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'It is the great task of the natural sciences
and of natural philosophy to paint a
coherent and understandable picture of the
Universe. All science is cosmology, and all
civilizations of which we have knowledge
have tried to understand the world in which
we live, including ourselves, and our own
knowledge, as part of the world.'
Karl R. Popper

Quantum Theory and the Schism in Physics, 1982, Unwin
Hyman Ltd



SUMMARY

The purpose of this thesis is to study the role of the spatial
and angular correlation functions for galaxies and clusters of
galaxies. We discuss the various approaches to the problem of
describing the statistical distribution of galaxies and discuss the
connection between Peebles' and Limber's approach. The former
describes the distribution as a point process, the latter considers the
density distribution as a random function or process.

The density distribution that corresponds to a particular
spatial correlation function can be generated by use of spectral
analysis. We discuss some of the problems involved in generating
the density distribution in this way, and use this description to
derive the relationship between the angular and the spatial
correlation function for particular forms of the latter. Selection
effects are introduced first by simply truncating all galaxies beyond
a certain distance, and secondly by introducing the Schechter
luminosity function and excluding galaxies whose apparent
magnitude is above some threshold value.

We briefly review the fractal description of galaxy
distributions, and relate this to the description in terms of spatial

correlation functions.
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PREFACE

The study of the large-scale structure of the Universe has
become an interesting area of research over the last decades.
Observational and Physical Cosmology complement each other,
leading to the better understanding of the nature of the Universe.
The homogeneity and isotropy, on large scales, is an accepted fact
(confirmed by the homogeneity and isotropy of the CMBR). It is also
well known that on smaller scales (<150 Mpc) the Universe is very
inhomogeneous, consisting of stars, galaxies, clusters and
superclusters.

Many characteristics have been inferred from the data,
provided by the great number of surveys, revealing the presence of
filaments, voids etc. But in order to extract more information for the
properties of the Universe, we need to apply quantitative tests (e.g.
virial theorem etc.) which (i) give information on its dynamical
properties (e.g. masses of galaxies & clusters, mean density of
matter in the voids etc.) and (ii) offer a criterion for the selection of
models for the formation and evolution of the Universe.

The study of the structure formation in the Universe can
be approached by assuming that the density perturbations (at some
linear stages) are a random Gaussian field. Since the early stages of
modern Cosmology, attempts have been made to describe
statistically, the structures in the Universe. One of the statistical
methods used to measure, mainly, the irregularities in the space
distribution, is the correlation function (spatial and angular). The
spatial correlation function can be connected with the power
spectrum of the density fluctuations, through Fourier analysis.

Statistical methods, combined with more information gathered in
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the future from the 2P map of the CMBR, will give us a deeper
understanding of the density oscillations at high redshifts (~103)

The distribution of galaxies can usefully be described in
the language of stochastic process, and in this thesis we show how
the statistical measures of inhomogeneities in the large scale
structure can be placed in the framework of this theory.

In the first chapter we outline how the cosmological ideas
have progressed, starting with some ancient beliefs about
cosmogony. We state the problems arising from the so called
standard model and describe the initial conditions with the
subsequent evolution of clustering in the linear and nonlinear
regime. We then discuss the problem of the subluminous, but
gravitationally influential, dark matter. A discussion of the
literature and simulations follow the references to the large scale
structure observed today.

Chapter 2 is devoted to the presentation of the theory
concerning the stochastic processes and spectral analysis. They both
constitute the basis for the development of theory in the following
two chapters, as an application for the study of the large-scale
matter distribution. We illustrate the above theory, in particular,
the construction of realizations of random functions in 1D to
highlight problems that arise in 3D

In the third chapter we show how we can apply the
spatial and angular correlation functions, to measure the nature of
the distribution of objects. Four forms of two-point autocorrelation
functions are studied. We explain the problem arising from the use
of the common from, of the power law, for the generation of
continuous functions and suggest a different form, to overcome this
difficulty (the problem was illustrated by the 1D approach in the

previous chapter). The remaining sections are concern with the 3D



il
approach. In the last section we examine the small angle
approximation, deriving the angular correlation function from the
spatial correlation function without the intervention of the
simulation.

In the beginning of the forth chapter, some definitions of
the luminosity function are given and we discuss the morphology-
density relationship. The universality of this relation, although
somewhat puzzling, is generally accepted as a fact and confirmed by
the comparison between the redshift surveys and data on clusters.
The general luminosity function as introduced by Schechter (1976)
is mainly used. It is obvious that the sampling effects come into the
upper limit of the integrals over all ranges of magnitude,
determining a cut-off in the probability distribution of the galaxies.
The consequence of this, is included in the programme and the
resultant angular correlation function is obtained.

Finally we discuss our results and give two appendices
with proof of the power spectrum of the suggested spatial

correlation function and the programme utilised for the simulation.
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CHAPTER 1

INTRODUCTION

In this chapter we give a brief historical review of cosmology. We
examine several questions which are central to the cosmology
today. We mention the outstanding problems to be confronted and
we state the resulting structures from the first 3-dimensional
surveys. We describe how the initial perturbations grew in the
early stages of the Universe's evolution. We give some statististical
methods used in cosmology and explain why the correlation
functions appear to be more complete in both the quantitative
analysis of clustering and reconstruction of the density field in the

simulations.

1.1 From myths to reality

What we call mythology consists of stories that reveal a
search for the meaning of the world either philosophically or
scientifically; as the myths in the ancient world were a
simplification of a complex science. We should not forget that
astronomy was one of the first sciences developed by the people of
that era, thousands of years ago. O'Brien & Major (1982) write: 'we
can analyse myths in many different ways to discover their insight.
But scholars today tend to use one or more of basic approaches.

Fundamentalists belive that creation myths are historical accounts
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of the origins of things; moral fictionists believe the myths provide
useful lessons for living; structuralists have pointed out the
universal patterns of thought which myths contain; and symbolists
believe the myths contain truth which is symbolic rather than
historical'.

Everything, in the most ancient cosmologies, was one in the
beginning. Then a god, like Marduk for instance in Mesopotamia,
created the Earth, the planets and humans. After a long conflict,
Marduk conquers the old god Tiamat and the status of order begins.
Once more we can see the fight between chaos and order, which is
common in many creation stories. Generally the gods and goddesses
are forces that give form to pre-existing matter. In 712 A.D., the
'Chronicles of Japan' describe the beginning in the first chapter
'Hajimari'. The heavens and the earth were one. The sky was a mass
of huge clouds which began to swirl and grow. A terrible rain
started and lasted for a long time. When it stopped the heavens and
the earth separated.

In Vedic Cosmology (India), Varuna separated and
established heaven and Earth. Dyaus was the son of Heaven and
Earth, born in the atmosphere, thereby combining in himself the
threefold structure of the Universe, dependent upon the universal
cosmic order Rta ( Brandon, 1963).

In Theogony, Hesiod gives the cosmogony through the
genealogies of the gods. The birth of new generations means the
evolution of the world toward an ordered and more civilized one.
Different explanations of the origin of the world had been given by
Sophocles, Aeschylus and Aristophanes. But particularly interesting
is that the Greek thinkers, for the first time, attempted to break

away from the mythological approach to origins and propose
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various 'physical' cosmogonies (O'Brien & Major 1982). Thus Thales,
Heraclitus and Empedocles tried to give scientific explanation, in the

sixth century B.C.

1.2 The Dawn of the Modern Cosmology

In the centuries following the early ages, the interests of
the astronomers (and/or philosophers) were directed to the study
of the planetary motions. Scientists like Claudius Ptolemy (second
century A.D.), Nicholas Copernicus (fifteenth century), Tycho Brache,
Johannes Kepler, Galileo Galilei etc. pioneered in the foundation of
the principles in Astronomy. The applications of Newton's law
(published in 'Principia’ in 1687) in the Solar System, showed that
the physical phenomena can be described under the assumption of
an Euclidean space in every scale.

Everybody, before our century, believed that the Universe
is infinite and static. From these assumptions some problems found
a solution but some did not. For example Newton, using the
gravitational theory argued that the Universe could be infinite and
static without the stars falling in the same point, once the
gravitational forces between the stars are balanced by the force of
stars on the other side. Although a 'reasonable’ explanation has
been given to the above problem, nobody managed to solve the
Olber's paradox (in an infinite and static Universe, for uniformly
distributed stars, the total flux of their light should be infinite,
making the 'night, day' on Earth).

A turning point for cosmology was the proposition by
Einstein of the theory of relativity. Firstly, in 1905, Einstein

published the special theory of relativity which connects the
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observations of events, made by observers who are in uniform
relative motion. In this theory there are two basic postulates: (i) all
the inertial frames are equivalent when we carry out experiments
in them and (ii) the velocity of light is constant, in all the inertial
frames. About ten years later he developed the general theory of
relativity, which is a generalization of the Newtonian gravitation.
Affected by the conceptions of his era for the static Universe,
Einstein regulated his equation, adding the term A, called the
cosmological constant.

Cosmological principle: Before the twentieth century, the
concept of cosmologists was, that the Universe is full of matter with
constant density and is distributed uniformly over all scales. The
first exemptions were made on small scales, where Newtonian
mechanics predicted gravitational instability.

The assumption of the cosmological principal means that
the Universe is homogeneous and isotropic (H&I). By homogeneity
we mean that every observer in the Universe can see exactly the
same picture of the Universe as a function of time. Isotropy
indicates that the Universe, for an observer, looks like the same in
all directions.

Hubble’s law:  The first systematic attempt to measure the
distance of the stars was made, in 19th century, by Bessel,
Henderson and Struve. A catalogue of 100 stars prepared with the
distance estimated by their parallax. The same period Secchi and
Draper prepared catalogues of stars and Huggins estimated the first
recession velocity of Sirius by it's Doppler redshift.

It was just at the beginning of our century that
astronomers realized that the Milky Way does not comprise the

whole Universe. For the first time, Kant suggested that the 'nebulae’
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were outside our galaxy. The controversy as to whether the
'nebulae’ were inside or outside the Milky Way continued, until
1924 when Edwin P. Hubble, using the period-luminosity relation of
the Cepheids, determined the distance of nearby galaxies. The next
step was to use giant stars. He assumed that they have the same
absolute luminosity and finding the apparent luminosity, he worked
out the distance. In that way he measured distances out to
10,000,000 1y. Then he applied the same method, but for the
absolute luminosity of galaxies and extended this limiting to
240,000,000 ly. In addition to this study, he classified them, mainly,
as ellipticals, spirals, barred spirals and irregular. The result of his
work (established in 1929) was the velocity-distance relation,
v=Hr (where v is the velocity and r the distance), known as
'Hubble's law', indicating the expansion of the Universe. His work is
summarized in 'The Realm of the Nebulae' in 1936.

‘Big Bang’ & CMBR: An important inference from the
Hubble's law is that, about 20 billions years ago the galaxies were
much closer than today and the matter density of the Universe
much larger. This is the standard (or Big Bang) model for the origin
of the Universe. In the 1940's, Gamow and his colleagues Alpher
and Hermann, trying to explain the existence of elements, we
observe today in the Universe (fig. 1.1), assumed that this should be
more than a million degrees at an early time. The predicted echo of
that epoch was detected by Arno Penzias and Robert Wilson (1965).
When they were working on the telecommunication systems at the
Bell Laboratories, they found a signal coming from all directions in
the sky, in the microwave band of the spectrum. The CMBR
provides evidence for H&I of the universe on large scales (>100

Mpc), supporting the standard model, and it's study will play a
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significant role in the better understanding of the origin of
structures in the Universe.

Inflation: The standard model leads to three important,
experimentally testable predictions (e.g. Guth and Steinhart, 1991):
(i) Hubble's law, (ii) the microwave background radiation and (iii)
the abundances of the elements. However, it fails to explain: (i)
why the Universe appears to be uniform over distances that are
large compared with the horizon distance at recombination (the so
called horizon problem), (ii) the spectrum of inhomogeneities which
requires the initial state of matter to be non uniform (smoothness
problem), (iii) the small (compared with the number predicted by
the standard model) number of isolated north or south magnetic
poles (magnetic monopoles), predicted by the GUTs (monopole
problem) and (iv) according to the Big Bang model the density,
pressure and temperature would have been infinite in the
beginning, t=0 (singularity problem); this problem éan probably be
solved by models in quantum physics.

In the last decade a theory came up which seem to explain
most of the above problems arising from the standard model. It is
called inflation and was proposed by A. Guth (1981). In order to
understand better the inflation, we state the fundamental idea on
which is based. As we know, according to different equilibrium
states of the molecules, we have three phases of the water: liquid,
solid and gaseous. When the temperature drops, latent heat is
released. In the Universe, in the beginning there is symmetry
between nuclear and electromagnetic forces. Then the temperature
drops (to 1027 Kelvins) and the energy is not large enough to
maintain the symmetry. So a new status is established. The new

situation is based on the overwhelming of the electromagnetic force.
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At this period the light travel distance grew exponentially large and
the length, for say a centimetre, extended out to a distance of
hundreds of billions of light-years (fig. 1.2 from Guth et al.
(1989,1991)). The inflation occurred after the first 10733 5.
According to Borner (1988), inflation is the assumption that the
expansion factor R(t) of a Friedmann-Lemaitre cosmological model
grows exponentially during a brief time interval in the very early
universe.

Although quite a new theory, there are different versions,
for which Borner (1988) wrote: one can say that the old inflation
scenario is dead; the new scenario is old, and the chaotic inflation
scenario is in a good order. According to the chaotic inflationary
scenario, the inflationary Universe life exists only in the 'bubble' in
which we have large size, spatial flatness and high isotropy. Other
regions either have not inflated or they are not long-lived enough
to stable life (Barrow & Tipler, 1986).

What makes the inflationary scenario especially
interesting is the fact that it can link together a number of
properties of the Universe, each of which plays a key role in
creating a cosmic environment (small-scale inhomogeneity, high
degree of isotropy and proximity to critical density).

Recently it has been proposed that the phase transition
may have occurred tens of millions of years after the Big Bang,
when the temperature was about 1000K. This is between the era of
microwave background radiation and the galaxy formation.

Friedmann model: The separation between two events, for

H&I Universe is expressed by the Robertson-Walker metric

R(t 2
ds?=dt> - T(z){l dIkrz +1%(d6” + sin 2 Gd(pz)]
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Alexandre Friedmann, in 1922, gave three classes of
solutions to the Einstein field equations under the conditions of
Weyl postulate (that the galaxies are moving along paths without
interacting each other) and the cosmological principal. Assuming
that the distribution of matter can be described by a perfect fluid
with density, p, pressure, p, and A=0, the Friedmann equation

expresses the evolution of matter as

L2
(R) 350000 _ g
R/~ 3 R

d, oo Pd oo
and dt(pR)+02dt(R)"O .1

where R is the scale factor and k the curvature. The pressure, p, and

the density, p, can be written as the sum of components, specifying

the contribution from the mass and radiation, as follow: p=p, +p,
and p=p +p,, (where m and r indicate mass and radiation). We call
radiation-dominated era the epoch in which p >p. . and matter-
dominated era the epoch for p,,>p. .. At present, matter content is

dominant (p,,>>p.), but matter pressure is negligible (p,<<p,).

The Hubble's constant, H, we can say expresses the scale
change rate and can be written as H=R/R with units km s1 Mpc-
1 and so the equation (1.1) determines the evolution of Hubble
parameter. t=1/H, for expanding Universe in the standard model, is
an upper limit to the age of the Universe (~ 2x1010 years for a

value H=50 km s-1 Mpc‘l) . According to the initial value of H the

age estimated to -~ 4.7x10° years, is contradictory to the geological

theories for the age of the Solar system.
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1.3 Initial Fluctuations

There are two key cosmological epochs of radiation and
matter domination regimes: the epoch of equal matter and radiation
pressure and the recombination. In the first state, radiation was

coupled to the matter. Recombination occurs when the radiation

i

temperature drops to = 3000-40000 K and the protons and
electrons combine to form hydrogen. At this point, the radiation no
longer be' scattered effectively by the matter and we say the
radiation and matter decoupled. Any inhomogeneity in the matter
distribution at this time would give rise to anisotropies in the
microwave background radiation, characterized by small variations
in the temperature with direction.

According to the Friedmann solutions if the present mean

density of the Universe is pg then the density parameter

(density/critical density) is

If Qp>1 the Universe will eventually collapse, while Q4<1 implies

expansion will continue for ever. The last case can give two models :
(i) Qp=1 (Einstein-de Sitter case), and (ii) the open one Q<1

In the Universe small irregularities in the distribution of
matter would tend to grow because the gravitational attraction of a
particular lump would overcome the -cosmological expansion in the
region near it. At the same time as gravity causes clustering, it also
causes low-density voids to expand and to pile up matter around
their edges. The negative amplitude density areas, which are the
progenitors of the voids, decrease as the positive density peaks

increase (Hoffman & Shaham, 1983)
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The initial density fluctuations, generally, can be divided
in two categories (Gott, 1977):

(i) isothermal in which the fluctuations do not conserve
entropy per baryon. They represent baryon fluctuations in a
uniform photon bath. In this case, the matter density increases in
some regions, but the background radiation field remains uniform.
This kind of perturbation grows only after decoupling because the
intense radiation field prevents the electrons from moving much.
From these fluctuations we can have the smallest disturbances at
size of globular cluster.

(ii) adiabatic; here the perturbations vary together in time
and space like sound waves. After decoupling the matter
component of the disturbances grow slowly giving mass
concentrations comparable to a cluster of galaxies. These
perturbations exactly conserve the entropy per baryon and are like
sound waves with equal photon and baryon fluctuations. They enter
the horizon at an amplitude of 1004 and do not grow prior the
recombination. According to Silk (1974) we can not find adiabatic
fluctuations on scales smaller than a characteristic mass because
they are damped by photon viscosity. According to Zeldovich (1972)
the perturbations can be studied better when they first come
within the horizon and so show us how different parts of the
Universe are connected.

The Q2 problem: If Q were not, initially, close to 1 then any
deviation from unity would have grown rapidly giving values to Q
out of the range 0.1 and 0.2. If the assumption, that the mass
density has been equal to the critical density one second after the
Big Bang is true, then the question arises is why the Universe

started off so close to this value. Statistical measures used to extract
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information from iso-temperature contours of microwave
background radiation which will help to understand better the

initial conditions (Sazhin, 1985)

1.4 Evolution of Clustering

1.4.1 Linear

As we described in previous section, at redshift z . 1.400

the radiation decoupled from the matter and as the first atomic
hydrogen formed, the radiation was freely moving through it. This
is assumed to be the starting point for the evolution of clustering.

At this epoch the density distribution of the Universe was almost

op

homogeneous. The fluctuation, <> Wwas very small (10'4) and its

evolution can be described by linear theory.

If the perturbations are isothermal, then the radiation is
distributed uniformly (8p;=0). In the case of adiabatic perturbation
the radiation and matter oscillate together, like acoustic waves, with

fluctuations connected by the equation

Op m
Pm

dp,
P,

_4
3
The perturbations tend to be damped by photon diffusion
(Peebles, 1980). In order for an irregularity to avoid the dissipation
need to have a mass, called characteristic mass, which ranges from
galaxies to clusters of galaxies, for adiabatic perturbations and

globular star clusters for isothermal.

The equation (1.1) can be
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ke? _ o 8nGp(t,)
RZ ° 3 ) 81Gp(t,)
’ = ke =[Q;' - 2R (1.3)
> _,8mGp(t,) 3 .
H,= Q, —5—

The subscript O refers to the present epoch. Solving the eq. (1.1) in
terms of kcz/Rz, substituting the eq. (1.3) and knowing that
p(HR’ = P(to)R?, = constant we get

2
R _ 87Gp(Orr -1 R 8nGp(t)
(&) - S . 30
since today Rp>>R. Solving this differential equation we find

L
3 3

R(t)= (6Gp(t )R’ t* = R,(6Gp(t,)  t

1 2
3.3

2 TN

= R(t)ect?/? (1.4)

If we consider that the matter flows as an ideal fluid and neglect
the pressure gradients the 'linear perturbation equation' is (e.g. Fall

(1979), Peebles (1980)):

2
%{82‘ + 2RI _ 4nGps

R dt (1.5)

Using the (1.4) and assuming that one solution is 6 <t" | we
find the general solution of the linear homogeneous differential
equation (1.5), 8, to be: 8(t)=C t2/3 | for large t.

