

time series. It is im portant to realize that zero covariance does not imply independence because 

independence is concerned with more than ju st the second order properties of a joint distribution. 

Unless otherwise stated I shall use at to denote a zero mean, stationary and independent white noise 

time series.

1.2.3 Practical Implications of Stationarity

The use of the preceding ideas is somewhat limited in the real world because in many cases only one 

realization of the time series is available. For example, measuring the mean value of the monthly 

Sunspot number for July 1995 would require the inconvenience of travelling to many parallel universes 

to obtain a statistical sample. Instead all we have is one “realization” of the Sunspot number time 

series tha t extends back to the 18th Century. However, if a time series is assumed to be stationary 

then one realization of it becomes more akin to a repeated experiment, where the conditions of the 

experiment remain the same but past outcomes of the experiment may affect future outcomes (this 

idea re-appears in m athem atical form in Section 1.2.6). In this sense, the assumption of stationarity 

is a great convenience because it means tha t many statistical quantities relating to a time series, 

e.g. the mean and variance, can be estimated by time averaging.
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Consider three examples of time series:

X t =  sin(u;/ +  </>)

M

Yt =  sin(u;Z +  (f>) -t- ^   ̂Q-t-m
m  =  1

Z% — sin(uit +  <f>) +  Z f - 1 at

Clearly none of these time series is stationary because their means depend on time. The question is: 

can we deduce whether they are stationary or not if given only one realized sequence? X  is completely 

deterministic and when enough observations become available it can be readily identified as being 

periodic, indicating that a Fourier transform would reveal its precise form. W ith this complete 

understanding X  can be trivially reduced to a zero and therefore stationary signal. Likewise V' can 

be reduced to a stationary signal once the deterministic mean component is identified, however if 

Var[at\ 1 , then it may require many more observations over time to identify the form of the 

deterministic component. Z  is random walk with drift and as such is non-stationary even if the 

deterministic mean is identified and removed. However the time series Z t — Z t~ i is similar in form 

to Y  and so in the same way it can be reduced to a stationary time series.

The above demonstrates the assumptions underpinning the application of what are called “Box- 

Jenkins” models for time series, which are described in the Section 1.2.4. A Box-Jenkins model 

is applicable if the given time series is reducible to a stationary time series and if this stationary 

time series can be described by a linear model. All three of the above time series were contrived so 

th a t they could be easily described by a Box-Jenkins type model. However in general there is no 

reason to suspect tha t nature will produce time series tha t conform to such models. In the context 

of making predictions assuming a Box-Jenkins model can prove to be a serious handicap. To quote 

an example from Priestley (1988), consider the time series Ut-

Ut = at +  o a f_ ia (_ 2 (1.6)

This time series has zero mean:

E[Ut] =  E[at] +  aE[at- i ]E[at- 2} =  0

also

Cov[U,.U,+i] = £ [ £ W + t]
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— E[at at+k +  otat at+k-i  Qt+fc- 2  +  ao-t- 1 u«-2  at+k +

2 1a at- i  a t - 2  at+k-i  at+k-2\

= E[at a*+jt] +  a 2E[at- \  at - 2 at+k-i <*t+k-2] 

which for k =  0 gives the variance:

Karf/7/] =  <r2(l +  a 2cr2)

with zero auto-covariance for all non-zero k. So this time series is not only stationary but indistin

guishable from white noise as far as its second order properties are concerned and as such the best 

prediction th a t can be made is E[at], which is ju st zero. However, it is clear from the definition of U 

th a t the time series has more structure than white noise and therefore a better prediction must be 

possible. So in this case the Box-Jenkins procedure would be inadequate because firstly it would be 

easy to mistake U for white noise and more significantly, even if it were realized that some structure 

did exist, U cannot be described by a linear model. If linear models are unable to describe some 

stationary time series, such as U , it is clear that more sophisticated non-linear models are needed, 

especially when dealing with non-stationary time series.

At the beginning of this section I noted a conceptual and practical problem when dealing with 

non-stationary time series in that only one realization of the time series is available for building a 

model. It is interesting to phrase this problem as a question in the context of Neural Networks. 

Consider a network that takes the last 12 months of monthly sunspot number as inputs and is 

required to predict the sunspot number for the next month. Also imagine th a t two training sets are 

available, one containing a complete monthly record from 1850 to 1900 and the other containing a 

complete monthly record from 1940 to 1990. The question is then, will a NN trained on the more 

recent data  set provide significantly more accurate predictions of monthly sunspot number in 1995? 

If the answer is yes, then this says tha t the statistical properties of sunspot number have changed 

in some way over the last hundred years. Does this mean tha t the sun has undergone some global 

physical change in the last hundred years? Dynamo models applied to the sun certainly indicate tha t 

this is a physical possibility, as does the (rather uncertain) observational evidence for the Maunder 

minimum. In Chapter 2 I investigate this question in more detail.

1.2.4 Classical M odels for T im e Series

W ithout making some assumptions about the form of the predictor function in Eqn. (1.1) little 

progress can be made in trying to model or predict time series. In this section I wish to discuss well
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understood “classical” statistical models that assume that the predictor function is linear and tha t 

the time series being modelled is stationary. Due to the second assumption the predictor function 

must be exactly the same for all sequences of the time series, which means tha t the form of the 

predictor function must be independent of time:

OO
P(oo, t )  =

i—l

where the o ; ’s are constants. Notice tha t for convenience here and in what follows I have allowed 

the predictor function to use the infinite history of the time series, i.e. P ( I , t )  —► P(oo,t) .

The time series tha t this predictor function is to predict is assumed to be of the form

Xt  -- P(oo, /) +  at

tha t is, the noise is just added onto the deterministic component.

By introducing the back-shift operator defined so that

B X t = X t- i

the time series can be written as
OO

at = J 2 a lB l X t = H ( B ) X t
i- 0

where H(z) is a power series defined as

OO

i- 0

If H(z)  has no zeroes in or on the unit circle in the complex plane then the inverse of H{z)  can also 

be expressed as a convergent power series in z. Assuming tha t H(z)  is invertible, Xt  can now be 

represented in terms of a white noise time series

OO

At =  0 iB l at = G ( B ) at 
8 =  1

where G(z)  is the inverse of H(z).

To summarize, there are two equivalent linear representations of a time series X t , one in terms 

of the past values of the time series itself and another in terms of a white noise time series where the 

white noise time series may be thought of as the residuals from using the linear predictor function 

to predict previous values of the time series i.e.

at = X t - P ( I J )
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So it is natural to create two classes of practical time series models to accommodate these 

representations. Firstly, if it is believed that the future values of a time series are heavily dependent 

on values in the recent past an Auto Regressive (AR) model of order p might be appropriate. An 

AR(p) model is of the form
p

At =  ex i X t —i +  at
i = 1

Otherwise it is possible tha t a Moving Average (MA) model of order q might be suitable. An MA(<?) 

is of the form
9

X,  = '5 2 0 ial- i
i= 0

These correspond to the truncation of the power series of H ( z ) and G(z)  respectively, which may 

be acceptable approximations in some cases.

A third class of model, called the mixed Auto Regressive Moving Average model, is also widely 

used, where the ARMA(p,^) model is defined as

P 9

^   ̂Q?t A t — i — 'y  ̂Pi Qf — j
i=l i=0

The ARMA(p,<?) model can be thought of as being equivalent to finding a linear predictor function 

which is required not to produce a residual time series which is white noise, as above, but to produce 

a residual time series which is an MA(p) time series.

In the limit of infinite order these three models become three equivalent representations of the 

same time series (assuming H(z)  has a well-behaved inverse). The difference between the three 

models in practice, where the orders must obviously be finite, is tha t one model may provide a 

better approximation to its power series when truncated than the other models. To illustrate this 

consider a time series of the form

Vj =  4>yt~i +  at

where (f> < 1. Yt can obviously be described exactly by an AR(1) model. By successive substitution 

the equivalent MA representation of Y  can be shown to be
OO

Yt =  ^  Ca-t-i
i=i

which is of infinite order.

The so-called “Box-Jenkins” method of modelling time series can now be broken down into three 

stages

1. Reducing the time series to stationarity
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2. Deciding the most appropriate model and order

3. Finding the param eters of the model

Stage 1 involves transforming the time series using techniques like the ones described in Section 1.2.3 

and can justifiably be called the most difficult stage. Stage 2 usually involves some am ount of trial 

and error in determining the best model and as such it can be quite tedious. The final stage 

is comparatively easy and usually relies on techniques such as least squares fitting or maximum 

likelihood estimates.

Although these methods rely on a body of solid theoretical results built up by many eminent 

statisticians throughout this century, the model building process is far from ideal in the sense tha t 

it requires guess work, intuition and experience to yield good models. And even then, the two 

assumptions of stationarity and linearity greatly restrict its applicability.

1.2.5 Non-linear Statistical Models

An obvious way to improve upon these classical models is to use a non-linear predictor function. The 

need for non-linear models has already been highlighted by the time series defined in Eqn. 1.6, which 

although (weakly) stationary requires a non-linear model. In this section I briefly review three types 

of non-linear model, a more complete discussion of each model can be found in Priestley (1988).

The B ilin e a r  m o d e l is of the form
p r m  k

X t  + Ea-A'- = E P i a t - i  + EE T i j  X t - i  o>t—j
i — 1 i — 0 i = 1 j  — 1

and is basically an ARMA(p,q) model with cross-talk terms between the history of A” and the 

history of a. Although the bilinear model might appear to be only a slight generalization of an 

ARMA model, because no powers of X t or at are explicitly included, the work of Brockett (1976) 

reveals th a t the bilinear model can actually represent a wide range of non-linear predictor functions. 

However there are some characteristically non-linear phenomena that it cannot explain, such as limit 

cycle behaviour.

The T h re s h o ld  A u to re g re s s iv e  m o d e l escapes from linearity in quite a different way. It uses 

the past behaviour of a time series to decide which of a set of linear AR models is most relevant to 

the time series at the present time. A typical first order model would be

X t = a X t - i  + at i A j_i < 6

X t = a + X t- V +  a f  , A't_i > 9



C H A P T E R  1. INTRO DUC TION 15

where 6  is the threshold of the model. In this case the predictor function is actually discontinuous

i.e.

P ( h i )  = a -A V i ~ ( a ~

where H(x)  is the Heaviside step function. The general form of the threshold model may be written 

as

*< =  X >  F’-Yi-i +  o? 1
1 =  1

where the index j  is determined by the recent behaviour of X .  Unlike bilinear models, threshold 

autoregressive models can represent limit cycle behaviour and therefore might be of particular rel

evance to predicting time series which exhibit cyclic trends. A thorough investigation of these type 

of models can be found in Tong (1983).

An E xp on en tia l A u toregressive  m od el is an AR model where the regression coefficients are 

exponential functions of a previous value of the time series. A typical example of a first order model 

of this kind would be

X t =  (a  +  0e~’yX*-i ) X t- i  + at

so th a t the magnitude of the last value determines the strength of the autoregression in a more 

continuous manner than was the case for the threshold AR models.

1.2.6 State Dependent Models

The idea of the State Dependent Model or SDM was introduced by Priestley (1980) and provides a 

generalization which contains all three of ffie non-linear models in the last section. A key motivation 

behind the invention of the SDM is that it should not assume an explicit param etrisation from the 

outset, as was the case with all previous models. An im portant assumption underlying the SDM is 

th a t the predictor function can be written in the form

Xt = P ( X t- i ,  ■ ■ . X t~i, at- j , .. ,at - 1) +  at

which is the same as Eqn. (1.2) except tha t the explicit time dependence has been removed and 

now it is assumed that X t can be written as a sum of the predictor function and a white noise time 

series. This latter assumption is not trivial but it is a tremendous simplification when attem pting to 

make predictions. It is then further assumed that the predictor function is analytic so th a t a Taylor 

expansion may be used to first order about time t:

A j' =  P{Xt~i .  ■ ■ ■ A t_ i, at - j , . .  .Q t-i) +
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 ̂  ̂ Q p  

i — 1

v -  d P  /

j = i J

by collecting terms of the same time index the above expression can be more concisely written as

i  j

Xt + = //(x<_i) + ^2  Pi(xt-\)at-j
i=i j = l

where

x< = (Xt_/+1, . . ,Xt, at-j+i , . . .at)

is called the state vector as it determines how a time series governed by an SDM will evolve from 

time t. Its form is identical to tha t of an ARMA(I,J) model but with the coefficients depending 

on the current “sta te” of the time series, hence its name. It is im portant to realize th a t the time 

dependence arises only via the state vector and not explicitly, so that an SDM can be regarded as 

a stationary model.

1.3 O ther T im e Series M odels

My partitioning between statistical m odeb and other models is rather arbitrary and is only decided 

by the fact tha t the former models were invented by statisticians and so have naturally been built 

around a statistical frame-work. The other models, described in this section, can all be phrased in 

statistical terms but have arisen from different backgrounds and motivations. They are all designed 

to predict time series and as such tend to assume a predictor function of the form

where /  can be non-linear. Notice the difference between this and Eqn. (1.1) in that the explicit 

time dependence is contained solely within the function fi(t).

1.3.1 Linear Prediction

Linear prediction is really just prediction using a statistical AR model but I include it here because 

the following description shows how one might calculate the coefficients of such a model. It also des

cends on the problem of time series prediction from a slightly different direction than the statistical 

models, and so is also interesting in tha t respect.
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Given a set of values, { x j , .. . ,x t} ,  sampled evenly in time, how can some future value x u be 

predicted as a linear combination of these values ? Denoting this prediction by x u , it is given by

i
X u  — OL. Xt  — ^   ̂Q i X u — i 

i =  1

where x t is the state vector defined previously and I shall refer to a  as being the prediction vector. 

The error of this prediction scheme on the available data  can be expressed as

T

E = (£t ~ x t ) 2
t = i + 1  

T

t = i + 1

To find the minimum error the derivative of this must be set to zero for all the o-j-’s i.e.

= 2 X)
J (=/+1 \i= l /

I T  T

= 2 ^  ^ 2  OiXu-iXu-j ~  ^ 2  X*Xt- j
l —l t ~  I 1 t — 1

=  0 (1.7)

At this point it is useful to assume that the time series x t is stationary and th a t it has had its (con

stant) mean subtracted beforehand. Armed with this knowledge, the autocovariance, Rij  becomes 

a function of “lag” k = \j — /| only:

1 T
Rt = J T T l  D  U -8 )

t - k + l

so tha t (1.7) becomes
I

' ^ 2 a t i R \ i - k \ =  R k  (1-9)
1 =  1

which is a set of I  linear equations for I  unknowns. The R ’s can be estim ated from (1.8) and then

(1.9) can be solved for the a ’s. However, there is a serious problem to be addressed because the

W s are merely sample estimates of the auto-covariance function. For an AR(I) time series to be 

stationary the (possibly complex) roots of

I

■ l - ] T a ^  =  0 
1 =  1

m ust all exceed unity in modulus. If for a given AR time series one of these roots lies close to, but 

outside, the unit circle then it is conceivable tha t the estim ation of the <a’s m ight erroneously place
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this root inside the unit circle which will then cause the prediction method to be unstable. To solve 

this problem there are many suggested methods of “massaging” the ct’s, for example see Press et al. 

(1994).

1.3.2 The McNish-Lincoln Algorithm

The McNish-Lincoln algorithm is based on the assumption that the time series in question is cyclic 

with additional superimposed variations that are governed only by the recent behaviour of the cycle. 

Formally such a time series is not stationary, but can be thought of as stationary in the sense th a t it 

is becomes stationary once the cyclic trend is removed. Given a stretch of da ta  containing N  cycles 

of I  points per cycle the algorithm proceeds as follows:

1. Define the start point of all the cycles e.g. the minima

2. Average over all of these cycles to form a mean cycle

3. Subtract the mean cycle from each of the actual cycles, leaving the “residuals” for each cycle

4. The prediction of a point in the cycle n is then constructed using the value of the mean cycle 

for th a t point, corrected by a linear combination of the residuals from the last few points in 

the present cycle, n — 1, n — 2, n — 3 , . . .

To clarify this last step, the prediction of the ith value of the nth cycle is given by

M

P i , n  —  t-^i T  ^  ^  k m ^ i  — m , n  I  —  T  • • • ) I
m =  1

where the /i*’s are the I  values tha t define the mean cycle and s are the residuals for the n th

cycle. The k's are determined in a least square fashion, in much the same way as the a ’s were 

obtained for the linear prediction method. In fact the McNish-Lincoln algorithm is ju st a form of 

AR model th a t performs its regression on the residuals.

The McNish-Lincoln algorithm appears to be restrictive in several ways. Firstly the value of the 

mean cycle does not enter into the prediction of the residuals directly. This means tha t the longer 

time scale variations of the time series, represented by the mean cycle, seem to be de-coupled from 

the shorter time scales accounted for by the residuals. This might be thought of as a severe problem 

when dealing with sunspot number because the residuals are noticeably larger near the peak of the 

cycle. This also means tha t the residuals for SSN are not stationary. Another problem encountered 

when using this technique is th a t the cycles must be of the same length. The solar cycle has an
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average period of about 11 years but the actual length of a cycle can be 10, 11 or 12 years. So to 

apply the McNish-Lincoln technique some kind of “fix” is required, which may be done, for example, 

by stretching and shrinking cycles so that they are all of the same length. This method, though, 

results in further complications when attem pting to make predictions. Also, it is difficult to identify 

the length of a cycle from its rising phase, which would be a necessary pre-requisite for prediction 

in practice.

Predictions of yearly and three monthly sunspot number made with this algorithm were first 

documented by McNish and Lincoln (1949) in which estimates of the m ethod’s accuracy were given 

together with a comparison against the earlier prediction method of Yule (1926)2. Much more 

recently Kerridge et al. (1989) used the method to predict various solar-terrestrial data  on time 

scales of months. Also a comparison of this longstanding scheme with NNs has been performed 

by *Macpherson (1993) with further details in Macpherson (1994). This study found tha t neural 

networks could provide a slightly better prediction accuracy that the McNish-Lincoln method.

1.3.3 Nearest Neighbour Techniques

The nearest neighbour method is closely related to the State Dependent Models reviewed earlier. 

Here the notion of state space is re-employed representing the recent history or state of the time 

series by its state vector,

x* =  (A f_ /+ i ,. .. A'()

The prediction algorithm then searches the entire history of the time series, in the form of state 

vectors, to construct its prediction of A'u+t  beyond the present state x u . Once the k(> I) states 

closest to x u have been selected they are then used to form the prediction vector b. Let the closest 

states be represented by x f l , . . ., x (fc then the prediction vector is

b  =  (&i,62 , . . . , 6/)

such tha t

b .x f, =  X t,+r

to as good as an approxim ation as possible. Notice th a t this stage can be approached as a linear 

prediction problem. The prediction vector b  may then be used to to predict X u+t - This technique 

was suggested and dem onstrated by Farmer and Sidorowich (1987) with particular attention paid 

to the prediction of chaotic time series.

2 Y ule p ro v id ed  m u ch  o f th e  early  work u p o n  w hich  th e  c la ss ic  tim e  series m o d e ls  were b a sed
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In the steps outlined above, several issues were swept underneath the carpet. Firstly what 

determines the “nearest” vector? This is decided by imposing a metric on the state space, naturally 

providing the concept of distance between vectors required to judge “nearness” . But what should 

this metric be? After all, knowledge of the metric would require intim ate knowledge of the state 

space, which is clearly not available. However, since the vectors of interest are all near each other 

and, assuming the metric of the state space is locally flat, the use of a Euclidean metric would 

seem to be an acceptable approxim ation .3 Also ignored above was the choice of the number of 

nearest neighbours, k. There is no easy way to decide this a priori but (drawing some guidance from 

Takens (1981)) k must be greater than I  to obtain the prediction vector and I  > D where D  is the 

dimension of the strange attractor in state space. Also, why use a linear function to provide the 

prediction? This issue was addressed by Farmer and Sidorowich (1987) where they considered higher 

order polynomials for the task and found tha t this added complexity was of no great advantage, 

which again may be a reflection of the local flatness of the state space. Finally, what if the time 

series wanders into some uncharted region of state space? In this case no prediction can be made 

and perhaps this is more honest than other models which might rashly make a prediction based on 

the established predictor function. However, this should not be too great a problem for chaotic time 

series as they will tend to remain near their attractor.

1.4 N eural N etw orks

A Neural Network is a very general concept embracing a plethora of algorithms and functions, some 

continuous, some discrete and some binary. For predicting time series I shall only be concerned with 

NNs th a t use continuous functions. Rather than attem pt to describe Neural Networks in general 

terms, I describe only one class of NN in detail in this section, the Feed-Forward Neural Network, 

which I use for the work in this thesis. Recurrent Networks and Radial Basis Function (RBF) 

Networks are two other popular classes of NN which, although not used in the work to come, shall 

be described for the sake of completeness. In this section I concentrate on NN properties alone, 

addressing the issue of predicting time series with NNs in Section 1.5.

3 1 fin d  it  s tra n g e  th a t Farm er an d  S id orow ich  (1 9 8 7 ) do n o t sp ec ify  th eir  ch o ice  of m etr ic
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Outputs

Hidden
Neurons

Figure 1.3: A schematic picture of a one hidden layer feed forward neural network.

1.4.1 Feed-Forward Networks

Figure 1.3 illustrates a feed-forward neural network with one hidden layer. The inputs or input 

neurons, are values {Ai}  given to the NN from the outside world. The values of the hidden neurons. 

{B j } are then set according to the equation

Bj -- g

Ck =  G [ 2 2  WkjBj

where Wij are param eters called the input weight connections and g(x) is called the input activation 

function. The outputs or output neurons have their values, {C*,}, set in much the same way:

k =  1 , . . . ,  O (1.11)

where G(x)  is the output activation function and Wkj are the output weight connections. The

input activation function is usually taken to be sigmoidal (so-called because it looks like a deformed

S shape e.g. f ) ,  saturating to finite values as x —► ±oo. This avoids hidden neurons taking on 

large values which can make training (described later) more difficult. A commonly used activation 

function is

< 7 M = T T ---(1.12)
1 +  exp(—Ipx)

where j3 is a constant, which saturates' to 0 as x —► —oo and 1 as x —*■ oo. Another common choice 

is the hyperbolic tangent function:

g{x) — tanh 2 (3x
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which saturates to —1 and 1. As a m atter of convention I will exclusively use the former activation 

function and for convenience I will take (5 =  The output activation function can be a sigmoidal 

activation function as well but sometimes it is convenient to use a linear output activation function

G(x) = x

For all the work in this thesis I shall use a linear output activation function. Note th a t if both 

input and output activation functions are linear then each output will be a linear combination of the 

inputs. One reason tha t NNs are so useful arises from the fact th a t they are composed of non-linear 

functions which allows them to be separated into layers4. In fact, it can be shown that a one hidden 

layer feed-forward network can represent any continuous function to an arbitrary accuracy given 

enough hidden neurons. Further, a feed-forward network with two hidden layers can represent any 

function with finite discontinuities, again to an arbitrary accuracy if given enough hidden neurons. 

These last two dram atic statem ents need some further qualification which can be found in the paper 

th a t first proposed them, namely Cybenko (1989). As already indicated, all of the above description 

can be extended to NNs with an arbitrary number of hidden layers by using updating rules like

(1.10) and (1.11) for the extra hidden layers. However, for the reasons given above the use of more 

than 2 hidden layers seems unwarranted.

The next problem is to set the network’s weight param eters so tha t it performs a certain task, 

this process is called training. To illustrate the training of a network, consider a simple NN designed 

to learn to add two numbers together. Firstly, a training set is built up, consisting of input-output 

patterns. Such a pattern is just a pair of numbers (the inputs) and their sum (the desired output). 

To begin with the NN’s weights are set to be small and random, providing a neutral starting point 

for training. Then a pattern is chosen from the training set and the network’s inputs are set to 

the pair of numbers in tha t pattern. The difference between the output and the desired output for 

th a t pattern is then used to slightly alter all of the NN’s weights, by a scheme to be discussed later. 

This process is then repeated for all the patterns in the training set. I shall refer to one complete 

presentation of the training set as being one training iteration. To complete the training of this 

summing network typically several hundred or even thousand iterations may be necessary. Training 

would be stopped once a sufficiently low error is achieved on all patterns in the training set. In 

general though, for reasons discussed later, this is not a good stopping criterion to use, especially 

when training NNs to predict time series.

4 W ith  lin ea r  a c tiv a tio n  fu n c tio n s , an  N  layer n etw ork  e ffec tiv e ly  ap p lies N  su cce ss iv e  lin ear  tran sform s to  th e  
in p u ts . N  lin ear  tran sform s are o f cou rse  eq u iva len t to  s in g le  lin ear  tran sform , h en c e  th e  u se o f  m u ltip le  layers serves  
n o p u rp o se .
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I have left blank the precise method by which the weights are adjusted in the above illustration 

because there a number of methods available. I shall describe the most famous m ethod, that of 

Back Propagation of Errors, in some depth and then comment how it can be altered and perhaps 

improved.

For a general I  — H — O feed-forward network5 each training pattern consists of I  inputs and O 

desired outputs, which I denote by an input vector ^  and a desired output vector , where p is a 

label for a particular training pattern. Next an error measure must be constructed th a t quantifies 

the accuracy of the NN’s outputs with respect to the desired outputs. The simplest such measure 

is ju st the square error summed over all the outputs on training pattern pi,

= (1-13)

where C (w ,£ M) is the vector composed of the NN’s outputs when presented with input vector 

The object of training is to try and minimize E M for all pi. In order to accomplish this it is necessary 

to calculate the gradient of E^  with respect to each weight param eter. Differentiating (1.13) with 

respect to an output weight connection yields

dE =  (Ct  - G ) C '  I Bt
d W t ‘ U = .

=  A*, Bi

where

and similarly for the input weight connections

dE
8 Wr =  E (C‘ -  >G  f  E  W ti B 1 ) »' ( E  W"'‘S‘ I

fc =  l V j =  1 /  \ i  =  l /

where

Om — 9 (1.15)

Note tha t, in the above expressions for the derivatives of fi1̂ , the p. superscript has been dropped 

for the sake of clarity, back propagation then uses gradient descent to minimize the errors E M. If

5 /  — H  — O  m ea n s th a t th e  N N  h as I  in p u ts , H  h id d en  in p u ts  an d  O  o u tp u ts
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A w ^ n and A r e p r e s e n t  the alterations to the corresponding weights after pattern  pi has been 

presented, then they are given by the learning rules

A W £ =  - e A ^ f  (1.16)

and

A < „  =  — (1. 17)

where e is called the learning rate and in effect determines the step-size of each iteration. The back 

propagation algorithm is basically the calculation of the delta’s using (1.14) and (1.15) followed by 

the application of the learning rules (1.16) and (1.17). It is the fact th a t the <5’s can be computed 

in term s of the A ’s th a t gives rise to the name of the algorithm. The extension of back propagation 

to a feed forward NN with many hidden layers is easy, as it only involves calculating the delta’s for 

each extra layer in terms of the delta’s obtained for the layer above.

There are many possible refinements to the back propagation algorithm and almost all of them 

aim to replace or improve the gradient descent minimization. These refinements are intended either 

to improve the stability of the algorithm (i.e. ensure that it does actually reduce the error) or speed 

up its progress to save on valuable computer time. A useful concept in discussing the minimization 

involved in training NNs is th a t of the error surface in weight space. This can be imagined as the 

error plotted as a function of the NNs weights (since there are usually many weight connections it 

is in fact a hypersurface). In reality training has to deal with many error surfaces simultaneously 

because each training pattern has its own error surface given by ^ ( w ) .  It is implicitly assumed in 

the back propagation algorithm that it is possible to converge to a minimum on most, if not all, of 

these surfaces simultaneously. Since a minimization on all these surfaces leads to a minimum of the 

summed error, E a single summed error surface can be defined. At this point I would like to 

point out th a t in much of the neural network literature the distinction between an error surface and 

the summed error surface becomes quite blurred. When discussing training it is quite common for 

authors to talk about minimization on a single error surface, which presumably means what I have 

called the summed error surface. However, this is not really correct because all training methods 

6 perform minimization on the individual error surfaces. This distinction may seem subtle but to 

ignore it will overlook the fact th a t a particular task may be beyond the reach of a NN because its 

patterns are so arranged th a t minimization is impossible on all error surfaces at once.

The most common improvement on raw back propagation is the inclusion of a momentum  term

6 W ith  th e  p o ssib le  e x ce p t io n  o f  a  g e n e tic  a lg o r ith m  sch em e
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in the learning rules (1.16) and (1.17). They then become 

and

where a  is called the m omentum param eter and the [old] label indicates th a t the weight change is 

from the last iteration. Momentum effectively smooths the weight adjustm ents, helping to quash 

any large fluctuations. Also if the weight changes due to a specific pattern stay roughly constant 

from one iteration to the next, perhaps because of a constant slope or plateau on the cost surface, 

then the m omentum term leads to a higher effective learning rate. For any weight connection, w, 

the learning rule takes the general form

3 E
A w  =  —e —---- 1- a  Au/fold]

3w

By assuming tha t remains approximately constant from one training iteration to the next, 

recursive substitution using the learning rule yields

a d E  / •> 3 4 \A w  =  —e —— (a  +  a r  +  a  +  a + .. .)
dw

 3E_
1 — a dw

so tha t the effective learning rate will be large if a < 1 . Of course the real reason momentum is 

used is not because of these back-of-the-envelope arguments, rather it is used because it is found 

pragm atically to work, in tha t it does seem to stabilize training and make it more efficient. I 

dem onstrate this in the next chapter, in Section 3.2.

Gradient descent is a reliable minimization method, in the sense tha t it does eventually converge 

on a minimum, but it can be painfully slow, especially if the learning rate is too small. Also, as 

training progresses, the learning rate may need to be reduced to allow for more delicate weight 

adjustm ent. So, to speed up training on even ground and to slow it down on rough terrain, an 

adaptive parameter scheme can be used to make the learning rate a dynamic variable - th a t is it is 

determined by the current state of training. A typical example of an adaptive param eter scheme 

might be as follows.

• If the summed error is only gradually decreasing over n iterations then increase e by a factor 

of k.
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•  If the summed error increases after any iteration then reduce e by a factor k and repeat the 

iteration

The obvious problem with this scheme is the selection of n and k and the definition of “gradually” . 

An implementation of such a scheme is given in the next chapter in Section 3.2. A rather involved 

scheme for determining e and a  dynamically is given in Yu et al. (1995), where the authors claim 

th a t training times can be reduced by a factor of 10 to 50 over fixed param eter back propagation.

Rather than just tweak gradient descent, more radical improvements have been proposed that 

replace gradient descent with more advanced minimization algorithms. A concise review of many 

such schemes is given in Hertz et al. (1991). One which has recently gained popularity is Conjugate 

Gradient descent mainly because it is faster than standard gradient descent. Conjugate gradient 

descent is based upon a steepest descent line search method, which for a particular pattern  changes 

the weight vector w according to

w[new] =  w[old] — Ad[new]

where
ir , _  f  dE  d E  \

d[new] =  V E  = ( — . _ , . . . )

where A is effectively determined by taking many steps in the steepest gradient direction until the 

error (on th a t particular cost surface) can no longer be decreased in that direction. Conjugate 

gradient descent improves on this line search by compromising the new search direction, with the 

old direction:

d[new] =  —V E  +  /?d[old]

where j3 can be specifically chosen so as to prevent the new direction “spoiling” the effect of the last 

iteration using the old direction.

Conjugate gradient descent replaces standard gradient descent but still requires the first order 

gradient information tha t the back propagation algorithm computes so efficiently. For this reason 

the term  back propagation sometimes only refers to the part of the algorithm  that calculates the 

derivatives, so tha t training algorithms are often described with phrases such as “Back propagation 

using gradient descent with a momentum term ” or “Back propagation using conjugate gradient 

descent” . There are also some minimization methods th a t use second derivative inform ation but 

they can be very expensive in computer time and so I do not discuss them here.

Another problem with training th a t can affect all of the above methods is the possible presence 

of other local minima on the cost surfaces. This means th a t the training algorithm could converge
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on a minimum which does not correspond to the task it is required to perform. However, any survey 

of the literature on NN applications, and indeed the results that I present in this thesis, indicate 

tha t local m inim a are rarely encountered. In fact some researchers have voiced the opinion th a t for 

some (as yet unexplained) reason local minima just don’t exist in the majority of NN applications. 

It can even be envisaged th a t the task the NN is expected to perform does not correspond to the 

global minimum at all, but instead to a local minimum. Such a bizarre situation can be caused by 

an unfortunate choice of error m easure'. One other training method which provides a more global 

search of the error surface uses a genetic algorithm, which is of interest for several reasons, if not 

only for the fact tha t it does not rely on the derivatives for minimization. I will discuss the genetic 

algorithm  in general terms in Section 1.6 and again in Section 6.2 when I use it to construct a 

training scheme.

The whole problem of optimizing the training algorithm is over-shadowed, and ironically partially 

removed, by the need for generalization in NN learning. In short, it is no longer so crucial to hunt for 

the exact minima of the training patterns’ cost surfaces (if that was at all possible anyway) because 

the stopping criterion demanded by generalization forbids training from approaching these minima 

too closely.

In order to elucidate the last rather surprising statem ent, consider a NN th a t is designed to 

perform the rather mundane task of determining the gradient of a line, where the components of the 

input vector £ contain the y values of the line at x = 0 to x = 1. This NN will need one outpu t and

only two inputs to perform this task and in effect needs io learn the function /(£  1 ,^ 2) =  £2 — £i-

Once the NN is trained it will successfully reply with the difference of its inputs. However, it will 

only do this inside the range of inputs represented by the training set, e.g. it cannot be expected to 

return the gradient of the pattern £ =  (0 , 10 0 ) if it was only trained on a range of inputs th a t went 

as far as £ =  (0, 10) (this is because of the NN being non-linear and the problem being linear). This 

is a trivial example of generalization in that the NN cannot be expected to generalize itself to input 

patterns th a t were not represented in the training set.

If, instead, the NN is required to determine the gradient of data  composed of y values from a

line with added noise, i.e. perform a linear regression, then many new problems arise. Firstly two 

inputs are inadequate. Let’s say th a t the NN is given many inputs and th a t the input vector now

7 A n e x a m p le  o f  p rec ise ly  th is  p rob lem  h as b e co m e  p art o f th e  lore o f N N s. It is sa id  th a t w ere w as o n ce  a  U .S . 
m ilita r y  p ro jec t th a t u sed  n eu ra l n etw ork s to  id en tify  R u ssia n  an d  U .S . tan k s from  p h o to g ra p h s . A n etw ork  was 
tra in ed , an d  its  su ccess  rate  w as ex tr em e ly  h igh . T h e n  a  fresh  se t o f p h o to s  were in tro d u ced , a n d  th e  n e tw o r k ’s 
p erfo rm a n ce  o n  th ese  w as terrib le . It tu rn ed  o u t th a t th e  n etw ork  h ad  m erely  learn ed  to  d is tin g u ish  b e tw e e n  light 
an d  dark - b eca u se  in th e  orig in a l se t o f  p h o to s , th e  U .S . tan k s were p h o to g ra p h ed  in  h igh er  lig h t le v e ls  th a n  th e  
R u ssia n  tan k s.
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contains the y values of the line at evenly spaced points from x = 0 to x — 1. Now imagine training 

this NN for a fixed number of iterations N , ensuring the error on the training set, ^Training, actually 

decreases with each step. Now if some new examples not contained within the training set (but 

within the range represented in the training set) are presented to the NN and an error, i?Test, is 

calculated using this “test” set then it will almost certainly be found that

^ T e s t  ^  ^ T r a in in g

and that after some N  =  N q the gulf between the two errors will increase gradually as /V is increased. 

At first sight this seems bizarre: the NN is becoming better at the task required of it by one criterion, 

the training set error, while at the same time its performance is deteriorating according to another, 

the test set error. This is a classic example of the problems of attaining good generalization. After 

some point in training the NN starts to learn the noise of the training set, crippling its ability to 

generalize to examples outside the training set. A simple analogy can be drawn with a child learning 

French at school. If the child only learns “parrot fashion” certain phrases that the teacher has taught 

as part of the course, he or she may well achieve a good score on tests but will not fare well if taken 

to France on a school trip. One way of avoiding this problem is to use a larger training set but often 

the amount of data is quite limited as is computer time. A more practical alternative is to halt 

training before the error on the test set begins to increase at N  = Nq in the above example. This 

is why exact convergence on the minima is not needed and is in fact wholly undesirable. In cases 

involving “noisy” patterns arrival at the exact minima of the cost surfaces corresponds to a precise 

fit of the training patterns including the noise. This is sometimes referred to as overfilling and is 

a factor that influences the optimum choice for the number of hidden neurons. Methods such as 

this are sometimes called internal validation or cross validation An alternative method, preferable 

if training data is in short supply and the luxury of a test set is unaffordable is that which I shall 

call incestuous validation. In this case all the data is to be used as the training set, but training 

proceeds for one or a few iterations at a time with a subset of the training set removed. This provides 

a temporary test set on which the generalization ability of the NN can be judged. Then this subset 

it returned and another subset is chosen and the whole process is repeated until the errors on these 

test sets begin to rise. In this way training can be “validated” with least sacrifice for a test set. A 

more abstract description of generalization is given in Hertz et al. (1991) and references therein.
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1.5 Predicting T im e Series w ith  Feed-Forward N N s

Given a time series of data, x t , NN prediction proceeds by presenting I  time series values as inputs

to the NN and expecting the NN to reply with prediction of future values at its outputs. Therefore

to construct the training set requires assembling the vectors

=  { Xf t + i , , Xp+r )  n =  0 , 1, 2 , . . .

and their corresponding outputs

C  == ( X V + I + P l  1 X P + I + P 2 1  • • ■ > X p  +  I + p o  ) // =  0, 1, 2, . . .

where pi is the predict ahead time of the ith output, where i = 1, 2 , . . . ,  O .  So, given the input vector 

the NN is required to respond with the output vector Of course a sizeable number of such 

input-output patterns are also needed to form a test set. The NN can then be trained as described 

before with the training and test set error both being monitored to ensure that training is stable 

and that overfitting is not occurring.

1.5.1 Choices

Before training can commence the parameters of the training algorithm need to be chosen. If back 

propagation using gradient descent with a momentum term is employed then the learning rate e 

and the momentum o need to be chosen. Also one has to decide whether the patterns should be 

presented sequentially or randomly. These choices are not easy to make, and really have to be made 

using experience and trial and error. As indicated above the choice of learning rate can be avoided 

by introducing an adaptive scheme but this can introduce even more parameters that also need to 

be chosen. If such adaptive schemes are to be pursued justification must sought in that the scheme 

is fairly insensitive to the choice of these new parameters. In any case training is a means to an end 

and as long as this end is reached within a reasonable amount of time it is not too important that 

the training algorithm was not optimal8.

In addition to all the choices that need to be made concerning the the training algorithm, there 

are many more important questions that need to be answered with relevance to the actual prediction 

of the time series, ;

1. How many inputs are required to make a prediction of p time steps into the future?

8 T h is  is n o t a  valid  ex cu se  w hen th e  N N  n eed s to  b e  tra in ed  “o n -lin e '1 u sin g  new  d a ta  as it b eco m e s  ava ilab le .
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2. Should a NN be devoted to predicting with only one output?

3. If predicting several time steps ahead, is it better to do so with a NN performing that prediction 

directly or is it better to do so in an iterative manner using a NN with an output predicting at 

one time step ahead? In the second case, the NN’s predictions are used as subsequent inputs.

4. Is there a sampling or smoothing of the data that would favour the predict ahead time required? 

After all the daily variations of sunspot number might be more of a hindrance when predicting 

a year ahead.

5. Is there some other transform of the data, e.g. logarithmic or exponential, tha t might help in 

predicting the time series?

The answers to the above questions obviously depend on the nature of the time series under scrutiny. 

The answers are also dependent on one another, so that for example the answer to question 1 depends 

on how questions 4 and 5 were answered. This means that it is very hard to come to definitive answers 

on any of these questions by numerical experimentation, even more so because each “experiment” 

might require the training of many networks, which is very costly in computer time. However, the 

reward for exploring these possibilities is two-fold: firstly it will show how to improve prediction 

accuracy and secondly it can shed some light on the nature of the time series. For example, in 

attempting to find the best way to predict sunspot number one year ahead, it may be discovered 

after many trials that a NN taking 18 inputs of monthly sunspot number with one output predicting 

12 months ahead is best for the task. In doing these trials the prediction method has been improved 

and it is seen that only time scales greater than a month are relevant to predicting the solar cycle 

on the time scale of one year.

Much of the effort behind this thesis has therefore been devoted to just this kind of work - 

optimizing and exploring the NN algorithm. In this context, I remain sober in the sense that I do 

not view the NN as being a magical device that is superior to all others in predicting time series. 

Rather, I view a neural network as a very flexible tool with which I can explore the predictability 

and nature of solar-terrestrial and other time series.

1.5.2 Neural Networks as Tim e Series Models

NNs can be classified along with the time series models that I have reviewed at the start of this 

chapter. The predictor function for the k th output of a single hidden layer feed forward neural
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network can be written as

Ck = G f z  Wti k = l ........0

by combining (1.10) and (1.11). Obviously this is a non-linear function parameterized by constants 

which do not depend explicitly on time. In this sense a feed forward NN is a non-linear but stationary 

auto-regressive time series model. Note that this does not mean that NNs cannot represent non- 

stationary time series, in fact even an AR(1) model can represent some very specific non-stationary 

time series. Stationarity with reference to a model only requires that its form has no explicit time 

dependence. However, there are undoubtedly many types of non-stationary time series that certain 

classes of NN cannot hope to describe, another issue which I explore in this thesis.

1.5.3 Other Classes of Networks

The feed-forward neural network is probably the most commonly used network in current applica

tions. However there are several other designs of network gaining popularity at present which may 

have some advantages in certain applications. An extension of the feed-forward network is the recur

rent network which allows weight connections to connect any two neurons together. The training of 

these NNs can be performed by an amended form of back propagation given in Hertz et al. (1991). 

One reason why this might be an advantage in predicting time series was suggested by Connor et al. 

(1994). Allowing connections from the output layer to the input layer can allow the errors on the 

outputs or some function of the errors on the outputs to be effectively fed back into the network as 

inputs. This is analogous to extending the AR model to the ARMA model, in that the feed forward 

network has a predictor function of the form P ( x t~ i ,. . . x t~ i) which is the same as in (1.1) while 

the recurrent network has a predictor function of the form P ( x t- i , . . . x t~\ ,a t - j ,  . . .  a<_i) which is 

closer to the more general form in ( 1 .2 ).

Another quite different class of NN is the Radial Basis Function network which uses a different 

style of learning. Until now I have only been referring to one kind of learning, tha t is supervised 

learning where the NN learns by attempting examples and being corrected for its mistakes. Unsuper- 

vised learning only involves a NN learning differences in its inputs without any external judgement 

of what is right or wrong. In this sense a NN becomes a kind of non-linear statistical discriminator. 

The Kohohen Map, described in Hertz et al. (1991) is one such example of an unsupervised NN. 

The radial basis function NN has one hidden layer and feed forward connections but differs from a 

conventional feed forward NN in two respects. Firstly the input activation functions are Gaussians
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c

P. P 2  Ps P 4

Figure 1.4: A simple radial basis function NN. The graph shows how the output C  is a summation 
of Gaussian functions of A,  where the four Gaussians correspond to the hidden neurons Bj.
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and secondly the input weight connections are trained using an unsupervised method. Figure 1.4 

shows a radial basis function network with only one input and one output. The hidden neuron values 

are given by

Bj = g ( - a j  ( A -  fij))

where the a ’s and P's are effectively the input weight connections and the activation function g(x) 

is a Gaussian i.e.

g(x) =  exp(—z 2)

By using an unsupervised learning scheme it is possible to arrange the widths and positions of the 

Gaussians so that they do not overlap appreciably. Once this is the case an input will tend to only 

“activate” one of the hidden neurons. The hidden neurons can then be connected to the output 

neuron as follows
o

c=Y,Bi<i
i = i

where Q is the desired output for input A — Bj.  This will obviously produce correct outputs for 

certain input values corresponding to the peaks of the Gaussians but to produce correct outputs 

in the overlapping regions between the Gaussians requires both unsupervised training on the cv’s 

and p's and supervised training on the output weight connections. This description can easily be 

extended to apply to a radial basis function network with several inputs and outputs. Since the radial 

basis function use Gaussian input activation functions, with only one hidden layer they can actually 

represent functions with discontinuities to an arbitrary accuracy given enough hidden neurons. As 

stated before a feed-forward NN needs 2 hidden layers to achieve this, so that in this respect radial 

basis functions offer significant reductions in complexity.

1.6 The G enetic A lgorithm

The genetic algorithm is a general technique inspired by the survival of the fittest philosophy sug

gested by Darwin. Again I will illustrate its use with a simple example and then describe it in 

more general terms. Imagine a safe that can only be opened by typing in a four digit number. Also 

imagine that you have a thief’s tool that allows you to rate how close a particular number is to the 

correct number by giving you an integer number from 0 (completely wrong) to 10 (the safe opens). 

A genetic algorithm will open the safe for you as follows:

1. Try 20 random four digit numbers
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2. Record the rating for each one

3. Keep the five best numbers and discard the rest - these are the parents

4. Create fifteen new numbers from the parents by taking the first two digits from one parent 

and the last digits from another e.g. parents 2157 and 8923 will produce 2123. These new 

numbers are the children.

5. Randomly change some of the children’s digits

6 . Try these 20 numbers and return to 2 until safe is opened

Of course the thief would need to be quite patient and brave as there is no guarantee of how fast the

algorithm will converge on the answer or even if it will converge on the answer. In fact by performing 

tests on the safe-cracking scheme above, I found that, on one occasion the thief had to wait for 3,300 

generations before he could plunder the contents. On another occasion he had to wait for only 29 

generations.

The more general approach to the genetic algorithm introduces the notion of a string represented

by S and a problem whose solution can be coded as a string, So- The purpose of the genetic

algorithm is to seek this solution string. For the algorithm to be effective there must be some rating 

of a particular string R[S] so that one string can be "nearer” to So than another string. Once this 

is done the genetic algorithm can be generally described as follows

1. Create a population of N  strings

2. Rate each one

3. Sort the strings and keep P parent strings, discarding the rest

4. Create N  — P child strings by breeding the parents

5. Mutate the child strings

6 . Return to 2

In this more general phrasing of a genetic algorithm higher rated strings are only more likely to 

become parents. Also the process of breeding is generalized allowing for other ways of combining 

parents to produce children or even allowing for the mating of more than two parents. The process 

of mutation can take on many forms but it is usually a random operation included in order to 

maintain diversity in the population. Although there is no definite proof of convergence for the
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genetic algorithm, it has shown itself to be remarkably robust and successful both in applications 

and nature. Through experience in using genetic algorithms in many problems I have found that its 

success is not too sensitive to the choice of N,  P  and the other details of the algorithm. This fact 

combined with the freedom in choosing the rating of the strings makes the genetic algorithm both 

easy to implement and very flexible as I shall demonstrate later when I use it to train NNs.

1.7 T he Sun and its Influence on the Earth

It was established by Heinrich Schwabe in 1826 that the number of spots on the Sun varied with a 

cycle of about 10 years. In 1848 Rudolf Wolf realized the importance of Schwabe’s discovery and 

set about reconstructing sunspot number records back to 1700. Daily numbers could only be found 

back to 1818, monthly means to 1749 and only annual means existed as far back as 1700. For this 

reason Sunspot number records before 1850 are viewed as being somewhat unreliable. Wolf also 

began a program of observation at Zurich which developed into a world wide effort which is still 

maintained to this day. Wolf’s system for expressing sunspot number, R, sometimes called Wolf's 

Sunspot Number or the Zurich Sunspot Number is as follows:

R = k (10 g + f )

where g counts the number of Sunspot groups and /  is the count of the number of individual 

sunspots. The factor k was introduced to allow a standardization of R  for the different opinions on 

what constitutes a group or even a spot. The Zurich Sunspot Number (SSN) is a daily index and is 

often expressed as a (calender) monthly mean or as a yearly mean. Figure 1.5 shows unsmoothed 

and smoothed SSN, where the form of smoothing that I have used is the 13 month running mean 

defined as:
1 6D sm ooth   \  ' d

_ 13
j = - 6

Note that sometimes the 13 month running mean is defined as

« r ooth = ^  f E  K - i  + ^  j

because in this way annual variations in the data  are properly accounted for. Since the E arth ’s 

orbital period has little impact on the number of sunspots it is the former formula that should be 

used to smooth SSN, whereas if I \p index (see below) is to be smoothed the latter formula should 

be employed. Prediction of Sunspot Number in any of its forms has been a “Sword in the Stone”
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Figure 1.5: a) Unsmoothed Monthly Sunspot Number b) Smoothed Monthly Sunspot Number
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problem for many years now, often being used as a test-bed for new prediction schemes9.

At the time of writing this thesis the Sun is entering its 23 cycle. By definition a cycle is defined 

to begin at Sunspot minimum, with cycle 1 commencing in 1761. Observations in the last two 

hundred years show that the cycle period varies between 8 and 14 years. It also has a variable 

amplitude, with a maximum recorded SSN of 217 occurring during the solar maximum of 1959.

Towards the end of the 19th century geomagnetic observations, initiated by Gauss, indicated that 

the magnetic field of the Earth also showed a variation with a similar period but a slightly different 

phase to that of the SSN cycle. It was an inescapable conclusion that the sunspots were related to 

some influence over the E arth ’s magnetic field; but quite how the number of dark patches on the sun 

related to Earth-bound phenomena was a mystery. The result of this was the birth of many myths 

which used the “magical” influence of sunspots as explanations for all manner of things Earthly, 

from the crop yields to the physical and mental well-being of individuals. Even today scientific links 

are made between solar activity and many terrestrial phenomena. The most famous example is of 

course the aurorae providing beautiful displays at Northern Latitudes as the E arth’s magnetic field 

interacts with streams in the solar wind. More tenuous links have also been made with the climate 

in Friis-Christensen and Lassen (1991), with fish populations in Davydov (1986) and even with the 

sexual behaviour of Crangon Crangon (shrimps).

