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0.1 Abstract
The b domain of factor B (Bb) is found to be moderately homologous to the mammalian 

serine proteases. Sequence homology analysis showed that out of all the known serine 

protease structures, Bb was most homologous to bovine trypsin. Sequence alignment 

between Bb and bovine trypsin gave a sequence identity of the two sequences of between 

17 - 21%. This meant that protein model building of Bb from a known serine protease 

structure, in this case bovine trypsin, could be attempted. The structure of bovine trypsin 

was taken from the Brookhaven Database. All the molecular modelling was carried out 

with the software package “COMMET” that was developed in our laboratory.

In the first instance all of the substitutions necessary to computationally mutate the bovine 

trypsin structure into the Bb structure were carried out. Substitutions were carried out first 

as they are the least disruptive of the three modelling techniques used in homology 

modelling. Substitution only alters the side chain atoms of the residue that is being 

modified. No alterations to the backbone atoms are necessary at this stage.The software 

keeps the new side chain position as close to the original as possible. Where this is not 

feasible the side chain conformation is determined by a conformational search of the side 

chain’s conformation space.

The deletions from bovine trypsin were all small and accomplished by simple removal of 

the appropriate residues followed by energy minimisation to reposition and rejoin the main 

chain. Small insertions up to three residues long were built using the “insert” routine. After 

inserting a residue its side chain’s torsion angles were defined by a conformational search. 

To ease steric strain at the site of small deletions and insertion a segment five residues 

either side of the insertion or deletion was run through the energy minimiser.

There are a total of eight insertions of three residues in length or longer:

•  Gin 30: 3 residues in length

• Ser 186: 3 residues in length

• Gly 129: 7 residues in length

• His 231: 8 residues in length
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• Glu 101: 9 residues in length

•  Leu 143: 9 residues in length

•  Arg 170: 13 residues in length

The conformation of these large insertions was calculated using a sophisticated 

conformational space sampling procedure which runs on a large parallel computer. The 

loop conformation generator searches through all of the conformational space and uses 

filters to eliminate unfavourable conformations.

After all the modifications were carried out the entire protein was run through the energy 

minimiser. First polar hydrogens, then all hydrogens, and finally the water molecules from 

the bovine trypsin crystal structure were added to the model. Energy minimisation 

continued until the first derivatives from the Newton-Ralphson algorithm had become 

negligibly small.
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1 Introduction to Protein Modelling

1.1 Protein Structure
It has long been known that proteins are made up of 20 fundamental structural units known 

as the amino acids. These amino acids can be linked together in different orders to produce 

the wide variety of proteins observed in nature. By the 1920’s the structure of the twenty 

amino acids and how they combined to form proteins had been elucidated, mainly due to 

the work of Emil Fischer. The amino acids were found to have the general structure found 

in Diagram 1-1 on page 11:

R

N H 2------------- C«------------C O O H

H

Diagram 1-1: The general structure of an amino acid

Name 3 Letter 

Code

1 Letter 

Code

Side Chain Comments

Glycine Gly G -----H uncharged polar, 

no sidechain other 

than H atom

Alanine Ala A
— c h 3

nonpolar, methyl 

sidechain
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Name 3 Letter 

Code

1 Letter 

Code

Side Chain Comments

Valine Val V ^ / C H 3 

— CH

nonpolar, 

branched at (3 

carbon atom

Leucine Leu L ^ / C H 3 

— CH2---- CH

nonpolar, 

branched at y 

carbon atom

Isoleucine He I — c h 3

n c h 3

nonpolar, 

branched at (3 

carbon atom

Serine Ser S

\ / 0 H
C H 2

uncharged polar, 

contains hydroxyl 

group

Threonine Thr T ^ c h 3

OH

uncharged polar, 

contains hydroxyl 

group branched at 

P carbon atom

Aspartate Asp D
0

c f  Q

\  /
CH2 0

acidic
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Name 3 Letter 

Code

1 Letter 

Code

Side Chain Comments

Glutamate Glu E 0

/Ĉ \ / Cn\ 0 
c h 2 0

acidic

Asparagine Asn N ^ n h 2

\ / cXc h 2 0

uncharged polar, 

corresponds to 

aspartate with 

amidated 

sidechain

Glutamine Gln Q NH2

-  /
/ \ / \

CH2 0

uncharged polar, 

corresponds to 

glutamate with 

amidated 

sidechain

Lysine Lys K ^/C H a y / Cs ^  /NH3+ 

CH2

basic

Histidine His H
#  n i t

— ch2— c

\  ^ C H

basic and cyclic
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Name 3 Letter 

Code

1 Letter 

Code

Side Chain Comments

Arginine Arg R n h 2

/ ■ -
/ C \  / C\ s  Q  

c h 2 n h  n h 2

basic, contains 

guanidinyl group

Phenyl - 

alanine

Phe F nonpolar, contains 

aromatic ring

Tyrosine Tyr Y

— CH2̂ Q ) ----- OH

uncharged polar, 

contains a para 

substituted 

aromatic ring 

containing 

hydroxyl group

Tryptophan Trp W .NH
—  CH 2— f t  \

\)
nonpolar, contains 

a double aromatic 

and heterocyclic 

ring

Cysteine Cys C
c h 2 s h

uncharged polar, 

contains 

sulphydryl group 

which may be 

oxidised to form 

S— S bridge 

between residues, 

then referred to as
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Name 3 Letter 

Code

1 Letter 

Code

Side Chain Comments

cystine

Methionine Met M CH2 s

/ \ / \
c h 2 c h 3

nonpolar, contains 

sulphur atom but 

not as a 

sulphydryl group

Proline Pro P

/  c h 2

—  N

\  _ c h 2 

^ c = o

nonpolar, this is 

the structure of 

the whole amino 

acid. Technically 

an imino acid as 

the side chain is 

bonded to the 

backbone nitrogen

Table 1-1: The twenty natural amino acids found in proteins

15



R H O ’ R

\
,N  <P C ’ co ,Ca

c

O ’ H

Q i C 52

Diagram 1-2: Nomenclature of the atoms in an amino acid

The twenty common amino acids all consist of a carboxylic group and an amino group 

attached to the central carbon atom. This central carbon atom is usually labelled Ca. The 

next atom out along the side chain is labelled the Cp carbon atom, the next labelled the CY, 

C5 the next carbon atom to the end of the side chain, see Diagram 1-2 on page 16. The 

properties of the twenty amino acid side chains vary in size, shape, hydrophobicity, charge 

and hydrogen bonding, see Table 1-1 on page 15. The amino acids all share some 

properties, firstly they avoid the extremes of high chemical reactivity which would make 

them too non specific. Secondly, they also avoid groups which strongly restrict individual 

degrees of freedom. The exception to this second point is proline, which is technically an 

imino acid, due to the side chain forming a five membered ring with the backbone. The five 

membered ring in proline, which includes the backbone atoms, severely restricts its 

freedom of rotation.

The central carbon atom, Ca, is chiral for all amino acids except glycine which only has a 

hydrogen atom as its side chain atom, see Diagram 1-3 on page 17. Throughout nature 

only the one isomer of each amino acid is used, the L conformation. If the amino acid is 

viewed along the H— Ca bond with the H atom at the front, the other substituents
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connected to the C« atom, in a clockwise direction read CORN: C'O '- carbonyl, R-side 

chain, and N- backbone. The amino acids Isoleucine (He) and threonine (Thr) have a 

second chiral centre at the Cp carbon atom, and again only the one enantiomer of lie and 

Thr occurs naturally.

In 1902 Emil Fischer and F. Hofmeister independently described how the amino acids are 

joined in a head to toe fashion to form a polymer. The reaction is a condensation reaction 

as water is produced in the reaction. The amino group of one amino acid and the 

carboxylic group of the next amino acid react to form a peptide bond. Therefore proteins 

are long linear polymers of amino acids. The only other covalent link between amino acid 

residues is due to the special ability of the cystine residue to form, under oxidising 

conditions, from two cysteine residues close together in the three dimensional structure of 

the protein. It is formed by the two sulphur atoms on each of the cysteine amino acid 

residues combining to produce a disulphide bridge, see Diagram 1-4 on page 18. The 

disulphide bridge is an important chain cross-linking feature usually within a single 

polypeptide chain but occasionally between two different chains. It appears as a common 

feature of proteins secreted from the cell, which has a reducing environment, to the outside 

with oxidising conditions.

R

H

Diagram 1-3: L chiral conformation
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Diagram 1-4: The cystine residue containing the disulphide bridge

Whether a chain of amino acids is called a protein, polypeptide or simply peptide is mainly 

down to the number of amino acid residues the chain contains and its conformation. There 

are many important biological molecules which contain relatively few amino acid residues 

joined together. Such short polypeptides are generally called peptides. A prefix denotes the 

number of residues i.e. a dipeptide has two residues, a decapeptide has ten, and an 

oligopeptide an unspecified small number. The term polypeptide used to be applied to a 

chain of a large number of amino acid residues but less than the number of amino acid 

residues found in an average sized protein but increasingly this view is changing. A 

polypeptide is now often considered as the most general term to describe a protein 

molecule. This is how the term polypeptide will be used in the rest of the thesis.

1.2 The Primary Sequence
The primary sequence or primary structure of a protein is the specific sequence of the 

amino acid residues characteristic of each protein. As the chemical structure of each type 

of amino acid residue is well known, this implies the chemical formula and covalent 

structure of the protein is known. Up until the 1950’s scientists doubted that a protein had 

a primary sequence at all. Pre 1950’s it was believed that any protein of a specific name 

actually consisted of quite different chemical entities all of which having the biological 

function of the named protein. This viewpoint was completely demolished with the
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advancement in techniques to purify and determine the sequence for a very large number of 

proteins.

The primary sequence of a protein can be said to hold the information the protein requires 

to fold into its three dimensional (3D) shape. This can easily be shown by carrying out 

refolding experiments. In these experiments the purified active protein is denatured, that is 

unfolded, by the use of chemicals, usually urea or guanidine chloride, and heat. As the 

protein unfolds it loses its characteristic absorption spectra. Once the protein is denatured 

the conditions under which it was denatured are removed. The refolding of the protein can 

be followed by watching its absorption spectra revert back to its original signature. Once 

the protein sample has been allowed to refold its functionality normally returns.

The primary sequence also determines the specificity of an enzyme. Using molecular 

biology techniques it is possible to selectively alter the proteins primary sequence in any 

position required. This enables scientists to probe how the enzyme works by altering key 

amino acids and seeing how this effects the rate of catalysis or the substrate specificity. 

This technology allows the mechanism of the enzyme reaction being studied to be worked 

out.

1.3 The Secondary Structure
The description of a polypeptide conformation involves the specification of bond lengths, 

bond angles, and torsion angles about the single bond. A specific convention has been 

adopted to describe polypeptide conformation. The International Union of Pure and 

Applied Chemistry and the International Union of Biochemistry (IUPAC - IUB) 

Commission on Biological Nomenclature has proposed a detailed set of recommendations. 

The original proposals12 were modified in 197034.

The proposal defines an amino acid residue as -(— NH— CHR— CO— )- and peptide units 

as -(—CHR—CO—NH— )-, see Diagram 1-5 on page 20. The peptide unit corresponds to 

the properties of the peptide bond. The peptide bond has characteristics somewhere 

between a single and double bond due to the delocalisation of electrons between the oxygen 

and nitrogen atoms of the peptide bond. This means that the N—C ' bond length is smaller
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than expected for a normal single bond, the barrier of rotation for the Ca—N—C '—Ca 

torsion angle is increased from that expected of a single bond by -25  kcalmol'1, and the 

Ca—N—C '—Ca torsion angle is planar. The double bond nature of the peptide bond 

severely limits the conformations possible the backbone in a protein can adopt. The peptide 

bond is nearly always found in the trans configuration and is unable to rotate at 

physiological temperatures. The torsion angle across the peptide bond is known as the Q 

angle. It is normally restricted to the values of 0° (cis conformation), 180° (trans 

conformation) or values very close to them. Except for proline the peptide bond is nearly 

always trans. Since the £2 angle is fixed this leaves only two torsion angles free to rotate in 

the protein backbone. The two torsion angles that are free to rotate in the polypeptide 

backbone are known as the (p and \|/ torsion angles. The cp angle defines the C '—N— Ca— 

C ' torsion angle and \|/ defines the N—Cot—C '—N torsion angle.

amino acid residue

peptide unit

Diagram 1-5: The amino acid residue and the peptide unit
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124'115'

115'120.5'

121124.5'
O ’

Diagram 1-6: The peptide's dimensions

The bond lengths and bond angles are generally found to be fixed values. For the peptide 

unit these values were first determined by Corey and Pauling5 and revised values were 

published by Momany et al6, see Diagram 1-6 on page 21. The only degrees of internal 

freedom are those of rotation around the single bonds,see Diagram 1-2 on page 16.
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A

+ve

A D

B C
A

Diagram 1-7: Representation of the dihedral angle using the Newmann Projection

A hydrogen bond occurs when two electronegative atoms compete for the same hydrogen 

atom. The hydrogen atom is formally bonded covalently to one of the atoms, the donor D, 

but it also interacts favourably with the other atom, the acceptor A. The main component 

of the hydrogen bond is an electrostatic interaction between the hydrogen atom covalently 

bonded to the donor atom, and the electronegative acceptor atom. This arises due to the 

dipole along the covalent bond between the electronegative donor atom and the hydrogen 

which results in the hydrogen atom having a partial positive charge.

The hydrogen atom is special in being able to interact strongly with one electronegative 

atom while being covalently bonded to another. It can do this because of its small size and 

its substantial charge, which results from its tendency to be positively polarised. In strong 

hydrogen bonds an additional covalent aspect arises from a transfer of electrons.

The length and strength of hydrogen bonds depends on the electronegativities of the 

acceptor and donor atoms. The greater this electronegativitiy is the shorter the distance

1.3.1 The Hydrogen Bond
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between them and the stronger the hydrogen bond. Charged groups also give shorter and 

stronger hydrogen bonds.

In proteins the dual hydrogen bonding capacity of the backbone peptide group plays a large 

role in influencing the protein structure e.g. (3 sheets and a  helices are stabilised by 

hydrogen bonding. Although hydrogen bonds are weak, noncovalent interactions (2-10 

kcalmol1), they are fairly directional and specific. Since each peptide can form a hydrogen 

bond in both directions, the co-operative effect of a network of such interactions can hold 

the polypeptide together in a strong specific framework. Hydrogen bonding can involve 

electrostatic interactions; either between actual charges on two amino acid residues, which 

is more commonly known as a salt bridge, or between dipoles such as the dipeptide dipole, 

which puts a partial positive charge on the NH and a partial negative charge on the oxygen 

carbonyl.

The optimum distance for a strong hydrogen bond is about 3.0A between the donor and 

acceptor or 2.0A between the hydrogen atom and acceptor7. For a charged hydrogen bond 

this distance can be smaller. The electrostatic part of the interaction only falls off as 1/d8, 

so there is still an effect at much greater separations, but beyond a certain point other 

atoms begin to intervene. The angle between the D—H—A atoms also matters, but again 

the energy fall off is gradual. The D—H—A angle is fairly critical, with an optimum at 

180° and falling to no interaction at ~120°9. For the H—A— C angle (where C is the 

carbon atom to which A is covalently bonded), there are usually optima in the 120° - 150° 

range, but the interaction is still strong at either 90° or 180°. On the surface of a protein 

only a hydrogen bond with very good geometry is useful because of the competition with 

solvent hydrogen bonds, but in the interior even a very long hydrogen bond is better than 

none at all.

1.3.2 The a  Helix
The first attempts to carry out x-ray diffraction analysis on proteins were carried out on 

fibrous proteins as these naturally formed paracrystalline solids. This analysis of fibrous 

proteins was carried out in the 1930’s by Astbury and colleagues. Unfortunately 

paracrystalline materials do not diffract x-rays very well but the data did suggest that each
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molecule is itself a repeating structure, with an organisation repeating itself by translation 

and rotation along the molecular axis.

Due to this early work by Astbury it became clear that fibrous proteins could be assigned 

to one of two classes. The P class had a diffraction pattern consistent with a molecular 

length of 3.61 A per residue, which is almost the same length as a fully stretched chain 

which would have a molecular length of about 3.7A per residue. The classical material 

studied was silk fibroin but it was also noted that the keratin of bird feathers gave a similar 

diffraction pattern. The a  class has a x-ray diffraction pattern consistent with a helical 

pitch of 5 - 5.5A, which suggests that these proteins must be considerably more contracted 

than an extended chain and having a molecular length of 1.5A per residue. The classic 

material used in studies was hair keratin.

By studying in detail the x-ray data for much simpler amino acids and small peptides, the 

dimensions of the atoms and the bonds connecting them were estimated. In 1951 a series of 

papers published by Pauling, Corey and Branson reported how the theoretical approach 

had reduced the possible interpretations of the fibre diffraction patterns to a very few 

probable ones. The model which was consistent with the 5 - 5.5A pitch was the a  helix. 

The model produced had a right handed thread in screw as a left handed helix of L amino 

acids would have atomic overlaps between Cp atoms and the backbone carbonyl groups. It 

has a pitch of 5.41 A per turn and 3.6 residues per turn. Realising that the number of 

residues per turn did not have to be integral was obviously an important factor in 

producing this model. The diameter across the structure was about 10 - 12A, 

corresponding to the thickness of a fibrous molecule with this conformation. The structure 

was well packed without either overlaps or significant gaps between atoms. In particular, 

there was no significant tunnel down the axis of the structure. A major feature, largely 

responsible for choosing this model in preference to other models, was that all backbone 

hydrogen bonds formed nicely. In the a  helix a hydrogen bond is made between the Ocarbonyi 

of every (i)th residue and the NH group of every (i+4)th residue. These hydrogen bonds act 

as ‘staples’ holding successive turns of the helix together. Three hydrogen bonds exist in 

each turn of the a  helix, see Diagram 1-8 on page 25.
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Diagram 1-8: simple a  helix, showing hydrogen bonds between residues i and (i+4).

In an a  helix all the residues are orientated in the same direction, each turn has three NH 

groups pointing in the N terminal direction and three CO groups pointing in the C terminal 

direction. This orientation explains, if qualitatively, the strong features of the CD spectra 

of many globular proteins if the a  helix was an important feature of globular proteins as 

well as fibrous proteins. Hence it was assumed that the a  helix model had to be directly 

relevant to at least certain aspects of globular protein structure.
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The first globular protein to have its structure elucidated by x-ray diffraction were 

myoglobin in 1959. Myoglobin resembles a helical protein which has been bent at certain 

‘hinge’ positions so that the helical regions can be brought together in space. Thus 

confirmation that the secondary structure feature a  helices play an important role in 

globular proteins.

1.3.3 The p Sheet
Another model proposed by Pauling and Corey could account for the p class diffraction 

pattern observed for the x-ray diffraction of silk fibroin. It was known that the diffraction 

pattern corresponded to a structure where the chain was nearly fully extended but how 

could it possibly form hydrogen bonds to stabilise the structure. A stretched structure 

would not have its NH and CO groups aligned parallel to the axis of the molecule but 

approximately at right angles to the axis and therefore into the environment of the 

molecule. This is not electrostatically unfavourable but there should be extensive hydration 

as the hydrogen bonds form with the present water molecules. The model proposed by 

Pauling and Corey to get round this problem was that hydrogen bonds did not form within 

the same chain but across to an adjacent chain. Since this model fixed the direction of all 

NH and CO groups into an approximate plane, its basic feature consisted roughly of 

extended polypeptide chains lying side by side in a plane and hydrogen bonding to 

neighbouring chains. This model was described as a P sheet or p pleated sheet.

The theory at that time could not easily distinguish between P sheets in which all 

polypeptide chains were parallel, and sheets in which the chains were alternating to point 

along opposite directions in an anti-parallel arrangement. Good hydrogen bonding is 

possible in both cases and both models appeared equally stable. It turns out that even 

modem theoretical approaches do not readily distinguish between the two alternative 

models. Energy analysis of the two models show that the difference in energy between the 

two are subtle. This implies both structures are feasible, and indeed both are observed.

After myoglobin and haemoglobin the next protein to have its structure determined by x- 

ray diffraction was lysozyme by Blake et al in 1965. Unlike myoglobin, where all but the
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‘hinge’ regions of the protein have a  helix conformation, lysozyme contains a relatively 

small number of residues forming three long a  helices and three distorted helices. The 

regions between the helices in the lysozyme structure are much longer than those found in 

myoglobin, with the most important section of chain which weaves back on itself to form 

three strands of distorted but quite recognisable P sheet. The strands, about six residues in 

length, were a small beginning to the recognition and importance of P sheets in globular 

proteins. It was the solving of the carboxypeptidase structure that demonstrated that the p 

sheet could form a major part of a globular proteins structure. Both parallel, anti-parallel, 

as well as mixed sheets have subsequently been identified in many proteins. As in lysozyme 

these are frequently distorted, and in general there is a twist to the sheets due to the 

handedness of the amino acids, which is of considerable interest. This twisted p sheet 

structure, in some proteins, looks as though it could bind to the surface of DNA molecules.

1.3.4 The Reverse Turn
For periodic structures such as the a  helix and p sheet each residue has more or less, to a 

first approximation, the same conformation with the <p and y  angles repeating themselves 

throughout the structure. The aperiodic reverse turn, or P bend, structure is different in that 

each residue in the reverse turn structure has distinct cp and \|/ angles. The reverse turn was 

first described by Venkatachalam in 1968 as a sharp turn about of the direction of the 

polypeptide chain such that a hydrogen bond formed between the carbonyl of the (i)th 

residue and the amide of the (i+3)th residue. This structure depends on the conformation of 

only two residues, the (i+l)th and (i+2)th. Given that the peptide linkages in the reverse 

turn structure are trans, the middle two residues can have several sterically permissible cp, 

\y angle combinations. Venkatachalam defined six types of revere turns, types I, II and HI, 

with their backbone mirror images I’, II’ and HI’. These mirror conformations are 

generated from I, II and ID by multiplying the cp and \p angles by minus one.