As we can see the initial fluctuations of baryonic matter
expands linearly. The density perturbations grow proportional to

the scale factor 8p/p o R. The density fluctuations increase because
of the gravitational instability till the moment the perturbations

become big enough to form the first structures.
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1.4.2 Nonlinear

The epoch in which the first objects formed marks the end
of the linear evolution. According to the Big Bang model, galaxies
are described as the gravitational collapse of large enough density
fluctuations. The amplitude of the perturbations to become
gravitational bound and collapse out of the expanding Universe is
dependent on the mean mass density of the Universe. If Q is close
to unity (large) small perturbations can collapse. Lifshitz (1946)
studying the evolution of the contrast 8p/p, showed that the growth
of perturbations is slow because the background density decreases.
Kolb & Turner (1990) showed that the perturbations, containing
1012 M, would be of the scale 1.9 Mpc if they had not been
separated from the general expansion in the non-linear stage. The
problem with the Big Bang model is that the initial fluctuations
spectrum is something that should be regarded as initial condition
because the amplitude of the fluctuations have no explanation. In
the inflationary model, the Universe inflated in such a scales as is

not possible to be damped out and becomes decoupling with Q=1.
Jeans Length: Here we pose the fundamental idea on which
the formation of the irregularities is based. Say we have a medium
(with density Pm) perturbating slightly. The areas which are denser
than others tend to condense under the gravitational attraction. The

growth of the density increases the pressure. Jeans found that the
minimum length, Ly, of the region in which the gravity overwhelms
-1
the pressure is (e.g. Rowan-Robinson, 1977): L,=v(Gp,) 2, (
(Gp)'l/ 2 is the time it takes the perturbation to collapse under

gravity) where v_ is the velocity of sound, taking (i) v,~c/<4f3 in

S

the radiation dominated era and (ii) v,=(5KT/3m,)"? (m, is the

mean density of the particles in the material medium) after
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recombimation. The Jeans Mass is defined as M<pL’ with (i) 1015
Mg before recombination (clusters of galaxies) and (ii) ~ 106 Mg
after recombination (globular star clusters).

The first structures to form from adiabatic perturbations
are 1013.1015 Mo which then fragmented into galaxies. Their
rotational motion caused shock waves. The perturbations larger
than those above, cancelled out once the amplitude was less than
unity (Doroshkevich et al., 1974). All the structures, we observe
today in large scales, came from gravitational clustering. The
smaller mass scales were either absent initially or were erased (e.g.
adiabatic fluctuations damped by viscosity on mass scales smaller
than M=1012 @-3/4 h:3/2 Mo) (Fall, 1979)

Some models for structure formation: The beginning of the
nonlinear stage called intermittency, is characterized by the
appearance of pancakes, filaments, compact clusters etc. Here are
some models trying to explain how these structures formed.

In the early 1970s, the Soviet cosmologist Zeldovich (1970)
suggested a model to explain the distribution of galaxies on large
scales. The comparison with a 'pancake’ gives a picture of the idea.
The matter is initially distributed over enormous sheets which
fragment to form galaxies and clusters of galaxies. Computer
simulations based on these ideas produce a three dimensional web-
like structure in which most galaxies are strung out along thin,
thread-like structure of the threads which are the locations of the
intersections of the original sheets.

Based on this model, another Soviet researcher, Einasto
(1980), first argued that large voids in the distribution of galaxies
must be common. In general few filaments of a web would lie in

thin slice through it. But what we can see, from the new surveys is,
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connected networks and not separated clumps as we would take
'slicing’ the Zeldovich's model. So the ‘'pancake’ model probably
proved to need more 'sauce’ in order to correspond to the reality.
Another model which uses adiabatic fluctuations in an

Qo<1 cosmology, is given by Doroshkevich, Sunyaen & Zeldovich
(1974). Here we first have the protoclusters with mass 1014 Mp.
When these formations collapse the shock fronts give rise to dense
pancakes of matter that could fragment into galaxies via the usual
Jeans instability. Production of bound protoclusters of 1014 Mo
requires (8p/p)>10'2

Peebles (1974) suggested the case which is nearly the
opposite process to the one above. That means that the galaxies
form first and clusters of galaxies form later. Previously, in 1968,
Peebles & Dicke proposed (recalling the studies of James Jeans in
1902), that globular clusters, corresponding to the Jeans mass at
recombination, were the first objects formed in the Universe and
that galaxies are aggregates of such primordial objects. This
happens because regions of higher density than the average, and
because of the gravitational attraction, are moving towards the
centre. This picture implies an isothermal density fluctuation
spectrum that extends down to the scales of the Jeans mass at
recombination. Peebles cites as evidence for this picture the fact
that covariance function of galaxies has a power law form with no
intrinsic scales.

Ostriker et al. (1981) suggested that explosions occurred
when the Universe was less than a billion years old and drove the
hydrogen into thin shells which fragmented to form galaxies. In the
beginning a generation of extremely massive stars formed and went

supernova. The shock (spherical) waves from the explosions swept
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up and compressed ordinary matter. These shells then fragmented
and the fragments collapsed to form galaxies. The largest structures
we see could be the results of a merging of several adjacent shells.
Much less interactive elementary particles left behind, 'filling' the
voids with dark matter. The objection in this theory is that these
enormous explosions would have an effect which should detected in

the microwave radiation background.

1.5 Dark Matter

In 1936, when Zwicky applied Newton's law for the
Coma cluster, he found that the cluster's mass is 10 times larger
than the mass of stars in the member galaxies. This 'dark matter
problem' has puzzled astronomers since then.

Recently astronomers realized that there has not been
time for gravity to pull together the matter to make the structures,
we can observe. Consequently, a suggestion came up to cover this
difficulty: the dark matter. That is to say, a large fraction of matter
in the Universe is invisible. The fraction p/p.. is believed to be one
today, although only 0.1 comes from the data. This balance is very
crucial for the evolution of the Universe. Slightly greater than 1,
gives a closed Universe, going forward for Big Crunch. For less than
1, we have infinite expanding Universe.

Evidence for the existence of dark matter has also been
provided by the rotation curves of galaxies, which tell us how much
mass exist within the orbit (from equation V2(R)=GM(R)/R where
M(R) is the mass in a sphere of radius R, and V the rotational

velocity) . But this speed seems to be constant after a certain
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distance or decreasing slightly. That means there must be a dark
halo with more mass than what we can see.

Generally speaking, we can say there are two possible
explanations for the dark matter. It is either baryonic or non-
baryonic material.

The first moments, after the Big Bang, the Universe was a
thermonuclear reactor. The first light elements were hydrogen with
admixtures of deuterium (hydrogen-2), helium-3, helium-4 and
lithium-7.

A part of the unseen matter (_ S5%) could be baryonic
material, like giant planets, dwarf stars, black holes, hot gas
between galaxies (it must be hot enough to leave no absorption
lines in the light travelling through it and not so hot to emit x-rays),
and new galaxies (huge mass of gas with no stars).

The low density of the baryon density reveals, that the
Universe cannot be closed due to the normal matter. The only way
to explain the 80%, is through existence of nonbaryonic matter.

The theories, trying to explain the most abundant matter,
are divided into two categories:

(i) hot dark matter (HDM)

(i1) cold dark matter (CDM)

HDM consists mainly of neutrinos (25 electron volts),
moving near the speed of light since just before the galaxy
formation. They are not affected by the gravity. In 1981, Carlos
Frenk, Mark Davies and Simon White, in Berkeley, simulated the
evolution of the galaxies, using mathematical models for a neutrino-
dominated Universe. But the HDM model did not work because it
did not produce small objects (on cosmological scales) like galaxies

fast enough and made galaxies too big. After three years George
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Efstathiou joined the team and the CDM era began. This model
includes ‘exotic' particles (_ several billion electron volts) which
move slowly at the epoch of galaxy formation and they are affected
by the gravity, clumping together on small galaxy-size scales.
Candidates for these particles are axions, photinos and gravitinos,
but they are simply hypothetical. This model seems to be
contradicted by the Q-DOT survey (e.g. Efstathiou et al. (1990),
Kaiser et al. (1991)) (since structures appeared on much larger
scales than the theory predicted) and although the galaxy-galaxy
spatial correlation function is similar with those estimated by the
surveys, the cluster-cluster spatial correlation function is lower
(Bond, 1988). What now is possible is either to adjust the CDM or to
look for a new model.

The models, implied by different composition of the dark
matter, have the basic problem that the seeds which made the
structures, do not grow fast enough to give the structures we
observe today. This problem prompted the suggestion that a late
phase transition occurred after the microwave background
radiation decoupled from the matter. With this model we overcome

the problems arise from both the HDM and CDM.

1.6 Large-scale Structures in the Universe

Over the last forty years powerful telescopes have enabled
the construction of catalogues of positions of galaxies on the sky.
Abell (1958) published a catalogue of 2712 rich clusters, Zwicky et
al. (1961-68) catalogued 30,000 galaxies and clusters of galaxies in
the Northern Hemisphere, and J. Maddox et al. (1988) produced a

map of about 2,000,000 galaxies in the Southern Hemisphere
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The last years, the new maps are made in redshift space.
This combination of celestial coordinates and redshift, reveals
patterns in the distribution of galaxies. At the moment, although the
area covered is very small, the uncertainties of the Hubble
parameter can be neglected because the 'points on the map' are
independent of the radial distance. Since 1981 many cosmologists,
e.g. Huchra et al. (1990), Eder et al. (1989), Kirshner et al. (1987),
Da Costa et al. (1989), Strauss et al. (1990), Gott et al. (1989),
Maddox et al. (1990) (APM galaxy survey), Dressler (1988)(900
galaxy survey) etc., designed and studied 3-dimensional surveys
looking for large structures. Many catalogues are analysed
automatically by electronic devices of institutes like ROE, RGO etc.
The new instruments, like CCDs, make the telescopes 50 times more
efficient than those in Hubble's era and new instruments are
planned to carry out redshift surveys (i.e. 100-inch telescope of
Astrophysical Research Consortium of Universities, see also
Giovanelli and Haynes (1991) with references therein).

The new maps (as in figures (1.3) & (1.4)) indicate that the
general pattern in the distribution of galaxies could be like bubbles
or sponges. The galaxies are located in thin surfaces, surrounding
holes; the voids. These structures appear to be common in the

large-scale distribution of galaxies. Another feature seen in the

redshift survey is the Great Wall. It is extended up to .150 by .60
Mpc and is .4 Mpc thick.

In 1983, IRAS satellite was put in orbit. Although the main
purpose was to make the first extra-terrestial infra-red map of our
galaxy, it found many very faint galaxies, that had never been
catalogued before. Apart from the many other low mass, low

luminosity galaxies discovered, suggesting that the intergalactic
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voids may be populated by massive, slowly evolving objects, a
whole class of galaxies, like Malin 1, seem to be undetected in the
surveys, because, although they are luminous, this light is spread
over an enormous area, making their disks invisible on the
photographs. All these galaxies, hidden by the conventional
surveys, might form stars sporadically and very slowly, as implied
by the low surface brightness of their disks.

The new observations confirmed, as well, that there is a
large accumulation of galaxies more than 150 million 1l-y away,
called Great Attractor. It was found in 1988 (Lynden-Bell et al.,
1988) by a group of astronomers, known as 'seven samurai'. They
showed that many elliptical galaxies of our neighbourhood are
streaming towards the same point in the sky, with velocities higher
than predicted by the expansion of the Universe.

The next decades are going to reveal more details for the
large-scale structure of the Universe, dark matter and the
relationship with the light-emitting matter. The existing telescopes
will take advantage of the new technology. The fibber-fed
spectographs will help the measurements of redshift of, at least,
hundred galaxies at the same time.

Statistical measure of the structures: The first large scale
surveys, during fifties (and even the two dimensional by Shapley
(1930, 1933, 1934)) showed that the galaxies are not distributed
randomly. They clump together forming groups and clusters of
galaxies. The first attempt to approximate the mean number
density of galaxies in clusters was made by Carpenter (1938) who
.derived the form n(r)e<r”? from the surveys (where r is the radius
of the cluster and n(r) the number of of galaxies). A value 1.7 was

given for y, by De Vaucouleurs (1960, 1971).
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The measure of the irregularities has always been an
interesting and attractive way to extract information of the physical
systems. Different methods has been wused for the comparison
between sample systems and the assessment of the agreement

between models and data. For example

* multiplicity function: Let n indicate multiplicity and m(n)
the fraction of galaxies in a system between n and n+dn, of
multiplicity f(n). The multiplicity function is defined, in the interval
(0,1), as M(n) = im(i)

i=1

* nearest neighbour distribution: This function is defined
with similar way as the multiplicity function. In this case the
nearest neighbour distribution f(r) expresses the fraction of galaxies
which exist in the interval (r,r+dr) from each galaxy of the sample.

* percolation analysis: This method is mainly used in
Physics, but it was introduced in Cosmology by Shandarin (1983). It
has been applied and developed by many cosmologists (e.g. Bhavsar
et al. (1983), Einasto et al. (1984))

The problem with the first two methods is that the angular
data is not obvious that it is connected with the spatial distribution
(Peebles, 1980). The weakness of the percolation method is that the
percolation parameter B (B=(4/3)1tr3n0, where ng the mean
number of particles in a sphere of radius r) depends upon the mean
density of particles in the volume we study (Einasto, 1990)

The most popular and frequently used, quantitative
analysis includes the correlation function (c.f.). Although the third
(or more) order c.f. is more accurate to describe the clustering
properties, the two point c.f. seem to be handy and adequate. The

power law form c.f., ArY, used mainly today, was established by
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Peebles in the beginning of 70's. With the new surveys, new
structures has been revealed and other methods (e.g. void
probability function introduced by White (1979)) has been created
but the c.f. remains a powerful tool to understand better the
structure of the Universe. The structures, we observe today, arose
from random Gaussian field of small density perturbations and the
incomplete information, we have today from the CMBR temperature
distribution, does not permit us to conclude with confidence about
the initial state of the Universe after decoupling. But using
correlation theory and Fourier analysis we can connect the linear

density fluctuations with the observed structures.

1.7 Literature

In order to specify the area of our interest we could name
it as 'statistical cosmology'. One might object to the definition on the
basis that some of the methods were used for others studies, like
the distribution of stars in our galaxy. However, cosmology, today
(the last seventy years), is well separated from other parts of
Astronomy; the studies and methods follow their own path.

Unfortunately, although cosmology has become a popular
subject, there is a lack of literature covering the statistical methods.
Initially students, new to cosmology, experience difficulties in
accessing the information they need. The main source is papers
which, often, are very specific and require specialised knowledge of
that topic, unavailable in a 'condensed' form elsewhere.

The only suitable book is written by Peebles (1980) who is
an enthusiastic researcher of the correlation function. The book is

mainly based on papers published about 15 years before the
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publication of the book. The 'hub' of his work consists of seven
papers which are: (i) Peebles (1973), (ii) Hauser & Peebles (1973),
(iii) Peebles & Hauser (1974), (iv) Peebles (1974), (v) Peebles &
Groth (1975), (vi) Peebles (1975), (vii) Groth & Peebles (1977). Of
course many others, such as Michael Fall (1979), Shandarin &
Zeldovich (1989) and Einasto (1990) have contributed significantly.
The first use of statistics to study the process of galaxy clustering in
the Universe was by Neymann & Scott (1952, 1955), Neymann et al.
(1954, 1956).

The statistical methods that were developed in the sixties
and seventies for the study of Abell and Zwicky catalogues and the
fixed parameters (e.g. the slope of the spatial correlation function)
have not changed much since. During the last decade more
catalogues appeared adjusting the parameters slightly and verifying
the existing laws on larger scales.

All the books concerning cosmology in the 80s are more
interested in inflation and physical cosmology than the statistics. In
my opinion more data and analysis is needed, before models are
constructed. Nature is speaking to us, we must learn how to listen to

her!

1.8 Simulations

The improved capability of the computers today, provides
the facility to recreate situations which, otherwise, would very
difficult to study. In areas of research, like cosmology, where the
experimental verification is almost impossible, the simulations
contribute significantly. For example in the 'double Poisson

processes’ we can generate N points according to the Poisson
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distribution. These points constitute the centres for secondary
clusters which are distributed normally with a mean p and variance
62. Changing the parameters N, p and 62, we can take a variety of
structures. Then we can apply statistical methods (like pattern-
recognition statistics) for the study of these patterns (Ripley, 1981).
In addition to other simulation techniques used (study of evolution
of overdensities), it is equally important to see how the voids would
evolve using 'Voronoi Tesselation' model, as in the case of Matsuda
et al. (1984) etc. and statistics of deduced patterns has been
studied. In Voronoi Tesselation model we regard the voids as
random points. Each point is inclosed by its own polygon which is
closer to that point than any other nearby polygon. The periphery
could expand outwards and the intersections are where the clusters
are formed. This model seem to give spatial correlation function
very similar to those derived by the observations (Yoshioka et al.,
1989). A way to measure the connectedness of the filamentary
structures is the 'minimal spanning tree' (MST) (Barrow et al., 1985)
and the method has been applied to catalogues (e.g. Zwicky, CfA
etc.) and simulated data (Bhavsar & Ling (1988), Martinez & Jones
(1990), Martinez et al. (1990)). Other quantitative methods have
also used (e.g. Einasto et al., 1983).

The simulations offer the advantage of testing models,
starting with initial conditions and comparing the results with the
observations. Generally the resulting structures are not identical to
those observed. For instance in some simulations the contrast
between high and low density regions is not large enough, the voids
are too small and the remarkable observed coherent patterns in
the galaxy distribution are not reproduced. The problems which

usually arise, originate when some results could correspond to a
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variety of initial conditions. Most numerical simulations are based
on the assumption that the initial perturbations are Gaussian. The
theoretical conclusion that structures in a density distribution arise
at the nonlinear stages if the spectrum of the linear perturbations
falls off steeply enough with decreasing wavelength is confirmed
(Shandarin et al., 1989). The problem of initial conditions has been
put very well by Hawking in 'New Physics' (1989): '... the laws of
science would not fix what the state of the Universe was in the
infinite past. In order to pick out one particular state of the
Universe from among the set of all possible states that are allowed
by the laws, one has to supplement the laws by boundary
conditions which say what the state of the Universe was at an initial
singularity or in the infinite past. ... the Universe could have started
off in a completely arbitrary state.... but one can merely pick a
reasonable set of boundary conditions, calculate what they predict
for the present state of the Universe and see if they agree with
observations'. One prominent effort in cosmology is the
reconstruction of the primordial power spectrum using the two-
point correlation function and Fourier analysis.

Generally the simulations are used for the dynamical study
of the Universe. They are oriented to the evolution of the structures
and the changes produced under the action of the gravity. They are
used to compute the distribution of mass (e.g. Bertschinger & Gelb,
(1991)) and then the regions, which exceed a predifined threshold
of continuous underlying gaussian density field, form galaxies (the
so called 'biased galaxy formation'). Work on the gaussian fields in
one and three dimensions has been done by Kaiser (1984) etc.

Our simulation aims at the 'static' description of the

structures. We set up a software in order to see the connection
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between the spatial and angular correlation function. We are mainly
oriented to the computation of the angular correlation function from
a generated sample. The theory is based on the Fourier analysis and
uses the spatial correlation function as a fundamental tool for the
generation of random functions. We extended the programme in
such a way as to provide the basis for a continuing examination
involving of different factors, like for instance, the selection effects,
the direct derivation of the angular correlation function (without
generating a data), the simultaneous study of different forms of

spatial correlation functions etc.