At present there are almost 200 magnetic observatories around the world, each one equipped with 

a magnetometer that measures the Horizontal field strength, H , the Vertical Field Strength, V  and 

the direction of compass North with respect to true North, D. H  and V  are normally quoted in units 

of /iT (micro Tesla) and D  is usually quoted in degrees. During periods of little geomagnetic activity 

the values of H , V  and D  measure the E arth’s dipole field, which is generated by electric currents in 

the E arth ’s fluid core. But the E arth’s dipole field cannot account for the rapid changes in magnetic 

field that are observed during more active periods. These must be due to electric currents in the 

ionosphere and magnetosphere. One such current that results in a gentle, regular diurnal variation 

is induced by the atmospheric tides which are caused by solar heating and to a lesser extent by 

the gravitational affect of the moon. These are called the solar quiet (S q) and lunar quiet {Lq) 

variations. There are also 27-day periods which are connected to the solar rotation period, which 

are attributed to the presence of streams in the solar wind that form from material leaving certain 

regions of the Sun. There is also an unexplained 6 month oscillation which reaches its maximum at 

the two equinoxes.

9 w h ich  is su rp risin g  in so m e w ays as th e  p h y sica l m ech a n ism  w hich  govern s th e  so lar cy c le  is s t ill  p o o r ly  u n d e rs to o d  
in  q u a n tita tiv e  term s.
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In order to summarize the magnetic variations at a particular observatory over a three hour 

period, the geomagnetic I\ index is used. This takes the greatest disturbance in H  or V  over 

the last three hours and rates it on a quasi-logarithmic scale from 0 (no disturbance) to 9 (very 

disturbed). This scale is also sub-divided into 3 bands per number by suffixation with a +  or —. 

The planetary index, K p , is obtained by averaging the I\ values from each station where each station 

will receive some sort of weighting, like the k parameter for SSN. The shortest time scale of interest 

in this thesis is one day, so from here on, unless otherwise stated, the K p index should be understood 

to mean the daily sum of the eight three-hourly values. Note that the monthly and yearly K p indices 

are formed by averaging the daily K p values for each month and year. Figure 1.6 shows a sequence 

of K p index together with the smoothed and unsmoothed monthly means back to when records 

began in 1932. A variation of the K p index, is the Ap which is measured in the same fashion but 

scaled linearly rather than logarithmically. Notice the presence of a strong 27 day period in the 

daily data, corresponding to the solar rotation period. There is also another geomagnetic activity 

index called the antipodal or aa index. This is a combination of values from only two observatories, 

one in England and one in Australia. The aa index has the advantage that it has been continuously 

measured since the 1880s.

Highly correlated with SSN but only available since 1947 is the 10.7 Solar Flux (SF). The 

correlation can be well described by a linear equation:

S F  = 0.915 * S S N  + 59.916

The SF is plotted in Figure 1.7, in smoothed and unsmoothed monthly form. It is noticeably 

“smoother” than SSN and is regarded as being a superior measure of solar activity in tha t it can be 

objectively measured.

1.7.1 Solar A ctivity

This section is only intended to give a brief description of the various phenomena that are collectively 

known as solar activity. They are all associated with the release or transport of energy in the 

photosphere, chromosphere and corona. In some regions convective energy flow in the photosphere 

is suppressed, causing cool regions, which are seen as sunspots. In other regions intense brightening is 

observed at many wavelengths indicating the release of large quantities of energy, these are termed 

flares. Further out in the corona bright convex arcs of expanding material are seen, these being 

symptomatic of a Coronal Mass Ejection (CME), where the bright leading arc is interpreted as a 

shock front formed by the fast moving ejected material. These are just three of the most striking
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and immediate manifestations of the exchanges of energy, whether it be kinematic or magnetic, that 

take place on the sun.

S u n sp o ts  usually appear in groups or pairs and are not evenly distributed over the solar globe. 

At any given time certain regions of the Sun are more likely to develop sunspots that others. In 

Liggett and Zirin (1985) it is found that sunspots are 10 times more likely to appear in a region 

of given area near an active region than in an equal sized area of little activity. Also sunspots are 

always found in a band near the solar equator, the size of this band depending on the phase of 

the cycle (this is called Sporer’s Law). The band is as wide as ±40° just after SSN minimum, at 

the start of the cycle, and as narrow as ±10° at the end of the cycle. The transition from wide to 

narrow is gradual throughout the cycle but the return from narrow to wide is sudden, producing 

the famous butterflies on the Maunder Sunspot diagram, which can be found in many books about 

the Sun. e.g. Zirin (1987). The farting pencil dithered on the spot for a moment until it gradually 

began to realize that it was actually safe to proceed. Spots often form in pairs, with the two spots 

being referred to as the leading spot, because it leads in the sense of the solar rotation, and the 

following spot. The leading spot appears first, with the following spot almost always forming closer 

to the equator. As the spots evolve they separate in distance, both moving away from the equator. 

As this proceeds, the leading spot catches up in latitude so that the pair gradually align themselves 

with the parallels of latitude as they grow older. During the separation smaller spots can appear 

in between the pair so that a spot group is formed. The leading spot can usually be identified in 

the group because apart from leading, it is usually quite circular in shape, whereas the other spots 

including the following spot can be quite irregular. These spot groups evolve in a matter of days 

and persist for up to a month, with the leading spot being the last to disappear. Having said this, a 

spot does not usually disappear immediately. Rather it disintegrates, breaking up into many smaller 

spots that gradually fade away.

The amount of spots on the sun can also be quantified by the area of the Sun that is covered with 

spots. At any one time no more than 1% of the disk is covered with spots. As might be expected 

there is a correlation with SSN:

Spot Area (Millionths of the Solar Disk) ~  16.7 R

However, the correlation is not very good especially in view of the fact that Sunspot Area maximum 

occurs about 2 or 3 years after Sunspot Number maximum. Since flare activity peaks at about the 

same time as Sunspot Area, it can be argued that sunspot area is a better indicator of solar activity.

Sunspots are not just black disks, but are often quite irregular in shape and are not uniformly
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dark. The darkest region is called the umbra and is at the centre of the spot with a less dark region 

surrounding the umbra called the penumbra. There is finer structure than this, especially when the 

spot is viewed in Ha,  where bright flecks, radial filaments and flows can be seen in and around the 

penumbra. Sunspots also have strong magnetic fields, first reported in Hale (1912). In Hale et al. 

(1919) it was found that the following and leading spots had opposite polarities. Also if the leading 

spots had positive polarity in the northern hemisphere of the sun then the leading spots of the 

southern hemisphere would have negative polarity (the Hale-Nicholson Law). It was subsequently 

established that the situation would be reversed for spots born at the start of the next solar cycle. 

The spot’s magnetic field is strongest in the middle of the umbra and is also normal to the surface 

of the Sun there. Further out from the centre, the field becomes weaker and is more inclined to the 

vertical.

Of course the above description is very general and often exceptions to the rules are observed, 

sometimes there is no following spot or sometimes groups evolve without any clear leading or fol

lowing spots.

A c t iv e  reg io n s  are comprised of a whole cast of phenomena, sunspots being just  one player. 

Any region that shows any combination of flares, sunspots, plages (bright patches), filaments or loops 

is referred to as an active region. All of these features can be ascribed to magnetic field formations, 

either suppressing or encouraging the transfer of energy in some way. For example a suggested 

explanation of sunspots is that strong vertical magnetic fields below them in the photosphere suppress 

the convection of heat from the bottom of photosphere to the surface. This is because convection 

requires a horizontal flow at the base of the photosphere which, in the case of sunspots, is difficult 

because the plasma would have to flow at right angles to the vertical magnetic field. Flares are 

attributed to releases of energy due to sudden changes in the magnetic field, e.g. in magnetic 

reconnection. The strong magnetic fields which are present during reconnection can accelerate 

electrons and ions, which can go on to produce enhanced thermal emission in Soft X-Rays and 

impulsive, non-thermal emission in the form of Hard X-Rays and Gam m a Rays, resulting in the 

release of energy into light and particle kinetic energy that is known as a flare. Flares are associated 

with active regions and are therefore most common and also most violent just after SSN maximum.

In the C o ro n a  many phenomena are observed that can be linked with activity at the Earth. 

This is not surprising because the corona is really the start of the solar wind, so that any material 

disturbance there will propagate out with the wind. The most dramatic of these is the Coronal 

Mass Ejection (CME) where large “bubbles” of plasma are thrown out of the corona, expanding as
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they do so. At the leading edge of CMEs is a shock front caused by compression of the overlying 

and relatively slowly moving coronal plasma. So photographs and movies show a very bright arc, 

indicating the outer edge of the CME. Time sequence photographs (or coronagraphs) can be found 

in Zirin (1987) from the ill-fated P78-1 spacecraft that was shot down by the U.S. Air Force shortly 

after making the observations included in Zirin’s book. The material in a CME will take two days to 

reach the E arth ’s orbit and if it actually hits the Earth it can be blamed for heightened geomagnetic 

activity. The frequency of CMEs is quite surprising as they can occur as often as once every 24 

hours expelling as much as 1013 kg of solar material each time. This means tha t they can carry away 

as much mass per unit time as the solar wind, on average.

In Soft X-Ray images of the corona there are dark regions where coronal material appears to be 

absent. It has been inferred that in these regions the magnetic field lines open out, allowing plasma 

to leave the sun. Coronal holes, as they are called, are often observed at the solar poles hinting 

at a poloidal field that may have existed at some point in the cycle (see below). Bartels suggested 

in Chapman and Bartels (1940) that there existed “M-regions” on the Sun that caused the cyclic 

27-day disturbances apparent in stretches of geomagnetic activity. After Soft X-Ray images were 

obtained by Skylab in the 1970s these mysterious M-regions were identified as being coronal holes. 

Their effect on the Earth is attributed to streams of material flowing along the open field lines which 

are “anchored” to the surface of the Sun, causing the streams to sweep by the Earth with a roughly 

27 day period.

The Sun does not have an obvious G lobal M agn etic  F ield  throughout its cycle. Though the 

polar coronal holes provide tantalizing evidence of a dipole field, the magnetic structure between 

the poles is usually extremely complicated and not dipole-like at all. I say ”usually” because at 

Sunspot minimum there are suggestions of a global poloidal field in the inner corona, evidenced 

by the presence of streams of material following along poloidal paths. However, there is certainly 

suggestion of global structure in the field throughout the entire cycle, evidenced for example in the 

Hale-Nicholson law concerning sunspot polarities. Also at the end of each cycle (at the minimum) 

the polarity of the Sun’s magnetic field suddenly flips so that polarity of the open magnetic field lines 

at the poles reverse. This behaviour appears to be consistent with a Solar Dynamo  model, where 

the flows of the plasma due to solar rotation and local effects both contribute to a. complicated 

re-generation of the solar magnetic field. This picture starts with a poloidal field just  below the 

photosphere at the beginning of the cycle. Since the conductivity there is so high, the field lines 

are frozen into the plasma and carried around with the solar rotation. Differential rotation causes
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a twisting of the field, with field lines near the equator being pulled further ahead, until an almost 

toroidal field is formed (i.e. the field lines are parallel to lines of constant latitude). The vertical and 

horizontal convective motions cause large pockets of plasma to undergo twisting due to the Coriolis 

force. This sets up toroidal currents which re-generate the global poloidal field but with opposite 

polarity to that of the previous cycle. In this way the 22 year magnetic cycle is explained. Also 

explanations for active regions are offered, in that, during the twisting of the toroidal field (which 

occurs at solar maximum), bundles of twisted magnetic “flux rope” become buoyant and float to the 

surface of the photosphere causing the phenomena associated with active regions. Other effects such 

as the Hale-Nicholson law, Sporer’s Law and sunspot polarity reversal have all found explanations 

stemming from the basic dynamo picture. However the picture is rather qualitative in that an MHD 

theory has not yet been developed that can convincingly describe the re-generation of the global 

magnetic field and the complicated local phenomena simultaneously.

The S o la r  W in d  which begins at the corona has a dramatic effect upon the E arth ’s magnetic 

field and can be detected as far out as 40 AU. The Sun emits the wind in geometrically the same 

way a rotating garden sprinkler emits water, with the material travelling radially once it has left 

the sun. However, if expelled material is traced from one region of the Sun it will be found to be 

moving outward in a spiral fashion. Since the plasma leaving the Sun is highly conductive the field 

is frozen into the expanding wind and consequently the field is wound into a spiral too. There are of 

course variations in the speed, density and magnetic field due to activity on the Sun. For example 

the supersonic speeds of CMEs will cause shock waves to form, compressing the wind ahead and 

causing rarefied cavities behind as shown in Figure 1.8. Because of these compressions/rarefactions 

the magnetic field will be strengthened/weakened accordingly.

Spacecraft measurements show that the magnetic field of the solar wind is subject to sudden 

reversals of direction, dividing the interplanetary medium into sectors in the plane of the ecliptic 

where the magnetic field is pointing either towards or away from the Sun. This is explained as the 

spacecraft regularly passing through a surface which divides the Northern and Southern heliomag- 

netic hemispheres, the shape of the surface being like that of a ballerina’s skirt. This interpretation 

is fortified by the disappearance of the sector effect when spacecraft are placed well above or below 

the ecliptic plane. There are also sudden changes in field polarity due to the presence of streams of 

material that have emerged from coronal holes; the magnetic field of the stream will have the same 

polarity as that of the hole.
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Figure 1.8: Schematic picture of the Solar Wind disturbed in one region by outflow of material from 
a coronal hole or by a CME.
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Figure 1.9: Schematic picture of the E arth’s magnetic field.

1.7.2 The Earth’s Magnetic Field

The atmospheric gases of the Earth start to become ionized at about 40 k m  above the surface, 

the region from this level up to about 500 km  is referred to as the ionosphere. The region above 

the ionosphere, where the geomagnetic field of the Earth almost entirely determines the motions of 

charged particles, is termed the magnetosphere and it extends to about 10 Earth radii towards the 

Sun and to over 100 Earth radii on the night side of the Earth. Figure 1.9 illustrates the basic shape 

of the E arth ’s field. The inner field is dipolar with the North pole at a geographic latitude of 77° 

North. On the sunward side the field is compressed by the incident solar wind with some field lines 

being "‘peeled off’ and swept into what are termed the tail lobes of the field. At the polar cusps, 

which divide the closed sunward field lines from the open tail lobe field lines, particles are able to 

enter the magneto-sphere either being trapped along the closed field lines or being released to flow 

in the tail lobes. Apart from this the solar wind plasma is segregated from the magnetospheric 

plasma because of the “freezing out” of the wind’s field, causing the wind to be diverted around the 

magnetosphere. Over 40 radii behind the Earth there is a magnetically neutral current sheet, where 

the oppositely directed open field lines can meet and reconnect during substorms (see below).
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1.7.3 Solar A ctiv ity  and the Earth

Geomagnetic activity is almost entirely due to concentrations of material in the solar wind. The 

variations due to the internal electric currents of the Earth are almost negligible in comparison. 

The presence of streams or speed, density and magnetic field enhancements in the stellar wind can 

sometimes be traced back to the Sun indirectly and directly. The most obvious indirect method is the 

recognition of a 27 day cycle in geomagnetic activity, as in Figure 1.6. A direct association between 

individual solar and geomagnetic events is difficult because the solar material takes several days to 

reach 1 AU and in doing so travels along a curved path which may or may not coincide with the 

Earth. Even when it does, its effect can be quite complicated depending on the orientations of the 

magnetic field of the Earth and the wind material. Until the 1970s, it was thought that geomagnetic 

storms were induced by streams of material from Bartel’s mysterious M-regions and by the release 

of material in solar flares. Since M-regions turned out to be coronal holes and material has been 

observed to be ejected from the Sun in the form of CMEs it is now believed that these coronal 

phenomena are responsible for much of the geomagnetic activity. It has been argued by Gibson 

(1993) that all geomagnetic effects can be linked to CMEs and that in comparison solar flares 

are unimportant. However there is mounting evidence (e.g. Bravo (1994)) that CMEs, erupting 

prominences, flares and active regions are all connected, occurring in or near coronal holes. So to 

say that material and energy released in a flare has an inconsequential effect on the solar wind may 

be true but to say that solar flares are unrelated to disturbances in the wind, and therefore at the 

Earth, is false.

The monitoring of geomagnetic activity in terms of the disturbance of magnetic fields at various 

stations across the Earth shows three basic kinds of behaviour: Crochets, Storms  and Substorms.

The regular S q and L q variations that are due to electric currents in the lower ionosphere can 

be enhanced by heating and ionization from increased levels of soft X-Rays and Extreme Ultra- 

Violet (EUV), which can result from a solar flare. These enhancements are called crochets and are 

quite small (about 0.1% of the E a r th ’s normal field) and for obvious reasons occur only during the 

day. Magnetic storms are more violent and spread world wide often commencing with a rapid rise 

in magnetic field strength over few hours followed by strong fluctuations that last for a couple of 

days. If measured at low latitudes a marked drop in overall field strength is also observed. The 

initial rise is due to the compression of the day side magnetic field by the incident wind disturbance. 

The following drop is caused by a ring current of charged particles around the equator effectively 

generating a magnetic field that opposes that of the Earth. A substorm lasts only for half an hour
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and can occur during storms or in quiet periods. The size and frequency of the storms depend 

on the orientation of the solar wind’s magnetic field, which can switch suddenly due to sector 

effects and high speed wind streams. If the component of the wind magnetic field parallel to the 

E arth ’s magnetic axis is opposite to the direction of the E arth ’s field then reconnection can occur, 

resulting in more open field lines being swept behind the Earth into the tail lobes. This then causes 

reconnection on the nightside of the Earth which has been observed to send plasma moving towards 

and away from the Earth. For these reasons such a configuration of wind-Earth magnetic field make 

substorms strong and frequent, whereas substorms become infrequent and less severe if the magnetic 

field components match. Associated with these substorms are the aurorae whose stunning visual 

manifestations are caused by the excitation of neutral atmospheric atoms by energetic electrons in 

the polar regions of the magnetic field. Auroras are most common in an oval band which encircles 

the magnetic poles and which can be seen very clearly from images recorded by satellites.

1.8 Predictions o f Solar-Terrestrial A ctiv ity

This section reviews the application of the prediction schemes outlined at the start of this chapter 

to the problem of forecasting the Sunspot Number time series. A serious problem in comparing 

predictions is that different authors have used different measures of prediction accuracy. Most 

authors provide a root mean square type error but as seen earlier the errors should be distributed as 

white noise for the predictions to be “completely predicted” . This requires further information on 

the authors’ work which is simply not available in most cases. A further problem is that the errors 

are of course based on each author’s test set, so that comparison of like with like is not possible 

unless I repeat the entire methods of each author exactly. Despite this, comparison of errors must 

have some meaning and so, where appropriate and possible, I include RMS errors either quoted from 

the papers directly or inferred from the authors’ results.

McNish and Lincoln (1949)

D a ta :  SSN - 1'2 month smoothed and 3 month smoothed: 1834-1943

M e th o d :  McNish-Lincoln

R M S :

1 year ahead: using only the previous year 7.1

2 years ahead: using only the previous year 10.6, using the last two years 11.1 This paper provides 

one of the most longstanding prediction mechanisms, which is still used today to provide SSN and
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SF forecasts in the monthly Solar-Geophysical Data reports published by the World Data Centers. 

The predictions above are made from the start of the cycle so I use P  to mean the predict ahead time 

from the start of the cycle. The prediction errors increase until P  > 6 when the errors appear to 

decrease. This is explained by the fact that the SSN residuals a larger “variance” at SSN maximum 

and therefore the prediction errors there will be higher too. It is also worth noting that using the 

mean cycle alone results in an error of 7.4. It is not stated in the paper whether the authors believe

that the use of the previous year is actually a statistically significant improvement over the mean 

cycle used by itself. Using 3 monthly smoothed SSN, based on the SSN from eight months into the 

past the prediction accuracies are as follows: 8 months ahead: 4.7 

16 months ahead : 9.0 

24 months ahead : 10.6

Using only the mean in this case is significantly worse giving 8,16 and 24 month prediction errors of 

5.7,11.5,17.7

DeMeyer (1981)

D a ta :  SSN annual means 1749-1979 

M e th o d :  Empirical Mathematical 

R M S :

No prediction errors quoted, see text.

The prediction methods investigated in this paper are really geared to the mathematical model

ling of SSN, in doing so 3 such models are addressed. Model A recursively identifies and subtracts 

the strongest frequency components from the data  until no significant peaks remain in the spectrum. 

The author then finds that the resulting residual time series is white noise. Model B proceeds in a 

similar fashion but multiplies every second maximum by —1 so as to reflect the 22-year magnetic 

cycle. Model C abandons any attem pt to work with periodicities as the author feels that the sunspot 

cycle is not formed by the superposition of many periodic processes. Instead functions of the form

are used to represent cycle j ,  with A j , tj and r; being fitted numerically for each cycle. W  is

(1.18)

(1T9)=  0 , t  < t j

in fact a Maxwellian function and is used because it characterizes the tendency for cycles to have 

shorter attack than decay phases. However, it can be seen from any plot of SSN that the smaller
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amplitude cycles are generally more symmetric than large amplitude cycles, something which cannot 

be accounted for in this mathematical model. By the author’s own admission these models are 

neither useful nor reliable for prediction. This is because these models are fitted with no regard to 

the problem of generalization, discussed earlier. This might have been overcome in models A or B 

by using the periodicity removal algorithm on two separate sets from the data  and comparing the 

results. Model C cannot really make a good prediction unless some use is made of the correlation 

properties of Aj ,  t j  and tj for successive / ’s.

Kapoor and Wu (1982)

D ata: SSN annual means, monthly means and daily values

M ethod: ARMA 

RM S:

Yearly, ARMA(5,4), 16.3 (1 year ahead)

Monthly, ARMA(8,7), N/A (1 month ahead)

Daily, ARMA(2,1), N/A (1 day ahead)

This paper suggests that an n th order continuous stochastic time series when discretised produces 

not an AR(n) model but an ARMA(n,n — 1) time series. For this reason the authors assume that 

SSN is well described by an ARMA(n,n — 1) model (though they do not state why they believe the 

Sun conforms to a continuous nth order stochastic process). The paper does not clearly state errors 

for each timescale of prediction, but from the quoted variance of the white noise terms for yearly 

numbers I inferred that the one year ahead prediction error would be 16.3. Since this error is derived 

from the data  used to fit the model I expect that prediction error on an independent test set would 

be larger than 16.3. However, the results they proceed to quote using only data  prior to 1958 have 

an absolute error that is always less than 15. This discrepancy is not accounted for in the paper.

Holland and Vaughan (1984)

D ata: smoothed monthly solar flux 

M ethod: Adapted McNish-Lincoln 

RM S: Prediction errors N/A see text.

This paper’s method is really just the McNish-Lincoln method with the interpolation step (re

quired to stretch each cycle to the fixed number of points in the mean cycle) performed by a 

Lagrangian least squares algorithm. It is therefore somewhat surprising that the predictions turned 

out to be more accurate. Much of this paper is devoted to assessing the statistical meaning of the
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predictions, i.e. establishing confidence intervals on the predictions and using the statistic to 

make comparisons with the standard McNish-Lincoln method. In so doing an RMS error is not 

quoted so I cannot include an error value for this method.

Schatten and Sofia (1987)

D ata: Annual mean values of SSN and SF for cycle 22 max.

M ethod: empirical-physical dynamo model

This paper predicts the maximum SSN for a given cycle using measures of the Sun’s polar field 

strength at solar minimum. According to the dynamo picture of the Sun (see end of Section 1.7.1) the 

Sun has poloidal field at solar minimum, which, through differential rotation, develops into a toroidal 

field and from there into a complex web at solar maximum, which emerges through the surface of 

the photosphere giving rise to active regions with sunspots etc. The motivation of this paper relies 

on the assumption that a strong poloidal field at solar minimum is indicative of heightened activity 

at solar maximum. Since solar dynamo models cannot provide any more quantitative rigour to the 

last statement the authors’ turn to empirical linear relationships of the form

R m — k B

where R m is the maximum annual mean Sunspot number, B  is some (direct or indirect) measure 

of the solar polar field strength and k is ar. empirically derived constant. The three methods 

of estimating the poloidal field strength of the sun were as follows: direct measurement of field 

strengths at the poles, flattening of the current sheet dividing the heliomagnetic hemispheres in the 

Solar System and the bending angle of the polar magnetic field inferred from streamers. In this 

way the authors predicted that the maximum would occur in 1990 ±  1 year and be of the value 

170 ±  25. Using the correlation with SSN the SF value was inferred to be 210 ±  25. According 

to SSN solar maximum occurred in 1989 peaking at 158, below the prediction but well within the 

authors’ uncertainty limits. The solar flux also peaked in 1989 at a value of 213.6, with a secondary 

maximum in 1991 of 208. Despite this seemingly accurate prediction it must be remembered that 

the predicted value of 210 came indirectly via prediction of SSN, which was not nearly as accurate, 

and through a good but not perfect correlation with SSN. This is suggestive that in this case two 

wrongs made a right.

Gonzalez and Schatten (1987)

D ata: Annual mean values of SSN and SF for cycle 22 max.
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M e th o d :  empirical-physical dynamo model

This method operates on the same principles as Schatten and Sofia (1987) above, this time using the 

minimum of the monthly smoothed aa and A p geomagnetic indices to provide the connection with 

the solar poloidal field that can be exploited to predict the SSN maximum. In this case 10 cycles 

of aa index and 5 cycles of Ap are used to build up a roughly linear correlation between maximum 

sunspot number and minimum aa value. Using this method they predicted that smoothed monthly 

SSN maximum would occur in October 1990± 9 months with a value of 166 ±  35. The smoothed 

monthly sunspot number maximum (as calculated in this thesis) actually occurred in November 

1989, reaching a value of 156.

Zhang (1988)

D a ta :  Annual mean SSN

M e th o d :  Threshold Autoregressive Model

R M S :

1 Year Ahead: 16.3

This paper makes a straightforward application of a Threshold Autoregressive model described 

in Section 1.2.5. The author uses data  from 1700 to 1956 to fit the model and then checks it on 

a test set from the years 1957-1985. From the values quoted in the paper I have inferred tha t the 

1 year ahead RMS prediction accuracy of the model is 16.3, this can appreciated in Figure 1.10 

where the RMS errors calculated over successive nine year intervals are plotted. The maximum of 

cycle 22 is predicted to occur in 1990-91 and have SSN reaching 81.2 ±  16.2. This prediction is an 

extreme underestimate with the (rather optimistic) error quoted by the author failing to cover the 

actual value. In fact judging by the predictions of the years 1986-94, where the RMS error is 51.47 

(the last point in Figure 1.10), it seems that this model’s predictions of the future are significantly 

worse than those on the author’s test set. Figure 1.10 shows this as a sudden change in RMS error 

in 1985, the end of the test set. Either the author was extremely unfortunate or else the test set 

was incorrectly used to gauge the success of this method. If the latter is the case then the use of a 

Threshold Autoregressive model seems inappropriate for describing SSN.

Wilson (1990)

D a ta :  Smoothed SSN for cycle maximum prediction 

M e th o d :  Empirical-statistical

In this paper the rate of growth of SSN between minimum and maximum is correlated to the
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Figure 1.10: This is a plot of the RMS error of yearly SSN predictions evaluated on successive nine 
year intervals from 1956 to 1994. The years 1956-1985 were the test set and the last nine years 
1986-1994 are the years for which the author made predictions into the future.

height of the maximum. The rate of growth is measured in a straightforward fashion taking the 

difference in SSN between minimum and t months after minimum and dividing by t. It is found 

that larger values of t provide a better correlation with maximum SSN, and so therefore provide 

better prediction accuracy. The author also points out that using the maximum measured rate of 

growth correlates best with maximum sunspot number, although it can occur only 1-2 years before 

the maximum allowing only relatively short term predictions. Using data up until the beginning of 

1989 the author predicts that the height of cycle 22, according to smoothed SSN, will exceed 164.0 

within a 97.5% confidence limit. The SSN peaked in 1989 at a value of 159.

Kurths and Ruzmaikin (1990)

D a ta :  Annual mean SSN 

M e th o d :  Nearest-neighbour method.

R M S :

1 Year Ahead: 30.5

This paper applies the method proposed by Farmer and Sidorowich (1987) (see Section 1.3.3) 

to the prediction of yearly SSN with the solar magnetic polarity included by multiplying every odd 

cycle by —1. The years 1749 to 1923 were used to fit the model, with data thereafter reserved for
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Table 1.1: Prediction RMS errors for various statistical models. Note that the number of parameters 
includes the constant mean which is subtracted from the data before fitting.

Model AR(9) Subset AR(9) TAR Subset Bilinear
R M S  13.8 14.6 12.2 11.13
No. of
Parameters 10 4 19 11

use as a test set. Only a plot of the predictions on their test set is provided in the paper and so by 

method of using a ruler to measure the gaps between actual and predicted SSN I have found the 

RMS error of their method to be 30.5, evaluated over the range 1926 to 1979. The majority of the 

errors were incurred at the largest maximum in history, that of cycle 19 and the maximum of cycle 

18. They also predict the maximum of cycle 22 to occur in 1990-91 with a peak value of about 162.

SubbaRao and Gabr (1984)

D a ta :  Annual mean SSN 1700-1955

M e th o d :  Bi-linear, AR, Threshold Autoregressive

R M S : See Table 1.1.

These results can be found in Chapter 6 of the book, where the three types of model are compared. 

Also used are subset AR and bi-linear models. When fitting a time series model such as an AR(jV) 

model all N  previous values of the time series’ history are used. If some of the coefficients are found 

to be small, it might be worthwhile refitting the model missing out those terms; this is what is meant 

by subset. For example in the study in this book, the AR(9) model uses ATj_i, X t- 2 , A^_3 , . . ., Â _ 9  

but the subset AR model uses only A j_ i,  X t ~ 2  and X t-g. The models were fitted using data  from 

1700 to 1921 and the prediction accuracy tested on 3 cycles of data from 1922 to 195510, the RMS 

errors inferred from the authors’ 1 year ahead prediction variances for each model are listed in 

Table 1.1. Although these prediction errors are quite impressive it must be remembered the huge 

maximum of 1957 is not included in the test set, though it was included in the test sets of previous 

authors. As shall been seen with NNs later in the thesis the 1957 maximum is a surprise to almost 

every prediction scheme.

Since the authors are approaching the subject from a statistical background they also examine 

the properties of the residuals, concluding that the residuals are both independent and normally 

distributed for each model. Despite these statistical results the independence of the residuals appears

10a r ep ea ted  m is-p r in t in  th e  a u th o r s ’ te x t  s ta te s  th a t  th e  range is 1922 to  1935.
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Figure 1.11: The residuals of the bi-linear model.

to be rather frail, judging by Figure 1.11, which plots the residuals of the Bi-linear model with 

Sunspot Number. It is immediately obvious that prediction error is larger during the rise and fall 

of each cycle.



C hapter 2

The D ata and its Analysis

“Tell us what we want to know or we’ll give you a kickin’ and fit ya up good an ’ propa”

Jack Regan

2.1 T he Gallery

Many introductory texts on time series analysis, e.g. C'ryer (1986), start by stating that the most 

important means of analyzing a time series is just the visual inspection of a plot, i.e. just look at it. 

So the first step I take in this chapter is to provide a gallery of graphs that show the entire available 

and reliable history of the three important time series in their various formats: yearly, monthly, 

smoothed monthly and also extracts from the raw daily series.

As a note to these plots remember that the technology, personnel and method of observing has 

changed throughout the years so there are certainly subjective effects of some kind present. This is 

especially true for the sunspot number where the subjectivity is of such a level that two observers 

who are working with the same image can actually arrive at two different, albeit similar, values. 

This problem is partially removed by averaging over the opinions of many observers at many sites.

The K p index does not suffer so greatly from this problem but still the methods for measuring the 

magnetic field disturbances could have changed, even just subtly, since regular records began in 1932. 

Again subjectivity of a single instrument is in part allowed for by averaging over the measurements at 

13 stations located between the latitudes 63°S and 46°N: Lerwick (UK), Eskdalemuir (UK), Hartland 

(UK), Ottawa (Canada), Fredericksburg (USA), Meannook (Canada), Sitka (USA), Eyrewell (New 

Zealand), Canberra (Australia), Lovo (Sweden), Rude Skov (Denmark), Wingst (Germany), and

56
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Figure 2.1: T he first half o f the reliable h istory o f the Zurich (calendar) m on th ly  average sunspot
num ber.
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Figure ‘2.2: T he second half o f the entire reliable h istory o f the Zurich (calendar) m on th ly  average
su nspot num ber. N .B . the scale is not the sam e as in Figure *2.1.
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Figure 2.3: T he entire h istory o f the 10.7cm  (calendar) m onth ly  average solar flux.
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Figure 2.4: T he entire h istory o f the (calendar) m onth ly  average K p.
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Witteveen (The Netherlands). Unlike sunspot number the geomagnetic disturbances are of course 

intrinsically dependent on the location of the observatory.

The 10.7 cm solar flux has the shortest range of the three covering only four complete cycles to 

date. Unfortunately the data is not actually available for every day since its regular measurement 

began in February, 1947. Many daily values for many weekends and festive periods are missing 

from the data in years before 1963. Thereafter only 7 days are missing due to malfunctions and 

maintenance. For months that have days missing 1 have reduced the number of days in the month 

accordingly in the calculation of the monthly average. Unfortunately another version of the daily 

solar flux time series is available that seems to have these missing days “filled in” using linear 

interpolation. While this probably has little impact when working with monthly averages I feel it is 

important to treat the available data with respect and be wary of such “fixes” .

2.2 Power Spectra

Figures 2.11, 2.12 and 2.13 show the Power Spectra of the three monthly time series: sunspot number, 

solar flux and K p index respectively. For each time series a stretch of M  =  2^ months, where N 

is an integer, was selected and mean-subtracted so as to remove the zero frequency power from the 

spectrum. This data was then “windowed” using the Bartlett Window:

where i labels the month from the start of the stretch of M  months used. The Bartlett window 

serves to reduce the leakage of data from neighbouring bins in the Fourier transfprm, improving on 

the usual situation where the window function is effectively just a square function of unit height. 

The discrete Fourier transform, xj  of the time series x \ , x ? , . . ., x \ j  is then:

M  — 1

Xj = £  wm x m j  = o ........ U  -  1
m  =  0

From the Fourier transform the power pj in each frequency bin j  can be calculated by the following 

formulae

Po =

Pj = (If;I2 +  k v r —j l2) j  =  o , .. . . ^ - 1  
2

1 i- Up Ai = i? 1̂ 1
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Figure 2.5: T he entire history o f the Zurich yearly average sun spot num ber.
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Figure 2.6: T h e entire history o f the 10.7cm  yearly average solar flux.
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Figure ‘2.7: T he entire history o f the yearly average I \p index.
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Figure 2.8: T he entire reliable history of the 13 m onth sm oothed  Zurich (calender) m on th ly  average
sunspot num ber.
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C M O C O C O ^ C V J O C O C O

C \ J C \ J C \ J t —  T—  T - T —  1—

Figure 2.9: T he entire h istory o f the 13 m onth  sm ooth ed  10.7cm  (calender) m onth ly  average solar
flux.
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Figure ‘2.10: T he entire h istory o f the 13 m onth sm oothed (calender) m onth ly  average I \p index.

19
30

 
19

40
 

19
50

 
19

60
 

19
70

 
19

80
 

19
90

Y
ea

r



C H A P T E R  2. THE DATA A N D  ITS  AN ALY SIS 68

1000

100

10

1

0.1

0.01
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

Frequency (1/month)

Figure 2.11: The power spectrum of (calender) monthly average sunspot number. The arrow marks 
the frequency corresponding to the 11 years.
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Figure '2.12: The power spectrum of (calender) monthly average solar flux. The dotted curve shows 
power spectrum of the adjusted solar flux time series and the solid curve shows the power spectrum 
of the observed solar flux time series. The arrows indicate the frequencies corresponding to periods 
of 11 years, 12 months and 6 months.
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Figure 2.13: The power spectrum of (calender) monthly average I \p index. The arrows indicate the 
frequencies corresponding to periods of 11 years. 12 months and 6 months.
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where the constant W  is given by
M  — l

W  =  £  a]
j= 0

and frequencies in cycles per month, f j ,  corresponding to the index of the Power Spectrum are given 

by

r . - L  - i  m
f j  M  j  >• • ■’ 2 

The convention used above means that f j  for j  > are really negative frequencies, i.e. / m - i  for 

i < is equivalent to — Since the data being used is a sample of a (supposed) stochastic process 

the pj's  should be regarded as estimates of the actual power spectrum. It can be shown (e.g. Jenkins 

and Watts (1968)) that the p j ’s will be asymptotically unbiased estimates1 as M  —► oo but that 

these estimates have a variance of 1 0 0%, i.e.

Var[Pj] =  (E[Pj ] ) 2

where Pj is the random variable of which pj is a realization. To improve on this I have smoothed the 

spectrums in a straightforward manner by re-binning the data in each plot. If the data is re-binned 

as
b — 1

Qk  =  V  P j + b k
j —0

where 6 is the number of points in each bin, then the variance of the smoothed power spectrum 

estimates is given by

v a r m  = M

(The effect of re-binning on bin leakage is addressed in Appendix Section A.2, for here suffice it 

to state that it effectively reduces leakage). Of course the price to be paid is a loss of frequency 

resolution, so a balance between variance and resolution has to be made. For the plots in Figures 

2.11, 2.12 and 2.13 I have only used bins of size 6 =  2 because larger bins result in the 11 year peak 

becoming unresolved.

The su n sp o t num ber power spectrum in Figure 2.11 only shows one clear peak, that of the 11

year solar cycle indicated by the arrow. By clear I mean outwith the limits dictated by the variance
E \ P  1i.e. the variance of each pj is equal to ^  ■ Since the cycle is so variable in length and height this 

peak is very wide, spread over the period range of about 7 to 16 years. The solar flux spectrum 

in Figure 2.12 again only shows one definite peak. In this plot there are two very similar spectra.

'T h o u g h  th e  leak age  b e tw ee n  freq u en cy  b in s co m p lica te s  th is s ta te m e n t .
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The solid line is the spectrum obtained from the adjusted solar flux, which is actually the data  that 

has been used so far in this thesis. The dashed curve is the power spectrum of the observed solar 

flux. The adjusted series corrects for the eccentricity of the Earth’s orbit and in so doing removes 

some power from the 12 month, and to a lesser extent from the 6 month periods. This highlights 

two things: firstly that the variance of the spectrum is high enough to render the 12 year variation 

almost invisible and secondly that the difference between the adjusted and observed series is slight 

and confined to a very narrow frequency band corresponding to 11-13 months in period. The first 

point begs the further question which cannot really be answered; what other “real periodicities” 

lie buried in the noise of the spectrum? The K p I n d e x  in Figure 2.13 has a somewhat weakened 

and broadened 11 year peak because the K p time series shows the cycle to a much lesser extent 

than either solar flux or sunspot number. Also clear in this plot is the 6 month period peak (see 

Section 1.7), note that there is no trace of a peak at 12 months confirming that the 6 month peak 

is not a harmonic of some annual effect. By looking at the phase of this peak it can be determined 

that the two maxima that occur each year tend to occur at the equinoxes; this can also be confirmed 

from careful inspection of the data itself. This result has been previously reported in Fraser-Smith 

(1972).

Figures 2.14, 2.15 and 2.16 show the power spectra for the daily series. Since there is so much 

more daily data, large smoothing bins could be used to reduce the variance by a much larger factor 

than was possible for the monthly series. The da ily  s u n s p o t  n u m b e r  spectrum in Figure 2.14 

shows two distinct peaks at periods of 27 and 13.5 days, the latter almost certainly being a harmonic. 

The d a i ly  so la r  f lux  spectrum in Figure 2.15 again shows the 27 day solar rotation period, but 

now a complete set of harmonics can be clearly identified. The K p I n d e x  in Figure 2.16 is even 

more striking with the height of the 27 day harmonics dying off very slowly indeed. To explain these 

prominent harmonics I present an idealized model of a time series exhibiting a strong periodicity in 

the form of a series of impulses.

Imagine a time series is represented by a continuous function T(t )  of the form

n t )  = Jf s ( tC r ) +l { t )
j  —0 ' ?

where S(x) is a function localized around x — 0 such that

S(x)  > 0  \x\ <  ^ (2.1)

~  o | x | > ±  (2 .2 )
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Figure 2.14: The power spectrum of daily sunspot number. The arrows mark the frequency cor
responding to the 27 day solar rotation period and its first harmonic. The spectrum was smoothed 
using b =  256.
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Figure 2.15: The power spectrum of daily solar flux. The arrows indicate the 27 day solar rotation 
period and its harmonics. The spectrum was smoothed using b =  128.
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Figure '2.16: The power spectrum of daily average K p index. The arrows indicate the '27 day sol 
rotation period and its harmonics. The spectrum was smoothed using b =  256.
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and e(t) is a zero-mean white noise process which is continuous in time; a continuous white noise 

process may seem counter intuitive but the concept can be made mathematically precise in terms 

of its auto-covariance function,

ye(u) = f  e ( t ) e ( t +u ) d t  (2.3)
J — CO

which will be a delta function, 7 e(u) =  S(u)<7 2 where, by definition2, Var[e(t)\ — a 2 . The function 

T(t )  is therefore a mathematical representation of a time series of regularly spaced identical pulses 

with superimposed white noise. To find the power spectrum of T(t),  its Fourier Transform must 

first be calculated.

J_1 ' t - b j '
P[T( t ) ] ( k )  =  T E 5

j = o

(k) +  -F[e(f)](fc)

=  T s ( k ) A T N {k)

where Ts{k )  is the Fourier transform of the signal and jF/v is the Fourier transform of the noise. 

The power spectrum P(k)  can now be calculated as

P(k)  = ( Ps ( k ) + P N ( k ) y  (Fs(k)  + ? N (k)) 

= | P.s ( k ) \ 2 +  |F V ( * ) | 2 + P s ( k ) P N (k) + P S( k ) Ps ( k )

(2.4)

(2.5)

where * denotes complex conjugation. Since P(k)  is actually a continuous random variable its 

expectation must now be taken. Ps( k )  is the Fourier transform of the deterministic signal so 

£'[jF5 (^)] =  Ps{k):  with the same property holding for its complex conjugate and modulus squared. 

The expectation of the Fourier transform of the noise is given by

E[PN (k)} = E
" p O O

/  e( t )ei k tdt
— 2O

/ CO

E[e{t)] elkt di
• CO

=  0

because Efe^)] =  0 since c{t) has zero mean. Since the same result holds for P ^ { k )  the last two 

terms of (‘2.5) disappear in the expectation. The expectation of the remaining term, |J ' /v(^)|*’ can 

be found as follows

E[\PN (k)\~] = E — i k x dx e{y)elky dy

2 S tr ic t ly  sp e a k in g , th e  varian ce o f a  co n tin u o u s tim e  w h ite  n o ise  series is in fin ite . H ow ever, if th e  var ian ce  is
d efin ed  in term s o f  th e  pow er sp ec tru m , th a t is in  term s o f th e  Fourier tran sform  o f  th en  th e  var ian ce  can  be
d efin ed  as a  fin ite  value.
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= E  

=  E

* OO poo

— CO J  — oo

e(x)e(x +  u)elku dx du 

f  a~ 6 {u) elkudu
J  — OO

, y  = x + u

using the mathematical definition of the white noise process (2.3). So the expected power spectrum 

is just

E[P(k)]  =  |JTs(£)|2 +<r2

that is the noise component simply adds its variance onto the power spectrum of the signal. Turning 

now to the the signal and using the linear, shifting and scaling properties of the Fourier transform

( k )

KII K-~ bj
aj = 0 \

J -1
=  aS(ka) kbj

j= 0

=  aS{ka )
1 -  e kbJ

1 — ikb summation of a geometric series

where S(t)  =  Finally taking the squared modulus yields

1 — cos kbJ
\'Ts (^ ) |” =  a-|S(fca)|- 1 — cos kb

So that the expectation of the power spectrum is given by

E[P{k)} = a2 \S(ka)\:
1 — cos kb J

+ cr
1 — cos kb

Using the defining properties of the pulse function in (2.2) it can be shown, e.g. Brigham (1988). 

that the power spectrum of S{ ^), that is |S (ka) |2, is a decreasing, though not necessarily monotonic, 

function in k over the range (0,oo). It is then clear that the smaller the pulse width a becomes, 

the slower its power spectrum decays. The cosine term reaches maximum when k = rL| 2L, n being 

a non-negative integer, so that E[P(k)] will show a global maximum at k =  =f- with subsequent 

smaller peaks decreasing in size due to the modulation of |S(fca)|2.

To summarize then, this ideal time series T(t),  consisting of J  pulses each of width a, spaced 

at a regular interval of 6 with superimposed zero-mean white noise, has a typical power spectrum 

as shown in Figure 2.19. The spectrum is shifted up the power axis by the noise to cr2. There is 

a fundamental frequency peak at k — =f- with harmonics at multiples of this frequency, decaying
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Figure 2.17: The power spectrum of daily sunspot number plotted with the theoretical spectrum 
with pulse width a=25.
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Figure 2.18: The power spectrum of daily solar flux plotted with the theoretical spectrum with pulse 
width a=10.
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Figure '2.19: The power spectrum of daily average A'p index plotted with the theoretical spectrum 
with pulse width a=6. The spectrum was smoothed using 6 =  256.
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in size at a rate according to the pulse width a; narrow pulses resulting in a slower decay of the 

harmonic peaks.

To relate this to the observed daily data and its power spectrum consider first the strong harmonic 

peaks for the I \p spectrum in Figure 2.16. The first peak is at 27 days, the solar rotation period, 

so b — 27. However, the size of the harmonic peaks indicate that the width of the pulses a must be 

relatively small compared to b. In an attempt to quantify the size of a, albeit rather roughly, I shall 

assume that the pulses are Gaussian i.e.

S(x)  = e~ x2

so that

S(k)  =

Setting b =  27, Figure 2.19 shows that the plot of E[P(k)]  with a = 6 is consistent with the data. 

Figure 2.18 shows this for the solar flux, where now a = 10. For sunspot number in Figure 2.17, 

a =  25. The plots are not in close agreement for several reasons: the data spectrum is smoothed, 

the assumption of white noise may not be valid and the assumption of a Gaussian pulse may not be 

accurate. Also in reality the pulses are neither of constant height nor equally spaced. However these 

results are sufficient to establish the relative lengths of pulses and are consistent with the nature of 

the three time series for the following reasons:

• K p I n d e x  The presence of 27 day fluctuations in geomagnetic activity has been well-known 

for many years. As stated in Section 1.7 there are good reasons to believe that they correspond 

to streams in the Solar Wind that emanate from coronal holes. These would sweep past the 

Earth every 27 days, on average, but would presumably cause relatively short lived activity 

because the stream has emerged from a localised region on the Sun. Figure 2.22 shows the 

mean subtracted data over a year in 1994-1995. It is clear that the negative excursions are 

longer than the positive.

•  S o la r  f lux  This time, the 27 day rotation period enters directly because the solar flux time 

series betrays the presence of localised and enhanced radio emission on the visible side of the 

Sun. These localised regions are of course linked to active regions which survive for many 

solar rotation periods. However, it is not quite an on-off effect because the contribution from a 

localised radio source will diminish smoothly as it moves onto the limb and increase smoothly 

as it moves from the limb to the centre. Thus the positive excursions will be slightly shorter
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Figure 2.20: An extract of daily sunspot number with the mean subtracted for the range of the plot.
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Figure 2.21: An extract of daily solar flux with the mean subtracted for the range of the plot.
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than the negative excursions, on average. This again is (perhaps only suggestively) visible in 

Figure 2.21.

• s u n s p o t  n u m b e r  Again like the solar flux there is an on-off type effect, only with sunspot 

number it is more pronounced because sunspot groups can just “appear” near the limb - either 

a spot is visible or it is not visible. This means that the sunspot number will, on average, 

have a larger pulse width than the other two series as evidenced above in the rapid decay of 

the harmonic peaks. This means that perhaps square rather than Gaussian pulses should have 

be used in the above comparisons for sunspot number. Since sunspots have lifetimes which 

are comparable with the solar rotation period the situation is more complicated and the “on 

average” qualification needs to be borne in mind when looking at data. However, Figure 2.20 

does show that the sunspot number variation is more “square” than either I\'p or solar flux.

The use of the power spectrum in analysing the 27 day fluctuations for the above time series 

certainly does show features that are consistent with the nature of the time series as discussed above. 

W hat has been achieved that is beyond the ability of, say, the human eye on a daily time series 

plot, is the provision of some kind of average information about the cyclic variation, specifically in 

suggesting the average shape of the cyclic variations.

2.3 Stationarity and the Solar Cycle

As indicated in Section 1.2.3 the sunspot number time series is generally regarded as being a Non-  

Stationary time series. However, there is no explicit justification of this in the literature that I have 

surveyed. This is presumably because there is no conclusive way of showing that a time series is 

non-stationary. I also find it surprising that I have been unable to find documented attempts at 

reducing sunspot number to stationarity. This is presumably because no researcher has had much 

success in the attempt and has consequently thought the results were unpublishable. There is a 

fairly general non-stationarity test described in Priestley (1988), though no reference is made to 

the use of this test on the sunspot number. Instead of applying such a test I wish to present some 

empirical and intuitively persuasive arguments as to why sunspot number is a non-stationary time 

series. Remember that (weak) stationarity requires three things: constant expectation, constant 

variance and an auto-covariance function that depends only on lag. I shall defer consideration of 

the auto-covariance until the next section and concentrate for the moment on whether or not the 

expectation of sunspot numberis in any way constant.
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2.3.1 W hy sunspot number is a non-stationary tim e series

The issue of non-stationarity is really two-fold. First it has to be established that the sunspot number 

is really non-stationary and secondly it is necessary to investigate the feasibility of reducing it to 

stationarity. There is no guarantee that the latter is possible, which was one of the main problems 

with the Box-Jenkin’s “classical” approach to fitting linear time series models (see Section 1.2.4). 