Type E l reverse turn is identical to two residues in a classical 310 helix, while type I is a 

distortion of it. In type H the peptide group between the middle two residues, (i+l)th and 

(i+2)th residues, has ‘flipped over’ by variation of the cp, \\f angles either side, not of the 

peptide group itself which remains trans. In practise, the internally hydrogen bonded turns
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are not always seen in proteins, so that the criterion is usually taken that the (i)th and 

(i+4)th residue are within 7 A of each other.

1.3.5 Random Coil
The final secondary structure is the random coil. This is a section of the polypeptide 

backbone which does not have regular repeating cp and \\f angles. Although the cp and \|/ 

angles are said to be random they still only fall into the allowed regions of the 

Ramachandran map. Random coils are not found in the interiors of globular proteins but 

on the protein surface. They often pretude into the solvent and are very flexible. It is often 

difficult, occasionally impossible, to get the x-ray structure of these large highly flexible 

random coils because they are so flexible.

1.3.6 Ramachandran Maps
Due to the planarity of the peptide bond the conformation of the polypeptide backbone can 

be defined by the cp and \j/ torsion angles. A two dimensional plot of the cp and \|/ angles is 

an important type of representation. This plot is known as a Ramachandran plot. Such 

plots are used to illustrate properties of repeating conformations, single residues or two 

successive residues. The asymmetry of the amino acid residues (excluding glycine) due to 

the Cp atom causes the Ramachandran plot to be asymmetrical. The populated regions of cp 

\j/ space are generally named after the conformation which results if the cp and \j/ values are 

repeated along the backbone. The major allowed areas are the right handed a  helical region 

in the lower left quadrant near (-60°, -40° ); the broad region in the upper left quadrant 

centred around ( -120°, 140° ) is the extended (3 strand; and the sparsely populated left 

handed a  helical region in the upper right quadrant near (+60°, +40°).

Vacant areas of cp, \\f space are conformations that place atoms unfavourably close 

together within the dipeptide unit e.g. near ( 0°, 0° ) the O’ of residue n-1 collides with the 

C ’ of residue n. The bridge across the \j/ = 0° region joining the a  helix and p sheet regions 

should be uninhabited based on the hard sphere model but this region is fairly well 

populated. Using the hard sphere model there is bad contact between successive amide 

groups. This can easily be relieved either if the N—Co—C ’ can stretch wider than the
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tetrahedral or if the amide hydrogen is slightly ‘soft’ i.e. another atom can enter the amide 

hydrogen’s van der Waals radius.

Energy calculations of a dipeptide unit give the energy minima in close approximation to 

the populated regions of cp, \p space. This is rather surprising because such calculations 

leave out both the favourable and unfavourable effects of long range interactions of the 

backbone as well as specific side chain effects. One of the more remarkable properties of 

the repetitive secondary structures observed in proteins is that the optimum cp, values for 

the permissible range of good long range H-bonding and steric fit are so close to the 

optimum and range for favourable dipeptide conformations. The presumption is that this 

neat match is what has, for instance, so strongly selected for the occurrence of the right 

handed a  helices rather than for any of the slightly different versions such as 3i0, n, or left 

handed a  helices.

1.3.7 The Handedness Of Proteins
Using the same configuration for the chiral centres in the 19 chiral common amino acids 

causes a handedness at all levels of the protein structure. This handedness is almost always 

through the interaction of the Cp atom. Helices are right handed because the left handed 

helices have a slightly unfavourable contact of the Cp of residue n with the preceding 

carbonyl of residue n-1, repeated for every residue in the left handed helix. For P strands 

the preferred twist is again due to the close contact of Cps in the strand, but they act in a 

much more statistical fashion since they are distant in the sequence and can be 

compensated for by a combination of minor readjustments in other parameters. However, 

the effect of the strong statistical bias is persuasive and important causing the flaring, 

saddle shape swirl of parallel P sheets and makes the strands spiral around the axis of a p 

barrel. In reverse turns the differences in the common types of turns involve bumps of the 

O’ of the central residue n+2 with the Cp of residue n+3. The congestion is less severe than 

for a left handed a  helix, but the turn involves only one such awkward position, therefore a 

single glycine can solve this problem. This is one of the prime uses of the glycine residues 

in protein structure, to adopt conformations not accessible to other amino acid residues.
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This use of glycine is because it is unique amoung the 20 natural amino acids in that it 

doesn’t contain a Cp atom. Instead the Ca atom has two hydrogen atoms attached to it.

The handedness preferences described above for secondary structure produce strongly 

handed features in the supersecondary and tertiary structure of proteins. Probably the most 

important of these is the right handedness of crossover connections which dominate the 

organisation of a /p  proteins. All a  proteins reflect the handed nature of helix - helix 

packing, which in turn reflects the handed spiral of side chains on the surface of right 

handed a  helices. Antiparallel p barrels are handed with twisted p strands, twisted barrel 

cross sections, and handedness in the swirl direction of their Greek Key motifs.

1.4 Super-Secondary Structure
This level of structure describes how the individual periodical secondary structures i.e. a  

helix and p sheets come together in space. In considering the dynamics of the folding of a 

polypeptide chain the super secondary structure starts to form as favourable interactions 

between the individual secondary structures. This leads to a packing of the secondary 

structures. From a non-dynamic viewpoint, however, super secondary structure features 

can be regarded as a hierarchial level of structure representation between the secondary 

and tertiary levels.

Regular surface features on helices and pleated sheets become manifest if models are built 

from the one amino acid, say all alanine side chains. A pattern of grooves is apparent 

which implies a limited number of possible mutual orientations corresponding to the 

optimal meshing of the grooves from two secondary structures. These suggest preferred 

orientations for which there is some evidence when the distribution of orientations in 

known structures is examined. What is found in known protein structures is that the 

variation of sidechains within helices and sheets, with the flexibility of the side chains 

taken into account, causes the groove pattern to be nearly ‘destroyed’, and hence the simple 

packing rules to be lost.

On further analysis of the super-secondary structure features are strongly influenced by the 

chiral nature of the amino acids.
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1.5 Tertiary Structure
The next level of structure is the tertiary structure which describes how the fragments of 

secondary structure and super-secondary structure are arranged about each other to give a 

protein its overall shape. For globular proteins the main driving force behind the folding of 

the polypeptide chain is the hydrophobic nature of many of the amino acids. The 

hydrophobic amino acids will be attracted to each other and form a hydrophobic core 

where all the water molecules have been expelled. Within this hydrophobic core nearly all 

the polar groups including those on the backbone of the protein are hydrogen bonded to 

other polar groups belonging to the protein. Only those polar groups found on the surface 

of a protein form hydrogen bonds with water molecules. The hydrophobic core of a 

globular protein is highly structured with nearly all the residues part of an a  helix or p 

sheet. The reason being that all possible hydrogen bonds in the backbone atoms are formed 

when a residue is folded into one of these secondary structures. The random coil secondary 

structure is not found in the hydrophobic core of globular proteins but on the surface. The 

reason being that not all the potential backbone hydrogen bonds are formed. This leaves 

polar groups exposed to the surounding envitonment. In the core of the protein, where the 

environment is hydrophobic the polar group would not be able to make favourable 

interactions, whereas on the protein surface the exposed polar group can easily interact 

with the water solvent.

1.6 Description of Domains
The tertiary structure can also be viewed as the packing of individual domains of the 

protein. These domains are distinct structure within globular proteins. Domains are 

typically compact, rather hydrophobic clusters of residues formed by a local bunching up 

of the polypeptide chain of between 50 - 150 residues. They can be identified by this means 

although the problem is often knowing where to stop to avoid resolving domains into 

further domains. In more obvious cases, domains resemble protein subunits except they are 

not separate molecules but rather connected to each other by the continuity of the 

polypeptide.
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There is often not much difference between the description of the domains of a protein and 

a description of the super secondary structures of the protein. Typically a domain may be 

primarily a single super secondary structure motif, or a set of smaller super secondary 

motifs. For example in serine proteases there are two domains with the active site of the 

enzyme represented in a cleft between the two domains. Each of the two domains in the 

serine protease is a p pleated sheet barrel and extensions to the polypeptide chain at the 

ends of the barrel.
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2 The Complement System

2.1 Introduction10’11’12.
The complement system is an effector mechanism in the immune defence against infections 

by micro-organisms. It is a complete mechanism in which activation products of the 

complement components cause lysis of cellular antigens, attract phagocyte cells to the 

place of activation, and facilitate uptake and destruction by the phagocytes.

In the complement system there are two pathways. The Classical and Alternative 

pathways:
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Initiation
C4 C3

Antibody - Antigen 
A ggregates

Spontaneous 
nucleophilic attackC2

* C 1
C3

C3

><C4b2a C3bBbC3 Convertase
Positive 

amplification loopC3b

C5

C4b2a3bC5 Convertase

C5b
C6

C7
C8

C9

C5b6789M em brane A ttack Com plex 
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Diagram 2-1: Overview of the Complement System
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2.2 The Alternative Pathway of the Complement System
The activation of the alternative pathway does not require any antibody - antigen aggregate 

to activate it. Neither does it only attack targets which have been specifically identified by 

antibodies. Instead C3b is attached indiscriminately to all particles, including the hosts own 

cells. A system of control factors then rapidly inactivate the C3b molecules bound to the 

host cells or other non-activating particles, but on surfaces recognised by the system as 

sites of activation these control factors work very slowly on C3b

The exact mechanism by which the first C3b molecules are produced is still unclear. The 

best documented mechanism of the initiation of the alternative pathway involves the 

spontaneous formation of the chemically and conformationally altered form of C3, C3i. It 

is known that C3 is continuously activated at a slow rate in the fluid phase. This is possible 

by small nucleophiles e.g. ammonia, or more probably water, that manage to gain access to 

the internal thiolester see Diagram 2-2 on page 36, or simply the perturbation of the C3 

structure by any means leading to the exposure of the thiolester. C3 with a hydrolysed 

thiolester without the loss of the C3a fragment is called C3i, or C3(H20 ). C3i has a 

molecular conformation similar to C3b and is able to form C3 convertase with Factor B 

(B) in the presence of Factor D (D). These processes operate at a very low rate (0.005% 

per minute) in aqueous solutions, and the probability that the activated C3b or C3i will 

bind covalently to a cell surface before being inactivated is very small. However, if C3b or 

C3i is deposited on an activating surface it can serve as a seed for the positive 

amplification loop.
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Diagram 2-2: Internal Thiolester Structure

The activated thiolester of C3b is able to react with water, to be inactivated, and 

nucleophilic groups e.g. hydroxyl groups (—O H ) to form esters or amine groups (— NH2) 

to form amides. This allows C3b to be deposited onto any biological surface. 

Discrimination between non activating and activating surfaces is a result in the reduction in 

the effectiveness of the regulatory factors to control the amplification process when the 

initial C3b molecules are bound to the activating surface. In the fluid phase factor I with 

cofactor H cleave C3b to form inactive iC3b which can no longer form the C3 convertase 

with B. In contrast when C3b is bound to activating particles both C3b and the C3/C5 

convertase are relatively protected from inactivation by the fluid phase regulatory proteins. 

This appears to be determined by how effective factor H can interact with the surface 

bound C3b. C3b bound to activating particles exhibits a reduced affinity for factor H, 

while the binding of B, factor I and properdin to C3b is unaffected. This suggests that the 

ability to distinguish activating and non activating surfaces is a property of C3b or factor 

H, or is expressed jointly by these two proteins at the surface of a particle see Diagram 2-3 

on page 37.
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Diagram 2-3: The different pathway C3 follows in different environments.
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It is not yet clear what molecular structures are recognised by the alternative pathway. 

Activators include many pure polysaccharide, lipopolysaccharides, certain 

immunoglobulins, viruses, bacteria, fungi, animal tumour cells and parasites. The only 

common factor of these activators is the presence of carbohydrates, but the complexity and 

variety of the different carbohydrate structures makes it difficult to envisage the shared 

molecular determinants which are recognised. One feature shared by most activators is the 

absence of surface sialic acid. Certain extremely weak activators (e.g. sheep erythrocytes) 

of the alternative pathway can be converted to efficient activators by the removal or 

modification of surface sialic acid. This has been observed in many systems establishing 

the connection between low sialic acid content and activation. However low sialic acid 

concentration is unlikely to be the only crucial factor of activation, since in several systems 

activators have been generated by the addition of foreign molecules to cell surfaces without 

the removal of sialic acid.

When C3i or C3b is bound to activators the reduction in the effectiveness of the regulatory 

factors allows the C3b dependent positive feedback process to occur, see Diagram 2-4 on 

page 38.

C3b
C3b

C3b

C3bB

C3
C3bBb

Diagram 2-4: Positve amplification loop for the activation of C3
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The enzyme primarily responsible for the amplification is C3bBb*. or the properdin 

stabilised form of the enzyme. The two subunits C3b and Bb are non-covalently bound. 

The pro-enzyme C3bB is activated by D which cleaves B only when B is bound to C3b. 

This cleavage produces Ba which is released into the serum and Bb which remains bound 

to C3b. The enzyme C3hBh is inherently labile, and spontaneous dissociation of the 

subunits results irreversible loss of enzymatic activity. Properdin can bind to the C3 

convertase complex increasing its stability, slowing its dissociation. Both spontaneous 

dissociation and factor H accelerated dissociation of the Bb subunit are slowed five to ten 

fold. This makes the half life of PC3bBb bound to the activator surface approximately two 

orders of magnitude longer than that of C3bBb on non activating surfaces. This leads to 

efficient C3b deposition on the activator particles and accounts for the high rate of C3b 

deposition that occurs during the amplification phase.

PC3hBh cleaves the a  chain of C3 at exactly the same site as C4b2a to release C3a and 

leave C3b. Therefore C3b, a product of the enzymatic action of C3 convertases on C3, is 

itself a constituent of the alternative pathway’s C3 convertase. Thus a positive feedback 

loop is established which, in the absence of regulatory factors, should continue to cleave 

C3 until the supply of either C3 or B becomes exhausted.

When additional C3b molecules are present C3bBb can function as a C5 convertase. The 

role of these C3b molecules is the same as the role C3b plays in the classical pathway, that 

is, to bind C5. The alternative pathway is an efficient activator of C5 because of the large 

number of C3b molecules bound to the surface and the numerous C3/C5 convertases 

formed on activating surfaces.

*The normal convention to show that this is an active enzyme is to put an overline above the 
enzyme name (as in the diagrams in this chapter). This cannot easily be done in the document 
and I have therefore adopted a double underline to show the active enzyme.
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2.3 The Proteins

2.3.1 C3
C3 holds a key position in the complement system as it is at the activation of C3 that the 

Classical and the Alternative pathways merge. In the classical pathway C3 is cleaved by 

C42a into C3a and C3b. C3a is released into the serum, and C3b is bound to the C3 

convertase C42a to form the C5 convertase C42a3b. C3a is an anaphylatoxin that consists 

of the first 77 amino acids of the a  chain of C3. The removal of C3a causes a 

conformational change in the C3b fragment of the molecule to expose an internal thiolester. 

this thiolester is buried and inaccessible in active C3. It consists of a y - carbonyl group of 

a glutamic acid residue and a thiol group on an adjacent cysteine. Covalent bond formation 

results from the transfer of an acyl group from the thiol to a nucleophilic group contained 

on suitable acceptor molecules, such as polysaccharides.

2.4 The Classical Pathway
The classical pathway is considered to be activated in vivo primarily by the interaction of 

the C lq  portion of the C l complex with immune complexes or aggregates containing IgG 

or IgM. Activation of C l can also be achieved by its direct interaction with a variety of 

polyanions, e.g. DNA, RNA, certain small polysaccharides, and viral membranes, but the 

physiological importance of this type of activation is unclear. C l contains three 

subcomponents: C lq , whose function is the binding of C l to immune complexes and 

membranes; and C lr  and C ls  which are proenzymes. The binding of the C lq  subunit to 

antibody is followed by the autocatalytic conversion of C lr  to an active esterase, which 

then converts C ls  to a similar active enzyme. It is the C ls  that is the active enzyme used to 

cleave C4 into C4a and C4b.

The three chain C4 molecule like C3 contains an internal thiolester. When C4 is cleaved by 

C ls  the C4b fragment formed undergoes a conformational change in its structure to expose 

the thiolester. The thiolester is highly reactive, binding either with the target surface or with 

water. Due to the reactive nature of the thiolester C4b does not dissociate far from the C l 

complex before being deposited on the target surface or becoming deactivated by the water
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in the serum. The formation of surface bound C4b is an amplification step as each C ls  can 

cleave many C4 molecules.

C2 is able to attach onto the surface bound C4b to form C4b2. C2 is cleaved by C ls  in the 

bound C l complex. Therefore only those C2 molecules within reach of the bound CLs_can 

be cleaved, and the C4b2 complexes outside the reach of the C ls  remain inactivated.

Free C2 in the semm can also be cleaved by C ls  bound to surfaces but this cleaved fluid 

phase C2b is incapable of binding to C4b to become C3 convertase. This cleavage of C2 in 

the serum proceeds to a much greater extent than the cleavage of C2 bound to C4b on the 

surface.

The C3 convertase C4b2a has a very short half life due to the irreversible dissociation of 

C2a from the bound C4b. This dissociation is also hastened by factor I and cofactor C4 

binding protein (C4bp). The C3 convertase cleaves C3 at one point to produce C3a and 

C3b. The C3a molecule is released into the serum. A conformational change occurs in the 

C3b fragment to expose a thiolester. It was first thought that C3b combined with the C3 

convertase complex C4h2a to form the C5 convertase complex. It is now thought that there 

is probably the one enzyme (C4b2al which cleaves C3 and C5. C3 can be cleaved when it 

is free in the serum but C5 must be bound to C3b, which itself must be bound to a surface, 

before cleavage by C4b2a can take place. The necessity for C5 to be attached to the 

surface bound C3b before it can be cleaved confines the activity of the complement 

cascade to the targets under attack.

2.5 Activation of the MAC (Membrane Attack Complex)
The lytic activity of the complement system was the first well defined function attributed to 

the system and it is now well established that the five plasma glycoproteins C5, C6, C7, 

C8 and C9 undergo a hydrophilic to amphiphilic transition to produce the typical cytolytic 

complement lesions. Together the terminal components can produce a complex referred to 

as the MAC. The MAC forms transmembrane channels which displace lipid molecules and 

other constituents, thus disrupting the phospholipid bilayer at target cells leading to 

osmotic cell lysis.
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Proteolytic activation of C5 is achieved by the classical (C4b2a3b) or alternative 

(£2bBh2b) pathway C5 convertase. On binding to C3b, C5 undergoes a slight 

conformational change making it susceptible to proteolytic cleavage by the C5 convertase. 

Cleavage of C5 liberates C5a, where as the C5b fragment remains bound to the C3b 

molecule.

The newly activated C5b, loosely bound to C3b, binds C6 to form a C5b-6 complex and 

then to C7 to form a C5b-7 complex. The binding of C7 to C5b-6 complex causes an 

irreversible transition of the hydrophilic precursor proteins to the amphiphilic C5b-7 

complex. This transition is accompanied by an increase of p pleated sheet structure which 

exposes the previously internal hydrophobic domains. Since this change occurs adjacent to 

the surface of C3b bearing membranes, the forming C5b-7 complex is probably in a steric 

configuration that allows the newly formed amphiphilic domain of C5-7 to insert itself 

immediately into the lipid bilayer membrane.

If the activation surface is not part of a phospholipid membrane, such as the surface of 

immune complexes, the membrane binding domain of C5b-7 has no substrate for 

hydrophobic insertion and the complex is released into the serum. This released C5b-7 

complex presents a potential hazard to the host, because it has the capability of inserting 

itself into the membranes of neighbouring cells. Lysis of host cells is prevented by several 

C5b-7 inhibitors found in the plasma. These inhibitors bind to the released C5b-7 

complexes and render them incapable of inserting into membranes. The C5b-7 complex 

bound to single bilayer phospholipid vesicles is visualised in the electron microscope as a 

250 - 300A long rod. The hydrophobic membrane binding site consists of a narrow domain 

and appears inserted into the lipid bilayer. C5b is located distant to the membrane binding 

site, where as both C6 and C7 appear to participate in the hydrophobic domain.

The binding of the three chain C8 molecule to C5b-7 takes place via a specific C5b 

recognition site on C8p. The a  and y chains are covalently linked by disulphide bonds and 

non covalently associated with the p chain. Upon C8 binding to the C5b-7 complex the 

C8oc-y chain inserts into the hydrophobic core of the membrane. It is probable, therefore, 

that the hydrophilic to amphiphilic transition of C8 is restricted to its a-y  chain. The C5b-8
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complex appears as a rod structure similar to C5b-7 but with a slightly increased width of 

the complex adjacent to the membrane surface indicating the location of the C8 in this 

area. Functionally, C5b-8 creates a small membrane pore with an effective parameter of 

~10A. Therefore, the C5b-8 complex is capable of slowly lysing cells, but its principle role 

is to act as a receptor for C9 and to behave as a catalyst in C9 polymerisation to yield the 

highly effective C5b-9 cytolytic complex, see Diagram 2-5 on page 44.