During the last years, we can see an increasingly number of models,
attempting to explain the origin and structure of the observed
Universe. Although many fundamental properties can be explained,
no theory can fit 'exactly’ the observations. Many problems remain
to be solved the next years. In the near future, the concurrent of
the observational techniques and the new theories in particle-
physics, might give answer to many of the problems which the

cosmology faces today.
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CHAPTER 2

STOCHASTIC PROCESSES

We shall assume that the matter distribution can be described as a
realization of a stationary random function. In this chapter on
random processes, we shall deal with problems of stationary
random functions from a theoretical point of view. In section 2.1 we
define what is meant by the random processes and introduce the
notion of stationarity, and the correlation function. We are mainly
interested in the first and second moments of the random functions.
The theory based on the mean value and correlation function is
called correlation theory. References for the first section, which give
an extensive analysis and discussion, are Chatfield (1989), Papoulis

(1965), Yaglom (1962), and Cox & Miller (1964).

2.1 Random Processes
2.1.1 Definitions
Consider a regular die with a different number on each of
its six faces; If we toss the die repeatedly there are only six
possible outcomes, called elementary events, which form a set Q. To
every element, ®, of this set we associate a real number x(w). The
relation between the two sets is called a real valued random

variable (r.v.). X, is a real function whose domain is the space Q and

such that
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(i) the set {x < x} is an event (subset of the space Q) for any
real number x
@) P{x=4=})=P{x=-2}=0
A complex r.v., ¢, is defined as
c=a+ib (2.1)
where a and b are real random variables. If to every elementary
event o (with domain the set of all the experimental outcomes)
there corresponds a function x(t,w), defined on R, then we say that
we have a stochastic process. When the domain of t is the real axis
and t represents time, then the process is called continuous-time
stochastic process or random function. When the domain is a set of
integers, it is a discrete-time process. For every fixed value o, we
get one realization (or sample path). For a particular t we have a set
of possible values (the states) corresponding to possible outcomes o,
called state space. Thus fixing t and regarding ® as a random
outcome, x(t) becomes r.v. The cumulative distribution of x(t),

F(x;t), is given by
F(x;0=P{x(t)<x}

The probability density function f(x;t) is obtained differentiating

with respect to x, i.e.

VF(x,
f(x,t)=-—§;—t-)-

A complete description of the random process will be given
by specifying the joint distribution of {x(ty), x(ty),..., x(t,)} for

n=1,2,3,... and real values of tj, j=1,...,n. Thus we may describe the

process by giving the set of functions
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fh(X1,X2,....Xp5t15t2...8,)
A complex process can be defined similarly by
c(t)=a(t)+ib(t)

where a(t) and b(t) are real r.f. In this case the family of r.v.
consists 2n values. The process c*(t) denotes the conjugate.
2.1.2 Stationarity
There are two kinds of stationarity: the first one is called

strict and occurs when the joint probability density function of

x(ty), x(to),..., x(ty) is the same as the joint probability density

function of x(ty+r), x(to+r),..., x(t,+r) for all t, t5, ...t .1 the other

one is called second-order (or weak) and requires constant mean
and the covariance to depend only on the lag. Strict stationarity
impies second-order stationarity for Gaussian processes (e.g.
Chatfield, 1989). We shall assume that the random processes are
weak sense stationary.
2.1.3 First & Second Moments
The mean is defined by

+20

<x(t)>= J'xf(x, t)dx

— oo

This is also called the first moment. If the process is stationary,

<x(t)> is independent of t. We can define the second moment

R(t,t,) =<x(t)x(t,) >= ffx,xzf(xl, X, t,t,)dxdx, 22)
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For a stationary process R(tl,t2)=R(|t2—t1l). The autocovariance

of x(t) is the second central moment

Co=<[x(t)—-<x()>][x(t+1)—-<x(t)>]>

=< x(t)x(t +r1) > - < x(t) >? 2.3)
The ratio
YD) = Gy = 20
where o2 is the variance, is called autocorrelation function with the
properties

(D) y(r)=y(-r1)
(i) < 1
(iii) a stochastic process has a unique autocorrelation
function but the converse in not true.
For a complex stochastic process the autocorrelation

function is defined as

R(r)=<x(t)x*(t+r)>

and the autocovariance as

Cir)=<[x(t)—<x(t)>][x*(t+r1r)-<x(t)>]>

with the property C(-r)=C*(r)

2.1.4 Continuity
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We say that a process x(t) is continuous at t if

lim x(t +¢)=x(t) for almost all the outcomes or realisations and
€—0

continuous in the mean square sense if

lim < [x(t +1)—x(t)]’>=0 2.4)

r—0

Eq. (2.4) implies the continuity of the mean in which the expected

value of x(t) must be continuous:

Em[ <x(t+r1)—-x(t)>]=0 (2.5)

r>0

The meaning of eq. (2.4) is that almost all the realizations x(t) will
be continuous at a particular point in an interval, but does not
imply that will be continuous for every t. We can state this using
the theorem which is very important when we discuss the problems
arising from the definition of a particular form of autocorrelation
function, because indicates that we can not generate a continuous
process when the autocorrelation is not continuous in the origin.

Theorem: A stationary process x(t) is mean square
continuous if and only if its autocorrelation function R(r) is
continuous for r-> 0.

Proof: (<) Expanding the square (2.4), assuming the

process is stationary and using eq. (2.2) we have

lim < [x(t +1) - x()]*>=

lim<x*(t+r1)>-2<x(t+)x(t) >+ <x*(t) >=

r->0
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2 lim [R(0) ~R(1)] =0 (2.6)

(=) R(r)-R(0)=<x(t+r)x(t)>-<x2(t)>. We assume that the
process is continuous in m.s.s which implies that x(t+r)—x(t) for

r —>0. So we have

1in% [R(r) -R@0)]=0

2.1.5 Correlation Length

Till now we were talking about the r.v. x as a function of

time, t. From now on we define it to represent a function over

distance. The correlation length ry is the scale length over which

x(t) is correlated with x(t+rg). Let assume that a correlation

function is expressed by decay law. That means the correlation at
any distance x is directly proportional to the total average number

of points at any separation. This is denoted as

- 82 R

dx
where the negative sign indicates that the R decreases as x

increases. If we define the constant of proportionality 1/rjy, the

above expression is

dx T (2.7)

For R(0)=1 and assuming that at distance xg the R takes the value Ry

we have,
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integrating the (2.7). We could also define the correlation length as

the distance at which the s.c.f. falls to half of its value.

2.2 Matter Density as Random Functions
Random functions can also be defined over R3. We can
regard the matter distribution in the Universe as a realization of a

random function p(x). We assume that the distribution of galaxies
represent a 'stationary random process'. Taking p(x) to be the
number of galaxies per unit volume in a given direction and at a
distance x (Limber, 1953), we describe the distribution of objects
by a continuous density function

p(x)=p, 1+ 3(x)) (2.8)

where pg is the average number density of galaxies and &(X) the

density fluctuation. The p(x) is a function of the position. It is
generated by a random (or stochastic) process and is one of an
ensemble of random functions which might be generated by the
process. The random process is assumed to be Gaussian (generally

this is not necessary, but more convenient) which means that, for

EVETY N, X1,X9,..e00,X. the joint probability distribution of
122 J p y

8(&1 )_,8(&2), ..... ,S(Xn)

is an n-dimensional Gaussian or normal distribution. Such a

Gaussian random process is completely determined by the

ensemble averages <38(x)>=<{8(X;)}> and by the convariances
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<(8(Li)-<8>)(8(1j)-<8>)>. As a matter of convenience in development
we will assume that the averages <d(x;)> are zero. The covariance

then reduce to <5(Li)5(Lj)>-

Usually in stochastic processes we study the statistics of
an ensemble of different realizations. But in some cases (i.e.
communications engineering) is more usual to work with a single
time function of infinite extent instead of many realizations. There
is a series of theorems concerning with the asymptotic behaviour of
time averages in the framework of the ergodic theory. The mean

value of the process x(t) for various realizations is called ensemble-

average and gives the average over n states (= 2x(t,o)i)). When

1

we have one sample, then we can use the time-average given by
. 1 T « e, .

lim 5 ,[ Tx(t,(:)) dt. These definitions can, of course, be applied for
T > o -

functions of distance.

2.3  Spectral Analysis
Spectral analysis is an application of Fourier analysis for
stochastic functions. On the one hand, in Fourier analysis, a function
is approximated by a sum of sin and cos terms. On the other hand,
spectral analysis is concerning mainly with the study of the spectral
density function estimated by the ensemble of random functions. In
our case spectral analysis is a very handy way to represent the
density inhomogeneities in the Universe. In this section we shall see
how this is possible.
Power Spectrum: The power spectral density function (or
simply spectrum) is defined as the fourier transform of the

autocorrelation function:
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o0 o000 00

(k)= | | [R(p)e ik+d’r |
— oo 00— 00 (2.9a)

It can be shown that f(k) characterizes the distribution of the

density contrast, 8, in Fourier space. The inverse of (2.9a) is

RK) = —— ] | [faoetd’k
(27)" “e- (2.9b)

The spectrum gives the contribution of the frequencies to the
variance in the range (k,k+dk). When k=0 then the area underneath
the curve f(k) corresponds to the variance of the process. The
power spectrum of a stochastic process is a real function and >O0.

1D Approach: Say we have a stationary process 8(x) with

autocorrelation function R(r). There are two cases
(i) if the stationary process, 8(x), is periodic then R(r) is also

periodic in (0O,L/2) and expanded in Fourier series
(i) R(r) is not periodic (which is actually the case we are

interested in). We form the sum

/8\(x) = i o, e ik
k= — o (2.10)

If R(r)->0 as |t} > O then

. . f(k) n=m
ImL<88.>=19 " n%m (2.11)

A
and we can generate a realization, O0(x) in the interval (0,L/2) with

the coefficients of the series (2.10) taking values given by
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8, = 5,)e" (2.12)

where lﬁkl is called Fourier Spectrum of 8y and ¢) its phase angle,
which we choose it to be drawn from a uniform distribution. The
realization lﬁ\(x) is a periodic function. It can be proved that if g(x)
is mean square periodic, then its autocorrelation i\{(x) is periodic.
But the original autocorrelation function R(r) was not periodic. That
is to say that the g(x) is only good approximation to realization of
d8(x) with autocorrelation function R(r) in the interval (0O,L/2).

From now on we shall assume (for convenience) that d(x) is

A
the O(x). Expanding the function &(x) in Fourier series we have

d(x) = 28k g ikx = ZZISklcos kx — @, )
k20 K20 (2.13)

This equation means, in practice, that every variation in the space is
caused by variations with different frequencies and |5k| is their
amplitude.

The different sets of graphs fig. 2.1-2.4 show realizations of
the random processes obtained for four correlation functions, which
are: (r/ro)‘Y, exp(—(r/r0)2), exp(r/rgp), (r+r0/r0)'7 (fig. 2.5) . Every
graph indicates three realizations. The FT for the correlation

functions are respectively

21! cos5-(1 - )]
T = 2rn
ra-m | (2.14)

;; (2.15)
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2 —1—k2r2
4 0
L V7L (2.16)
! cos[%(l—m2
T
L ak 1-v
© Ira-v (2.17)

where 1( is the correlation length and vy the exponent of the c.f. We

took 50 frequencies corresponding to length L=20. The minimum
length is taken to be 0.4.

In the first figure we can distinguish clearly the tendency
of the process to discontinuous values as the cor. length increases.
In this case, the realizations should be discontinuous because,
according to the theorem in section 2.1.4, the correlation function
(r/rO)'Yis not continuous in the origin when r->0. This, we believe,
has to do with high amplitudes coming from the coefficients of the
Fourier series. Its spectrum is flat and does not depend upon the

frequency k, but depend only upon the rpy, resulting higher values

for the amplitude of the process.

Spectral analysis in 3D : The stochastic process 8(x) is

expanded in Fourier series in 3D as follow

Sm= X ek
3D k-~ space (2.18)

2
where the Power spectrum |5x| is the F.T. of the a.c.f. We can
rewrite the above equation (2.18), choosing wavenumber values
such that we limit the waves to propagate into half of the k-space

only, in the form
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numfreq numfreq numfreq

do= 2 X 2 (B eri §e)

kx=0ky=—numfxeq kz=—numfmq

and because &8, =98] we have

numfreq numfreq numfreq

S= 2 X X 2Re@B,e %)

kx=0ky=—numfmq kz=—numfreq

i‘p]( . .
Let 8, = |81|e =, where ¢, 1is a phase of mode k having

uniform random distribution between 0 and 2x. So

numfreq numfreq numfreq

W= 2 X 2 208, Jcos(k - 0,)

k x=0 ky=—numfreq kZ = — numfreq

The wavenumber k(k|,k.,,k,;) (number of wavelengths

per unit distance) is related to |,m,n in equation (2.18), by (e.g. Kolb

& Turner (1990), p.325):

K = 21cl, kK = 27Tm

X L

_ 27mn
k"L

y L~ z (2.19)

and the wavelenght of a perturbation is related to the wavenumber

2%

by K=T. So the wavelength A in 3D js:

| Z kz ~ 27:n n for l’m’n € (_°°9°°) (220)
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Because in practice it is very difficult to have a sum over
(—o0,%) in eq. (2.18) we choose limited number of frequencies.

This number is characterized by a minimum wavelenght Aip >

and a maximum which is the distance of the volume we consider. If

we assume that a=L/ A than the wavelengths are given by:

min

- L _L L
A'l—-l—’ x2—'5’ "“,;\‘lzT

with I,m,n = 1,2,.....,a. The corresponding wavenumbers are

27 4T 271a
k=== k,=—7, ,..,k,=—L—-

Using the theory of this chapter we set up a programme
which, in the beginning, generates random functions. The selection
of the frequencies in the programme is based on the method
described in the last section. The programme reads the size of the
side of the cube, 'limit', we wish to consider, and the minimum
wavelenght, 'incstep'. Then it divides the 'limit' by the 'incstep'
giving the number of frequencies, 'numfreq’, we are going to use.
The highest frequency corresponds to 'incstep’ and the lowest to
length 'limit'. The value 'incstep’ must be smaller than the
'meansep’ which represents the correlation length. Starting with
this way and applying the theory of the last section we generate
realizations for the function &(x). A general idea of how it looks like

is given in the fig. 2.6-2.9.

Using density contrast so generated we are in a position to make

direct calculation of the angular correlation function.
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Fig. 2.6 : Density function corresponding to the S.C.F. (r/ "0 )~

for min. wavelength = 2, L=20, R=10, Correlation Len.=2.5
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chapter 2 52

AE —
23 —
P = . - -
=8 — P
o%e%e%e% % 4
20 = 26,00.26.05%
A ':’
0 0
L
10 ° 10

. Y
Fig. 2.9 : Density function corresponding to the S.C.F. ((r+r 0)/ o)™

for min. wavelength = 2, L=20, R=10, Correlation Len.=2.5



chapter 3 53

CHAPTER 3

CORRELATION FUNCTIONS

In this chapter we apply the theory presented in the previous one,
to the description of the distribution and clustering of galaxies. We
generate random functions using four different forms of correlation
functions in three dimensions. We define the spatial and angular
correlation functions and a new form for spatial correlation function
is suggested. At the end we give a short review about fractals, and
discuss the form that the spatial correlation function takes

according to this theory.

3.1 Spatial Correlation Function (s.c.f.)

The problem of the spatial distribution of galaxies can be
placed in the framework of random functions. Although this
approach was adapted by Limber (1953), the usual approach has
been to talk of probabilities of finding galaxies, regarding the
galaxies as points, rather than the mass density as a random
function. But, as we can see below, the two approaches are
equivalent.

Let us take an element volume dV and points which are
distributed according to the Poisson distribution. The density, n, of
Poisson points, equals the expected number of points per unit

volume and is independent of position. If the volume dV is very
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small then the probability of finding one object in this volume dV

(which represents the s.c.f.) is given by:
dP=P(1)=e-ndVndV =(1-ndV)ndV =ndV

The mean number of objects within a finite volume V is

given by
<N>=nV

The two point s.c.f., £(r), is defined by considering the joint

probability of finding a point in volume dV; and a second point in

volume dV, separated by a distance r
P(1,2)=n2 [1+§(r)]dV dV, 3.1)

It follows from this definition that the probability that a galaxy is
found in dV,, given that a galaxy exists in dV; is given by

_P1,2)
P(2/1)——m-r or  P(2/1)=n[1+&(r)]dV, (3.2)

Furthermore, if dV; and dV, are taken to be infinitesimal,

so that probability of more that one galaxy in dVj or dV, is

negligible, we must have

<dnydny>=n2[1+§(r)]dVdV, (3.3)
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If, on the other hand, we assume that matter is described
by a continuous density function p(x), we can say that the number

of objects for one realization in dVy and dVj is given by

dn =p(x )V, <dn,>=pdV,
dn, = p(x,)dV <dn,>=pdV, (3.4)

Hence

dn,dn, = p(x))p(x,)dV dV,
Taking the average over the ensemble of functions we have
<dnjdnp>=dP=<p(x|)p(x9)>dVdV, (3.5)
Now by definition
<[p&)-<p>]lpx+r)-<p>]>=0R() =
< pX)PpE+1) >=0R(r) + < p >?

Noting from (3.4) <p>=n and comparing eq. (3.5) with eq. (3.2), we

have
o' R(r)+<p>r=<p>[1+&(r)]

o’R
n? (3.6)

or 6R=ED)<p>2 -~ &)=

Thus Limber's approach is equivalent with Peebles' approach.
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If objects were distributed in uniformly random or
Poisson manner the joint probability of finding any two objects at
any two points would be independent of this separation: (r)=0. The
fact that the objects are not Poisson distributed results in a non zero
value of & and the variation of this function with separation r then
tells us something about the strength of pairwise clustering on

various scales.

3.2 Observed S.C.F.

A description of how we can derive the s.c.f. from surveys
is given by Bahcall (1988), (but we can find it in many papers
concerned with the analysis of catalogues, like Eder et al. (1989),
Huchra et al. (1990) etc.) for the case of cluster-cluster correlation
function, but could be applied to the measurement of the degree of
clustering of other objects. This method suggested by Bahcall &
Soneira (1983) and sometimes is called, for example, BS or BS83.
First we need to generate a set of 1000 catalogues with 104 clusters
randomly distributed within the angular boundaries, including the
same selection function. Then we take two frequency distributions
of cluster pairs F(r) and FR(r). The former corresponds to the
observed sample and the latter to the average comes from the
ensemble. Then the s.c.f. is

F(r) B

= 1
§e () -

The s.c.f. for clusters is due to physical clustering of rich
clusters of galaxies that extends to large scales. Bahcall came to this

result based on three tests: (i) study of surveys of different depths
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and comparing them, (ii) using the evaluated by redshift correlation
of the clusters and (iii) comparing the a.c.f. of different regions of
the sky.

Generally it is claimed that the s.c.f. can be fitted, say a

power law, viz.

g(r)=( ro/nY (3.7)

The form (3.7) has been confirmed by a number of authors
as they estimated it from observational catalogues. They
investigated different subsamples of the catalogues, to different
distances, regions and/or richnesses, applied different techniques
and/or corrections (Bahcall, 1988). It is rather unlikely that the
correlations are a result of catalogue biases or omissions. Although
the data are consistent with a power law form for the correlation
function with exponent y =1.8 at small separations, the power law is

not established for galaxy clusters.
Summarizing the results for different 'scales' (galaxies,

clusters, superclusters) we have

=20r 1.8 -1
s.c.f. for galaxies Sg(r) = 20r ,r<20 h Mpc
[360r"1-8=(3_%)‘1'8, R>1
£ (1) 51 . ro-1s
-1 = (—— - > -1
s.c.f for cluster 10801 (78 +R22 400 I Mpc

- ~1.8_ I 1L 8
s.c.f. for superclusters §5(r) = 1500r (58

As we can see the cluster s.c.f. has the same shape and
slope as those of galaxy s.c.f., but it is considerably stronger, by a

factor of ~18, than the s.c.f. of galaxies. The supercluster correlation
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strength is stronger than that of the cluster correlations by a factor
of approximately 4. The increase of correlation strength with
richness implies that rich, luminous systems are more strongly
clustered, at a given separation, than other systems (Bahcall, 1988).