In many ways, even down to the mathematics of it, the prospect of reducing an arbitrary non- 

stationary time series to stationarity is about as realistic as believing that an arbitrary set of non

linear equations can be reduced to linearity. So in the following arguments I stress not only what

makes the sunspot number non-stationary but also what is stationary about it.

Let S n denote yearly sunspot number. If sunspot number was stationary then E[Sn\ would be a 

constant, independent of n. That is

£ [ S n ] =  £ [ S n + m ]  C 2-6)

for any value of m. However, if n is the year of a cycle minimum and m  =  4, say, then it is intuitively 

obvious that (2.6) is not true. Perhaps then a statement concerning the shape of the cycle is possible; 

such a statement might be

E[Sn] = E[Sn+T] (2.7)

where r  is the mean length of the solar cycle. There are two reasons to suspect that this statement 

is not true. The first one is that (2.7) seems untrue for cycie maxima, different cycles have different 

sized maximum. Looking at a cycle with a large maximum, e.g. cycle 18 or cycle 19, it is clear that it 

is not just the maximum value which is “above average” but almost all the values of the cycle. This 

could be interpreted as each cycle reflecting some underlying physical state of the sun and its global 

magnetic field, in which case E[Sn] ^  £'[5n^ r ] and therefore the series is non-stationary. However, 

it could be argued instead that we do not see the expectation value, we see the expectation value 

plus (supposed) stochastic fluctuations. Explaining this effect as a stochastic variation would require 

the concept of a mean cycle, given by i?[5n] for n =  1 , . . . ,  r  plus some time series which his highly 

autocorrelated, to ensure that if one point departs greatly from its expectation its neighbours will 

also. This idea is the basis for the McNish-Lincoln time series model (see Section 1.3.2). The second 

reason why (2.7) seems unreasonable is the very fact that cycles vary in length. Just how much the 

length of the solar cycle has varied over its measured history is not certain in my opinion. If the 

pre-1850 sunspot numbers (reconstructed by Wolf) are to be accepted then the variation in cycle 

length is very large; from 8 years to 15 years, which correspond respectively to the first and second 

cycles on record at the start of the 17th Century. Excluding the pre-1850 data, the minimum cycle
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Figure 2.23: A plot of Sunspot Cycle lengths against the start time for each cycle. The horizontal 
line indicates the mean period, the vertical line divides the modern data from Wolf’s reconstructions 
of older data.

length is 10 years (cycle 15) and the maximum is 12 (cycle 13). So if the pre-1850 reconstructions 

are to be trusted then the evidence for long-term non-stationarity is strong. However, the transition 

from large variations in cycle length to small variations in cycle length is actually around or before 

1850, making the assertion of the previous sentence somewhat suspect. Figure 2.23 plots the cycle 

length against cycle start date.

In order to quantify the statistical significance of pre- and post-1850 cycle length variations the 

F-statistic may be used with the null hypothesis that the pre- and post- data  sets both come from 

distributions with the same variance. Let <j 2_ be the sample variance of pre-1850 cycle lengths and 

let a 1 be the sample variance of post-1850 cycle lengths, the F-statistic is defined as

F = —1 — O<T~

(Note that the pre- and post-1850 sets are of unequal sizes, namely 22 and 12 respectively.) Since
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the distribution of the F-statistic is well-known, the significance of F  can be estimated (accounting 

for the unequally sized data sets) and used to quantify the meaning of the differing variances. The 

means and variances for the two sets are:

/i_ =  11.15 < j := 3 .3 8  

fi+ - 10.90 a 2+ =  0.58

The F-statistic obtained was 5.871 with a significance level of 0.004. This significance level can be 

interpreted as the probability of obtaining an F-statistic larger than 5.871 under the assumption of 

the null hypothesis that both pre- and post-1850 sets actually have the same underlying variance. 

The next question is: did the variance really abruptly change at 1850? Figure 2.23 seems to give 

the human eye this impression, but there is also another way to check this. By sliding the vertical 

line dividing the pre- and post- data sets in Figure 2.23 back and forth by a number of cycles and 

recalculating the F-statistic, it is possible to see which dividing date, if any, gives the most significant 

difference between variances. Figure 2.24 plots the F-statistic against cycle offset. Given that the 

total number of cycles in the sample is only 34 I have not used offsets which would reduce the 

number of cycles in either set below 8, hence the range -14 to 4. The minimum value on this plot 

corresponds to the divide which causes the most significant difference in variances between pre- and 

post- sets. In fact there are two minima, one at an offset of -14 (the year 1700), with significance 

level 0.0034, and the other at offset 0 (the year 1850), with significance level 0.0042. The one at -14 

might correspond to the fact that Wolf’s reconstruction of yearly data only extended back to about 

1700 but it is quite possible that at this large offset, with only 9 points in the pre-1700 group, that 

the F-Statistic is becoming unreliable. The other minimum occurs at 1850 but there are many small 

values of significance down to offset -4, so the change in variance is not necessarily abrupt at 1850.

The conclusion is that a change in behaviour of cycle length is certainly present in the data  and 

that it occurred sometime between 1800 and 1850. It is therefore entirely possible tha t this is due 

to the unreliability in Wolf’s sunspot number reconstruction, though it cannot be ruled out on the 

basis of the above results that the Sunspot cycle went through a period of intrinsic change. Such 

a change would be consistent with a chaotic dynamo picture (see Section 1.7.1) and the conjecture 

that there might have been no cycle at all before the Maunder minimum, i.e. that a stable cycle has 

only been in existence since some time in the 1600s.

It is indisputable that the cycle length does vary to some degree, but is this unquestionably a 

symptom of non-stationarity? Not necessarily, for precisely the same reasons as the varying size



Si
gn

ific
an

ce
 

le
ve

l 
of 

F-
st

at
is

tic
C H A P T E R  2. THE DATA A N D  IT S  AN AL YSI S

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

4-14 12 8 6 ■4 2 0 210
Cycle offset from cycle commencing in 1843
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Figure 2.23.
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of maxima cannot be viewed as proof of Sunspot Number being non-stationary. Imagine for the 

moment that the sunspot number has a mean cycle of length r ,  so that ^ [ 5 n] =  i^Sn+r], then the 

highly correlated fluctuations proposed above that give rise to the variable cycle size could quite 

conceivably also cause a minimum to apparently arrive early or late. So the crucial issue tha t needs 

to be resolved if sunspot number is to be predicted on the timescale of years is whether or not the 

existence of a mean cycle is justifiable. If not, then there are non-stationary effects at work, in effect 

“moving the goal posts” of prediction. The predictability of such non-stationary effects would then 

become the main issue and it is quite conceivable that some consideration of the global magnetic 

field structure of the Sun and possibly a dynamo model may be required.

2.3.2 Evidence for a mean cycle

It has already been shown that there was a statistically significant change in the recorded length of 

the solar cycle in the years surrounding 1850. Since it cannot be established whether this change 

is intrinsic to the solar cycle or due to distorted reconstruction of data, I shall only use data  from 

1850 onwards. This means that only 12 complete cycles are available for use in the following test. 

The hypothesis that I wish to investigate is:

The sunspot number can be regarded as a time series S t with, a mean cycle of constant length r, 

such that =  EfSt+r]

However with only 12 cycles of data it is impossible to verify this with any certainty. Instead a 

weaker, but more testable, hypothesis seems more appropriate:

I f  S nik is the sunspot number for the k thpoint of the n th cycle and there are Ncycles then

" i V / 2 N

= E
I — 1 J = N /  2

for  k =  0 .. . r  — 1 and for rii £ {1,2,. . ., N } such that rii /  nj for i ^  j .  Basically this says tha t if 

the 12 cycles are split into any two groups, the two mean values of each group for each phase point 

should be the same. The second hypothesis is an implied consequence of the first hypothesis but 

not the other way around. Therefore the test that is described below can only effectively disprove 

the first hypothesis:

• Let T{ represent the time between the minima of cycle i — 1 and i, i =  1, . . ., 12. (I subjectively 

decide the date of each minimum from the monthly sunspot number time series).
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Table 2.1: Probabilities averaged over all possible groups at each of the 10 cycle phase points
1 0.501579
2 0.503997
3 0.500690
4 0.503060
5 0.504791
6 0.506950
7 0.509000
8 0.506109
9 0.503458
10 0.505551
Av. 0.504518

• The estimated length of the mean cycle is then

1 12 

I — 1

and was found to be 130.6 months.

• A start date for the first mean cycle is chosen (I subjectively decide this).

• The minima of the mean cycles now defines where each cycle is supposed to begin. From 

the above reasoning the apparent minima may not occur at the same time as the mean cycle 

minima.

• The monthly time series is used to form a new time series such that the new time series gives 

the average sunspot number at 10 phase points per cycle i.e. each point of the new time series 

is the average over 13.06 months.

• The 12 cycles are split into two groups of 6, group X and group Y

• The two mean values, one from group X and the other from group Y, for each phase point k 

are calculated and compared using Student’s t-distribution. This yields the probability of 

obtaining a difference in means greater than the one observed.

• Another different pair of groups are chosen and the last two steps are repeated until there are 

no groups left.

The probabilities averaged over all possible group pairings, of which there are
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are given in Table 2.1. A value near one indicates that the means of that phase point are significantly 

similar in most of the groups. In each case the value is very close to 0.5, and in each case it was found 

that the spread of values that went to form each average was from 0.01 to 0.99. The conclusion 

is therefore that the data  contains no evidence to verify the second hypothesis above. It is also 

reasonable to further conclude that the assumption of a mean cycle, as defined above, is not justified. 

However, as with all statistical methods this result could be the product of an “unlikely” set of data. 

Also the test that I have made is not objective because it depends on some very subjective decisions, 

i.e. the definition of the cycle minima and the starting point for the first mean cycle. The latter was 

checked to some extent by repeating the test for different starting points, but the results of the test 

were unchanged in each case. Even if the hypothesis is rejected there are many more that could rise 

in its place, for example a mean cycle that actually varied in length but was constant in shape or 

vice-versa. Tests like the above could be constructed for these hypotheses but restrictions of time 

and the fact that there are only 12 “reliable” cycles do not permit me to investigate these further 

possibilities.

2.3.3 W hat is stationary about the solar cycle?

There are several qualitative statements that can be made about features of the solar cycle that 

appear to stay the same, or at least nearly the same, over time. The obvious statement being that 

“there is a cycle and that it has a period of 10-12 years” (ignoring pre-1850 data). A statement such 

as “the cycle attack time is always less than the cycle decay time” would also appear to borne out by 

the data, for example see Table 2.2 which shows that the average attack time for a cycle is 4.8 but the 

average decay time is 6.2 years. Also for all the post-1850 data  the attack time is always shorter than 

the decay time. Note that in the pre-1850 data there are many exceptions to this rule. Once again 

this statistically significant change is consistent with either the solar cycle undergoing an intrinsic 

period of change or distortion due to unreliable reconstruction. I now proceed to quantify some 

of these properties and examine the significance of them using the Spearman Rank-Order Linear 

Correlation Coefficient described in Press et al. (1994).

T h e  C yc le  S h a p e  may be described by the attack time Ta, decay time Td and the height of the 

maximum 5 max- Each one of these quantities varies considerably from cycle to cycle but the question 

is: is there some aspect of the cycle shape that is preserved? First of all I turn to the relationship 

between Ta and T&, where the rule Ta < Tj, holds without exception for the post-1850 data. From 

the results of the linear correlation it appears that there is a significant though not necessarily linear
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Table 2.2: Miscellaneous information about sunspot cycles as published by N.O.A.A. The headings
refer to the data below them and reflect the conclusions made in Eddy (1977)

Sunspot Year Smallest Year Largest Rise Fall Cycle
Cycle of Smoothed of Smoothed to Max to Min Length

Number Min1 Monthly Mean 2 Max1 Monthly Mean2 (Yrs) (Yrs) (Yrs)
RECONSTRUCTED DATA - UNRELIABLE

- 1610.8 - 1615.5 - 4.7 3.5 8.2
- 1619.0 - 1626.0 - 7.0 8.0 15.0
- 1634.0 - 1639.5 - 5.5 5.5 11.0
- 1645.0 - 1649.0 - 4.0 6.0 10.0
- 1655.0 - 1660.0 - 5.0 6.0 11.0
- 1666.0 - 1675.0 - 9.0 4.5 13.5
- 1679.5 - 1685.0 - 5.5 4.5 10.0
- 1689.5 - 1693.0 - 3.5 5.0 8.5
- 1698.0 - 1705.5 - 7.5 6.5 14.0

RECONSTRUCTED DATA - QUESTIONABLE
- 1712.0 - 1718.2 - 6.2 5.3 11.5
- 1723.5 - 1727.5 - 4.0 6.5 10.5
- 1734.0 - 1738.7 - 4.7 6.3 11.0
- 1745.0 - 1750.3 92.6 5.3 4.9 10.2
1 1755.2 8.4 1761.5 86.5 6.3 5.0 11.3
2 1766.5 11.2 1769.7 115.8 3.2 5.8 9.0
3 1775.5 7.2 1778.4 158.5 2.9 6.3 9.2
4 1784.7 9.5 1788.1 141.2 3.4 10.2 13.6
5 1798.3 3.2 1805.2 49.2 6.9 5.4 12.3
6 1810.6 0.0 1816.4 48.7 5.8 6.9 12.7

RECONSTRUCTED DATA - RELIABLE
7 1823.3 0.1 1829.9 71.7 6.6 4.0 10.6
8 1833.9 7.3 1837.2 146.9 3.3 6.3 9.6
9 1843.5 10.5 1848.1 131.6 4.6 7.9 12.5

FIRST HAND DATA - RELIABLE
10 1856.0 3.2 1860.1 97.9 4.1 '7.1 11.2
11 1867.2 5.2 1870.6 140.5 3.4 8.3 11.7
12 1878.9 2.2 1883.9 74.6 5.0 5.7 10.7
13 1889.6 5.0 1894.1 87.9 4.5 7.6 12.1
14 1901.7 2.6 1907.0 64.2 5.3 6.6 11.9
15 1913.6 1.5 1917.6 105.4 4.0 6.0 10.0
16 1923.6 5.6 1928.4 78.1 4.8 5.4 10.2
17 1933.8 3.4 1937.4 119.2 3.6 6.8 10.4
18 1944.2 7.7 1947.5 151.8 3.3 6.8 10.1
19 1954.3 9.6 1968.9 110.6 4.0 7.6 11.6
21 1976.5 12.2 1979.9 164.5 3.4 6.9 10.3
22 1986.8 12.3 1989.6 158.5 2.8

Mean 6.0 112.9 4.8 6.2 11.1

1 When observations permit, a date selected as either a cycle minimum or maximum is based in 
part on an average of the times extremes are reached in the monthly mean sunspot number, in the 
smoothed monthly mean sunspot number, and in the monthly mean number of spot groups alone. 
Two more measures are used at time of sunspot minimum: the number of spotless days and the 
frequency of occurrence o f ’’old” and ’’new’’ cycle spot groups.
2 The smoothed monthly mean sunspot number is defined as 13-month running means of monthly 
mean numbers.
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Table 2.3: Results of a Rank-Order Linear correlation test and linear regression on Ta vs The 
table lists the range of years used for the test, the number of cycles in that range, the Spearman 
Rank-order Correlation Coefficient and its significance, and the parameters of a least squares fit to 
a straight line: 7k =  aTa -f- 6, as well as the errors on a and b.

Range No. Corr. Sig. a(<r) b(a)
Cycs Coeff. Level

t > 1850 12 -0.42 0.180 9.34(1.38) -0.62(0.33)
t > 1712 25 -0.49 0.012 9.31(0.85) -0.62(0.19)
t > 1610 34 -0.40 0.018 8.00(0.76) -0.37(0.15)

anti-correlation between Ta and 7k; the correlation coefficient being about —0.4 with significance 

levels of 82% for post-1850 data and better than 98% for the older data. The value of the fitted 

gradient b is also negative within error bounds, again indicating a significant anti-correlation. The 

reason for the anti-correlation is connected to the fact that the sum of attack and decay times is by 

definition the cycle length. Figure 2.26 shows a plot of Ta against S max where a very strong linear 

correlation can be seen by eye, especially in the post-1850 data. Notice that the straight line fits 

for the data, especially for the post-1850 data, are influenced by the outlier corresponding to the 

colossal maximum of cycle 19 in 1957. This plot suggests the result encountered later in this thesis 

that this huge maximum occurred with little or no warning and thus was essentially unpredictable. 

In Figure 2.27 the values of the Sunspot maxima are plottei with decay times. The Spearman linear 

correlation coefficient gives a value of about 0.5, but with significance levels of 97% for all available 

data and 85% for post-1850 data. The correlation is therefore significant but given the amount of 

data it is hard to determine whether it is actually linear.

The relationship between attack time and the height of the maximum is especially relevant to 

the prediction of the maximum, though of course the attack time cannot be used for prediction itself 

for obvious reasons.

Returning to the question of non-stationarity, what can be said about the change in the rela

tionships between these quantities? A glance at Figure 2.25 shows that the pre-1712 data  points 

are scattered far more than the post-1712 data points. However this earlier da ta  is quite unreliable 

and should really be ignored. If so then the admittedly rather weak correlation appears to be well 

maintained before and after 1850. The relationship between Ta and 5 max in Figure 2.26 shows the 

strongest anti-correlation, with the post-1850 points clearly forming a line (N.B. the fitted line is 

steepened by the cycle 19 outlier). The pre-1850 data is more scattered and correspondingly results
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Figure 2.25: A plot of attack times against decay times for Sunspot Cycles. The points represent 
a plot of the data in the year ranges given in the key. The straight lines show the least square fits 
from Table 2.3 on all available data  since 1610, on data since 1712 and on data since 1850.

Table 2.4: Results of a Rank-Order Linear correlation test and linear regression on Ta vs 5 max- The 
table lists the range of years used for the test, the number of cycles in that range, the Spearman 
Rank-order Correlation Coefficient and its significance, and the parameters of a least squares fit. to 
a straight line: S max =  aTa -f 6, as well as the errors on a and b.

Range No. Corr. Sig- d{a) b(a)
Cycs Coeff. Level

t > 1850 13 -0 .91 oo o I 308 (36.0) -47.2(8.84)
t > 1750 23 -0 .86 < 10~6 233 (18.8) -27.6(4.17)
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Figure 2.26: A plot of attack times against sunspot maximum for Sunspot Cycles. The points 
represent a plot of the data in the year ranges given in the key. The straight lines show the least 
square fits from Table 2.4 on all available data since 1750 and on data since 1850.

Table 2.5: Results of a Rank-Order Linear correlation test and linear regression on Td vs S'm a x- The 
table lists the range of years used for the test, the number of cycles in that range, the Spearman 
Rank-order Correlation Coefficient and its significance, and the parameters of a least squares fit to 
a. straight line: 5 max =  aTd + b, as well as the errors on a and b.

Range No. . Corr. Sig. a(cr) b(a)
Cycs Coeff. Level

t > 1850 12 -0.44 0.15 -14.1 (100) 19 15)
t > 1750 22 -0.46 0.03 24 (41) 13(6)
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Figure ‘2.27: A plot of decay times against sunspot maximum for Sunspot Cycles. The points 
represent a plot of the data in the year ranges given in the key. The straight lines show the least 
square fits from Table *2.5 on all available data since 1750 and on data  since 1850.
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in a slightly weaker correlation coefficient when included in the correlation test. The fitted line 

is also markedly different when the pre-1850 data is included, with the two estimates of gradient 

(and intercept) failing to fall within the error bounds. There is also some evidence from the plot for 

believing that the linear relationship is weaker for cycles with large maxima. Finally the relationship 

between Td and 5 max is the weakest, with only a slight suggestion of a linear relationship. Being 

so weak, no statement can be made as to whether the relationship between these quantities has 

changed or stayed the same. So, of the three relationships only one shows a definite change, that of 

Ta vs. SVnaxj probably because this is the also the strongest. As far as prediction is concerned this 

result bears good and bad news. It is good news in that it provides hope of predicting the maximum 

from the attack part of the cycle but is bad news because there seems to be a marked change in this 

relationship, which means that the earlier data  is not really relevant in the construction of prediction 

schemes.

In conclusion, the following statements relate to features of the solar cycle which can be regarded 

as being approximately stationary during the period between 1850 and the present day, 1995. It 

should also be remembered that these results are drawn from Table ‘2.2 which is based on 13 month 

running mean smoothed sunspot number.

• There is a cycle that is variable in length and size. The mean length is 10.9 years, with the 

longest and shortest cycles being 10.0 and 12.1 years respectively. The mean height is 119.7 

with the smallest and largest maxima being 64.2 and 201.3 respectively.

• Ta < Td, the attack time is less than the decay time, giving the sunspot cycle its asymmetric

appearance.

• Ta is highly anti-correlated with 5 max- that is large maxima have short attack times.

• Td is relatively independent of 5 max- meaning that small cycles are likely to be more symmetric.

2.4 Shorter T im escales: M onths and D ays

The last section was concerned with the solar cycle and features which varied on the timescale of

years. I did not consider the solar flux or the I \p index because they are only available over about 

five or six cycles. Also, it was not of great interest to investigate the cross-correlations of these time 

series on the timescale of years since the dynamical and physical effects that may bring about such
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cross-correlations operate on the timescale of months or days. In this section I shall comment on 

such effects with a mind to exploit them for prediction purposes later.

2.4.1 Auto-Correlation

The sample auto-correlation of a time series x t , t = 0 , . . . ,  TV is defined as

1 N
P k  =  (yy _  ^ s 2 ~  (Xt~k ~ Xt~k) k =  1, 2 ,3 , .  . ., 7\

where s2 is the sample variance given by

s2 =
( = 0

This definition really only applies to stationary time series where the mean and variance are constant 

over time and the auto-covariance and thus auto-correlation depend only on the lag k and not on the 

particular stretch of data used. However, to demonstrate the non-stationarity of sunspot number the 

auto-correlation of monthly Sunspot Number is calculated for three stretches of data: 1856-1995. 

1856-1923.3 and 1923.3-1995. The dates 1856 and 1923.5 are chosen because they correspond to 

minima at the beginning and in the middle of the reliable portion of the Sunspot data. Figure 2.28 

shows the results, the variances of the three data sets being 2240, 1177 and 2860. Immediately it is 

apparent from the variances that the data is non-stationary, but also that the auto-correlation for 

the pre- and post- 1923 data sets is very different indicating that the cycle length is perhaps shorter 

for the post-1923 data set. Bearing in mind that the auto-correlation depends on the data-set used, 

Figure 2.28 plots the auto-correlations for monthly sunspot number, solar flux and I \p index using 

the same range, 1947 to 1995, for each. The plot for the I \p index shows the 6 month oscillation very 

clearly but the presence of the 11 year solar cycle period is slight, with only a small dip at about 65 

months and a gentle rise to 130 months. The reason that sunspot number and solar flux have such 

similar auto-correlation plots is because they are so highly cross-correlated; a subject addressed in 

the next section.

2.4.2 Cross-Correlations

The sample cross-correlation of two time series x t and yt , t =  0,. . . ,  N  is defined as 

1 *V
P k  = --------------7= Y ' ( * t  -  x t ){y t-k  -  y t - k ) k =  - A ' , .. . , - 2 , - 1 , 0 .  1 ,2  I\

(N  - k ) y j s l 8 l ^ k
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Figure '2.28: Auto-correlations of a) sunspot number over three date ranges and b) Sunspot Number, 
solar flux and K p index over the range 1947 to 1995.
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Figure 2.29: Cross-correlations of a) sunspot number with solar flux b) Sunspot Number with K p 
index c) solar flux with K p Geomagnetic Index. The peaks a* negative lags in b) and c) mean that 
features in SSN/SF appear a number of months before they appear in K p index.

where and s~ are the sample variances. Notice that unlike the auto-correlation above the negative 

lags are now distinct from the positive lags. Like the auto-correlation, the definition of cross- 

correlation is really only relevant to the comparison of stationary time series, but again there is no 

reason why it cannot be computed as long as it is remembered that the plots in Figure 2.29 are for 

one particular stretch of data. i.e. from 1947 to the present day. Looking at the cross-correlation of 

sunspot number and solar flux it is immediately apparent that there is a strong correlation between 

these two series, with the strongest correlation occurring at zero lag. This result means that there 

is little prospect for predicting solar flux using the the recent history of sunspot number (or indeed 

vice versa) because neither contains any obvious forewarning of how the other is about to behave. 

This is confirmed later on in Section 6.3. where the two series are used in combination as inputs 

to a neural network predicting sunspot number. The Spearman Linear Correlation coefficient is
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0.986 with a very high significance level. I have also performed a linear regression on the sunspot 

number/solar flux relationship finding it to be:

S F  =  0.907(±0.008) * S S N  + 60.065(±0.73)

which contains the quoted relationship in Section 1.7 within its error bounds.

The cross-correlations of either solar flux or sunspot number with K p index show a much weaker 

correlation peaking at lags of between 5 and 25 months. Looking at the monthly plots (e.g. Fig

ures 2.2 and 2.4) of the time series the reason for this lag can be attributed to the K p index peaking 

months to years after the Solar cycle. The Spearman Linear Correlation coefficient is only 0.350 

(but with a very high significance) at a lag of 15 months for sunspot number with K p index, so the 

correlation is not a strong (linear) one. Also when interpreting the cross-correlations it is important 

to realise that the peaks at non-zero lags in the sunspot number or solar flux/A'p cross-correlations 

do not mean that the Sun’s influence takes many months to “reach” the Earth, i.e. the association 

is not necessarily a direct causal one. In this case the conclusion must be that the solar activity just 

after the solar maximum is responsible for maximum geomagnetic disturbance at the Earth.

2.4.3 Daily Data and the Wavelet Transform

There is a new problem to be faced when looking at daily data: the sheer amount of it. One 

method that can be used to summarize the data is the Fourier transform, which was used earlier 

to look at the most prominent feature of the daily data: the effect of the solar rotation. However, 

this method was not ideal because the 27 day pulses in the data are unevenly spaced, of variable 

duration and of variable height. Another class of linear transformation, the wavelet transform, offers 

the ability to resolve only features of a certain time scale. Before going on to look at the daily data 

I shall describe the wavelet transform in more detail. Since the wavelet transform is a relatively new 

subject in Mathematics and since it is currently being plundered by scientists and engineers, the 

definitions and jargon associated with it are varied and seemingly contradictory. However, in what 

follows I refer to only two varieties of the wavelet transform: the continuous wavelet transform and 

the discrete (Daubechies) wavelet transform. I shall use the former to introduce the concept of the 

wavelet transform and use the latter in work with the data.

The c o n t in u o u s  w avele t  t r a n s f o r m  of a function s(t) is defined as

1 f 00
C'WT(a,  b) [s( t ) l  = —p  / s{t )i '

V a J — CO
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where ip(t) is called the wavelet and is a localised function in t. If the admissibility condition is 

satisfied, that is

Jo w
is finite, where

then it can be shown that, e.g. Chan (1995), the function s ( t ) can be expressed as a linear trans

formation of the continuous wavelet transform
1 pOO poo / 1   L \

s(t) = —  /  C W T (a ,  b)ip ( ------  dadb (2.8)
cy J - o o  J o  \  a  J

For the admissibility condition to be satisfied and to avoid the integral over u> being divergent 

'F(O) =  0, so that

J  ip(t) dt = 0

To lend meaning to the above mathematical statements, consider (2.8). This double integral is 

just superposing infinitely many wavelets of different sizes a and positions b in order to re-form the 

function s(/). If the function is a Gaussian, i.e.

. /  x ~ I1s{t) =  exp -

then the wavelet transform will peak around the point (a =  <x, b =  fi) and tend to zero away from 

that point. The exact behaviour of the transform depends of course on the wavelet function i/’(0- 

It is also possible to perform only a partial reconstruction of the function s(t). Let this partial 

reconstruction be called sai>a2, then

1 p O O  pCL 2 /  ±   L \

sai,a2 — —  J  J  CWT(a,b) ip  ^ ------J  dadb

so that only detail between the scales aj and <22 is included in the reconstruction, it is common to say 

the other scales have been “filtered out” . However, unlike the Fourier transform the basis functions 

of the Wavelet transform, i.e. i/’ ( ~ ^ ) ,  are not necessarily orthogonal which means that there is 

some “leakage” between neighbouring scales. A similar filtering process can be performed with the 

position parameter 6, with similar problems. The non-orthogonality leads to some redundancy in 

the continuous wavelet transform, evidenced by the fact tha t the inverse transformation requires a 

double integration.

In this way the wavelet transform can be used to decompose signals into components of different 

timescales. W hat is meant by “timescale” is not clear for the reasons given above and really depends
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on the particular wavelet used. In fact it has been said that the wavelet transform is a mathematical 

microscope whose optics are determined by the wavelet used.

Initially I used the continuous wavelet transform with discrete time series by calculating the trans

form numerically at discrete values of a and b. It is a surprising side effect of the non-orthogonality 

of the wavelet transform that with sufficiently fine quantization of a and b, perfect reconstruction is 

still possible. However, since the selection of the range and quantization of a and b is rather arbit

rary, a different approach, that of the D is c re te  (D a u b e c h ie s )  w avele t  t r a n s f o r m  was found to 

be preferable. This wavelet transform is intrinsically numerical and actually has orthogonal wavelets 

but these Daubechies wavelets, as they are called, have no continuous counterpart. It was invented 

by the French Mathematician Daubechies, e.g. Daubechies (1990), and has been documented in 

Press et al. (1994) complete with the necessary routines to perform the algorithm. In many ways 

it is the analogue of the fast Fourier transform and like the fast Fourier transform it can only deal 

with data  vectors that are an integer power of two data elements long.

As an example Figure 2.30 shows the last few Sunspot cycles and their decomposition into 

three scale bands using the discrete wavelet transform. Since there were 512(= 29) months of data 

used, there are 9 detail scales which were then summed in groups of three to give the three detail 

scales plotted. Since the transformation is linear the sum of the three components give a perfect 

reconstruction of the original signal.

Returning to the daily data, Figure 2.31 shows plots of daily sunspot number, daily solar flux 

and daily I \p index that have been wavelet filtered, removing any long (>2 months) and short (<  5 

days) term variations. Each peak in the wavelet filtered time series corresponds to a peak visible in 

the original data  - no spurious features are introduced. However, due to the filtering out of short 

timescales it must be realized that some neighbouring peaks are merged together. Notice particularly 

how clearly the wavelet filtering of the daily I \p index brings the 27 day fluctuations out of the large 

short timescale variations in the series.

Now that wavelet filtered versions of the time series have been obtained, with emphasis placed on 

the 27 day variations, it is possible to investigate the cross-correlation of the time series on tha t time 

scale. Before doing so it is important to ask whether the process of wavelet filtering can introduce 

any spurious features in a cross-correlation. On an intuitive level it appears not, since the wavelet 

filtering does not introduce any spurious peaks. A more formal and mathematical statement may 

well be possible to derive and in Chapter 7 I discuss how this might be done. If it is accepted that 

the process of wavelet filtering does not create spurious correlations then its advantage is obvious
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Figure 2.30: Sunspot number and its decomposition into three levels of detail using the discrete 
(Daubechies) wavelet transform. The three components have been offset along the y-axis of the plot 
for the sake of clarity.
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Figure ‘2.31: Wavelet filtering of a) sunspot number b) solar flux and c) I \ p index. These time series 
have been filtered with the discrete Wavelet transform so that only timescales of around the ‘27 solar 
period are present.
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from Figure 2.3*2. This plot shows the cross-correlation as estimated using the raw daily da ta  and 

also wavelet filtered daily data. It is apparent that the peaks of correlation in both are in agreement 

but that the wavelet filtered curve is much smoother with much more prominent peaks. Essentially 

the effects of the solar cycle are filtered out and the long-term cross-correlation of the 27 day pulses 

is highlighted.

Since sunspot groups are associated with active regions and active regions are associated with 

enhanced radio emissions, the cross-correlation between sunspot number and solar flux should be 

very high on all timescales. The cross-correlation plot in Figure 2.33 confirms this both for the raw 

daily data  and for the wavelet filtered data, also clearly showing the presence of the solar rotation 

period. This further tests the fact that wavelet filtering of time series does not adversely affect 

the cross-correlation, e.g. by creating spurious peaks. The next question to ask is if there is any 

detectable delay between the 27 day pulses in the sunspot number and the 27 day pulses in the 

geomagnetic activity. Figure 2.34 shows the calculated cross-correlations for many stretches of data. 

Looking at the first plot where the data  range is from 1950 to the present day it is seen that K p index 

seems to lag the sunspot number by about 3 or 4 days. However, is this true for all subsets of this 

data range, perhaps the delay is different at solar maxima and minima and this 3 or 4 day lag is only 

an “on average” result. The next plot shows the results of calculating the cross-correlations of data 

around solar minima. In this case all but two of the minima examined show a strong anti-correlation 

at zero lag. Turning to the cross-correlations at solar maxima, tlie correlation is now positive at zero 

lag with the cross-correlation peaking at lag times of typically about 6 days. These cross-correlations 

suggest that during solar minima the K p index is anti-c.orrelated with sunspot number whereas at 

solar maxima the K p index seems correlated with the sunspot number from several days before. 

Looking at the typical spacing between peaks in Figure 2.32 and by simply comparing daily plots 

of data, as in Figure 2.35, it seems tha t the connection between these time series is related to the 

solar rotation period. In Section 1.7 the 27 day variations in the geomagnetic field were said to be 

caused by streams emanating from coronal holes on the Sun. It was also mentioned tha t such regular 

disturbances are most clearly seen during solar minima because at times of high solar activity the 

geomagnetic disturbances are so numerous and complicated. This goes some way to explaining why 

the cross-correlations at maxima and minima differ in character. Also, at solar minima, why is the 

K p index about 14 days out of phase with the *27 day cycles in the sunspot number? Given the 

speed of the streams that cause the geomagnetic disturbances, which will typically be larger than 

600 km/s, and even allowing for the effect of spiraling, the stream material will take at most about
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Figure ‘2.32: The cross-correlation of daily sunspot number and K p index calculated using raw- 
unprocessed values and using the wavelet filtered versions of the two time series. The wavelet 
filtering removes variations on timescales that are very different from the 27 day solar rotation 
period (< 5 days and > 2 months). The stretch of data is from 1976 to 1987, roughly the whole of 
cycle 21.
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Figure 2.33: The cross-correlation of daily sunspot number and solar flux calculated using raw daily 
values and using the wavelet filtered versions of the two time series. The wavelet filtering removes 
variations on timescales that are very different from the 27 day solar rotation period (< 5 days and 
> 2 months). The stretch of data is from 1950 to 1995.
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Figure 2.34: Plots of data  showing the cross-correlation of sunspot number and K p for a) all the 
da ta  since 1950 b) minima c) maxima. The time series have been wavelet filtered beforehand to 
filter out timescales of < 5 days and > 2months.
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Figure '2.35: Extracts from the daily sunspot number and K p index that have been wavelet filtered. 
The anti-correlation of the two series 27 day fluctuations is apparent.

four days to arrive at the Earth's orbit. It seems unlikely, therefore, that the sources of the streams, 

the coronal holes, and the Sunspot groups are located nearby on the Sun. At solar maximum there 

are many flares and coronal mass ejections, both of which are associated with active regions. Since 

such activity is also thought to be responsible for geomagnetic disturbances, e.g. Hargreaves (1992), 

and remembering that Sunspot groups are usually found in active regions, the positive but lagged 

cross-correlation is not unexpected.

2.5 C oncluding R em arks

The work in this chapter was not intended to be an exhaustive investigation of every aspect of the 

time series concerned. It was concerned with providing an impression of matters such as: the accu

mulation and formatting of the data; the search for periodicities; the nature of any periodicities; the 

non-stationarity of sunspot number; the stationary aspects of sunspot number; the auto-correlation 

of the time series; the cross-correlation of the time series especially in relation to the Sun’s influ

ence on the Earth; and the use of wavelet transform in analysing time series. Apart from being of 

intrinsic interest in itself, I feel that this work provides a familiarity with the da ta  that will directly 

and indirectly fuel the prediction initiatives in the following chapters.



C hapter 3

A n Investigation of Neural 

N etw orks

“I t ’s all a question of mind over matter. What is mind? Doesn’t matter. And what of 

matter? Never mind.” Rev. Francis Bigger

This chapter explores how a Feed Forward Neural Network (FFNN) can represent a desired 

input-output relationship which is described by an analytic function. Most of the work is concerned 

with l - H - l  networks, as the more general case, that of I - H - 0  networks learning O functions of I

variables, can be viewed in terms of the results obtained in this simpler case. Specifically I shall

a t tem pt to answer two questions: how FFNNs can represent functions; and how FFNN can be taught 

to represent functions. There is a crucial distinction between these two issues.

By the end of the chapter I will have shown three important results:

• How to “analytically” train FFNNs to fit an arbitrary analytic function to an arbitrarily small 

error of fit. This will be achieved by reducing the problem of finding the network weights to 

the solution of a system of linear equations.

• How the number of hidden neurons H  relates to this.

•  The (in)stability of Back-propagation

112
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Table 3.1: Some applications of feed forward neural networks.

Galaxy Classification 
Time Series Prediction 
Gluon-Jet Detection 
Meteorite Fragment Pairing

Storrie-Lombardi et al. (1992)
Lapedes and Farber (1987)
Lonnblad et al. (1990)
Conway and Bland (1995) - In progress

3.1 F ittin g  and Learning to  Fit Functions

To recap, as shown in Figure 1.3, the FFNN consists of layers of neurons, the neurons in each layer 

giving their outputs only to the neurons in the layer immediately above. The bottom layer neurons 

are called inputs, the top layer neurons are called outputs and the layers in between are called hidden 

layers. The parameters that determine the strength of the connections between neurons are called 

the weights or weight connections. (1.10) and (1.11) give the equations for calculating the hidden and 

output layer neurons from the inputs. To set up the desired output response to a set of inputs the 

weights must be set appropriately - the process of setting these weights is called ‘‘training” . At this 

stage a digression is appropriate in order to answer a very good question levelled at many people 

who use and /o r  study neural networks: “W hat is the difference between FFNNs and other data 

fitting techniques such as polynomial fits or generalised linear regression?” The answer, in general, 

is that there is no difference, a FFNN is another data-fitting technique. In fact the definition of a 

FFNN can even be extended to encompass many other data-fitting techniques 1 However, the FFNN 

according to its most popular meaning is the one where the activation functions are all sigmoidal, 

with the possible exception of the output activation function being linear (see Section 1.4.1). In 

this sense the FFNN is just a certain class of data-fitting algorithm, one for which a great deal 

of popular excitement and interest has been generated. The interest is mostly generated by the 

historical association with (vastly over-simplified) models of the brain, still evident in the jargon 

associated with neural networks. The other explanation for their popularity is that they actually 

work, in tha t  they are capable of successfully tackling a wide variety of problems, see Table 3.1.

3.1.1 F itting  functions

An I - H - 0  FFNN can represent an O dimensional function of I  variables, by definition. To start  

with I shall consider a 1-77-1 FFNN. If given an input A , the equations for the (values of the) hidden

1 C o n sid er  a  1 - / / - 1  F F N N  w ith  lin ea r  o u tp u t  a c t iv a t io n  fu n c tio n s  a n d  w h ere th e  in p u t a c t iv a t io n  fu n c tio n  to  th e  
n th h id d e n  n eu ro n  is x n .
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neurons are

B j = g ( w j A ) (3.1)

and for the output neuron

C =  * =  1..........0  (3.2)

If this network is required to fit a function f ( x ) over the range [a, b] then the error function

E  (w, W )  =  f  (C{x)  -  f { x ) ) 2 dx 
J a

must be minimised with respect to the weights, which parametrise C(x).  The situation for fitting 

multi-dimensional functions of many variables is similar, with the error consisting of a sum of square 

errors for each output and a multiple integration over the range of interest for each input. As 

stated in Section 1.4.1, Cybenko (1989) showed that when using a one hidden layer FFNN with 

sigmoidal activation functions, and for a continuous set of functions f(x) , the error function can be 

made arbitrarily small given enough hidden neurons. There is no guarantee that any minimisation 

method can actually find the required weights, though. Of course when using a FFNN numerically 

on a computer the integral over x in the error has to be replaced by a sum over sample points in 

the range [a, b\. In this case the behaviour of the network’s fit to f ( x )  between the sample points is 

undetermined. It might be expected that sparse sampling and many hiuden neurons (and therefore 

many weights) will encourage a network’s fit of a function to behave wildly between sample points, 

as would happen in the fitting of a polynomial where the order is larger than the number of sample 

points. In practice, however, a FFNN trained by back propagation seems to be immune from this 

problem, irrespective of the sampling and the number of hidden neurons. To demonstrate this 

Figure 3.1 shows several l-H-1 FFNN fits to 0.5 +  0.2 s in 3x  over [0,1]. Back propagation was used 

to train the NNs for a fixed number of iterations in each case. The first thing to notice is how 

poor the fits are given the large number of iterations, this is because back propagation converges 

very slowly on the best fit. This is confirmed by the fact tha t by using smaller values of learning 

parameter, and allowing training to continue, it is possible to keep improving the fit ad nauseam. 

However, as training progresses the possible improvement in the fit per iteration rapidly becomes 

very small, as seen by the training graph in Figure 3.Id. W hat is very surprising is tha t a 1-25-1 

network with a training set of 50 points failed to converge on a fit at all. Depending on the initial 

value of the learning rate it would either fit a straight line to the training set or produce outputs 

tha t were extremely large. The reason for this is not clear, but as I will show later it is not difficult
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Figure 3.1: Three FFNN fits to the function 0.5 -f- 0.2 s in 3x over the range [0, 1]: a) 1-5-1 with 5 
training points b) 1-25-1 with 5 training points c) 1-5-1 with 50 training points. Plot d) shows how 
the square error summed over the training points decreases per iteration for case a).
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to find examples where a network is capable of fitting a function but back propagation cannot train  

a network to fit th a t function in a stable fashion. In answer to the original question th a t m otivated 

these tests, the 1-25-1 network produces a surprisingly sm ooth fit to the five points of its training 

set, certainly as good as th a t of the 1-5-1 network. So the addition of 2 x (25 — 5) =  40 ex tra  weights, 

and therefore fitted param eters, even on a sparsely sampled function does not produce the dram atic 

variations th a t can be found if, say, a 50th order polynomial was fitted to the five points. The reason 

for this lies in the fact th a t polynomials are formed by adding together functions which tend to ±oo 

at large x  where as the sigmoids used in a standard FFNN go to 0 and 1 at —oo and -f-oo.

Of course, the issues raised from the above tests are not all confined to the function 0.5+0.2 sin 3x. 

I have simply used this function as an example. In more general terms, what can be said about a 

FFN N ’s ability to fit functions and back propagation’s ability to train  networks to fit functions?

Turning to the first part of the above question, consider a l -H-1  FFNN fitting an M  — 1 order 

polynomial in the range [a,/?], then
M—1

f (x ) =  y .  an Xn 
n = 0

Let the input activation function g(x),  which is not necessary sigmoidal, be analytic in the range 

|x| < xq, so th a t it is possible to perform a Taylor expansion about the origin:

g(x) =  ^ ^ > ( 0 ) ^
' n\n = 0

oo

=  y g nx n |x| < ar0
n  — 0

substitu ting  this into (3.1) and using (3.2), with linear ou tput activation function G(x) = x, gives 

the network’s ou tput as

H  oo

C(x)  =  Y i w i Y l g»«>i*n

= £ ( x > » ? W
n = 0  \ i  =  1 /

so to obtain a perfect fit the weights m ust be chosen to equate the polynomial coefficients of f { x )  

with those of C(x)

I an n <  M
gn y W i U , ? = {  (3.3)

t l  [  0 n > M

On top of this, if this representation is to be valid then

\Wi<x\ <  X o
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\wi/3\ < x 0

m ust be satisfied for i = 1 , . . . ,  H  so that the Taylor expansion power series of g(x ) is convergent. 

As things stand there appear to be an infinite number of equations in 2H  unknowns. Consider first 

solving the equations for n < M  only,

H

Y  Wiw™ ~  A n where A n =  —  (3.4)
«=i 9n

If H  is chosen so th a t H  > M,  and values for all the iu,-’s and H  — M  of the W^s  are chosen, then 

(3.4) forms a completely determined system of M  linear equations in M  unknowns. Since we have 

complete freedom in choosing the tui’s and the H  — M  Wj’s, it seems reasonable to assume that 

they can be chosen to make the system of equations consistent. W ith this being the case, then the 

problem is now reduced to a solution of a set of linear equations in the remaining M  Wi s. However, 

the fit is not complete because the network’s output function C{x)  still contains non-zero terms of 

order M  and above. The error in performing the fit as described thus far is therefore

E{x)  =  C ( x ) - f ( x )

= Y  [ Y W i w i ) 9 n x n

Now, the aim is to reduce this error to below some tolerance for the fit to become “good enough” . 

As shall now be shown this can be achieved by choosing the values of the W{ term s tha t are “small 

enough” . Reducing W{ must reduce the WiW™ terms because, from the system of equations in (3.4), 

it can be shown that

Wi'w'l —► 0 as Wi —*■ 0 if n > M

(A sketch of why this is plausible is given in the Appendix Section A.4).

The above has tacitly assumed that the coefficients of the Taylor expansion of the input activation 

function g(x) are non-zero, i.e. <7 n̂ ,(0 ) ^  0, for n < M . Also it was assumed th a t H > M , otherwise 

it would be impossible to avoid inconsistency in the set of linear equations in the ou tput weights. 

Therefore it has been implicitly proved tha t, given the above assumption about the input activation 

function, a l -H-1 network fitting an N th order polynomial will need at least as many hidden neurons 

as there are polynomial coefficients, i.e. H > N  + 1.

As an illustration of the above, I now dem onstrate the “analytic” training of a 1-/7-1 network 

on a linear function and prove th a t it is indeed possible to make the error of fit arbitrarily  small 

by reducing the size of the input weights. Having dem onstrated the method I will then use it to
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construct an example tha t highlights the fact tha t back propagation is not a stable algorithm  for 

training FFNNs to fit certain functions.

E x a m p le : A l - H - l  network fitting f ( x )  = a^x +  ao- Here M =2, so there are two equations

H

Y w ‘ = A °
i = 1

H

=  A t
i — 1

and once the w^s  have been chosen, there are H  unknowns, namely the WUs. In order to make 

these equations completely determined H  — 2 of these unknowns need to be chosen, so set Wi =  7  

for i > 2. The equations to be solved are then

Wi + Wi = A 0 -  j ( H  — 2)

w\W\ +  W2W2 =  Ai — 7  Wi
i — 1

To avoid linear dependence and inconsistency w\ W2 , so with this in mind solving for W\  yields

( A 0 -  f { H  -  2 ) )  w2 -  (Ai  -  7  5 2 ^ 3  wA
Wt = -------------------------------- -̂---------------------L

W2 ~  W1

with a similar expression for W2 . I now prove tha t it is possible to achieve arbitrarily small errors 

by reducing the size of the input weights. The error on the network’s output will be

co H

E(x)  = Y H Wi wi ^ z "
n  =  2 j  — 1

begging the question of how W jw 1- behaves as all the w^s  are brought nearer to zero. Let w 1 =  A u>2 , 

where A ^  1, then

(A„ -  7 (H -  2 )) A"u, " +1 -  (v4, -  7  E "  3 " 0  <
Wiw'l  =  --------------------- V J

(A -  l ) w i

( A °  -  7 (H  -  2 ) )  Anwx -  ( A i - i  Y a = 3 w i )

(A -  1)

which means that

W 1W1 —‘ 0 as wi , W 2 —> 0  (n > 2 )

finally since the upper bound on the absolute error reduces as the input weights are reduced, as can 

be seen from
co H

\ E ( x ) \ < Y Y \ w ’ w'i\\<>''x ''\
n  =  2 j  =  1
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then |E(x)\  —  0 as w i , w 2 —1■ 0 because | Wiiv?\  —► 0 for i =  1,2. For i > 2 \ Witv?\  =  j i v ?  can be 

reduced freely by either reducing 7  or the uy’s for i > 2. Thus it has been proved tha t the error of 

the fit can be brought arbitrarily close to zero, for any non-zero A o , A i ,  any H >  2. It has also been 

proved tha t the smallest network capable of fitting f ( x )  = ax +  b is a 1-2-1 network, because it is 

possible to obtain a fit with the following variables set to zero: uy — 0 for i > 2 and 7  =  0 .

3.1.2 Learning to fit functions

In this section I wish to study how a network might learn to fit functions. The underlying theme of 

this work is th a t a FFNN might be capable of fitting a function but back-propagation, or for that 

m atter any other training algorithm, may be unable to realise this capability. The following will con

centrate only on standard back-propagation, which can be thought of as least squares minimization 

by gradient descent.

In practice, the choice of learning rate, e, affects the number of iterations required to complete 

training. If e is very small, learning will be slow and the error will decrease very gradually, thus 

requiring many more iterations to complete training. If e is very large then in some instances the 

error might change wildly with each iteration while in others it may still decrease albeit very slowly. 

The following discussion will provide some insight into how the training procedure operates and how 

the choice of learning rate might affect the end result.

Minimizing x 2 by gradient descent provides an illustration of the above statem ents and is shown 

in Fig. 3.2. For this simple case it is easy to show that c must be less tha t unity for convergence 

and tha t e =  1 will cause oscillation between the two values ±Xo, where Xo is the starting value. 

If the learning rate is very much less than 1, or very slightly less than 1, then convergence to the 

minimum is very slow.