C9 circulates in the plasma as a single chain, hydrophilic, globular protein of 50 - 80A in 

diameter. It binds and rapidly polymerises in the presence of the C5b-8 complex. As many 

as ten to sixteen molecules of C9 may be bound and polymerised by a single C5b-8 

complex. As C9 polymerises it unfolds, giving rise to an increase in the (3 sheet structure 

and the expression of hydrophobic domains. The C9 polymerises to an amphiphilic, tubular 

complex. C5b-8 facilitates the insertion of polymerising C9 into biological membranes. 

This structure is known as the membrane attack complex (MAC), the tubular complex has 

the structure of a 160A long and 100A wide hollow tubule. The 40A long hydrophobic 

domain of the tubule is located on the outer surface of one end of the polymeric complex. 

The other end of the tubule is rimmed by a hydrophilic taurus with a 200A outer diameter. 

The inner surface of the tubule is hydrophilic. The C5b-8 complex is detectable as a 150 - 

160A long appendage attached to the taurus of the poly C9 structure. The hydrophobic 

outer surface of poly C9 is inserted into the lipid bilayer to create a structural and 

functional lesion with an effective diameter of ~100A, see Diagram 2-6 on page 45.
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Diagram 2-5: Schematic drawing of C5b-7, C5b-8, C5b-8,6C9 and C5b-8,poly C9 

bound to a single bilayer phospholipid. The drawings show two side views of the same 

membrane inserted complex rotated by 90°



Each MAC structure occupies an area of ~10,000A2 in the membrane. This causes 

displacement of membrane constituents. The result of inserting large numbers of MACs, 

for example, into bacterial outer membranes causes an increase in the total surface area. 

The surface area of the membrane can increase by more than twofold when large numbers 

of MACs are inserted into it. This dramatic surface expansion may cause the loss of the 

structural integrity of attacked membranes. The displacement of the membrane constituents 

by MACs and the consequent physical alteration and surface expansion of attacked 

membranes may cause cell death independently of the effects caused by transmembrane 

channels.

~30A

Hydrophobic
domain"

~ 1 0 0 A

Diagram  2-6: l)T he subunit architecture of the MAC. 2) Dimensions of the M AC

The pores created by the MACs in the outer membrane of bacteria allows access to and 

degradation of the peptidoglycan layer by lysozyme. Membrane pores also allow the entry
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of Ca2+ ions into the intracellular space of cells which triggers indiscriminately a variety of 

cellular pathways. Pore formation is quickly accompanied by the breakdown of the 

membrane potential and by an efflux of K+ ions and an influx of Na+ ions. Rapid depletion 

of ATP and other high energy phosphates also occurs, but this may be due to 

compensatory ion pumping mechanisms along with cell activation by Ca2+ entry. All these 

effects may contribute to target cell death.
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3 The Serine Proteases

3.1 Enzymes In General
One of the most important functions of proteins is to act as enzymes that catalyse specific 

chemical reactions. The binding of the substrate molecule to the enzyme is an essential 

prelude to the chemical reaction. Extremely high rates of chemical reactions are achieved 

by enzymes. This efficiency is attributed to several factors. First, the enzyme serves to 

increase the local concentration of the substrate molecules at the catalytic site and to hold 

the appropriate atoms in the correct orientation for the reaction that is to follow. Secondly, 

but more importantly, the free energy of the intermediate stages of the catalysed reaction 

are greatly reduced when these intermediate species are bound to the enzyme. This is 

especially the case for the most unstable transition states. Enzymes normally have a much 

greater affinity for the unstable transition states of the reaction than for their stable forms. 

By using the energy available in this highly favourable binding interaction, enzymes help 

their substrates attain a particular transition state, and thus greatly accelerate one 

particular reaction.

No matter how sophisticated an enzyme becomes, it cannot make the chemical reaction that 

it catalyses either more or less energetically favourable. As is true for any catalyst, natural 

or man made, a catalyst reduces the activation energy of a reaction. This increases the rate 

of both the forward and reverse reaction, making the reaction reach its equilibrium point 

much faster than if the catalyst was not present. The catalyst does not and can not shift the 

equilibrium point of a reaction.

3.1.1 Evolution
There are over 1500 known enzymes which raises two main questions. The first is how 

many different types of structures do the different enzymes have and secondly how did 

such a large number evolve so quickly in the relatively short time there has been life on the 

planet.

3.1.1.1 Divergent Evolution
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Divergent evolution can be seen most closely in the serine protease family of proteins. 

After the initial excitement of the discovery that the two oxygen binding proteins 

haemoglobin and myoglobin having a common tertiary structure as well as a common 

function the excitement was rekindled when the same was found out to be true of the 

mammalian serine proteases. The major pancreatic enzymes - trypsin, chymotrypsin and 

elastase are kinetically very similar, catalysing the hydrolysis of peptides and synthetic 

ester substrates. Their activities peak around pH 7.8 and fall off at low pH with a pKa of 

around 6.8. In all three cases the reaction forms an “acylenzyme” through esterification of 

the hydroxyl of the reactive serine by the carboxyl portion of the substrate.

The major difference between the three enzymes is the substrate specificity, trypsin is 

specific for the peptides and esters of the amino acids Lys and Arg; chymotrypsin for the 

large hydrophobic side chains of Phe, Tyr and Trp; and elastase for the small hydrophobic 

amino acids such as Ala. When the crystalline structure of the enzymes were solved, it was 

found that the polypeptide backbones of all three are essentially superimposible (Diagram 

3-1 on page 49), apart from some small additions and deletions in the chain. The difference 

in their specificities is due to just a few changes in a pocket that binds the amino acid side 

chain (section 3.2.3 on page 62).
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Diagram 3-1: Superimposition of porcine elastase (lesa) (red), bovine

chymotrypsin (lgct) (blue) and bovine trypsin (ltpo) (green). The plot is a 

trace on the C alpha atom for each protein.

The remarkable similarity of all three tertiary structures could not have been guessed in 

advance from a comparison of their primary sequences. There is extensive homology 

between the primary sequences, but the sequence identity and homology between elastase, 

trypsin and chymotrypsin is about 50% (Table 3-1 on page 50 showing sequence homology 

between trypsin, chymotrypsin and elastase). C loser examination of the sequence
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homologies shows that 60% of the amino acids in the interior are conserved, but only 10% 

of the surface residues. The major differences occur in exposed areas and external loops. 

With such strong similarity between members of the serine protease family it is obvious the 

serine proteases arose from divergent evolution with a common structure which was 

duplicated by gene duplication which then specialised to catalyse a specific reaction.

Enzyme % Homology

Pancreas

Trypsin 100

a-Chymotrypsin 53

p-Chymotrypsin 49

Elastase 48

Plasma

Thrombin 38

Factor Xa 50

Table 3-1: Sequence homologies in mam malian serine proteases

Subsequently, some non-mammalian serine proteases were shown to be 20 to 50% 

identical with their mammalian counterparts (see Table 3-2 on page 51). It is now known 

that this suggests a very similar tertiary structure. For example the crystal structure of the 

elastase - like protease from Streptomyces griseus has been solved and despite having only 

186 amino acids in its sequence, compared with 245 in a-chymotrypsin it is found to have 

two thirds of the residues in a comparable conformation to those in the mammalian 

enzymes13. The possibility of an ancient ancestor between these bacterial enzymes and the 

pancreatic serine proteases exists but the evolutionary relationships are not clear.
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Enzyme Species % Homology

Trypsin Cow 100

Dogfish 69

Streptomyces griseus 43

Elastase Pig 48

Myxobacter sorangium 26

S. griseus -2 0

Substilisin Bacillus subtilis 0

Bacillus amyloliquifaciens 0

Table 3-2: Species differences in serine proteases.

3.1.1.2 Convergent Evolution
The first crystal structure of a bacterial serine protease to be solved, subtilisin from 

Bacillus amyloliquifaciens, revealed an enzyme of apparently totally different construction 

from the mammalian serine proteases14. This was not unexpected, since there is no 

sequence similarity between them. But closer examination shows that they are functionally 

identical as far as substrate binding and catalysis are concerned. Subtilisin has the same 

charge relay system, the same system of hydrogen bonds for binding the carbonyl oxygen 

and the acylamido NH of the substrate and the same series of subsites for binding the acyl 

portion of the substrate as have the mammalian serine proteases (Diagram 3-7 on page 66). 

This appears to be a case of convergent evolution. Different organisms, starting from 

different tertiary structures, have evolved a common mechanism.
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Another example of convergent evolution is that of the endopeptidase thermolysin form 

Bacillus thermopoteolyticus and the carboxypeptidases15,16,17. There is no sequence or 

structural similarities except that the active sites are very similar, containing in each case a 

catalytically important Zn2+ ion. The enzymes consequently appear to have similar 

catalytic mechanisms.

3.1.1.3 Convergence or Divergence
All the evidence points to the fact that the mammalian serine proteases have evolved 

through divergence, but that their common catalytic mechanism with subtilisin has 

developed through convergence. Other cases are not so clear cut. The accepted procedure 

for distinguishing between convergence and divergence is to count the number of common 

characteristics. If there are many then divergence is more likely, if there are few then 

convergence is more likely. These are18:

1. The DNA sequences of their genes are similar.

2. Their amino acid sequences are similar.

3. Their three dimensional structures are similar

4. Their enzyme - substrate interactions are similar

5. Their catalytic mechanisms are similar

6 . The segments of polypeptide chain essential for catalysis are in the same 

sequence (i.e. not transposed)

These criteria are in descending order of strength. If 1 and 2 hold, the rest will follow, in 

most - but not all - cases. Lysozyme from hen egg and lysozyme produced by the 

bacteriophage T4 have no detectable similarities in their amino acid sequence. Yet, by 

showing that criteria 3 - 6  hold, a strong case has been made for divergent evolution19,20. 

Finally sometimes structure has been conserved through evolution but function has 

changed, that is criteria 3 and 4 do not hold, for example, the binding protein haptoglobin 

appears to have diverged from the serine proteases.
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3.2 The Serine Proteases

3.2.1 Scope of the family
Of the many ways available to control the biological activities of proteins, e.g. induction or 

repression of their synthesis at the translational or transcriptional level, specific 

modification or destruction are the most direct. Many biological systems are controlled by 

such methods as these, and the serine protease family of enzymes plays a major role in 

many of these systems. The most widely studied of the serine proteases are the 

gastrointestinal serine proteases in higher animals, but serine proteases also play an 

essential role in blood coagulation21, in the Complement system, bacterial sporulation22, 

and fertilisation23.

Intrinsic to the process of digestion in mammals is the breakdown of dietary protein by the 

pancreatic serine proteases. These pancreatic digestive enzymes are among the most 

thoroughly studied of all enzymes, principally because they are extracellular enzymes that 

are easily separated and purified in large quantities.

3.2.2 The Reaction Mechanism
Peptide and synthetic ester substrates are hydrolysed by the serine proteases by the 

acylenzyme mechanism24 shown in Diagram 3-2 on page 54:
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Diagram 3-2: Acylation mechanism for the hydrolysis of a peptide or 

synthetic ester by a serine protease.

The enzyme and substrate first associate to form a non-covalent enzyme - substrate 

complex held together by physical forces of attraction. This is followed by the attack of the 

hydroxyl of Ser 195 on the substrate to give the tetrahedral intermediate. The intermediate 

then collapses to give the acylenzyme, releasing the amine or alcohol. The acylenzyme then 

is hydrolysed to form the enzyme - product complex.

3.2.2.1 Mechanism before crystal structure
Before the crystal structure of chymotrypsin was solved it was known from solution 

studies of the serine proteases that the imidazole ring of His 57 increases the reactivity of 

Ser 195. The imidazole base of His 57 increases the nucleophicity of the hydroxyl of Ser 

195 by acting as a general base catalyst (see Diagram 3-3 on page 55). The activity falls 

off at low pH according to the ionisation of a base of ~pKa 7, a characteristic value for a 

Histidine residue.
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Diagram 3-3: imidazole ring of His 57 acting as a base to increase the nucleophilicity

of the hydroxyl group on Ser 195.

3.2.2.2 Mechanism afterwards - The Charge Relay system

When the crystal structure of chymotrypsin was solved what was not expected was that 

Asp 102 played an important role in the catalytic reaction. This catalytic triad of Asp 102, 

His 57 and Ser 195 is now called the “charge relay system”25. This charge relay system is 

found in all serine proteases. Although the carboxyl group is completely buried in the 

interior of the protein, it is surrounded by polar residues and buried water molecules.

In this discussion it is assumed that the pKa of Asp 102 is 6 .8  and that the imidazole of His 

57 is essentially neutral above pH 4.0. This leads to the ionisation of the active centre 

around pH 7. The mechanistic importance of these assignments is that the aspartate ion of 

residue 102  can act as a chemical base which can readily accept a proton from the histidine 

side chain during catalysis26. Together, Asp 102 and His 57 shuttle protons (charge) back 

and forth from enzyme to substrate, and so the mechanism can be best described as 

nucleophilic attack with general base catalysis by His 5727 and Asp 102.

The mechanism scheme shown in Diagram 3-4 on page 57 and Diagram 3-5 on page 58 is 

consistent with most experimental data relating to the hydrolysis of peptides esters or 

amides by trypsin or chymotrypsin. In the first step (I), substrate and enzyme form a 

Michaelis complex. Nucleophilic attack by the hydroxyl group of Ser 195 follows. As the 

reaction proceeds, the hydroxyl twists around the Ca—Cp bond and forms a covalent bond 

to the substrate carbon at step I-H. In concert with this, a proton is transferred from the Ser 

hydroxyl group to the Ne2 of His 57. From there it is eventually delivered to the N of the
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peptide bond in the substrate. As a result of this proton transfer, the proton previously 

bound to the Ngi of His 57 is transferred to the carboxyl group of Asp 102, which acts as a 

base in this reaction.

Whether the Asp - His - Ser proton shuttle is concerted or stepwise remains in question. If 

the mechanism is concerted the negative charge of Asp 102 would be neutralised while 

negative charge develops on the carbonyl oxygen of the substrate. The imidazole ring 

would remain neutral throughout the reaction; thus unstable intermediates due to charge 

separation would be avoided28. In fact charge development in the transition state in 

chymotrypsin catalysis does appear to be small. The shuttle may be stepwise if the energy 

requirements of charge separation (negative charges on the substrate and Asp 102 and a 

positive charge on His 57) are offset by a more favourable entropy of activation in a two 

step process29.
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One might favour the concerted mechanism because it might be expected that the precise 

alignment of the shuttle, which has been observed in all serine protease structures, evolved 

so that the entropic advantage of the two step process over the concerted process was 

minimised. Thus the enzyme could exploit for increased reaction rate the energy saved in 

eliminating charge separation. If this were not the case it would seem unnecessary to use 

both an Asp and an His for the general base catalysis. The Asp could be eliminated and the 

His could act as the base.

After the attack by Ser 195 on the substrate, a short lived tetrahedral intermediate is 

formed (II). This intermediate is stabilised by the covalent bond to the enzyme and by a 

number of hydrogen bonds. The following structural features of the tetrahedral 

intermediate are primarily from the crystallographic determination of many different 

protease - inhibitor structures.

The negatively charged substrate oxygen in the tetrahedral intermediate is stabilised by the 

hydrogen bonds from the amide Ns of residues 195 and 19330. Another hydrogen bond 

forms between the carbonyl group of Ser 214 and the a-N  of the substrate31. Comparisons 

of the kinetics of hydrolysis of specific trypsin and chymotrypsin substrates with and 

without the hydrogen bonding capacity of the a-N  suggests that the Ser 214— a-N  bond 

may not form in the Michaelis complex. These results show, however, that this hydrogen 

bond does play a role in the transition states between the intermediates and possibly in the 

tetrahedral and acyl enzyme intermediates.

One explanation for the exceptional catalytic powers of enzymes is that the enzymes have 

evolved so that they optimally bind the transition - state structures in the reaction they 

catalyse rather than the substrates themselves. The hydrogen bonded structure in the serine 

protease - substrate transition state is an example of transition state stabilisation, for the 

oriented hydrogen bonds can help to speed up the reaction by smoothing down the highest 

barriers between the intermediate states. It is also known from studies on the serine 

proteases that the active site of the enzyme is complementary in structure to the transition 

state of the reaction, a structure that is very close to the tetrahedral adduct of Ser 195 and 

the carbonyl carbon of the substrate. Furthermore, the structure of the enzyme is not 

distorted when it binds to the substrate.
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At step II - III, the now unstable C—N bond is broken and the first product of hydrolysis, 

an amine, is free to diffuse away taking with it a proton from the enzyme. At the same 

time, the bound part of the substrate rearranges to a chemically modified acyl enzyme 

intermediate (III). At pH 8 , N 14/N 15 kinetic isotope effects32 show that the C— N bond 

rupture is partially rate determining for the hydrolysis of acetyl tryptophanamide by 

chymotrypsin. The rate determining step for amide hydrolysis, however, may vary from the 

formation of the tetrahedral intermediate to its breakdown, depending on the pH and the 

structure of the substrates.

The breakdown of the acyl intermediate (IV - VI) is the microscopic reverse of steps I - III, 

this time water is the attacking group. At step V - VI, the second product is formed. It is an 

acid which loses a proton to the solution and becomes negatively charged. For the first time 

(if the proton shutde is concerted), there are two charges in the system. These two negative 

charges repel each other and help to dissociate the second product from the enzyme, 

regenerating free enzyme.

The presence of a carboxyl group of high pKa and a neutral side chain of His 57 with a low 

pKa would suggest two compelling evolutionary reasons why the Asp - His - Ser 

arrangement should be universal to serine proteases. First, by neutralising a negative 

charge on Asp 102 rather than generating a positive charge on His 57, during formation of 

the tetrahedral intermediate, there would be no unfavourable charge separation. This would 

contribute to reducing transition state internal energies, and thus to rate enhancement. 

Second, if the charged Asp 102 is to be a proton acceptor at physiological pH values its 

pKa must be raised and it must have access to a proton donor. The imidazole of His 57 is 

ideally suited both to insulate Asp 102 from solvent (so raising the pKa of the buried 

carboxyl group) and to serve as a proton conductor, transferring charge from the carboxyl 

group to the substrate. It is also important to note that both the reverse separation of the 

pKa values of Asp 102 and His 57 and the structure of trypsin at pH 7 and pH 8 , which 

shows a symmetric interaction between the charge on Asp 102 and His 57, are unlike the 

situation expected in aqueous solution and reflect a unique micro-environment for these 

groups.

3.2.2.3 Other possible mechanisms
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Recent theoretical studies33 point to a different mechanism than the one described above. 

The above mechanism involves the concerted transfer of two protons (step I in Diagram 3- 

4 on page 57) from Ser 195 to His 57 and from His 57 to Asp 102. The acceptance of this 

mechanism in the chemical community might have been motivated by the recognition that 

ion pairs are not stable in non polar environments so that Asp'102 His+57 must be less 

stable than Asp 102 His 57 in non polar active sites. This, however overlooks the fact that 

the active site around Asp 102 is very polar.

Most quantum mechanical calculations that considered only the catalytic triad without its 

surrounding protein supported the concerted charge transfer34. Calculations that attempted 

to include the effect of the protein active site on the catalytic triad35 contradicted the 

concerted reaction mechanism, but these latter calculations did not include the key effect of 

the solvent around the protein and did not calibrate the intrinsic energy of the ion pair on 

reliable experimental information. This prevented a quantitative assessment of the 

feasibility of the concerted charge relay mechanism.

An alternative mechanism to the concerted double proton transfer mechanism is 

electrostatic catalysis. Instead of the proton shuttle of the concerted mechanism only the 

one proton moves position. It is the proton from the hydroxyl group on Ser 195 that is 

transferred onto His 57. This causes His 57 to develop a positive charge while both Asp 

102  and the substrate carbonyl each develop a negative charge.

In order to clarify the role of Asp 102 the following three points have to be considered:

1. Asp 102 is left in its ionised form and serves to stabilise the ionic transition 

state.

2. Asp 102 is used to accept a proton from His 57 in the transition state.

3. Asp 102 helps in orientating His 57 into a proper position to interact with the 

substrate contributing entropically to the rate acceleration.

The results of using a microscopic model of the catalytic site shows the replacement of Asp 

102 by a neutral residue results in destabilisation of the transition state by more than 4 

kcalsmol'1. This is because the replacement of Asp 102 by a non charged residue leads to a 

major reduction in the negative potential on His 57, destabilising the transition state.
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Whether or not Asp 102 is used to accept a proton from His 57 in the transition state in the 

concerted proton shuttle mechanism could not be explored quantitatively by early quantum 

mechanical calculations36 since the actual difference between the two options is smaller 

than the error associated with the neglect of the surrounding water molecules and with the 

errors associated with calculations of the intrinsic gas phase energy of the reacting 

fragments. However it is possible to calculate the difference between the two mechanisms 

without the uncertainty associated with quantum mechanical calculations of large systems. 

The calculations indicate that the concerted proton shuttle is strongly unfavourable as 

compared to the electrostatic model. To realise this from a simplified point of view, it is 

important to recognise that the ionised form of Asp 102 is even more stable in the protein 

active site than in water, as is apparent from its observed pKa being equal to 3 in 

chymotrypsin and the fact that this group is stabilised by three hydrogen bonds37. The more 

stable the negative charge on Asp 102, the less advantageous a proton transfer from His 57 

to Asp 102 would be.

From mutations studies and free energy calculations on them it is not possible to rule out 

that the role of Asp 102 is to fix His 57 in the correct conformation for the catalysis. 