Additional information can be obtained using the higher-
order s.c.f., such as the spatial triplet correlation function (or three
point correlation function), which is usually denoted by {. This is

such that

dP=n[1 +§(T1 2)+§(r23)+¢(r31 )+§(r1 2,I’23,l’31 )]dV1 dV2dV3

is the joint probability of finding objects in the three element
volumes dVl,de,dV3, separated by the distances r12:123> and 131-
It must be a symmetric function of these arguments. The middle
three terms on the right hand side accounts for the clustering in

triples from uncorrelated pairs, where the last term { accounts for

purely triple clustering and is referred to as the 'irreducible’ triplet

s.c.f. (Fall, 1979).

3.3 Spectrum of Power Law
Now we work out the power spectrum f(k), assuming that

the correlation function R(r) is known, say

R@ = Ar™" (3.8)

then from (2.9a) is

fk)=fk)= ) ] JArte dedydz}
k.r=r1k cos 6
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fk)= | | | Arve i e edxdydz

We convert the cartesian to spherical coordinates

_ D(x,y, 2)
x=rsin O cosd,y=r sin Osin ¢ ,Z =COS O & D,B6,0)

wo2r 1
f(k)=A || [r?~Yeirk(-s0(gin 6dO)dodr
00-1

So

_ 2mA ]r(z_Y)_l sin krdr
k 0

27A . Y
k3_}{I‘(Z—'y)sm( 3 ()

3.9
And that is because the Fourier sine transform of function say f(t):

F,(k) = (%)”2 [£(t)sin ridr

for ta-1 (0<a< 1) is
2 iy L
F (k)= J;k [(a)sin(5ma)

As we can see, the power spectrum is isotropic, depend only upon

k=Ikl

3.4 Other Correlation Functions and Their Spectra
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Along with the 'typical' s.c.f. we study and two other
forms. The Gaussian (Peebles, 1980)

@) R, _ac (3.10)

and

) R, D)=Ae (# G.11)

using the theory developed in the previous section we work out the

spectra f;(k) and f,(k) as follow:

(i “H=AJ”gGﬂé“@®&

T

r 2
= % Il sinkre [ﬁ) rdrd = 4111:<A | sinkre (?3) rdr

3

4nr o

1.2,
kro

2% (3.12)

i P0=A jj’je(_) ¢ dxdydz

4nA

T [sinkre (%O)rdr

and because

2ak

jxe"‘x sin kxdx = =
(a’+ k")

Rea>0,k>0

Gradshkeyn & Ryzhik p.1150
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we have
4T r2_0k 8=
f2(k)= A k 1 2.2 . 1 2.2
(=< +k") ro(-—2+ k™)
To To (3.13)

In both these case f(k) is in fact only a function of lk|

3.5 Alternative S.C.F.

The forms usually used in literature are based on the
power law (3.8). Of course this is the law fits the data, but when we
have to apply it in stochastic processes a difficulty arises. We
encounter the problem that the s.c.f. tends to infinity as r -> 0
and according to the theorem given in section 2.1.4, we need to
have correlation function which is continuous at O to generate a
continuous r.f. In order for the function to fulfil this requirement,

we suggest the following s.c.f.

R(r) = < dp(x + ndp(x) > _ (r 1— T, )_Y

c? 0 (3.14)

where the 1 is the characteristic length. R(r) is now finite at r=0.

We studied this s.c.f. along the 'classical ones'. The power spectrum

is derived in Appendix A.

3.6 Angular Correlation Function (a.c.f.)

3.6.1 Estimated from the Generated Distribution of Galaxies
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We can define the a.c.f.,, w(6), with a similar way as we did
for the s.c.f. If dP(0) is the joint probability of finding two points in

a two dimensional sample separated by an angle 6 and within the

solid angles dQ1 and sz, than
dP(8)=n>[1+w(0)1dQ,dQ,

where n is the surface number density in the sample (e.g. Infante
(1989), Peebles (1980)). The two point a.c.f. describes, as a function
of angular separation, the net projected pair clustering of objects on
the sky above that expected from a random distribution (Bahcall,
1988).

The angular covariance function w is the result of an

average over an ensemble of positions in the direction n; and n,
<h(np)h(n,)>=w(8)

where cos® =n; .n 5. The number of objects (which could be

galaxies or clusters according to the scale we use) within the cell

defined by dQ pn is obtained by integrating the density function

along lines of 'sight'

R
<N>=dQ [p@, 8, o)r’dr
0 (3.15)

where R is the limiting (maximum) distance out to which a
particular (typical) galaxy can be detected (observed). We assume
that eq. 3.15 is for the idealised case where all galaxies out to the
distance R may be detected. Taking the Riemman sum for the
function pr2 over [1,M], corresponding to the integral (3.15), we
have
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M
<N _ >=AQAr Zp(rin)rf
“ yy (3.16)

The quantities AQ ., and Ar are not very important in the

n

computation because they cancel out when we estimate w(0).

Starting with the definition for a correlation function we can find

the expression which allows the estimation of w(0)

<(n,-<n>)(n;-<n>)>

w(6) = >
<(n,-<n>) >

2
<n0ne—n0<n> n9<n>+<n>>

2
<(n,—<n>) >

2
<NyNy >—<n>  <pnpn >-<n>

<(n0——<n>)2>— <n§>—<n>2 (3.17)

where <n> is the average number of objects.

3.6.2 Analytic Expression for the a.c.f. and Small Angle
Approximation
Above we described how we can estimate the a.c.f. from
the number of points, generated by the function p(x). We were
interested in the correlation of the number of the points along the

lines of sight, in different directions. As we said the a.c.f. is the joint
probability of finding two objects in element solid angles 3Q, and

5Q, are separated by angle 6. Thus we may write an analytic

expression for the a.c.f. in terms of the s.c.f. viz
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e e,
w(0) = ﬁ
E'(r, )riridr dr
5 o 12) 172771 2 (3.18)
where is &' the s.c.f. for 8=0 and 1y, is given by writing
2
=, -1 =r+r;-2rr,cos 6 (3.19)

Significant contribution will only come from the integrand when
0=0 and r, =r,. Peebles (1980) gives the a.c.f. at small angle

3

approximation to have the form w(8)=A6 " where 8=0.8, fitting the

Zwicky and Lick galaxy catalogues.

3.7 A.C.F. Estimation

In order to estimate the a.c.f. from a survey we take a list
of the objects in terms of their angular position. As we know the
a.c.f. gives the probability, dP, to find an object in solid angle dQ2 at
separation 6 from a random placed object in solid angle dQ1i1. which
means that the probability that an object 1 € dQ,, given an object
2€ dQ,, is

P2/1)= %(71’2-251 = N[1 + w(0)]dQ,

where N is the ensemble average number of objects per steradian.
Based on this definition Hauser and Peebles (1973) described the

estimation of a.c.f. They point out the problem we might have

evaluating the a.c.f. in the large-scale gradients” from galactic
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obscuration. A way to avoid this is to divide the sample in different
zones, according to their latitude. Then they take the objects in turn
in the zone and counts the number of objects at angular distance (in
successive intervals) 0°.2. After averaged over all objects in the
zone we divide by the solid angle of (the angular ring) and by N
(and of course subtracting 1). This process is repeated for every
member of the sample.

A simpler description arises if we assume we have N(6)
pairs of objects separated by angular distance 6 and NR(O) number
of pairs obtained by the randomly distributed number of objects.
Then the a.c.f is (e.g. Haynes & Giovanelli, 1988)

N@®)

w(0)= —— -1
N*(®)

The a.c.f. for each morphological types of galaxies is slightly
different. They have their own characteristic slope, on the power
law, as Davis & Geller (1975) estimated.

Peebles (1973) using the Limber's equation (Limber, 1953),
which gives the a.c.f. in terms of the s.c.f. (a form for small
approximation), derived a scale relation in terms of the

characteristic depth D*

w(0D*)
D*

w(0) =

This relation means that on spatial scale 6D*, the apparent
strength of clustering decreases inversely with the sample depth D*,
because the number of uncorrelated intervening galaxies along the

line of sight is proportional to D* (Michael Fall, 1979).
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3.8 Fractals
3.8.1 Definitions & Properties

Discussing and stating the different forms of s.c.f., we saw
that it takes a variety of forms according to scale and objects it
describes. Despite this 'step change' property, we can see a
'continuity’ in its behaviour as the size of the described structures
increases. This automatically raises the question of whether the
connection of these functions is possible. The dependence of the
amplitude of the observed s.c.f. from the sample size was firstly
pointed out by Einasto et al. (1986). Crucial for the different
amplitude of the spatial correlation functions is the correlation
length rgy, for which Calzetti et al. (1988) claim that ‘it is
inappropriate, as is usually made in the literature, to attach a
physical meaning'. The link between different scales is possible if
we accept the model of the fractal structure of the Universe; at least
in a limited distance. Fractal is a term adopted by Maldelbrot
(1982) describing 'strange' geometrical patterns which actually
represent different self-similar structures over certain scale ranges.
We assume that the hierarchical structure is the same for every
observer (i.e. observer-homogeneous). A combination of both (self-
similar and observer-homogeneous distribution) means that all the
probability functions describing a set of points which are, on
average, invariant if we change the reference frame ( Maldelbrot
(1982), Giavalisco et al. (1990))

In order to describe the fractal dimension we use the fig.
(3.7) (e.g. Calzetti et al. (1987a)). This tetrahedron is constructed if
we develop the bigger tetrahedron (shown on the corner)

homogeneously, which means we can divide each size by the scale,
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say 3. So we take four new tetrahedron equivalent to the original.
We carry on with the same method as many times as we like. We

can apply by same method in reverse to extend to larger scales. If
we denote with k the hierarchical order, Ry the size of the

tetrahedron and N the number of points in hierarchical order <k,

we have
N, R,
=N =R
Nk—l and Rk-l

where R is a scale parameter. Denoting with D the fractal (or

effective) dimension, we can define it as

_log N
D= log R

Of course studying the distribution of galaxies we must
consider the number N as the average count of galaxies taking
every time different galaxy as centre. In the example of fig. 3.7,
D=1.2618 (Giavalisco et al., 1990) which is the dimension related to
the slope of s.c.f. through the equation: D=3-y=1.2 (Szalay &
Schramm, 1985). If within certain scale range, D is constant, then
we have self-similar set of points; but generally D can be considered
as a function of R (Wen Zheng et al., 1988). The dimension D varies
between 0 and 3. In Euclidian space the dimension Dg is always .an
integer. But D need not be an integer and the two dimensions need
not coincide; they only satisfy the Szpilrajn inequality D>Dg (
Mandelbrot, 1982). Mandelbrot referring to the application of

fractal dimension in Astronomy ( and especially Cosmology) says:

the Universe appears to involve a sequence of several different
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effective dimensions. Starting with scales of the order of Earth's
radius, one first encounters the dimension 3 (due to solid bodies
with sharp edges). Then the dimension jumps to 0 (matter being
viewed as a collection of isolated points). Next is the range of
interest, ruled by some nontrivial dimension satisfying 0<D<3. If
scaling clustering continues ad infinitum, so does the applicability of
this last value of D. If, on the contrary, there is a finite cut-off, a
fourth range is added on top, in which points lose their identity and
one has a uniform fluid, meaning that the dimension again equals 3.
On the other hand, the most naive idea is to view the galaxies as
distributed near uniformly throughout the Universe. Under this
untenable assumption, one has the sequence D=3, then D=0, and
again D=3. The general theory of relativity asserts that in the
absence of matter, the local geometry of space tends to the local flat
and Euclidean, with the presence of matter making it locally
Riemannian. Here we could speak of globally flat Universe of
dimension 3 with local D<3'.
3.8.2 Global Density

If we try to evaluate the large scale average density, f, of
the matter in the Universe will see that as the volume becomes
larger and larger the density tends to very small values (fig. 3.8)

from the equation

m(R)

2
—3'1tR

p:

3

where the m is a function of the radius R. According to de
Vaucouleurs (1970), Mandelbrot (1982), m«RP ie p=R°™* with D-3
constant. This relation seems to have similarities with the fractal

dimension and indicates that the problem can be overcome
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assuming a scale dependent property. After a particular scale the
distribution of the matter becomes homogeneous with a constant
average density.
3.8.3 Cut-off

A quite successful way to connect the distribution of
galaxies with the fractals, is to represent the filamentary
distributions as trees (Einasto 1990). The 'size' of the trees is
defined by the scale length we choose to determine the upper limit
of the self-similar structures. At larger scales we have the forest
which consists of randomly distributed trees. the upper limit is
called cut-off and gives the range in which the fractal dimension
extends. A probable value is 51 Mpc, but deeper samples are
necessary in order to investigate the asymptotic behaviour of the
correlation amplitudes, getting information as how homogeneity is
actually reached in the Universe (Giavalisco et al., 1990). New
models come up ( Ruffini et. al., 1989) to suggest galaxy formation
process with galaxies distributed in a fractal mode.

3.9.4 Fractal S.C.F.

A good deal of the fractals and the form the s.c.f. takes,
assuming a self-similar model, is given in special issue of the 'Vistas
in Astronomy' under the title 'Fractals in Astronomy' in 1990.

That the amplitude of the s.c.f. depends on the sample size
was firstly noticed by Einasto et. al. (1986). If the sample radius is
Rg and D the fractal dimension, the coefficient of the eq. (3.8)

becomes

a=(1- ‘;’)R: (3.20)
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17y

and because A=r1, ,3.20 gives ro=(1—-;-) R,. The exponent 7y is

connected with D, with the eq.
Y=3-D (3.21)

The (3.20) is actually valid till the upper cut-off, beyond which the
distribution becomes homogeneous and the average number
density is constant.

In order to prove (Calzetti et al.,, 1988) the eq. (3.20) we

start off defining the volume density, ny, and differential density,

nd, as
N
n,(r) = V%)Y
and
1 dN(r)

00 = Zxre—dr

where N(r) is the number of objects contained in a volume V= i;t-rs.

The N(r) is also given as N(r)=Fr® in the continuous limit for

Nk
F=—-. So we have
rk

g{)—,=nd(r):<n>[1+§(r)]=>§(r):-<l%—1 =

<n>=n,R,)

DF\ 5.,
n,(r) (Fr

E(r) = —m~ — 1= — 1=
nRS GER
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&(r) = K“?:sl ZJ{Y -1 (3.22)

fulfilling the normalization condition
R
f E()rdr=0
0

The fractal a.c.f. obtained from catalogues for different
depths Rg is found to be (e.g. Calzetti et al. 1990)

w(0)=B 0P

where B(,ocR;[5 and y=p+1

In fig. (3.1) we give a schematic description of the way the
programme generates a sample. This sample consists of a series of
realizations along the axes L. The distance between the vertical
lines (which signifies the beginning of the new realization) is
greater than the mean separation (= 'meansep’ + 2) to avoid
strongly correlated parts to overlap. The radii are R units long and
rotating form an angle 6 from the vertical lines. The figures 3.2-3.5
give the a.c.f. from the so generated sample. Every figure consists of
two graphs corresponding to the same correlation length, but
different radius (10 and 15). The radius, R, can be Mpc or any other
suitable units of distance. The fig. 3.6 gives the a.c.f. in small angle
approximation, as explained in sec. 3.6.2, derived with the

analytical form 3.18. This expression works only for s.c.f without
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singularity (of integral). A problem appears to the denominator for
the form (r;,/ro)-Y where the ry,-1 tends to infinity as r; and 1, ->
0. Even if we assume that the lower limit in the integrals (eq. 3.18)
is very close to zero, say €->0, the denominator becomes very large
with the consequence that the a.c.f. takes very small values. That
means it is much steeper (unnaturally) than the other ones. In the

case of small angle approximation, we took the graphs of the a.c.f.
corresponding to the s.c. functions: exp(-(r/r0)2), exp(r/ry),

(r+r0/r0)'Y .

There is a theorem in calculus (e.g. Tomas & Finney, 1979), stating
that: V function f(x), that is continuous on a closed bounded
(Jf(x)| < M,V x e [a,b] for constant M) interval [a,b], is Riemann
integrable there. But not only the continuous functions are
integrable. It is possible to have 'piecewise continuous' which
means that the interval [a,b] can be divided in a finite number of
nonoverlapping open subintervals (a;,a;, ;) over which the function
is continuous. In this case the 'total' integral is the sum of the
integral over the parts of the function in the subintervals (aj,a;, ).
We must be careful when we take the equations 3.15 & 3.16, for
the density function, corresponding to (r/rg)—Y. It is very important
the number of discontinuities not to be infinite or known, as
required from the above theory, to integrate over [O,R]. The reason
the a.c.f., coming from the power law (r/ro)—Y, is similar with that
one coming from the 3.14 form is that, integrating the density
function, we smear out all the discontinuities because of the
contribution of positive and negative values.

When we expand a function in Fourier series, this must have two
presumptions (i) to be in the interval [a,b], with at most a finite

number of maxima and minima and (ii) to have a finite number of
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discontinuities in the [a,b]. Theoretically the sum 2.13 must be
defined from (—<, ), But in practice this is impossible. So we need
to make an approximation imposing a cut-off on the number of
frequencies. In our case this depends upon the volume L3 and the
minimum wavelength. An other question arises, from the
presumption in order to expand a function in a Fourier series, is
whether the density function p(x;) is continuous for the s.c.f. 3.8. If
it actually has a large number of discontinuities, we cannot expand
it in Fourier series.

The dispersion in the a.c.f. plots can be explained if we assume that
the values corresponding to a particular w(0) is a sample of size n
say Wi,Wo,.....w,. The distribution of the sample w;,w,,.....wis
defined to be the joint distribution of w;,w,,.....w,. So if we let

W, Wo,... w, be a random sample from a density function f(x) which

has mean and finite variance o2 and let w=+ 2 w.. Then
H i
i=1

<w>=p,=u & var(w)=0>=+6>. If we have an infinite number of

values of the random variable w;, we can approximate ‘exactly’ the
expected value <w>. In our situation we integrate over a limited
number of generated random functions. The problem is whether we
make any reliable inferences about <w> by a finite number of
values of w (a random sample of size n, say). The reliability of the
inferences can be measured in terms of probability. For example we
want to see how large a sample must be taken in order that the

probability will be at last .95 that the sample mean W, will lie

within .05 of the population mean (i.e. P(—€<W,- U <€) 21-3).

2

Say for 62=1, €=.05 and § =0.05 then n>%2-=8000 .

Although this value is extreme, indicates that better results can be

achieved averaging over more realizations. An other point, that may
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cause concern, is the complicated power spectrum derived by the
form 3.14.

The forms 3.8 & 3.14 appear to have similar behaviour. For
R=10 they decrease sharply until about 7° and then tend to zero.
For R=15 they drop off untill 59, then oscillate about zero. The form
3.10, falls off more slowly than the above ones. For the 3.11 the
nature of the line becomes obscured as a lot of noise is present. But
it is clear that for >89 it is close to zero. For R=15 both exponential
laws give quite similar a.c.fs, approaching zero slightly faster than
those with R=10. Comparing the fig. 3.6 with the fig. 3.2-3.4, for the
other forms, we can see clearly that the a.c.f., in small angle
approximation is much stronger at very small angles than those
coming from the simulation (especially for the exponential law
s.c.f.).
In the figures 3.2-3.5 for the case R=15, we can identify two
characteristics: (i) the a.c.f. falls off much faster than the
corresponding from R=10, which can be explained by the fact that
the contribution of the closer galaxies is much more significant than
those further, and (ii) the errors are smaller because we average

over more realizations.



chapter 3

Fig. 3.1 :Schematic representation of the way the different realizations
generated by the programme. The resultant values arise from
the average over all the cases.