To draw closer to the case of training a NN consider the function:

f {y)  =  Wg(wy) -  d -  y (3.5)

The problem here is to bring f ( y ) as close to zero as possible in some range of y, say y\ to yn, with 

respect to W, w and d; where g(x)  is the sigmoidal activation function defined in (1.12). Minimizing 

f ( y )  is equivalent to training a 1- 1-1 feed forward neural network with a linear output activation 

function with threshold2 to simulate the function h(y) = y over the given range of y, where y is 

the input and Wg(w(y  — c)) — d is the output. This example dem onstrates two things: firstly the

2 R em em b er  a  th resh o ld  is eq u iv a len t to  a  w eigh t co n n e c tio n  to  a  n eu ro n  w hich  h as a  fixed  value
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Figure 3.2: This is a simple analogy to show how the value of the learning param eter, e, can affect the 
progress of training. The function f ( x )  = x 2 is minimized using gradient descent using a) e =  1.1, 
b) e =  0.9, c) e = 0.01 and d) e =  0.2. The plots show the value of f(x) versus the value of x for each 
iteration, the starting  value in each case is x  =  1.5.
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Figure 3.3: These curves show the error after a number of iterations using a range of values of 
learning rate. The lines leaving the top of the plot indicate peaks of very large error.

unstable somewhere between 1,000 and 2,000 iterations. By 5,000 iterations the “best” learning 

rate is 0.6 w ith higher values causing instability in the m inimization. One interesting feature is tha t 

as training continues the “lum p” th a t appeared in the curve at 2 ,0 0 0  iteration has exploded into a 

sharp spike, which by 2 0 ,0 0 0  iterations peaks a t an c value of about 2 .0 .

To see more directly what is happening when instability sets in, Figure 3.4 shows the error per 

iteration for e = 0 .7 ,1 .0 ,1 .1 . The error decreases sm oothly until it reaches a lower bound, it then 

suffers a discontinuous jum p and then recovers until it again reaches its lower bound which results 

in another jum p etc. For obvious reasons these jum ps occur more frequently for the larger values of 

e.

The conclusion in this simple case is th a t gradient descent cannot achieve an error below some 

lower bound if the learning rate rem ains fixed because train ing will become unstable as this lower 

bound is reached. But what actually happens a t the instability and why does it occur? By plotting
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Figure 3.4: T h e  change in error w ith  iteration for (a) e = 0.7, (b) e = 1 and (c) e =  1.1
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successive values of the param eters w, W  and d along three orthogonal axes a graphic picture of 

the progress of training can be constructed. The conditions in (3.6) can now be thought of as the 

param etric equations of a curve in these three dimensions and the points on this curve correspond 

to the m inim um  value of f ( y ) for a given w. I shall call this the “solution curve” . In this picture 

the goal of training is to approach this curve and follow it as far as possible as w —► 0. It is easier 

to see what is happening by projecting this 3D picture onto 2 2D plots, i.e. it; vs IT and w vs d. 

Fig. 3.5 shows such graphs for a to tal of 20,000 iterations with e =  0.7, plotting the param eters every 

1,000 iterations. Also included in this figure is the error per iteration plot which exhibits a jum p 

at 6,600 iterations. The corresponding jum p across weight space can be seen in both the param eter 

plots. Interestingly, the algorithm  reconverges on the negative solution for the param eters, which 

is analogous to gradient descent leaping over the minimum when minimizing x 1. The behaviour 

between 6,000 and 8,000 is displayed down to a resolution of 1 iteration in Fig 3.6. In this plot 

the NN is flung, seemingly at random, to some part of weight-space and then in only a couple of 

iterations it finds its way back to the negative part of the theoretical curve and then slowly resumes 

it trek towards w — 0. A second more gentle increase in error occurs after 15,000 iterations and 

this is evidenced on the param eter plots by the curve doubling back on itself. Note th a t this gentle 

rise in error cannot be attributed  to overfitting for reasons mentioned above. It is caused by the 

use of a learning rate which is too large, thus making training unstable. This is an im portan t result 

to remember when halting the training of more complicated networks: has the network reached its 

best generalization ability or would a smaller learning rate be able to reduce the error on the test 

set further? Figure 3.7 shows the corresponding plots for c = 1. Now the training is very unstable 

with many jum ps in the error. The param eters now appear to  shuttle backwards and forwards in a 

region near the theoretical curve, though of course the detailed behaviour will be more complicated.

Now th a t it is established what happens to param eters after a jum p, I turn to the question of 

w hat causes a jum p in the first place. The obvious explanation is th a t the error surface in weight 

space becomes very steep as w —► 0. A “steep slope” in the error surface will cause a NN that 

has wandered onto it to suffer large weight changes. The fact th a t lower values of learning rate 

succeed in taking the training further can be taken as evidence of this. In order to examine w hat is 

happening more precisely I define the error function E ( w , W , d )  as

E ( w , W , d )  = \ U ( y ) ? d y
J 0
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Figure 3.5: (a) Shows the change in error with iteration and (b) and (c) show how the three 
param eters of the 1-1-1 NN, trained w ith e — 0.7, change w ith iteration. The isolated point near the 
centre is the starting  point of training with the point corresponding to the 1 ,0 0 0 th  iteration  being 
connected to it by a line and so on for every 1 ,0 0 0  iterations up to 2 0 ,0 0 0 .
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Figure 3.6: These two plots are the magnifications of the plots in Fig. 3.5 during the jum p  across 
weight space. The first point in the plot corresponds to iteration 6,000 w ith the param eters being 
plotted for every iteration until 8,000 iterations. Note th a t this is not the finest resolution possible 
because each iteration is composed of the individual adjustm ents for every member of the training 
set.



C H A P T E R  3. A N  IN V E S T IG A T IO N  OF N EU RAL N E T W O R K S 127

0.45

0.4

0.35

0.3

o
0.25UJ

©w
0.2

0.15

0.1

0.05

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Training Iteration

W

-3.5
4/w.

-4.5

-5.5

-6.5

-7.5

■1.1 • 1 -0.9 -0.8 -0.7 -0.6 -0.5
w

(b)

2/w

-2.5

-3.5

■1.1 ■1 -0.9 -0.8 -0.7 -0.6 -0.5
w

(c)

Figure 3.7: (a) Shows the change in error with iteration and (b) and (c) show how the three 
param eters of the 1-1-1 NN, trained w ith e =  1, change with iteration. The point (not shown) 
at the end of the line which leaves the plot is the starting  point of training with the next point 
corresponding to  the 1 ,0 0 0 th  iteration being connected to it by a line and so on for every 1 ,000  
iterations up to 2 0 ,0 0 0 .
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■ i ' G
Minimizing E ( w , W, d) is then equivalent to finding an approxim ate solution to f {y )  =  0 for y 

in the range [0,1]. Notice th a t the gradient descent m ethod used above is not actually using the 

derivatives of Eqn. 3.7 with respect to the weight param eters, instead it uses the derivatives of f (y i ) ,  

where t/j is the current “training pa tte rn” . One assumption commonly, but often tacitly, m ade when 

using gradient descent is th a t using derivatives based on only one training pattern  at a tim e will 

still minimize E(w,  W, d) after the whole training set is presented - fortunately experience seems to 

validate this assumption. The easiest way to examine the behaviour of the derivatives of (3.7) near 

the solution curve to first order in w as w becomes small is as follows: For ^  first differentiate (3.7) 

and then evaluate the integral,

d E  f 1 (  W  \
a d  =  I  { - 2 T T ^  +  2 ( y  +  d ) ) d y

= —2 —  log — — +  1 4 - 2 d
w 2

expanding the log term  to 0 (w2) (this is necessary to obtain ^  to  first order), gives

d E  W  ( w  w2\
dd _ _ 2 v ( ?  + T j  + 1 + 2<i

Now to examine this derivative near the solution curve set W  =  — +  n and d = — -f S, where n and
XV 1 w  5 •

6 are the departures of W  and d from the solution curve which need not be small:

H  = _2i ± ^ + £ ) + 1 + 2 ( i +5
od w \ 2  8  J  \ w

-  ox  n  VW

may be obtained in the same way except th a t it is actually more convenient to perform the 

series truncation before the integration. Finding is more complicated but maybe derived most 

efficiently by taking the series truncation of E , integrating it and differentiating with respect to w. 

To sum m arize the three derivatives are:

(** 1 ( v 2 i ^ 8r} \  , f  V2 V 8 1 A , n (
~  V2 / w  \"8" 6 4"/ V24 ~ 8 ~ 8 ~ 3 0 /

dE_ 
dw

H  =  2 +  (3.8)

d E  T) c  /  2 \

a w  = +
As w  becomes increasingly small
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Table 3.2: S tarting the 1- 1-1 network a t a near perfect solution and then applying back-propagation, 
even with a small learning rate has terrible results as seen here.

Iteration w W d
0 0 .001 4000 2 0 0 0
1 -44.89 3999 1987
2 -3,334 3999 1968
3 -38.83 3989 1969
4 -14.82 3988 1956
5 -49.22 3982 1950

so th a t the change in w after a single iteration can be quite large unless either e is chosen to be 

sufficiently small or 8 = 0 and rj =  0. In practice it can be seen (e.g. Fig. 3.5) th a t as the error 

is decreasing, W  and d never actually lie on the solution curve but merely approach it, so S and 77 

are not zero. As w is reduced the T  term  will become more dom inant causing A w  to become very 

large, so th a t at some point the learning rate can no longer restrain the growth of A w  giving rise to 

the jum ps in error. This problem m ight be avoided if the learning rate were reduced during training 

to tem per the growth of Aw.  An alternative way might be to fix w every so often during training 

and train  the NN so th a t E  is minimized as far as possible with respect to W  and d, forcing the 

NN closer to the solution curve and thus dam ping the effect of the ^  term . The former m ethod is 

known in Neural Netwctk terminology as an adaptive parameter scheme whereas the la tte r method 

is very sim ilar to the idea behind conjugate gradient descent, described in Hertz et al. (1991).

All of the above numerical results depend to some extent on the starting  point of training, i.e. 

the initial values of w, W  and d. However, as can be seen from any of the param eter plots, the 

param eters quickly find their way onto the solution curve and then begin their descent along it. 

So for this simple 1-1-1 network the behaviour during training is quite independent of the starting  

point, a t least after the first few iterations; but what will happen if the NN is started  on the solution 

curve at a very small value of w l  If w =  0.001 then by (3.6) W  =  4000 and d = 2000. These 

values result in y /E  ~  10- 9  which is far lower than any error achieved in the previous examples. If 

training is now performed starting  a t these values then even for a learning rate as small as 1 0 - 4  the 

good solution is im m ediately lost. Table 3.2 reveals th a t w is the source of the instability because 

it is varying wildly while the other two param eters change comparatively slowly. This is entirely 

expected because of the ^  term  in the derivative .

This simple example has dem onstrated th a t even if a set of ideal weight values exist so th a t a 

neural network can mimic a function to arbitrary  accuracy, the training algorithm  used m ight be
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unable to find these weights. Here, gradient descent with a fixed learning rate could not converge on 

the ideal weights easily because one of the weight derivatives became very large as the ideal weights 

were approached. A smaller learning rate will allow closer convergence but requires many more 

training iterations to do so. A more sophisticated method, such as an adaptive param eter scheme, 

could provide some improvement but it is not at all obvious how such a scheme should operate or 

guarantee success/convergence.

So it appears th a t training using gradient descent can be quite a hazardous procedure, more so 

when dealing with more complicated networks where multiple local m inim a can plague the learning 

process. Ironically however, another problem in the training of neural networks, tha t of attaining 

the best generalization ability, seems to alleviate the problems caused by using gradient descent. 

The issue of generalisation ability was discussed in Section 1.5, and will be met again on numerous 

occasions.

3.2 N um erical Tests

To complete this discussion on fitting functions I shall now illustrate the training of 1-H-l  NNs 

on several functions and examine the effect of altering the param eters of back-propagation and the 

relation of the trained NNs to the theoretical results in Section 3.1.2.

be used for the following tests are

1) / (* )  = 5<1 +  *>

2 ) f ( x )  = 5(‘ +  *2>

3) f { x )  =

4) f { x )  = — (27 +  2z -  56z2 +  72x3) 
45

5) f ( x )  = - (3  +  sin 2 irx) 
4

and the fit will use Np points evenly sampled from the range [0,1], i.e.

Z‘ = N ^ ~ l i = °  N p - 1

notice th a t the range of these functions on this domain is [0.5 : 1]. These functions were chosen 

because they are all quite “sm ooth” in the given domain. Later in Section 3.3, I shall consider the 

effect of trying to fit more “rough” data, so th a t networks m ust effectively perform some sm oothing. 

For now, interest is confined to: how the trained Network weights represent a given function; how
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the num ber of hidden neurons H  affects the final fit and the progress of training; how the values 

N p , € of ct affect training; and the possible (dis)advantages of using an adaptive param eter scheme. 

An a ttem pt to perform some kind of grid search for the best set of param eters (H, Np,e ,a )  would 

be extremely arduous. Instead I shall save some time (mine and the com puter’s) by m aking use of 

some hindsight drawn from personal experience in constructing the following tests.

To s ta rt with I shall examine the effect of varying the param eters of back propagation, the 

learning rate e and the m om entum  a.  Remember th a t the mom entum  includes a fraction a  of 

the last weight change in m aking the current weight change. For this investigation: H  = 12, which 

should be sufficient to fit the above five functions if the foregoing theoretical discussions are believed; 

and N p = 20, because this is will allow for a good representation of each of the above functions. 

The rem aining question is how to decide which param eters give the “best fit” . The final RMS error 

would provide a convenient criterion but the meaning of “final” has to be decided in the absence of 

a generalisation stopping criterion. The first stopping criterion I shall adopt is th a t of instability, if 

the network error starts to increase on any iteration, after the first hundred, then training will be 

halted. The “after the first hundred” is necessary because the beginning of training can be quite 

unstable. For tiny values of learning rate it is quite conceivable th a t training can proceed for a very 

long tim e w ithout any instability occurring and also without any significant progress. To avoid this 

I impose a m axim um  of 20,000 iterations on training. Remember, by definition, a training iteration 

is one complete presentation of the training set. So the criteria of stopping is whichever of the 

following occurs first
I

1. The error between the last two iterations has increased

2. The num ber of iterations has reached 20,000

The second is a practical restraint th a t reflects the speed of the computer. Had this been ten years 

ago the m axim um  number of iterations might have been 1 0 0 , perhaps in ten years it m ight be 

100 million. I shall construct three 2D m aps of (c ,o ), one showing the error, another showing the 

number of iterations, which m ust be at least 100  (training was never stable) and 2 0 ,0 0 0  (training 

is still reducing the error) with the th ird  map showing the error change in the last stable iteration. 

These m aps are plotted as a 16 shade grayscale with the limits of black and white as shown on 

each plot. Note th a t white indicates any value larger than  the value shown. This provides quite 

complete inform ation on the success or failure of the training. There are three plots of the results 

of these tests fitting function 1): Figure 3.8 shows the three maps for a coarse grid of large values 

of e; Figure 3.9 shows a finer grid for e taking on smaller values; Figure 3.10 shows a blow up of the
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best region from Figure 3.9. It can be concluded from these plots tha t the best results are achieved 

for e =  0.033 to 0.055, with a = 0.9. In Figure 3.9 it is clearly seen tha t the column for a  =  0.9 

seems to produce the best results, in terms of final error and stability of training. This value of a  

seems to be a sort “magic” number in FFNN training as many researchers find it to be the best 

value to use, all of the following papers independently arrive at this conclusion in the training of 

Neural Networks to predict time series: *Conway (1993), *Macpherson (1993) and Aso and Ogawa 

(1993). Referring to Section 1.4.1 it can be seen tha t a value of a  slightly less than unity will provide 

considerable acceleration in “flat regions” of the weight space error surface. However, if it is too 

near unity it may also produce divergent behaviour during training. In this light the “magic” of 

a = 0.9 is understandable. These param eter searches were only repeated for function 2) because 

of the long time required for execution. The results of these searches can be found in Figures 3.11, 

3.12 and 3.13.

A ttem pts at using adaptive param eter scheme show that they usually create more problems than 

they solve, of the several th a t I have tried I shall only describe one. If after an iteration the error 

has increased, restore the weights to their values before the iteration was made, reduce epsilon by a 

factor k and repeat the iteration. Notice th a t in this scheme no attem pt is made to increase e after 

a series of error reducing iterations. There are three problems th a t arose with this scheme. F irst of 

all, there is no guidance for choosing k even after much experim entation, so the value th a t I chose 

to use, k = 1.001, is quite arbitrary. Also sometimes the training would get completely stuck on one 

iteration - th a t is no m atter how many times the step was remade with reduced es, the error would 

still increase. If eventually the iteration succeeded then the rest of training has to suffer from the 

vastly reduced e. The obvious fix to this problem is raise e after many successful iterations, but I 

found th a t such a scheme often suffers from term inal indecision, where a step is re-taken many times, 

oscillating between high and low values of e. Another problem with the above scheme is th a t the 

training tim e becomes uncertain, and possibly effectively infinite if e is reduced too far or oscillation 

between two (or more) values occurs. The solution might then be to stop restoring the weights and 

ju s t allow training to continue with a smaller e after the positive jum p in error. This can also be 

fatal, as it is possible, and not uncommon in practice, especially when using linear ou tput activation 

functions, for weights to increase explosively. Such large weights will then cause overflow errors 

in the computer, effectively ending training. The construction of an adaptive param eter scheme 

sta rts  to feel like the addition of endless epicycles, i.e. fixing the problems caused by previous fixes. 

For this reason I have avoided their use, although I will use a more m anual version of an adaptive
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Figure 3.8: The three plots dem onstrate the  effect o f  changing e and ct in training a 1 — 12 — 1 F F N N  
to learn the function 1) in the text. The stopping  criterion for training is also detailed in the tex t .  
The gray scale p lots  show final error E , last stable change in error (IE and the number o f  training  
iterations T.  In these plots white represents that the value has exceeded that indicated in the  key.
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Figure 3.9: As for Figure 3.8 but with a finer grid in e.
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Figure 3.10: As for Figure 3.8 but with a finer grid in e and a .  T hese plots blow up the best region 
in Figure 3.9
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I- igure 3.11: I he three plots dem onstrate  the effect o f  changing c and a  in training a 1 — 1 2 — 1 
F F N N  to learn the function 2) in the text .  T h e  stopping  criterion for training is also detailed m 
the text .  T he gray scale plots show final error E,  last stable change in error d E  and the number of  
training iterations 7 .  In these plots w hite  represents that the value has exceeded that indicated in 
the key.
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Figure 3.12: As for Figure 3.11 but w ith  a finer grid in e.
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param eter scheme when training some FFNNs to predict time series.

As shown above a FFNN with H  hidden neurons can only hope to accurately fit an H th order 

polynomial (tha t is a polynomial whose largest power of x is H),  and it can only do this in some finite 

domain, decided by the particular activation function used. However the theoretical discussion above 

considered the function being fitted on a continuous interval of its domain, e.g. [0,1]. In training 

a network the fit is really only performed at Np discrete points in [0,1]. W hat difference does this 

make? Essentially the NN is given the freedom to choose any curve tha t passes through (or near) the 

N p points in the range [0,1], in much the same way as would happen in the fitting of a polynomial to 

a sampled function. Unlike using a polynomial to fit a function, and as shown already, the behaviour 

of a FFNN fit between sample points is not dram atically variable. I now test FFNNs with different 

number of hidden neurons on each of the six functions above. The learning param eters, chosen to be 

e = 0.036 and a = 0.9 are just the best param eters from the above tests. Note, however, th a t though 

these were found to be best for the function 1) as learned by a 1- 12-1  network, there is no guarantee 

th a t the these values are optim al for other networks learning other functions. Remembering this 

fact, Figure 3.15a shows the RMS errors, calculated from the Np =  20 training set points in [0,1], 

for networks with 1, 2, 3, 4, 5, 6 , 7, 8 , 10, 15, 20, 25, 30 and 40 hidden neurons. The plots for all 

five functions share three features. Firstly they show a flat low error region between about 5 and 

10 hidden neurons, secondly they show large errors for 1 and 2 neurons and finally they show more 

erratic behaviour for large numbers of hidden neurons (>  10). The failure to achieve a good fit is 

understandable for 1 and 2 neurons, where there are just not enough trainable param eters to perform 

the fit, except in fitting function 1), in which case the training is actually unstable. Network s with 

moderate numbers of neurons, i.e. about 5 to 10, could be trained for the full 20,000 iterations 

without any instability occurring, hence their low errors. For networks with greater than about 10 

hidden neurons the reason the error is so large is th a t training becomes unstable after only a few 

hundred iterations. Is this because large networks require smaller learning rates for stability? It 

seems not, as using a lower learning rate of e =  0.01  shows very similar results, as can be seen in 

Figure 3.15b. In any case the best fits achieved even by the network’s with 5 to 10 hidden neurons 

are not th a t good. In many cases the network has merely learned to draw an almost straight line 

th a t approxim ately fits the curve over [0,1], like in Figure 3.14. In the case of function 4), the cubic 

polynomial, the network does not fit a line but fits a curve which is “sm oother” than the one it is 

supposed to learn. This property of FFNNs, the fact th a t they err on the side of smoothness, will 

be of more im portance later, when data  with errors or noise is used.
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Figure 3.14: FFNN fits of functions 3) using a 1-3-1 NN and and 4) using a 1-8-1 NN. In both cases 
the fits are “sm oother” in some sense than the desired function.

The next question is th a t of the number of training patterns Np and more im portantly, the 

m ethod of sam pling the interval and the order in which the training patterns are presented. So far 

the sam pling has been even, th a t is Np evenly spaced points from 0 to 1 (inclusive) have been used. 

The first pattern  in an iteration is (x =  0, F ( 0)) with the following patterns presented in a sequential 

fashion until (x =  1 ,^ (1 )) , after which the next iteration begins. It is im portant to note th a t the 

weight changes take place after each pattern  is presented, not after an iteration is completed. The 

la tte r m ethod, where the weight changes for each pattern  are accumulated with their application 

occurring at the end of the iteration, is called batch mode training. It is usually found to be less 

effective, e.g. Hertz et al. (1991), which I have also found to be the case in my tests. Obviously 

there is a trade-off to be made between the tim e taken for training and the resolution required to 

accurately fit the function in question. In numerous tests I have noticed th a t the larger N p , the 

more likely it is for instability to occur in training. There is perhaps no easy way to  understand why 

this is so, bu t it does seem somehow more taxing for a 1 — 8 — 1 network to fit N p = 40 examples 

as opposed to N p =  20 examples. Next, does oversampling encourage a neural network to learn the 

function underlying the sampling? The answer m ust really be no, as can be easily appreciated by a 

simple counter-example. Consider a NN fitting function 1) in the range [0,1]. A very good fit will
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Figure 3.15: The RMS error on the training set for networks with different numbers of hidden 
neurons, learning the above five functions, a) uses e =  0.036 and b) uses e =  0.01, both have 
a  = 0.9.
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Figure 3.16: An extrapolation (and also interpolation) of the NN fit to function 3) on 20 points in 
the range [0 , 1].

achieved if the network’s output, given input x , effectively fits the function

1 0 0  
C(x ) = g 2 + ^  anXn

n  =  2

where |an | <C 1 for n > 2. As training proceeds one might hope th a t the an ’s are reduced so th a t the 

network approaches a good approxim ation but in general a NN network can only learn the function 

in the domain in which the function was sampled. Increasing Np, and therefore the sampling, will 

not force the NN to learn th a t function outside [0,1]. These speculations are borne out in practice 

and are illustrated by extrapolation of the NN fit to function 3) plotted in Figure 3.16. Notice also 

th a t this plot illustrates the stable interpolation offered by a NN in th a t there were Np =  20 fitted 

points, but 50 plotted points.

Next I investigate the effect of using non-sequential random  presentation. The training set is still 

a set of N p points evenly spaced on [0,1], but now the patterns are plucked at random  and presented 

to the network. An iteration is now defined to be a presentation of Np patterns. This means th a t 

the need to define an iteration at all is purely superficial. As can be seen from Figure 3.17 the 

error varies quite dram atically from iteration to iteration when using random  presentation, bu t in 

the long-term it reduces the error as efficiently, if not more so, than sequential presentation does. 

The wild variations can actually be viewed as an advantage and, as observed in Hertz et al. (1991), 

can be though of as adding noise to the training procedure, which in theory a t least, can provide 

some insurance against getting stuck in a local minimum. Notice also th a t the instability  stopping
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Figure 3.17: Com parison of sequential and random  presentation in training a 1-8-1 FFNN on the 
five test functions; e =  0.036 and a = 0.9. The solid line shows the error per training iteration  for 
sequential presentation and the dashed line shows the error for random  presentation. Since random  
presentation caused rapid fluctuation in error the instability stopping criterion was not applied.
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criterion has been suspended when dealing with random presentation because the error fluctuations 

are so wild even over hundreds of iterations. It is also worth noting th a t the stopping criteria 

dictated above does not allow for the possibility tha t after instability, training could actually lead 

to smaller error than ju st prior to the instability jum p (see the discussion on the 1 — 1 — 1 network 

earlier). Finally, a completely random presentation scheme can be adopted, where the function is 

sampled randomly at each step of training. After several thousand iterations the effective sampling 

m ight be regarded as being very high. However, this is not a realistic prospect in real applications, 

because naturally, the input-output functional representation is not known, there is only a fixed set 

of examples which can form a training set.

Before moving onto the more practical concerns of fitting a finite data-set, which perhaps could 

contain noise or errors, I wish to point out the lim itations of the preceeding work. Firstly the 

above work assumes tha t the input-output relationship to be learnt can be expressed as an analytic 

function in the range of interest. In fact, this is an assumption tha t underlies the use of FFNNs in 

general. More to the point it was assumed that the activation function was analytic in the region 

of interest and th a t the activation function Taylor power series coefficients were non zero - tha t is 

g(n)(0) ^  0 for any n. For the sigmoid d2g / d x 2 =  0 at x =  0. In terms of the above argum ents this 

means tha t FFNNs using the sigmoid activation function cannot represent function 2), or indeed 

any function containing a quadratic term in its power series expansion about the origin, to within 

arbitrary accuracy. However, at odds with this is the fact th a t a 1 — 8 — 1 network can fit the 

function 2) quite well. The above methods showed only one possible way to arrive at a set of (linear) 

equations for the weights. It is equally valid to expand the sigmoid about any other point, where 

its second derivative, and therefore second order Taylor coefficient is non-zero. Another way to see 

this, in terms of expanding the activation function about the origin, is to imagine th a t the other 

coefficients in the power series arrange themselves to replicate the behaviour of x 2 in [0,1]. This 

again points out the fact that the network is under no obligation to learn the function underlying the 

sample patterns in the training set. In a similar vein it is possible to show th a t a l - H - l  FFNN with 

input activation function g(x) =  tanh (3x cannot represent any function with /(0 )  ^  0, since the zero 

order term  in its Taylor expansion is <jr(0) =  0. It is now interesting to ask, for the functions th a t do 

not contain a quadratic term, whether back-propagation is teaching the network’s the above analytic 

m ethod or some other, more convoluted, method of approxim ating the given function. Table 3.3 

compares 5 2 ^  W w n with an/ g ny where an is the n th polynomial coefficient of the function to fitted 

and gn is the n th coefficient in the Taylor expansion of g(x) about the origin. This was done for
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Table 3.3: Comparison of the Taylor expansion of the network’s fits to functions 2) and 3) with the 
polynomial coefficients for those functions.

Function 1 Function 3
n a n

Qti £ f =  i
a  n 
9 n £ ? = i w w n

0 1 0.997 1 1.026
1 2 2.033 0 -0.408
2 ? 0.561 ? 18.52
3 0 0.505 -96 -45.83
4 0 0.192 0 1 2 1 .6 8 6
5 0 0.136 0 -301.286

functions 1) and 3) above. It is immediately apparent th a t back-propagation had not taught the 

networks to learn what the analytic method above dictates. I have found this to be true in all 

investigated cases. Finally, it is also worth noting tha t the range of x for which the Taylor power 

series expansion of the sigmoid about the origin remains convergent is (—7r, 7r). (This is because 

at z — in, the complex extension of the sigmoid has a singularity). In practice, if using the above 

analytic m ethod to choose a network’s weights, this is not a problem because the input weights can 

be chosen to be as small as needed.

3.3 F ittin g  D ata  w ith  N oise

In the last section the functions under scrutiny were smooth and well-behaved. Also when a network 

was given samples from these “nice” functions, the examples were free from error. This section 

attem pts to bring the preceeding discussions closer to the reality of predicting time series with 

FFNNs by looking at data  which has a stochastic component. The problem in this section is to 

investigate the use of an 1-/7-1 FFNN in mapping sets of input values to ou tput values. However, 

now the outputs are not determined only by the inputs but also by some unpredictable factor - noise. 

An immediate consequence of dealing with desired output values which are not entirely determined 

by the inputs is tha t two identical inputs can have different outputs. But, there is no way th a t any 

FFNN, as defined in the present context, can respond to the same input value with two different 

ou tpu t values. As mentioned at the start of Chapter 1, there is no need to follow the d a ta  in each 

of its stochastic twists and turns, the goal is to predict only the predictable part of the relationship 

(what else?). To start with the simple case of a l -H - l  FFNN learning a deterministic function plus 

noise is investigated, and in the next chapter I shall examine I  — H — 1 networks and their success,



C H A P T E R  3. A N  IN V E STIG A TIO N  OF NEURAL N E T W O R K S 146

or failure, in predicting some of the time series introduced in Chapter 1.

3.3.1 N oisy Function Learning

The problem is superficially similar to tha t of function learning above. A function f ( x ) is chosen to 

be learnt over some of its domain, say [0,1] and Np sample points are calculated in tha t region giving 

input-output pairs (Xi, / (x ,  )), i =  1 , . . . ,  Np. However, before the training of the network begins the 

desired output values are doctored by adding some noise to each one, the training set pairs then 

become (x ,- ,/(x : ) +  a,) where a,- is any white noise process. For the moment I assume th a t the z t-’s 

are all different so th a t conflicting examples do not arise, and also so tha t hopes of reducing noise by 

combining patterns with the same input are dashed. The question is: how well can a FFNN learn 

the underlying function, and how does the variance of the noise and the number of hidden neurons 

affect this? Previous examples are encouraging, in th a t networks err on the side of a smooth fit, 

but equally it has been shown in theory th a t a FFNN with 20 hidden neurons can fit every single 

one of these data  points (since a 20th order polynomial can). In any case, without knowledge of the 

underlying function, the age old problem of noisy data  appears. Is it a smooth function distorted 

by noise or a jagged function which is free from noise? In other words, should all the data  points be 

fitted smoothly or exactly? Of course this is impossible to answer, but FFNNs, even with an excess 

of hidden neurons, tend to (unknowingly of course) plump for the former interpretation. T hat is 

FFNNs, or more precisely FFNNs trained by back-propagation, always a ttem pt to draw something 

sm ooth through the data, even if they are capable of fitting each point exactly. I dem onstrate this in 

Figure 3.18 by showing the results of using FFNNs with different numbers of hidden neurons to fit 

some of the above functions with varying levels of added noise. A strange result is also dem onstrated 

here. If more neurons are used the network seems more likely to be trained to just fit a straight 

line through the points in the training set. Increasing the level of noise or the number of training 

examples also encourages the network to make a straight line fit. It is im portant to stress th a t these 

results do not reflect on the network itself, they show how a FFNN, trained by back-propagation, 

behaves.

Another practical and potentially more serious concern might be noise on the inputs. T hat is a 

point x is selected to make an input-output pair th a t is (x , f ( x  +  a,)). W ith noise on the outputs 

the “error” on the outputs is ju st confined to the variance of the noise, however, even the slightest 

addition of noise to an input x  could have drastic effects on the desired ou tput if the derivative of 

/  is large or undefined near x.
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Figure 3.18: 1 — 1 2 —1 fits to functions 1) and 3) with added Gaussian white noise with standard  
deviation 0.1. The last plot shows the fit for function three using a network with 24 hidden neurons, 
surprisingly it fits a straight line. The solid line is the underlying function, the dotted lines with the 
+  ’s is the networks fit and the dashed lines with the diam ond is the training set points.
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W ith the addition of noise of any kind into the problem, the question of generalisation arises: is 

the network fitting the noise of the training set examples? The answer in the above cases m ust be 

no. The plotted points of the networks’ fits in Figure 3.18 contain a test set, th a t is every second 

point is not part of the training set. It is therefore obvious tha t overfitting is not a problem because: 

the training set points are not being fitted exactly; and the test set points are no more “incorrect” 

than the training set points.

3.4  C oncluding R em arks

In this chapter some simple FFNNs performing some simple problems have been investigated, as 

well as the (not simple) training algorithm , back propagation. In many cases it has been shown what 

the networks can, and cannot, be expected to do because of lim itations of numbers of neurons or the 

activation function used. It has also been shown th a t back-propagation is not reliable as a training 

algorithm , sometimes completely failing to train  networks to perform tasks th a t they should be able 

to perform in theory. In fact a glance at some of the e-a grid searches show th a t white squares can lie 

next to black squares - th a t is two neighbouring sets of training param eters can lead to success and 

failure in training. W hat is more when one zooms in on one of these grid searches a sim ilar situation 

is seen in m any instances. The process of training these FFNNs with back propagation seems to be 

a chaotic one - not a desirable feature. However, when fitting a function over a part of its domain 

in which it is analytic and with certain provisos on the input activation function used, it has been 

shown in this chapter how back-propagation can be essentially replaced by the (construction and) 

solution of a system of linear equations.

Most of the above work was concerned only with l - H - l  FFNNs, but many of Ahe above results 

can be extended to apply to learning functions of I  variables, i.e. using an I - H - 0  FFNN. In the 

Appendix Section A.4 the analytic training of an I  — H  — O FFNN is explored with sim ilar, but 

of course more complicated, results. In the next Chapter, instead of attem pting  to investigate the 

general problem of fitting functions if I  variables numerically, I turn directly to face the prediction of 

tim e series with I - H - 0  networks. Armed with some detailed knowledge of the simpler cases studied 

in this chapter, knowledge comprised of both experim ental experience and theoretical insight, the 

more practically minded studies of the next two chapters is given an intuitive basis from which to 

proceed.



C hapter 4

Prediction o f Artificial T im e Series

“Treason, treachery, infamy, infamy!!! Oooh, they’ve all got it in for me.” Julius Caesar

Not surprisingly Neural Networks do not predict the future without error. Some configurations of 

Neural Networks are capable of making better predictions than others, and the best configurations 

for predicting one time series are not necessarily best for predicting other time series. In this Chapter 

I investigate how different networks perform on a variety of artificial (i.e. non-natural) time series.

The basic aim of this Chapter is to shed some light on how FFNNs make predictions of time 

series by using examples where theory and practice can be compared. By “theory” , I mean both the 

theory of time series, as described in Chapter 1, and the theory behind neural networks. Regarding 

the latter, I shall use the method of analytic training, introduced in the preceeding Chapter, to show 

how many hidden neurons are needed to predict some simple time series. The most im portant issue 

to emerge out of the following results is th a t of the delay effect, the implications of this effect will 

be discussed in depth at the end of this Chapter.

4.1 Criteria o f Success

Before exploring the infinite param eter space of possible FFNNs (different numbers of inputs, hidden 

neurons and outputs), training algorithm s and param eters, it is prudent to discuss what is actually 

m eant by “better predictions” . T ha t is, what should be the criteria of successful prediction? Two 

obvious criteria are the absolute and squared difference between the predicted value and the actual 

value. The question is: is one of these sufficient to assess the success of prediction by itself? The

149
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answer is no, because of a problem such as “delay” , which will be discussed as and when the issue 

arises throughout this chapter.

Given the original time series, {/*}, and the predictions made of a sequence of N  elements within 

this tim e series, {pi}, an RM S error can be simply defined as

£ r m s  =  p ‘ ~>2 ( 4 . 1 )

or as a percentage error

E % r m s  =  1 0 0 \

Another commonly used error is the x 2 statistic:

t n  f (t, - P l ) ) 2 

‘_1  ̂ ** (4.2)
N

N

=  (4.3)
■ Pii = l yx

In the case of predicting Sunspot number, the RMS error is usually greatest near the m axim a in SSN, 

while the % RMS error tends to be greatest at regions of low time series values, e.g. SSN minima. 

The x 2 statistic must be treated with some caution because the prediction error is not necessarily 

distributed according to the normal distribution. Nonetheless, even though it may lack its usual 

statistical meaning in this context, it has been a commonly used measure of success in the past, 

for example Holland and Vaughan (1984) and *Macpherson (1993). Even from this brief sum m ary 

it is quite clear th a t each error measure exaggerates some features of the prediction accuracy and 

obscures others. This suggests th a t one error measure is certainly insufficient in describing the 

quality of a set of predictions. As discussed in Chapter 1, the residuals of a good prediction scheme 

should form a white noise time series, tha t is there should be no structure left to predict. However, 

establishing the “whiteness” of noise, whether it is done by looking directly at the mean and variance 

or by analysing the spectrum is not a trivial problem and I do not perform such tests in this chapter. 

In addition to the above three error measures, another tool th a t will prove itself invaluable later is 

the time shift measure, Tt , defined:

Tr = ^ ( t i + T  -  Pi) 2 (4-4)
i — 1

The tim e shift function at lag r  can be thought of as the re-calculated RMS error after the prediction 

curve have been slid along the time axis by t time-steps. The time shift function can also be w ritten

as
N - t

r T2 =  ^  +  P’ - 2 - L - £ t i+T
i = l
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Figure 4.1: A plot of a) 6 m onth ahead predictions of geomagnetic K p index m ade with a 12-12-1 
FFNN and b) the time shift plot for these predictions.

where the last term is —2 times the sample covariance at lag r  between the predictions and the time 

series.

For assessing the accuracy of the results in this thesis, I have chosen to use the RMS error and 

the time shift plot. I use the RMS error because it is perhaps the most commonly used error by 

others (see the end of Chapter 1), and because, to my mind at least, it is the one th a t provides the 

most im m ediate meaning. The reasons why the time shift function is useful is the subject of the 

following section.

4.1.1 D elay and echo

In using FFNNs to predict time series, it has been my experience tha t many prediction plots of time 

series, such as those in Figure 4.1a, seemed to resemble the original time series shifted a couple of 

steps forward in time. This apparent “delay” can be tentatively interpreted as the network echoing 

its most recent input as an output. To verify if this is the case the time shift function, as defined 

in (4.4), was used to produce graphs such as the one in Figure 4.1b. Each point on this graph is 

obtained by sliding the predictions r  months along the time axis and recalculating the error. In this 

case the predictions are made 6 months ahead, but the time shift plot indicates th a t they best match 

the original time series if they are slid 1 months backwards. In this sense they are really predictions 

of 5 m onths ahead. However, predictions are still being made so this Delay Effect, as I shall call it 

from here on, is not just a simple echoing of an output. As shall be seen in this chapter, predictions
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invariably suffer from delay, sometimes it is the straight echoing of an input at an ou tput, but most 

often it is seen as a minim um  in the tim e shift curve th a t is not a t r  =  0 .

4.2  C hoices

The two main choices th a t have to m ade in using a NN to predict a time series are deciding its 

architecture and selecting a training scheme.

4.2.1 A rchitecture

In general, the architecture of a neural network refers both to the number of units in the network, 

and to how they are connected. In this chapter the only class of networks under consideration is th a t 

of the two layer feed forward neural network, so tha t the architecture of the network is completely 

specified by the number of neurons in each layer. Remember th a t a FFNN has an input layer, a 

hidden layer and an ou tput layer, where the connections relay the input da ta  to the hidden layer, 

and relay the hidden neuron data  to the outputs. This produces a functional transform ation of 

the inputs a t the outputs, where the outputs are required to be predictions of the future. The free 

param eters in designing a FFNN architecture are then:

J - The number of inputs

H  - The number of hidden neurons

O - The number of outputs

H ow  s h o u ld  th e  n u m b e r  o f  in p u ts  b e  ch o sen ?  Clearly, only one input wifi not be enough to 

make a meaningful prediction, except for some special cases where the time series is determ inistically 

monotonic. If the time series is deterministically periodic, and has only one m axim um  (or m inim um ) 

per period, for example a sinusoid, then two inputs will be sufficient. In such cases the extravagance 

of using many inputs covering the tim e series’ ancient history will then slow down training needlessly. 

It is interesting to note th a t although the NN does not need these earlier values to make an accurate 

prediction it m ight still make use of them  (see later 4.3). Likewise, one m ust also be careful not 

to present the network with too much detail a t the inputs, e.g. predicting at one year ahead with 

365 daily inputs. In any case, using more units than is needed will slow training. It is therefore 

apparent th a t the m inim um  number of inputs needed to predict a given tim e series depends on both 

the nature of the tim e series in question and the form at in which it is presented. These choices are
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really a m atter of common sense. For example, 13 m onth smoothed sunspot num ber (as defined in 

section 1.7) shows features down to a time scale of a few m onths and exhibits the trend of the solar 

cycle on tim e scales of 6 m onths and above. This suggests th a t 12 m onthly inputs spanning the last 

year of SSN will be a reasonable choice if the NN is to predict on a scale of 6 m onths and beyond.

H ow  sh o u ld  th e  n u m b e r  o f  h id d e n  n e u ro n s  b e  ch o sen ?  As their nam e suggests the 

values of the hidden neurons have no obvious meaning and therefore the choice of the number of 

hidden neurons is arguably the m ost difficult. The last chapter showed how to determ ine how many 

neurons were required to fit analytic functions using a 1-/7-1 network. Here there are two apparent 

complications: firstly, the precise future-past relationship of the time series da ta  is not likely to be 

expressible as an analytic function, if only because of a stochastic component; secondly, as discussed 

above, a FFNN which is to be of use in the prediction of tim e series m ust have I  > 1. Referring to 

the first problem, and harking back to Section 1 .1 , a general form 1 for a tim e series is

X t = P0 ( X t - i , . . . , X t - l ) + at (4.5)

where at is an (unpredictable) white noise tim e series. To predict this time series using a FFNN with 

one ou tpu t predicting at one-step-ahead, the I -H - l  network would need to represent the function 

Fq(Vi , ■ ■ ■,Ui), where the y,s are the network inputs. T ha t is, in this case, the FFNN has ju st to 

fit a function of I  variables. If the function is analytic then the analytic training m ethod of the 

last chapter becomes relevant, as I shall dem onstrate later in Sections 4.3 and 4.4. The range of 

the inputs over which P o (y i , .. ■, yi)  m ust be fitted can be envisaged by im agining the t/,s to form 

a vector, this vector defining a point in an I-dimensional sta te  space. It is then obvious th a t the 

predictor function need only be fitted in regions of the sta te  space th a t the tim e series is likely 

to visit, as illustrated in Figure 4.2 - in the terminology of chaotic mechanics this region is the 

a ttrac to r. This point is returned to in more detail in Section 4.3 where the simple case of predicting 

a sinusoid is considered. So, with a known analytic predictor function, it is possible to say with some 

certainty how m any hidden neurons are needed to obtain a perfect fit2 of the function. Of course, 

the tim e series form given in (4.5) is not the most general, and, as pointed in Connor et al. (1994), 

recurrent networks may be required to handle moving average type term s. The second problem, 

th a t of extending the analytic training m ethods to cope w ith more than 1 input is dealt with in 

Appendix Section A.4.

1 T h is  is n o t  c o m p le te ly  g en era l b e c a u s e  n o  m o v in g  average  ty p e  ter m s are in c lu d e d  a n d  n o  e x p lic it  t im e  d e p e n d e n c e  
is  a llo w e d  - see  S e c tio n  1.1

2 R e c a llin g  th e  m e th o d  o f  a n a ly t ic  tra in in g  from  b e fo re , th e  fit is  a c tu a lly  a s y m p to t ic a lly  p e r fe c t
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Figure 4.2: Figure a) shows a sinusoid with added Gaussian noise. Figure b) a sta te  space plot 
showing, the path  of both the sinusoid with added noise (the points) and a sinusoid w ithout added 
noise (the curve).

H ow  s h o u ld  th e  n u m b e r  o f  o u tp u t  n e u ro n s  b e  ch o sen ?  The simplest case is to have only 

one ou tpu t predicting at p steps ahead. For tim e’s sake this is the only case th a t I shall examine. 

An alternative is to have O outputs predicting at p \ , p 2 , . . . ,  po  steps ahead. *M acpherson (1993) 

found the surprising result th a t this m ultiple output m ethod, with pt- =  i, gave slightly better 

performance than  single output networks. Finally, as shown in Appendix Section A.4, the analytic 

training m ethod for an I -H - l  network can be generalised (relatively easily) to an I -H -O  network, 

though there will be a factor of O more sets of linear equations to solve for the ou tpu t weights.

4.2.2 Training Schem es

For the work in this chapter standard back-propagation will be employed as the training algorithm . 

Tests will be carried out to find out what values of training param eters are best and which architec

tures are best. In addition I shall dem onstrate the method of analytic training in finding the weights 

for some of the time series predicting FFNNs. Since these numerical tests are very tim e consuming 

they will not be performed exhaustively for every conceivable com bination of param eters. Instead 

I shall use some hindsight and experience, as well as some educated guess-work, to decide which 

particular cases are worthy of investigation. Note tha t, when using back-propagation, training is 

stopped when one of the following occurs

1. If after the first 100 iterations the error has increased for ten iterations.
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2. The number of iterations has reached 20,000.

Justification for these stopping criteria is given in Section 3.2. Unless otherwise sta ted  the

learning param eters are taken to be e — 0.01 and a  =  0.9. If the completed num ber of iterations

reads as 1 1 1 , then this alm ost certainly means th a t training was never stable.

4.2 .3  Test T im e Series

The following tim e series will be used throughout this chapter to provide a basis for the numerical 

tests. I have chosen to split them  into five groups, each group represented by an acronym:

EXn Tim e explicit. T h a t is X t = f ( t )  +  at .

NARn Auto-regressive type time series.

NMAn Moving average type time series.

NAMn Mixed Auto-regressive Moving average type time series.
Each group is given its own section, with the test tim e series for th a t group given in a numbered

list at the beginning of th a t section. The ‘N’ in NMA and the other acronyms is used to distinguish 

these tim e series, which are possibly non-linear in form, from the classical and linear Box-Jenkins 

models. Also the use of at is reserved to mean a Gaussian white noise process and likewise n  and 

a 2 are reserved to denote the mean and variance of at . It is also worth noting th a t, in the software 

th a t I have w ritten, the tim e series da ta  are always scaled to lie between 0.2 and 0.8 - reasons for 

this and a complete description of the Neural Network software can be found in Appendix B. Unless 

otherwise stated  I use the first 105 time series elements, i.e. t = 0 , . . . ,  104 as a training set and the 

next 45, i.e. t = 1 0 5 ,.. . ,  149, as a test set. The Gaussian white noise series was generated using 

the NAG routine g05ddf and was also used to supply the “start-up” values for NAR, NMA and 

NAM tim e series examples. Each time series used the same realization of these white noise random  

numbers, th a t is to say the random  number seed for the generator was the same for each generated 

tim e series.

Finally, a note of warning about the results concerning the RMS prediction errors. The RMS 

errors give an indication as to the size of the errors for each network on each tim e series’ test set. 

The standard  deviation of these RMS errors was nearly always as large as the error itself. In practice 

this means th a t if, for example, the set has five examples removed and the error is re-calculated, 

then the RMS error can differ by several percent from its original value. So in m any cases it is 

simply not meaningful to talk  about one network as being more successful than another network 

if the difference of the errors is quite small. However, a t the same time, removal of a few training
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patterns can affect all the networks’ errors in much the same way - e.g. the removal of 5 “hard to 

predict” patterns will reduce all the errors. For the NAE5 time series I have quoted two sets of 

errors, the second set calculated on a slightly different test set. Note tha t the ranking of networks 

in term s of test set error is preserved and general conclusions like “Networks with 8 inputs perform 

worst” can be drawn from either set of errors. So, when a statem ent like “the best NN achieves a 

prediction error tha t is signficantly better an echo” is made, use of the word “significantly” has been 

justified by checking the prediction errors in the m anner ju st described.

4.3  T im e Explicit T im e Series

These are time series which can be written as

X-t =  f { t )  + a t

The only two time series I shall investigate in this section are

EX1) X t = t — 1850 +  at
2 tt

EX2) X t  =  100 -I- 100 sin  ̂ t cit

The results of using different networks to predict different realizations of these tim e series are doc

umented in the following pages. Each page has a table showing the final test set RMS error and 

num ber of iterations for each network, a commentary on the results, a plot of the best netw ork’s 

predictions and the associated tim e shift plot. The convention from here onwards is th a t the da ta  

to be predicted is shown as a solid line and the predictions are shown as a broken line.

E X 1: X t = t — 1850 +  at This tim e series can be re-written as an ARMA(1,1) tim e series:

Xt — (X t- \  — u j- i )  +  1 +  a,t

— X t - i  +  — u t- i  +  1

It is easy to see th a t the best prediction one step ahead, using only the last value, is ju st X t+\ =  

X t  +  1. The expected RMS error on such a prediction is %/2 cr. Given the last I  values of a tim e 

series of the form X t = bo +  b\t +  a (, it is possible to reduce the expected RMS error further by 

adopting the following prediction scheme:

Xt  =  y  ^  X t - i  +  b]_ -
l  —  \
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The residuals, Yt = X t — X t , then possess the properties

E[Yt\ = 0 

Var[Yt] =  cr2 ^1 +

th a t is the predictions are unbiased and have an expected RMS error of crw (1 +  y). In fact this

prediction m ethod is the best th a t can be hoped for, in the least squares sense, given access to only 

I  inputs.

In testing network performance on the EX1 time series, four different realizations of the tim e 

series were generated, each with a different noise level. They are labelled as follows:

n No Noise 

a <r =  0.1 

b cr = 1 

c a = 5

At this point it is interesting to ask how the architecture of the FFNN determines its ability to 

predicting the EX1 tim e series. From above, the predictor function for this time series is

The output of an I -H - l  network can be written to first order in the inputs by using a m ulti

dimensional Taylor expansion about x,- =  0 i = 1 , . . . ,  /  as

(4.6)
1 = 1

(4.7)

where gQ — #(0) and gi = £f'(0). Com paring (4.6) and (4.8) shows th a t the network weights m ust 

satisfy the following two equations
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E X ln :  As m ight be expected the network cannot learn to generalise well to the test because the 
test set values are outside the range of the training set values. Notice, though, th a t the training set 
values are well fitted. The tim e shift plot shows something interesting which serves as a warning for 
later use, in th a t a minimum of 3 m onths is caused not by any delay or echoing effect, bu t by the 
consistent under-estim ation of the predictions on the test set.