Mutating Asp 102 to Asn in trypsin gives a mutant where, in the crystal structure, His 57 

adopts two different conformations. One of these conformations has the His rotated out of 

the catalytic site where it cannot interact with Ser 195. The population ratio of this rotated 

conformation to the one where His 57 is inside the active site is 1:2. However, the 

configuration with His 57 in the correct position appears to stabilise a tautomer that is 

unable to accept a proton from Ser 19538. The free energy associated with the 180° 

inversion of His 57 in the active site of the Asn 102 mutant although significant (2 

kcalsmol1) is not entropic in nature but simply the free energy required to move an 

incorrect orientated group to the correct orientation.

3.2.3 The 3D Crystal Structure Of The Serine Proteases
Comparative modelling works best when there are several experimental structures. In the 

serine protease family there are 16 trypsin like serine proteases which have their crystal 

structure solved. References to the solved three dimensional crystal structures for members 

of the serine protease family can be found in Table 3-3 on page 63 and Table 3-4 on page
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64. With so many crystal structures solved, there is a large amount of real structural 

information available to help in the understanding of the serine protease enzyme 

mechanism and aubstrate specificity.

Protein Source
o

Resolution (A) Reference

Trypsin Human 2 .2 39

Bovine 1.5 40

Porcine 1.8 41

Streptomycin Griseus Trypsin S. Griseus 1.7 42

a  Chymotrypsin Bovine 1.68 43

y Chymotrypsin Bovine 1.6 44

Human Leukocyte Elastase Human 2.3 45

Elastase Porcine 2.5 46

Salmon 1.61 47

a  - Lytic protease Lysobacter 2 .0 48

Protease A & B S. Grseus 1.8 49 50 
>

Urokinase Human 2.5 51

Kallikrein Porcine 2.05 52

Tonin Rat 1.8 53

y Thrombin Human 2.5 54

Serine Protease II S. Fridiae 1.6 55

Table 3-3: Experimentally known three dimensional structures of trypsin like Serine

Proteases.

Protein Source Resolution (A) Reference
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Protein Source Resolution (A) Reference

Subtilisin Bacillus SP. 2.4 56

M - Protease Tritrachium Album Lumber 2.4 57

Endopeptidase Tritirachium Album Limbur 1.5 58

Thermitase Thermoactinomyces Vulgaris 1.37 59

Table 3-4: Experimentally known three dimensional structures of Subtilisin like

Serine Proteases.

3.2.3.1 The Catalytic Triad

The catalytic triad is common to all serine proteases (trypsin like and substilisin like). 

Within the trypsin like serine proteases the sequence and structure around His 57, Asp 102 

and Ser 195 are the most highly conserved regions. The catalytic triad is in the exact same 

spatial arrangement for each member of the trypsin like serine proteases, see Diagram 3-6 

on page 65. The remarkable spatial similarity of the catalytic triad in human trypsin and 

Subtilisin (see Diagram 3-7 on page 6 6 ) show the importance of the spatial relationship 

between the residues involved in the catalytic mechanism. Any deviation from the optimal 

arrangement significantly affects the enzymes catalytic effectiveness.
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Diagram 3-6: Stereo view of the catalytic triad  from several trypsin like serine 
proteases superimposed, l trn  (red), lep t (green), 2sfa (blue), lsg t (yellow), 2hnt

(cyan), lesa (magenta).
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Diagram 3-7: Stereo view of the catalytic triad for hum an trypsin ( ltrn )  (red) and 
substilisin (lsbt) (green) superimposed.

3.2.3.2 T he s u b s tra te  b in d in g  cleft

Nature has provided a rare opportunity for determining the structures of the enzyme - 

substrate complexes of trypsin and chymotrypsin with polypeptides. There are many 

naturally occurring polypeptide inhibitors that bind to trypsin and chymotrypsin very 

tightly because they are locked into the conformation that a normal flexible substrate takes 

upon binding60. They do not hydrolyse under normal physiological conditions because the 

amino acid that is released on the cleavage of the peptide is constrained and cannot diffuse 

away from the active site of the enzyme. On removing the constraints in the pancreatic 

trypsin inhibitor (by reducing an — S— S—  bridge in its polypeptide chain) the peptide
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bond between Lys 15 and Ala 16 is readily cleaved by trypsin. The structures of trypsin, 

its complex with the basic pancreatic trypsin inhibitor complex, and the free inhibitor have 

been solved at resolutions of 1.4,1.9 and 1.7A, respectively61. These are all high resolution 

structures with critical atomic positions known to within 0.1 to 0.2A.

3.2.3.2.1 The Binding Site
The binding site for a polypeptide substrate consists of a series of subsites across the 

surface of the enzyme. By convention they are labelled as in Diagram 3-8 on page 67. The 

substrate residues are called P (peptide), the subsites S. Except at the primary site Si for 

the side chains of the aromatic substrates of chymotrypsin or the basic amino acid 

substrates of trypsin, there is no obvious well defined cleft or groove for substrate binding. 

The subsites run along the surface of the protein.

0 0 0 0 o o
/ / / / / / / / / /  / /
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R ,’

pr
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Cleavage 

(the “scissile” bond)

Diagram 3-8: The labelling of the subsites (S) on the enzyme and the substrate

residues (P).



3.2.3.2.2 The Primary Binding Site (Si)
The binding pocket for the aromatic side chains of the specific substrates of chymotrypsin 

is a well defined slit in the enzyme 10 to 12A deep and 3.5 to 4.0 by 5.5 to 6.5A in cross 

section62. This gives a tight fit since an aromatic ring is ~6.0A wide and 3.5A thick. A 

methylene group is ~4.0A in diameter, so the side chain of Lys or Arg is bound nicely by 

the same shaped slit in trypsin. More significant than the tight fit of the side chain into the 

pocket, in trypsin, there is a carboxylate group at the bottom of the pocket from Asp 189, 

This Asp at residue position 189 in trypsin forms a salt linkage with the positively charged 

ammonium or guanidinium groups in Lys and Arg respectively. In the elastase structure 

the two Gly at the mouth of the pocket in chymotrypsin and trypsin are replaced by bulky 

Val (Val 216) and Thr (Thr 226). This prevents the entry of large side chain into the 

pocket, and provides a way of binding the small side chain of Ala.

There are certain important hydrogen bonds found in all the enzymes. The Oca^y] of the 

reactive bond has a binding site between the backbone NH group of Ser 195 and Gly 193. 

The hydrogen bonds made there are very important because this oxygen becomes 

negatively charges during the reaction. There is also a hydrogen bond between the NH part 

of the N-acylamino group of the substrate and the Ooutonyi of Ser 214.

There is a vast literature of site directed mutagenesis studies carried out on the serine 

proteases63. These studies have generally concentrated on the origins of the specificity at 

the primary binding site Si. Two such studies using trypsin variants D189K*64 and 

D189S65 indicate that the presence of a negative charge at the base of the binding pocket is 

essential to high level catalysis by trypsin. Further studies reveal that it is not the number 

of direct contacts made with the charged residue but the accessibility of the negative charge 

to the Lys / Arg substrate which the binding affinity depends on in the trypsin Si binding 

pocket. Both these studies indicate that the role of Asp 189 in trypsin is twofold, it 

provides both tight binding affinity as well as a high acylation rate66. Other studies point to 

the fact that for trypsin homologs, if the charge residue is any other residue that forms part 

of the Si binding pocket other than position 189 then the charge is partially sequestered.

* This notation indicates that in this particular Trypsin variant the expected aspartic acid residue 
found in wild type Trypsin at position 189 is mutated to lysine. The same notation is used for all 
other variants of the wild type enzymes.
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This is the probable explanation why Asp 189 is so strongly conserved in the trypsin 

homologs.

Another important residue which plays a role in the high specificity of trypsin for Lys / 

Arg residues at the Pi position of the substrate is the backbone conformation of Gly 216. 

In all available crystal structures of trypsin and chymotrypsin, two hydrogen bonds are 

formed in an antiparallel p sheet fashion with the backbone amide group of Gly 216. The 

backbone conformation at Gly 216 differs between trypsin and chymotrypsin. Mutagenesis 

studies were carried out where trypsin was made to have chymotrypsin specificity by 

changing the residues at certain positions in and around the Si binding pocket. Theses 

studies showed that the backbone conformation which Gly 216 adopts can affect the 

preference of the Si site by a factor of 104. The mechanism by which Gly 216 functions is 

likely to be through promoting accurate scissile bond positioning67. Because Asp 189 of 

trypsin also plays a crucial role in this function, it appears that the identity of the amino 

acid at position 189, and the backbone conformation at Gly 216, must be matched in order 

to permit efficient and specific catalysis by trypsin and chymotrypsin.

3.2.3.2.3 Sites Si—S2—S3

The hydrogen bond between the N-acylamino NH and the Ocarbonyi of Ser 214 initiates a 

short region of antiparallel p sheet between the residues Ser 214, Trp 215 and Gly 216 of 

the enzyme and the amino acids Pi, P2 and P3 of the substrate.

3.2.3.2.4 Site Si* - The Leaving Group Site
There is a leaving group site that is constructed to fit L-amino acids68. The contacts with 

the enzyme are predominately hydrophobic, which accounts for the lack of exopeptidase 

activity with the enzyme, since this would require binding a —C0 2' in a non polar region.
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4 Molecular Modelling

The term molecular modelling covers an extensive area of topics ranging from simple ball 

and stick representations of small molecules on a computer screen to complicated 

molecular dynamic simulation studies of complex multi molecule systems. The common 

factor is that the molecule or molecules under investigation are considered as a set of co

ordinates to which the appropriate equations are applied and that the relevance of any 

results is dependent on how accurately the equations used simulate ( i.e. model ) the 

appropriate effects, in the real world, on the real system.

4.1 COMMET

‘COMMET’ is the name given to the molecular modelling package which was used 

throughout the project. It was developed in house over a number of years by Dr D.N.J. 

White and J.N. Ruddock. It runs on a transputer which usually resides within a Personal 

Computer (PC) or clone.

Although physical models are still used at times, the vast majority of molecular modelling 

carried out today is performed using computers. These modelling programs can be divided 

into two groups. The first of these groups are the single dedicated programs69. In these 

cases the program will usually start by loading a file containing the structural data of a 

molecule. The program will then proceed to perform a single function such as an energy 

minimisation or calculation of partial charges before terminating, writing any required 

results to the screen or file. An example of the above group of modelling packages is the 

Amber4 suite of routines70. This force field and suite of routines was developed to build 

models of proteins and then to carry out energy minimisation calculations or molecular 

dynamic simulations of the protein models. This is accomplished by an individual 

programme to carry out the different steps of the modelling. There are three separate 

programmes which must be run to simply build the protein model from the amino acid 

sequence. Then the main programme can be run to carry out either energy minimisation 

calculation or molecular mechanic simulations on the model built
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The other approach is to have a package that integrates many different options75. This 

means that it is possible to stay within the single package while performing a wide variety 

of operations. With the increase in computer power and memory size the integrated 

packages are becoming more useful and therefore more used. An example of an integrated 

package is the ‘COMMET’ system ( Concurrent Molecular Modelling Environment on 

Transputers) which has been developed within the laboratory. This package was originally 

developed from the VAX program COGS76. COMMET is a graphics based, menu driven 

package. It is useful to examine the various functions within such a package to obtain an 

overview of the options covered by the general heading of ‘Molecular Modelling’.

4.1.1 List Of Functions Available Within COMMET

4.1.1.1 Files

This menu contains all the file operations available from within the system. These include 

reading, writing, inspecting, and erasing of files, changing the current directory and the 

ability to choose if a new structure being loaded will replace the currently resident model or 

be loaded alongside the current structure.

4.1.1.2 Build

This menu contains all the options available for constructing molecules. Building can occur 

in several ways. Either by the addition or deletion of individual atoms, or by adding amino 

acid residues to build up a polypeptide chain. There is also a ‘sketch molecule’ option 

where the user can sketch the required molecule on the computer screen with the mouse 

and indicate which atoms are above or below the plane. This option will then invoke an 

energy minimiser from which the final structure can be obtained. The ‘protein build’ option 

allows the user to edit the amino acid sequence and the backbone structure of a polypeptide 

chain. For smaller molecules the option ‘assemble fragment’ allows the user to join two 

molecules by the elimination of two hydrogen atoms.

4.1.1.3 Edit
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The edit menu is used for the removal of all or part of a molecule, for joining or breaking 

bonds, and for selecting a section of a polypeptide chain to be viewed.

4.1.1.4 Change

There are two parts of this menu, the first involves changing certain properties relating to 

the molecule itself i.e. such things as bond length, bond angle, atom types and atom 

charges. The other menu items are for making changes to the default programme 

parameters i.e. the colour of the backbone, whether the depth cue option is on or off, and 

the hydrogen visibility.

4.1.1.5 Display

This menu allows the user to change the way that the molecule is displayed on the screen. 

Initially the model is displayed as a simple wire framed model. The following options are 

available:

‘Simple Space Filled’

‘CPK Surfaces’

‘Dot Surface’

‘Stereo’

‘Alpha carbon backbone’ 

‘Beta Spline’

‘Ribbon’
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displays the atoms of a molecule as simple circles 

draws the molecule as intersecting spheres of van der 

Waals radii

as CPK surfaces but the surface of the spheres are 

represented by dots rather than a solid surface 

red and green images are displayed, where one of the 

molecules is rotated several degrees (nomally 6°) 

around the screen’s y axis to produce a stereo image 

when viewed with the appropriate coloured glasses 

single line joining each Ca with its neighbouring Ca in 

a protein or polypeptide

as for alpha carbon backbone but using a beta spline 

smoothing technique to produce a smooth curve 

as for beta spline but with several splines side by side 

to produce a ribbon effect



‘Ball and Stick’ draws the atoms as small balls and the bonds between

atoms represented by cylinders

It is possible in this menu to produce screen displays that are suitable for being 

photographed and to highlight selected areas of the molecule.

4.1.1.6 Show

In the show menu the user can highlight various selected groups, display several different 

atomic properties, and determine which atoms are likely to be sterically crowded or 

involved in hydrogen bonding.

4.1.1.7 Compare

This menu allows the superimposition of molecules and then, if required to pulse between 

them to help show any differences and similarities.

4.1.1.8 Calculate

The menu contains the options for calculating the ‘steric congest’77 at any atom or pair of 

atoms where it is possible for a stereoscopic reaction to take place. ‘Delre Charge’71 will 

calculate the charge on a molecule using the Delre method. The menu also contains options 

to calculate both the surface area and volume of any selected molecule.

4.1.1.9 Search

This menu contains the routines that attempt to find the global minimum energy position of 

molecules using different methods. SITAR76 is used to fmd the global minimum of amino 

acid side chains in polypeptides. The ‘Global Minimum76,77 option is used for cyclic 

polypeptides. The ‘Monte Carlo’72 routine will attempt to use the Monte Carlo technique 

and can be applied to any molecular situation. The ‘Z axis Permutation’ is used for small 

molecules that contain one or more rings.
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4.1.1.10 Energy

This menu contains most of the other options that are required to calculate the energy of 

the system. The options are as follows:

‘Torsion Angle Profile’ and ‘Ramachandran M ap’73 calculate the energy profile 

plots for rotation about one and two torsion angles respectively.

‘Pattern Search’74 and ‘Newton Raphson’ 74 minimisations are energy 

minimisation routines that use specified techniques for 

minimisation.

‘Auto Docker’ attempts to dock a molecule into a specific site on another 

molecule.

‘Molecular Dynamics’74 is the simulation of the movement of the atoms in the 

molecule above absolute zero so that the atoms will have 

vibrational motion.

‘Chain Annealer’ is used when an alteration has been made to a polypeptide chain 

and involves minimisation along only the section the backbone 

chain where the user specifies.(i.e. where the alteration took place)

4.1.1.11 Macromolecules

This menu contains the options that deal with the analysis and properties of the primary 

sequence of a protein. The options allow you to align sequences, make secondary structure 

predictions, and calculate the hydrophobic character of the chain along its length-

Also within this menu are the options to generate structures for loops within a polypeptide 

structure. A search of the Brookhaven database is possible to find a fragment of another 

protein with a similar sequence to the loop being built, or build the structure of the loop by 

examining all possible conformations the loop can adopt.
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4.1.1.12 Geometry

This menu allows the user to measure simple geometric properties such as bond length, 

valence angle and torsion angle.

4.1.1.13 Transformations

The options in this menu allow the user to manipulate the position of any model by 

translation or rotation, or to scale the size of the model on the computer screen.

There is also a rotation bar at the bottom of the screen which enables rotation about the x, 

y or z axis. This option is available in any menu or submenu and is very useful when 

selecting individual atoms from large molecules.

4.1.1.14 Summary

Within such a modelling package as ‘COMMET’ there is a wide range of operations that 

can be applied to a range of different molecular situations. It is advantageous at this stage 

to try and make a degree of distinction between different sorts of operations.

The operations can be split into actual calculations and graphical operations. The graphical 

presentation of the molecule is an important part of the molecular modelling package. 

Looking at different views and different representations of the model can give a greater 

increase in understanding of the model. The data produced by calculations can more easily 

be interpreted if they are displayed in a graphical context. All this can help the scientist in 

deciphering what is happening to the model under certain conditions.

The other main area is the actual calculations. These can be subdivided depending on the 

degree of parameterisation which is required for the function. For the majority of the 

calculations there is either no requirement for extra parameters or the number of extra 

parameters required will be small and relatively quick to work out. These calculations 

include the calculation of the distance between two atoms, Delre charge etc. The other 

extreme is where the number of parameters required for a calculation becomes a major 

factor in the accuracy and speed of the calculation. This is the case for molecular

75



mechanics calculations. In the case of molecular mechanics the number of parameters 

required determines the range of atom types that the molecular mechanics routine can cope 

with and the accuracy of the final answer is dependent on the quality and number of the 

parameters in the force field.

4.2 Molecular Mechanics

4.2.1 Introduction

Molecular mechanics can be considered as a technique for calculating many properties of 

molecular systems based on the ability to determine an estimation of the energy for such 

systems in any atomic configuration. When calculating the energy it is assumed that all the 

interactions within a molecule can be treated in an empirical manner.

Even though molecular mechanics is empirical in nature it can be justified, to some extent, 

from quantum mechanics. This is done by examining the Bom - Oppenheimer 

approximation. This states that in quantum mechanics it is possible to separate the motion 

of the nuclei in a molecule from the motion of their associated electrons, with very little 

effect on the calculated results. This is used to find the electronic structure of a molecule 

by considering the nuclei to be fixed in a given configuration. It is equally valid though, to 

investigate the motion of the nuclei. Here it can be considered that the surrounding electron 

density leads to the various interactions represented in molecular mechanics by the 

potential functions.

The other main supposition in molecular modelling is that the interactions between atoms 

within a molecule can be divided into various distinct types. The terms used for each of 

these interaction types and the empirical parameters that these terms require are what is 

known collectively as the force field.

The total structural energy of a molecule is a simple sum of the energy calculated for each 

of the terms. This is known as the steric or strain energy. Thus the total steric energy Es of 

a molecule can be given by :
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E . =  E b + E e +  E . + E lib+ E c + ( + E X)

Where Eb is the energy relating to bond stretching or compression, Ee is the energy for 

valence angle distortions, E© is the component relating to the energy from torsional 

barriers, E„b is the non bonded contribution from the van der Waals potential, Ec is the 

coulombic energy arising from charge interactions, and EooPb is a summation term over all 

of the nominally trigonal planar atoms to account for the increase in potential energy due to 

pyramidisation. Ex represents the possibility that other terms may be required such as cross 

terms that could be added to the force field to increase accuracy.

For each term in the force field there are usually several possible equations that could be 

used and in each of these cases there are usually several different ways that the required 

parameters can be selected.

For the majority of these terms the parameters consist of a ‘natural’ or ‘strain free’ value 

and one or more force constants that determine how difficult it is to deform the property 

from this ‘strain free’ value. The interaction types not using this approach are the torsional 

angle twist where periodicities and barrier heights are used and the non bonded interactions 

which use separate terms to cover attraction and repulsion plus a single term for coulombic 

interactions.

The basic idea of using an empirical force fields had been proposed as early as the 1930’s69 

but serious attempts to use molecular mechanics were not made until 194675,76,77 Due to the 

lack of reliable information on which to base the parameters and the difficulties involved in 

carrying out large calculations at that time, the more wide spread use of molecular 

mechanics did not start until the 1950’s71. Since then its importance has increased steadily 

with the growth in computer power and with the increase in the number of computational 

approaches that have been devised and implemented.

For a molecule with N atoms it is possible to imagine a 3N dimensional surface that 

describes the energy of the molecule in its electronic ground state as it is affected by the 

values of the 3N co-ordinates (x, y, z for each of the N atoms). This surface is usually 

called the Bom - Oppenheimer surface or the potential energy hyper surface. Depending on
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the symmetry of the molecule under investigation there will be one or more locations on 

this surface that will correspond to the lowest energy position of the molecule. Thus, as 

well as a method to determine the energy of the molecule in any conformation there is also 

a need to manipulate the molecular co-ordinates to allow for a search of the potential 

energy hyper surface so that the position or positions of minimum energy can be found.

This is done using a minimisation technique that will usually examine the forces on the 

atoms and then apply transformations to each of the co-ordinates in an attempt to obtain a 

configuration with smaller average forces. This process is repeated iteratively until a stable 

conformation is reached. One of the main drawbacks of these optimisation methods is that 

the minimum is found by heading towards the nearest local energy minima and this is 

generally not the global minimum energy for the given structure. As well as this, some 

minimisation techniques can terminate at an energy maxima or get caught at a saddle point 

in the potential energy surface, see Diagram 4-1 on page 79.
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Local Maxima

Saddle Point

Local Minima

Global Minima

Conformational Space

Diagram 4-1: Likely elements on a Potential Energy Surface

Some of the various methods of energy minimisation are described later. In most cases the 

Newton - Raphson technique is used as it provides a rapid method of reaching the local 

minima. It is not, though, the optimum technique when the initial structure is highly 

distorted from the minimum energy position. Because of this some molecular mechanics 

programmes initially use a different method such as steepest descent to get closer to the 

minimum before using the Newton - Raphson method.