75
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Fig. 3.2: A.CF. derived by the S.C.F. (r/ rO) =Y

for min. wavelength =2 and
(a) Limit=20, Radius =10, Correlation Length = 2.5

(b) Limit=30, Radius =15, Correlation Length =2.5
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Fig. 3.3 : A.CF. derived by SCF. exp( - (r /r0)2) for min.

wavelength =2 and

(a) Limit = 20, Radius = 10, Correlation Length =2.5
(b) Limit = 30, Radius = 15, Correlation Length =2.5
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Fig. 3.4 : A.CF. derived by the S.C.F. exp( -r/ rO) for min.

wavelength = 2 and
(a) Limit=20, Radius =10, Correlation Length =2.5
(b) Limit =30, Radius= 15, Correlation Length =2.5
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Fig. 3.5: A.CF. derived by the SC.F. ((r + 1'0) / rO) 9 for

min. wavelength =2 and
(a) Limit =20, Radius = 10, Correlation Length =2.5
(b) Limit =30, Radius = 15, Correlation Length =2.5
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Fig. 3.6: A.C.F. as derived by analytical expresion in small angle
approximation, for (a) R=10and (b) R=15
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(a) Generated fractal distribution of points in space for

D=log4Mog3=1.2618... and (b) the corresponding average
volume density (Giavalisco et al.,, 1990)
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CHAPTER 4

LUMINOSITY FUNCTION

In the previous chapters we showed how we can generate
continuous random functions (which represent the distribution of
galaxies), using spectral analysis for different forms of s.c.f. At the
end of the last chapter we evaluated the a.c.f. coming from the
generated point. In this chapter we extend the developed theory,
studying how the luminosity function and selection effects will
affect the a.c.f. We assume that the density and magnitude are

statistically independent

4.1 Definitions

4.1.1 Morphology-density Relationship
Let n(M,x)dMdV denote the number of galaxies in
volume dV at x that have absolute magnitude between M and
M+dM. If we assume that the magnitudes are not correlated with

spatial locations then we may write
n(M,x)dMdV=0d(M)p(x) dMdV
with

|” oMM = 1 @
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where ¢(M) is a probability distribution called the luminosity
function. It gives the fraction of galaxies per unit magnitude having
absolute magnitudes in the interval (M,M+dM). The last equation
which is the integral over all magnitudes, normalizes the luminosity
function to unity. The probability that a galaxy with absolute
magnitude in the range (M,M+dM) in an element volume dV is then

given by
dP=0(M)p(x)dMdV

and the joint probability of finding two galaxies with
different magnitudes M]1,M?2 and placed in different volumes dVi

and dV2 is correspondly

dP=0(M1)6(M2) p(x;)p(x,) dV1dV2dM1dM2

Taking the average over all the realizations for objects, which are
found at distance |, apart, we have

dP=n® [o(M1)0(M2)+E(r|,)6(M1)$(M2)] dV1dM1dV2dM2

If the galaxies were uncorrelated in position and magnitude
then € = 0.

We considered the luminosity function, ¢ (M), to be
independent on the density, p(x). This assumption is not consistent
with observations. In the last two decades, it has been well proven
that the population of galaxies in groups and clusters, is composed

mostly of spirals in low density field and largely of SO and elliptical
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galaxies in the rich clusters. The first hint, that galaxies were
segregated by types, depending upon their location, was made by
Hubble & Humason (1931). More recently, the phenomenon was
studied extensively and although there is no fixed number for the
composition, we can get an idea using the quantities given by
Dressler (1980): 80% of field galaxies are spirals and 15% of cluster
galaxies are spirals out in the periphery of clusters. This result
defines a relationship between galaxy density and galaxy type,
which can be converted either with the galaxy formation (and
evolution) or by subsequent environmental processes. The
universality of this principle is supported, also, by the redshift
surveys and data on rich clusters. There are three morphology-

density relation of particular interest (Postman & Geller, 1984): for

densities less than - 5 galaxies/Mpc3

the population fractions are
independent of density; at a density ~ 600 galaxies/Mpc3, the
fraction of SO galaxies becomes greater than the fraction of spiral
galaxies; for densities greater than . 3000 galaxies/Mpc3 the
elliptical fraction rises steeply.

A few models: Generally speaking , we can say that the
relationship between morphology and density is strong. An
'objection’ was made by Bhavsar (1981) who argued that there are
some inconsistencies between the morphology-density relationship
for groups and clusters, but Postman & Geller (1984) believe that
the results of de Souza et al. (1982), that the composition of groups
and clusters of galaxies is more or less the same, are more reliable
as Bhavsar did not use redshift information.

Some of the mechanisms, which could explain the

observations in an environmental approach are the galaxy-galaxy

collision, the ram pressure stripping and gas evaporation.
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Another process is called the sweeping mechanism and
depends strongly on the density of the intergalactic medium. The
high density is the responsible for the removal of gas from spirals
and formation of SO galaxies. If these process was true we could
expect to see many more SO galaxies in the dense regions and quite
a few in low density areas and clusters of high concentration should
be depleted of spirals. But the population gradients of the data is
not exactly like that. There are significant numbers of SO galaxies
present in even lower density environments of loose groups. There
is another point which can not be explained by this theory. The fact
that the bulges and bulge/disk ratios of SO galaxies are larger than
those of spirals galaxies in all density regimes.

An alternative hypothesis to the above suggestion is the
formation of the disk component of galaxies. In an long time scale,
an increase in local density may slow or even halt the growth of
the disk components. So in very high density regions we have a
large number of elliptical galaxies and in low densities a prevalence
of spirals (Dressler, 1980). The disk components may have a longer
formation time which could be comparable to the age of the
Universe. So, if the galaxies formed from density enhancements,
which were independent from those which grew to give the
clusters, there is no relation between local galaxy density and
morphological type; because, assuming that the formation of the
disk is a slow process, it could have been interrupted as local
density increased (e.g. Gunn & Grott (1972), Gott (1977) ).

4.1.2 Schechter's Luminosity Function

Different analytic expressions for the luminosity function
have been suggested (e.g.. see Zwicky (1957), Kiang (1961), Abell
(1962, 1965) etc.) and most recently by Schechter (1976). The
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Schechter's luminosity function can be used for galaxies and
clusters of galaxies as well. If ¢(L)dL denotes number of galaxies
per unit volume in the luminosity interval (L,L+dL) then the
luminosity function is:

-

OL)L = c'(F)'e * d(%) 4.2)

where c* is the number per unit volume, L* is a 'characteristic
luminosity’ that is the point in which the slope of luminosity
function changes in the (log¢,logl)-plane and a gives the slope of
the luminosity function in the same plane when L<<L*. All the above
parameters are determined by the data and they are roughly the

following

4 c*=0.0277 M*'=-19.46

(or for most recent determination of the parameters see e.g.
Efstathiou et al. (1988) (for CfA, DARS and KOSS surveys) and de
Lapparent et al. (1989)). An advantage of eq. (4.2) is that it allows
us to adjust the 'faint-end' slope according to the data, changing the
parameter a. A form which is not very often used is the integrated

(or cumulative) luminosity function, ®(M), (Yahil, 1988)

— Loy L \-B
‘D(L)—C(L.) 1+ BL"
where 2=0.55+0.08, $=1.92+0.16, L*=(3.6+0.9)10%h"2L, and
C=5.59 ‘1073 h3 Mpc'3. The corresponding differential luminosity

function is
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o do .
o= TG = G + BL'B+L

YD(L)

For other definitions see also e.g. Yahil (1988), Sandage et
al. (1979). The luminosity functions, stated above, are mainly
labeled as universal functions, because are general functions for
field galaxies and clusters of galaxies. Kaiser and Lahav (1988),
referring to the universal luminosity function say that is highly
idealized and almost certainly unrealistic. So, if we want to be more
precise, we should make a distinction between the luminosity
functions for galaxies of specified Hubble type.

4.1.3 Change of Variables

We know that the luminosity, L, is connected with the flux,

F, through the equation

L

F=
4nR’

where R is the distance of the objects under consideration. Say we
have two galaxies at distance Rj and Rz and luminosities L1 and L.

Then the fluxes are

= 2
4nR, 4nR, (4.3)

and

log(F1/F9)=-(m1-my)log2.5 =>

Ll R2
ml—rn2=—2.510 L2T1
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. 10(M -M)/2.5
L “4.4)

Since the study of the LF is more convenient as a function

of M, we change the variable from L to M. ® is the p.d.f. of random

variable L and the variable L is a function of M. We can derive the
p.d.f., ®(M), from ¢(L) by changing the variables, according to the

rule

L)
D(M)AM = (L)L = D(M) = ¢dM (4.5)
dar

From eq. (4.4) we have |d 25 , which combined with eq

(4.5) 1s

O(M) = §(L)5s

and using the eq (4.2) and (4.5)

con- £ L5

and because

M=m-5 logr -25 (with r in Mpc) 4.7)

a +1

(D(M)= ;DSI 10 M -m+5logr +25) /2.5] e[_m(M‘ -m+5log r+25)/2. s] (48)
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Noticing that the samples of galaxies are magnitude
limited, we can clearly see that it is pointless to take the integral as

that in eq. (4.1) with upper limit infinity.

4.2 Selection Effects

In the previous chapter, we have described how we can
generate a random function to get a ‘complete sample of objects’. In
practice the situation is a bit different. In the observation the
samples are affected by phenomena like the galactic absorption, the
limiting magnitude and uncertainties in magnitude estimates near
the limiting magnitude (Peebles & Hauser, 1974). One of the main
causes of statistical bias of a sample is the Malmquist bias. This
problem occurs because the telescopes are unable to detect faint
galaxies in long distance and confirmed by Malmquist (1920)
studying the distribution of stars. In our simulation we impose a
cut-off in the distance R which causes the magnitude to be limited.
This phenomenon is quite important because using magnitude
bigger than the limiting mQg, we include galaxies which are not
observable and the resultant a.c.f. becomes stronger. A way to avoid
this is to use a function, called selection function. S(r,M) expresses
the probability that an object at distance r and with magnitude M is

included in the catalogue. As an approximation we could write

1 for m<m,

S(m—m0)={

0 for m > m,

i.e. galaxies below a limiting magnitude m, are visible, but galaxies

above this limiting magnitude are unobservable. Let us define the
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function, s, as an integral over the luminosity function and selection

function as

s( = [S(r, MYB(M)dM
g (4.9)

where ®(M) is the luminosity function. The integral gives the
probability that a galaxy, at distance r, is actually observed. We can
replace the equation (4.9) by another one which has a cut-off at a
magnitude My that depends upon the sample. The value Mjp can
change according to our ability to go 'deeper’ in the sky.

A further complication arises if the luminosity function
depends on environment, particularly if it is a function of density
(Yahil, 1988). If we want to split the luminosity function into others
that describe the specific Hubble type, we should apply the same
restriction for the magnitude cut-off, we did for the general
luminosity function.

In the definition of the LF we used the absolute magnitude
M* as a typical value. If we assume that a galaxy of absolute
magnitude M* is at distance R (Mpc) then its apparent magnitude is
my (=M*+5logR+25)

Now we can go back to the section 3.7 and especially in eq.
(3.15) to see how the number of galaxies will be affected if we
include the selection effects and the luminosity function as they are
combined in the eq. (4.9). Integrating over M and r we get the
number of objects within the solid angle dQ in direction n including

the luminosity function as

M
<N>=dQ ] fp(r, 0, ¢)S(r, M)®(M)r’drdM
D (4.10)
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Substituting the 4.10 to the 3.15 we can derive a.c.f., as shown in

the figures 4.1-4.4

In this chapter, we studied how the consequences of the luminosity
function on the generated sample. The luminosity function denotes
the probability of selecting a galaxy of magnitude, m, for
observation. When a catalogue is constructed, there is another
distribution for the selected galaxies independent of the selection
probability. This probability is called selection function and
indicates if a galaxy of a certain magnitude will be included in the
sample or not. Imposing the selection effects in the generated
number of objects, we actually subtract a number of points, which
correspond to magnitudes above a particular apparent magnitude
my (=10). Introducing the luminosity function and selection effects
causes, the closer points to be less correlated and the a.c.f. to be
higher than that obtained for the complete sample. This is obvious
from the figures 4.1-4.4, where the Schechter luminosity function is
included to study the effectes on the a.c.f.

On keeping the mean absolute magnitude constant and increasing
the distance, the effects of the luminosity functions are stronger.
Limited computer memory did not permit us to examine these

effectes to very large distance.
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Fig. 4.1: A.C.F. including the luminosity function and the selection effects.
It corresponds to the S.C.F. A7y with min. wavel. =2,
0

L=20, R=10, Correlation length=2.5 and mL= 10
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Fig. 4.2: A.C.F. including the luminosity function and the selection effects
It corresponds to the S.CE.  €XP( ~(r/ rO))2 with

min. wavelength =2, [.=20, R=10, Correlation Length =2.5
and m =10
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ACF

ANGLES (DEGREES)

Fig. 43: A.C.F. including the luminosity function and the selection effects.
It corresponds to the S.C.F. exp(-r/ ro) with
min. wavelength =2, =20, R=10, Correlation Length = 2.5

and mL= 10
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Fig. 44 : A.CF. including the luminosity function and the selection effects.

Y :
It corresponds to the S.C.E. ((r + 1'0) / 1'0) - with

min. wavelength = 2, =20, R=10, Correlation Length = 2.5 and
m = 10
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CHAPTER 5

DISCUSSION

In this thesis we applied the theory of stochastic processes
to the description of the distribution of galaxies. In our approach
the number density of galaxies is given by a realization of a random
function. The average quantities, such as the mean density and the
correlation function, are obtained by averaging over the ensemble
of realizations. Of course, there is only one Universe, and so such a
procedure is impossible in practice. However average quantities can
be obtained by taking the space average, provided a large enough
region is taken, and assuming, of course, the density to be
stationary. There are several advantages in presenting the
distribution of galaxies as a random function. If we assume that the
matter density can be described by a random function, then it is
natural to suppose the number density of galaxies be connected to
this random function. Furthermore, the manner in which the
inhomogeneities evolve is naturally described by the linearised
perturbation equations, at least insofar as linear theory holds.

A random function is essentially defined by all its
moments, or n-point functions. In practice only the two-point
function, the correlation function, is determined for galaxies and
clusters of galaxies, and this does seem a natural definition of
clustering. It is however only one of many possible descriptions, as

we briefly described in chapter 1.
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We generated a typical density distribution of galaxies by
using spectral analysis. The essential idea here is to represent the
random function by a Fourier series. The amplitude of each fourier
component from the square root of the FT of the a.c.f. is determined
by the fourier transform of the correlation function, or power
spectrum and including random phase factors in the cosine term.
Any random function generated in this way, using a countable
number of frequencies, must be periodic. However the function so
generated can only be taken as an approximate realization of the
random function in a restricted region, (L/2), as we discussed in
chapter 2.

There does however seem to be some difficulty in the
description of point processes where the correlation function is
present. Peebles' definition of the correlation function is essentially
empirical and depends on counting the number of galaxies within a
shell at any radius from a given galaxy. In practice, Peebles'
definition yields the same results as our approach, which is similar
to Limber's, and regards the distribution of galaxies to be described
by a random function.

In the nonlinear stage, the phases of the Fourier transform
cease to be statistically independent and so both power spectrum
and c.f., strictly speaking, do not completely describe the statistical
distribution. For different phases we have different spatial
distributions and so the s.c.f. does not contain full statistical
information.

As we pointed out and illustrated in chapter 2, for
realizations of a random function to be almost everywhere
continuous imposes constraints on the correlation function. In
particular it must take the value 1 at r=0. The power law form that

is assumed by Peebles cannot give rise to a continuous density
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distribution, as it is singular at the origin. The effects of this
obscurity can be seen clearly in 1P random processes we generated.
But although the s.c.f. 3.14 fulfil the theorem and the 1P realization
satisfies the expected, these discontinuities are not clear in the 3D
graph, probably, because of the average taken over many
realizations and the application of interpolation in order to obtain
the graph.

Although this difficulty arose from the Peebles' power law
for the generation of random functions, its relationship with a
possible fractal like structure of the distribution of galaxies seems
to me an open but important question, due to the discontinuous
nature of fractals as referred to in sec. 3.8.1

We are particularly interested in the relationship between
the spatial and angular correlation function and we applied our
analysis to four different forms of s.c.f. One approach is to directly
calculate the angular correlation function from the analytic
expression 3.18. Another is to generate a density field using
spectral analysis, and estimate the angular correlation function by
averaging over a number of cones (eq. 3.17). According to the
natural definition, the Peebles' power law spatial correlation
function should give rise to the singular angular correlation function
because of the singularity at r=0. The effect of carrying out the
spectral analysis with a cut-off in higher frequencies (see eq. 2.13,
where n represents the highest frequency corresponding to the
minimum wavelength we choose) provides a physically meaningful
angular correlation function. For those spatial correlation functions
that give rise to continuous realizations of the density function, both
methods give comparable results. The advantage in using spectral
analysis 1is that it 1is easily generalised to incorporate more

complicated effects etc.
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When we integrate, in eq. 3.15, to get the number of
points in one direction, we impose a cut-off at distance of R. In
doing this we actually include a selection function. In order to be

more precise we can say that the eq. 3.17 may be written as

. < Io jo [p(r) - pol [p(ry) — P IS(r)S(r)rirydrdr, >
w(0)=

<[ ‘[o (p(r) - po)S(rl)rfdrl]2>
In the analytic expression of the s.c.f. 3.18, we can see that

the direct derivation of the a.c.f. for the form Ar,, Y is impossible,

because of the singularity at r{,=0.

Our work is mainly concerned with the use of generated
random fields to calculate the a.c.f. Although, as we explained, it is
possible to approach the problem using analytical forms, the
random fields generation can be justified by the following: (i)
spectral analysis does give a means of arriving at an a.c.f., since p(x)
so generated is continuous (by virtue of high frequency cut-off), (ii)
it would allow one to generalise the Monte Carlo type simulation of
more realistic selection and bias effects, (iii) comparison of analytic
form for w(8) and numerical form give indication of the effectivness
of spectral analysis.

An attractive area for further work, would be the
application of stochastic theory to fractals. Generally, we can
generate a fractal set in two ways (Castagnoly et al., 1990): (i)
deterministic algorithm and (ii) stochastic processes; characterized
by some probability distribution with second moment proportional
to the same scaling exponent. There is a difference between

deterministic and stochastic fractal (Calzetti et al., 1988). In the

former, one defines the number of clusters, <N >, as the fraction of

mean number of galaxies, <Ng>, divided by the number of galaxies,
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N, which form clusters (i.e. <N.>=<N,>/N). But in the stochastic
case, we include a factor s which gives the fraction of galaxies
forming clusters and is sample independent (i.e <N.>=s<N,>/N).
In the same sense we can generate multifractal set, by using
different scaling exponents. An important task, which needs to be
studied, is the lower cut-off imposed by existence of galaxies, and
upper cut-off, derived from the cosmological principle (e.g. Calzetti
et al., 1988).

It is well known that the luminosity functions differ in

shape for different types and different environmental densities as

well (so we could say that (1>(M)=z¢i(M)fi where f; is the fraction

of the galaxies of morphological type i and luminosity function
¢;(M)). In our analysis we used the Schechter's luminosity function
as a first approach to our problem. Later work could include more
specific functions to cover as many cases as possible.

In order to calculate the correlation functions, we need to
measure the galaxy distance. Usually, most distances are estimated
using the Hubble law, v=Hr, with v to be the radial velocity of a
galaxy, and r the distance. The problem with this method is that
errors arise, due to the peculiar velocities of the galaxies. It would
be interesting to study how the bias of distance estimator (an
extensive analysis of distance estimators is given, for example, in
'Errors, Bias and Uncertainties in Astronomy', 1990, edited by Carlos
Jaschek & Fionn Murtagh) enter the estimation of a.c.f. from s.c.f.,
using the method developed in this thesis.