Table 4.1: The results of predicting the E X ln  time series with different architectures of FFNN.

Hidden
No. of Inputs 

2 | 4 | 8

2
R M S  e 
4.534

rror on 
5.487

Test Set 
5.374

4 4.897 4.515 4.316
8 2.915 3.817 3.792

2
Numb

2 0 0 0 0
er of lie 

2 00 0 0
rations

2 0 0 0 0
4 2 0 0 0 0 200 0 0 2 0 0 0 0
8 2 0 0 0 0 200 0 0 2 0 0 0 0

150

140

130

1 2 0

110

1 0 0

202020001960 198019401900 1920

9

8

7

6

5

4

3

2

1

0
0 2 4 6•2-4•6



C H A P T E R  4. P R E D IC TIO N  OF ARTIF IC IA L  TIM E  SERIES 159

E X la :

Table 4.2: The results of predicting the E X la  time series with different architectures of FFNN.

Hidden
No. of Inputs 

2 | 4 | 8

2
RM S
4.540

rror on 
5.496

Test Set 
5.391

4 4.903 4.521 4.325
8 2.920 3.824 3.802

2
Numb

2 0 0 0 0
er of Ite 

2 00 0 0
rations

2 0 0 0 0
4 2 0 0 0 0 2 0 0 0 0 2 0 0 0 0
8 2 0 0 0 0 2 0 0 0 0 2 0 0 0 0

1 5 0

1 4 0

1 3 0

1 2 0

110

1 0 0

4 0
20201 9 4 0 1 9 6 0 1 9 8 0 20001 9 0 0 1 9 2 0

9

e
7

6

5

4

3

2

1

0 62 4-4 •2 0-6
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E X lb :

Table 4.3: The results of predicting the E X lb time series with different architectures of FFNN.

Hidden
No. of Inputs 

2 | 4 | 8

2
RM S  e 
4.756

rror on 
5.767

Test Set 
5.915

4 5.087 4.750 4.739
8 3.181 4.098 4.117

2
Numb

2 0 0 0 0

er of Ite 
2 0 0 0 0

rations
2 0 0 0 0

4 2 0 0 0 0 2 0 0 0 0 2 0 0 0 0

8 200 0 0 2 0 0 0 0 2 0 0 0 0

1 6 0

1 4 0

1 2 0

1 0 0

8 0

6 0

4 0
202020001 9 8 01 9 6 01 9 4 01 9 2 01 9 0 0

9

e
7

6

5

4

3

2

1

0 62 40-2-4•6

iI
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E X lc :

Table 4.4: The results of predicting the EX lc time series with different architectures of FFNN.

Hidden
No. of Inputs 

2 | 4 | 8

2
RM S
7.529

rror on 
8.545

Test Set 
9.458

4 7.771 7.435 8.052
8 6.426 6.908 7.221

2
Numb

2 0 0 0 0
er o f lie 

2 0 0 0 0
rations

2 0 0 0 0
4 2 0 0 0 0 200 0 0 2 0 0 0 0
8 200 0 0 200 0 0 2 0 0 0 0

160

140

1 2 0

1 0 0

80

20201980 20001940 19601900 1920

12

10

8

6

4

2

0 62 4-2 0-4-6
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Figure 4.3: This plot shows the results of using an “analytically trained” 3-2-1 FFNN to predict 
the E X lc tim e series. The RMS error of these prediction, 5.37, is lower than any of the networks 
trained using back propagation. The expected RMS error for these predictions is 5.77.

As with the examples in the previous chapter the input weights can be chosen to be small enough 

to achieve an arbitrarily  small error. A convenient solution to the above equations involves putting  

vj = Wji and H  = 2, which is possible because the RHS of the second equation is independent of i. 

Doing so allows the following prescription for finding a Network to predict the EX1 time series:

•  Choose iq and v2, where v\ ^  v2 to be small

•  The ou tpu t weights are then given by

r xr  — V2 A 0
W\  =  -------------------

Vi  -  V2

TXT ^ 1  -  V l A ow 2 = ----------
v2 -  Vi

Figure 4.3 shows predictions of EX lc using a 3-2-1 FFNN th a t had its weights specified in this 

way. The RMS error of these predictions, 5.37, is much better than  any of the errors from networks 

trained by back-propagation, and is close to the expected RMS error of 5.77. To sum m arize, it has 

been shown

1. th a t only two hidden neurons are necessary to predict the EX1 tim e series as well as possible 

in the least square sense, for any number of inputs.
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2. th a t the use of I  inputs yields an expected RMS prediction error of cry ( l  +  j ) ,  i.e. the more 

inputs used the better the prediction

3. how to find the weights of such of network by the solution of a system of two equations in two 

unknowns

This analytically trained network will perform well on any realization of the EX1 tim e series where 

ymax^max ^  ^  satis^e{j ) being the largest (in the absolute sense) input weight and xmax being 

the largest input. In contrast, back-propagation can only hope to train the network to perform well 

in the regions of the inputs tha t were represented in training.

E X 2: X t =  100 -f 100 sin +  at . For this time series a training set of two periods was used i.e. 

t =  0 , . . . ,  199 with a third period serving as a test set, i.e. t =  2 0 0 ,.. . ,  299. Over one tim e step the 

m aximum change in the time series will be approximately

A X * m ax ~  2 t t c o s 0  =  2 tt

so the variance of the noise in these tests is scaled accordingly, each of the four levels of noise 

receiving a label:

n No Noise

a Var[dt]= j^ir2

b Var[a*]= 7r2

c Var[at]=  167r2

Table 4.5 shows the test set RMS errors for FFNNs with linear output activation functions, with

different numbers of input and hidden neurons - the output in each case only predicts one step ahead.

The lower part of this table shows whether or not the time shift plot of the predictions showed any 

signs of the following:

Echoing X t = X t~\

Averaging X t = \ { X t- i  +  X t_ 2)

Delay Tim e shift plot minimum is not at r  =  0 but neither

echoing nor averaging is in evidence.

where X t represents the network’s prediction of X t . All three appear on a tim e-shift plot as a 

minim um  at r  < 0 , where delay and echoing have a single minimum at r  =  —1 and averaging
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Table 4.5: The results of predicting sine plus noise with different configurations of NN. The upper 
part of the table shows RMS error on the test set for each configuration and noise level, while the 
lower part shows whether or not the predictions are affected by echo.

2 4
No. of Inputs

8 12

n a b c 1 11 a b
Variance of Noise 

c | n a b c 1 n a b c
R M S error on Test Set

2 1.49 2.35 6.44 17.05 0.65 1.55 5.06 17.02 1.34 1.76 5.26 17.40 0.92 3.82 6.42 17.16
6 1 .21 2 .1 2 6.44 17.05 0.85 1.44 5.10 17.32 0.71 1.56 4.76 16.88 0.83 1.47 5.09 15.25
12 0.87 2.13 6 .6 8 17.34 0 .2 0 1.47 5.10 17.21 0 .1 1  1 .68 4.68 17.15 3.04 2 .1 2 6.50 17.27

2 N* N* E A N* N
Is the Netwc 

D A
trk Echoing? 

N* N D* D* N* N D D
6 N* N E A N* N D D N* N* D D* N* N N D
12 N* N* E E N* N* D D* N* N D D N* N E E

K ey  to  table:

* Test set error was still decreasing when training was stopped at 100,000 iterations 

E Predictions showed pure echoing

D Predictions had lower RMS error when slid back one time step 

A Predictions showed pure averaging over most recent two inputs 

N Predictions showed none of the above

appears as a flat-bottom ed minimum covering both r  — — 1 and r  — —2. The distinction between 

echoing (or averaging) and delay is governed by the difference between the RMS error for the NN’s 

prediction and the RMS error attained by echoing. If the two are the same, the predictions are 

classed as echoed, if the RMS error for prediction is significantly lower than  th a t for echoing then 

the predictions are classed as delayed. In any case, inspection of the plot of NN predictions will 

clearly show if either pure echoing or averaging is present.

Before discussing the results of these tests it is of interest to examine the task the network is 

trying to learn. The FFNN m ust learn a function such th a t

X t =  P ( X t. u X t. 2, . . . , X T- i )
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Table 4.6: The results of predicting sine plus noise with NNs of different configuration. In this test 
the NN’s input activation functions were linear (by accident!), turning the network into a linear AR 
model. The learning param eter e was initially taken to be 0.001 and altered after 100,000 training 
iterations as described in the text. The upper part of the table shows RMS error on the test set for 
each configuration and noise level, while the lower part shows whether or not the predictions are 
affected by echo.

2 4
No. of Inputs

8 12

n a b c n a b
Variance of Noise 

c | n a b c n a b c
R M S error on Test Set

2 1.19 2.35 6.44 17.05 0.65 1.55 5.06 17.02 0.79 1.76 5.26 17.40 3.57 3.82 6.42 17.16
6 0.26 2 .1 2 6.44 17.05 0.60 1.44 5.10 17.32 0.12 1.56 4.76 16.88 1 0 “ 4 1.47 5.09 15.25
12 0.26 2.13 6 .6 8 17.34 0.82 1.47 5.10 17.21 0.56 1.68 4.68 17.15 3.04 2 .1 2 6.50 17.27

2 N* N* E A N N
Is the Netw  

D A
ork Echoing ? 

N* N D* D* N N D D
6 N N E A N N D D N* N* D D* N N N D
12 N N* E E N* N* D D* N N D D N* N E E
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expanding X t  in terms of X t~i can be achieved as follows

2 tt
X t = 100 +  100 sin

=  100 +  lOOsin ^  ((< -  1) +  1)

=  100  +  100 sin — 1) cos +  100  cos ^-—(t — 1) sin
1 0 0 v J 100 10 0 v '  100

Yoq — 1 and letting s —  sin ^

*  = ^ -‘ + 100s| S ^ ( 1- sin!M ^ -1))5

-  I'Vt-i -  x t - i \  i 2X ,- i _ i o r

Another approxim ation has been made in using the sign of A t_ i — X t ~ 2  to correctly express the 

cosine in term s of the sine. The predictor function is therefore (approximately)

P(x , y)  =  x +  (2 1  -  —
V 100

which is discontinuous along the line y  =  x. However, the network does not need to learn to fit the 

entire surface of z — P (x ,y ) ,  it only needs to learn the function for values of x  and y on the curve 

given param etrically as

27T
x =  100 +  lOOsin — t 

2 tt
y = 1 0 0 + lOOsin— ( < - 1 )

So already it is obvious th a t the seemingly simple case of predicting a sinusoid corresponds to the 

learning of a complicated two dimensional function. It is also obvious th a t two inputs is the bare 

m inim um  and it seems likely th a t more than two hidden neurons will be required to represent the 

predictor function. Another fact th a t has been highlighted is th a t the predictor function need only 

be fitted in a restricted region, in this case on a curve on a surface instead of the whole surface or, 

as illustrated earlier in Figure 4.2, for a sinusoid with noise. All the approxim ations used above are 

improved as the tim e interval between tim e series elements is reduced, or equivalently as the period 

of the sinusoid to be learned is increased. The addition of noise will render the above scheme useless, 

essentially because the numerical gradient (implicitly used in the scheme) is rendered alm ost useless 

when noise is present. To compensate for the noise, more inputs will be needed so th a t the network 

can perform some kind of sm oothing of input data. The results in Table 4.5 show two interesting
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features. Echoing and delay is more prevalent when the variance of the noise is large and when many 

hidden neurons are used. The first is expected, because as the noise is increased it seems reasonable 

th a t it will be more difficult for the network to learn the underlying predictor function. The second 

is somewhat surprising, but might indicate th a t the addition of the extra hidden neurons has again 

made it more difficult for the network to learn the predictor function. Note th a t in the case of no 

noise pure echoing results in an error of 27r, so th a t any RMS error of more than about 6.28 indicates 

th a t the network is not really producing any kind of useful prediction. If noise is present then the 

RMS error for the best prediction, i.e. X t = 100 +  lOOsin is ju st a, whereas the largest RMS 

error incurred by echoing will be y/2a2 + 4ir2. It is clear, therefore, th a t in predicting the sinusoid 

the error from echoed prediction is always considerably larger than for the best prediction method. 

So why, then, does the network echo? The question can also be applied to averaging because in some 

cases networks actually appear to average the most recent two inputs, rather than ju s t echo the most 

recent one. The RMS error incurred by averaging is y/2a2 +  97t 2, which is much larger than  th a t of 

echoing. It can also be seen tha t averaging seems to occur in the presence of large variance noise 

when there are 2 or 4 inputs and 2 or 6 hidden neurons. This might suggest tha t, in the presence of 

high noise and, for networks with fewer neurons, training produces networks th a t average. W hether 

it is echoing or averaging th a t is the end result, the behaviour betrayed in these tests is consistent 

with training halting at a stable local minimum. These m inim a being termed “local” because they 

do not correspond to the prediction task the network was required to learn. There is, however, no 

easy way to be sure if this is really the case. One possible test is to take the same architecture and 

re-train it with different param eters starting  each time from a different point in weight-space. If 

the global minim um  is found then it seems safe to conclude th a t echoing is a local minim um  pitfall 

of training. However, failure in these tests to find the “global” minimum proves nothing, though it 

may suggest th a t if a global minim um  does exist a local minimum of echoing or averaging is more 

attractive to the network when trained by back-propagation. I do not perform these tests here.

4.4  A uto-R egressive T yp e T im e Series

These are tim e series which can be w ritten as

X t = b iX t- i  +  a (
1 = 1

The tim e series I shall investigate in this section are 

N AR 1 ) X t =  Art_ i + a *



C H A P T E R  4. P R E D IC TIO N  OF A R TIFIC IAL TIM E  SE RIES 168

NAR2) X t =

NAR3) X*

NAR4) Xt

NAR5) Xt

X t . !  + * t _ 2
+  dt

\ f x f - 7 + W _ ,
+  (it

‘t - i  _  X t _ 2 +  at 

O.bXt—i — 0 .2 X t ~ 2  — 0 ,4X t—3 — 0 .1X f_4  +

In all of these tim e series the white noise series has a — 0.1. The NAR1 series is a random  walk 

tim e series and is actually non-stationary. The realization of it used for these tests is characteristic 

of a random  walk in th a t it embarks on an excursion beneath zero, a phenomena which is referred 

to as a stochastic trend. Another realization might equally well show an excursion above zero or 

perhaps ju s t small oscillations about zero. Since the same set of random numbers is used for all five 

of the NAR tim e series, it is not surprising to see the NAR2 and NAR3 time series behaving in a 

very similar manner. For linear AR series an analytic prescription for the networks can be derived 

as before. In the least squares sense the best predictor function is ju st

Pa( X , =  Y . biX'-'
I — 1

so equating term s with an I  — H  — 1 network’s output, given in (4.8), gives the set of I  + 1 equations

H

T , w > = 0
j =i

H b-
Wj Wji -  —  — A, i = 1 , . . . ,  I

U  91

th a t need to be satisfied. Since the above set of equations is linear in the ws as well as the W ,  for a 

FFNN to represent a general linear AR time series only 2 hidden neurons are needed. W ith H  — 2 

and writing a = W\  =  — W 2 , the above set of equations become

Wi  +  W2 =  0  

a (w u  -  w 2i) -  A{ i — 1 , . . . ,  /

Choosing small input weights only requires th a t a  is scaled up, so the approxim ation can easily 

be m ade as good as is needed. W hen dealing with the non-linear AR tim e series in this way the 

fact th a t g2 =  0 for a sigmoid is once again an obstacle. This means th a t, in general, a FFNN 

with sigmoidal input activation functions and linear ou tput activation functions cannot be expected
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to represent a non-linear AR tim e series predictor function to arbitrary accuracy. Of course, as 

mentioned before, a FFNN trained by back-propagation might find a close approxim ation to such a 

non-linear function over the range of inputs represented in the training set. In any case, the error 

due to the unpredictable noise term  might well dom inate any error incurred by failure to represent 

the predictor function exactly.
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N A R 1 : The best prediction scheme for this time series is ju st an echo, i.e. X t = X t~ 1, and it yields 
an error of 0.096 on the realization of the time series used here. None of the networks of Table 4.7 
learned to echo particularly well, with the 4-2-1 network achieving the best error of 0.104. It is also 
apparent th a t the use of 8 inputs results in the poorer test set errors a t the end of training.

Table 4.7: The results of predicting the NAR1 time series with different architectures of FFNN.

Hidden
No. of Inputs 

2 | 4 | 8

2
RM S  e 
0.105

rror on 
0.104

Test Set 
0.118

4 0.105 0.105 0 .1 2 2
8 0.108 0.114 0.129

2
Numb

18475
er of Ite'i 

200 0 0
rations

13366
4 15861 13407 18194
8 20000 10679 2 0 0 0 0

- 0.2

-0.4

- 0.6

- 0.8

-1.4

20201980 20001940 19601900 1920

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
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A JC + xN A R 2 : In this case the best prediction scheme, X t = 2— yields an error of 0.096. It would
be expected th a t no other prediction scheme could beat this error, but it turns out th a t a simple 
echo scheme actually yields a slightly lower error of 0.092. This strange result is due to the particular 
realization of the tim e series th a t is used here. As can be seen from Table 4.8 none of the networks 
came particularly close to either of these errors. Again the larger networks, with 8 inputs or 8 hidden 
neurons had the worst errors a t the end of training.

Table 4.8: The results of predicting the NAR2 time series with different architectures of FFNN.

Hidden
No. o f Inputs 

2 | 4 | 8

2
R M S
0.104

irror on 
0 .1 0 2

Test Set 
0 .1 1 2

4 0 .1 0 1 0.105 0 .1 2 0
8 0.108 0 .1 1 2 0.128

2
Numl

7708
ter of It 

4870
zrations

3774
4 371 9290 12225
8 8677 6026 15503

- 0.2

-0.4

- 0.6

- 0.8

-1.4
2020200019801940 19601900 1920

0 .3

0.25

0.2

0.15

0.05
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/~X\\ X. t
N A R 3 : Using the prediction scheme X t = ^ —i—\ — — , the error obtained is 0.093. Echoing gave 
rise to a prediction error of 0.097. The most successful networks in Table 4.9 were those fewer 
neurons, but still, none of networks improve upon echoing.

Table 4.9: The results of predicting the NAR3 time series with different architectures of FFNN.

Hidden
No. of Inputs 

2 | 4 | 8

2
RM S
0.117

rror on 
0.115

Test Set 
0.143

4 0.117 0.129 0.128
8 0.116 0.130 0 .1 2 2

2
Numb

8145
er of lie 

111
rations

111

4 200 0 0 4669 111
8 2 0 0 0 0 6503 607

0.6

0.5

0.4

0.3

0.2

- 0.1

- 0.2

-0.3
202020001960 1980194019201900

0.18

0.16

0.14

0.12

0.08

0.06

0.04

0.02
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N A R 4 : Using the prediction scheme X t  =  ^<2_ i — X ? _ 2 yields the error 0.093, with echoing giving 
an error of 0.111. As can be deduced from the form of the time series the predictable part, i.e. 
X ^ _ l — X f _ 2, is always going to be small and therefore swamped by the noise for a a = 0.1. This 
explains why the predictions appear less spread around 0 than  the data. In Table 4.10 it seems tha t 
all the networks have achieved reasonable success, at least equally or improving upon a simple echo. 
However, it is quite sobering to realise th a t if the absurdly simple prediction scheme, X t =  0, is used 
then the error is 0.099 - better than any of the networks.

Table 4.10: The results of predicting the NAR4 time series with different architectures of FFNN.

Hidden
No. of Inputs 

2 | 4 | 8

2
R M S
0 . 1 1 0

rror on 
0 .1 0 2

Test Set 
0.105

4 0 .1 0 2 0.108 0.103
8 0 .1 1 0 0 .1 1 1 0 .1 1 1

2
Numb

111
er of l i t  

111
rations

111
4 111 111 111
8 2 0 0 0 0 588 111

0.4

0.3

0.2

- 0.1

- 0.2

-0.3
1920 1960 20201900 1940 1980 2000

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0
0 2 4-6 -4 -2 6
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N A R 5 : In this example it is interesting to note how the network performs when given less than 4 
inputs. The error of prediction by using X t = 0 .5X t- i  — 0 .2 X t - 2  — 0 A X t - 3  — 0 . l X t - 4  as a prediction 
should yield the best possible expected RMS error of 0.1. Using this scheme on the realization of 
the d a ta  used here yielded an actual error of 0.095. It comes as a surprise th a t the networks with 
only 2 inputs perform best, ju st beating the error of the best possible prediction scheme. If the two 
term  prediction scheme X t = 0.5A^_i — 0 .2 X t ~ 2  is used, then the actual error obtained is 0.1054, 
so one m ight expect th a t a network with only two inputs would be unable to improve on this. As 
with the other examples inclusion of more input neurons than necessary seems to be detrim ental to 
the training of the network. The second test set used in Table 4.11 consists of da ta  in the reduced 
range of 1960-1999. The result is th a t all the networks have had their errors slightly increased, so 
th a t now the 2 input networks do not beat the best prediction scheme error of 0.095. This suggests 
th a t the above surprising result can be explained as a  statistical fluke.

Table 4.11: The results of predicting the NAR5 time series with different architectures of FFNN.

Hidden
No. of Inputs 

2 I 4 I 8

2
RM S

0.094
error oi 
0.114

% Test Set 
0.107 Hidden

No. of Inputs 
2 | 4 | 8

4 0.093 0.109 0.136
2

Number of Iterations
8 0.093 0 .1 2 1 0.106 200 0 0 284 160

2
RM S error on 1960-1999 4 2301 257 220
0.096 0 .1 2 0 0 .1 1 1 8 1850 111 1898

4 0.095 0.113 0.143
8 0.095 0.127 0 .1 1 0

0.4

0.3

0.2

- 0.1

- 0.2

-0.3

-0.4
2000 20201940 1960 19801900 1920

0.25

0.2

0.15

0.05

0 2■6 -4 ■2 4 6
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4.5  M oving-A verage T ype T im e Series

The tim e series used here are

NMA1) X t = at- i
at - 1  +  a t - 2

NMA2) X t

NMA3) X t
£

NMA4) Xt  — a^_i — a t_ 2<2 t - i  

NMA5) Xt  — 0.5at_i — 0.2nt—2 — 0.4czt_3 — O.lot—4

Here the best prediction scheme is not as obvious as it was for the NAR tim e series. To illustrate 

some of the properties of a moving average tim e series consider the linear case:

N

X t  — ^   ̂dn at — n
n = 1

The (unconditional) expectation of a linear moving average time series is ju s t 0 , and if X t = 0  is 

used as a prediction scheme then the expected RMS error will be given by the root of the variance, 

the variance being given by

£ [* .2] =  * 2 I > »  (4-8)
n = l

Echoing, on the other hand, leaves the residuals Yt , giving an expected square error derived as 

follows

E[ Y2] = E K X t - X t ^ f ]  (4.9)

=  <r2el + e2N + J 2 (s « - s « - 1)2
n = 2

So whether echoing or predicting using 0 (zero prediction) is superior depends on the coefficients of 

the series in question. Either way no inform ation is gained about the future by using such trivial 

prediction schemes, so th a t improvement on the lesser of these two errors indicate th a t a particular 

prediction scheme is of some merit.

A FFNN with I  inputs uses the last I  time series elements to construct its prediction, so it is 

useful to re-write a MA series in term s of an auto-regressive series, if indeed it is possible to do so. 

For simplicity, I only examine a simple linear MA model, i.e.

A t =  a a t - 1  — (3at -2
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By successive substitution the following pseudo-AR type expression can be obtained:

* = « « , _ . - * ( £ y

So using the prediction scheme

*< =  - £ ( T ) V „
n = l

will result in an expected square error of

2/
E [(X t - X t )2} = a 2 a 2 + 0 2 [ C j

Consider the case of a second order linear MA time series formed from white noise with a = 1, 

the three prediction schemes outlined above then give rise to the following expected square errors

Zero prediction X t =  0 E q =  a 2 +  f32

Echoing X t = X t- i  E echo =  a 2 +  0 2 +  (a  +

Pseudo-AR X,  =  -  E L i  ( f ) "  X ,-„  E ,  = a 2 + 0 2 C  j

^1 < 1. Then

21

Firstly consider the case where

E /  <  E q <C E gch o

where E / decreases as I  increases, and in the limit of large I, E / ~  a 2, which is the smallest 

achievable error. If, on the other hand,
l “ l >

then the pseudo-AR method becomes useless and 

the zero prediction method becomes the best. Finally, if ^ =  1 then

E / — E q <  E echo
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N M A 1 : There is of course no way of predicting genuine white noise, other than  the trivial prediction 
scheme X t = 0. Doing so results in an expected RMS error of a = 0.1. Over the test set the actual 
error was found to be 0.096, which is roughly what all the network’s achieved. The networks, 
however, did not learn to predict this way, th a t is they did not learn to ignore their inputs and 
ou tpu t 0 (zero ou tput weights could achieve this, for example). As can be seen from both the 
prediction plot and the time-shift plot below, the network’s output does still depend (weakly) on 
its inputs, but the variance of the predictions is certainly significantly smaller than the tim e series’ 
own variance. Echoing has an expected RMS error of \/2cr =  0.141, though on this realization of 
the tim e series the actual error was found to be 0.108.

Table 4.12: The results of predicting the NMA1 time series with different architectures of FFNN.

Hidden
No. of Inputs 

2 | 4 | 8

2
RM S
0 .101

irror on 
0.096

Test Set 
0 .1 0 1

4 0.095 0.103 0.097
8 0 .1 0 0 0 .1 0 2 0 .1 0 2

2
Numl

4407
er of It 

111
;rations 

111
4 111 111 111
8 2969 896 314

0.3

0.2

- 0.1

- 0.2

-0.3
202020001940 1960 198019201900

0.14

0.12

0.08

0.06

0.04

0.02

6-2 0 2 4-6 -4
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N M A 2 : In this case the expected RMS errors for echoing and zero prediction are the sam e, being
0 .1 /\/5  =  0.071. For the realization of the tim e series used here the errors were 0.063 and 0.079 
respectively. If a pseudo-AR m ethod is used then the expected RMS error is again 0 . l /y /2  =  0.071, 
though the error on this realization was actually 0.068. The best network has improved on all of these 
prediction schemes, though as can be seen from the plot below its predictions tend to underestim ate 
the m agnitude of the tim e series.

Table 4.13: The results of predicting the NMA2 time series with different architectures of FFNN.

Hidden
No. of Inputs 

2 | 4 | 8

2
R M S
0.060

rror on 
0.062

Test Set 
0.083

4 0.060 0.061 0.080
8 0.059 0.060 0.060

2
Numb

4772
er of lie 

6756
rations

111

4 4321 4894 116
8 16806 10760 15092

0.25

0.2

0.15

0.05

-0.05

- 0.1

-0.15
2020200019801940 196019201900

0.12

0.06

0.04

0.02

6■2 0 2 4-6 -4
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N M A 3 :  Here the zero prediction m ethod is not appropriate as this time series is strictly positive. 
Echoing yielded an error of 0.033, which was only slightly improved by all the networks w ith more 
than  2 inputs.

Table 4.14: The results of predicting the NMA3 time series with different architectures of FFNN.

Hidden
No. of Inputs 

2 | 4 | 8

2
R M S t  
0.035

rror on 
0.031

Test Set 
0.032

4 0.035 0.031 0.031
8 0.035 0.032 0.031

2
Numb

2 0 0 0 0
er of Ite 

2 0 0 0 0
rations

2 0 0 0 0
4 111 2 0 0 0 0 2 0 0 0 0
8 200 0 0 200 0 0 2 0 0 0 0

0 . 1 8

0 . 1 6

0 . 1 4

0.12

0 . 0 8

0 . 0 6

0 . 0 4

0.02

20201 9 8 0 20001 9 6 01 9 4 01 9 0 0 1 9 2 0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0 620 4•2-4-6
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N M A 4 : In this case it can be shown that the (constant) expectation value of this tim e series is 
ju s t cr2 =  0.01. Using this as a prediction m ethod, i.e. X t =  0.01, yields and error of 0.011, whereas 
echoing achieves an error of 0.015. As seen from Table 4.15, all the networks achieve an error of
0.01. The prediction plot and tim e shift plot both indicate th a t the network’s prediction is ra ther 
flat, th a t is it is consistently ou tputting  a value of around 0.08. Also notice th a t the large spikes are 
not predicted well a t all, and th a t they almost always cause the network’s next prediction to be an 
overestimate.

Table 4.15: The results of predicting the NMA4 time series with different architectures of FFNN.

Hidden
No. of Inputs 

2 | 4 | 8

2
RM S
0 . 0 1 0

rror on 
0 .0 1 0

Test Set 
0 .0 1 0

4 0 .0 1 0 0 .0 1 0 0 .0 1 0
8 0 .0 1 0 0 .0 1 0 0 .0 1 0

2
Numb

111
er of Ite 

7086
rations

2 0 0 0 0
4 2 0 0 0 0 2 0 0 0 0 2 0 0 0 0
8 143 1263 1764

0.07

0.06

0.05

0.04

0.03

0.02

0.01

- 0.01
20201900 1920 1940 1960 1980 2000

0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0
2 4■6 -4 •2 0 6
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N M A 5 : The expectation for this linear MA model is ju st zero and from (4.8), the expected RMS 
error of zero prediction is ju st 0.068. On the realization of the time series used the error of zero 
prediction was actually 0.062. The expected RMS error for echoing from (4.10) was found to be
0.070, the error on the da ta  used here being 0.077. All the networks performed reasonably well on 
the data , apart from the networks with 8 inputs. The prediction plot shows th a t m ost of the peaks 
in the d a ta  were were predicted, though underestim ated in magnitude. This fact is confirmed in the 
tim e shift plot because the minimum is a t a shift of 0 .

Table 4.16: The results of predicting the NMA5 time series with different architectures of FFNN.

Hidden
No. o f Inputs 

2 | 4 | 8

2
R M S
0.057

irror on 
0.058

Test Set 
0.058

4 0.057 0.057 0.063
8 0.057 0.057 0.066

2
Numl

4349
>er of It 

7804
orations

111
4 5103 1189 111

8 2291 871 2639

0.15

0.05

-0.05

-0.1

-0.15

-0 .2
20201980 20001900 1920 1940 1960

0.12

0.1

0.08

0.06

0.04

0.02

0 6■2 0 2 4-4-6
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4.6  A uto-R egressive M oving-A verage T ype T im e Series

In this section the following tim e series are used for prediction:

X t ~ i  - f  at  +  0 . 4 a t _ i  — a t - 2 4- 0 . 6 a < _ 3

X t - i + X t - 2

NAM1) x t

NAM2) Xt

NAM3) X t

NAM4) Xt

NAM5) X t

2

J x L i  + x ? - ,
=     H at  -f- 0 . 4 a t _ i  — a t - 2 +  0 . 6 a * _ 3

=  Xf_^ — X ^ _ 2  +  at +  0.4af_i — at- 2 4- 0 .6 a (_3

— 0 . 5 A f _ i  — 0 . 2 X * _ 2  — 0 . 4 X t —3 — 0 . l X t —4 A  a t -b 0 . 4 a < _ i  — a t —2 T  0 . 6 a <—3

+  at  +  0 . 4 a t _ i  — a t —2 - f  0 . 6 a j _ 3

Methods of predicting linear ARMA time series have been well established and can be found in 

many standard  texts, notably Box and Jenkins (1970) and Cryer (1986). However, I do not a ttem pt 

to use them  here. In the following I shall give the error obtained if predictions are m ade using the 

Auto-regressive part of the time series only. This, of course, is not the best possible m ethod, as it 

is possible to exploit the moving average structure to obtain more accurate predictions.

4.7  T he Learning R ate

The results of the previous sections do not really allow conclusions such as “network A-B-C is best 

for predicting time series X” to be made. For example, it was shown earlier th a t the NAR1 time 

series (the random  walk whose best prediction is ju st an echo) can be predicted by a 2 -2-1  network. 

However, according to Table 4.7 the 4-4-1 network has the lowest test set error at the end of training. 

The only conclusion th a t can be stated in this case is tha t, for the starting  set of weights used, and 

for a learning rate of 0.01 and m om entum  of 0.9, and for the training scheme and stopping criterion 

adopted, the best network, in terms of error on the particular test set used, for predicting the NAR1 

tim e series was a 4-4-1 network. So it seems th a t the practical study of how different FFN N s predict 

different tim e series is about as elegant as the last sentence. In an a ttem pt to remedy this situation  I 

shall repeat some of the training runs of the last section but with different learning rates, each time 

starting  the networks from the same starting  point as before. Below are a few reasons why different 

learning rates should give different end results. Some evidence for the reasoning behind these ideas 

can be found in Section 3.1.2 of the last chapter.
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N A M 1: The errors for echoing, zero prediction and AR only (this is in fact echoing in this instance) 
are 0.158, 0.190 and 0.158. So the Table 4.17 shows th a t the network’s are doing significantly than 
ju s t an echo.

Table 4.17: The results of predicting the NAM1 time series with different architectures of FFNN.

Hidden
No. of Inputs  

2 | 4 | 8

2
RM S
0.141

irror on 
0.138

Test Set 
0.150

4 0.142 0.140 0.146
8 0.143 0.144 0.147

2
Numt

1982
ler o f It 

3673
zrations

2838
4 1126 1552 2487
8 1618 1352 279

0 . 5

0 . 4

0 . 3

0 .2

-0.1

-0 .2

- 0 . 3

- 0 . 4

- 0 . 5
20201 9 0 0 1 9 2 0 1 9 4 0 1 9 6 0 1 9 8 0 2000

0.25

0.2

0.15

0.1

0.05

0
60 2 4■6 -4 -2
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N A R 5 : In this example it is interesting to note how the network performs when given less than 4 
inputs. The error of prediction by using X t =  0.5Xt_ i — 0 .2 X t - 2  — 0 A X t ~ 3  — 0 .1X f_4 as a prediction 
should yield the best possible expected RMS error of 0.1. Using this scheme on the realization of 
the d a ta  used here yielded an actual error of 0.095. It comes as a surprise th a t the networks with 
only 2 inputs perform best, ju st beating the error of the best possible prediction scheme. If the two 
term  prediction scheme X t = 0 .5Xt- \  — 0 .2 X t ~ 2  is used, then the actual error obtained is 0.1054, 
so one m ight expect th a t a network with only two inputs would be unable to improve on this. As 
with the other examples inclusion of more input neurons than necessary seems to be detrim ental to 
the train ing of the network. The second test set used in Table 4.11 consists of da ta  in the reduced 
range of 1960-1999. The result is th a t all the networks have had their errors slightly increased, so 
th a t now the 2 input networks do not beat the best prediction scheme error of 0.095. This suggests 
th a t the above surprising result can be explained as a statistical fluke.

Table 4.11: The results of predicting the NAR5 time series with different architectures of FFNN.

Hidden
No. of Inputs 

2 I 4 I 8

2
R M S

0.094
error oi 
0.114

i Test Set 
0.107 Hidden

No. of Inputs 
2 | 4 | 8

4 0.093 0.109 0.136
2

Number of Iterations
8 0.093 0 .1 2 1 0.106 2 0 0 0 0 284 160

2
R M S error on 1960-1999 4 2301 257 220
0.096 0 .1 2 0 0 .111 8 1850 111 1898

4 0.095 0.113 0.143
8 0.095 0.127 0 .1 1 0

0.4

0.3

0 .2

-0.1

-0 .2

-0.3

-0.4
20201980 200019601920 19401900

0.25

0.2

0.15

0.05

0 2 64-6 -4 •2
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N A M 3 : The errors for echoing, zero prediction and AR only are 0.243, 0.214 and 0.158. Here only 
the 4-4-1 network has managed to equal the AR only prediction, though all the networks improve 
greatly on the trivial prediction methods. As can be seen from both prediction plot and the tim e 
shift plot, the network’s predictions are rather flat, varying around the the value of 0 .1 .

Table 4.19: The results of predicting the NAM3 time series with different architectures of FFNN.

Hidden
No. of Inputs 

2 | 4 | 8

2
R M S  e 
0.162

rror on 
0.159

Test Set 
0.161

4 0.161 0.158 0.166
8 0.164 0.163 0.160

2
Numb

111
er o f lie 

15619
rations

2 0 0 0 0
4 2 0 0 0 0 2 0 0 0 0 436
8 224 1121 169

0 .6

0.5

0.4

0.3

0 .2

-0.1

-0 .2

-0.3
202020001960 19801920 19401900

0.25

0.2

0.15

0.05
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N A M 4 :T h e  errors for echoing, zero prediction and AR only are 0.284, 0.172 and 0.158. In this case 
it is the networks with 8 inputs th a t perform best, though all the networks beat the AR only error. 
The networks’ errors are all a vast improvement upon echoing but only a slight im provem ent upon 
the zero prediction. This can be understood by realizing th a t the linear MA term s will dom inate 
the second order AR terms in this time series.

Table 4.20: The results of predicting the NAM4 time series with different architectures of FFNN.

Hidden
No. of Inputs 

2 | 4 | 8

2
R M S  e 
0.143

rror on 
0.146

Test Set 
0.138

4 0.142 0.144 0.143
8 0.143 0.141 0.134

2
Numb

200 0 0
er of Ite\ 

2 0 0 0 0
rations

2 0 0 0 0
4 2 00 0 0 200 0 0 2 0 0 0 0
8 2 00 0 0 2 0 0 0 0 200 0 0

0 .6

0.5

0.4

0.3

0 .2

-0.1

-0 .2

-0.3

-0.4
2000 202019801940 196019201900

0.3

0.25

0.2

0.15

0.1

0.05

0 62 4-2 0■6 -4
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N A M 5 : The errors for echoing, zero prediction and A E only are 0.199, 0.180 and 0.139. In this 
case the networks were unable to improve significantly upon the AR only error. It is clear from 
the errors tabulated  below th a t the networks with only two inputs are not able to predict this time 
series very well.

Table 4.21: The results of predicting the NAM5 time series with different architectures of FFNN.

Hidden
No. of Inputs 

2 | 4 | 8

2
R M S  e 
0.165

rror on 
0.138

Test Set 
0.141

4 0.165 0.137 0.140
8 0.165 0.138 0.142

2
Numb

4871
er o f lie 

1351
rations

1256
4 7648 843 1672
8 2 0 0 0 0 363 6791

0.4
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0 .2

- 0.1

-0 .2

- 0 . 3  -

-0.4
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0.17
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0.15

0.14

0.13
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0 0.02 0.04 0.06 0.08 0.1

(a)

Figure 4.4: The typical shape of final test set error plotted against learning rate e. The d a ta  here is 
for the 4-2-1 network of Table 4.22.

1. Too large a learning rate can cause training to become unstable earlier. T ha t is, a smaller 

value of learning rate should allow the the network to be trained to a lower final error

2. Going to the other extreme, too small a learning rate can cause training to tip-toe over- 

cautiously through weight-space. This is not relevant to most of the cases in the previous 

sections because training was usually term inated before the 2 0 ,0 0 0  iteration lim it was reached.

3. If two networks are started  from the same point in weight space, but are trained with different 

learning rates, they m ight both converge on different solutions, or converge on the same solution 

via different paths. This being the case it is quite possible, for example, for the network trained 

with the lower learning rate to end up with the higher error.

The results presented in Tables 4.22, 4.23 and 4.24 illustrate that the first and second points in 

the above list seem to constitute the rule, whilst the th ird  point is the exception. In fact for the 

networks in the tables below, the final test set error, if plotted against learning rate, would have a 

U-shaped profile, as shown in Figure 4.4.
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Table 4.22: The results of training networks from Table 4.7, on the NAR1 time series, with different 
values of learning rate e. Using the best possible prediction scheme, which is ju st an echo, the 
prediction error was 0.096.

Learning Rate e
Network 0 .0 0 0 1 0.0005 0.001 0.05 0.1
2-2-1 0.145 0.138 0.132 0.117 0.138
4-2-1 0.160 0.141 0.123 0 .1 2 2 0.151
8-8-1 0.216 0.149 0.139 0.190 0.249

Number of Iterations
2-2-1 20000 2 0 0 0 0 20000 3321 1572
4-2-1 20000 200 0 0 20000 3078 1493
8-8-1 2 0000 2 0 0 0 0 20000 12076 3770

Table 4.22 shows the results of repeating the training of three of the networks used to predict the 

NAR1 series. The networks chosen were, 4-2-1 (previous error 0.104), 8-8-1 (previous error 0.129) 

and the 2-2-1 network (previous error 0.105). Remember that the 2-2-1 network is the smallest 

network capable of producing an echo, the best prediction scheme for the NAR1 series. None of 

these re-trained networks improve on either the best error of 0.104, set by the 4-2-1 network, or 

improve on their own previous errors. So the choice of e =  0.01 used before was a good one3.

Similarly Table 4.23 shows the results for the networks predicting the NAR2 series. Here the 

errors achieved before using e =  0.01 were 2-2-1 (error 0.104), 4-2-1 (error 0.102) and 8-8-1 (error

0.128). Again no significant improvement has been gained by using different values of e, though the 

8-8-1 has improved to 0.121 with e =  0.005.

The networks trained on the NMA5 time series showed instability very early on in training, for 

example, in Table 4.16 2 networks stopped as soon as they got the chance, i.e. at 111 iterations.. 

So the question is: can these networks go on to produce smaller errors if a smaller learning rate 

is used. In Table 4.24, I show the results of using smaller learning rates in training the networks 

with 8 inputs. As can be seen the final error is fairly insensitive to the learning rate used, with 

training proceeding beyond 111 iterations only if a small value of learning rate is used. To see if an 

even smaller learning rate can provide any improvement I have repeated the training of the 8-4-1 

network using learning rates as low as 10- 7 . So the conclusion seems to be th a t these networks 

cannot be pushed any further with back propagation. It is also interesting to note th a t the inclusion 

of more hidden neurons seems to result in a higher final error. Since an 8-8-1 FFNN is capable of

3 N o te  th a t  w ith o u t m a k in g  an y  rash  c la im s, I w ou ld  like to  p o in t o u t th a t  th e  ch o ice  o f  e =  0 .0 1  w as n o t p lu ck ed  
from  a  h a t, nor b a sed  so le ly  on  th e  r esu lts  o f  p re v io u s  n u m erica l te s ts ,  ra th er  th e  ch o ice  was b a se d  o n  a  g o o d  g u ess  
g u id ed  b y  ex p erien ce .
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Table 4.23: The results of training networks from Table 4.8, on the NAR2 tim e series, w ith different 
values of learning rate e.

Learning R ate €
Network 0 .0 0 0 1 0.0005 0 .001 0.05 0.1
2-2-1 0.108 0.106 0.104 0.115 0.134
4-2-1 0.117 0.109 0.103 0.117 0.141
8 -8-1 0.159 0.125 0 .121 0.172 0 .2 2 0

2-2-1 2 0 0 0 0
Numbei

2 0 0 0 0
* of Itera 

2 0 0 0 0
tions

1375 639
4-2-1 2 0 0 0 0 2 0 0 0 0 2 0 0 0 0 940 472
8-8-1 2 0 0 0 0 2 0 0 0 0 2 0 0 0 0 11272 2946

doing anything an 8-4-1 network can do the conclusion m ust be th a t networks with greater numbers 

of hidden neurons are more difficult to train  by back-propagation. The results for the NAR time 

series in Tables 4.22 and 4.23 would seem to confirm this conclusion. As can be seen there is no 

improvement of error beyond 0.063, though the number of iterations required to achieve the error is 

increased for the lower learning rates.

Partly  by chance the learning rate of 0.01 used initially in the architecture tests appeared to be 

the best for almost all cases. The above tables show tha t, had a different learning been chosen, then, 

within reason, the final test set RMS error would not be greatly increased. Even when training was 

stopped at the first opportunity, i.e. I l l  iterations, training with a lower learning rate increased the 

num ber of training iterations w ithout significantly reducing the resultant RMS error.

4.8  D ifferent Starting P oin ts

How does the starting  point in weight space affect the end result of training? It seems from common 

practice, e.g. Hertz et al. (1991) and *Conway (1993), th a t the best initial values for the weights are 

those th a t are small and random  e.g. random ly distributed around 0 with variance 0.1. Sometimes 

reason for this is offered by arguing th a t, if the network is initially given sm all weights so th a t 

initially only the “linear region” of the activation functions are used, then training will s ta rt in a 

relatively stable region. In this section I shall see if any improvement can be m ade by starting  the 

networks from different sets of initial weights. Five sets of random ly generated weights were used, 

labelled 0 to 4. In all cases the weights were generated by a random  num ber generator th a t produced 

random  numbers uniformly in [—r : r], r being the range of the generator. All previous results used
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Table 4.24: The results of training networks from Table 4.16, on the NMA5 tim e series, w ith different 
values of learning rate e. None of the network’s here has improved upon the previous best error of 
0.055.

Learning Rate e
Network 0 .0 0 0 1 0.0005 0 .01 0.05 0.1
8-2-1 0.058 0.058 0.058 0.060 0.063
8-4-1 0.063 0.063 0.063 0.064 0.064
8-8-1 0.070 0.069 0.067 0.067 0.068

8-2-1 314
Number
111

of It era 
479

tions
111 111

8-4-1 405 111 111 111 111
8-8-1 111 2 0 0 0 0 200 0 0 322 429

Learning R ate e
Network 1 0 " 7 1 0 ~ 6 5 1 0 "6 1 0 “ 5 5 10- 5
8-4-1 0.183 0.063 0.063 0.063 0.063

8-4-1
Number of Iterations 

20000 || 20000 | 7892 | 405 | 111

an initial set of weights with r = 1. Set 0 was also created with r =  1 , but a different seed was used 

with the generator, sets 1 and 2 both had r  =  0.1, and sets 3 and 4 had r  =  0.01.

Firstly in Table 4.25 I examine the effect of using the above initial weight sets on networks 

predicting the NAR1 time series. As can be seen there is little or no improvement in each case, the 

biggest gain being for the networks with 8 inputs. Note, however, tha t the use of weight sets 3 and 

4, the sets with the range of r = 0.01, causes the training of the 4-2-1 network to become unstable 

by 247 iterations, resulting in a massive final error.

Table 4.26 shows similar results but now the use of weight set 2 also causes instability  in the 

training of the 4-2-1 network. Also the 2-2-1 network has improved its error to 0.098, close the best 

possible error of 0.096. Remember th a t set 0 has the same range, r = 1, as was used previously for 

the results in Table 4.8.

In the case of networks predicting the MA5 tim e series, in Table 4.27, there is very little  change 

in the end result of training. This is probably because these networks require a much lower learning 

rate than  the one used, e = 0.01, as indicated by the results in Table 4.24.
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Table 4.25: The results of training networks from Table 4.7, on the NAE1 tim e series, with different 
starting  points in weight space. Using the best possible prediction scheme, which is ju s t an echo, 
the prediction error was 0.096.

Weight Set
Network 0 1 2 3 4
2-2-1 0.104 0.105 0.105 0.105 0.105
4-2-1 0.104 0.104 0.563 0.562 0.562
8-8-1 0.128 0.125 0.125 0.125 0.126

2-2-1 13787
Numbt

16829
r of Her 
17407

ations
17933 17887

4-2-1 14234 15867 254 247 247
8-8-1 17191 200 0 0 2 0 0 0 0 2 0 0 0 0 200 0 0

Table 4.26: The results of training networks from Table 4.8, on the NAR2 time series, from different 
initial weights.

Weight Set
Network 0 1 2 3 4
2-2-1 0.098 0 .1 0 2 0.103 0.103 0.103
4-2-1 0.103 0.103 0.371 0.370 0.370
8-8-1 0.126 0.125 0.124 0.125 0.126

2-2-1 458
Numb

860
er of Itei 

1077
'ations

1998 189T
4-2-1 9110 6748 263 257 258
8-8-1 9301 15645 2 0 0 0 0 2 0 0 0 0 2 0 0 0 0

Table 4.27: The results of training networks from Table 4.16, on the NMA5 tim e series, from different 
initial weights. None of the network’s here have improved upon the previous best error of 0.055.

Weight Set
Network 0 1 2 3 4
8-2-1 0.063 0.063 0.063 0.063 0.063
8-4-1 0.061 0.063 0.063 0.063 0.063
8-8-1 0.066 0.063 0.063 0.063 0.063

8-2-1 111
Numbe
132

r of Itei 
111

'ations
111 111

8-4-1 111 216 111 127 122

8-8-1 963 423 314 416 419
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4.9 C onclusions

In this section I draw together the results of this chapter and conclude what rules of thum b can 

be formed to help with the predictions of the next chapter and any future work with FFNNs. The 

m otivation of this chapter was to see how well Neural Networks performed on artificial tim e series 

where alternative methods of prediction were available. For some of the tim e series it was even 

possible to find the best possible prediction scheme. For other time series trivial prediction schemes 

were constructed, so th a t the errors of these schemes had to be improved upon for the networks to 

prove their worth. From the discussions throughout this chapter I have constructed the following 

list of “rules” , but remember th a t in working with neural networks every rule seems to have plenty 

of exceptions.

1. Networks were almost always able to provide meaningful predictions. In most cases the networks 

were able to better trivial prediction schemes such as echoing or zero-prediction. In the cases 

where this was not so, the reasons could usually be ascribed to the nature of the tim e series. 

For example, the best prediction in the NAR1 case was actually an echo. In some cases the 

networks showed th a t they were on par with the best possible prediction schemes, e.g. for the 

NAR4 and NAR5 time series.

2. Larger networks seem to be more difficult to train. In many of the examples above it was found 

th a t using networks with 8 inputs or 8 hidden neurons resulted in a poorer error at the end of 

training. The exceptions mainly being in the prediction of the highest order tim e series, e.g. 

the NAM time series, where the use of only 2 inputs or 2 hidden neurons could not adequately 

predict the time series.

3. Almost all the network predictions show some delay. This is discussed in more detail in Sec

tion 4.10.

4. There is a best range of values fo r  the learning rate. As seen by the results in Tables 4.22

and 4.23 the best values of learning rate were round about 0.01. A higher learning rate would

result in a higher error because of instability  during training, whilst a lower learning rate would 

require many more training iterations to achieve the same end result.