One of the problems with the Newton - Raphson technique arises with large deformations 

and in some cases it can result in a situation of increasing oscillation for the affected 

atomic positions. To counteract this a variation of the line search technique has been 

implemented which recognises the start of such an oscillation and prevents it by reducing
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the maximum atomic shift until a reduction rather than an increase in the energy is 

obtained.

4.2.2 Why use Molecular Mechanics

With all the problems associated with the production and use of a molecular mechanics 

force field there is a need to consider why molecular mechanics should be attempted. 

Results, after all, can be obtained from various experimental techniques and from ab initio 

quantum mechanic calculations which do not require any empirical parameters.

The main reason that molecular mechanics has become so popular is the speed and 

convenience with which it is possible to produce the required results. This is especially true 

because of the large range of data that can be obtained from molecular mechanics 

calculations. For example, if an investigation of a new molecule is required then to get the 

structure alone experimentally would require that the molecule under investigation be 

synthesised, followed by the need to determine the molecular conformation using one of 

several methods such as x ray diffraction.

Thus each result obtained from molecular mechanics calculations, such as an estimate for 

the heat of formation, would, if determined experimentally, require its own experimental 

procedure. So in many cases such calculations can save a considerable amount of time, 

effort and money. This is, however, not to say that such experimentation should cease. The 

whole basis of molecular mechanics is that it is an empirical technique and so will never 

totally replace the more accurate experimental approaches. Indeed it is the expanding 

database of such experimental data that allows for the continually improving quality of 

molecular mechanics force fields.

4.2.3 Quantum Mechanics

What then of quantum mechanical calculations. They too can be used to find the minimum 

energy of a molecule by computational methods alone. The principal problem here is that 

when carrying out a quantum mechanics calculation there is always a trade off in accuracy 

against calculation time, depending on which basis of atomic wave functions is chosen.
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With the simpler wave functions the calculations are completed more rapidly, if still orders 

of magnitudes slower than the molecular mechanics calculation for the same molecule. 

Even a simple basis set is in itself an approximation and so the results themselves are also 

approximate72. The use of a more accurate basis set will improve the accuracy of the 

results but this will also substantially increase the computational time required for the 

calculation. Another advantage with molecular mechanics is that the computation time 

increases with roughly the square of the number of atoms involved, whereas, with quantum 

mechanics, it increases with the fourth power of the number of atoms. This means that, 

although molecular mechanics calculations are regularly performed on systems of hundreds 

of thousands of atoms, such systems are still out of the applicable range of ab initio 

quantum mechanics calculations, even on the fastest supercomputers.

There are also several popular quantum mechanical techniques that neglect specific orbital 

overlaps to speed up the calculations but these bring with them the need to use some 

empirical parameters in an attempt to make up for the resulting deficiencies, hence the term 

semi - empirical which is given to these methods. Even with the resultant increase in speed 

none of these methods come close to the accuracy of molecular mechanics within the same 

computational time scale.

Quantum mechanics calculations are still very useful, especially when investigating 

situations that are not reliably parameterised to molecular mechanics or when studying 

reactions, which are difficult or impossible to simulate using molecular mechanics.

4.2.4 Force Fields

As previously stated the force field consists of both the form of the potential functions used 

to calculate each energy component and the related parameters. Diagram 4-2 on page 82 

shows the main interaction types for which potential energy functions will be required.
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Bond Stretch B ond Bending

non - bonded interaction
Torsional Tw ist

out o f plane bending

Diagram 4-2: Interaction Types Considered In A Force Field

4.2.4.1 Bond Stretching

The Morse curve73 describes how the molecular potential energy of a diatomic molecule 

varies as a function of the intemuclear separation. The function has a minimum at the 

distance corresponding to the equilibrium bond length (lo) of the molecule. The region of
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the curve close to the minimum fits a parabola ( general equation y =  x2 / 4 a )  so that for 

an individual bond we can write:

v, =y2k \(\-\0)2

where Vi is the potential energy, ki is the force constant and 1 is the current bond length. 

Therefore 1 - 10 is the deviation of the actual bond length from the equilibrium value.

Alternatively the diatomic molecule can be considered as two masses joined together by a 

Hookean spring where the force between the two masses is proportional to the extension.

dv
The restoring force is given b y  , the extension is given by (1 -1 0) , and the force

dl

dv
constant is ki. Integrating =  - k 1( l - l 0) with the boundary condition that v, = 0

dl

when 1 =  10 gives:

Vi = K k , ( l - l 0) 2

The value of the force constant is very large for all combinations of bonded atoms and this 

ensures that 1 is never very different from lo so that the Hookean, harmonic, or parabolic 

approximations hold for all chemically sensible values of 1, see Diagram 4-3 on page 84.
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M orse Type Function
E

—  Harmonic Potential

Diagram 4-3: Morse and Harmonic Curves For Bond Length

The expression for Ei given above is applied to all pairs of bonded atoms in a complex 

molecule, with a different value of ki for each unique combination of bonded atom types, 

and the individual values summed to give Eb:

E b =  X K k , ( l - l 0) 2
1

4.2.4.2 Valence Angle Bending

A similar expression to that for Eb can be derived for valence angle bending:

v e = X k e( 0 - 0 o) 2

The force constants ke are sufficiently small that in strained molecules the angle 0 deviates 

from 0o to such an extent that the harmonic approximation is no longer valid, see Diagram 

4-4 on page 85. The situation can be improved by adding a single anharmonic correction 

term78 to give the following equation:

E „ = X K [ k e ( e - 0 o ) 2 - k 8’ ( 0 - 0 o ) 3 ]
0
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where ke’ is a supplementary constant for anharmonicity correction. However, although 

there is a different value for the force constant ke for each unique grouping of three bonded 

atom types, the values of ke’ is the same for all atom type triplets.

 M orse Type Function
 Harmonic Potential

— —  Harmonic Potential with 
added cubic term

E

Diagram 4-4: Morse, Harmonic and Harmonic with Cubic Curves

This works well except in the few cases where the angle starts off being greatly deformed 

from the strain free value. A situation where this could easily occur is during the energy 

minimisation of a molecule that has been sketched into a molecular modelling package. In 

these cases the cubic correction term can become dominant over the squared term. Because 

of this the total energy will decrease if the angle is further deformed away from the strain 

free value, an obviously unrealistic situation. To prevent this from occurring an extra term 

can be added which will, in these extreme cases have a greater effect than the cubic term 

and so force the angle back towards a more reasonable value. The fifth power is often 

chosen because it does not drastically increase the calculation required as it can be 

produced from the product of the square and cubic terms:

e„ =XK[k,(0-eo)J-k,'(e-et)5+k,"(e-8t)5]
6

4.2.4.3 Torsional Strain
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The next term to be considered is that relating to the torsional energy, EM. It had long been 

thought that the need for a torsional energy term in a force field was only due to the 

deficiencies in the other parameters, most specifically the non bonded interactions, and that 

if these could be optimised properly then this term would not be required. There have been, 

however, several attempts to device force fields that do not contain a torsional term but 

these have failed even in the simplest of cases. They could not, for example, even 

reproduce the correct internal rotational barrier height for ethane79 without giving incorrect 

answers for other properties such as angles.

The variation of potential energy with bond torsion for a simple molecule such as ethane is 

given by the expression:

vM = M k a ) ( l- c o s 3 o ) )

where co is any one of the H—C—C— H torsion angles about the central C— C bond (it 

does not matter which torsion angle is chosen as they are all equivalent by symmetry) and 

kto is the barrier to free rotation in ethane (~3 kcalmol'1). This equation can be generalised 

to:

vto = Vi ^(o[l "f" s cos(nco)]

where s, the phase of the barrier, is either +1 for a torsion angle where the minimum energy 

conformation corresponds to a staggered arrangement of bonds (e.g. ethane), or -1  where 

the minimum energy conformation is an eclipse arrangement of bonds (e.g. ethene). The 

periodicity of the barrier, n, depends on the nature of the two central atoms comprising the 

torsional angle; n=3 for the threefold periodic barrier in ethane, and n=2 for the twofold 

periodic barrier in ethene.

It cannot be assumed in general that the torsion angles around a bond will be symmetrically 

equivalent, so it is necessary to calculate a contribution to from each individual torsion 

angle around the central bond (i.e. there are nine individual torsion angles around any 

Cjp3— Csp3 bond). For any one torsion angle therefore:
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Vffl = K ^ - [ l  +  s c o s ( n c o ) ]

^  (0

where Nm is the total number of unique torsion angles around the bond concerned. For 

example, there are four torsion angles around any Csp2 = Csp2 double bond so that the 

previous equation would have to be evaluated four times, once for each torsion angle, in 

order to get the molecular potential energy due to the Csp2 = Csp2 bond torsion.

Even this picture is a little simplistic for practical purposes; consider the torsion around the 

central C—C bond in n-butane. There are three types of torsion angles :H— C— C— H, 

C— C— C— H and C— C— C—C. While the periodicities of the first two are essentially 

threefold the major component of C—C— C— C is onefold (any C— C—C— C starting 

arrangement is not repeated during a 360° torsion rotation and vw is much larger for 2,3- 

dimethylbutane than for ethane), with a minor threefold addition. In such cases it is 

necessary to use a short Fourier series for calculating v©. In general therefore vro can be 

written as:

E 0> =  X  % { I H 1 +  s c o s ( n c o ) ]  +  k „ ' [ l  +  s c o s ( c o ) ] }

CO -^*(0

In most cases k<o’ is zero but exceptions include Csp3—Csp3—Csp3—Csp3 and Csp3—Csp2— 

Namide—Csp3 (peptide bond).

4.2.4.4 Non Bonded Interactions

There are two types of non bonded interactions, the Coulombic interactions between the 

charges on the atoms, and the van der Waals interactions between the atoms themselves.

4.2.4.4.1 Coloumbic Interactions

A real molecule consists of the positively charged atomic nuclei surrounded by the 

negatively charged electrons in their appropriate orbitals. This results in a charge 

distribution that extends throughout the volume of the molecule. The calculation of the



total coulombic energy is very computationally intensive and as such is not particularly 

feasible for the time scale of molecular mechanics calculations.

Instead force fields containing a charge term use either a system where the charge is 

distributed as point charges on the atom nuclei or one that assign dipoles along each bond. 

With the dipole approach the usual method is for each pair of bonded atoms to be given a 

dipole depending on the atoms in the bond. This means that their values are easy to assign 

but require relevant values for the dipole to be known. The dipole values also do not take 

into account the effect that any other atoms bonded to either of the relevant atoms might 

have.

The calculation of point charges will usually take these effects into account but the 

calculation of a charge distribution is itself not a simple problem and can require a 

substantial amount of computation. This point charge distribution, though, needs only be 

calculated once as the charges are usually calculated just from the connectivities and the 

atom types and thus should be equally valid whatever the atomic positions.

In the point charge case the energy can be obtained from the sum of the pairwise 

interactions between all the possible combinations of monopoles i.e.

E  = 332Y ^ 2 i
ij ^ i j

where qi and qj are the charges (in units of electrostatic charge), on the atoms i and j 

separated by the distance r^ and D is the dielectric constant. The scaling factor of 332 

converts the units of the energy to kcalmol1. Diagram 4-5 on page 89 shows a single 

pairwise monopole interaction.
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Diagram 4-5: Single Pairwise Interaction

In the dipole case the total energy for the charge interaction is obtained from the sum of the 

interactions of the pairs of dipoles80 i.e.

E c =  ^ - ^ [ c o s O - S c o s a j  cosotj I

where D is the dielectric constant, ry is the separation of the two dipoles, <X> is the angle 

between the dipoles, p, and Pj are the values of the dipole, and oti and ctj are the angles each 

dipole makes to a line connecting them. Diagram 4-6 on page 90 shows a single dipole 

interaction
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Diagram 4-6: Single Dipole Interaction

The ‘intramolecular’ dielectric constant is not the same as the dielectric constant of the 

bulk material but is at present impossible to measure. Consequently D is often set to a 

constant value between l 81 and 5, an action which has undesirable computational 

consequences. This is because of the term ry in the denominator of the above expressions. 

Computing ry means taking the square root of ry2, which would normally be computed first 

- a relatively time consuming process best avoided if possible.

A solution to the problem outlined above is to use a ‘distance dependent’ dielectric where 

D is set equal to ry so that the denominator becomes ry2, removing the requirement to 

calculate a square root. There is also a physical justification for this procedure. Allowing 

molecules to diffuse into an evacuated volume leads to an increase in the dielectric constant 

of the fluid, and up to a point the more molecules present the higher the dielectric constant. 

If two point atomic charges in a molecule are very close together there is little possibility of 

other atoms or molecules interposing themselves between the charges and the dielectric 

constant of the intervening space will be low. On the other hand if the charges are widely 

separated the chances of matter appearing between them is high and this would lead to a 

higher dielectric constant. Therefore the distance dependent dielectric is not only 

computationally efficient but physically justified.
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4.2AA.2 Van Der Waals Interactions

Whereas with all the other terms the choice of potential function is quite often just between 

the level of complexity of a particular form, the van der Waals interaction is different in 

that there are a number of alternative forms for the equations. All of these equations 

attempt to reproduce the typical shape of the van der Waals interaction as seen in Diagram 

4-7 on page 91.

Diagram 4-7: Typical Van Der Waals Interaction where r0 is the equilibrium distance.

Lennard Jones Potential82

E

r

Buckingham Potential83

In both equations A, B and C are constants peculiar to each unique pair of atom types (e.g. 

Csp3—Namide* Csp2—Osp3 etc.), and ry is the intemuclear separation of atoms i and j. The non



bonded potential energy is the summation if the individual energy over all unique pairs of 

non-bonded atoms in the molecule.

Although the Buckingham potential is used in some molecular mechanic programmes it has 

two major drawbacks. It is assumed in a molecular mechanics calculation that non-bonded 

atoms i and j will always remain non-bonded, so that vrij will be a minimum at the 

equilibrium separation r0 of i and j and will increase ever more steeply as r  ̂/  r0 becomes

smaller than 1. The Buckingham potential turns over when = 1.5A, and the energy

starts to decrease. While this may be physically realistic in some instances (i.e. a bond has 

been formed), it is not what is required for molecular mechanics calculations. The 

behaviour of the Buckingham potential is particularly troublesome, unless precautions are 

taken, when molecular mechanics calculations are used to “three dimensionalise” atomic 

co-ordinates taken from a two dimensional model of a molecule.

The second disadvantage of the Buckingham potential is a purely computational one. The 

‘exponential’ function is computationally very expensive to calculate, where as the r 12 term 

in the Lennard Jones potential can be evaluated by squaring the already calculated r 6. This 

is an important consideration when dealing with large molecules.

The use of a simple pairwise potential has been criticised84 because it neglects the many 

body effects and that the van der Waals interactions would be affected by the electron 

density of any other atoms that happened to be- between the two atoms in question, in a 

similar way to the coulombic interaction. Despite this it is still used as these effects appear 

to be insignificant compared to the advantages obtained in calculation time.

A greater problem with the van der Waals interaction is that in both of the above equations 

the atoms are assumed to be spherical. This generalisation results in two main problems.

The first is that some types of atoms, such as oxygen, have lone pairs of electrons with the 

result that, in the real molecule, the repulsion between such a lone pair bearing atom type 

and another atom will vary depending on the location of the lone pair electrons with respect 

to the atom centres. That is, the repulsion will be greater when a lone pair is between the 

atoms’ centres than when they are not. It is possible to simulate this situation by adding
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lone pairs of electrons as pseudo atoms but this will necessarily result in an increase in the 

number of parameters required in the force field.

A second problem is that bonded hydrogen is found to have an electron density centred not 

at the hydrogen nucleus but instead is shifted along the bond towards the other atom in the 

bond. Some force fields attempt to produce this effect by moving the centre of the hydrogen 

atom about 10% along the bond when calculating the non-bonded interactions8586. This has 

been found in some cases to reproduce the crystal packing of hydrocarbons better than 

when the centres are taken at their normal positions. This approach will increase the 

computational time as the “new” atomic centre for each hydrogen will need to be 

recalculated at every point required.

4.2.4.5 Out of Plane Bending

Nominally trigonal planar atoms, such as C^ 2 or N^de, can deform under strain in such a 

way as to convert the trigonal planar arrangement into a trigonal pyramid, with the trigonal 

atom at the apex of the pyramid and the three substituents in a plane either above or below 

the trigonal atom, Diagram 4-8 on page 93.

Diagram 4-8: Out Of Plane Bending

Pyramidalisation obviously leads to an increase in the potential energy and this is 

accounted for as follows:

E ^ = X K k x(Z - 1 8 0 ) 2
X
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where kx is the force constant for out of plane bending and % is the “improper” torsion 

angle. If the substituents around the trigonal atom are labelled 1, 3, 4 and the trigonal atom 

labelled as 2, % is defined by 1— 2— 3-—4 (Diagram 4-9 on page 94). Obviously for a 

minimum energy trigonal planar arrangement the 1— 2— 3*—4 torsion angle is 180°, while 

for a trigonal pyramid it deviates from 180° by an amount related to the height of the 

trigonal pyramid.

Diagram 4-9: Improper Torsion Angle

4.2.4.6 Cross Terms

There are several cross terms that can be used to simulate the interaction between different 

terms in the force field. The main ones used are the stretch - bend, torsion - stretch and 

bend - bend interactions. These terms can be included, if required, to create a force field 

that is as complete as possible and are especially useful when the force field is being used 

to try and reproduce information such as vibrational frequencies. Ideally it would be 

advantageous to have all these terms in a force field. However, in the current situation 

where a force field is required for a large number of atom types without the need to 

reproduce infra red vibrational frequencies then it becomes necessary to examine these 

terms and decide if the increase in accuracy is justified when considering the extra 

difficulties in optimising the force field.
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4.2.5 Force Field Parameters
Deciding on the form of the force field is only the first part of the process of building the 

force field. Next, the level at which the parameters should be specified must be decided.

For example, the strain free bond angle 0O can be specified at many different levels of 

complexity. At the simplest level it can be defined so as to have a value relating only to the 

central atom type (e.g. for Csp3, 0O = 110.5o87). The next level of complexity is to define an 

appropriate strain free bond angle for each of the possible bond angles where the types of 

the three atoms involved in the angle are used (e.g. for Csp3— Csp3—Csp3, 0O = 109.5088). 

Finally it is possible, to some extent, to take into account the other atoms connected to the 

central atom by having a different reference angle for each possible degree of substitution 

(e.g. for Csp3 with 3 H, H— C!p3—H, 0O = 108.2089).

It can be seen that this will give rise to a large variation in the number of possible 

parameters and the same is also true of most of the other parameter types. For example, the 

torsional barrier (or barriers) can be specified for all four atom types involved or by taking 

just the central two atoms, a situation that will require fewer parameters. It is found, as 

might be expected, that the greater the complexity and number of parameters, the more 

accurate the optimised force field becomes. This greater accuracy is of course, made at the 

expense of the ease and speed of the force field optimisation.

To examine this balance further it is necessary to inspect the numbers involved. To try and 

optimise a full MM374 types force field for the 30 or so atom types which would be 

required to cover a reasonable cross section of organic molecules would require:

•  ~ 300 parameters for each k], lo, A and B

• ~ 2 ,0 0 0  values for ke, ke‘, and 0o

• ~ 10 ,000  values for vn

This is an impossibly large force field to optimise as not only would each parameter have 

to be optimised in turn but it would be necessary to make sure that there were a significant 

number of molecules in the optimising structure set that used each of the possible 

parameters. That is, to get a reasonable optimisation for a parameter it is necessary to
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possess information on a sufficient number of cases where that parameter will be used. So 

if very specific conditions for the application of a certain parameter are set, it can be 

expected that the parameter will be employed less often than a less specific parameter. 

Thus there will be a need for more structures if each parameter is to be utilised a similar 

number of times compared to the less specific cases.

If such a large force field is impractical to optimise then a way must be found of reducing 

the number of parameters that need to be optimised. The obvious way of doing this is to 

use a lower degree of complexity for the parameters. For example, as stated earlier, 

reducing the specificity of the torsional barrier to just specifying the types of the central 

two atoms will have a drastic effect on the number of parameters required. A problem with 

this approach is that in going from the most complex but unimplementable levels to the less 

complex levels there is often an unacceptable drop in accuracy of the results produced by 

the force field. There is no point in getting the number of parameters that need to be 

optimised down to a workable total if it is then impossible to produce any reasonable 

results with them.

One possible method for overcoming this problem is that if a pattern can be observed in the 

parameter values it may be possible to come up with some general rules from which one 

can calculate the parameters from a combination of some of the already present parameters 

and a few new ones. For example, calculation of reasonable bond stretching force constant 

can be done using the bond length parameters and a few general parameters that can be 

used for all possible combinations of bonds90.

4.2.6 Minimisation of Steric Energy

As well as producing a value for the steric energy of a system a method is also required to 

alter the co-ordinates of the atoms in the system until an equilibrium is reached. The 

minimisation can be executed in one of two co-ordinate spaces, namely internal or 

Cartesian.

The internal co-ordinates of a molecule are its bond lengths, valence angles, and torsion 

angles. All other quantities such as non-bonded distances are dependent functions of the
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internal co-ordinates. It is usually computationally inconvenient to perform minimisations 

in internal space, the vast majority of programmes use Cartesian co-ordinates.