The 'mapping' of the density structures based on statistical
methods, is an 'open area' for further elaboration. The information
of the 3D surveys give us the capability to compare the results of

large numerical simulations based on a variety of theories (i.e. HDM,
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CDM) and particular sets of initial conditions. New statistical
techniques (i.e. 'jack-knife' and 'bootstrap’ statistical tests, Ling et.
al. (1986)) have started to be used as complementary measures of
clustering patterns. The study of these tests along with the
correlation functions will probably be proved useful.

Without being considered a "structuralist”, I should like to
examine some possible viewpoints. It concerns the resemblance
between the fundamental ideas, throughout history, for the creation
of the cosmos. Is it a coincidence that the same patterns are used
today as in the ancient mythologies? 'Everything' started from
'nothing' and chaos eventually became order. We can distinguish
the same way of thinking in, for instance, Anaximander, where the
matter is unformed (apeiron) in the beginning, and in the theory of
the big bang of modern cosmology. If this is not a coincidence, we
must ask ourselves whether what we assume today is a reality, or
simply a consequence of the experience and logic of the human
brain. Today's models and assumptions may or may not be true. If
they are true we need evidences in order to prove them. If they are
not true we may seek the evidences with‘in our limited sphere of
knowledge/experience. But, if that evidences lies outwith our

recognition, how are we to recognise it?
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APPENDIX A

In this appendix we work out the power spectrum of the spatial
correlation function ((r+a)/ry)”Y . Of course, we could have assumed
from the beginning that y=2, significantly simplifying the situation,
but we considered that it was more useful to derive the general
case, than to be restricted to an expression for one particular value.

JIIEEy

Y
) ¢ sin 6dodedr = j - sin kedr
0 (T + a) (A.1)

Using the transformation u=r+a => r=u-a => dr=du we have

(u—a)

sin k(u —a)du

= I% [sin ku cos ka — sin ka cos kuldu
u

a

—-a J-u—ly- [ sin ku cos ka — sin ka cos kul du

-(1-y = -(-y =
- J'(ku)“’sin kud(ku) — sin ka=<— j(ku)"’cos kud(ku)

ka ka

=cos ka

—a cos ka I(ku) sin kud(ku) + a sin ka— j(ku) cos kud (ku)

ka ka

oo

o ku=y_ 1% cos ka I(ku)l "' sin kud(ku) k' sin ka J(ku)l—y cos kud (ku )

ka ka

Y-1 r -7 . Y-l o . r -
~k"acoska [(ku) "sin kud(ku) + k' 'a sin ka [(ku)”" cos kud(ku)
o ‘o (A.2)

The two general forms we need for the last integrals are:
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fx*~ " cos xdx = %{ & 7' iy) + o2 T —iy) §
y (A.3)
for Rep<1l (Gradshteyn/Ryzhik, p421)

oo

[x*"sin xdx = %{ e 2 T(u,iy)—e? (b — iy)}
y (A4
for Reu>-1 (Gradshteyn/Ryzhik, p420)

where I‘(a,x)=Je“t"’dt (Gradshteyn/Ryzhik, p940) is the incoplete

X

Gamma Function. But because in our case the limit x becomes
complex we will connect the incomplete Gamma Function with the
function y*(a,x) which is developed as a series

n

e O z
Y*(a, x)=e nz;'or(a+ n+ 1)

(A.5)
(Abramowitz & Stegun, p262)
and
I'(a,x)=T@)-v(@, x)
(Abramowitz & Stegun, p260)
with
* - X
T*(a, x) = mv(a, X)
(Abramowitz & Stegun, p260)
So

T(i, iy) =T =¥, iy) =T = ¥ (b T " =Tw[1- )"y @, iy)]
'y, —iy) = T'(w) — y(u, — iy) = T(L) —y*(, —iy)I'(W) (= iY)u
= T(W[1- (= iy) "y, - iy)]

It is more convenient to express the iy and -iy as an exponetial
form

T T
im=p <k

Gy) = y*i" = y*e and (—iy) = y*(-1)" = y*e

Substituting to the equation (A.3) we have
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[x*~*cos xdx=He T T - ¢ 2 T(ov* (o iy) ()" +
y

+e2 T — e Ty, — iy)(—iy)")

_lc.ip, E.iu, -Eip, -Eip, .
(T(wle > +e? J-e 2 e y'T(Wy*@u,iy)

1
2

—e TV ey Ty (b —iy))

ZAT(D2 cos Tt - y*T(0Y* (1, iy) = y*TROT* (b, - iy))

(] [=

(T2 cos F = y* TGO IY* (i) + Y* G =191 )

Working similarly for the equation (A.4) we get

. L
i -

x*~"sin xdx = (e 2 M, iy)— 2 TT(W, —iy))

= L 7T - ¢ 2 T i Gy’

T

—e? T+ €2 TQY* (b — iy)(—iy)")

. .
-1l —1

= drare ™ -e"1- e Ty rany aw iy)

- Elp_ li
2 2
€

moy )
te y T y*(w, —iy) }
= (= T(w2i sin -y~ y TEY*( iy) + y TRY* (s, = iy))
1 R | — * Y — vk — 3
F{(D(W)2i sin Z-p =y TEIY* (W, iy) = y*(1 —iy)] (A7)
Now the problem is to work out the quantities

K=v*(,iy)—-v*(u, —iy) L=vy*(,iy)+ y*(u, - 1iy)
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Using the equation (A.5) we have

i (iy)” ol iy)"
K=e ynzi‘(u+n+1 yzr(u+n+l)

= y"(cos %n+i sin %n) - = y"(cos %n—i sin %-n)
— iy _ alY
¢ 4T Tu+n+1) © 4T T(u+n+ D
sin =n " oS =-n
o Y'sing SRR

=20y X TETRa D Y LTEen D)

C e (iy)" o (—iy)"
Z1‘(;1+n+1) 2F(u+n+1)

= y"(cos %n + 1 sin ltz-n) .. y"(cos —g—-n —1sin -12t—n)

=’y +e

4T Tu+n+1)

~ I'(W+n+ 1)

T R -
- y"sin =n = y"sin =n
= 2[cosy Z1"(u+ nt Dy TSy zor(u+ oy

Substituting the equations K and L to the (A.6) & (A.7) we have

(A.6) = -T2 cos Tp - y*Iw)

n L n . I
= Y cos 5n ‘ = ¥ Sin -
2eosy X rgrarny t 2y LT ae D))
(A.T) -5{ T(w)2i sin 54 ~ y*T(W)2i
- y"sin %n - y" Ccos —nz—n

Lcosy Z TErn+ D Y ZTh+a+ D

= y"sin —g-n = y" cos -72£-n
= I'(wsin —u +y"T(W) [cos y ZF(HJ,—HT) sin y Z_r(u+ n+ 1))
=0
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Now we use these results to get an analytic form for the integral.
We adjust the last part of equation (A.2) to be equivalent to the
general forms (A.3) and (A.4)

2-7-1

(A.2)=k""" cos ka ](ku)

ka

sin kud (ku)

(2-7)-1

~k" *sinka j(ku)

ka

cos kud(ku)

— k" 'a coska j ku)" """ sin kud(ku) + k" 'a sin ka j(ku)“'*"‘ cos kud(ku)
ka

ka

=k" cos ka{I'( — p)sin -g-( - W) + (ka)"l"( -

- (ka)"sin -%-n - (ka)"cos =n

. 2
[cos(ka) XBI‘(—LH n+ 1) = sin (ka) Z-"ol“(—u+ n+1)

1}

n=

— k" sin ka{T'( - p)cos %( - W - ka)'T(-p

- (ka)"cos =n - (ka)"sin %n

k + sin (k
[cos( a)ggf(—wnﬂ) sin (ka)

,Z'OF(-u+n+ )

— k™ Va cos ka {["(v)sin %v + (ka) T(V)

n. T n T
§ i (ka) sin S i i (ka) cos 5 n
lcostka) L Fyravn &) ZTgrasn )
+k " sin ka({[(v)cos v - (ka) T(v)
- (ka)"cos —=n - (ka)"sin %n

[cos(ka) z

————— +sin(ka)
~Tw+n+1)

1}

~T(v+n+1)

where H=2-% and v=1-%
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APPENDIX B

e description of the programme
e flow chart

e programme
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DESCRIPTION

After calculating the number of frequencies (as described
in sec. 2.3), the program asks the user to input which one of the
forms (3.8), (3.10), (3.11) & (3.14) he wants to use in order to to
work out the power spectrum. There are five subroutines connected
with the main program which carries out the above. The first
includes a triple loop which represents the components of the
array 'fragmen'. This 3D array is evaluated by the square root of
the power spectrum. The particular subroutine called, depends on
our choice of the correlation function. There are four different
'functions’ which take the frequency, k, and return a value |5k|2.
The density function, 8(x), is obtained on the basis of the 'fragmen'.
On calling the subroutine 'product’ we have a triple loop which
gives the sum of the equation (2.18). A 'nagroutine' returns a
pseudo-random number for the phase angle, ¢, , taken from a
uniform distribution _U(0,2n). Here we use a special 'nagroutine’
which sets the basic generator to a non-repeatable initial value, in
order to avoid taking exactly the same realization, every time we
run the program. At the end of this process, the subroutine 'denfun’
returns the ratio dp/p. As we can see in these graphs there is an
evaluated area which covers a quarter circle with origin on the axes
(in the background). The area outside this region is flat, as the
program gives it zero value. This occurred because we tried to take
a 3D graph corresponding to the average of the realizations we

generated, which have 'circular’ form as shown in fig. (3.1).



appendix B 115

At this point a problem arose. The coordinates we use are
polar and in order to get a plot we need cartisians. In theory this is
easy to solve, but using the computer, the storage, of the converted
values into two arrays, is very difficult. This was overcome by
interpolation. We must be careful with regards to the direct
interpretation of the plots of the &(x). Although, the increasing step
of angle 0 is small, for large values of radius, R, the distance
between the initially calculated values becomes larger which means
a less accurate approximation than that for points close to origin.
The a.c.f. is evaluated in the main program and the theory of the
chapter 3 is used. Firstly we choose an increment step for the mean
separation, 'meansep’'. After taking realizations across the length L
with step 'meansep+2’', we integrate along the line of sight and
average over all the realizations. There are two ways to generate a
random function: (i) developing points along the one line and
averaging over it, and (ii) developing random processes parallel to
one another and then averaging. We applied the former. More
details are given in the 'flow-chart’, where all the process is clear.
The programme also gives the s.c. functions, a.c.f. in small angle
approximation and includes the selection effects.

The programme is written in Fortran 77 on the IBM 3090 Computer
run by the Glasgow University Computing Service, using the VM/SP
HPO (Virtual Machine/System Product-High Performance Option)
operating system and particular the component VM/CMS

(Conversational Monitor System).
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PROGRAM SIMUL
DOUBLE PRECISION A,POWER, MEANSEP, SUM,LIMIT,R, THETA,FI,PI ,

& FRAGMEN(- 15:15,-15:15,-15:15),CENTRAL 1(A00)
& ,RANDACF(100),NUMERAT(100),GALBEAM, DENFUNI

& ,TOTAL 10.TOTAL 11,TOTAL 13, TOTAL 1A,XO0,Y0,Z0

& ,RANDOM,CENTRAL, MEANVAL, DENOMIN

& ,CENTRAL2 ,COUNT 1 1,INCTHET, INCSTEP, DENFUN2

& ,AM, COUNTIA, MEANVALI ,MEANVAL2 , CONSTAN

& ,LF ,MSTAR,ALFA,FISTAR,MLIMIT

& ,PLTDNS(0:100,0:20,0:100),COUNT10,PLOT3D

& LAVERAGE(0:150,0:150)

& ,XAXES(0 :15000) ,YAXES(0 : 150 00) ,ZAXES(0 : 15000)
& ,GRADS(2,2000) ,INTERX(2000) , INTERY(2000)

& ,MAXIM,MINIM,SCFS,RESTR,K1,CONST,LCR,ACFS

& JF, W1, W2, M

REAL ANGLE(0:100),ACF(0:100),PLT3D(90 ,90),CLEVLS(5),1,
& LUMIN

INTEGER R1,R2,R3,NUMFREQ,POINTS, THETA1,N2,COUNT 12,COUNT 16
& ,LINETYP,SELECT,COUNTI3,COUNTI8,COUNTI9 , COUNTS89
& ,COUNT90,COUNT80,TRIANG(50000), COUNT20, COUNT70, COUNT71
& , CONTOUR

INTRINSIC INT,DATAN,DACOS,DSIN,DCOS,DMAXI, DMINI

COMMON /AAAA/ A,POWER,NUMFREQ

COMMON /DDDD/PI, LIMIT

COMMON /BBBB/ MEANSEP,CONSTAN

COMMON /CCCC/ OMEGA

COMMON /EEEE/K1, CONST

COMMON /DDDD/I

PRINT*,' GIVE THE: LIMIT, POWERCE.G. -1.8), MEANSEP'

PRINT*,' (E.G. A) AND INCSTEP(E.G. 1.5 OR 2)'

READ(5,*) LIMIT, POWER , MEANSEP,INCSTEP

PRINT*," DOWN TO WHAT CORRELATION LENGTH DO YOU WANT'
PRINT*," TO GET RESULTS (THE STEP IS 1 AND STARTS *
PRINT* , ' FROM THE MEANSEP YOU GAVE ABOVE '
READ(5,*)LCR

PR R R R R R A R R R R A R

c/*
c/*
c/*

c/*
c/*
c/*

PRINT*,"' DO YOU WANT ALL THE SCF TOGETHER? '
PRINT*,' 1 FOR YES'
PRINT*,"' 0 FOR NO *

READ(5,*)SCFS
IFCSCFS.EQ.1)THEN
CALL SCF(POWER,MEANSEP)

STOP
ENDIF
THE VALUE INCSTEP CORRESPONDS TO THE MINIMUM */
WAVELENGTH . IS NOT POSSIBLE TO HAVE AN OBJECT */
IN DISTANCE LESS THAN THE MINIMUM WAVELENGHT */

NUMFREQ=INT(LIMIT/INCSTEP)

WE DO THAT, TO AVOID THE CASE IN WHICH THERE */
IS A PORTION OF A WAVE, WHEN THE LIMIT IS NOT */
DIVIDED BY THE INCSTEP */

LIMIT=NUMFREQ*INCSTEP

3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D
3D

000 10
00020
00030
000A0
00050
00060
00070
00080
00090
00 100
00110
00 120
00130
00 140
00 150
00 160
00 170
00 180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680



c
c
Cc
Cc
Cc
Cc
[

C/%
(o

PI=4xDATAN(1.D0)

IF (MEANSEP.GT.LCR) THEN

A=1/(MEANSEPx*xPOWER)

IF(SELECT.EQ.3) THEN
PRINTX,* GIVE THE CONSTANT RO’
READ(5, %) CONST

ENDIF

OF A.C.F. BEGINS

DENSITY FUNCTION

CHOOSE THE POWER LAW x/

PRINTx, 'CHOOSE THE POWER LAW'

PRINT*,"'0 FOR AxRxx(-GAMMA)'

PRINT*%,'1 FOR AXEXP%X(-(R/RO)%%x2)"

PRINT*,'2 FOR EXP%%(-R/R0)"'

PRINT*,"'3 FOR (R/(R+R0))%%x(-GAMMA)'

READ(5,%)SELECT

PRINT*, 'DO YOU WANT THE LF TO BE INCLUDED'

PRINT*,'IF YES TYPE 1°

PRINT*, 'IF NO " '

READ(5,%)LF

IF(LF.EQ.1)THEN
PRINT*, "GIVE THE VALUES OF"*
PRINT*, "MSTAR WHICH IS USUALY USED, IS|{-19.46"
PRINTx, "ALFA " " " " I1S|-5/4 OR -1.02"
PRINT*, "FISTAR " " " " 1s|0.0277"
READ(5,*)MSTAR,ALFA,FISTAR

ENDIF

PRINT," THE BEAM WHICH WILL BE CONS.'

PRINT*,'GIVE R, THETA,FI"

READ(5,%)R, THETA,FI

PRINT*, "TELL ME THE INITIAL POINT PLEASE"'

READ(5,%)X0,Y0,Z0

PRINT,* DO YOU WANT THE ACFS DIRECTLY?'

PRINT," 1 FOR YES®

PRINT,* 0 FOR NO*

READ(5, %) ACFS

IF(ACFS.EQ.1)THEN
CALL ACFDIR(R)
STOP

ENDIF

COUNT16=1

LINETYP=0

LCR IS THE LIMIT FOR THE CORRELATION LENGTHS */

IF THE SUGGESTED POWER LAW HAS BEEN CHOSEN, THE RO IS 3/
THE CONSTANT AND USUALLY IS THE SAME AS THE COR. LENGTHx/

THE GENERATION OF RANDOM FIELDS FOR THE ESTIMATION
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C/x

C/x
C/x

C/%
C/x
C/%
C/x

10

C/x
Cr/x*

11

C/x
C/%

C/x

TOTAL10=0.D0
TOTAL11=0.D0
THETA=0.DO
FI=0
COUNT11=0.D0

DIFFERENT INITIAL POINTS ALONG THE X AXES SO THAT TO
HAVE MANY REALIZATIONS

I GIVE STEP 2+MEANSEP TO AVOID PART OF ONE SAMPLE TO
OVERLAP OTHER ONE

MW K XK

DO 11 X0=0,LIMIT/2,MEANSEP+2

STORAGE OF ONE REALIZATION *x/

CALL STORAGE(FRAGMEN,SELECT)

CENTRAL=0.D0

COUNT11=COUNT11+1

Do 10 I1=0,R,0.2
CALL DENSFUN(FRAGMEN,DENFUN1,I,THETA,FI,X0,Y0,Z0)
COUNT10=COUNT10+1

THE 3D ARRAY IS USED IN ORDER TO PLOT THE (DENSITY x/
FUNCTION/MEAN DENSITY) IN THREE DIMENSION x/

COUNT89=1%COUNT10
COUNT90=1%COUNT11
PLTDNS(COUNT89,COUNT90,0)=DENFUN1

WITH THIS IF WE CONTROL WHETHER OR NOT WE'LL INCLUDE x/
THE LUMINOSITY FUNCTION.IF YES WE MULTIPLY THE LUMIN x/
BY THE DENSITY. THE VALUE OF LUMIN COMES FROM THE SU-x/

BROUTINE LUMFUN x/
IF(LF.EQ.1)THEN
CALL DO1AJFC(LUMFUN,1,I »0.0E0,1.0E-01,LUMIN,
& ABSERR,W,1000,IW,250 ,1)

CALL LUMFUNC_UMIN,R)
CENTRAL=CENTRAL+(LUMIN %(DENFUN1%(I%%2)))
ELSE
LUMIN=0.
CENTRAL=CENTRAL+(DENFUN1%(I%%2))
ENDIF

CONTINUE

COUNT80=COUNT11
CENTRAL1(COUNT80)=CENTRAL
TOTAL11=TOTAL11+CENTRAL

THE AVERAGE OF {TOTAL10/COUNT11} IS USED FOR THE */
DENOMINATOR FOR THE EVALUATION OF ACF *x/

TOTAL10=TOTAL10+(CENTRALX*X%2)
CONTINUE

TOTAL10=TOTAL10/COUNTI11
THE MEANVAL1 GIVES THE MEAN NUMBER OF OBJECTS *x/
IN COS(0) DIRECTION. *x/
MEANVAL1=TOTALI11/COUNT11

NOW I TAKE DIFFERENT ANGLES. THE INC(REMENT) FOR */
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C/x