5. The best learning rate for  one time series is not necessarily best for  another. Table 4.24 shows

th a t the best learning rates for the MA5 time series is about 0.001 or less.
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6 . Starting networks from different points in weight-space do not produce markedly different res

ults. The traditional notion th a t networks should be started with weights th a t are sm all and 

scattered around 0 appears to be correct. Also using different starting  points for the weights 

does not seem to affect the end result of training too significantly, as seen in Tables 4.25,4.26 

and 4.27. However, it appears th a t if the initial weights are too small then instability  in train

ing is more likely. In fact, as can be seen from the back-propagation equations in Section 1.4.1, 

if the initial weights are all zero then a network with linear ou tpu t activation functions cannot 

progress in training because all the initial weight changes are also zero.

4 .10  C oncluding R em arks - D elay  and Echo

Almost all the networks studied in this chapter produced some kind of delayed predictions. T h a t is, 

the m inim um  in the tim e shift plot lay not a t 0 but a t some negative value. W hat does this mean? 

In one sense a delay of 1 tim e-step can be re-phrased as a statem ent such as “the 1 step ahead 

predictions bear more resemblance to the most recent input of the network than to the values they 

were required to predict” . But this is not the same as echoing, echoing means th a t the predictions are 

actually the same as the most recent input of the network. So is delay in the predictions necessarily 

a bad thing, in other words as long as the actual error of prediction is less than the error incurred 

by echoing, does it m atter th a t the predictions bear a greater resemblance to the netw ork’s most 

recent input? The answer would have to yes, it does m atter, for the following simple reason. The 

m ain im petus behind predicting tim e series in this thesis is to provide forewarning of events in the 

solar-terrestrial environment th a t might cause adverse affect to hum an exploits in near-space or on 

the E arth , for example in managing the orbital decay of satellites. Looking at any of the delayed 

predictions for the artificial time series in this chapter it is clear th a t many of the large peaks are 

only evident in the predictions after “the event” has already begun, such is the nature of delay. Such 

failure to predict these large events is therefore a m ajor problem. The question is now, whether this 

failure to predict these events is the fault of the network, or is because the nature of the tim e series 

does not allow a better prediction to be made. To answer this question, I tu rn  to the NAR time 

series where the best prediction m ethod is readily available. In general a NAR tim e series is of the 

form

X t =  a,
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where the best possible prediction scheme is just

with an expected RMS error of a. To see what the time shift function looks like, I assume th a t X t 

is a stationary time series, and for brevity I shall write it as

Xt  =  f t  +  o,t

where f t = f  ( X t~ i , .. ., X t_ i), it is then clear th a t f t m ust also be a stationary tim e series. The 

expectation of the (squared) time shift function, after a little m anipulation can be w ritten in the 

following form

E [ T ? }  =  E  [(X ,_r -  X , ) 2]

= a 2 +  2 <rJ(l -  pjT ) -  2E[atf t - T]

where a j  =  V ar[ ft] and p fT is the auto-correlation function of f t , also E  [T2] =  <r2. Also note that 

the second term involving the auto-correlation cannot be negative. The last term  in the expression,

i.e. 2E[atf t - T] can give rise to the asymmetry, and therefore delay, in the time shift plot. More 

specifically if t > 0 then it is easy to show that E[atf t - T] — 0 , because there can be no at terms in 

f t - r -  So this means that an apparent delay is present if E[atf t - T] 7  ̂ 0 for r  < 0 . To illustrate the 

above, consider *he AR time series

X t = a l t - i  +

(which is stationary if and only if |a | < 1). In this case for r  =  1

E[atf t - 1] =  olg2

so th a t T 2 — T 2 = —acr2. It is therefore clear tha t a delay will be apparent in even the best possible 

prediction scheme.

In a similar fashion it is possible to derive the expected shape of a time shift plot for a linear 

MA tim e series of the form
N

Xt = y ]  9nat- n +  o-t
n  — 1

This time the best predictor function is not obvious, so I shall assume th a t there is some m ethod of 

estim ating the ats given the history of the X t time series. Let these estim ates be at and let them  

differ from the true values by some other zero-mean (the estim ates are unbiased) stationary  white 

noise tim e series bt , with variance cr2, such that

dt — &t +  bt
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and let bt be uncorrelated with at . It is then possible to show that the time shift function has the 

following form:

N

E{T?>0] = <72 +  <r2 £ 0 2 +  2 t ;
n — 1

N  N

J 2 en ~  £  9»9- ’
,n = l n = l — t

E[Tq] = a 2

N  N + t

.n = 1 n  = 1
-  2 <r20_ T£ [* ?« ,] — 0-2 +  ^ 2  6 n +  2(7̂

n = l

Again the positive and negative side of the time shift curve are symmetrical except for one term , in 

this case — 2<t20_7-. So again it is possible to see an apparent delay intrinsic to the best available 

prediction scheme.

So it seems th a t for NAE and linear MA type time series a t least, a delay in the predictions 

is not necessarily a failure of the m ethod at all. However, delay is still a problem in practice for 

the reasons outlined above, so a different question now begs an answer. Can one tell if a delay is 

sym ptom atic of the time series, and therefore incurable, or if it is a fault of the m ethod? The answer 

to this question is actually more subtle than might first be thought, because it seems natural to 

assume th a t their can be no hope for improvement if the best prediction scheme intrinsically suffers 

from delay. If all one is interested in is the error then this is indeed true. However, if in practice 

it is of more im portance to predict an event on time rather than predicting the future -vith lowest 

RMS type accuracy, then the problem of delay can be solved by redefining what is meant by best. 

In other words, new criteria of success can be crafted th a t rates a set of predictions as best if they 

not only achieve a low RMS error, bu t they also achieve “on-tim e” prediction of future events. The 

reason th a t all the prediction m ethods from before suffered from delay is th a t they were not required 

to do anything but minimize RMS error. In constructing new methods of producing non-delayed 

predictions it must be accepted th a t, in some sense, RMS accuracy is being sacrificed for on-time 

prediction.

In the next chapter I turn to the prediction of natural solar-terrestrial time series, using the 

same approach as was used in this chapter. In the chapter after next, I return to the issues on 

delay th a t have ju st been raised and show how a genetic algorithm  training scheme can embrace the 

more complicated criteria of success needed to produce networks th a t predict the future “on tim e” , 

w ithout delay.



C hapter 5

Prediction  o f Solar Terrestrial 

T im e Series

“Londo: I  feel like I  am being neebled to death by..., em, Veer, what are those creatures 

with webbed feet the Earthers talk about that go ‘Quack Quack’?

Vir: Cats?

Londo: Ah, yes, tha t’s it. I  feel like I  am being neebled to death by cats.”

The drive behind this chapter is somewhat different from the last. The study of artificial time 

series allowed for some comparison between theory and practice, whereas the work of this chapter 

is of a much more practical nature. The basic aim sounds simple enough: to obtain the best 

possible predictions of Sunspot Number, 10.7cm Solar Flux and Geomagnetic I \p index using feed 

forward neural networks. The first complication is th a t of the definition of what is “best” , which 

was discussed at the end of the last chapter. For. the m om ent I will still use an RMS error, as 

this is the error th a t lies at the heart of standard back-propagation. I shall also comment on any 

delay in the predictions and in C hapter 6 I will dem onstrate a m ethod th a t can find networks which 

predict w ithout delay. Secondly, given some criteria of success, how can one tell whether the best 

possible predictions have been achieved - perhaps there is a better configuration of network an d /o r 

training algorithm  lurking elsewhere in param eter space, perhaps even ju st around the corner from 

the present best set of param eters? In general there is no assurance, bu t the results of the last 

chapter suggest tha t, if a reasonable set of param eters have been found (e.g. I ,H ,0 ,e ,a  and initial

197
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weights), then neighbouring sets of param eters do not usually produce significantly different results1.

One final point before proceeding further. A common criticism (mainly from physicists) of using 

neural networks to predict the solar-terrestrial weather is tha t, even if successful, it provides little 

or no understanding of what is actually going on. As seen in Chapter 3 it is possible to construct a 

FFNN to fit alm ost any analytic function in a given range, but it is not generally possible to take 

a FFN N ’s weights and say what (analytic) function it m ight represent. For example, there is no 

easy way to look at the weights of a network and deduce tha t it was trained to predict a particular 

non-linear AR tim e series. Note also th a t in the results of the last chapter, the number of inputs of 

the best network did not necessarily correspond to the order of NAR model it was trained to predict. 

So, training m any networks to predict sunspot number and looking a t the configuration and weights 

of the best network is unlikely to tell you very much about the tim e series, and certainly little or 

nothing about the physics behind the time series. However, I believe tha t such criticism, though 

perhaps founded in fact, is mis-directed. The aim of the work in this thesis is not to understand 

the solar-terrestrial environment in term s of physics, it is to find structure and exploit it in order 

to make predictions of the future. Although no direct physical understanding is sought here, the 

discovery, docum entation and exploitation of structure in natural systems is usually an aid, and in 

many cases a precursor, to physical understanding.

5.1 T he T im e Series

Chapters 1 and 2 described, reviewed and explored the three time series of interest in this thesis: 

the sunspot num ber (SSN), the 10.7cm solar flux and I \p geomagnetic index. In this chapter I shall 

a ttem pt to predict these time series in five basic formats: daily, smoothed daily, monthly, sm oothed 

m onthly and yearly, where I have defined the smoothed daily series st as being the 7 day running 

mean of the original series s t) i.e.
1 3 

St — j  ^ 2  St+n
7 „ = - 3

This means th a t there are effectively 15 tim e series th a t are to be predicted.

1 T h e  read er  m ig h t b e  aw are th a t  so m e o f  th e  resu lts  in  th e  th ird  c h a p ter  c o n tra d ic t th is  la s t  s ta te m e n t , a s  tr a in in g
w as see n  to  b e c o m e  u n s ta b le  a fter  so m e n u m b er  o f  ite r a tio n s  w ith  s ee m in g ly  r a n d o m  co n seq u en ces . H ow ever , a s h a s
b e e n  s ta te d  b efore , th e  u se  o f  a  g e n e ra lisa tio n  s to p p in g  criterion  r em o v es  th ese  d ifficu lties  b eca u se  tr a in in g  is a lm o st  
a lw ays s to p p e d  b efore  th e s e  in s ta b ilit ie s  occu r .
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5.2  T h e A pproach

In this chapter I will begin with a search of neural network architectures, so as to find the best 

network for predicting each of the 15 time series 1 time step in advance. I have restricted my 

a tten tion  to networks with 2,6,12 and 18 inputs and 2,6,12 and 18 hidden neurons. This is partly  

to prevent the required com puter time required from becoming prohibitively large bu t also because, 

in prelim inary tests, I found no advantage in using larger networks.

After this, the best networks for each time series will be subjected to further training, using a 

smaller learning rate if the original training run was halted early. These best networks will then be 

used to provide iterated predictions and some comparison will be made with networks th a t have been 

trained to predict 6 steps into the future. There will then be some discussion of how to assess the 

potential accuracy of a trained network’s prediction, resulting in the provision of 80% uncertainty 

estim ates for all networks trained in this chapter. Finally some thought is given on how the choice 

of training set might affect the end results.

As before, training is halted

1 . if after the first 100 iterations the error has increased for ten iterations,

2 . or if the number of iterations has reached a given m aximum number.

The m axim um  number of iterations depends on the tim e series tha t the network is being trained 

on, because there is more daily da ta  than m onthly data, and more m onthly da ta  than  yearly data. 

For the yearly tim e series the m axim um  lim it is 20,000, for the monthly series 10,000 and for the 

daily tim e series 5,000. All training runs will use standard back-propagation with a learning rate 

of 0.01 and a m om entum  of 0.9, with sequential presentation of patterns from the train ing set and 

application of weight changes im m ediately after the presentation of a pattern  (i.e. not batch mode 

training). I shall not experiment with different initial sets of weight param eters, for reasons of time, 

and because the results at the end of the last chapter suggest th a t the gains were not considerable, 

as long as the initial weights were not too small.

The following results are organised into three sections, one for each tim e series, w ith a page 

devoted to each of the form ats. The layout of the results is much the same as the last chapter. The 

echo error on the network’s test set is provided in each case as a bench-mark.
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5.3 Sunspot N um ber

The following pages show the results of training different network architectures to predict the five 

form ats of sunspot number. Each form at is given its own page composed of: a  statem ent of the 

training and test sets used; a commentary on the results; a table of RMS test set errors for each 

architecture; a prediction plot made using the best network; and its corresponding tim e shift plot.

I only use the sunspot numbers after 1850 for the following work because the statistical properties 

of Sunspot Number seemed to change significantly a t this tim e (see Section 2.3.1). W hether this 

change is because of the non-stationary nature of the series or is a  side-effect of the reconstruction by 

Wolf, is im m aterial. Either way the behaviour of the tim e series before 1850, seems to be different 

from what is seen after 1850, so its inclusion as training or test set da ta  is inappropriate.



C H A P T E R  5. P R E D IC TIO N  OF S O L A R  T E R R E S T R IA L  TIM E  SERIES 201

D a ily
Training set: Jan . 1985 - Dec. 1991 
Test set: Jan . 1992 - May 1995
In predicting the daily series, networks with fewer hidden neurons seem to fare best, with the lowest 
error of 10.7 achieved by both the 2-2-1 network and the 18-2-1 network. (The issue of w hat functions 
an 7-2-1 network can be expected to represent is discussed later in Section 5.10.) It is apparent from 
the prediction plot th a t all the m axim a of the 27 day cycles are predicted late. The tim e shift plot 
confirms th a t delay is present and th a t the predictions are slightly worse than  an echo, which has 
an error of 10.3.

Table 5.1: The results of predicting the daily sunspot num ber time series with different architectures 
of FFNN.
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S m o o th ed  D a ily
Training set: Jan. 1985 - Dec. 1991 
Test set: Jan . 1992 - May 1995
For the smoothed daily tim e series, the smallest networks achieve the lowest errors, with the best 
networks, the 2-2-1 and 6-2-1 networks, achieving an RMS error of 3.9. It is apparent th a t all the 
predictions have a positive bias. This is undoubtedly because the training set values (covering the 
m axim um  of cycle 22) were mostly larger than the 15 to 50 range of sunspot num ber shown in 
the prediction plot. The predictions do not seem to suffer from a delay and the prediction error is 
significantly better than an echo, which has an error of 5.2. Finally, notice the ludicrous results of 
the iterated predictions.

Table 5.2: The results of predicting the smoothed daily sunspot num ber time series w ith different 
architectures of FFNN.

Hidden
No. o f Inputs 

2 | 6 | 12 | 18

2
R M

3.9
S error 

3.9
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M o n th ly
Training set: Jan . 1900 - Dec. 1966 
Test set: Jan . 1967 - May 1995
The m onthly sunspot num bers appear to be predicted best by the 18 input networks w ith 2 or 6 
hidden neurons. W hile the best achieved error, 18.6, is significantly lower than the echo error of 
20.9, the predictions are heavily delayed. This is apparent from the prediction plot, where many 
peaks are predicted late, and also from the minimum of the time shift plot.

Table 5.3: The results of predicting the monthly sunspot num ber tim e series with different architec
tures of FFNN.

Hidden
No. of Inputs 

2 | 6 | 12 | 18
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S m o o th ed  M on th ly
Training set: Jul. 1900 - Dec. 1966 
Test set: Jan . 1967 - Nov. 1994
All the networks in Table 5.4 achieve comparable errors, with the largest network having the best 
error of 2.0. The tim e shift plot shows th a t little delay is present and th a t the echo error of 3.4 has 
been significantly improved upon. The iterated predictions predict th a t the next solar m axim um  
will occur in the middle of 1999, with a max value of about 145.

Table 5.4: The results of predicting the smoothed m onthly sunspot number time series with different 
architectures of FFNN.
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Y early
Training set: 1850 - 1951 
Test set: 1952 - 1994
The smallest networks in Table 5.5 appear to have the highest errors in predicting the yearly sunspot 
number. The 12 input networks fare best, with the 12-2-1 network achieving the best error of 20.2. 
The tim e shift plot indicates th a t there is little delay and th a t this best error is significantly less than  
the echo error of 35.9. The iterated predictions show th a t the network has successfully captured 
the 11 year cycle, but rather unphysically, negative sunspot numbers are predicted in the iterated 
cycles.

Table 5.5: The results of predicting the yearly Sunspot Number tim e series with different architec
tures of FFNN.

Hidden
No. of Inputs 

2 | 6 | 12 | 18

2
RA

24.0
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5.4 Solar F lux

The following pages show the results of training different network architectures to predict the five 

form ats of solar flux. Each form at is given its own page composed of: a statem ent of the train ing 

and test sets used; a commentary on the results; a table of RMS test set errors for each architecture; 

a prediction plot made using the best network; and its corresponding time shift plot.
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D a ily
Training set: Jan . 1985 - Dec. 1991 
Test set: Jan . 1992 - May 1995
The prediction of the daily tim e series appears to have achieved a very small error indeed, with the 
smaller networks faring slightly better than the larger ones. Having said this, the predictions show 
a strong delay and the best network prediction error is slightly larger th a t the echo error of 5.9.

Table 5.6: The results of predicting the daily solar flux time series with different architectures of 
FFNN.

Hidden
No. of Inputs 

2 | 6 | 12 | 18
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S m o o th ed  D a ily
Training set: Jan . 1985 - Dec. 1991 
Test set: Jan. 1992 - May 1995
The predictions of the smoothed daily time series are undelayed, with a very low prediction error, 
significantly smaller than the echo error of 3.1. Notice how the network predictions appear to  iterate 
through one (approxim ately) 27 day cycle before becoming unstable.

Table 5.7: The results of predicting the smoothed daily solar flux tim e series with different archi
tectures of FFNN.
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M o n th ly
Training set: Jan . 1947 - Jun. 1980 
Test set: Jul. 1980 - May 1995
It appears from Table 5.8 th a t the best networks for predicting the m onthly solar flux are ones with 
only 2 hidden neurons. Again the network seems to have learned enough about the solar cycle to 
iterate ahead to a future maximum. The maximum is predicted to occur somewhat earlier than 
m ight be expected, being almost three years before the m axim um  predicted with the yearly time 
series. On the other hand, at the time of writing, there is suggestion th a t the sunspot cycle has 
already passed its minimum. If this is indeed the case, then cycle 22 was only 9 years long, and 
remembering th a t the rise time of recent m axim a was typically between 3 and 5 years, it seems likely 
th a t the m axim um  of cycle 23 would occur before the turn of the century. A lthough the m onthly 
predictions are delayed, they are still slightly better than an echo, which has an error of 18.1.

Table 5.8: The results of predicting the m onthly solar flux time series with different architectures of 
FFNN.
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S m o o th ed  M o n th ly
Training set: Jul. 1947 - Jun. 1980 
Test set: Jul. 1980 - Nov. 1995
The sm oothed monthly series seems to be best predicted by the networks with more than  2 inputs. 
The next m axim um  is predicted to occur before the turn of the century in 1999, about a year after 
the maxim um  predicted by the monthly time series. It appears th a t the predictions are undelayed, 
with an error significantly better than tha t the echo error of 3.6.

Table 5.9: The results of predicting the smoothed m onthly solar flux tim e series with different 
architectures of FFNN.
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2
Rh

3.9
IS  error 

3.2
on Test 

2 .8
Set

34.6
6 3.8 2.7 2.7 2.8
12 4.1 2 .6 2.7 3.1
18 5.0 2.6 8 .0 2.5

2
N

10000
umber oj 

10000
Iteratio
10000

ns
282

6 10000 10000 10000 10000
12 10000 10000 10000 10000
18 10000 10000 150 1 0000

220

200

180

160

140

120

1 0 0

20001980 1985 1990 1995

20

18

16

14

12

10

8

6

4

2

0
-6 -2 0 2-4 4 6



C H A P T E R  5. PR E D IC TIO N  OF S O L A R  T E R R E S T R IA L  T IM E  SERIES 211

Y early
Training set: 1947 - 1980 
Test set: 1981 - 1994
Prediction of the yearly solar flux time series is difficult because there are only 47 complete years 
of da ta  available at present. Nonetheless, the network performances are quite reasonable, excepting 
the 18-2-1 network and the networks with only 2 inputs. Notice how the best network has learned 
enough about the solar cycle to iterate ahead and predict two further m axim a in 2001  and 2 0 1 1 . 
Both the prediction and tim e shift plots indicate th a t there is little delay present in the test set 
predictions, and th a t the predictions are significantly better than an echo, which has an error of 
39.1.

Table 5.10: The results of predicting the yearly solar flux time series with different architectures of 
FFNN.
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5.5 G eom agnetic K p Index

The following pages show the results of training different network architectures to predict the five 

form ats of geomagnetic K p index. Each form at is given its own page composed of: a statem ent of 

the training and test sets used; a commentary on the results; a table of RMS test set errors for each 

architecture; a prediction plot made using the best network; and its corresponding tim e shift plot.
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D a ily
Training set: Jan . 1985 - Dec. 1991 
Test set: Jan . 1992 - May. 1995
All the networks tested here bettered the echo error of 85.4. Although the 2-6-1 network achieved 
the lowest error with 76.9, all the networks have really performed equally well. The prediction plot 
clearly shows a delay in the predictions, also apparent in the time shift plot. The network’s outputs 
did not learn to span the range of the time series very well at all, which could be an indication th a t 
the daily K p index is quite unpredictable, at least by these methods.

i
Table 5.11: The results of predicting the daily K p index tim e series with different architectures of 
FFNN.
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S m o o th ed  D a ily
Training set: Jan . 1985 - Dec. 1991 
Test set: Jan . 1992 - May. 1995
The smoothed daily predictions appear to be very accurate indeed, with little delay. In addition the 
echo error of 19.1 is significantly larger than any of the network’s errors. It is clear th a t networks 
with 12 or 18 inputs and 2 or 6 hidden neurons fare best.

Table 5.12: The results of predicting the smoothed daily K p index tim e series with different archi
tectures of FFNN.
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M o n th ly
Training set: Jan . 1933 - Jun. 1977 
Test set: Jul. 1977 - May. 1995
All the networks’ predictions of the monthly series improve on the echo error of 35.6. The best 
predictions are obtained with the 12 input networks, though all the networks have achieved com
parable errors. Again, it is clear from the predictions and the tim e shift plot th a t the predictions 
are heavily delayed, with many peaks and troughs predicted a m onth late. The netw ork’s ou tpu ts 
have not learned to accom m odate the range of the series well, with under/over-estim ation occurring 
at the highest/low est points. Notice tha t the strange oscillations in the iterated predictions have a 
periodicity of about six months, indicating th a t the network has indeed recognised the six m onth 
periodicity of the geomagnetic data, previously discussed in Section 2.2.

Table 5.13: The results of predicting the m onthly K p index tim e series with different architectures 
of FFNN.
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S m o o th ed  M on th ly
Training set: Jul. 1933 - Jun. 1977 
Test set: Jul. 1977 - Nov. 1995
The sm oothed monthly predictions appear to be very accurate, with all the networks, except for 
the 18-2-1 network, predicting with an RMS error of between 3.5 to 4.1. Close inspection of the 
prediction plot reveals th a t there is a slight delay. The time-shift plot confirms this and shows tha t 
the best network’s error of 3.5 is only a slight improvement on the echo error of 3.9.

Table 5.14: The results of predicting the smoothed monthly I \p index tim e series w ith different 
architectures of FFNN.
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Y early
Training set: 1933 - 1976 
Test set: 1977 - 1994
The yearly predictions of K p index are clearly rather poor. This is possibly because the training set 
is so small, giving the network relatively few examples from which to learn. Also, the K p tim e series 
does not exhibit the solar cycle very strongly, making the task of prediction more difficult than was 
the case for either the sunspot number or solar flux. The predictions are also heavily delayed, bu t 
not to the point where an echo would be superior, the error for echoing being 26.7.

Table 5.15: The results of predicting the yearly K p index tim e series with different architectures of 
FFNN.
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Table 5.16: These are the test set RMS errors obtained by continuing the training of the best 
networks from before with a smaller learning rate of 0.001. The asterisk m arks networks tha t 
previously reached their m aximum number of iterations, note th a t all these networks carried on for 
a m axim um  number of iterations in the further training.

D ata Network Error Last Error Further Iter.
Daily SSN 2-2-1 9.8 10.7 1039
Smo. Day. SSN 2-2-1 2.4 3.9 5000
M onthly SSN 18-6-1 18.3 18.6 111
Smo. Mon. SSN 18-18-1 2 .0 2 .0 * 10000
Yearly SSN 12-2-1 20 .2 2 0 .2 13529
Daily SF 18-2-1 5.8 6 .0 * 5000
Smo. Day. SF 18-2-1 1.5 1.5* 5000
Monthly SF 18-2-1 16.9 17.0 174
Smo. Mon. SF 18-18-1 2.4 2.5* 10000
Yearly SF 6-2-1 19.8 2 0 .1 403
Daily K p 2-6-1 77.2 76.9 209
Smo. Day. I \p 18-2-1 12.6 1 2 .8 * 5000
Monthly K p 12-2-1 30.4 30.4 3283
Smo. Mon. K p 18-18-1 3.2 3.5* 1 0000
Yearly K p 12-6-1 22.7 22.9 111

5.6 Further Training

To see if any improvement in prediction accuracy is possible I have continued the training of the best 

network2 for each series, using a smaller learning rate of 0.001. The results are shown in Table 5.16. 

The training proceeds exactly as before, until either the m axim um  number of iterations is reached, 

or instability or overfitting occurs. Since no stopping criteria is in force for the first 100 iterations, 

it is actually possible for a network’s test set RMS error to be increased, as seen in a couple of cases. 

For the daily and smoothed daily tim e series the further training seems to have been worthwhile, 

though in the remaining cases any improvement is only m odest and hardly significant. As far as 

delay is concerned the situation has not changed at all: if the original network showed delay, so does 

the further trained network; if the original network showed no delay then the same is true for the 

further trained network.

Some networks, marked with asterisks in Table 5.16, reached their m axim um  num ber of iterations 

in the original training runs. These networks again reached their m axim um  num ber of iterations 

when further trained with the lower learning rate. This m eans th a t at no tim e did train ing become

2 If I were to b e com pletely  thorough I would continue the train ing of all the networks, however being  bound by 
the lim ita tion s of com puter tim e, this is not a luxury I could  afford.
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Table 5.17: These networks all reached their m aximum number of iterations in the original training 
w arranting further training with the original learning rate of 0 .0 1 .

D ata Network Error Last Error Further Iter.
Smo. Mon. SSN 18-18-1 1.9 2 .0 * 10000
Daily SF 18-2-1 6 .0 6 .0 * 2184
Smo. Day. SF 18-2-1 1.3 1.5* 5000
Smo. Mon. SF 18-18-1 2 .0 2.5* 10000
Smo. Day. K p 18-2-1 12.8 1 2 .8 * 760
Smo. Mon. K p 18-18-1 3.5 3.5* 1 0000

unstable and th a t at no tim e did the test set error increase (a sym ptom  of over-fitting). These 

networks can obviously be pushed further with the original learning rate of 0 .0 1 , and the results of 

so-doing can be found in Table 5.17. The improvement in most cases is rather m odest, with the 

sm oothed solar flux benefiting  the most. It is interesting to note th a t all but one of these networks 

were learning to predict smoothed tim e series. This result has an interesting interpretation, especially 

when it is realised th a t the cause of the halting of training, in almost all of the results in this chapter, 

was for reasons of overfitting rather than instability. The smoothed series, alm ost by definition, are 

easier to predict than the unsmoothed series, and from the above results it is apparent th a t the 

training of a network predicting a smoothed series can continue for much longer w ithout being9
troubled by overfitting. The conclusion, which might well have been expected, is th a t sm oother 

tim e series are less prone to overfitting than more variable tim e series.

5.7  P red icting  further ahead

M ethods of predicting further than one step into the future are of course desirable. In the case of the 

sm oothed series, predicting further than one step ahead is almost a necessity because future data  

is used in constructing the running mean. There are two methods available: training the netw ork’s 

o u tpu t to predict further ahead; or iterating ahead by supplying the network with its own predictions 

as inputs.

5.7.1 Free Iteration

The process of iteration has been dem onstrated and briefly remarked upon in the foregoing results. 

To recap, iteration involves the re-cycling of a network’s predictions as subsequent inputs. Since
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Table 5.18: These are the errors obtained by iterating the predictions of the best networks for each 
tim e series. The iteration is free running, in th a t the network is only exposed to actual tim e series 
d a ta  once, a t the start. The final column gives the number of iterated points th a t were used to 
calculate the RMS error.

D ata Network Error No. of points
Daily SSN 2-2-1 97.4 151
Smo. Day. SSN 6-2-1 150.6 148
M onthly SSN 18-6-1 46.1 113
Smo. Mon. SSN 18-18-1 23.4 106
Yearly SSN 12-2-1 45.3 34
Daily SF 18-2-1 90.8 151
Smo. Day. SF 18-2-1 517.4 148
Monthly SF 18-6-1 54.5 113
Smo. Mon. SF 18-18-1 42.1 106
Yearly SF 6-2-1 35.9 34
Daily K p 2-6-1 103.5 151
Smo. Day. K p 18-2-1 57.1 148
Monthly K p 12-2-1 41.7 113
Smo. Mon. K p 18-18-1 2 1 .6 106
Yearly K p 12-6-1 28.1 34

iteration compounds the errors of previous predictions, in making new predictions, it is difficult 

to make even a rough estim ate of the prediction accuracy. In fact, iteration can lead to stable 

predictions on one part of a time series, whilst in other parts of the same series it may lead to 

wild or even explosive behaviour, as seen in the case of daily sunspot number. The results of this 

sub-section are concerned only with free running iteration. T h a t is the network is only given access 

to the original tim e series values at the very beginning, thereafter it m ust rely on its own predictions.

Figures 5.1 to 5.5 show the freely iterated predictions using the best one step ahead predicting 

networks from Section 5.6, with sunspot number predictions at the top and K p index predictions 

at the bottom  of each page. Notice th a t in m any cases periodic structure is evident in the iterated 

predictions. Table 5.18 summarises the iterated prediction accuracies which vary from the surpris

ingly good, e.g. the smoothed m onthly sunspot number, to the truly awful, e.g. sm oothed daily 

solar flux. These results show th a t free iteration is not a reliable prediction m ethod.
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Figure 5.1: T he freely iterated  pred ictions o f  the daily  tim e series.



C H A P T E R  5. PR E D IC TIO N  OF S O L A R  T E R R E S T R IA L  T IM E  SERIES 222

200

180

160

140

120

100

1995 1995.2 1995.4 1995.8 19961995.6

100

-100

-200

-300

-400

-500

-600

-700
1995 1995.8 19961995.2 1995.4 1995.6

350

300

250

200

150

100

50
19961995.81995.4 1995.61995 1995.2

Figure 5.2: T he freely iterated  predictions o f th e  sm ooth ed  daily  tim e series.



C H A P T E R  5. PR E D IC TIO N  OF S O L A R  T E R R E S T R IA L  T IM E  SERIES

220

200

180

160

140

120

100

1986 1988 1990 1992 1994 1996 1998 2000 2002

260

240

220

200

180

160

140

120

100

1986 1988 1990 1992 1994 1996 1998 2000 2002

340

320

300

280

260

240

220

200

180

160

140

120
1988 1990 1992 1994 1996 1998 2000 2002

Figure 5.3: T he freely iterated  predictions o f the m on th ly  tim e  series.



C H A P T E R  5. P R E D IC T IO N  OF S O L A R  T E R R E S T R IA L  T IM E  SE RIES 224

200

150

100

-50

-100
1986 1988 1990 1992 1994 1996 1998 2000 2002

250

200

150

100

-50
1986 1988 1990 1992 1994 1996 1998 2000 2002

260

250

240

230

220

210

200

190

180

170

160

150 -----------1-----------1----------- 1-----------'-----------1----------- 1-----------1-----------L—
1986 1988 1990 1992 1994 1996 1998 2000 2002

Figure 5.4: The freely iterated predictions of the smoothed monthly time series.



C H A P T E R  5. P R E D IC T IO N  OF S O L A R  T E R R E S T R IA L  T IM E  SE R IE S 225

200

150

100

-50

-100
202020102000199019801970

220

200

180

160

140

120

100

80

60

40
202020102000199019801970

260

240

220

200

180

160

140

120
202020102000199019801970

Figure 5.5: The freely iterated predictions of the yearly time series.
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5.7.2 Iterating 6 Steps Ahead

Figures 5.6 and 5.7 show some examples of iterated 6 month ahead prediction on the yearly and 

smoothed daily time series respectively. In the case of the yearly data  the predictions are m ost 

successful for the sunspot number and the solar flux, presumably because of the strong presence of 

the solar cycle. Although the predicted maximum values of each cycle are quite unreliable, the year 

of m aximum is predicted quite well. Notice tha t the time of solar maximum is not usually predicted 

early, and tha t if predicted late, it is only so by one or two years.

The smoothed daily predictions show definite signs of a 3 to 4 day delay, and in the case of 

sunspot number a definite positive bias. This bias, as explained before, is because the training set 

is dom inated by solar maximum data, whereas the plotted predictions are for solar minimum.

Table 5.19 lists the prediction errors for both the iterated and non-iterated 6 step ahead pre

dictions. In almost every case the non-iterated predictions are superior to the iterated predictions. 

The exceptions are the daily Kp index (for which the difference in errors is negligible, given their 

huge size) and the three yearly series. This may be because a 6 year ahead prediction requires the 

network to leap across half a solar cycle, a task which is beyond the simple 2 and 6 hidden neuron 

networks found to be successful a t predicting 1 year ahead. To show that this is really the case,

I have trained a 12-18-1 network to predict yearly sunspot 6 steps ahead and found it to have a 

prediction error of 28.3.

5.7.3 Learning to predict 6 Steps Ahead

In order to have a comparison for iterated prediction I have trained networks to predict 6 steps 

ahead. In the absence of any other guidance I have simply used the architectures th a t were found 

to be the best for one step ahead predictions. The training proceeded as before, with an initial run 

of iterations with learning rate e =  0 .0 1 , followed by either further iterations with this value or with 

the smaller value of e =  0.01. The training and tests sets are the same as was used before. The final 

test set RMS errors for each network are listed in Table 5.19.

5.7.4 Iterating n  steps ahead

Figure 5.8 shows the prediction errors achieved by iterating 2 to 18 steps ahead for the three sm oothed 

m onthly series. (Note th a t these errors are calculated on the entire history of sunspot num ber which 

is why the 6 step iteration prediction errors do not correspond with those in Table 5.19). Surprisingly, 

while the error increases linearly for the sunspot number and solar flux, the error actual levels out
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Table 5.19: Below are the errors of six m onth ahead prediction using: a network iterating 6 steps 
ahead; and a network tha t has been trained to predict 6 steps ahead. All errors were calculated on 
the test set of the network tha t was trained to predict 6 steps ahead.

D ata Network Iterated Non-iterated
Daily SSN 2-2-1 39.5 32.5
Smo. Day. SSN 2-2-1 54.3 22.1
Monthly SSN 18-6-1 26.0 24.0
Smo. Mon. SSN 18-18-1 10.5 7.6
Yearly SSN 12-2-1 33.8 39.0
Yearly SSN 12-18-1 - 28.3
Daily SF 18-2-1 24.3 16.3
Smo. Day. SF 18-2-1 14.9 11.1
Monthly SF 18-6-1 25.2 25.0
Smo. Mon. SF 18-18-1 11.7 9.0
Yearly SF 6-2-1 28.1 33.2
Daily I<p 2-6-1 95.8 96.8
Smo. Day. K p 18-2-1 61.0 52.8
Monthly K p 12-2-1 37.9 37.4
Smo. Mon. K p 18-18-1 17.4 13.5
Yearly K p 12-6-1 26.7 27.5

and starts to decrease as the prediction is iterated further and further ahead with K p index. This 

might be because of the 6 month periodicity th a t is present in the K p index.

5.8 U ncertainty and Error

In what has gone before, the RMS error and the time shift plot have been used to judge the 

accuracy of prediction. In this section I consider how the RMS error may be be used to construct 

the uncertainty of a prediction. In what follows I make a distinction between “uncertainty” and 

“error” . An uncertainty is a statem ent about the accuracy of a prediction without reference to the 

actual value - an uncertainty is of course useful to know in practice when the actual value is not 

yet known. An error, on the other hand, is the measured difference between the prediction and the 

actual value.
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Figure 5.8: The RMS errors for n step ahead iterated prediction of the sm oothed m onthly series. 

5.8.1 T he R esiduals

I have the defined the residual tim e series, r,-, in the conventional m anner with

ri =  x t -  x t

where x t is the prediction of x t . It is obvious from a Figure 5.9 th a t the tim e series formed by the 

residuals possesses neither constant m ean nor constant variance. The variance of the residuals being 

greatest a t solar m axim um  and least at solar m inim um . Note th a t the residuals are usually positive 

near m inim a, and also th a t, around 1957, the m ean level of the residuals appears to be slightly 

negative, alm ost certainly due to the huge size of the 1957 solar maxim um .

Figure 5.10 shows histogram s: for all the residuals; for residuals near m axim a; and residuals near 

m inim a. It is apparent th a t the m inim um  predictions do suffer from  a positive bias of between 5 

and 10 units of solar flux. It is also clear th a t the residuals have a much larger variance a t m axim a.

For one m onth ahead predictions of m onthly K p index, the residuals, shown in Figure 5.9, do 

not display any obvious structured change in variance or in m ean level. A prom inent feature of 

K p residuals are the large negative spikes, which suggest th a t on several occasions the network has 

failed to  predict a sudden increase in the level of m onthly geomagnetic activity. The histogram  in 

Figure 5.10, indicates a bias in the predictions of about 10 units.
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Figure 5.10: Histograms of the residuals in predicting monthly solar flux one month ahead for: all 
residuals (563 points); residuals near maxima (224 points); and residuals near minima (248 points).
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Figure 5.12: Histograms of the residuals in predicting monthly K p index one month ahead for all 
residuals (749 points).
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5.8 .2  U n certa in ty  and th e Solar C ycle

The apparently variable statistical properties of the residuals have several implications when estim

ating the uncertainty of a prediction. For example, it is not meaningful to make a statement like “the 

sunspot number for next month will be X  ±  E r m s ” , because for example, the error of a prediction 

at solar maximum is more likely to be larger (in magnitude) than the error of a prediction made at 

solar minimum. Also, such use of an RMS error as an uncertainty takes no account of any bias in 

the prediction.

An improved estimate of prediction uncertainty can be obtained from the histograms of the 

residuals at maxima and minima. For example, for one month ahead solar flux predictions the 

following statistics can be calculated from the histograms:

•  Maxima - 80% of the residuals lie within ±26 solar flux units of the true value, and there is 

no obvious bias in the predictions.

•  Minima - 80% of predictions lie within ± 9  solar flux units of the true value, but a bias of 5 to 

10 solar flux units is evidenced in the histogram plot.

•  Whole data set - 80% of predictions are within ±17.1 of the true value and again a positive 

bias is seen.

These numbers can now be used as uncertainties for any future predictions that are made. 

Figure 5.13 shows the predictions, with their 80% confidence bands, for the minimum and maximum  

of cycle 22. The size of each error bar is just the appropriate 80% uncertainty value and the error 

bars for the minimum predictions have been adjusted by 5 units to reflect the bias of the predictions.

5.8 .3  U n certa in ties for other series

Tables 5.20, 5.21 and 5.22 show the estimated uncertainties for all predictions obtained in this 

chapter. The 80% lim it is chosen because, for all time series, there are enough predictions in the 

outer 20% of the residual histogram to make the uncertainty estimate statistically meaningful.

The above method of estimating uncertainty is only necessary (or possible) for the time series 

that exhibit the solar cycle i.e. the monthly, smoothed monthly and yearly time series of sunspot 

and solar flux. (In practice however, there was simply not enough data to split the yearly solar flux 

predictions into m inima and maxima in this way.) For the other time series I have constructed the 

prediction uncertainties using the whole data range.
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Table 5.20: This table gives the 80% prediction uncertainties for all the best 1 step head predicting 
networks

Data Network Uncertainty Bias
Min Max Min Max

Daily SSN 2-2-1 14.7 3
Smo. Day. SSN 6-2-1 3.5 3
Monthly SSN 18-6-1 15.4 29.5 0 0
Smo. Mon. SSN 18-18-1 1.8 3.2 0.5 0
Yearly SSN 12-2-1 17.9 32.3 0 0
Daily SF 18-2-1 7.4
Smo. Day. SF 18-2-1 2.1 -0.5
Monthly SF 18-6-1 9.6 26.2 5 0
Smo. Mon. SF 18-18-1 1.5 2.9 0.5 0
Yearly SF 6-2-1 28.0 0
Daily I \ p 2-6-1 89.7 50
Smo. Day. K p 18-2-1 16.1 3
Monthly K p 12-2-1 35.2 10
Smo. Mon. K p 18-18-1 4.4 2.5
Yearly K p 12-6-1 30.2 0

Table 5.21: This table gives the 80% prediction uncertainties for all the best 1 step head predicting 
networks iterating 6 steps ahead

Data Network Uncertainty Bias
Min Max Min Max

Daily SSN 2-2-1 41.0 10
Smo. Day. SSN 6-2-1 29.2 10
Monthly SSN 18-6-1 27.0 37.1 0 0
Smo. Mon. SSN 18-18-1 12.2 17.2 2 -5
Yearly SSN 12-2-1 23.3 52.9 0 0
Daily SF 18-2-1 29.4 10
Smo. Day. SF 18-2-1 24.2 0
Monthly SF 18-6-1 20.0 33.7 0 0
Smo. Mon. SF 18-18-1 10.2 15.2 6 0
Yearly SF 6-2-1 28.0 0
Daily K p 2-6-1 115.7 80
Smo. Day. K p 18-2-1 83.1 20
Monthly K p 12-2-1 46.4 15
Smo. Mon. K p 18-18-1 25.8 10
Yearly K p 12-6-1 37.8 0
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Table 5.22: This table gives the 80% prediction uncertainties for the direct 6 step ahead predicting 
networks. (*This figure is an 85% confidence value)

Data Network Uncertainty Bias
Min Max Min Max

Daily SSN 2-2-1 41.5 10
Smo. Day. SSN 6-2-1 27.8 10
Monthly SSN 18-6-1 24.4 35.7 0 0
Smo. Mon. SSN 18-18-1 8.9 11.8 0 0
Yearly SSN 12-2-1 19.6 54.9 0 0
Yearly SSN 12-18-1 25.4 50.1* 0 0
Daily SF 18-2-1 23.4 15
Smo. Day. SF 18-2-1 17.2 15
Monthly SF 18-6-1 17.6 34.0 -10 -10
Smo. Mon. SF 18-18-1 9.2 12.9 -8 -8
Yearly SF 6-2-1 40.4 -50
Daily I<p 2-6-1 117.2 50
Smo. Day. K p 18-2-1 63.1 10
Monthly K p 12-2-1 47.3 -50
Smo. Mon. I \p 18-18-1 16.9 -15
Yearly K p 12-6-1 37.0 75

5.9 C hoice o f  Training Set

Until now, little has been said about how the training sets were chosen. As a rule of thumb I have 

generally used about the first 70% of the available data as a training set and last 30% as a test 

set. Although the 70:30 ratio is used in all cases, it was not necessary (or practical) to use all the 

available data for every time series. For the daily time series, only the last ten years of data was 

used, because the inclusion of all data not only slowed down training but seemed to hamper the 

network’s ability to learn to predict. For similar reasons, only monthly sunspot from after 1900 was 

used to train and test networks.

The choice of training set only presented a serious problem for the daily series of sunspot number 

and solar flux, where the training set consisted mostly of examples from solar maximum, whilst the 

test set consisted mainly of examples form solar minimum. To improve upon this situation a network 

could be trained specifically to predict either maximum or minimum data. Such an approach was 

taken by Macpherson and Kirkton (1995), but was found to be equally problematic because of the 

scaling problems introduced by the different sizes of solar maxima. Although not investigated within 

this thesis, a possible way out of these problems is to use the wavelet transform to separate the long
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timescale (4000 day) solar cycle from the daily structure.

From the point of view of prediction, the largest maximum of all time, that of cycle 19 in 1957, 

is a problem. In the monthly and yearly sunspot number predictions of this chapter, this maximum  

resided in the training set and not the test set. This is perhaps unfair because the network’s 

output has little chance of reaching values that were not represented in the training set. The same 

architecture (12-2-1) network as used above was trained on a training set of yearly sunspot number 

from 1850 to 1976, with a test of 1977 to 1994 (87:13 ratio). The test set RMS error in this case was 

16.0, a definite improvement on the previous error of 20.2. The question is whether this improvement 

is entirely due to the fact that the 1957 maximum is not in the new test set, or it is because this new 

network is simply better at predicting? The obvious way to find out is to re-evaluate the RMS error 

of the previous network on the new test set - doing so reveals the error to be 20.14. This means that 

the inclusion of the 1957 maximum is really a necessity, presumably because it prepares the network 

for the large maxima of cycles 19 and 20. This result also serves as a warning that the comparison 

of two test set RMS errors from different methods can be meaningless, unless the same test set and  

training set are used in both methods.

5.10 N etw orks w ith  2 H idden N eurons

For the daily and smoothed daily time seriec, networks with fewer hidden neurons (i.e. 2 or 6) were 

found to be the most successful. The same is true for predicting the yearly time series. For the 

monthly series, networks with many hidden neurons (12 or 18) seemed to fare best. W hat conclusions 

can be drawn from this? At first sight, it is tempting to conclude that the predictions of the monthly 

series involve a network doing something more complicated than for a network predicting the daily or 

yearly time series. After all, a network with only 2 hidden neurons cannot represent some functions 

that are within reach of an 18 hidden neuron network. On the other hand, the latter network 

can represent any function that a 2 hidden neuron network can. So, unless it is known that back 

propagation is hampered by the inclusion of too many hidden neurons, there seems to be little hope 

of drawing any definite conclusions from the number of hidden neurons in the best networks.

In actual fact, some results in Chapter 3 suggest that back propagation might indeed be hampered 

by the use of extra hidden neurons. Assuming this to be true then what functions can a network 

with only 2 hidden neurons actually perform? As shown in Section 4.4, an 7-2-1 network can fit 

any linear function of I  variables, or in other words it can represent any 7th order linear auto

regressive time series. Looking at the freely iterated predictions of daily, or smoothed daily sunspot
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number and solar flux (Figures 5.1 and 5.2), it is apparent that the network will iterate almost 

linearly to some large (or small) value at which the predictions reach a plateau. (In fact the shape 

of the iterated predictions is reminiscent of the sigmoid activation function.) The interpretation 

for the daily predictions is therefore that the network has learned to produce some linear function 

of its inputs so as to predict an increase if its inputs are increasing or a decrease if its inputs are 

decreasing. When left to iterate freely, it will just carry on until it exceeds the limits in which it 

learnt to perform the linear function, at which point, the iterated predictions level out because of 

the shape of the sigmoid activation function. This explanation also accounts for the delay evident in 

the daily predictions, as networks operating in this way cannot really predict peaks until after they 

have occurred. The situation for yearly prediction is not so easy to interpret because the network is 

capable of producing the cyclic rather explosive behaviour.

5.11 C oncluding R em arks

The results of this chapter have covered much numerical ground, and have required several months 

of computer time. But it has to be said that a year, or even ten years, of computer time (at 

current CPU speeds) would still not be able to answer every question of interest about which neural 

network, with which training parameters, on what training data provides the best prediction for 

a particular time series. What the results of this chapter do provide is guidance for any future 

work with neural networks in how the above issues should be approached. Also provided are the 

best predictions that I could make (within the constraints of time and equipment) of the different 

timescales of sunspot number, solar flux and K p index. To make these predictions more meaningful,

I have constructed 80% uncertainty bands for them, and where appropriate I have given separate 

values for solar maximum and solar minimum predictions.

Since the vast quantity of numerical results in this chapter might make it difficult to see the 

forest for the trees, a concise but complete summary of the results can be found in Section 7.6. Also 

in this section is a prediction of the maximum of solar cycle 23.



C hapter 6

N ew  M ethods in N eural N etw ork  

P red iction

“A good Idea or Theory need not be practical or correct.” Anon.

The emphasis of the last two chapters was to hunt the parameter spaces of FFNN architecture and

back-propagation in order to find the network that provided the best RMS prediction accuracy. 

In this chapter the emphasis is on varying the methods rather than their parameters. Also, the 

approach of this chapter is more open-minded, in that it seeks to improve the methods of prediction 

in more than just the “RMS error” sense. For example, RMS prediction accuracy might even be

sacrificed for the attainment of some other goal, such as the elimination of delay.

6.1 W avelet F iltered  T im e Series P red iction

The wavelet transform was introduced in Section 2.4.3 where it was used to filter daily time series 

in order to bring out features around the time scale of the 27 day solar rotation. Here the discrete 

Daubechies wavelet transform is used to split a stretch of a time series into several time-scales, so 

that each time scale can be predicted by an output from a FFNN. The idea behind, what I shall 

call “Wavelet Filtered Prediction” or WFP, is illustrated in Figure 6.1. Basically, the network takes 

its inputs from the original time series and outputs predictions of the wavelet filtered time series. 

Although it is possible, in principle, to give the network inputs from the wavelet filtered time series, 

to do so would be inadvisable for the following reasons. Given a data vector comprised of elements

239
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Figure 6.1: A time series X t  is split up into three time-scales using the Daubechies wavelet transform. 
These three new time series are labelled 1,2 and 3, 1 being the time series of the largest time scale. 
Taking I  inputs from the original time series, the network is required to predict the next values on 
each of these time scales.

of a time series, i.e.

X  =  ( X l t . . . , X N )

the wavelet transform effectively involves performing a convolution with each basis wavelet. Remem

ber that each basis wavelet is formed by translating, and scaling the shape of the mother wavelet. 