The Cartesian co-ordinates are the x, y, and z co-ordinates (usually in A) of its constituent 

atoms. There is some redundancy built into the Cartesian co-ordinates. For any molecule of 

N atoms it requires 3N Cartesian co-ordinates to define the molecule in space, but only 

3N-6 co-ordinates are necessary to completely define the atomic positions in internal co

ordinates.

4.2.6.1 Pattern Search

A simple method of energy minimisation in Cartesian space is as follows. First the steric 

energy of the starting structure is calculated. Then some initial shift value is chosen (say

0.1 A), which is added to the x co-ordinate of the first atom and the steric energy is re

evaluated. If the energy has gone down the atom is left at its new position and the new 

steric energy becomes its current steric energy. However ,if the new steric energy went up 

then twice the current shift value ( in this case 0.2A) is subtracted from the x co-ordinate 

(xi+0.1 to XpO.l), the original steric energy is retained as the current value, and the new 

steric energy is calculated. If the new energy is lower than the current steric energy then the 

new atomic position is accepted and the current steric energy is updated. If, on the other 

hand the energy goes up again the co-ordinate is reset to its original position and the 

present steric energy is retained. This process is repeated for all the co-ordinates for all the 

atoms in the molecule. The entire process above is repeated until no further lowering of the 

steric energy is possible. At this point the shift is halved (in this case to 0.05A) and the 

above algorithm repeated. The calculation is terminated when the shift reaches a suitably 

small number (e.g. 10*5A). This is a robust procedure which is guaranteed to find a local 

energy minimum.

In the pattern search procedure as each successful atomic shift is found it is noted. When 

all the atoms have been sampled the programme has stored a pattern of successful moves 

for all atoms in the molecule. On the basis of “what was good once will be good again” the 

entire pattern is repeatedly applied until no lower energy can be found. The pattern of
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directions is then applied with a halved shift value until no further lowering of the energy is 

possible. This process is repeated until the shift is sufficiently small. The shift is then reset 

to half of its original value, another pattern of successful moves established by trial and 

error, and the pattern applied as before. The entire process is repeated until either no 

successful moves can be found or the shift becomes too small.

4.2.6.2 Newton Raphson

The total force for each co-ordinate is zero when a molecule is in a local energy minimum, 

but it should be noted that this condition is also true at an energy maximum or a saddle 

point. The force is given by minus the partial derivative of the steric energy Es with respect 

to each co-ordinate and each component of this should be zero, i.e.

where N is the number of atoms in the molecule and x is a 3N long vector of the current 

atomic Cartesian co-ordinates.

The aim of any minimisation technique must be to systematically alter the positions of the 

atoms until the partial derivative of the steric energy with respect to each co-ordinate is 

zero and that such a system should be both consistent and reliable in its results.

Assuming that the energy function is at a point xs close to the minimum energy then it is 

possible to expand the steric energy in a Taylor Series. As xs is close to the minimum it 

will be reasonable to truncate the series after the linear terms:

Taking the case where the value of 3x is such that xs+8x is the location of the minimum, 

then at this minimum the derivatives of the energy with respect to each of the 3N co

ordinates must be zero. Thus differentiating:

i =  l,3 N
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Ydv,(xs+9x) a sv,(x,)s a yv,u,) 
3x, fi 9xj S w  9xi3xj

This can be more simply shown in matrix notation as:

AVs(xs + dx) = AVs(xs) + Fs9x = 0

where AVS is the gradient of Vs, and Fs is the matrix containing the second derivatives of 

Vs. Fs is a 3N*3N square matrix of the second partial derivatives Vs” (XiXj) of the steric 

energy with respect to the Cartesian co-ordinates. AVs(xs) is a 3N long vector of the first 

partial derivatives V s’ (Xj) of the steric energy with respect to Cartesian co-ordinates. By 

subtracting AVs(xs) from both sides and then multiplying by the inverse matrix of Fs the 

following equation can be obtained:

3x = -F t-'.AVs(xs)

where Fs"1 is the inverse of Fs.

The Newton Raphson algorithm calculates the elements of the matrix F. This being the 

matrix of second derivatives of Vs, i.e.

3xi5xj

4.2.6.3 Full Matrix Newton Raphson

The full matrix Newton Raphson converges extremely rapidly (5 or 6  iterations at most 

from a point within the radius of convergence) upon a local energy minima. Ideally at an 

energy minimum, as stated previously, the components of A V s(Xi) should be zero but in 

practice 5 or 6 iterations will reduce the rms component value to around 10"7 kcalmol ’A"2 

which is close enough to zero.

The full matrix Newton Raphson algorithm has a number of disadvantages particularly for 

large molecules. The full matrix of second derivatives is extremely time consuming to
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compute and invert, and the radius of convergence is very small, so that even calculations 

on carefully constructed models of molecules with apparently good geometry will not 

converge.

4.2.6.4 Block Diagonal Newton Raphson

It is possible to trade the radius of convergence for rate of convergence by using 

approximations to the full matrix Fs. The most commonly used approximation results in 

the block diagonal Newton Raphson method. In the full matrix9192, a derivative for each 

possible combination of co-ordinates would be calculated. The co-ordinates that will 

produce the greatest effect on each other are those relating to the same atom. If just the 

interaction of these co-ordinates are used the result will be a block diagonal matrix93

Atom 1 

1 2  3

Atom 1 x

y

o

o
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0  0 Vj(z,z,)

Diagram 4-10: Block Diagonal Newton • Raphson

Only the second derivatives in the collection of 3x3 blocks along the leading diagonal are 

calculated, all of the others are set to zero. The matrix is symmetrical, so that within each 

block there are only six unique elements (N.B. there are no derivatives involving a co

ordinate of one atom with a co-ordinate of another, Xj and Xj always come from the same 

atom). Block diagonal Newton Raphson is popular because the radius of convergence is 

large, encompassing most of the cmdest of models usually constructed with a molecular 

graphics system and convergence to the local minimum is reasonably quick; 50 - 100 

iterations is typical for most calculations on small organic molecules. There are some 

relatively minor drawbacks to the Block Diagonal Newton Raphson (BDNR) algorithm, 

because of the construction of the F matrix BDNR is not very good at adjusting torsion 

angles in really flexible molecules. If this is a problem then BDNR can be used as a 

preminimiser (BDNR will optimise almost all structures so that they are within the radius 

of convergence of the full matrix Newton Raphson algorithm in short computation times) 

for full matrix Newton Raphson which does not have this problem.

4.2.6.5 Calculations of Derivatives

The derivatives required can be determined in two ways. In the simplest of these, numerical 

derivatives, the atomic co-ordinates are moved by a small amount and the energy 

recalculated. These energies can then be used to estimate the required derivatives. The 

second method, analytical derivatives, are determined by applying calculus to the various 

steric energy terms.

This second method has the advantage that the minimisation is faster as it does not require 

the multiple energy calculations of the numerical method. For analytical derivatives the 

following sum of derivatives is required:
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y i ® .

Each derivative can then be expanded to include all the contributions towards the total 

energy i.e.:

3 E _3E  3l_ 3E 30 3E 3co 3E 3r 3E cfy 
3x 31 3x 30 3x 3co 3x 3r 3x 3% 3x

The following are typical analytical derivatives with the original formulae from which they 

were determined;

• Bond Length

If the energy for each bond is given by:

E , = ^ k , ( l - l 0)2 

= X k , ( l2 -11„+lo)

then its derivative will be:

dE
^ -  = X k , (2 1 -2 1 0) 
dl 

= k , ( l - l „ )

Angle Distortion

If the energy for each angle is given by:

E 6 = K k 6 [ A e 2 - k 9 ' [ A03-.0004 A6 II
where:

A8 = (0-eo)

then its derivative will be:
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d E e

d(A 0) 

where S = sign of A0

d(A 0)

= y2 k e[2A0 -  S k e ' (3A02 -  0 .0 0 2 A04)]

=  1
d0 

. dE e _  dQe d(AQ) 

d0 ~  d (A 0) d0

•  Torsional Twist

If the energy for each torsion angle is given by:

Eco = v i (1+ scos(co)) + vn(1+ scos(nco)) 

then its derivative will be: 

dE,<0 _= -v,ssin(G)) -  vn(sn sin(nco)) 
dco

•  O ut of Plane Bending

If the energy for the out of plane bending is given by:

Ex = K sk x(180»-lxD

then its derivative will be:

dE

where s = sign of x  

•  Non Bonded Interactions

If the energy for the non - bonded interaction is given by:
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E r = A r ^  +  B r”12

then its derivative will be:

^5i. = -6Ar-7-12B r-13
dr

• Coulombic Function

If the energy for each coulombic interaction is given by:

then its derivative will be:

As well as calculating the absolute values of the individual forces it is also necessary to 

determine the direction of each force so that the overall force on the molecule can be 

determined. In the case of the Newton Raphson method the second derivatives need to 

determined

For numerical derivatives the equations used are as follows:

dE s E s( x i + 3 ) - E s( x i - 3 )

dx= 2d

The second derivative of the above equation is:

32E s E . ( x, + 3 )  + E , ( x, - 3 ) - 2 E , ( x i)

dx2 d2



4.2.6.6 Reducing Oscillation During Minimisation

It is found in some situations that have bad initial structures that from one iteration to the 

next the root mean square (rms.) force will increase rather than decrease. The reason for 

this is often that the initial situation has two or more atoms whose van der Waals surfaces 

are slightly overlapping. This produces a large gradient on the energy surface and causes 

the atoms to be moved an accordingly large distance apart. In many cases this can move 

one or more atoms such that the result is an even greater overlap with another atom, which 

will lead to a steeper gradient and so the cycle will continue resulting in a  larger effect 

every time.

When the shift on an atom is calculated it is usually compared with a maximum shift and is 

reduced to this value if it is found to be greater. The reason for this is that a very large 

steep slope would result in the atom moving an unrealistic distance. The technique used to 

counter the oscillation problem is to allow the programme to alter the value of this 

maximum shift. There are two ways this has been implemented.

The simplest case is where the energy of the system is calculated at the end if an iteration. 

This is compared with the lowest energy found so far and, if greater than this by an amount 

determined empirically from the current maximum shift, the co-ordinates are reset to those 

at the beginning of the iteration. The maximum shift is reduced and the minimisation is 

repeated again until either the energy gain is not more than the empirical level or the energy 

decreases. The main disadvantage with this algorithm is that when using numerical 

derivatives it increases the time per iteration by about 20%. A major advantage is that the 

energy is available at the end of each iteration which provides a far more user friendly 

indication of the progress of the minimisation than a record of the rms. force.

The second approach uses the fact that it is possible to get an estimate of the energy by 

summing up the individual energies while going through the atoms in the molecule 

calculating the numerical derivatives. This has the advantage that it requires little extra 

calculation. The drawback is that if the energy of the molecule does start to rise it will tend 

to appear in the iteration after the bad shift has been made. Thus, if this algorithm is used,
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the programme is required to save the last two sets of atomic positions and return to the 

earlier of these if any substantial energy rises occurs.

While both these systems have been found to work well, especially in situations involving 

separate highly charged molecules, the first is preferred because in systems that do require 

this option there is little time advantage over the second method and this is more than 

compensated for by the advantage of being able to see exactly how the energy is varying 

during the course of the calculation.

106



5 Methods and Materials

5.1 Sequence Alignment
The first step to starting a homology modelling project is to find a protein of known 

structure, the parent, that is ‘homologous’ to the unknown protein structure, the target. The 

term homologous is used to imply that the proteins in question have a similar sequence and 

a similar overall fold structure.

It has been known for some time that proteins from different sources and with quite diverse 

function can have a similar primary sequence. These sequences are grouped into what is 

known as protein families. The primary sequences of these proteins are similar even over 

different species. The more diverse members of a protein family may have a completely 

unrelated function. For example some of the more diverse and distantly related members of 

the serine protease family have lost their enzymatic ability. The variability of different 

residues at different positions in the primary sequence of these families allows us to 

develop ideas on the likelyhood of an amino acid being substituted for another amino acid.

The first is that certain amino acids will be substituted in the same position in the primary 

sequence of different proteins in a family more often than certain other residues. This is 

because of the environment the amino acids find themselves in at that particular position,

i.e. polar, non-polar, buried or exposed to the solvent. If an amino acid is substituted for a 

different amino acid that is of similar size and chemical properties then very little change in 

the structure of the protein will result because of this substitution. Whereas if the amino 

acid was substituted for one of different size and more importantly different chemical 

properties then the substitution will cause strain in the area around the substitution in the 

protein structure. This can cause the protein to have different properties and be less well 

adapted at carrying out its biological role in the organism. Therefore amino acids with 

similar chemical properties and size will more readily be substituted in a primary sequence 

than amino acids with different chemical properties and size. This allows us to calculate 

the probability of an amino acid being substituted for another amino acid in the primary 

sequence.
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Secondly, statistically if a certain amino acid substitution happens less often than it is 

likely to then that substitution must be a radical change, and substitutions that occur most 

frequently are conservative substitutions. The problem with this statistical approach is that 

comparisons of the rate of substitutions and the choice of the most favourable substitution 

can be affected by the data base from which the information was extracted. The statistical 

method relies on looking at families of proteins. The actual results you get depend on 

which protein family is used in the analysis. Therefore, analysis of several protein families 

is more likely to lead to a1 more true representation of the probability of certain 

substitutions taking place than analysis of one or two protein families.

The statistical approach leads to the development of series of mutation matrices showing 

the likelihood of an amino acid being substituted for another amino acid. There are several 

matrixes that are commonly used in sequence alignments to calculate the probability that 

an amino acid will be substituted by another amino acid e.g. the PAM94 and Blosum95 

series of matrices.

Sequence alignment routines look to maximise the score obtained using a mutation matrix 

while aligning two or more protein sequences. The routine searches for the optimal 

alignment of the sequences by trying to maximise the score between each pair of residues 

at each position in the alignment. Penalties are added to the score if a gap is introduced to 

the alignment and there is a penalty for increasing the gap size. There are a few different 

algorithms used in producing sequence alignments but the most popular alignment 

algorithm is the Needleman and Wunsch algorithm96. All the alignments depend on which 

mutation matrix is used to score substitutions. Different matrices produce quite different 

results, especially over less closely related sequences. This is due to the different statistical 

methods and different data sets used in producing the mutation matrix. Another major 

factor in producing sequence alignments is the gap creation and gap extension penalties 

that are used in the alignment algorithm.

The sequence alignment routines can produce good results while aligning two sequences 

together, but they are not so successful at multiple sequence alignments. When carrying out 

multiple sequence alignments it is not a feasible option to carry out a pair wise score for
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every position but only over a selected range. It is therefore very possible for multiple 

sequence alignment routines not to give the best alignments possible. In general the 

multiple sequence alignment produced can be improved upon by manual alteration to the 

alignment.

A new improvement to sequence alignment routines is to take the secondary structure of 

the protein into consideration while carrying out sequence alignment. Studies of protein 

families show that secondary structure features are conserved more strongly in members of 

a protein family than the primary sequence is. It is also known that insertions and deletions 

are much less likely to occur in an a  helix or p strand structure. Unfortunately this comes 

into its own only if the crystal structure of a protein which is a member of the family is 

known so that an accurate description of the secondary structure can be calculated. This 

procedure is much better at aligning distantly related sequences than the procedures that do 

not take secondary structure into consideration.

5.1.1 Homology scan of Brookhaven Database
To model a sequence with unknown structure it must be homologous to a protein with 

known structure. Therefore a search of the database of proteins with known crystal 

structures is required. The largest most up to date database of known protein structures is 

the Brookhaven database97. This database is available on line over the internet at several 

sites, as well as CD-ROM and tape that are updated quarterly. The on-line services over 

the internet offer a more up to date version of the database and so offer the latest structures 

to be released in to the database.

To find the optimal alignment of a sequence to every sequence in a database, even one as 

small as the Brookhaven database, is extremely time consuming. The only way to carry 

this out in a reasonable time scale is to use a processor designed specifically to carry out 

sequence alignments very rapidly. The “MasPar” processor is one such processor. The 

circuitry in the processor has been developed specifically to run the Smith and Waterman 

alignment algortihm98. What this means is that the algorithm has been hard wired into the 

silicon chip and the processor has been specially parallelised to speed up the calculation. 

This is a very specialised and expensive method of carrying out a database homology
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search which relies on the fact that the algorithm used is correct and the best algorithm for 

finding homology between sequences. Having a specific machine to carry out database 

homology searches can only be justified if the database has to be thoroughly searched 

frequently with many different sequences so that it is kept busy. Therefore these machines 

are only found in large pharmaceutical companies or research departments which specialise 

in offering the service to other users (Seqnet).

If no access to such a processor is possible a scanning routine can be used to find protein 

sequences in the database that are similar to the unknown sequence. These scanning 

routines are less exact than the sequence alignment routines but offer a quicker method of 

searching the database to find possible candidates which can then be extracted from the 

database and a full sequence alignment carried out.

The output from the database scanning routines is a list of the top scoring sequences found 

in the database in descending order. Only the top fifty or one hundred sequences are 

normally printed out as these are the sequences with the most likely chance of being 

homologous to the target sequence. It is common to find several members of the same 

protein family near the top of the list. This can indicate that the target sequence is related 

to that family of proteins.

If no good match is found in the Brookhaven database it is then necessary to use protein 

sequence databases to see if the target sequence is related to any known sequences. Doing 

this enables the protein to be categorised into a protein family and hopefully a member of 

this family will have known structure and will be present in the Brookhaven database. This 

method relies on the fact that the fold pattern a protein adopts is more strongly conserverd 

than the primary sequence. It is possible for two proteins with only very weak homoloy to 

have the same fold pattern.

5.2 Homology Modelling
Homology modelling is an extension to the Comparative modelling99,100’101 methods that can 

be used to construct a three dimensional model structure of a new protein from knowledge
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of its sequence, and the crystallographic structures and sequences of other members of its 

homologous family.

It has long been apparent that proteins from very different sources and sometimes diverse 

functions can have homologous sequences and consequently a very similar three 

dimensional structure102. The structure, or pattern of folds, that a protein adopts appears 

even more conserved than primary sequence103,104. This fact is the basis of comparative 

modelling methods, which permit extrapolation from the experimentally determined 

structure of one or more members of a homologous family to a new member of this family 

whose sequence has been determined but whose structure is as yet unknown. A number of 

factors combine to increase greatly the application of comparative modelling techniques 

today. The large number of protein structures and the exploding number of sequences that 

are being submitted to the computerised databases provide the basic structural and 

sequence data needed to apply the method. The proteins in which we are interested in are 

often available in only small quantities, too little for structural studies unless the gene or 

mRNA is cloned or synthesised and expressed. Even when this latter effort is deemed 

worthwhile and is initiated, the comparative modelling studies can be performed in the 

meantime, providing an approximate view of the structure of the molecule until sufficient 

protein can be obtained and the experimental structure determined.

The first stage in both comparative and homology modelling is to align the sequence of the 

protein of unknown structure (target protein) to the family of proteins that it belongs to. In 

comparative modelling the sequence alignment is carried out on a structural basis rather on 

sequence identity. This is accomplished by examining the members of the family with 

known structures. These known structures are superimposed in three dimensions to obtain 

a maximal overlap of the structures. Once superimposed, there are parts that overlap very 

well, indicating the structures are well preserved in these regions, they are called 

“structurally conserved regions”, SCRs. These SCRs are usually composed of secondary 

structure elements, the immediate active site, and other essential structural framework 

residues of the molecule. Between these conserved elements are highly variable regions 

which differ significantly from one member of the family to the next. These are called 

“variable regions”, VRs. They are almost always loops that lie on the external surface of
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the protein, and they contain all the additions and deletions between different protein 

sequences. The alignment is primarily concerned with the SCRs, since these are the 

portions of the structure that are the same in all protein members of the family.

An alternative, when not so much structural information is available, is to align the 

sequence of the unknown structure with the sequence which has the highest homology with 

the unknown in the structural database. The first stage is to scan the structural database 

with the target sequence for protein sequences in the database with which it is homologous. 

The highest scoring sequence from the database is used as the starting structure for the 

modelling study. The known and target structures’ primary sequences are aligned using a 

sequence homology scoring function. Once the two sequences are aligned it is possible to 

examine where the deletions and insertions occur on modifying the starting structure to the 

model of the target structure. Most of the insertions and deletions, particularly the larger 

alterations in the primary sequence occur in loops that lie on the external surface of the 

protein.

Many of the modelling methods employed in comparative and homology modelling for 

substitutions, deletions and insertions are the same. The only difference is in modelling the 

deletions and insertions. With comparative modelling there are many more known 

structures from the same protein family. This means that occasionally the primary 

sequence of a variable region of one of the known structures is homologous to the 

corresponding section in the sequence of the unknown. This VR can be added to the model 

of the unknown structure directly as it is likely that they will have the same conformation. 

The more known structures in protein family the better the chance that the VR of the 

unknown will already exist in one of the known structures. This tends to happen a lot less 

in homology modelling where the sequences are less similar to members of the protein 

family.