C/ %
C/x

C/x
C/x
Cr/x
C/x%

12

13

16

Cxx

ANGLE AND POINTS ON THE BEAM ARE GIVEN *x/

PRINT*, "WHAT IS THE INCTHETA?®
PRINTx,'FOR 90 DEGREES GIVE 0.055 OR 0.01 OTHERWISE
READ(5,%) INCTHET

K=0.D0O
TOTAL14=0.D0
COUNT12=0
COUNT14=1.D0
ANGLE(0)=0.001
DO 14 N2=1,30
THETA=DIFTHETA + (N2%INCTHET)
COUNT13=0
RANDOM=0.DO
TOTAL13=0.D0O

THE SAME WORK AS ABOVE BUT WITH DIFFERENT ANGLES x/
DO 13 X0=0,LIMIT/2,MEANSEP+2
STORAGE OF ONE REALIZATION x/
CALL STORAGE(FRAGMEN,SELECT)

COUNT13=COUNT13+1

COUNT12=0

GALBEAM=0.D0

DO 12 I=0 »R,0.2
CALL DENSFUN(FRAGMEN,DENFUN1,I,THETA,FI,X0,Y0,Z0)
PRINT*,DENFUN1

THE 3D ARRAY IS USED IN ORDER TO PLOT THE (DENSITY *x/
FUNCTION/MEAN DENSITY) IN THREE DIMENSION *x/

COUNT12=COUNT12+1
PLTDNS(COUNT12,COUNT13,N2)=DENFUN1

WITH THIS IF WE CONTROL WHETHER OR NOT WE'LL INCLUDE x/
THE LUMINOSITY FUNCTION.IF YES WE MULTIPLY THE LUMIN x/
BY THE DENSITY. THE VALUE OF LUMIN COMES FROM THE SU- x/
BROUINE LUMFUN x/

IF(LF.EQ.1)THEN
CALL DO1AJF(LUMFUN,1,MLIMIT,0.0E0,1.0E-03,LUMIN,

& ABSERR,W,1000,IW,250,1)

CALL LUMFUNCLUMIN,R)
GALBEAM=GALBEAM+(LUMIN x(DENFUN1%(I%%2)))
ELSE
GALBEAM=GALBEAM+ (DENFUN1x(I%%2))
ENDIF
CONTINUE
RANDOM=RANDOM+(CENTRAL1(COUNT13) *GALBEAM)
TOTAL13=TOTAL13+GALBEAM
CONTINUE
TOTAL164=TOTAL14+TOTAL13
RANDACF (N2)=RANDOM/COUNT13

ANGLE(N2)=(180%THETA) /PI
COUNT14=COUNT14+1
CONTINUE

MEANVAL2=TOTAL14/(COUNT13%(N2))

02050
02060
02070
02080
02090
02100
02110
02120
02130
02140
02150
02160
02170
02180
02190
02200
02210
02220
02230
02240
02250
02260
02270
02280
02290
02300
02310
02320
02330
02340
02350
02360
02370
02380
02390
02400
02410
02420
02430
02440
02450
02460
02470
02480
02490
02500
02510
02520
02530
02540
02550
02560
02570
02580
02590
02600
02610
02620
02630
02640
02650
02660
02670
02680
02690
02700
02710
02720



C/%
C/*
C/%

15

C/x
C/x

16

MEANVAL=(MEANVAL1+MEANVAL2)/2

THE NUMERATOR IS GIVEN BY
EC[NUMBER OF OBJECTS IN ANGLE 0]1x[NUM. OF OBJECTS
IN OTHER DIRECTIONS])-(MEAN NUM. OF OBJECTS) %2

DO 15 N2=1,30

NUMERAT (N2)=RANDACF (N2) - (MEANVAL%x2)
NUMERAT(N2)=RANDACF (N2) - (MEANVAL1x%2)
CONTINUE

THE DENOMINCATOR) IS GIVEN BY

<{INUM. OF OBJECTS IN COS(0) DIRECTIONI]-
[MEAN NUM. OF OBJECTS]}x%2> OR

<(NUMBER OF OBJECTS IN COS(0) DIRECTION) %x2>
-<MEAN NUMBER OF OBJECTS>x%2

DENOMIN=TOTAL10- (MEANVAL%%2)
DENOMIN=TOTAL10-(MEANVAL1x%x2)

HERE IS THE FINAL ANGULAR CORRELATION. FUNCT.

OPEN(10,FILE="GRAPH2")

ACF(0)=1
DO 16 N2=1,30
ACF (N2)=(NUMERAT(N2) /DENGMIN)
CONTINUE
COUNT16=COUNT16+1

DO 889 N2 = 0,30
ANGLE(N2) = (N2 * INCTHET x 180) / PI
CONTINUE

NOW
INTERPOLATION-PLOTTING-CONTOURS
FOLLOW

NOW WE HAVE THE CHOICE TO GET A 3D PLOTTING OF THE
DENSITY FUNCTION / MEAN DENSITY THROUGH THE SUBROU

TINE PLOT

*/
x/
*/

x/
x/
x/
x/
*/

x/

x/
x/
%/

PRINT%,'D0O YOU WANT A 3D PLOTTING OF THE (DENSITY FUNCTION/MEAN

&DENSITY)*
PRINT%,"'IF YES TYPE 1°'
PRINT%, "IF NO " o'
READ(5,*)PLOT3D
IF(PLOT3D.EQ.1) THEN

COUNT20=0

ICNTPNT=0

DO 20 I=0,30
THETA=IXINCTHET
COUNT19=0
DO 19 B=INCSTEP,R,0.2
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18

C/x*
C/*
C/x
C/*

C/*
C/ %
C/*
C/*

19
20

C/ %
C/x

C/x
C/*
C/%

C/%
C/x*

COUNT20=COUNT20+1
COUNT19=COUNT19+1
COUNT18=0
D=0.DO
IFCINCTHET.EQ.0.0158) THEN
RESTR=R
ELSE
RESTR=1.D0
ENDIF
DO 18 C=0,LIMIT/2,MEANSEP+2
COUNT18=COUNT18+1
D=D+PLTDNS(COUNT19,COUNT18,1I)
CONTINUE
AVERAGE(COUNT19,I)=D/COUNT18

AT THIS POINT WE NEED TO DO INTERPOLATION BECAUSE WE %/

HAVE POLAR COORD. AND IT IS NOT POSSIBLE TO STORE ®/
THEM WITH SUCH WAY, SO THAT TO BE USED BY THE GHOST- x/
80 FOR 3D PLOTTING x/

FIRST WE CONVERT THE POLAR TO CARERT. COORD. AND WE %/
STORE THE RESULTS TO THE ARRAYS XAXES, YAXES, ZAXES ¥/
THE ZAXES ARRAY CONTAINES THE AVERAGE OF THE REALI- %/
ZATIONS FOR EACH POINT *x/

XAXES(COUNT20)=BxDSIN(C(THETA)
YAXES(COUNT20)=BxDCOS(THETA)
ZAXES(COUNT20)=AVERAGE (COUNT19,1)

IF (ZAXES(COUNT20).GT.1)THEN
ICNTPNT=ICNTPNT+1

END IF
CONTINUE
CONTINUE
EO0O1SAF GENERATES A TWO-DIMENSIONAL SURFACE x/
INTERPOLATING A SET OF SCATTERED DATA POINTS */

CALL EO1SAF(COUNT20,XAXES,YAXES,ZAXES, TRIANG,GRADS,0)

COUNT70=0
DO 26 W1=0,R,0.3
COUNT70=COUNT70+1
COUNT71=0
DO 25 W2=0,R,0.3
COUNT71=COUNT71+1
IFC(W1%%2)+(W2%%2) .LT.R%%2) THEN

E01SBF EVALUATES AT A GIVEN POINT THE TWO-DIMENSIONALXx/

INTERPOLANT FUNCTION COMPUTED BY THE NAG FORTRAN x/

LIBRARY ROUTINE EO1SAF x/
CALL EO1SBF(COUNT20,XAXES,YAXES,ZAXES, TRIANG,

& GRADS,W1,W2,F,0)

THE -1 COMES FROM THE EQUATION DENSFUN=1+DELTA. *x/

WE WANT TO PLOT THE DELTA FUNCTION *x/

PLT3D(COUNT70,COUNT71)=F-1
ELSE
PLT3D(COUNT70,COUNT71)=0
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25
26

c

c

c

29

c

c

c

c

c

c30
&

c

c &
&
ENDIF
CALL
CALL
CALL
CALL
CALL
CALL

c
MEANS
60TO
ELSE

c CALL
CALL

c CALL
CALL
CALL

c
ENDIF
STOP
END

ENDIF
CONTINUE
CONTINUE

CALL PAPER(1)

CALL SURDIR(2)

CALL PSPACE(0.,0.1,0.,0.1)

CALL SURAXE(2,0.,0.,0.3,0.3)
PRINT*, " DO YOU WANT CONTOURS?®
PRINT*,' 1 FOR VYES'

PRINT*,' 0 FOR NO '

READ (5, *)CONTQOUR
IF(CONTOUR.EQ.1)THEN

MAXIM=0
MINIM=3
DO 29 I=1,COUNT20
MAXIM=DMAX1 (MAXIM,ZAXES(I))
MINIM=DMIN1(MINIM,ZAXES(I))
CONTINUE

CLEVLS(1)=0.2
CLEVLS(2)=0.5
CLEVLS(3)=0.75
DO 30 I1=2,3

CLEVLS(I)=CLEVLS(I-1)+((MAXIM-0)/2)

CONTINUE

CALL BORDER

CALL BROKEN(20,10,20,10)
PRINT%,COUNT70,COUNT71

CALL CONTRA(PLT3D,1,COUNT70,90,1,COUNT71,COUNT71

»CLEVLS,1,3)
CALL FULL

CALL CONTRA(PLT3D,1,COUNT70,90,1,COUNT71,COUNT71

CLEVLS,3,3)
ELSE

CALL SURPLT(PLT3D,1 ,COUNT70,90,1,COUNT71,COUNT?71

)
ENDIF
CALL GREND
CALL FRAME
STOP

PAPER(1)

BROKEN(LINETYP,LINETYP,LINETYP,LINETYP)

LINETYP=LINETYP+4
MAP(0.,17.,-0.4,2.46)
SCALES

BORDER
PTPLOT(ANGLE,ACF,1,30 )

EP=MEANSEP-1
1

PCSCEN( 5.,-0.3,"ANGLE (DEGREES)")
CTRORI(90.0)

PCSCEN(-2.,.6 ,"ACF")

FRAME

GREND

’
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C//77777777 77777777 7777777777777/ 7777777777/7777/777777777777

Cc /
C S UBROUTTINES & FUNCTTIUONS /
Cc /
C////77777777777/7777/77/777777/7777/7/777/777/777777/7/777777777777
c

c

(o 322332233233331332332333233332223223233323333233333232233113233
c % %
C THIS SUB GIVES THE ACF DIRECTLY. THAT MEANS WE DO NOT
C NEED TO GENERATE A RANDOM PROCESS. IT IS CALLED SMALL *x
C ANGLE APPROXIMATION %%
o4 %%
€ 3 36 36 3 36 36 36 36 3 3 3 3 3 36 3 36 36 3 36 3 36 3 3 36 3 I 3 I 3 3 3 3 X 3 3 3 3 3 36 3 I 3 36 3 36 3 3 36 X 36 3 I 3 I I KM
Cc

SUBROUTINE ACFDIR(R)
REAL THETA(100),I1,12,R,I12

& »MEANSEP,ACF1(100) ,ACF2(100),ACF3(100)
& »I1DEN, I1NUM, I2DEN, I2NUM, I3DEN, I3NUM
DOUBLE PRECISION MSTAR,ALFA,FISTAR,MLIMIT,LUMIN]1,LUMIN2,RI1,RI2
& »E
COUNT=0
MEANSEP=2.5
I1DEN=0.
I2DEN=0.
I3DEN=0.
MSTAR=-19.46
ALFA=-1.25
FISTAR=0.0277
E=0.DO
MLIMIT=20
DO 6 RI1=0,R,0.5
c CALL LUMFUN(MSTAR,ALFA,FISTAR,MLIMIT,RI1,0.D0
C & »0.D0,E,LUMIND)
DO 5 RI2=0,R,0.5
c CALL LUMFUN(MSTAR,ALFA,FISTAR,MLIMIT,RI2,0.D0
C & +0.D0,E,LUMIN2)

I12=(RI1-RI2)*%2

I1=(RI1x*x%2)

I2=(RI2%x2)

IFC(CI12/MEANSEP) %%2 .GT.60.0) THEN
I1DEN=I1DEN+(I1%I2/EXP(60.0))
I2DEN=I2DEN+(I1*I2/EXP(60.0))

ELSE
I1DEN=I1DEN+(EXP(-(I12/MZANSEP)%x%2)xI1%12)
I2DEN=I2DEN+(EXP(-I12/MEANSEP)*I1%I2)

ENDIF
I3DEN=I3DEN+((((I12+MEANSEP) /MEANSEP) %% (-1.8))%I1%I2)
5 CONTINUE
6 CONTINUE

DO 10 RADIANS=0,0.6,0.01
COUNT=COUNT+1
THETA(C(COUNT)=(RADIANS%180)/3.1415

I1NUM=0.

I2NUM=0.

I3NUM=0.

DO 9 RI1=0,R,0.5
c CALL LUMFUN(MSTAR,ALFA,FISTAR,MLIMIT,RI1,0.D0
c & _ ,0.D0,E,LUMINL)

DO 8 RI2=0,R,0.5

c CALL LUMFUNCMSTAR,ALFA,FISTAR,MLIMIT,RI2,0.D0
c & ",0.D0,E,LUMIN2)

I112=((RI1-RI2)*%2)+(RI1%RI2%RADIANS)
I1=(RI1x%x2) .
I2=(RI2x%x%2)
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IF(CI12/MEANSEP) %%2.GT7.60.0) THEN
IINUM=T1INUM+(I1*I2/EXP(60.))
I2NUM=I2NUM+(I1%xI2/EXP(60.))

ELSE
IINUM=I1NUM+(EXP(-(I12/MEANSEP) %%2)*xI1x%12)
I2NUM=I2NUM+ (EXP(-I112/MEANSEP) xI1%12)

ENDIF
I3NUM=I3NUM+ ((C((I12+MEANSEP) /MEANSEP) *xx(-1.8))*I1%12)

CONTINUE

9 CONTINUE
ACF1(COUNT)=I1NUM/I1DEN
ACF2(COUNT)=I2NUM/I2DEN
ACF3(COUNT)=I3NUM/I3DEN

10 CONTINUE

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

STOP
END

c
c
C
€3 36 3€ 3 36 36 3 36 3 36 36 36 3 3 3 I6 36 3 I I I 36 36 I 36 3 J 3 36 3 I I6 36 3 I I 3 I I I 3 I I I 3 I I I K I I K I KK
c
Cc

PAPER(1)
MAP(0.,14.,-.2,1.2)
SCALES

BORDER

BROKEN(0,0,0,0)
CURVEO(THETA,ACF1,1,60)
BROKENC10,10,10,10)
CURVEO(THETA,ACF2,1,60)
BROKEN(30,30,30,30)
CURVEO(THETA,ACF3,1,60)
FRAME

GREND

*

WITH THIS SUBROUTINE WE HAVE THE CHOICE TO GET A *
C GRAPH OF ALL THE SCF AT THE SAME TIME *
Cc %*
€36 36 36 3 36 36 36 36 3 3 36 3 3 36 3 3 3 3 36 3 36 36 36 3 36 € 3 3 I 6 36 96 I 36 3 I 3 3 36 36 3 I 36 I 3 I 36 I 3 I 36 3 3 I X HH K
c
SUBROUTINE SCF(POWER,MEANSEP)
REAL SCF1(42),SCF2(42),SCF3(42),SCF4(42),
& POWER ,MEANSEP,A,XAXES(42),R
INTRINSIC EXP
INTEGER I
c
A=1/(3 x%XPOWER)
C
R=0.

DO 100 I=1,30

IF(R.NE.O)THEN

SCF1(I)=Ax((1/R)**(-POWER))

ENDIF

SCF2(I)=(3 /(R+3 ))xx (-POWER)
SCF3(I)=EXP(-(R/SQRT(2.))%%2)/SQRT(2.%3.14)
SCF4(I)=EXP(-(R/SQRT(2.)))/SQRT(2.%3.14)

XAXES(I)=R
R=R+0.5
100 CONTINUE

CALL PAPER(1)
CALL MAP(0.,20.,0.,1.1)
CALL SCALES
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CALL BORDER

CALL BROKEN(0,0,0,0)

CALL CURVEO(XAXES,SCF1,2,30)
CALL BROKEN(10,10,10,10)
CALL CURVEO(XAXES,SCF2,1,30)
CALL BROKEN(20,20,20,20)
CALL CURVEO(XAXES,SCF3,1,30)
CALL BROKEN(30,30,30,30)
CALL CURVEO(XAXES,SCF4,1,30)

CALL FRAME

CALL GREND
Cc

RETURN

END
[
C
C
€3 3 3 3 36 3 3 3 I 3 I 36 3 I 3 36 3 36 I 36 3 36 36 I 3 36 3 36 3 36 36 I6 26 J6 36 I 3 I I6 3 J6 36 3 3 X 36 J 36 I I€ I 3 I 6 I 3 % X X
c %
C CALLING THIS SUBR. WE CAN STORE ONE REALIZATION *
C OF THE VALUES OF FRAGMEN *
c *
€3 3 3 3 36 3 3 3 3 J 3 36 3 36 36 3 3 36 3 I 3 36 3 36 I 36 36 36 3 I 36 36 J6 36 3 26 36 3 I 3 J6 36 I 36 I 36 I 3 I 36 I 3 36 3 I 3 ) X X
(o

SUBROUTINE STORAGE(FRAGMEN,SELECT)

INTEGER

X,L,M,N,SELECT,NUMFREQ

DOUBLE PRECISION SUM,MODULK,VAR,A,FRAGMEN(30,30,30),K1,K2,K3,

&
COMMON
COMMON
EXTERNAL

INTRINSIC
Cc

LIMIT,B,PI,POWER,C
/AAAA/A,POWER ,NUMFREQ
/DDDD/PI,LIMIT
VARIANC,VARIAN2,VARIAN3,VARIANG

DCOS,DSQRT

€C/%¥ THE WAVENUMBER IS RELATED TO L,M,N BY *
C/x K1=(2xPIxL)/LIMIT,ETC. *
DO 150 L=-NUMFREQ,NUMFREQ
Kl=(2%PI*L)/LIMIT

DO 140

M=-NUMFREQ,NUMFREQ

K2=(2%PI%M) /L.IMIT
DO 130 N=0,NUMFREQ

K3=(2%PI%N)/LIMIT
C=(K1%%2)+(K2%%2)+(K3%%2)
MODULK=DSQRT(C)
IF(SELECT.EQ.O0)THEN
VAR=VARIANC(MODULK)
ELSE IF(SELECT.EQ.1)THEN
VAR=VARIAN2(MODULK)
ELSE IF(SELECT.EQ.2)THEN
VAR=VARIAN3 (MODULK)
ELSE IF(SELECT.EQ.3)THEN
VAR=VARIANG (MODULK)
ENDIF
FRAGMEN(CL ,M ,N )=GO5DDF(0,SQRT(VAR))
FRAGMEN(L ,M,N)=SQRT(VAR)
CALL GOSCCF

130 CONTINUE
140 CONTINUE

150 CONTINUE
C

[
RETURN
END

Cc

Cc

(2322222222333 323223323332333333333333333333323323233333333 24

c

*

C THIS FUNCTION IS CALLED BY THE SUBR. STORAGE AND *

06130
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06150
06160
06170
06180
06190
06200
06210
06220
06230
06240
06250
06260
06270
06280
06290
06300
06310
06320
06330
06340
06350
06360
06370
06380
06390
06400
06410
06420
06430
06460
06450
06460
06470
06480
06490
06500
06510
06520
06530
06540
06550
06560
06570
06580
06590
06600
06610
06620
06630
06640
06650
06660
06670
06680
06690
06700
06710
06720
06730
06740
06750
06760
06770
06780
06790
06800 .