However, if a particular basis wavelet is near (in terms of the scale of the wavelet) one end of the 

data vector, then it wraps around to the other end in the convolution. The practical implication 

of this is that each end of the wavelet filtered time series is “contaminated” by the other end, the 

contamination being most severe for the largest time scale. These end effects make it impossible 

to use the wavelet filtered time series as inputs, because the inputs required to make an actual 

prediction of the future, i.e. X lN _ j , . . . ,  X lN _ 1 are contaminated by the behaviour of the time series 

at the beginning of the data vector. For similar reasons zero-padding the ends of the data vector is 

equally problematic.

The W FP method promises at least one attractive possibility. If the network is presented with a 

predictable signal plus constant-mean noise, and the noise is varying on a time-scale that is different 

from the signal, then the output predicting at the timescale of the noise should learn to always 

output values close to noise’s mean. This provides an interesting test for a suspected white noise 

component of a signal. On the other hand, if there is reason to believe, a priori, that the behaviour



C H A P T E R  6. N E W  M E T H O D S IN  N E U R A L N E T W O R K  P R E D IC T IO N 241

on a particular time scale is white noise-like, and therefore unpredictable, then the corresponding 

output can be safely removed with no loss of predictive power. The above raises a more general 

question: from the network’s outputs, how can a prediction of the original time series be obtained? 

The answer is simple, because the wavelet transform is linear,

N .

t=i

that is the prediction is formed by simply summing the networks outputs at time t 1.

Before carrying out WFP a further question needs to be answered: how many time scales should 

be used? The discrete Daubechies wavelet transform of a data vector of length N  =  2M  will have M  

distinct time scales, so there can be no more than this number. The following describes, in detail, 

how the wavelet filtering of a time series into several scale bands is performed. Let X  be the data 

vector composed of the original time series, and let Y  be the wavelet transformed vector i.e.

Y  =  D W T  [X]

Now, in using the discrete Daubechies transform, as prescribed in Press et al. (1994), the transformed 

vector is organised as follows:

Scale 
Band 1 M

? +l->N
2y  , r ,

1 2
Y  , Ya ,

3 4 ’
Y  Y  Y  Y

5 ’ 6* l ’ 8*
9->16

Largest Scale Smallest Scale

That is there are N  wavelet vector elements with 2 elements in scale band 1, and 2n_1 elements in 

scale band n,  for n  =  2, 3 , . . . ,  M . If the original time series was monthly then the characteristic 

time scale of scale band n is 2M-n months. To view the time series on one of these scales all one 

has to do is set all the other wavelet coefficients to zero and perform the inverse transform, e.g. to 

obtain the time series in scale band 3,

X 3 =  I D W T  [Y 3]

1T he resu lts here are based  on  num erical experience and  com m on sense, Section  7.3.2 d iscusses how these results  
m ight be form ed on  firmer ground.
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where

Y 3 = (0,0,0,0, n ,  Ye,Y7, n ,  0,0,0........0)

In practice, it is often more convenient to use several scale bands in the construction of a  wavelet 

filtered tim e series. In the work th a t follows I shall use a two scale wavelet filtered tim e series system , 

w ith a large tim e scale series X }  and a small tim e scale series :

X 1 = ID W T  [(Y ,, Y2, Y3, . . . , Y ,„n _ „  0 ,0 , . . . ,  0)]

and

X 2 =  ID W T  [(0,0,0........0, Y j* /,, Y j„ /,+1......... Y2„ )]

The reason why it is preferable to construct fewer wider wavelet filtered tim e series, each m ade up 

from  several scale bands, rather than having M  wavelet filtered tim e series each constructed from 

one scale band, is explained in Figure 6.2, which also shows how the type of wavelet used will affect 

filtered tim e series.

To illustrate the above points, I shall dem onstrate the W FP m ethod on the tim e series

X t  — 100  sin Yqq

the variance of the noise being 167T2 (this tim e series was labelled EX2c in the C hapter 4). Figure 6.3 

shows the extract of the tim e series used, and its decomposition into two scales. Since there are 256 

d a ta  points there were 8 scales bands in the wavelet transform . The first 4 are used to construct the 

“sm ooth” tim e series, whilst the other 4 are used to construct the “detail” tim e series.

D ata  in the t range 1811-2028 were used to tra in  the 12-8-2 network, with the rest used as a test 

set, all errors being calculated on the test set. Figure 6.4 shows the network’s predictions of the 

sm ooth and detailed tim e series. As expected the detailed tim e series predictions are close to  zero, 

possessing a much smaller variance than  the detailed tim e series itself. If the sm ooth tim e series 

predictions are used as predictions of the original time series, then the prediction error is 15.46, 

which compares very favourably w ith the networks of Table 4.5 in the last chapter. T he 12-6-1 

network achieved the best prediction accuracy of 15.25. The error from  using the best possible 

prediction scheme, X t =  100 sin +  100 is 13.99. Summing the sm ooth and detail tim e series for 

use as predictions yields an error of 15.78.

This last example was clear cut, there was noise on a short timescale and predictable struc tu re  

on a longer timescale. Likewise, as seen in the last chapter, m onthly sunspot num ber is difficult 

to  predict in the short term , but when sm oothed, can be predicted in the long term  because of
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Figure 6.2: Figure a) shows a sequence of the wavelet filtered daily sunspot num ber, using the Daub4 
m other wavelet shape shown in b). The jagged appearance of the D aub4 wavelet is quite apparent 
in the filtered time series. The fact th a t the shape of the m other wavelet im prints its form on the 
filtered tim e series is a price th a t has to be paid in using the wavelet transform  in this way. However, 
by using wider scale bands the effect of the m other wavelet’s shape is less pronounced (after all, 
using all tim e scales yields the original tim e series). Also, by using a sm oother wavelet, such as the 
Daub20 wavelet d), the appearance of the filtered tim e series can be m ade considerably sm oother, 
as shown in c).
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Figure 6.3: This plot shows the wavelet decomposition of a noisy sinusoidal tim e series into a 
“sm ooth” tim e series and a “detail” tim e series.
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Figure 6.4: a) shows the netw ork’s predictions of the sm ooth tim e series, b) shows the network’s 
predictions of the detail tim e series. By using the sm ooth tim e series as a prediction of the original 
tim e series, as shown in c), an RMS error of 15.46 is achieved. Note th a t d), the tim e shift plot of 
these predictions, indicates th a t the predictions suffer from delay.
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Figure 6.5: This plot shows the wavelet decomposition of m onthly sunspot num ber into a “sm ooth” 
tim e series and a “detail” tim e series.

the solar cycle. The problem in using the running mean type sm oothing is th a t it is hard to 

in terpret the meaning of the predictions. W ith the W FP technique the m eaning of the sm ooth tim e 

series predictions is clearer: if the sm ootn tim e series predictions are added to the detail tim e series 

predictions, predictions of the original tim e series are constructed. As was the case with the previous 

exam ple, if the short term  variation is ju st noise with a constant mean, then the sm ooth tim e series 

predictions, corrected for the mean noise level, are predictions of the original tim e series in their own 

right. However, it is clear from Figure 6.5 th a t the short term  variations in m onthly sunspot are not 

ju s t constant mean white noise because the m agnitude of the short term  component is m axim um  

when the sunspot cycle is a t a maxim um .

Since the sm ooth component of sunspot num ber is the target of the networks prediction, it is 

not very meaningful to  predict on timescales of less than  about six m onths ahead. The results in 

Figure 6 .6  show th a t the W FP scheme offer a significant im provem ent over an echo in predicting 6 

m onths ahead. Notice also th a t the sm all variance of the detail tim e series predictions indicate th a t 

the detail tim e series is effectively unpredictable by these m ethods. A lthough the detail tim e series
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Figure 6 .6 : These plots show the results of the W FP m ethod prediction 6 m onths in advance, a) 
shows the netw ork’s predictions of the sm ooth tim e series and b) shows the netw ork’s predictions of 
the detail tim e series. By using the sm ooth tim e series as a prediction of the original tim e series, as 
shown in c), an RMS error of 27.7 is achieved. Note th a t d), the tim e shift plot of these predictions, 
indicates th a t the predictions suffer from  delay and th a t the echo error of 30.5 is significantly greater 
than  the W FP prediction error. The 8-8-2 network used was trained using a learning ra te  of 0.05 
until train ing became unstable, after th a t the learning rate  was reduced to 0.005 and the training 
continued until again it became unstable. After this no significant improvement could be m ade by 
using sm aller learning rates.
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Figure 6.7: The improved W FP m ethod neural network. Running m ean inputs have been introduced 
to allow the network to see recent sm ooth behaviour of the tim e series.

is certainly not white noise, its unpredictable nature means th a t, as before, the sm ooth tim e series 

component alone can be used to provide meaningful predictions.

The reason th a t the W FP predictions suffer so severely from delay might be because the d a ta  

a t the inputs are so variable whilst the tim e series to be predicted is so sm ooth. As explained 

previously, it is not possible to use the sm ooth tim e series itself as an input to the network because 

of end effects. However, it is possible to give the network some sm oother inform ation about the tim e 

series by providing it w ith some running m ean inputs. The re-designed network is shown graphically 

in Figure 6.7, where the running m ean series X t  is defined as

=  (6 I ) 
n=0

The results of using this modified version of the W FP m ethod results in much the sam e RMS 

error (27.5), bu t now the delay is less severe. So, the inclusion of the running mean sm oothed inputs 

has m ade it possible for the network to  make a sm oother prediction of the future, presum ably 

because it is not too perturbed by spikes and sharp features a t its inputs.
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Figure 6 .8 : These plots show the results of the W FP m ethod with sm oothed inputs predicting 6 
m onths in advance, a) shows the network’s predictions of the sm ooth tim e series and b) shows the 
netw ork’s predictions of the detail tim e series. By using the sm ooth tim e series as a prediction of 
the original tim e series, as shown in c), an RMS error of 27.5 is achieved. Note th a t d), the tim e 
shift plot of these predictions, indicates th a t the predictions suffer from  delay and th a t the echo 
error of 30.5 is significantly greater than  the W FP prediction error. T he 12-12-2 network used was 
trained in a sim ilar fashion to  the 8-8-2 network which was used to ob tain  the results in Figure 6 .6 . 
T his tim e, however, four of the inputs presented to the network were from a running m ean series 
described as defined in (6 .1).
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6.2  T h e G enetic A lgorithm  Training Schem e

To understand how a GA can be used to train  a NN, consider a population of NNs, all generated 

random ly ( th a t is the values of their weight connections are set random ly). The following process is 

perform ed:

1. Choose a given num ber of “best” NNs, they are the parents , the rest are discarded.

2. Re-stock the discarded population m embers by random ly selecting two parents and combining 

them  in some m anner to  produce a child - this is called cross-over.

3. Mutate some or all of the children.

4. R eturn  to step 1.

In principle, this process should be term inated  when some generalisation stopping criterion is 

m et. This will be discussed later. The m ost interesting choices to be m ade are in laying down the 

criteria  of success. The RMS error of the netw ork’s predictions is the obvious candidate, but this 

neglects the potential power of using a GA. A GA can use any measure th a t rates the success of a 

NN in such a  way th a t “good” predictions may be rated over “bad” predictions. The freedom in 

choosing the measure of success is the G A ’s strength over Back Propagation. Remember th a t BP is 

restricted to the use of an error measure which m ust be differentiable w ith respect to the network’s 

weights. T he aim is to tra in  or “breed” networks th a t do not predict w ith delay, so the measure 

of a netw ork’s success could sim ply be the RMS error of the netw ork’s predictions m ultiplied by a 

penalty  factor related to the delay in predictions, i.e.

E q a . =  -EVms-Pdelay

where E rms is ju s t the rms error on the training set and Pdeiay is a penalty term  for delay. This error 

will be hereafter referred to as the penalised error. I have found th a t the following simple penalty 

scheme worked well in practice

I 1 if the tim e-shift plot is m inim um  a t r  =  0
-Pdelay — \

I 500 otherwise.

A lthough networks exhibiting delay will be a t a severe disadvantage in the ranking of the genetic

population, the genetic algorithm  training m ethod does not guarantee th a t the trained network will

predict w ithout delay. For example, in the case of the AR1 (random  walk) tim e series, the best
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prediction, in any sense, is ju s t an echo. This means th a t all the networks will suffer the penalty 

term , though some will be more adept than others at perform ing the echo.

R eturning to the mechanisms of the GA, there are two practical questions th a t m ust be addressed:

•  How should the cross-over be performed?

•  How should the m utation be performed?

A typical scheme th a t I have constructed for performing these operations on FFNNs is described 

pictorially in Figure 6.9. The cross-over operation involves choosing two parent networks and breed

ing a child network by taking the inputs weights from one parent and the ou tput weights from  the 

other parent. The design of the m utation  step caused more of a  problem. At first I bore w ith trad i

tion and random ly m utated  some of the child networks’ weights, picking the weights to be m utated  

a t random . This m ethod was unable to train  the networks, a t least on the timescale of my Ph.D . 

In an a ttem p t to improve the situation I replaced the random  m utation  with a few iterations of 

back-propagation, performed on all of the newly born children. W ith this scheme neural networks 

were successfully trained, but the resultant best network was no improvement on a back-propagation 

trained network, as delay was still evident in the predictions. This was almost certainly because 

the evolution of the network population had become too directed2. The networks th a t received 

some back propagation training in one generation would alm ost certainly become the parents of the 

next generation. After several generations the population would then consist of very m any sim ilar 

networks th a t had all achieved success through training by back-propagation. Effectively, the GA 

scheme was ju s t performing back-propagation in a very inefficient m anner. To remedy the situation  

I then tried to increase the diversity of the network population by adding some random  m utation . 

This, however, did not improve m atters because the random ly altered networks died out alm ost 

im m ediately because they were always inferior to  the BP altered networks. To find a be tter com

promise between directed evolution and random  m utation  I tried using BP with a very high learning 

rate. This tim e BP was able to provide a direction, to  some extent, bu t a t the same tim e networks 

could suffer quite random  changes due to instability in the BP algorithm . This scheme seemed to 

work best, its m ain disadvantage being th a t it was very slow, though some speed-up is possible if 

certain program m ing techniques involving “pointers” are used (see Section B.3).

2T h is problem  provides an in teresting illu stration  o f w hy it is undesirab le to  breed  w ith  to o  m uch zeal tow ards a  
pre-defined  m aster-race.
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Genetic Algorithm Training

1) Generate many random Neural Networks

2) Test each one and assign it a success rating

E l E2 E3 E4 E5 E6

3) According to this rating select the best, discard the rest

Parents Children
E4 E3 E5 9 9  9• • •

4) Pick some NNs randomly and mutate them using 
Back Propagation with a high 8

5) Return to 1) and repeat...

Figure 6.9: A genetic algorithm training scheme for neural networks.
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6 .2 .1  T esting th e M ethod

Referring back to the results of C hapter 4, it is apparent th a t m any of the network predictions 

showed signs of delay. Further, as shown in Section 4.10, the presence of delay is not necessarily 

a  failure of the networks, because even the best predictions schemes (in term s of RMS error) can 

produce delayed predictions. The problem lies in the definition of “best” and, in particular, with 

back-propagation’s reliance on a mean-square type error. Re-designing BP to use an error measure 

th a t penalises for delay is difficult, because BP deals only with the gradient of the error (w .r.t. the 

weights) and not with the value of the error itself. It is for this reason th a t I have appealed to the 

genetic algorithm  scheme, despite its disadvantage in speed.

T he genetic algorithm  scheme th a t I have constructed requires several choices to be made:

1. Population Size - This is set to 50 for cases studied here.

2. Number of Parents - To allow for greater diversity I have chosen a m inority of 6 parents in the 

following tests.

3. Number of Generations - This could be determ ined by some generalisation stopping criteria, 

e.g. the test set error is increasing - this will be discussed later. Note th a t the tim e taken to 

process one generation depends on the m utation m ethod used, random  m utation  being by far 

the fastest option.

4. Random Mutation - In the random  m utation  I have used the following two param eters

Probability of m utating  a given weight connection, p 

M axim um  size of the random  m utation , A

5. Back-Propagation Mutation  - In the back-propagation m utation  only the learning rate  and 

num ber of training iterations need to be chosen.

There are, of course, endless variations th a t could be envisaged, for example, by m aking the process 

of choosing a parent a random  one, with the m ost successful networks having the highest probability 

of selection. However, I shall confine myself to  investigating the effect of altering the param eters in 

points 4) and 5).

The use of r a n d o m  m u ta t io n  is the trad itional option in using a genetic algorithm  (Goldberg 

(1989)) because it helps to m aintain  diversity and because, if a b etter m ethod of m utating  population 

m em bers is available, then it m ight well be used in place of the whole genetic algorithm . Now, when
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a child is constructed from the weights of its parents, there is a fixed probability p th a t a weight will 

be m uta ted  by adding some random  num ber in the range [—A, A]. The issue here is to balance the 

need for population diversity with the preservation of established talent. For the random  m utation  

tests perform ed here, I have used a 2-8-1 FFNN on the MA2 tim e series, which, when trained w ith 

back propagation, produced delayed predictions (see C hapter 4). Each test was run for a  m axim um  

of 5,000 generations3. In fact, for all the param eters tried, which were all the possible com binations 

of the following two sets

p = (0.001,0.01,0.1,0.7) x A  = (0 .001,0.01,0.1,0.5)

no progress in training was m ade a t all. In each case the best four parents rem ained in position, 

unchallenged, from the first generation, though in some instances the fifth and sixth parents were 

ousted from parenthood after several thousand generations. It seems, therefore, th a t the random  

m utation , as I have implemented it, does not show any promise in training FFNNs to predict tim e 

series. One way to improve the prospects of using random  m utation  comes from the fact th a t 

genetic algorithm s tend to be employed in searching the param eter space of discrete quantities. This 

suggests th a t the weights should be discretised onto an initially coarse grid in weight-space and the 

genetic algorithm  allowed to proceed until little improvement is m ade from one generation to the 

next. At this point the discretisation grid is made finer and the process is repeated, m aking the grid 

finer and finer as needed. This grid search m ethod is not explored further here.

The b a c k  p ro p a g a t io n  m u ta t io n  m ust be used w ith some discretion, otherwise the whole 

genetic algorithm  can degenerate into a very inefficient form of back propagation. In the tests 

perform ed here, BP m utation  is applied to every newly born child, for a fixed num ber of train ing 

iterations N  on the same training set as used before in C hapter 4. The other param eter to be 

chosen is the learning rate e, for which I have tested the values 0.01, 0.05, 0.1 and 0.5. The m ain 

problem  w ith this BP m utation is th a t it is much slower, because one genetic cycle involves 44/V 

back propagation iterations. For this reason, the tests sum m arised below in Table 6.1 were run for 

only 100 generations4. The results of these tests are very interesting, in th a t only the use of a larger 

learning ra te  succeeds in training networks to predict w ithout delay. This is alm ost certainly because 

the use of a  sm all learning rate results in an early dominance of back-propagation trained networks. 

If this early dom inance leads to back-propagation trained networks filling the entire population, then 

all the networks will compete with the sam e penalty, and thus the whole process will degenerate

3 5 ,000 generations takes about an  horn- o f run tim e on a  ded icated  SPAR C 1 0 /4 0 .
4 For N  =  10 th is took  several hours o f C P U  tim e on a SPARC 1 0 /4 0 .



C H A P T E R  6. N E W  M E TH O D S IN  N E U R A L N E T W O R K  P R E D IC T IO N 255

Table 6.1: Final RMS test set errors (not penalised errors) for the tests on the genetic algorithm  
train ing scheme using back propagation m utation. A 2-8-1 network is trained to predict the MA2 
tim e series, w ithout delay. An asterisk indicates the test set predictions showed delay.

Training Learning Rate
Iterations 0 .0 1 0.05 0 .1 0.5
1 0.064* 0.070 0.068* 0.088
5 0.070* 0.069* 0.067 0.078
10 0.069* 0.068* 0.071 0.071

into inefficient back-propagation. A nother way of looking at this is to imagine the large learning 

rates as causing instability  in the training, this instability serving as a kind of noise, diverting back- 

propagation from its directed “down the error slope” path . Figure 6.10 shows the tim e shift plots 

for these results. Notice th a t comparison with the results in Table 6.1 shows tha t the param eters 

giving the sm allest error, namely (1,0.01), display the m ost severe delay. The conclusion is th a t the 

price to paid for delay-free predictions is indeed a higher RMS error, as was reasoned to  be the case 

in earlier discussions.

As a final test I tried taking a genetically trained network, th a t produced non-delayed predictions, 

and train ing it further for several thousand BP iterations. This resulted in a network th a t produced 

delayed predictions, which, for all intensive purposes, m ight as well have been trained using back 

propagation from the beginning.

It is im portan t to note th a t the above RMS errors and tim e shift plots were calculated on the test 

set. This means th a t the networks have not ju st learned to avoid delay by over-fitting the training 

set data . As shown below, in applying the GA training m ethod to networks predicting the natural 

tim e series, it seems th a t such a pit-fall is unavoidable.

6.2 .2  P red ictin g  N atural T im e Series W ith ou t D elay

First of all I shall use the GA m ethod to tra in  networks to predict the geomagnetic K p tim e series 

w ithout delay.

The m ain problem  in m aking yearly predictions of this series is the lack of da ta  (only 63 years 

were available a t the tim e of writing). As before I shall use 1933-1976 (44 years) as the train ing set 

and 1977-1994 (18 years) as the test set. Despite the shortage of data , the prediction of the yearly 

K p index dem onstrates th a t the GA m ethod can be subject to overfitting. The results below will
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(a ) 1 ,0 .01  (b ) 1 ,0 .0 5  (c ) 1 ,0 .1  (d ) 1 ,0 .5

(e ) 5 ,0 .0 1  ( f )  5 ,0 .0 5  (g ) 5 ,0 .1  (h ) 5 ,0 .5

(i)  10 ,0 .01 (j) 1 0 ,0 .0 5 (k ) 1 0 ,0 .1 (1) 1 0 ,0 .5

Figure 6.10: Tim e shift plots for the tests on the genetic algorithm  training scheme using 
propagation m utation. The layout of the plots on this page is the sam e as in Table 6.1.
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Figure 6.11: The progress of the genetic algorithm  training scheme in term s of four error measures 
of the best network of each generation. The errors are plotted  every 10 generations, the numbering 
on the x-axis of the plot being “No. of generations/10” . Note th a t the penalised errors have been 
re-scaled for the purposes of plotting.

be used to construct an appropriate generalisation stopping criterion for the GA m ethod.

All the genetic algorithm  training runs described below were run for a m axim um  of 3,000 gener

ations, using a BP m utation step of 5 iterations with a learning rate of 0.1. The criterion for early 

stopping is defined later, in the light of the yearly K p index results.

Figure 6.11 plots the four error measures for the best network of each generation, the errors being: 

the penalised training set error; the penalised test set error; the RMS training set error; and the 

RMS test set error. The step-like nature of the plots is typical of the genetic algorithm  procedure: 

a network will often rem ain as the best member of the population for m any generations until one of 

its children, or great” grandchildren (n  >  0), suddenly improves upon it. Notice th a t the penalised 

train ing set error is the only one th a t is always decreasing and unlike BP, where the algorithm  can 

become unstable and worsen the network, the GA always improves on, or a t least equals, its best 

error of the previous generation. The penalised test set error shows the m ost dram atic variations, 

leaping by more than  a factor of two at about generation 200. At the same tim e notice th a t the
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penalised training error shows a marked decrease. This is a classic exam ple of over-fitting, where the 

train ing set d a ta  is fitted parrot fashion, to the detrim ent of the netw ork’s ability to perform well 

on the “unseen” test set data. The m inim um  in error on the test set occurs relatively early on, after 

only 40 generations - at this point the RMS error of the test set is also a t a minimum. Figure 6.12 

shows the prediction and tim e shift plots for the best network of the 40th generation. The predictions 

appear quite poor, and it seems th a t the sm all size of the test set and an element of chance, and not 

superior predictive ability, have brought about the strange situation  where the test set error is so 

m uch sm aller than  the training set error. At generation 400, the genetic algorithm  is in the middle 

of a p lateau, where the best network remains in place for several hundred generations. By this tim e 

it is clear from Figure 6.13 th a t some over-fitting has occurred, because the training set predictions 

show little  delay, with peaks and troughs predicted “on-tim e” (though poorly in size) whilst the test 

set shows a significant delay. By the last generation (3,000) the train ing set predictions, shown in 

Figure 6.14, appear to be quite accurate, with most peaks and troughs predicted on tim e, despite 

the slight delay evident in the tim e shift plot. The test set, however, still shows signs of significant 

delay and has a much larger RMS error.

To sum m arise, the 12-6-1 network could not be trained to predict yearly K p index w ithout delay. 

A lthough the network learned to predict the training set with little  delay, the predictions of the test 

set were still heavily delayed, and by the 3,000th generation, the train ing set error was substantially  

less than  the test set error.

The need for m onitoring the generalisation ability of a network trained by the GA m ethod is 

now clear. There are now two sym ptom s of over-fitting to be wary of: increase in the test set RMS 

error, whilst the training set RMS error is decreasing; and delay in the test set predictions whilst 

the tra in ing  set predictions show no delay. A stopping criterion, analogous to the one used w ith BP, 

based on an increase in the 'penalised test set error, would seem to  be an appropriate choice.

The only other form at of the K p index to show significant delay in the tests of C hapter 5 was 

the m onthly series. The genetic algorithm  again failed to find a network th a t predicted th is series 

w ithout delay.

T urning to six m onth ahead predictions, it was seen in Section 5.7 th a t even the sm oothed 

m onthly predictions suffered from delay, with the m inim um  in the tim e shift plot occurring at 4 

m onths. Can the genetic algorithm  offer any improvement in this case? As can be seen in Figure 6.15, 

the predictions obtained from the genetically trained network show little  delay on either the training 

set or the test set, though the price paid in term s of RMS error is extremely high. The error of



C H A P T E R  6. N E W  M E TH O D S IN  N E U R A L N E T W O R K  P R E D IC T IO N

260

240

220

200

180

160

140

120

100
19901930 1940 1950 1960 1970 1980 2000

45

40

35

30

25

20

15

Data -  
Test Set -- 

Training Set -■>

10

5

0
■3 -2 •1 0 1 2 3 4•4

Figure 6.12: The prediction plot and the time shift plot for the best network of generation 40.
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Figure 6.13: The prediction plot and the time shift plot for the best network of generation 400.
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Figure 6.14: The prediction plot and the time shift plot for the best network of generation 3,000.
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these predictions is 31.7, which is more than  twice the error of 14.2, obtained with the BP trained 

network in Section 5.7. As before, further training resulted in the decrease of the penalised training 

set error whilst the penalised test set error increased.

The final set of results of this section shows the GA training schem e’s success in training a 6-6-1 

network to predict the sm oothed m onthly solar flux six m onths ahead, w ithout delay. The plot in 

Figure 6.16 shows its predictions of the 1989 solar maxim um , taken from the network’s test set. The 

tim ing of the prediction is good w ith the m axim um  being predicted on time, even though its height 

is underestim ated. The tim e shift plot shows no delay, and although the prediction error (20.0) is 

substan tia lly  higher than  th a t of the BP trained network (12.8), the error is significantly better than 

an echo (2 2 .2 ).

6.2 .3  C om m ents on the G enetic  A lgorithm  Training

The GA training scheme has been dem onstrated as successful in obtaining non-delayed six m onth 

ahead predictions of sm oothed m onthly solar flux. The RMS errors of these predictions, however, 

were higher than  the errors for the BP trained network. To see if any improvement was possible 

in term s of RMS error, the training runs were repeated with different values of learning rate: 0.01,

0.05, 0.5, 1.0. For learning rates of 0.01 and 0.05, as before, the best networks of the last generation 

produced delayed predictions. W ith learning rates of 0.5 and 1.0 little  progress was m ade at all 

beyond the first few generations. It seems, therefore, th a t a larger RMS error is inevitable in asking 

for predictions free from delay.

The results concerning K p index cannot be regarded as a success. In only one case was a 

network found th a t produced non-delayed predictions, and the price paid, in term s of RMS error, 

was unacceptably high. There are two explanations why the networks could not learn to predict 

w ithout delay. The first is th a t there do exist networks capable of m aking non-delayed predictions, 

bu t the problem  of over-fitting in training prevents them  from being found. The second is th a t there 

is no way to  avoid delay in the predictions, because 'most peaks and troughs of the tim e series are 

sim ply unpredictable. The first problem m ight be overcome by brute force, e.g. by perform ing many 

GA train ing  runs, until a successful network is found. This is not practical a t present given the slow 

speed of the GA procedure. The second possibility is more serious, and if non-delayed “on-tim e” 

predictions are still sought after, then it is necessary to approach the problem  for a different direction. 

The W FP m ethod a t the beginning of this chapter is one possibility, because the netw ork’s efforts 

are focussed on predicting the sm ooth component of the tim e series. The next section deals with
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Figure 6.15: The prediction plot and the tim e shift plot for a GA trained 12-8-1 network predicting 
sm oothed m onthly K p index six m onths ahead.
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Figure 6.16: The prediction of the 1989 m axim um  and the accompanying tim e shift plot for a GA 
trained network predicting sm oothed m onthly Solar Flux six m onths ahead. The tim e-shift plot for 
the BP trained netw ork’s predictions, from Section 5.7, are shown for comparison.
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Table 6.2: RMS errors for networks predicting the daily I \p index. An asterisk indicates tha t delay 
was present in the predictions.

Network SSN K p Error
4-4-1 2 2 112.258*
8-6-1 6 2 114.169
12- 12-1 6 6 120.7
2-2-1 0 2 86.4*
Echo 0 0 92.9

another possibility, appealing to the physical and causal connection between the Sun’s behaviour 

and the geomagnetic K p index.

6.3 D ual Input D ata  N etw orks

In this m ethod a network is given inputs from two time series and is required to predict only 

one of them. Reasons why this might be useful are apparent from the cross-correlation plots of 

Section 2.4.2, where it was seen th a t the daily K p index (during solar maxima) seemed to be most 

correlated with the sunspot numbers from a 5 or 6 days beforehand. On the timescale of years 

there is also scope for dual data  input networks because, remember th a t Schatten and Sofia (1987), 

amongst others, exploited the level of geomagnetic activity at solar minimum to predict the height 

of the next sunspot maximum. In fact, the dual input method has already been used in conjunction 

with the W FP method, where the m onthly and smoothed monthly data  were given as network 

inputs.

6.3.1 D aily D ata

The networks tested here took inputs from the daily sunspot number and the daily I \p and were 

required to predict the latter 1 day in advance. The networks were trained on the daily data  of 

the years 1989 and 1990, with 1991 da ta  being used as a test set. Very small learning rates, as low 

as 0.0005, had to be used to train these networks, as higher values caused immediate instability in 

training. Table 6.2 shows the prediction errors achieved for several different networks.

The predictions of the best of the dual input networks, the 4-4-1 network, which takes only 2 

inputs from each series, are shown in Figure 6.17. Similar tests were also performed using da ta  from 

the 1946 maximum, but again the dual input da ta  networks were difficult to train  and ended up
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w ith m uch higher prediction errors than either echoing or norm al networks.

These results show th a t the networks cannot exploit any correlation th a t may exist between 

the daily sunspot number and the daily geomagnetic activity. In fact, the inclusion of the sunspot 

num ber inputs only seems to hinder the training of the networks, preventing them  from even reaching 

the accuracy of an echo.

6.3 .2  Yearly D ata

12- 12-1  networks were used for the yearly dual input predictions, with 6 inputs from one yearly 

tim e series and 6 inputs from the other. Figure 6.18 shows the results of using sunspot num ber and 

solar flux in predicting one other. As only the da ta  after 1947 can be used to train  the sunspot 

num ber/so lar flux dual input network, it is not fair to compare its results in predicting sunspot 

num ber w ith the best network of Section 5.6, which was trained on the sunspot num ber as far back 

as 1850. For this reason a 6-12-1 single da ta  input network was trained on the same training set as 

the dual input network. The RMS errors of predicting sunspot num ber using dual d a ta  inputs is 27.8 

whereas the single da ta  input network achieved a considerably lower error of 19.3. For solar flux the 

dual d a ta  input network’s error was 25.3, whilst the previous best network (see Section 5.9) achieved 

an error of 16.0. As with the daily time series, the training of these networks was quite unstable, 

requiring learning rates as low as 0.0001 to achieve the end results. W ith  this value of learning rate, 

over 50,000 iterations were performed to bring the networks to the point where over-fitting forced 

train ing to be halted. The tim e-shift plots for these predictions are not shown here because there 

was no delay present in either the training set or the test set.

In Section 1.8 a m ethod was reviewed, Schatten and Sofia (1987), th a t used the level of geomag

netic activ ity  a t solar m inim um  to predict the subsequent solar m axim um . The physical reasoning 

here is th a t the am ount of geomagnetic disturbance at solar m inim um  would reflect the strength of 

the S un’s newly formed poloidal field, which in tu rn  would indicate the level of activity at the next 

m axim um . For these reasons I have investigated the prospect of using the dual inputs of yearly K p 

index and yearly sunspot number, in predicting the la tte r a year in advance. The same 12-12-1 as 

used above will give the network access to the I \p index at the last solar m inimum, when it has to 

predict the m axim um  of a cycle. The results are p lotted in Figure 6.19, and again the tim e shift 

p lo t was om itted  as their is no delay in the predictions. The error of these predictions is 22.0. which 

although be tte r than  using the sunspot num ber/solar flux dual inputs, is still nowhere near as good 

as the single da ta  input network.
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Figure 6.17: The prediction plot and tim e shift plot for a 4-4-1 network predicting the daily K p 
index, by taking the last two days of both sunspot num ber and K p index as inputs.



C H A P T E R  6. N E W  M E TH O D S IN  N E U R A L  N E T W O R K  P R E D IC T IO N 268

200

180

160

140

120

100

80

60

40

20

0
1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995

(a )

240

220

200

180

160

140

120

100

1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995

(b )

Figure 6.18: The prediction plots for a) a 12-12-1 network predicting the yearly sunspot number 
(crosses) w ith the predictions of the single d a ta  input 6 - 12-1  network (boxes) and b) a 12- 12-1 
network predicting the yearly solar flux. In bo th  cases the network takes the last six years of both 
sunspot num ber and solar flux as inputs. T he training set for these networks was 1947 to 1980, with 
a test set from 1981 to 1994.
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Figure 6.19: The prediction plot for a 12-12-1 network predicting the yearly sunspot num ber a year 
in advance. In both cases the network takes the last six years of both sunspot number and K p index 
as inputs. The training set for this network was 1932 to 1980, with a test set from 1981 to 1994.

6.4  C oncluding R em arks

Of the three new m ethods th a t were introduced and tested in this chapter, wavelet filtered prediction 

and the genetic algorithm  training scheme have shown the m ost promise. The th ird, dual d a ta  input 

networks, failed to reach even the same level of success as the networks studied in chapter 5.

The test set RMS error for 6 m onth ahead predictions of m onthly sunspot num ber using the 

wavelet filtered prediction m ethod, was 27.5, as opposed to 24.5, achieved by the 18-6-1 network in 

C hapter 5 (on the same test set). A lthough the W FP error is higher, like is not being compared 

with like, because the 18-6-1 network was the product of an involved search of network architectures. 

The W F P  m ethod has one very a ttractive prospect: it discourages the network from trying to fit 

any short tim e scale noise. This is an advantage because the network is less prone to over-fitting 

the train ing set data. A nother advantage of W FP, th a t has already been rem arked upon, is the fact 

th a t the predictions have a clearer meaning than  the predictions of a running m ean sm oothed tim e 

series. T his point is discussed in more detail in Section 7.3.2.

T he GA procedure, although successful in the case of sm oothed sunspot number, could not 

produce any networks th a t predicted the K p index tim e series w ithout delay. One apparent problem
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lay in the over-fitting of the training set da ta  - overfitting being perhaps the easiest way for the GA 

to find a network th a t produced non-delayed predictions of the training set. A lthough it m ight seem 

tem pting  to help the GA along by penalising networks for bad-generalisation to the test set, this 

would compromise the requirem ent th a t the test set m ust be “unseen” during training.

T he reason for the failure of dual input networks is not clear, though the fact th a t training was 

unstable m ight provide a clue. If, for example, it is difficult for a network to ignore one of its inputs, 

th a t is, if it is difficult for BP to tra in  a in p u t’s weight connections towards zero, then irrelevant 

inputs m ight actually hinder the process of training. The further implications of this are discussed 

in Section 7.5.

The search for improved m ethods of prediction, whether it is in using neural networks or not, 

can be very unrewarding, as seemingly good ideas can turn  out to be useless. Also, a prediction 

m ethod judged to be successful on one subset of a given tim e series might tu rn  out to be a failure 

on some other subset. The first problem is really a m atte r of being prepared to invest hard work 

in an idea which has no guarantee of success. The second dem ands some caution in announcing 

th a t a particular m ethod is successful. For the results in this thesis, I have only inserted the word 

“significant” where I have had some reason to do so. For example, in saying th a t a netw ork’s test 

set RMS error is significantly lower than the echoing error, I have validated the use of the words 

“significantly lower” by calculating the two errors on more than  one subset of the test set and 

checking th a t the statem ent is still true.



C hapter 7

Future Work and C onclusions
“Isn ’t (the) blurring frequently ju st what one needs?” L. Wittgenstein

In this chapter I shall draw together the results of the preceeding chapters to provide a more general, 

and digestible, sum m ary of what has been achieved by the work of this thesis. In particular, the 

sheer volume of numerical results in Chapter 5, and the lack of any “theory” with which to compare 

them , makes their interpretation quite difficult. In this chapter I hope to focus some light on their 

m eaning for the benefit of any future work. Also, throughout the thesis, but especially in the earlier 

chapters, I charted some theoretical ground by proposing new techniques, such as analytic training 

(C hapter 3), and reviewing some topics of tim e series and neural network theory (C hapter 1). This 

theory m et with practice in only the simplest cases, for exam ple in using analytic training to  provide 

the prediction of a linear Auto-Regressive series in C hapter 4. In this chapter I hope to show how 

the gap between theory and practice can be narrowed by future work. Finally, I will discuss the 

new num erical techniques proposed and applied in this thesis, for example the em ploym ent of the 

wavelet transform  in Chapters 2 and 6 and the use of a genetic algorithm  as a training algorithm , 

also in C hapter 6 .

7.1 A nalysis o f  the T im e Series

In C hapter 2 the three tim e series of interest were scrutinised in some detail, in term s of their 

periodicities and in term s of their auto- and cross-correlations. Sunspot num ber received special 

a tten tion  because, although over 2 00  years of d a ta  is available, the earlier da ta  is of questionable 

quality. From about 1850 onwards the sunspot num ber is deemed to be reliable, e.g. Eddy (1977), 

before 1850 much of the da ta  was reconstructed by Wolf. It was shown, in term s of properties of

272
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the  solar cycle (e.g. duration, attack tim e, decay tim e etc.), th a t there was a  statistically  significant 

change in its behaviour in the middle of the 19th century. From the d a ta  alone there is no way of 

deciding w hether this change is due to the reconstruction by Wolf, or due to some long-term  change 

in the behaviour of the cycle. However, given access to W olf’s m ethods of reconstruction it may be 

possible to settle this dilemma. Whichever is the case, since it is clear th a t the sunspot num ber time 

series shows a significant change in behaviour, I decided not to  use the the pre-1850 d a ta  for any 

subsequent work in this thesis.

A nother issue, studied in C hapter 2, was the sta tionarity  of the sunspot number, w ith particular 

a tten tion  paid to the possible existence of a “mean cycle” . The sta tistical test constructed and 

applied found no evidence for a m ean cycle in the sunspot num ber. In fact, the very difficulty in 

constructing a reliable test (e.g. because of problems in deciding the beginning and end points of a 

cycle) leads me to feel th a t no mean cycle exists. In a more practical vein, if the mean cycle leads to 

a workable prediction scheme, as dem onstrated by McNish and Lincoln (1949), M acpherson (1994) 

and Kerridge et al. (1989), then th a t is justification in itself for assuming its existence.

7.2 A n aly tic  Training

T he m ethod of analytic training, first proposed in Chapter 3, and generalised to deal w ith I - H - 0  

FFN N s in Section A.4, is a technique th a t yields the network weights needed to fit O functions of I  

variables, provided th a t these functions are analytic in the region of interest. The fit is accomplished 

by m eans of a series truncation, and it is the error involved in this truncation  th a t determ ines the 

error of fit. It was also shown th a t when fitting a finite polynom ial, the error of fit can be m ade as 

sm all as desired by finding solutions where the input weights are m ade sufficiently sm all in absolute 

size.

7.2 .1  A nalytic  training vs Back propagation

In an a ttem p t to find a connection between theory and practice, I examined the weights of BP 

tra ined  networks th a t were trained to fit low order polynomials (Section 3.2). These exam inations 

revealed th a t back-propagation did not necessarily learn to fit the functions in the way prescribed 

by analytic  tra in ing1. The exception to  this last statem ent is when fitting a linear function. In

1 In fact, b o th  back-propagation  and an a ly tic  training can  find m any different netw orks to perform  th e  sam e task . 
D esp ite  th is however, there is still a  clear difference betw een  the resu lts o f B P  and an a ly tic  train ing b ecau se  th e  la tter  
requires the  trained  netw ork to  have sm all input w eights, while the form er does n o t.
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particu lar, it was shown th a t a 1-1-1 network being trained by BP to echo its input, a ttem pted  to 

proceed through weight space towards the solution prescribed by analytic training. T he reason th a t 

I say it only “attem pted” to do so is because instability  in training occurred as the solution was 

approached. This result is im portan t because, although the network was certainly able to produce 

an echo in theory, back-propagation was unable to realize this ability in practice. The very fact th a t 

networks can perform tasks outw ith the reach of back-propagation is a good incentive to search for 

other tra in ing  algorithm s.

B ut does such instability  completely explain why the end results of back-propagation and analytic 

train ing differ? The answer is no, because although the goals of the two m ethods m ay appear to  be 

the sam e, they differ in a fundam ental way: the former is discrete whilst the la tte r is continuous. 

Back propagation training m ust always work with a finite num ber of examples, m eaning th a t the 

network will learn any function  th a t represents the d a ta se t, and not necessarily the function  th a t may 

underly the data. W ith analytic training the network’s fit is continuous by design as it is required 

to fit the analytic function in the region of interest. This result is connected to generalisation ability 

because it highlights the fact th a t a BP trained network is under no obligation to learn the function 

th a t generated the data. The analytic training m ethod is a step forward because it shows how to 

force a network to fit a given analytic function continuously over a given region; a  task which is 

beyond the capability of back propagation.

7.2.2 Im plications for T im e Series M odels

In relation to time series, the m ethod of analytic training can be used to show which classes of tim e 

series can be well predicted with an I - H - 0  FFNN. For example, consider a non-linear auto-regressive 

tim e series of the form

X t  — f  { X t - \ , X t - 2 , • • •, X t - i )  + at

where /  is analytic over the range of the tim e series values. Given enough hidden neurons, /  can 

be approxim ated to any desired degree of accuracy. Further, if /  is a finite polynom ial, then only 

a finite num ber of hidden neurons is needed to fit it to  any desired degree of accuracy. On the 

other hand, the threshold auto-regressive tim e series (Section 1.2.5), where /  is a  discontinuous 

function would not, in general, be suited to prediction by an I - H - 0  FFNN. A lthough it has been 

suggested, w ith good reason, th a t recurrent networks are required to predict moving average type 

tim e series, e.g. Connor et al. (1994), there is a sub-class of linear moving average tim e series th a t 

are certainly amenable to prediction by FFNNs. These are the “invertible” MA tim e series. In fact,
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non-invertible MA series were rarely considered in the “classical” literature, e.g. see Cryer (1986) 

or Box and Jenkins (1970). The form for an N th order MA tim e series is

N

X t — ^  9na,t-n 4- o-t
n = 1

and the series is referred to as being invertible if and only if the equation

N

1 - £ ( S U »  =  0
71 =  1

has all its roots outw ith the unit circle. If a series is invertible then it can be w ritten in the form of 

an infinite order AR series: OO
Xt  =  <f>nZ t - n +  at

n  =  1

where the 4>ns can be expressed in term s of the dns. This means th a t a FFNN, with a sufficient 

num ber of inputs, can predict an invertible MA series. Note th a t the variance of the noise, and the 

fall off of the <j)n s, determines how m any inputs would be required to obtain a reasonable prediction 

accuracy. T his reasoning could be extended to invertible non-linear MA models, though there exists 

no convenient technique for determ ining the invertibility of such tim e series. Though not discussed 

here, sim ilar argum ents m ight also be made for ARMA type series.

7.3 T h e W avelet Transform

7.3.1 T im e Series F iltering

In Section 2.4.3 the wavelet transform  was employed to filter out unwanted short and long timescale 

variations in tim e series. In particular, the daily time series were filtered to highlight variations 

around the solar rotation period of 27 days. From these filtered versions of the tim e series “cleaner” 

correlograms were obtained and on the basis of a few num erical experim ents I concluded th a t the 

wavelet transform  strengthened the correlations th a t were present w ithout introducing any spurious 

features into the correlogram. Obviously these numerical experim ents can only be taken as being 

suggestive, not conclusive. To put such use of the wavelet transform  on firmer ground a more in 

depth, theoretical analysis of its statistical properties is required. The Fourier transform  is already 

supported  by such results, some of which were pu t to good use in the analyses of C hapter 2. As an 

exam ple of w hat is required, I show below how the expectation and variance of the wavelet transform  

of a white noise tim e series can be obtained.
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Let the white noise time series f t is defined such that

C o v [ f , , f . )  =  E [ f t f , )  =  6,, .  <r2 E [ f t] =  0

where 6t>s is the Kronecker delta function. Using a discrete time wavelet transform, described more 

fully in Chan (1995), the wavelet transform f ( b ,  a)  of f t is

*2

/ ( M )  =  X  ^,<*(0 /*
t-tx

where V’m W  is the wavelet function of translation b and dilation a.  The mean of the wavelet 

transform is given by

E [ f ( b , a ) }  =  E
J  =  t 1

 ̂2

t = t x  

= 0

and the variance is

V a r [ f ( b , a ) ]  =

=  E

E [ f 2(b,a) \  
<2 *2

E E
J z z t i  3 — t i 

t l  <2

=  X X  ^ A t )  $ b A s) m u
t = t i  3 —t i 

12 12

=  E E  V’&.afa) $ b A 8) St,s V2
t=ti s=ti

= X

So, in the region where the wavelet transform is meaningful, i.e. where the wavelet translation 

parameter b puts the wavelet far (in terms of the scale parameter a)  from the data extremes 11 

and t %1 the variance only depends on a. (In other words, there is no dependence on b because the 

wavelet has the same square-sum, no matter where it is positioned with [<1 ,^2]-) The form of this 

dependence is determined by the choice of the mother wavelet function, and the normalisation of 

the basis wavelets.
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7 .3 .2  T he W avelet F iltered  P red iction  M ethod

In the wavelet filtered prediction (W FP) m ethod, introduced in Section 6.1, a FFNN is expected to 

predict wavelet filtered tim e series, given inputs from  the original tim e series. The idea underlying 

this approach is tha t, by separating the various tim e scales of the tim e series, it is easier (for 

bo th  hum an and network) to identify the scales on which its behaviour is predictable. A lm ost 

instinctively, a hum an makes a prediction of a tim e series by m entally drawing a sm oother curve 

through the points provided (the inputs) and extrapolating it. Exactly how the extrapolation is 

perform ed depends on the hum an’s past observation of the tim e series. W ith  reference to  this 

analogy, the sm ooth line in W FP is drawn by the wavelet transform , in the hope of encouraging 

the network to ignore unpredictable variations on sm aller (or longer) tim e scales. The m ethod was 

applied w ith some success to the prediction of m onthly sunspot num ber, though it rem ains for future 

work to  discover how useful the m ethod actually is a t predicting other tim e series. A nother problem  

left open to following work is in making use of the wavelet filtered tim e series as inputs. Doing so is 

difficult a t present due to the end effects of the wavelet transform . One way of avoiding this problem  

is to make the network predict further into the future, over the troublesome end effects.

The success of the W FP m ethod, as dem onstrated  here, is two-fold. F irst of all, it has been 

established th a t the basic m ethod is workable in practice and secondly, the W FP m ethod produces 

predictions which are more meaningful th a t the predictions of running mean sm oothed tim e series. 

Exactly what the phrase “more meaningful” m eans is rather vague at present, but it m ust surely 

be possible to bring rigour to this m ethod by considering the statistical properties of the wavelet 

transform .

So, to re-state the common bottom -line from  bo th  of these wavelet transform  applications: in 

order for  wavelet filtering techniques to become more useful and meaningful in the analysis and 

prediction of  time series, a better understanding must  be sought of  the statistical properties of  the 

wavelet transform of  stochasticly generated data. By stochasticly generated data , I m ean a set of 

(possibly dependent) random  variables, th a t have m any possible realizations.

7.4 D elay

W hen I first found the problem of delay, it w a s  not clear w hether it w a s  a problem  a t all - after all, 

did it m a tte r th a t the prediction curve best m atched the tim e series when slid backwards, a s  long as 

the actual prediction error itself was low? T his question w a s  clarified by the end of C hapter 4 where
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it was seen th a t even the best prediction m ethods for some tim e series produced delayed predictions. 

The reason th a t these “best” m ethods suffered from delay was because they were not required to do 

anything more than  minimise the RMS prediction error. So to answer the posed question: yes and 

no. Yes, it does m atter, if it is of im portance to predict when a particular event will occur, such as a 

peak in solar or geomagnetic activity. On the other hand, if the goal is to achieve the smallest RMS 

error, then delay does not m atter. I take the former view, th a t tim ed advance warning of specific 

events should be m ost im portant.

7.4.1 T he G enetic  A lgorithm  Training Schem e

In C hapter 6 a genetic algorithm  training scheme was constructed, tested and applied. In this 

scheme the networks th a t predicted with delay were penalised so th a t they would be “bred” out 

of the population. For the K p index predictions, no networks were found th a t predicted w ithout 

delay. For the sm oothed m onthly solar flux time series, however, a network was found th a t could 

predict six m onths ahead w ithout delay. The fact th a t the m ethod failed on the sm oothed m onthly 

I \p index whilst it succeeded on the smoothed m onthly solar flux could be a statem ent about the 

relative predictability of these two series.