5.3 Substitutions
Amino acid substitutions are more likely to occur in areas of the primary sequence that 

correspond to non critical regions in the protein structure. These regions tend very much to 

be at or near the surface of the protein in regions with no secondary structure. A
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substitution will cause less strain if the side chain of the substituted amino acid points 

towards the surrounding solvent. If a substitution occurred in the core of the protein it is 

highly probable that it will cause a large amount of steric stress. This is because the core 

region of globular proteins is tightly packed with very little room for any extra atoms. If a 

substitution were to decrease the number of atoms then a hole in the core region of the 

protein would result. This increases the energy of the protein. If on the other hand the 

substitution were to increase the number of atoms then there would be no space for the 

extra atoms as the hydrophobic core of globular proteins is a close packed structure with 

no holes. The atoms surrounding the substitution would move to compensate for the 

increased number of atoms causing high energy strain around the substitution. The core of 

globular proteins is also highly hydrophobic so all possible hydrogen bonds between polar 

atoms within the core are formed to reduce the strain of having these polar atoms in a 

hydrophobic region. If a substitution were to take place that removed a polar atom or 

introduced a polar atom into the hydrophobic area then it would cause a polar atom to be 

in an unfavourable position (surrounded by non polar atoms). This would lead to an 

increase in energy of the protein about this area.

This allows sections of the primary sequence that are involved in the core packing to be 

associated with regions of low substitution. Regions of secondary structure can also be 

identified by looking at the alignment of a protein family as again substitutions in the 

primary sequence are more likely to cause steric strain in sections of repeating secondary 

structure than they are in a region of coil. Secondary structures are tight packed structures 

with hydrogen bonds forming between the polar atoms of the peptide chain. Any dismption 

in this order will cause an increase in the energy of the surrounding residues and will make 

the secondary structure less stable.

5.3.1 Conservative and non - Conservative Substitutions
Substitutions are the simplest modification to model as they cause the least amount of 

disruption to the model. There are two types of substitution in protein modelling, 

conservative substitutions and non-conservative substitutions. Conservative substitutions 

are when a residue is substituted for another residue of similar size and structure e.g.
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valine for leucine. This causes minimal additional steric strain to the protein model and 

polar atoms in the substituted residue make the same contacts as the residue that was 

removed. With conservative substitutions the side chain of the new residue follows the 

same path as the removed residue’s side chain and there is very little disturbance to the 

surrounding atoms.

Non-conservative substitutions can be more disruptive, particularly if changing a non polar 

residue for a polar residue or a small side chained residue for a long side chain residue. If a 

polar residue is substituted for a non-polar residue in the core of the protein then a polar 

atom is introduced into a hydrophobic environment increasing the strain in the protein. The 

reverse of this, substituting a non-polar residue for a polar residue can leave the 

hydrophobic side chain in a hydrophilic environment, or if the residue is buried can leave 

an unpaired polar atom from another residue in a hydrophobic environment. Substantially 

altering the size of the residue when substituting residues can cause steric strain in the 

protein model. If a large side chain residue is substituted for a small side chain residue this 

can cause severe steric clashes as there is not enough space for the new larger side chain to 

fit in. This causes the surrounding atoms to adjust to accommodate the larger side chain. 

For substitutions where a large sidechain residue is substituted for a small sidechain 

residue then a gap can be left in the protein structure. The core of the protein is a close 

packed structure with only very few and small gaps found in the structure. If a large gap is 

formed the surrounding atoms will move around and try to minimise the size of the hole 

dismpting the close pack order of the protein core. Over all non-conservative substitutions 

are more disruptive than conservative substitutions and can involve careful monitoring. As 

non-conservative substitutions are more dismptive they have a tendency to occur at or near 

the protein surface where any dismption can be minimised.

Substitutions are the simplest modification to a model as they cause the least amount of 

dismption to the model compared to deletions and insertions. As described above there are 

two types of substitution, conservative and non conservative, both are treated in a similar 

manner when modelling the changes from going to the parent protein to the target protein. 

The only difference will be that a conserved substitution should be less dismptive than a 

non conserved substitution.
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Modifying the primary sequence of a protein is an easy process using functions that are 

present within COMMET. There are routines available that allow a protein model that has 

already been loaded into the system to be manipulated and altered. Substitutions can 

quickly and easily be carried out within the COMMET package. A very similar method of 

substituting one amino acid for another is used for conservative and non - conservative 

substitutions. There is an extra step in the placement of non - conservative substitutions to 

find the global minimum of the side chain.

As the only difference in the 20 amino acids is the side chain atoms the routines that are 

used in the substitution do not alter the conformation of the protein backbone in any way. 

In both conservative and non- conservative substitutions the substitution routine is called to 

change one amino acid into another. The routine starts by removing the atoms in the old 

side chain. It then places the new side chain atoms along the same conformation as the old 

conformation until there is a difference in the structure between the old and new side 

chains. The reasoning behind this is that the old side chain is in its preferred conformation 

which should be the lowest energy conformation. Also the substitution should cause the 

least amount of dismption to neighbouring atoms and the most effective way of minimising 

the dismption is to try and follow the conformation of the old side chain. In conservative 

substitutions where the new side chain is the same length or shorter than the original side 

chain the new side chain’s atoms should hopefully be close to the global minimum in which 

case the minimiser will find the global conformation. In the case of non - conservative 

substitutions the atoms in the new side chain that have no corresponding atom in the old 

side chain are left in an extended chain conformation by the substitution routine. To define 

the rest of the atoms in the new side chain another routine called SITAR must be used.

5.3.2 SITAR
‘SITAR’ stands for Sequential Iterative Torsion Angle Refinement. It works by rotating 

about the % torsion angles one at a time out along the length of the side chain until the 

lowest energy conformation is found. It starts at the N^de—Ca—Cp—Cs (%0 torsion angle 

and rotates it a set amount usually specified by the user. At each step the energy of the 

residue is calculated taking into account the rest of the protein and if the energy is lower at
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this step than the previous lowest energy step this new conformation for the %\ is stored. 

The torsion angle is rotated a full 360°, at this point the conformation of the %\ torsion 

angle is set to the lowest energy conformation found.

The routine now goes to the next torsion angle, which is the Co—Cp— CY—Cg (%2) torsion 

angle and carries out the same procedure. That is it steps through the torsion angle the user 

specified step calculating the energy of the amino acid at each step. If the energy is lower 

for this step than so far found the conformation is stored. The angle is rotated in steps for 

360° when the %2 torsion angle is set to the conformation which gave the amino acid side 

chain its lowest potential energy. This is continued until the routine gets to the end of the 

side chain.

At this point the routine goes back the first torsion angle in the side chain, torsion angle 

and again rotates around this torsion angle in steps specified by the user calculating the 

potential energy of the amino acid at every step. If the energy is lower at any step the 

conformation is stored. Again after the torsion angle has been rotated 360° the %\ torsion 

angle is set to the conformation with the lowest energy. The routine carries on out along the 

side chain in this manner. The routine keeps repeating the search until the energy of the 

amino acid cannot be improved for an entire search of the length of the side chain. When 

this occurs the routine ends setting the amino acid's side chain to the conformation of 

lowest energy which it found.

5.4 Deletions
Deletions are the next least disruptive mutation to occur in proteins. Along with insertions 

they are most commonly found to occur on the surface of proteins in loop regions. This is 

because the deletion cause less disruption to the packing of the protein and does not disrupt 

any secondary structure if it occurs on the surface of the protein in a loop structure.

What can be seen happening in deletions is a loop or bulge section of the protein is lost. 

When this happens the remaining peptide smoothes over this area becoming more extended 

with the deviation of the backbone atoms from their original position quickly becoming

116



smaller the further from the deletion the backbone is. The effect of a deletion can be fairly 

localised to about five or six residues from the deletion. Residues further than this distance 

from deletions can be seen to be unaffected by the deletion in the conformation they adopt 

in the altered model.

5.4.1 Single amino acid Deletions
COMMET allows single amino acid deletions to be carried out automatically. There is a 

single routine the user can use which removes all the atoms in the deleted residue. It then 

connects the two free atoms in the adjacent residues (N^de and C ’ atoms) to form a new 

long peptide bond. A section of polypeptide chain is allowed to relax using an energy 

minimiser. Five residues either side of the deletion are allowed to move while carrying out 

the energy minimisation over this section of the polypeptide chain. This is enough to relieve 

the protein of strain caused by the deletion. The peptide bond rapidly closes and because of 

the force field adopts the proper trans conformation.

During the energy minimisations carried out to close the gap in the polypeptide backbone 

only selected atoms in the protein model are free to move. These atoms are the atoms in the 

five residues either side of the insertion and the atoms in the surrounding vicinity of the 

removed side chain. Only the residues that were within 5A of the deleted residue are 

allowed to move in the energy minimisation calculation. The rest of the atoms in the model 

are held rigid. This set up of holding most of the atoms in the model rigid is a compromise 

in the accuracy of the energy minimisation while allowing the calculation to proceed at a 

reasonable rate. The atoms in the calculation that are free to move can still feel the effect 

of the surrounding rigid atoms during the energy minimisation. This takes into some 

consideration the environment arround the deletion without making the calculation too 

complicated and time consuming. This also has the effect that the backbone atoms are 

effectively fixed in position i+5 and i-5 residues from the deleted residue i. As the 

backbone moves from the point of deletion to the fixed atoms of the backbone the atoms of 

the backbone deviate less from their initial starting position in agreement with 

crystallographic evidence.
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This method by no means perfectly recreates the effect of having all the atoms of the 

protein included in the minimisation but allows the minimisation to be carried out at a 

reasonable rate. It is often the case that the complexity of the model that the user wants to 

simulate is severely limited by the time available to run the simulation. Compromises have 

to be made to reduce the complexity of the model and hence speed up the simulation at the 

expense of accuracy or more importantly reliability.

This also affects when hydrogen atoms are explicitly modelled. Adding explicit hydrogen 

atoms to the model of a protein can treble the number of atoms in the simulation. Therefore 

a great amount of effort has been put into developing force fields that can model the effects 

of hydrogen atoms implicitly without the need of having to explicitly position the hydrogen 

atoms in the model. Although a simplification in the model, for the modelling of 

substitutions, deletions and insertions the approximations of the hydrogen atom effects are 

a close enough simulation of the hydrogen atom as other forces and approximations affect 

the model to a much greater degree. Ignoring the hydrogen atoms while modelling the 

substitutions, deletions and insertions allows the models to be much simpler and 

simulations to run faster without compromising the accuracy of the model. The hydrogen 

atoms are added at a later stage of the modelling when the primary sequence of the new 

model is correct and global minimisation is being carried out.

5.4.2 Deletions up to 3 residues
For the slightly larger deletions of up to three residues the above method remains a quick 

and reliable method for modelling. Again it is common to find these small amino acid 

deletions in loops or where the backbone is not in an extended conformation. This leads to 

a smaller gap being formed than might be expected on the removal of three residues from 

the model.

After the removal of the three residues from the model the two free atoms are joined to 

form an exceptionally stretched peptide bond. The same procedure is followed in 

minimising the backbone fragment. Five residues either side of the deletion are free to 

move and the surrounding amino acids less than 5 A from the deletion are included in the 

simulation. The rest of the model is kept frozen in the same position. Most of the steric
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energy is from the extremely long and artificial peptide bond either side of the deletion. As 

this distance closes to its normal distance the energy of the model quickly drops. The 

peptide remains in a trans conformation due to the potential in the force field.

The small deletions are easily modelled as the remaining atoms in the model quickly fill in 

any gaps left in the structure by the removed atoms. Also because the deletions happen on 

the protein surface the atoms which are removed are likely to be at least partly surrounded 

in solvent and not other atoms from the model. This means that when a deletion occurs at 

or near the surface of a protein a rearrangement of the surrounding atoms is enough for the 

protein to find its global minimum again. It is not necessary to carry out conformational 

searches of the side chains of the surrounding amino acids as there is no major dismption.

5.4.3 Larger deletions
Larger deletions usually involve entire sections of a loop to be removed and the remaining 

loop to take on a different conformation. This involves remodelling the loop and treating 

the smaller sized loop as an insertion. The alignment of Bb with BT shows that no loop 

was larger than three residues therefore no modelling of larger deletions was carried out.

Having to model the large deletion as an insertion of the smaller loop region involves much 

more computationally intensive routines to try and calculate the conformation the loop will 

have in the model. As will be described in the next section the modelling of insertions is 

much more complicated than modelling small deletions and substitutions.

5.5 Insertions
Insertions are the most dismptive of the three alterations that can happen to the sequence of 

a protein. This is because space for the additional atoms has to be made in the structure 

and the backbone conformation has to changed. As with the other two alterations to the 

primary sequence, insertions are much more common in loop regions at or near the surface 

of the protein. Small insertions of one or two amino acids do occasionally happen in the p 

sheets as a p bulge. This is where a residue bulges out of the sheet and takes no part in the 

hydrogen bonding between the strands of the p sheet but again this only occurs when the

119



strand is at the surface and the bulge heads out to the solvent rather than into the core of 

the protein.

5.5.1 Where insertions tend to be
Even more so than substitutions and deletions, insertions are found in the surface loop 

regions of proteins. This is because insertions are so very traumatic. As the loops point 

into the solvent they can more easily change their conformation to allow an insertion to 

occur without causing the entire structure of a protein to become too unstable for 

biological activity. If a large insertion were to occur in an internal region of the structure 

the steric strain would be such that the conformation would no longer be feasible and the 

protein would fold into another conformation loosing its biological function in the process. 

Therefore it is normal to find the larger insertions on surface loops.

Large insertions of four and more amino acid residues can make a difference to the 

conformation an entire loop will have in a protein. The surface loop regions of a protein do 

not have a well-defined structure but the conformation changes over time. The 

conformation of the loop can vary quite dramatically in the crystals of proteins, so much so 

that particularly loops with large movements in the residues cannot have the structure of 

the loop determined by x-ray diffraction techniques. In solution the loop regions will have 

an even larger range of movement, so that by their very nature the loop regions often have 

no well defined conformation.

5.5.2 Small Insertions Of Amino Acids
Within COMMET there is a function that can be used to model insertions of a few amino 

acid residues in length quickly and accurately. This is because for small insertions up to 3 

residues in length the backbone conformation only diverges from the original protein over a 

very limited number of amino acid residues. Like deletions, small insertions, as in one, two 

and three amino acids in length, cause very localised dismption to the protein structure. 

The distortion to the backbone from the original position only lasts for four or five residues 

in either direction of the insertion. It is therefore possible to carry out these small insertions 

with a fairly high degree of confidence and in a reasonable time scale.
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To carry out these small insertions within COMMET the user invokes the insertion routine. 

This routine carries out a one residue insertion at a time. The routine asks for the amino 

acid that is to be inserted and the residue in the structure the new residue is to be inserted 

immediately after in the structure. When the routine has this information it first 

superimposes the new residue directly on top of where the insertion point was specified. It 

then breaks the amide bond between the two residues where the insertion is to occur and 

forms two new peptide bonds between the inserted residue and the two residues either side 

of the insertion.

The steric strain is too much for the normal Newton Raphson energy minimiser to handle 

at this stage therefore a constrained pattern search minimiser is used over a range of 

residues four amino acids either side of the point of insertion. The (p and \|/ torsion angles 

of the new residue are forced in turn to the 7 low energy (p torsion angle combinations 

found in the Ramachandran map105 (the A, C, D, E, F, G, A* regions of the Ramachandran 

map). Minimisation calculations are carried out forcing the inserted residue’s cp and \|/ 

torsion angles to each of the low energy regions of the Ramachandran map in turn. The 

conformation with the lowest energy after the minimisation is taken to be the correct 

conformation for the backbone at this position.

The pattern search minimiser used to carry out the minimisation of the highly strained 

region around the insertion point uses internal co-ordinates of the residue rather than the 

Cartesian co-ordinates. This is to give the best geometry and energy to the region around 

the chain break consistent with a minimum change in the position of the existing residues. 

This restricts the search to the limited number of torsion angles in the ‘molten’ zone since 

the bond lengths and valence angles are constrained. For small regions of a protein like this 

internal co-ordinates provide a quick and useful method to carry out minimisation as they 

ensure good geometry of the protein in the section allowed to move. Using Cartesian co

ordinates in such a strained situation can sometimes cause problems with the geometry. For 

large sections and whole proteins using internal co-ordinates to carry out an energy 

minimisation becomes more difficult as a small change in a torsion angle in one part of the 

peptide chain backbone can cause massive changes in the conformation in other parts of 

the model. This is because altering a torsion angle in the backbone of a polypeptide model
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can cause sections of the chain to swing about by a large amount. Using Cartesian co

ordinates for polypeptide energy minimisations prevents these small changes in one section 

amplifying into large movements elsewhere in the structure.

5.6 Large insertions
To deal with large insertions is very expensive in computer time. As a result of this there 

are many different methods available in the literature to carry out the modelling of large 

insertions with varying degrees of complexity. The method available within COMMET 

modelling package is known as the loop conformation generator. Other methods exist for 

modelling large insertions but all are very computationally intensive. The reason for the 

problems involved in the modelling of large insertions is the large number of conformations 

an insertion can adopt due to flexible nature of the backbone. The more residues that a 

loop contains the more flexible it becomes and the theoretical number of conformations 

that it can adopt increases exponentially with the number of residues. Very quickly the 

sheer number of possible conformations of a loop becomes enormous.

5.6.1 Conformation Loop Generator
This is a method where all possible conformations that a loop can have are systematically 

built and tested with the ‘best’ loop being used in the final model. In this project the ‘best’ 

loop was the one with the lowest steric energy after energy minimisation. This method 

although very computationally intensive does guarantee that all possible conformations that 

the loop can adopt will be checked.

5.6.1.1 Algorithm used
As discussed in an earlier chapter the peptide bond is planar and for this study can be 

considered to adopt a trans conformation. This leaves two torsion angles able to rotate, 

called the (p and \\f torsion angles. The one exception to this is the proline amino acid. For 

proline the (p angle is fixed due the five member ring that includes the Namde and C« atoms. 

The only torsion angle free to rotate in the proline amino acid is the \|/ torsion angle.
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The algorithm generates all possible conformations a loop can theoretically have in an 

ordered manner. One way of generating the conformations is by starting at the first residue 

in the loop and rotating its <p and \jr torsion angles by a set amount through 360°. The loop 

generator then goes to the second residue in the loop and rotates its <p and \|/ torsion angles 

by one step. The loop generator then goes back to the first residue and rotates its (p and \\f 

angles in steps until the torsion angles have been rotated 360°. The above steps are 

continually repeated until the second residue’s <p and \|/ angles have been rotated a full 

360°. At this point the (p and \\r torsion angles of the third residue in the loop are then 

started to be rotated by the loop generator. The number of conformations generated the 

algorithm grows exponentially as the length of the loop (insertion) grows. Therefore it is 

essential to try and limit the number of conformations generated.

From energy studies of dipeptides containing two amino acids of the same type (i.e. Gly - 

Gly) local energy minima can be seen in the Ramachandran map. For each of 19 dipeptides 

there are clearly 8 or 9 distinct local energy minima. The Pro-Pro dipeptide is a special 

case as the cp torsion angle is fixed into one conformation and hence only 3 energy minima 

are seen. These local minima can be represented as discrete cp \\r angle pairs. It is these 8 or 

9 distinct cp \|/ angles that are tried in turn to represent stepping through the cp \\f angles a 

full 360°. The reason is because only a backbone conformation containing these low 

energy cp \|/ angles will produce conformations of low energy. It becomes pointless 

generating other cp \j/ angles as these will undoubtedly lead to conformations with higher 

energies. Therefore for every residue longer a loop is, the number of conformations 

generated and hence the time taken to generate them, is increased by a factor of 

approximately 8 .

Even using the selected cp \j/ torsion angle pairs, the conformation loop generator is a very 

computationally intense procedure. Any way to further cut down the number of 

conformations generated would greatly speed up the time taken to work out the best 

conformation. Another method used to speed up the calculation is to check for ‘suicide 

conformations’. A suicide conformation is one where at a certain point there are not 

enough amino acid residues left to be added to the loop for it to be able to reach across the 

gap to the other side of the insertion point. The conformation sequence is terminated when
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the chain is no longer long enough to reach to the other side of the gap. This happens when 

the loop is growing in the wrong direction and there are too few residues left in the chain to 

define their (p \|/ angles such that the loop can rejoin the polypeptide backbone. This saves 

a lot of computational time by not having to define the remaining <p \j/ torsion angles.

The conformations produced by the loop generator at this stage are still too numerous to be 

processed manually. Even with the suicide sequences taken out, filters are required to be 

added to the loop conformation generator to remove as many loops as possible 

automatically. The order the filters are applied to remove generated conformations is 

important due to the large numbers of conformations generated by the routine. Filters that 

are quick to compute are applied before filters that are more computational intensive. This 

allows as many conformations as possible to be removed as quickly and as 

computationally inexpensively as possible so that the slower more computationally 

intensive filters are called on less often.

It is even better if a quick filter can be found which removes the majority of the 

conformations generated. This is the case for the suicide sequence filter as it reduces over 

99% of the loops generated, or is possible to generate. It is also relatively computationally 

quick as only the distance from the C ’ atom of the end of the growing chain to the first 

Namide atom of the first amino acid residue after the insertion needs to be calculated. The 

maximum remaining length of the loop still to be modelled is the number of residues left to 

be modelled in the chain times 3.9A (the length of an amino acid in the extended 

conformation). If the length to close the gap is larger than the length of the remaining chain 

then the conformation is terminated.

Other computationally quick filters are also used to further reduce the number of loop 

conformations to manageable levels:

• Checking that the final amide bond angle (C’—N^de— Ca) is of a reasonable 

geometry.

• The peptide bond (Q  torsion angle) is near planar

• Final \|/ torsion angle is a reasonable geometry close to a minimum in the 

Ramachandran map.
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These three filters remove the vast majority of the remaining loop conformations generated.

More time consuming filters can now be applied as the numbers of conformations that 

make it this far are of a more manageable amount. The total number of short non-bonded 

interactions gives an indication of the amount of steric crowding caused by a particular 

conformation. If the number of non - bonded interactions is too high then there is too much 

steric crowding and the local energy minima for this conformation will be significantly 

higher than other conformations even after carrying out energy minimisations on the 

segment. Therefore by rejecting loop conformations with a large number of short non - 

bonded interactions reduces the number of conformations further.