C GIVES THE ENSEMBLE VARIANCE OF THE DENSITY FLUCTUATIONS x
C *
(% 22323232322323232332233223323222223332333332232333232221323122213321321
Cc

DOUBLE PRECISION FUNCTION VARIANC(K)

DOUBLE PRECISION K,W1l,W2,W3,W4,RADIAN,A,POWER,LIMIT,PI
INTEGER NUMFREQ

COMMON /AAAA/A,POWER,NUMFREQ

COMMON /DDDD/PI,LIMIT

INTRINSIC DSIN

IF(K.EQ.0) THEN
VARIANC = 0

ELSE
W1=C1/C(LIMIT/2)%%3))
W2=(A%XG%XPI)/(K%x%(2+POWER+1))
W3=S14AAF ((2+POWER) ,0)
RADIAN=(2+POWER)*(PI/2)
WG=DSIN(RADIAN)
VARIANC= W1xW2xW3xW4

ENDIF

RETURN
END

3363 36 36 36 3 % 3 3 36 3 36 36 36 36 3 36 36 36 36 36 36 36 36 36 36 36 36 3 26 X % 3 3 36 3 36 36 36 36 96 I I I 6 36 3 36 36 I I HHH XK
THIS FUNCTION IS CALLED BY THE SUBROUTINE STORAGE AND *
GIVES THE ENSEMBLE VARIANCE OF THE DENSITY FLUCTUATION x
FOR THE SECOND LAW *
*
*

€ 36 3 3 3 I I I I I I I I I I I 3 I I I I I I I I I I, K I I I} I I I I K K H K W Xk K K K K I Ik I WK I I Ik Ik Kk KX K

0O0000OO0O00OO00O

DOUBLE PRECISION FUNCTION VARIAN2(K)

DOUBLE PRECISION A,K,POWER,PI,LIMIT,MEANSEP,CONSTAN,B,W1l,W2
INTEGER NUMFREQ

COMMON /AAAA/A,POWER,NUMFREQ

COMMON /DDDD/PI,LIMIT

COMMON /BBBB/MEANSEP,CONSTAN

[
(o

B=4%PIx (MEANSEP%%3)

W1=(2%%(3/2))%(C(LIMIT/2)%%3)

IFCC(K*MEANSEP)*%2) /4 .6GT.170) THEN

W2=DEXP(170.D0)
ELSE
W2=DEXP ( (KXMEANSEP/2) %%2)

ENDIF

VARIAN2=B/(W1x%xW2)

RETURN

END
(o
C
3333333332 32333332333333323333233333332332333333232323233 223
Cc *
C THIS FUNCTION IS CALLED BY THE SUBROUTINE STORAGE AND *
C GIVES THE ENSEMBLE VARIANCE OF THE DENSITY FLUCTUATION ¥
C FOR THE THIRD LAW *
C *
(€36 3 36 36 36 36 36 36 J6 3 3 36 96 J6 3 3 3 36 36 36 6 36 3 36 3 36 36 36 3 J6 36 36 36 36 6 J6 36 36 I € 36 3 36 I J6 36 36 3 3 I 36 36 36 36 ) 96 3 % %
C

DOUBLE PRECISION FUNCTION VARIAN3(K)

DOUBLE PRECISION POWER,A,PI,LIMIT,K,W1,W2,MEANSEP,CONSTAN,W
INTEGER NUMFREQ

COMMON /AAAA/A,POWER,NUMFREQ

COMMON /DDDD/PI,LIMIT




COMMON /BBBB/MEANSEP,CONSTAN

C
C
W1l=(8%xPI)/(C(LIMIT/2)%x%3)
W2=MEANSEP* ( ((K%%2)+((1/MEANSEP) %x%2) ) %%2)
VARIAN3=W1/W2
RETURN
END
C
Cc
(1323223323222 3323233331%331333333332133313323322323323322323%333;
C *
C THIS FUNCTION IS CALLED BY THE SUBROUTINE STORAGE AND %
C GIVES THE ENSEMBLE VARIANCE OF THE DENSITY FLUCTUATION x
C FOR THE FORTH LAW *
C *
€ 2 3 3 3 3 3 3 36 X 3 36 3 % 3 3 36 3 36 3 36 36 3 3 3 3 3 3 3 36 36 3 3 36 3 36 36 36 36 J6 36 6 3 I 3 3 36 3 36 36 I I 36 3 36 3 ¥ 3 3 %
C

DOUBLE PRECISION FUNCTION VARIAN4(K)

DOUBLE PRECISION K,A,POWER,CONST,ARG1,ARG2,CONSTAN,MEANSEP
& sAl1,A2,B1,B2,VAR,COEFFIC,PI,LIMIT,K1

REAL M

INTEGER NUMFREQ

COMMON /AAAA/A,POWER,NUMFREQ

COMMON /DDDD/PI,LIMIT

COMMON /BBBB/MEANSEP,CONSTAN

COMMON /EEEE/K1,CONST

Cc
IF (K.EQ.0) THEN
VARIANG = 0
ELSE
COEFFIC=((4%PI%(MEANSEPX%(-POWER)))/K)/C((LIMIT/2)%%3)
M=2+POWER
CALL FIRSTAR(K,M,CONST,ARG1)
CALL SECARG(K,M,CONST,ARG2)
Al1=ARG1
A2=ARG2
M=-(1+POWER )
CALL FIRSTAR(K,M,CONST,ARG1)
CALL SECARG(K,M.CONST,ARG2)
B1=ARG1
B2=ARG2
Cc
VARIANG=DABS(COEFFIC*(A1-A2-(CONST*B1)+B2))
ENDIF
Cc
RETURN
END
C
Cc
€ 36 36 3 36 36 36 3 36 36 26 36 3 36 36 36 36 36 36 36 3 36 36 36 36 J6 3 3 I6 36 I 36 3 I 36 3 J6 36 36 3 36 36 36 36 36 3 36 36 36 36 36 3 36 3 J6 36 I H X X
Cc 3
C THE NEXT SUBROUTINE IS USED BY THE SUB. VARIANG *
C *
€ 3 36 36 36 36 3 36 36 3 J6 36 3 36 36 J6 36 3 36 3 36 36 36 36 I 36 36 36 3 36 36 I 26 36 36 36 J6 36 36 36 J6 J6 J6 36 36 I I 2 36 I 6 36 X M W I H XK
C
SUBROUTINE FIRSTAR(K,M,CONST,ARG1)
DOUBLE PRECISION Al,A2,A3,ARG1,CONST,PI,LIMIT,K,K1,CONST1
REAL M
COMMON /DDDD/PI,LIMIT
COMMON /EEEE/K1,CONST1
EXTERNAL SUM1,SUM2
C

CONST1=CONST

K1=K

Al=(1/(K%%M))%DCOS(K%CONST)
A2=S14AAF(-M,0)*DSIN(-(PI/2)%M)

A3=S16AAF (-M,0) x ((K¥CONST) xxM) ¥(SUM1(M)-SUM2(M))

07490
07500
07510
07520
07530
07540
07550
07560
07570
07580
07590
07600
07610
07620
07630
07640
07650
07660
07670
07680
07690
07700
07710
07720
07730
07740
07750
07760
07770
07780
07790
07800
07810
07820
07830
07840
07850
07860
07870

.07880

07890
07900
07910
07920
07930
07940
07950
07960
07970
07980
07990
08000
08010
08020
08030
08040
08050
08060
08070
08080
08090
08100
08110
08120
08130
08140
08150
08160



ARG1=A1%(A2+A3) 3D 08170

c 3D 08180
RETURN ) 3D 08190

END ) 3D 08200

C 3D 08210
c 3D 08220
(2233 2323333232322223333333332323132323333333333333321333333 2] 3D 08230
C * 3D 08240
C THIS IS CALLED BY THE SUB VARIAN4 * 3D 08250
[ * 3D 08260
C 3 3 3 3 36 26 3 36 3 3 % 36 36 I 3 36 J6 3 J € 36 J6 3 36 X 3 36 I 3 3 I 3 I 3 36 3 I 3 I 3 I 3 I 36 I 36 I 6 I I I I X I} XXX 3D 08270
c 3D 08280
SUBROUTINE SECARG(K,M,CONST,ARG2) 3D 08290
DOUBLE PRECISION Al,A2,A3,ARG2,K,CONST,PI,LIMIT,K1,CONSTI1 3D 08300

REAL M 3D 08310
COMMON /DDDD/PI,LIMIT 3D 08320
COMMON /EEEE/K1,CONST1 3D 08330
EXTERNAL SUM3,SUM4 3D 08340

Cc 3D 08350
K1=K 3D 08360
CONST1=CONST 3D 08370
Al=(1/(K%¥%xM))%DSIN(K*CONST) 3D 08380
A2=S14AAF(-M,0)%DCOS(-(PI/2)%M) 3D 08390
A3=S14AAF(-M,0) %x( (K¥CONST) %xxM) % (SUM3I (M) +SUMG(M)) 3D 08400
ARG2=A1%(A2-A3) 3D 08410

Cc 3D 08420
RETURN 3D 08430

END 3D 08440

Cc 3D 08450
C 3D 08460
€ 3 36 36 3 36 36 3 I 36 J 3 I I I 3 3 I I I I 3 3 3 I I I I K X I 3 3 I IE I I I I I K I I I I I I X IE I I I X N X K X 3D 08470
c * 3D 08480
C THE SUM1 IS A FUNCTION WORKING OUT ONE OF THE TWO SUM- x 3D 08490
C MATIONS FOR THE EVALUATION OF THE VARIAN4. IT IS CALED x 3D 08500
C FROM BOTH THE FIRSTAR AND SECARG * 3D 08510
c * 3D 08520
C 3 36 36 3 3 3 % 6 3 3 3 3 I 3 3 6 3 3 3 3 X I I I I 3 I I I 3 I X I I I I I I I 3 X I I I I I I I I K I I I I W N K XK 3D 08530
Cc 3D 08540
DOUBLE PRECISION FUNCTION SUM1(M) 3D 08550
DOUBLE PRECISION PI,LIMIT,K,CONST,Al,A2 3D 08560

REAL M, I 3D 08570
COMMON /DDDD/PI,LIMIT 3D 08580
COMMON /EEEE/K ,CONST 3D 08590

Cc 3D 08600
A1=DCOS(K*CONST) 3D 08610
A2=0.D0 3D 08620

DO 200 1=0,50 3D 08630
A2=A2+((((K%XCONSTI)%xI)%DSIN((PI/2)*I))/S1G6AAF((-M+I+1),0)) 3D 08640

200 CONTINUE : 3D 08650
SUM1=A1x%A2 3D 08660

3D 08670

RETURN 3D 08680

END 3D 08690

Cc 3D 08700
c 3D 08710
€ 36 36 36 36 36 3 % 36 3 3 3 36 36 3 36 36 36 36 3 3 36 36 I I€ I 3 3 36 I X I€ I 36 3 I I 3 3 I I 3 I I J I K I I I 3 I I I I I I N X K 3D 08720
[ % 3D 08730
C THE SAME AS FOR SUM1 * 3D 08740
Cc * 3D 08750
Nt 33322233 22323333332332323323332333333333322333 2333333323232 3D 08760
c . 3D 08770
DOUBLE PRECISION FUNCTION SUM2(M) 3D 08780
DOUBLE PRECISION PI,LIMIT,K,CONST,Al,A2 ~ 3D 08790

REAL M, I 3D 08800
COMMON /DDDD/PI,LIMIT 3D 08810
COMMON /EEEE/K,CONST 3D 08820

Cc ' 3D 08830

Al=DSIN(KXCONST) 3D 08840




A2=0.D0
DO 201 I=0,50
A2=A2+((((KXCONST) %x%I)*DCOSC((PI/2)%I))/S14AAF((-M+I+1),0))
201 CONTINUE )

SUM2=A1%A2

RETURN

END
C
(o
3 3 3 3 3 36 3 36 3 3 36 36 3 36 36 J6 36 36 36 36 36 % 36 96 36 36 36 36 36 36 36 36 I 3 I6 96 36 36 36 36 6 3 36 3 J€ 36 36 6 36 36 3 3 36 I 6 6 X ¥ X
c *
C THE SAME AS FOR SUM1 *
(o %

€6 3 3 36 3 36 3 36 36 3 36 36 36 36 36 36 36 36 36 36 3 3 J6 3 36 3 36 6 36 36 36 36 36 36 36 3 I 3 6 36 36 36 36 3 36 I I I 36 36 36 36 3 3 3 3 ) X X
C

DOUBLE PRECISION FUNCTION SUM3(M)

DOUBLE PRECISION PI,LIMIT,K,CONST,Al,A2

REAL M,]I
COMMON /DDDD/PI,LIMIT
COMMON /EEEE/K, CONST \

Al=DCOS(K%XCONST)
A2=0.D0
DO 200 I=0,50
A2=A2+((((K%XCONST)%¥*I)*DCOS((PI/2)%I))/S14AAF((-M+I+1),0))
200 CONTINUE

SUM3=A1%A2

RETURN

END
o
Cc
C 36 36 3 3 36 36 3¢ 3 3 3 3¢ 3 3 3 I I 3 I I I 36 36 I I I 2 I I I€ 3 IE I I I I 3 I I I I I 3 I I I I I I I K I I K N K KKK
(o *
C THE SAME AS FOR SUM1 *
[o8 %

(R s 2222222222223 2322222323232 32 22222333233
C

DOUBLE PRECISION FUNCTION SUM4(M)

DOUBLE PRECISION PI,LIMIT,K,CONST,Al,A2

REAL M,I

COMMON /DDDD/PI,LIMIT

COMMON /EEEE/K,CONST

Al=DSIN(K%CONST)
A2=0.D0
DO 201 I=0,50
A2=A2+((((K%CONST)%%I)xDSIN((PI/2)%*I))/S1GAAF((-M+I+1),0))
201 CONTINUE

SUMG=A1%A2

RETURN

END
c
C 6 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 3 36 36 36 36 36 36 36 36 36 36 36 J6 96 J6 I I I I 3 3 36 36 I 36 26 36 36 6 3 ) H ¢
(o *
C THIS SUBROUTINE GIVES THE DENSITY FUNCTION *
[ %*

o2 2222233233333 333333333332233333333333333233333333333333 2223
(o
SUBROUTINE DENSFUN(FRAGMEN,DENFUN1,R,THETA,FI,X0,Y0,Z0)
DOUBLE PRECISION FRAGMEN(30,30,30),X0,Y0,Z0,THETA,FI,TRSUM,X,Y,Z
& »DENFUN1,R
INTRINSIC DCOS,DSIN

o000

08850
08860
08870
08880
08890
08900
08910
08920
08930
08940
08950
08960
08970
08980
08990
09000
09010
09020
09030
09040
09050
09060
09070
09080
09090
09100
09110
09120
09130
09140
09150
09160
09170
09180
09190
09200
09210
09220
09230
09240
09250
09260
09270
09280
09290
09300
09310
09320
09330
09340
09350
09360
09370
09380
09390
09400
09410
09420
09430
09440
09450
09460
09470
09480
09490
09500
09510
09520



X=RxDSINC(THETA)*DCOS(FI)+X0 3D 09530

Y=RXDSINCTHETA)%*DSIN(FI)+YO 3D 09540
Z=R*DCOS(THETA)+Z0 3D 09550

c 3D 09560
CALL PRODUCT(FRAGMEN,X,Y,Z,TRSUM) 3D 09570

CxxWE DO NOT MULTIPLY BY MEANDEN BECAUSE IS C %% 3D 09580
Cx*%x0UT % 3D 09590
3D 09600

DENFUN1=TRSUM 3D 09610

3D 09620

RETURN 3D 09630

END 3D 09640

3D 09650

c 3D 09660
3D 09670

I T2 2222223222232 2322322322322 23323323 3D 09680
Cc * 3D 09690
C WE EXPRESS THE DENSITY CONTRAST IN A FOURIER 1IN 3D E 3D 09700
Cc * 3D 09710
36 3 3 3 3 3 2 3 3 2 3 % 36 3 3 I 6 I 3 I 3 3 36 3 J6 3 3 I 3 I 3 36 3 I 3 I 36 I 36 3 I 3 I 3 I 3 I 3 I 3 36 3 I X ¥ K X X 3D 09720
Cc 3D 09730
SUBROUTINE PRODUCT(FRAGMEN,X,Y,Z,SUM) 3D 09740
DOUBLE PRECISION SUM,FRAGMEN(30,30,30),DOTPR,X,Y,Z,K1,K2,K3 3D 09750

& »PI,POWER,LIMIT,A 3D 09760

REAL PHASE 3D 09770
INTEGER L,M,N,NUMFREQ 3D 09780
COMMON /AAAA/A,POWER,NUMFREQ 3D 09790
COMMON /DDDD/PI,LIMIT 3D 09800
INTRINSIC DCOS,DSIN,DABS 3D 09810

Cc 3D 09820
[ 3D 09830
SUM=0 3D 09840

[ i R 3D 09850
(o 3D 09860
C/%¥ TRIPLE SUM % 3D 09870
DO 230 L=-NUMFREQ,NUMFREQ 3D 09880
K1=(2%PI%L)/LIMIT 3D 09890

DO 220 M=-NUMFREQ,NUMFREQ 3D 09900
K2=(2%PI*M) /LIMIT 3D 09910

DO 210 N=0,NUMFREQ 3D 09920

K3=(2xPI%N) /LIMIT 3D 09930

C/* DOT PRODUCT * 3D 09940
DOTPR=K1%X+K2%xY+K3x%Z 3D 09950

Cmmmmmmm e e m e e e e e e e - - 3D 09960
¢ 3D 09970
PHASE=GO05DAF(0.01,6.28) 3D 09980
SUM=SUM+ (2% (FRAGMEN(L ,M ,N ))xDCOS(DOTPR-PHASE)) 3D 09990

CALL GOSCCF 3D 10000

Cc SUM = SUM + (2%FRAGMEN(L,M,N))*DCOS(DOTPR) 3D 10010
210 CONTINUE 3D 10020
220 CONTINUE 3D 10030
230 CONTINUE 3D 10040
(SR e e it 3D 10050
RETURN 3D 10060

END ‘ 3D 10070

Cc 3D 10080
o4 3D 10090
Cc 3D 10100
C 3D 10110
C 3D 10120
(2322233232323 323332333323333323332323332323233323332332333 3] 30 10130
[ %% 3D 10140
[ SUBROUTINE FOR THE STUDY OF THE EFFECTS OF THE %% ~ 3D 10150
Cc LUMINOSITY FUNCTION AND SELECTIONS EFFECTS ON THE %% 3D 10160
(o GENERATED RANDOM FUNCTION %% 3D 10170
Cc %% 3D 10180
36 3 3 % 3 363 36 3 36 36 3 36 36 3 3 I 3 % I 36 3 X 36 36 3 J6 36 36 36 36 3 36 I 36 36 J6 3 3 J6 36 36 36 I 3 36 I 3 I 3 % % 3 I 3 X ¥ ¥ X 3D 10190
Cc 3D 10200



90

SUBROUTINE LUMFUNCLUMIN,MLINMIT)

REAL MSTAR,ALFA,FISTAR,LUMIN,MLIMIT,
& A,B,C,D,W,Z,M, INTEGR,E,F,G,R,I,LUNFUN,X
INTRINSIC EXP,LOG

COMMON /DDDD/I

ALFA=-1.25

MSTAR=-19.46

LUMIN = 0

DO 90 X=0.01,MLIMIT,.2
B=10%%(((ALFA+1)/2.5)*(-X+(5*%L0G(1))+25))
C=10%%x((MSTAR)/2.5)
D=10%*((LOG(I))/2)
W=10%%x(-M/2.5)
Z=10
LUMIN=LUMIN+(BXEXP(-(CxDxWxZ)))

CONTINUE

RETURN
END

1021¢
1022¢C
1023¢C
10240
10250
10260
10270
10280
10290
10300
10310
10320
10330
10340
10350
10360
10370
10380
10390
10400
10410
10420
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