The full potential of the genetic algorithm  train ing scheme could not be fully explored here, 

because the com puter tim e required to train  networks in this way (at least on the com puters currently 

available to  me) is enormous.

7.4.2 S liced P rediction

The genetic algorithm  scheme tackled the problem of delayed prediction head on, by re-defining 

w hat was m eant by “good” predictions. Another, more subtle, approach which I refer to as “sliced 

prediction” is suggested here as a starting  point for future work.

Consider an I - H - l  network th a t is given I  inputs from  the recent history of a particular time 

series in the usual m anner. Instead of predicting the value of the next element of the tim e series, 

the goal is to simply to predict whether the following value is going to be higher or lower than, or 

about the sam e as the current one. This can be achieved, for example, by compiling a training set of 

examples where, the desired ou tput is 1 if the following value is larger, or -1  if the following value is 

sm aller. A fter training, being careful to avoid overfitting, the hope is th a t the network will ou tput 

a value near 1 when the next value is larger and a value near -1 when the next value is smaller. The 

meaning of values near zero is not clear, and would need be determ ined by examining test set data.
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Figure 7.1: An illustration of sliced prediction. A network takes 4 values from a tim e series and 
outpu ts five values, L \ , .. .L$,  which are the “likelihoods” of the next tim e series value occurring in 
the indicated bands or slices. The band with the highest likelihood can be taken to be a prediction, 
with the w idth of the band indicating the prediction accuracy.

They would presum ably m ean som ething like “don’t know” or “next value will be sim ilar to  current 

value” . If more predictive inform ation is desired, then the scheme can be extended. For example, an 

I -H-2  network could be designed to ou tpu t two numbers. The two num bers being measures of how 

likely it will be th a t the next value will be greater or smaller than  the current one. This could be 

taken further with an I - H - 0  network predicting the likelihoods of the next value falling in O bands 

or slices. T his is explained graphically in Figure 7.1.

Further variations of the scheme could supply the sm oothed or even the differenced tim e series 

as inputs. There m ight even be some advantage in using the ou tputs of the I -H-2  network as inputs 

to an I - H - 0  network, or even building a chain of networks to perform successively finer sliced 

prediction on a tim e series. Another possibility is to  use the ou tpu ts of sliced prediction networks 

as inputs to the conventional networks.

Sliced prediction has a capability possessed by no other prediction m ethod m et in this thesis. 

It is capable of predicting several values th a t m ight come next, and by the same token it is also
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capable of adm itting  th a t it cannot predict w hat comes next. W hen using a FFNN in the usual 

m anner, even if the future is completely unpredictable, the network m ust make a prediction. A

FFN N  employed in the sliced prediction m ethod m ight well be more honest in the same situation .

T here is a price to be paid for this, in tha t the banding of the sliced predictions effectively pu ts a 

lower lim it on the prediction error, the lower lim it corresponding to the w idth of the bands.

T he reason th a t sliced prediction might avoid delay is th a t the tim e series is predicted w ith the 

em phasis on direction rather than  m agnitude. For example, in order to predict when a m axim um  is 

reached, it is im portan t to be able to predict th a t the point following the m axim um  is going to  be 

less th an  the m axim um . Failure to  do so results in delayed predictions. W ith sliced prediction, the 

aim  is to predict the shape, and not the values, of things to come - cf. Wells (1932).

7.5 D u al Input D a ta  N etw orks

A dual d a ta  input network was one th a t was required to take inputs from two different tim e series 

and predict ju st one of them . The results of Section 6.3 dem onstrated th a t these networks could not 

even be trained to the same level of success achieved by the conventional networks in C hapter 5. 

In o ther words, the inclusion of ex tra  inputs seemed to hinder the training of the networks. This is 

also confirmed by the the fact th a t the training of dual d a ta  input networks was quite unstable. If 

it is really the case th a t BP has difficulty in training networks to ignore inputs, then this a serious 

flaw in the algorithm . The m ost obvious way for BP to make a network ignore an input is for it to 

tra in  th a t in p u t’s weight connections towards zero2. As seen in Chapter 4, the training of a (simple) 

netw ork’s input weight toward zero caused problems for BP.

7.6 T h e P red iction  o f  Solar-Terrestrial T im e Series

Lastly, I shall sum m arize the results of Chapter 5, where networks were used to predict the solar- 

terrestrial tim e series. First of all, a search of network architectures was performed for each of the 

fifteen tim e series: sunspot num ber, solar flux and K p index, each in five form ats: daily, sm oothed 

daily, m onthly, sm oothed m onthly and yearly. Then the m ost successful networks from this search 

were trained further to see if any im provem ent was possible. After this the possibilities of probing 

deeper into the future were investigated by iterating  networks on their own predictions and by 

train ing networks to predict 6 steps ahead. For all predictions, uncertainties of prediction and levels

2 T h e  la y e r e d  s tr u c tu r e  o f  a  n e tw o rk  m e a n s  th a t th er e  axe a lso  o th e r , le ss  o b v io u s , p o s s ib il it ie s
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of bias were estim ated from residual histogram s and tabulated  in Tables 5.20, 5.21 and 5.22. Finally 

some a tten tion  was paid to the choice of training set.

The first thing to note is th a t no network produced predictions th a t were simply an echo - in 

all cases the networks equalled, or more usually bettered, the echo error and produced some kind of 

m eaningful predictions. It would also be quite reasonable to  say th a t the sunspot num ber and solar 

flux tim e series were easier to predict than the geomagnetic K p index time series on all timescales. 

To see this, simply compare the prediction plots of these series.

The best networks for predicting each tim e series 1 step ahead were found and trained until no 

further improvem ent was possible with back-propagation. It was noted in Section 5.10 th a t the daily, 

sm oothed daily and yearly series seemed to require networks w ith only 2 or perhaps 6 hidden neurons, 

whereas the m onthly and sm oothed m onthly series required typically 12 or 18 hidden neurons. Some 

reservations in reading too much into these results were expressed in the same Section. Nonetheless, 

it was still possible to show th a t the networks predicting the daily and sm oothed daily series were 

perform ing some simple linear function on their inputs.

A ttem pts were then made to predict further into the future. The first m ethod tried, th a t of 

freely iterated  prediction, turned out to be very unreliable. The second m ethod tried used the the 

best 1 step ahead networks iterating 6 steps ahead - this achieved a reasonable prediction accuracy 

in m ost cases. Finally, networks were trained to predict 6 steps ahead directly - this m ethod turned 

out to be the best for all tim e series but the yearly ones. T he architectures of these 6 step ahead 

predicting networks were chosen to be the same as the best networks for predicting 1 step ahead. 

However, it was reasoned th a t the six year ahead predictions m ight require a larger network than  

the 12-2-1 used for 1 step ahead predictions. By training a 12-18-1 network, it was then shown th a t 

yearly sunspot num ber could be directly predicted six years in advance with a better accuracy than  

iterated  prediction.

The effect of using different training sets was discussed in Section 5.9. In particular it was shown 

th a t the largest solar m axim um  in history, th a t of cycle 19, m ust really be included in the train ing 

set when training a network to predict either sunspot num ber or solar flux on the timescale of years.

Finally, in order to estim ate the accuracy of a prediction before the true value is known, the 

residuals of prediction were analysed. For each tim e series and for each of the prediction m ethods 

(i.e. 1 step, 6 step iterated  and direct 6 step) estim ated uncertainties and biases of prediction were 

obtained and tabulated  in Tables 5.20, 5.21 and 5.22.
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Figure 7.2: T he 12-18-1 netw ork’s direct 6 year ahead predictions on its test set.

7.7 T he M axim um  o f C ycle 23

A t the tim e o f w riting (1 6 /1 0 /9 5 ) ,  solar ~ycle 23 has either begun or is ju st about to  begin . G oing  

by recent cycles, th is m eans that the m axim um  o f cycle 23 should occur som etim e betw een 1998 and 

2002. A lthough  som e o f the freely iterated predictions o f C hapter 5 did predict a m axim u m  occurring  

as late as 2001 or as early as 1998, the unreliability of freely iterated prediction really relegates such 

predictions a lm ost into the realm o f am usem ent. So. since the next m axim u m  m ay still be s ix  years 

away, the on ly  network in contention for its prediction is the 12-18-1 network, th at d irectly  predicts 

6 steps ahead. From T able 5.22 th is network predicts values around solar m axim u m  to  w ith in  ± 5 0  

sp ots 85% o f the tim e w ithout any perceptible bias. Figure 7.2 show s th is netw ork’s perform ance  

on its test set. N ote that the tim e o f m axim a for cycles 20 and 21 are predicted correctly, whereas 

the tim e o f m axim um  for cycle 22 is tw o years late (though the prediction does coincide w ith  the 

secondary m axim u m  of cycle 22). T he m axim um  values of cycles 20, 21 and 22 are predicted w ith  

errors 34, -38 and -11 respectively.

Figure 7.3 show s the netw ork’s predictions o f cycle 23. T he m axim um  is predicted to  occur in 

the year 2000, w ith  a value o f 131. As a bonus cycle 24 is predicted (by iteration) to  occur in 2011
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Figure 7.3: The 12-18-1 network’s direct 6 year ahead prediction of the m axim um  of cycle 23. The 
gap in the predictions (the dotted line) corresponds to the onset of iteration. All predictions up 
to and including 2001 are not iterated. To push the prediction as far into the future as possible I 
have calculated 1995’s yearly sunspot number using all the m onthly values available a t the tim e of 
w riting (January  to September).
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with a m axim um  value of 127.



A ppendix A

M iscellaneous R esults

This appendix contains work tha t went into the methods described in various parts of this thesis. 

Usually results th a t required a good deal of effort and time on my part are glibly stated because 

inclusion of the full detail would obscure the main issue. So for tha t reason and to provide a complete 

docum entation of the methods th a t I have used I present the following sections.

A .l  Form atting o f data

In Section 2.1 various data  were presented in monthly, smoothed monthly and yearly form ats, with 

a few extracts from the daily data. The data  ranges used are listed in Table A .I.

This da ta  was obtained by FT P from ftp.ngdc.noaa.gov which is the electronic address of the 

National Geophysical D ata Center, Boulder, Colorado, U.S.A., part of the National Oceanographic 

and Atmospheric A dm inistration, N.O.A.A. The data file was form atted with each day occupying a 

separate row, with the various indices occupying different columns. I then split these records into 

several files, having a separate file for each index. The form at of these files was

< decimal data > < time series value >

D ata S tart Date End D ata
Sunspot Number January 1st 1850 May 30th 1995
10.7cm Solar Flux February 1st 1947 May 30th 1995
K p Geomagnetic Index January 1st 1933 May 30th 1995

Table A .l: Ranges for each of the main time series

ftp://ftp.ngdc.noaa.gov
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At this stage I checked the data  for missing days or mis-read values. I did this by looking at plots 

of the data  and by counting the number of days since the data  record began (there are 5 3 ,1 1 0  days 

from January 1st, 1850 to May 30th 1995). The solar flux was the only index for which da ta  were 

missing for various days. These days were usually weekends and holidays in the 1940s, 1950s and 

early 1960s. There was also one day, in 1992, for which a line was duplicated in the original data  

file. Once such irregularities had been removed the monthly versions of the data  were constructed, 

allowing for the missing days in the case of solar flux. Calendar months were used m ainly for the 

sake of convenience in dealing with the time series. From the monthly time series the yearly time 

series were simply constructed taking the average of the twelve months of the year.

In the earlier stages of work the data  was procured from the World Data Centre A a t the 

Rutherford-Appleton Lab. in Oxfordshire, England, through a rather more involved electronic re

trieval procedure than FTP. This data  ran up until April 1994 but in the years between 1992 and 

1994 there were marked differences in the K p index recorded here and the I \p index recorded in the 

NGDC records. I later read that some of the data  released by the World D ata Centres in the early 

1990s contained errors due to the change-over in processing software at the time. For this reason I 

chose to accept the NGDC record as being definitive. It is also worth noting tha t the most recent 

sunspot numbers in 1995 are still not considered final at the time of writing and may be subject 

to change. This is because the combination of each observatory’s observed sunspot number is not 

finalised until months after the observations have been made.

A .2 Bin leakage in Power Spectra

In Section 2.2 data  bins were summed in an attem pt to smooth the spectrum. However, since the 

time series da ta  were “windowed” before transformation (as all discrete data  m ust be) there was 

some leakage between neighbouring bins in the spectrum. The question is, after the summing into 

larger bins how are the effects of this leakage changed. First of all, let all the leakage occur only 

into the bins on either side of the bin in question, this is a reasonable approximation for the Fourier 

transform  of the B artlett window, though not for the square window, which has a power spectrum 

th a t falls off much more slowly. Let pi represent the ith frequency bin of the true spectrum  and let 

qj represent the j th frequency bin of the real-life discrete spectrum so that

Pi =  a<H +  1 2 Q {qi-1  +  g» + i )  ( A - 1 )
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where a  defines the fraction of power retained by the central bin. Now for every even i define the 

sum m ed re-binned spectra

n /2  =  Pi +  P i- 1

(note th a t I only consider the case of 2 bin sum m ation here). Substituting (A .l) into the above 

expression gives

r»72 =  <*(?»' + <7i+i) d-------  — (<?,--i +  qi+ i  +  qi +  qi+2 )

1 +  a  . 1 — a
— —2— +  ?i+1'  -----2— _1  +  qi

The first term  in the last line of the above is the contribution from the frequency bins of the true 

spectrum  th a t are “intended” to be in bin i f  2 and the other term  represents the leaked contribution. 

So defining the leakage as the ratio of the coefficients of these two terms, the leakage is

L = —  
r l +  o

whereas the leakage in q from (A .l) is

L -  —
L q ~  2 a

Since 0 <  a  <  1, L q < L r, so th a t after re-binning in this way leakage becomes less im portan t.

A .3 P erm uting  G roups

In Section 2.3.2 it is necessary to find all the perm utations of selecting two subsets of six from a set 

of 12 w ithout replacement and w ithout caring about the order of the elements in subsets. It can 

easily be seen th a t the num ber of different pairs of subsets is

I r -liHL-Afio 
2 12 2 6 ! 6 !

where the half arises from the fact th a t choosing the elements of one group decides all the elements 

of the other. Listing these subsets is a much more complicated m atter but can be accomplished by 

taking the whole set, splitting it into two halves and swapping elements between halves. So using 

the standard  hexadecimal numerals, the 12 elements of the whole set are:

{1 2 3 4 5 6 7 8 9 A B C }

To facilitate the later discussion I use the following notation to  denote the swapping procedure:

{(0 1 0 0 0 0 , 0  0 0 1 0 0)}
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which m eans swap the second and tenth elements of the whole set to form the two subsets

{(1 A 3 4 5 6 , 7 8 9 2 B C)}

sim ilarly

{(0 1 0 1 0 0 , 0  1 0 1 0 0)}

is a prescription to swap the second and eighth elements and the fourth and tenth. There is no 

am biguity because swapping the second and tenth  and the fourth and eighth result in the same 

subsets since order is unim portant. I shall also use the notation  (n  —*■) to denote a wrap shifting 

operation on a set th a t produces another set composed of the 1 , 2 , . . . ,  n right-shifted versions of the 

original set, e.g.

{0 1 0 0 1 0 ( 3 —)}

is a shorthand for the set

{0 1 0 0 1 0 , 0 0 1 0 0 1 , 1 0 0 1 0 0 }

Finally, I use the symbol ® to denote the set m ultiplication operation, so th a t A ®  B  represents a 

set containing every pairing of elements in set A with elements in set B.

To generate all 462 different groups there m ust be 462 distinct swapping operations expressed 

as the 0,1 strings above. Swapping one element at a tim e there ^ ($C i) 2 distinct subsets possible, 

swapping two there are ^(eC^ ) 2 distinct subsets and so on. So it car’ be seen th a t

1 6 2 1
Number of subsets =  -  ^ ( e C *,)2 =  ^ ( e C ' , ) 2 +  - ( 6C3 ) 2

i = 0  i = 0

It is not necessary to swap more than  three elements a t a tim e because every subset produced by 

swapping four or five elements sim ultaneously can be achieved by swapping one or two elements 

sim ultaneously, reflected in the fact th a t §Ci = 6  Ce-{.  So if 36 distinct one element swaps are found 

and 225 distinct two element swaps are found and 200  distinct three element swaps are found, then 

461 distinct subsets have been found, where the remaining is ju s t the original set split down the 

middle.

The one element swaps are easy to find, they are given by product of the set

Ai  =  {1 0 0 0 0 0 (5 —►)}

w ith itself, i.e. A i ® A \ .  The two element swaps will all be distinct from the one elem ent swaps and 

they are the product of

A 2 =  {1 1 0 0 0 0 (5 —), 1 0 1 0 0 0 (5 —), 1 0 0 1 0 0 (2 —)}
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w ith itself i.e. A 2 <8 > A 2 , where the last element of the set is only shifted twice because it becomes 

itself again after 3 shifts. The three element swaps, again autom atically  distinct from the one and 

two element swaps, are given by the product of

A3 =  {1 1 1 0 0 0 (2 —), 1 1 0 1 0 0 (5 —), 1 0 1 0 1 0}

with (A 3 + A3), where the bar means tha t each element of A 3 should be inverted, e.g.

1 0 0 1 0 0 becomes 0 1 1 0  1 1

T h a t is the set of three element swapping operations is A 3 ® (A 3 -f A 3 ). And thus all possible subsets 

can be found.

A .4 A nalytic Training - T he general case

Here I shall describe more fully the analytic training m ethod th a t I first proposed in C hapter 3. In 

th a t chapter only the case of the l -H-1  FFNN was addressed, and later in C hapter 4 it was shown 

how the method could be used to fit an I - H - l  network to a linear function. Now I shall show how 

the more general case of a I - H - 0  FFNN can be approached, where each ou tpu t is required to  fit a 

different m ultivariate polynomial.

Suppose th a t output k is required to fit the following function

N  n

f ( x U X2 , . . . , X I ) = J 2  J 2  n Xi> (A -2)
n = 0  J =  1

where the sum m ation symbol ^  t- is understood to m ean a sum m ation in which every I”[j= i **> 

term  appears only once. The k th output of the network is given by

H

C k( x i , x 2, . . . , xt) = ^ 2  W kjg 
i= i

and the multi-dimensional Taylor expansion of g WjiXi'j in the I  WjiXi term s about 0 is

/  1  \  N  n

\ i = l  J  7 i = 0  i i 1 =  1

where the g” in coefficients can be written as

WjiXi (A.3)
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where </n)(0) is the n th order derivative of the input activation function evaluated at 0, and the n ,s 

are ju s t the powers present in the 17/= 1 XU ê rm ) i-e-

/ =i  j = i

So substitu ting  (A.4) into (A.3) yields the following expression of the &th outpu t of the network

H  N  n

Ck(x  i,a?2, • • • ,* /)  =
j  =  1 n=0 1=1

N  /  H  n \  n

= E E s*"> ■- (Y,WiiUw>'‘ III1''
n = 0 i l l ...,in y; =1 /=1 J  /=1

E quating the coefficient of each 17/=i XU term with the corresponding term  in the expression for

f ( x i, X2 , ■ ■ ■, x j )  in (A .2) gives rise to the following equations th a t need to be satisfied

s?t  i n  = fu ........« = o , i , . . . . a t

the rem aining term s for n > N  are responsible for the error of this fit.

The procedure of analytic train ing proceeds as follows

1. Choose a set of small input weights, Wji,

2. Solve the following set of linear equations for the ou tpu t weights:

f E  W *> n  wi ‘. J =    n = 0,1, ■ ■ ■, JV

where
P

A ”
i/ii,

3. If the fit is not accurate enough, then return to 1) bu t choose the input weights so th a t they 

are all smaller in absolute value, i.e. <  \w°\^ \

R em arks:

(i) F ittin g  a m ultivariate polynom ial of order A , in I  variables, means th a t there will be

N  „ / - I

f f» =  E ( 7 T n i I I  ( "  +  i )
n=0 '  i = l
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linear equations to be solved. So to guarantee a solution there must be at least as many hidden 

neurons as equations to be solved, i.e. H > H$. Note though, since many of these equations 

might not be completely independent of one another there may exist solutions tha t require 

less hidden neurons tha t H q. A simple linear example of this can be found in Section 4.4.

(ii) When there are many outputs required to fit several polynomials of different orders, the number 

of neurons should be chosen according to the highest order polynomial to be fitted. For the 

remaining outputs there will then be more unknowns (i.e. output weights Wkj), than equations, 

so for these outputs the excess weight connections can be set to zero.

(iii) The proof th a t reducing the magnitudes of the input weights reduces the error of fit is not 

given here, but the following sketches why the result is plausible. Consider the following set 

of equations

W l + W2 + W3 =  A0

w i W i  +  W2 W 0 +  W3 W 3  =  A\

w^Wi +  w \W 2 +  w \W 3 = A 2

Assuming tha t a solution can be found for the Ws, each Wi will contain no terms of the order

l/u>” , where n > 2. This means that

Wiw? — 0 for n > 2

(iv) In performing the solution to the linear equations numerically the small values of input weights 

give rise to very large values in the output weights. This often causes problems with rounding 

error and sm allest/largest number representations on a computer, even if double precision (64 

bit representation) is used.



A ppendix B

The Software

This appendix describes one of the 272 different programs tha t I have written to obtain the results 

contained within this thesis. The program described here is a typical example of one which imple

mented the various neural network algorithms. It may not be a shining example of how to program 

in C (partly because I was learning C when I started writing it and partly because it has evolved 

as a kind of patch work over three years) but it proved flexible enough to allow easy adaptation to 

a number of other tasks, such as the wavelet prediction method of Chapter 6 . I have not included 

the input and output routines, as their function is not crucial to understanding the implementation 

of the neural network algorithms.

The program takes only one argument, the name of what I call the key-file, the file which specifies 

the network architecture, the training method and parameters, the training data  files, output files

etc   This particular incarnation of the program was designed to take inputs from two time

series and predict one of them. The number taken from each being determined by NISPLIT. If 

NISPLIT > NI then inputs are only taken from the time series to be predicted.

In all the neural network programs that I have used, I scale the time series into 0.2 to 0.8 at the 

outset. This is a necessity if using a sigmoidal output activation function because a sigmoid only has 

a range of [0, 1], where infinite weights are required to output either 0 or 1. However, all the work 

of this thesis used linear output activation functions, so such scaling was performed for the sake of 

consistency rather than out of necessity.

The training algorithm used is determined by the contents of the key-file, as are the training para

meters. If the number of genetic cycles given in the key-file is 0 or 1 then normal back-propagation is 

performed. If the number of genetic cycles is specified to be greater than 1 then the genetic algorithm

292
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tra in ing  is performed. The m ethod of m utation  can be set to random , backpropagation or both, 

w ith further param eters specifying the am ount of m utation  desired. This version of the program  

was set up to perform genetic algorithm  training on a network with only one ou tpu t predicting at 

nskip+1 steps ahead. If back-propagation was selected then there can be many outputs, the i th 

o u tp u t predicting at i -f- 1 steps ahead.

B . l  T h e m ain program

# in c lu d e  < s td io .h >  / *  Various standard  C header files ...* /

# in c lu d e  < s td l ib .l i>

# in c lu d e  <m ath.h>

# in c lu d e  < s tr in g .h >

# in c lu d e  < tim e.h>

# in c lu d e  " n e u r in e .h "  /*  ... and my own header file * /

A lm ost all the sub-routines used in this program s are declared in the header file “neurine.h” , along 

w ith all the #defines used in the program . The #define’s are:
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# d e f i n e  NL 3 /*  Number of layers * /

# d e f i n e  NI n u [ 0 ] /*  Number of inputs * /

# d e f i n e  NO n u [ N L - l ] / *  Number of outputs * /

# d e f i n e  N ISP L IT  n i s p l i t /*  W here the inputs are split * /

# d e f i n e  NUMAX 37 /*  M aximum num ber of neurons per layer * /

# d e f i n e  NP np /*  Number of pa ttern  elements * /

# d e f i n e  NS n s /*  Number of NNs in genetic population * /

# d e f i n e  NSMAX 1 /*  M aximum num ber of NNs in genetic population * /

# d e f i n e  NT 2 0 0 0 0 /*  Max number of da ta  points in tim e series * /

# d e f i n e  BETA 0 . 5 /*  Steepness param eter of the activation function * /

# d e f i n e  MAXLINE 1 0 0 0 /*  Max. length of input file text line * /

# d e f i n e  CHILD c h i l d /*  Number of parents !!!!!!!! * /

# d e f i n e  VERSI0N1 2 / *  Version Number * /

# d e f i n e  VERSI0N2 0

# i f n d e f  RAND.MAX /*  Max random  num ber for randQ  * /

# d e f i n e  RAND.MAX 2 1 4 7 4 8 3 6 4 7  /*  Needed for gcc 2.5.6 for SUNOSIV * /

# e n d i f

# d e f i n e  INPUT_FILE i n f i l e  /*  Input file names * /

# d e f i n e  IN PU T .F IL E 2 i n f i l e 2

v o i d  z e r o _ o d w ( ) ; /*  Sets last weight changes to zero * /

i n t  r e a d k e y ( c h a r  k e y f i l e [ ]  , c h a r  i n f i l e [ ]  , c h a r  i n f i l e 2 [ ] , c h a r  i n w f n a m e C ] ,  

c h a r  o u t w f n a m e []  . d o u b l e  * e l , d o u b l e  * e 2 , d o u b l e  * d e ,  

i n t  * n d i s p , i n t  * n c o s t ,  i n t  * i m u t ,

d o u b l e  * m u t s i z e ,  d o u b l e  * m u t p r o b ) ; /*  Reads in the NN specifications * /

d o u b l e  p r m s ( F I L E  * f p ) ; / *  Calculates error on the test set * /

d o u b l e  t r m s ( F I L E  * f p ) ; /*  Calculates error on the training set * /

Below are the various global variables used in the program . Unfortunately, there are very m any

of them  and a lot of memory is gobbled up needlessly by the m ultidim ensional weight arrays like 

w0000- T his was because during the s ta rt of my Ph.D ., when I w rote the basic form  of this program, 

I did not understand the concept of pointers in C. Once I did know how to use pointers, I did not
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r e -w r i te  t h e  p r o g r a m  b e c a u se  i t  w o u ld  h a v e  b e e n  a  m a m m o t h  u n d e r ta k in g  for w h ic h  I d id  n o t  have  

t h e  t i m e .  T h e  m o s t  i m p o r t a n t  g lo b a l  var iab les  are:

•  t r a in  - N u m b e r  o f  tra in in g  i ter a t io n s

•  nu[|  - array c o n t a in in g  th e  no. o f  n eu ro n s  in  each  layer

•  is - in d e x  referring to  th e  current N N  in th e  g e n e t ic  p o p u la t io n

•  n c y c  - n u m b e r  o f  cyc les  t o  be  p er fo rm ed  in  th e  G e n e t ic  A l g o r i t h m

•  xi[] -  first t i m e  series

•  x i2 [ |  - s e c o n d  t i m e  series

•  dx i[ |  - array  c o n ta in in g  d a te s

•  v[i][n] - V a lu e  o f  i th neuron  in layer n

•  w H [j][n ] M  “ T h e  va lue  o f  th e  w e ig h t  c o n n e c t io n  b e tw e e n  th e  j th neu ro n  in layer  n — 1 and  the  

zth n e u r o n  in layer  n, o f  the  kth N N  in th e  g e n e t ic  p o p u la t io n

•  dw[i][j][n][k] - T h e  c h a n g e  to  b e  a p p l ie d  to  th a t  w e ig h t

•  odw[i][j][n][k] - T h e  las t  ch a n g e  a p p l ie d  to  th a t  w e ig h t

•  iw M[)][n ] M  - T h e  in i t ia l  w e ig h t

•  delta[][] - T h e  d e l ta s  in th e  ba ck -p ro p  a lg o r i th m

•  out[i]  - D e s ir ed  v a lu e  for o u t p u t  i o f  current p a t te r n

•  e p ,a p  - T h e  l ea rn in g  rate  and  m o m e n t u m

•  m i n , m a x ,m i n 2 , m a x 2  - T h e  m i n i m u m  a n d  m a x i m u m  v a lu e s  o f  th e  tw o  t im e  ser ies  

t i m e _ t  T l ;

i n t  t r a i n , n t , NP , n u  [ N L ] , t i m g r a , i s , n i s p l i t , s t a r t _ c y c , n c y c , i m u t , n s , 

c h i l d , s m o o t h i n g , s a m p l i n g , l i n f l a g , ant[N CH UNK S], f i n f l a g , n s k i p ; 

d o u b l e  x i  [NT] , x i 2 [ N T ]  , d x i [ N T ]  ,v[NUMAX] [NL] ,

w[NUMAX] [NUMAX] [NL] [NSMAX] ,dw[NUMAX] [NUMAX] [NL] ,out[NUMAX] . f l t n p ;  

d o u b l e  a p ,b e ,e p ,h [N U M A X ][N L ] ,o d w [N U M A X ][N U M A X ][N L ] ,

iw[NUMAX][NUMAX] [NL][N SM AX].delta[N UM A X] [ N L ] , m i n ,m a x , m i n 2 ,m a x 2 ;  

c h a r  i n f i l e [ 3 0 0 ] , i n f i l e 2 [ 3 0 0 ] . d a t a t y p e [ 1 0 0 ]  ;
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B .1 .1  main

T he “m ain” routine is the first routine called when a C  program  is executed. The layout of the m ain 

program  is as follows:

•  Initialise the various variables, e.g. random  starting  points for the network(s) to be trained.

•  S ta rt genetic cycle loop

M utate the children (BP or random )

Evaluate each member of the population’s success (evaluate)

Sort according to success (sort)

Perform cross-over (breed)

• W rite the best netw ork’s weights to a file

m a i n ( i n t  a r g c ,  c h a r  * a r g v [ ] )

{

d o u b l e  e 1 , e 2 , d 3 , e[NSM AX], m u t s i z e , m u t p r o b , tm p , o l d p r m s ; 

i n t  i , t = 0 , k = 0 , i d i s p , n d i s p , n c o s t , p e [ N S M A X ] , c y c l e , p f l a g = 0 ; 

c h a r  r [ 3 0 0 ]  , s [ 3 0 0 ]  , o u t f  i l e  [ 3 0 0 ]  , in w fn a m e  [ 3 0 0 ]  , tm p str in g [M A X L IN E ]  , 

o u t w f n a m e [ 3 0 0 ] ;

FILE * w fp ;

n s = 5 0 ; 

c h i l d = 6 ; 

s t a r t _ c y c = 0 ;

i f  ( a r g c !  = 2 )  /*  Error in program  argum ents * /

p r i n t f  ( " U s a g e :  '/ts  < k e y f i l e > \ n " , a r g v [ 0 ] ) ;  

e x i t ( 1 ) ;

}
T l = t i m e ( N U L L ) ; /*  Keep s ta rt tim e * /

f p r i n t f  ( s t d e r r , " t r a i n  v e r s i o n  ' / ,d . ' / ,d \n " , V E R S IO N l,V E R S I0 N 2 );
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i f  ( r e a d k e y ( a r g v  [ 1 ] , i n f i l e , i n f i l e 2 , i n w f n a m e , o u t w f n a m e , & e l , & e 2 , & d e , 

f t n d i s p , f t n c o s t , & im u t , & m u t s i z e , f tm u tp ro b ) = = 1 )

{
p r i n t f ( " E r r o r  r e a d i n g  i n p u t  f i l e \ n " ) ;  

e x i t ( 2 ) ;

} /*  End If scanf * /

i f  ( (nu [0 ]> N U M A X ) I I (nu[l]>NUM AX ) I I ( n u [ 2 ]  >NUMAX))

p r i n t f ( " T o o  many n e u r o n s  i n  a  l a y e r \ n " ) ;  

e x i t ( 1 ) ;

> /*  too m any neurons * /

i f (n s> N S M A X )

{

p r i n t f  (" T o o  many NNs -  Max o f  */,d NNs i n  a  g e n e r a t i o n \ n "  ,NSMAX); 

r e t u r n  0;

} /*  ns * /

e p = e l ; 

be=BETA;

i f  ( n c y c = = 0  I I n c y c = = l )  / *  Set up variables for * /

{ /*  Back-propagation * /

n c y c = n s = l ; 

c h i l d = 0 ; 

n s k i p = N 0 - l ;

>

e l s e  / *  And genetic cycle * /

{
n s k i p = n u  [ N L - 1 ] - 1 ;  

n u  [ N L - 1 ] =1;

}
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i f  ( i n w f  name [ 0 ]  = = ’ ? ' )  /*  Random  weights * /  

w f p  = NULL; 

e l s e  /*  or * /

{ /*  Read from a file * /

i f  ( ( w f p  = f o p e n ( i n w f n a m e ," r " ) ) = = N U L L  )

■C

p r i n t f  ( " I n p u t  w e i g h t  f i l e  */,s c o u l d  n o t  b e  o p e n e d \ n " , i n w f  n a m e ) ; 

e x i t ( 2 0 ) ;

> /*  wfp * /

> /*  End if inwfname * /

i w e i g h t s ( w f p ) ; /*  Get initial weights * /

i f ( w f p ! =NULL) 

f c l o s e ( w f p ) ;

i f  ( n e w s e t  ( ) = = 1 )  r e t u r n  2 ;  / *  Read in tim e series d a t a * /

NP = ( i n t )  ( ( d o u b l e )  n t  * f l t n p  ) ;

i n i t  ( ) ;  /*  Set weights to initial values * /

f o r ( i = 0 ; i < N S ; i + + )  p e [ i ]  = i ;

f o r ( c y c l e = s t a r t _ c y c ;  c y c l e < n c y c ;  c y c l e + + )  /*  Genetic cycle loop * /

{

i f  ( ( i m u t & 2 ) )  /*  Back-Prop m utation  if im ut = 2 ,3 * /

f o r ( i = c h i l d ;  i< N S ;  i + + )  /*  M utate CHILD strings * /

•C

i s = p e  [ i ]  ; 

k = 0 ;

z e r o _ o d w ( ) ; /*  zero old weight corrections * /

Below are the two m ain loops for back-propagation - the outer loop is the training loop where k 

counts the num ber of tim es th a t the entire training set has been presented. The inner loop scans 

through the training set one step a t a tim e, each tim e calculating and applying weight corrections 

from  the B.P. algorithm .
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do

■C

t = 0 ;

t = n e w p a t ( 0 ) ; / *  Rewind through d a ta  set to first pa ttern  * /

do

■C

s w e e p  ( ) ;  / *  Calculate neuron values throughout network * /

b a c k p r o p O  ; /*  Calculate weight corrections * /

a p p l y  ( ) ;  /*  Adjusts weights given the corrections above * /

t + + ;

t = n e w p a t ( t ) ; /*  Choose next pa ttern  from xiQ * /

}  w h i l e  ( t  < ( N P - N I - n s k i p )  ) ;  

k + + ;

tm p = p r m s(N U L L ) ; /*  Get test set RMS error * /

i f (  ( k > 1 0 0 )  && ( n c y c = = l )  && ( o l d p r m s < ( t m p ) ) ) /*  Ensure prediction * / 

p f l a g + + ;  /*  error is still being reduced if BP only * /

o l d p r m s  = tm p;

i f  ( p f l a g > 1 0 )  p f l a g = t r a i n = k ;  / *  if not then end training * /

}  w h i l e  ( k c t r a i n ) ;

} / *  i - Child BP m utation  loop * /

} /*  End if im ut * /

i f  ( n c y c ! = l )  /*  If performing the genetic algorithm  * /

e v a l u a t e ( e ) ; /*  Evaluate the success of the networks * / 

s o r t ( e , p e ) ;

b r e e d ( p e , im u t  , m u t s i z e  , m u t p r o b ) ; /*  Perform cross-over * /

/ *  If im ut is 1,3 random  m utation also takes place * /

> /*  If ncyc!= l * /

> /*  cycle * /
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i f ( n c y c ! = l )

■C

e v a l u a t e ( e ) ; 

s o r t ( e , p e ) ;

>

Finally prin t out best network

i f  ( ( w f p  = f o p e n ( o u t w f n a m e ," w " ) ) = = N U L L  )

p r i n t f  ( " O u t p u t  w e i g h t  f i l e  V,s c o u l d  n o t  b e  o p e n e d \ n " . o u t w f n a m e ) ; 

e x i t ( 3 0 ) ;

> / *  wfp * /  

m k h e a d e r ( w f p ) ; 

i f ( n c y c = = l )  i s = 0 ;  

w e i g h t s ( w f p ) ; 

i f ( p f l a g = = t r a i n )

f p r i n t f  ( w f p ,  " # S t o p p e d  a t  */,d i t e r a t i o n s  a s  p r e d i c t  e r r o r  was i n c r e a s i n g \ n "  , k ) ; 

f c l o s e ( w f p ) ;

r e t u r n  0 ;

} /*  End of m ain * /

B .1 .2  newpat

This routine is used to set network inputs to the following sequence of tim e series values, i.e. xi[t] 

to x i[t+ N I-l]. If NISPLIT is less than  or equal to NI then the inputs will also contain values from 

the second tim e series xi2[|. The desired ou tpu t is placed in out[i].

i n t  n e w p a t  ( i n t  t )  /*  S tarting  from element t put NI num bers in the inputs * /

{ /*  from xi, and the corresponding outputs in out[] * /

i n t  i , i m t ; 

d o u b l e  x ;
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i f  ( x i [ t + N I + n s k i p ]  == -999 .9 99)  /*  If end of chunk before last ou tpu t * /  

t  += N I + n s k i p + 1 ;  /*  Move to next chunk * /  

f o r  ( i = t + t i m g r a ; i < ( t + N I ) ; i + + )  { /*  tim gra =  1 for tim e gradient * /

i m t  = i  -  t ;

i f  ( i r a t> = N I S P L IT )  /*  Use 2nd input d a ta  * /  

v [ ( i m t ) ] [ 0 ]  = x i 2 [ i - N I S P L I T ]  ; 

e l s e

v [ ( i m t ) ]  [ 0 ]  = x i [ i ]  ; /*  Use lrs t  input d a ta  * /

}

i f ( t i m g r a = = l )

v [ 0 ]  [ 0 ]  = v [ N I - l ]  [ 0 ]  -  v [ N I - 2 ]  [ 0 ]  ; /*  Tim e G radient as first input * /

f o r  ( i = 0 ; i < N 0 ; i + + )  

i f ( n c y c = = l )

o u t [ i ]  = x i [ t + N I + i ] ;  

e l s e

o u t [ i ]  = x i  [ t + N I + n s k i p ]  ; 

r e t u r n  t ;

} / *  END O F new pat * /

B .1 .3  O ther routines

The rnd() routine uses the standard  C  library rand() routine to generate a random  num ber between 

0 and 1. In some versions of the program , when “quality” random  num bers were desired this routine 

was replaced by a more reliable generator from the NAG libraries.

d o u b l e  r n d ( )

{

d o u b l e  x ;

x  = ( d o u b l e )  r a n d ( )  /  ( 1 .0+RAND_MAX); 

r e t u r n  x ;

} /*  End of rnd * /

The “getline” routine is taken from Kernighan and Ritchie (1988), the book from  which I learned 

to program  in C. The fgets standard  C library routine does the same function, so i t ’s inclusion is



A P P E N D IX  B. T H E  S O F T W A R E 302

r e a l ly  un -n ecessa ry .

i n t  g e t l i n e ( c h a r  s [ ] ,  i n t  l i m ,  FILE * i f p )

•C

i n t  c , i ;

f o r ( i = 0 ; i < l i m - l  && ( c = f g e t c ( i f p ) ) ! =EOF && c ! = , \ n , ; + + i )  

s [ i ]  = c ;  

i f  ( c = = ’ \ n J) {

s [ i ]  = c ;

+ + i ;

}
s [ i ]  = ’ \ 0  ’ ; 

r e t u r n  i ;

> / *  E n d  o f  g e t l in e  * /

A  r o u t io n e  to  se t  w e ig h t  c h a n g es  to  zero  

v o i d  z e r o _ o d w ( v o i d  )

i n t  i , j , m;

f o r  (ra=l;m<NL;m++) {

f o r  ( i = 0 ; i < n u [ m ] ; i + + )  {

f o r ( j = 0 ; j < n u [ m - l ]  ; j + + )  {

o d w [ i ] [ j ] [ m ]  = 0 . 0 ;  

d w [ i ]  [ j ]  [m] = 0 . 0 ;

>

>

>

}  / *  z ero _ o d w  * /

B .2  T he N eural N etw ork  R ou tin es

The following routines perform the neural network algorithms and were written to be applicable to 

any FFNN problem, consequently they contain no reference to the time series arrays - all contact
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w i t h  t h e  rest  o f  th e  p r o g r a m  is v ia  p a ssed  in d ices  an d  th e  g lo b a l  neu ro n  a n d  w e ig h t  arrays.

O n c e  th e  in p u ts  ha v e  b e e n  se t  by n e w p a t  th is  r o u t in e  u p d a t e s  th e  va lues  o f  th e  h id d e n  a n d  

o u t p u t  n e u ro n s .  T h e  va r ia b le  “l in f la g ” d e te r m in e s  w h e th e r  th e  o u t p u t  a c t iv a t io n s  are l in ea r  (1 )  or  

s i g m o i d a l  (0 ) .

v o i d  s w e e p O  

i n t  i , j » m:

f o r  (m =l;m <N L ;m ++) {

f o r  ( i = 0 ; i < n u [ m ] ; i + + )  {  

h [ i ]  Cm] = h f  ( i , m ) ; 

i f ( ( l i n f l a g = = 0 )  I I ( m < ( N L - l ) ) )  

v [ i ]  [m] = g ( h [ i ]  [m] ) ;  

e l s e  i f ( l i n f l a g = = l )  

v [ i ]  [m] = h [ i ]  [m] ;

>

>

y / *  E n d  o f  sw eep  * /

d o u b l e  h f ( i n t  i ,  i n t  m)

{

d o u b l e  su m = 0 ; 

i n t  j ;

f o r ( j = 0 ;  j < n u [ m - l ]  ; j + + )  sum += w [ i ]  [ j ]  [m] [ i s ] * v [ j ]  [m -1 ]  ; 

r e t u r n  sum;

> / *  E n d  o f  h f  * /

v o i d  b a c k p r o p O

■C

i n t  i , j , m ;  

d o u b l e  sum;
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f o r  ( i = 0 ; i < N 0 ; i + + )  {

i f ( l i n f l a g = = 0 )

d e l t a [ i ]  [ N L - l ]  = g d a s h ( h [ i ]  [ N L - l ] ) * ( o u t [ i ]  -  v [ i ] [ N L - l ] ) ;  

e l s e  i f  ( l i n f l a g = = l )

d e l t a [ i ]  [ N L - l ]  = ( o u t [ i ]  -  v [ i ] [ N L - l ] ) ;

>

f o r  ( m = N L - l ; m > l ; m — ) {

f o r ( i = 0 ; i < n u [ m - l ] ; i + + )  {  

sum = 0 ;

f o r ( j = 0 ; j < n u [ m ] ; j + + )  sum += w [ j ]  [ i ]  [m] [ i s ]  * d e l t a [ j ]  [m] ; 

d e l t a [ i ]  [m -1 ]  = g d a s h ( h [ i ]  [m -1 ]  ) * sum;

>

>

f o r  (m =l;m <N L ;m ++) {

f o r  ( i = 0 ; i < n u [ m ] ; i + + )  {

f o r ( j = 0 ;  j < n u [ m - l ]  ; j + + )  d w [ i ] [ j ] [ m ]  += e p  * d e l t a [ i ]  [m] * v [ j ] [ m - l ] ;

>

>

y / *  End of backprop * /

v o i d  a p p l y ( )

{

i n t  i , j , m ;

f o r  (m =l;m <N L ;m ++) {

f o r  ( i = 0 ; i < n u [ m ] ; i + + )  {

f o r ( j = 0 ;  j < n u [ m - l ]  ; j + + )  {

w [ i ]  [ j ]  [m] [ i s ]  += d w [ i ]  [ j ]  [m] + ap  * o d w [ i ]  [ j ]  [m] ; 

o d w [ i ]  [ j ]  [m] = d w [ i ]  [ j ]  [m] ; 

d w [ i ]  [ j ]  [m] = 0 . 0 ;

■ >

>

>

> /*  End of apply() * /
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d o u b l e  g ( d o u b l e  x )

{

r e t u r n  1 . 0  /  ( 1 . 0  + e x p ( - 2 . 0  * BETA * x )  ) ;  

y / *  End of g * /

d o u b l e  g d a s h ( d o u b l e  x )

d o u b l e  g g ;  

g g  = g( x ) ;  

g g  = g g  * g g ;

r e t u r n  2 . 0  * BETA * g g  * e x p ( - 2 . 0 * b e * x ) ;

y / *  End of gdash * /

B .3  T h e G enetic  A lgorithm  R outin es

T he following routines are used to perform the genetic algorithm  training.

v o i d  e v a l u a t e ( d o u b l e  * e )

{

i o r ( i s = 0 ; i s < N S ; i s + + )  e [ i s ]  = t c o s t Q ;

y / *  End of evaluate * /

The “so rt” routine is taken from Press et al. (1994). Notice th a t by using index references to 

various networks it is not necessary to shunt entire network weight sets around in memory.

v o i d  s o r t ( d o u b l e  * E , i n t  *PE )

{

i n t  1 , j , i r , i , n = N S , p r a ;  

d o u b l e  r r a ;
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f o r ( j = 0 ; j < N S ; j + + )  P E [ j ]  = j ;

l = ( n  »  1 ) + 1 ;

i r = n ;

f o r  ( ; ; )  {

i f  ( 1  > 1 )  {

r r a = E [ ( — 1 )  -  1]  ; 

p r a = P E [ l - l ]  ;

>

e l s e  {

r r a = E [ i r - l ]  ; 

p r a = P E [ i r - l ]  ;

E [ i r - 1 ] = E [ 0 ]  ;

P E [ i r - l ]  = P E [0 ]  ; 

i f  ( — i r  == 1 )  {

E [ 0 ]  = r r a ;

P E [0 ]  = p r a ;  

r e t u r n ;

>

>

i = i ;

j = l  «  1;  

w h i l e  ( j  <= i r )  {

i f  ( j  < i r  && E [ j - 1 ]  < E [ j ] ) + + j ; 

i f  ( r r a  < E [ j - 1 ] )  {

E [ i - l ] = E [ j - l ]  ; 

P E [ i - l ] = P E [ j - l ]  ; 

j  += ( i = j ) ;

>

e l s e  j = i r + l ;

>

E [ i - l ] = r r a ;

P E [ i - l ] = p r a ;

>

} /*  End of sort * /



A P P E N D IX  B. T H E  S O F T W A R E 307

“breed” picks 2 parents at random  and forms a new child using the “wcopy” routine

v o i d  b r e e d ( i n t  * p e ,  i n t  i m u t , d o u b l e  m u t s i z e , d o u b l e  m u t p r o b )

{

i n t  c , p l , p 2 ;

f o r ( c = C H I L D ; c < N S ;C++)

{
p i  = ( ( d o u b l e ) r a n d ( ) * C H I L D )  /  ( 1 . 0 + (dou b le)R A N D _M A X ); 

p 2  = (  ( d o u b l e ) r a n d O + C H I L D )  /  ( 1 . 0 + (dou b le)R A N D _M A X ); 

w c o p y ( p e [ p i ] , p e [ p 2 ] , p e [ c ] , i m u t , m u t s i z e , m u t p r o b ) ;

> /*  c * /

> /*  End of Breed * /

The “wcopy” routine takes the input weight connections of parent “p i ” and combines them  with 

the ou tp u t weight connections of parent “p2” to form the new child. This routine can be speeded 

up by swapping pointers to the input and ou tpu t weight sets, instead of moving the weights around 

in memory.

v o i d  w c o p y ( i n t  p i ,  i n t  p 2 ,  i n t  c ,  i n t  i m u t , d o u b l e  m u t s i z e . d o u b l e  m u t p r o b )

{

i n t  i , j , l , p = p l ;

f o r ( l = 0 ; l < 2 ; l + + , p = p 2 )

{
f  o r ( i = 0 ; i < n u [ 1 + 1 ] ; i + + )



A P P EN D IX  B. THE S O F T W A R E 308

Network Predicting Training Set Size Training Iterations Training Time
12-18-1 SSN 790 months 6000 3hr 53min
18-18-1 SSN 790 months 9500 41hr 17min
12- 12-1 SF 386 months 2584 2hr 35min
24-24-1 Ap 512 months 17,761 17hr 32min

Table B .l: This table shows typical training times of NNs used in this contract

f  o r ( j  = 0 ; j  < n u [ 1 ] ; j + + )

i f  ( ( i m u t & l )  && ( r n d ( ) < m u t p r o b )  ) /*  if 1 or 3 and m utprob*/

w [ i ]  [ j ]  [ 1 ]  [ c ]  = ( 1 . 0  + ( m u t s i z e * ( r n d ( ) - 0 . 5 ) )  ) * w [ i ]  [ j ]  [ 1 ]  [p ]  ; 

e l s e

w [ i ] [ j ] [ l ] [ c ]  = w [ i ]  [ j ]  [ 1 ]  [p ]  ;

>

> /*  i * /

> /*  1 */

} /*  End of wcopy * /

B .4 O ther D etails

The code requires no specialised computer hardware and was developed and run on SUN SPARC- 

stations. The run time on the fastest workstation available (a SPARC 10/40) varied from seconds 

to weeks, depending of course on the particular network, time series and training algorithm  used. 

Some typical run-times for back-propagation trained networks using the fastest machine are given 

in Table 2.1. As can be appreciated from these figures, great patience was required especially if 2 

or 3 days of training had resulted in no more than the discovery of a bug.

In addition to the neural network software presented here, many other programs were written to 

handle the key-files and organise the training of network jobs and process the results. Probably the 

most essential of these were a collection of UNIX C-Shell scripts th a t set-up and launched network 

training runs. This enabled hundreds of jobs to be scheduled whilst I was awake and in the office, and 

then run whilst I was asleep, hill-walking, doing theory, drinking or engaged in some combination 

of these activities.
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