Counting the non-bonded interactions is a computationally expensive task, especially for 

proteins as the calculation has to be carried out over every atom in the protein for each 

atom in the loop. It is therefore one of the last filters to use so that as few loop 

conformations as possible make it through to this filter.

The other time consuming test is the number of sphere violations a given conformation has. 

This is how many atoms in this particular conformation of the loop are closer than a 

predetermined distance from the centre of the protein. As all large insertions occur on the 

surface of the protein they extend into the surrounding solvent or lie flat on the surface of 

the protein. They should not extend down into the core of the protein. This filter removes 

conformations that bury the loop into the core of the structure being modelled.

Using all these filters reduces the number of conformations that have to be manually 

checked to manageable numbers. At this stage to select the best conformation for the 

insertion has to be done by inserting each conformation of the insertion into the polypeptide 

model one at a time and an energy minimisation carried out on the model to find which 

loop has the gives the lowest energy conformation. As before at this stage it would take too 

long to carry out an energy minimisation on the entire protein model. Instead a section of 

the model around the insertion is taken and held rigid while the insertion and four residues 

either side of the insertion are allowed to move in the energy minimiser.
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5.7 Addition of Hydrogens
Once the amino acid substitution, deletions and insertions are completed it is only energy 

minimisation that is left to be carried out on the model. Before energy minimisation is 

carried out hydrogens are added to the model. Throughout the previous modelling stages 

the hydrogen atoms were not included in the model so that the modelling could be carried 

out quicker. The effects hydrogen atoms have on the structure of a protein can be 

incorporated into the calculations carried out on the model up to now. The main effect 

hydrogen atoms have on the protein structure is the hydrogen bond that acts to stabilise 

certain backbone conformation, mainly the a  helix and p sheet.

The stabilising effect of the hydrogen bond is small and can easily be swamped out by 

other forces such as atom clashes, bond angle deformation, bond stretches and the stronger 

electrostatic effects. It is therefore not practical to add hydrogens until these stronger 

forces are reduced and the effect of hydrogen bonding can make a contribution to the 

conformation of the model. Also including hydrogen atoms dramatically increases the 

number of atoms in the model which means it will require more memory and slow down the 

calculations as many more atom - atom interactions have to be calculated. With all these 

disadvantages it is only at the later stages of building a polypeptide model that adding 

hydrogens is a reasonable option.

The addition of hydrogens is a quick procedure that is automatically carried out by the 

modelling package COMMET. Hydrogen atoms are added to a heavy atom such that it will 

cause the minimum amount of steric clash with other atoms in the model

5.8 Final Energy Minimisation
The final minimisation stage is carried out in discrete steps. This is to minimise the 

deviation from the backbone structure of the original model as much as possible. The steric 

strain in the new model is the overwhelming energy at this stage in the modelling. If the 

entire model were allowed to move freely during the first steps of the energy minimisation 

then the atomic overlap between the atoms of the model could easily be such that the model 

becomes unstable during the minimisation and comes apart. This can easily happen if there 

is a particularly bad overlap in the position of two atoms. What occurs during the
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minimisation of a highly strained section of the model is that the atoms involved in the 

clash can move too great a distance in one step causing unrealistic conformations to be 

adopted in that section of the model. It is a much better consideration to slowly release this 

excessive steric energy.

The method employed to do this is to keep all but the newly added hydrogen atoms in the 

model to be held fixed in position. This allows the hydrogen atoms to quickly settle down 

in the model and to remove any bad steric contacts that may arise between a heavy atom 

and a hydrogen atom when the hydrogen atoms were added to the model. Energy minimiser 

routines have options allowing the user to fix in position certain types, groups or ranges of 

atoms in a model while allowing the remaining atoms to be minimised. The atoms allowed 

to move, in this case the hydrogen atoms, still feel the complete effect of the rigid atoms so 

are minimised while taking the positions of the fixed atoms into consideration.

After the energy of the hydrogen atoms has been minimised the side chain atoms of the 

amino acid residues in the model are allowed to move during the next step of energy 

minimisation. The backbone atoms of the residues remain fixed to prevent the backbone 

from deviating too far from the original model. This allows any clashes between side chain 

atoms to be resolved without affecting the position of the backbone atoms.

While the energy minimisation is taking place a periodic check in the bond lengths and 

bond angles of the model is carried out to make sure the model is not stuck in a strained 

conformation at any part. This is easy to spot by running a simple routine that calculates 

the bond lengths and bond angles and displays any that are out of a specified range from 

the default value used in the force field. This gives a good measure of any regions in the 

model where there are problems with the conformation. The energy minimiser programme 

within the COMMET molecular modelling package allows the above information to be 

part of the output if it is so required. Optional parameters can be set that will print an 

individual energy value higher than the inputted value. Modifying the model at this time 

allows these high energy conformation to be rectified before the model becomes too fixed 

into a low energy conformation.
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The strained bond length or valence angle which is causing the problem can be easily fixed 

by closer examination of the model around the region of the energy strain. The high energy 

in the bond angle or valence angle is normally down to a bad steric contact which has 

caused an atom into the highly strained conformation. Resetting the bad bond length or 

valence angle to its default setting normally highlights the reason for the highly strained 

conformation. By examining the surrounding atoms it is possible to rearrange just one or at 

the most two atoms to remove the cause of the bad conformation. Moving the offending 

atoms can be done manually or by using an automatic procedure within the molecular 

modelling package. If an entire amino acid residue is to blame for the clash then selecting 

this residue to go through the ‘SITAR’ routine within COMMET will move the residue to 

a more favourable conformation where it will not clash with the surrounding atoms. Once 

the cause of the strain has been removed then the energy minimisation can proceed.

Once the side chain atoms of the model have been through the energy minimisation routine 

and all serious atom clashes have been removed then it is possible to allow the entire model 

to move freely in the energy minimiser routine. Waiting until the serious clashes caused by 

the side chain atoms have been removed keeps the backbone atoms closer to the original 

position in the starting model. Studies have shown that the backbone atoms deviate the 

least in homologous proteins. The side chain atoms show much greater deviation from 

protein to protein in a family of homologous proteins. Carrying out the energy 

minimisation as described above ensures that the worst of the bad clashes have been 

removed and the model is in a reasonably stable conformation before the backbone atoms 

are allowed to move in the energy minimisation routine.

To decrease the total energy of the model further water molecules are added to the model. 

Many crystallographic models of proteins from the Brookhaven database contain co

ordinates of some water molecules. To be seen by the x-ray crystallography technique the 

water molecules have to remain in the same position for a significant amount of the time. 

These waters are often buried in the protein structure or are important for stabilising a 

certain conformation of the protein at the surface. Adding these waters to the target model 

at the same relative position as they are found in the parent structure can stabilise the 

conformation of the target model.
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5.9 Use of the Transputers
The processing speed of computers has increased dramatically since the 1950’s. The 

increase in the speed of computer arithmetic has been roughly tenfold every five years. 

From the beginning in the 1950’s to 1975 the performance of computers had increased by a 

factor of nearly 100,000. Today it is the normal to have access to computers with speeds in 

the order of gigaflops (109 floating point operations per second).

5.9.1 The Need For Computing Power
No matter how much computing power is available it is not long before scientists have 

devised problems that exceed the current ability of even the most powerful computers. 

Quite often a problem will have been simplified so that it will be able to run on the current 

computer. Therefore when more powerful computers come along the first thing that is done 

is to add more complexity to the initial problem so that it better models the real life 

process. A good example of this is the current state of protein modelling and its need of the 

most powerful computers possible. Initially only small molecules of a few tens of atoms 

could be represented in a simple manner on the screen (stick representation) and it took a 

considerable time to calculate the minimum energy of the molecule. As computers became 

faster and more powerful the complexity of the molecules that could be modelled was 

increased. Molecular mechanic calculations were speeded up so that larger molecules 

containing hundreds of atoms could be put through the energy minimiser. Increasing the 

speed of the computer further meant it became possible to minimise the structure of entire 

proteins containing a few thousand atoms. At this point energy calculations started to 

become more complex in being able to have the protein in a more natural environment. 

With the most powerful machines today it is now possible to carry out energy minimisation 

calculations and molecular dynamic simulations of proteins surrounded by shells or boxes 

of water molecules. Even at this stage approximations are made about the water molecules 

and the number of atoms and molecules that can be modelled in the simulations is limited 

by the processing power and memory of the computer. There are still approximations used 

in the modelling of the protein itself. Therefore protein modelling is still limited not by the 

size and complexity of the simulations that can be visualised but by the speed and 

computational power of the modem computers.
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As the power and speed of computers increased the power of its graphics capability 

increased. From simple unmoving ball and stick representations of small molecules the 

complexity of the graphics displayed on a computer terminal’s screen increased until 

nowadays, where entire proteins can be displayed on the screen and rotated in three 

dimensions in real time. Graphical algorithms have been developed to show the atoms of 

the model as three dimensional spheres where a light source can be added to give realistic 

shading and a feeling of depth to the molecule. This is where the most powerful of today’s 

computers reach their limit but the need for more powerful graphics continues. Further 

developments involve the manipulation of complex graphics in real time such as molecular 

dynamic simulations or even the simpler case of docking a small molecule into a cleft on 

the protein surface can still be developed further by increasing the graphics capability of 

the computer.

A new development has been the advent of virtual reality. This is where the user is 

submersed in a three dimensional world with which he can interact in real time. Molecular 

modelling is seen as one of the areas where virtual reality can help. It will allow the user to 

see around and through the molecule model; to manipulate the model and see the alterations 

occur in real time; to get some feed back on the alterations to the model either visually or 

physically through touch and pressure. One of the dreams of virtual reality in the molecular 

modelling field is for the user to pick up a molecule in his hand and to dock it manually to 

a protein. While the user is doing this there is feedback to the glove the user is wearing so 

that he can feel the molecule in his grasp and feel the forces as he pushes, twists and 

rotates the molecule to find the best docking position and conformation of the molecule 

with the protein.

The computing power to allow the molecular modeller to do what he wishes can not 

feasibly be accomplished with a single processor. Already the speed and complexity of the 

single processor is reaching its limits. As the performance of the single processor reaches 

its limit, in order to increase the processing power new approaches have to be used. One 

common method is to use some form of parallel processing. There are two ways 

parallelism has been implemented. It is possible to modify the architecture of a single 

processor or increase the number of processors.
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5.9.2 Singe Processor Systems
Parallelism has existed for quite some time in the microprocessors used in the 

supercomputers. There are two forms of parallelism employed by modem supercomputer 

processors to maximise the number cmnching power of the processor. The first is array 

processors the other vector processors

5.9.2.1 Array Processors

The array processor has its architecture designed to optimise the efficiency in dealing with 

arrays of data. At the heart of the array processor is its pipeline of functional units. 

Floating point multiplication and addition can be subdivided into several smaller processes. 

For example multiplication can be split into several steps: add the exponents of each 

number, multiply the mantissas, normalise the result. In an array processor each of these 

steps are executed independently of the other. The set up of these small processes is in a 

pipeline where data is put in at one end and the result comes out the other end of the pipe. 

The subunits of the pipeline are connected in a serial fashion and the data flows through 

the subunits in a serial fashion with the output of one unit being the input of the next. In 

the above multiplication example each subunit would correspond to each broken down step 

of the multiplication.

The pipeline works most efficiently when it is kept full. If each subunit in the pipeline takes 

one clock cycle of the CPU to process its result, then, when the pipeline has to be filled it 

takes the number of clock cylces of the CPU as there are subunits before the first results 

are produced. After this fill time a result comes out of the pipeline every clock cycle as 

long as data is continually being put into the pipeline. At the end of the calculation, when 

input stops flowing through the start of the pipeline, it take the same number of clock 

cycles to flush the last of the results out of the pipeline as it did to fill the pipeline, see 

Diagram 5-1 on page 132 for a schematic view. Clever, well written programs designed for 

array processors can keep all the pipelines continuously full to achieve maximum 

efficiency, however the algorithms that allow this are not too common.
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Diagram 5-1: A schematic representation of a pipeline with 5 units. It shows how 7 

tasks move through the pipeline, how several cycles pass before any results are used, 

and how the pipeline requires to be flushed to get the remaining results.

Provided that the processor is restricted to operating on large vectors or matrices i.e. with 

more than 1,000  elements, the array processor can be improved by lengthening the 

pipeline, while making each step simpler and consequently faster. The draw back is that the 

fill time and flush time of the pipeline is an increased number of clock cycles. This is of
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little significance if the processor is always working on very large arrays of data but if on 

the other hand the calculation involved mainly very short vectors or small matrices then the 

number of clock cycles wasted on filling and flushing the pipeline can become significant. 

Therefore there has to be a balance in the length of the pipelines implemented on the array 

processors.

5.9.2.2 Vector Processors

Large computers used mainly for scientific calculations tend to be vector processors. The 

vector processor is pipelined like the array processor but can operate on entire vectors of 

data in a single step. For example the Cray - 1 has eight 64 element vector registers, so that 

a 64 element vector can be loaded into the Vi register and another 64 element vector loaded 

into another register say V2. An instruction to multiply Vi and V2 together would result in 

64 multiplication operations in one clock cycle of 12.5 ns, see Diagram 5-2 on page 134. 

Therefore the Cray - 1 vector processor has 64 multiplication pipelines operating in 

parallel and offers a higher degree of parallelism than the array processor does.
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Diagram 5-2: Schematic representation of a vector process. The pipelines run in 

parallel so each pipeline can produce a result every clock cycle. In this example 5 

results are produced per clock cycle.

5.9.3 Multiprocessor Systems
The afore mentioned array and vector processors are examples of fine grain parallelism 

where individual operations such as addition and multiplication are subdivided into smaller 

tasks. It is these smaller subtasks that run in parallel. Coarse grain parallelism is where 

individual instructions, subroutines of the same programme, or copies of the same 

programme are run simultaneously on different processors.
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| X j a separate pipeline 

00 arrays o f registers 

j r j a results array o f registers

X X X
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5.9.4 The Transputer
The transputer series of processors (i.e. T212, T400, T800, T9000) are specifically 

designed for coarse grain parallelism. They have specially designed communication links 

that allow fast communication between Transputers. Ideally if n processors were working 

on the same job then the job will finish n times quicker than when using one processor. 

Unfortunately this is not the case as each processor must spend some time communicating 

to other processors so that it knows what the other processors are doing. This 

communication between processors means there is an overhead which has to be paid. 

Because of this overhead in communications the best a parallel system can hope to be is 

85-90% efficient.

The communications bottle neck can be reduces if different connection topologies are used. 

Different topologies are suited to certain applications. Some common topologies can be 

found in Diagram 5-3 on page 137.
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Diagram 5-3: Schematic representations of some common topologies used to connect

processors in a parallel computer.

In some systems the topology is hard wired into the machine and it can not be altered. 

Some more advanced systems have software programmable switches.

The molecular modelling package “CO M M ET’ was developed to run on the T800 

Transputer. The T800 has some unique performance enhancing architecture that makes it 

suited to scientific programming. Most scientific programmes involve a significant amount 

of numerical calculation to be carried out. The T800 transputer is suited to number 

crunching as it has a 64 bit floating point unit (FPU) integral with the central processing 

unit (CPU) rather than the normal situation where the FPU is a separate co-processor on a 

separate chip. When the FPU is a separate co-processor the CPU has to send the data to do 

the calculation to the FPU which takes time, and then get the result of the operation sent 

back to it. With the FPU on the same chip as the CPU it can operate concurrently (at the 

same time) with and under the control of the CPU.

Other benefits of using the T800 Transputer are that parallel code can be written and 

tested and debugged using just one T800 processor. The hardware links of the actual multi 

processor machine are simulated by the software and the computational processes’ time 

shared on the single processor rather than distributed across all the processors. The single 

transputer programme being developed behaves exactly the same as it would on the 

network of Transputers and can be transferred onto the network of T800 Transputers 

simply by changing a few lines in the configuration section of the programme. This means 

that the large array of Transputers can be solely reserved for work while programme 

development takes place on a multiple host computer or individual transputer set-up 

containing the software development tools.

The molecular modelling package “CO M M ET’ runs on a single transputer that resides 

within a host machine. The host machine in this case is a PC compatible clone. The host 

machine is used only for booting up the transputer with the modelling package and as a file 

server. The transputer running COMMET can be connected to a network of eight or 

twenty-four T800 Transputers. This network of Transputers makes realistic the very long
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run times of the loop conformation generator programme and allows very large models (i.e. 

the entire protein model) to be put through the energy minimiser routines in a reasonable 

time. The eight Transputers in the network have a modified tree pattern that reduces to a 

minimum the distance any message has to travel through the network. In the twenty four 

transputer partition the T800s are connected in a pipeline.

The network is used to speed up the running time of the Newton - Raphson energy 

minimiser and the loop conformation generator. These two routines are very 

computationally intensive and can have a long run time for large jobs. Using the network 

allows molecules with more than 1000  atoms to be run through the energy minimiser and 

up to ten residues to be modelled with the loop conformation generator.
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6 Results

6.1 Sequence Alignment of B Fraction of Factor B (Bb) with 
bovine trypsin, low homology
Factor B in its zymogen form is a serum glycoprotein of approximately 90,000 Da. 

Activation of Factor B requires the cleavage of a single peptide bond resulting in two non- 

covalently linked fragments. The N - terminal Ba fragment has a molecular mass of about 

30,000 Da. The C - terminal Bb fragment has a molecular mass of about 60,000 Da and is 

responsible for the catalytic activity. In association with C3 it forms the complex 

proteinase £ 3  convertase (C3bBbl and C5 convertase (YC3blDBbl (see chapter 2).

The sequence of Bb was first obtained by protein chemistry106’107. The sequence of Ba was 

derived mainly from the nucleic acid sequence of a cDNA clone107, except for the short 

amino and carboxyl terminal sequences of Ba that were obtained by protein chemistry106. 

Nucleic acid sequencing of the gene coding for factor B and is in good agreement with the 

sequence obtained by protein chemistry. The only exception is that the DNA sequence 

indicates the presence of an isoleucine residue at position 272 instead of a threonine 

residue.

The complete amino acid sequence of Factor B consists of 739 residues. Activation by 

Factor D results in the cleavage of the peptide bond between Arg 234 and Lys 235 forming 

Ba which is 234 amino acid residues long and the catalytic chain Bb consisting of 505 

amino acid residues.

Partial sequence studies of Bb had previously shown factor B to be an unusual serine 

protease108. This serine protease domain is located in the C - terminal domain Bb. It 

comprises residues 457 - 739. The serine proteases is a large family of proteins that 

contains members with diverse functionality. Carrying out sequence alignments of Bb with 

members of the serine protease family with known crystal structure showed that bovine 

trypsin gave the best alignment.
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C2, the equivalent protein in the classical pathway as FB in the alternative pathway, is 

highly homologous with FB. This means that C2 and FB recently in evolution terms share 

a common ancestor that recently duplicated itself to give rise to the two different genes 

coding for C2 and FB109. Their similar roles and function in the two pathways also 

highlight the fact that there is probably little difference in the structures between C2 and 

FB. Most of the differences will be centred on the different specificity towards their 

differing methods of activation and control.

Although bovine trypsin gave the best sequence alignment with Bb the alignment is poor. 

Both FB and C2 are only distantly related to the serine protease family of proteins. It is 

normally considered that a protein is homologous to another protein only if the sequence 

alignment shows that their primary sequences are above 25% identical to one another. For 

the case of FB and bovine trypsin the two proteins have a score of 17 - 21% identity. This 

very low score means that there will be some major deviations in the structures between the 

two proteins. This can be seen in the large insertions that are to be found in the alignment 

between FB and bovine trypsin (Diagram 6-1 on page 147).

C2

10

A P S C P Q N V N I  S - G G

FB T P W S L A R P Q G S C S L E G V E  I K G G

20 30

C2 T F T L S H G - W A P G S L L T Y S C P Q G

FB S F R L L Q E G Q A L E Y V C P S G

40 50 •

C2 L Y P S P A  - S R L C K .  S S G Q W Q T P G A  

FB F Y P Y P V Q T R T C R S T G S W S T L K T
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60 70

C2 T R S L S  - - K A V C K P V R C P A P V S F

FB Q D Q K T V R K A E C R A I  H C P R P H D F

80 90

C2 E N G  I Y T P R L G S Y P V G G N \

FB E N G E Y W P R S  P Y Y N S V D E  I

100 110 

C2 E D G F  I L R G S  P V R Q C R P N

FB Y D G Y T L R G S  A N R T C Q V N

120 130

C2 E T A V C D N G A G H C P N P G I  S

FB Q T A I C D N G A G Y C S N P G I  F

150

C2 R T G F R F G H G D K V R Y R C  S 

FB K V G S Q Y R L E D S V T Y H C S

170 180

C2 T G S  S E R E C Q G N G V W S  G T  

FB R G S Q R R T C Q E G G S W S G T

S F E C 

S F H C

M W D G 

R W S G

140 

L G A V 

I G T R

160

N L V L 

G L T L

P I C R 

P S C Q
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190 200

C2 Q P Y S Y D F P E D V A P A L G T  S F S H M

FB D S  F M Y D T P Q E V A E A F L S  S L T E T

C2b
210 220 -------

C2 L G A T N P T Q K T K  - - E S L G R K I I ]

FB I E G V D A E D G H G P G E Q Q K R K I  >

I

L

Ba

C2a

Bb

230 240

C2 Q R S G H L N L Y L L L D C S Q S V S E N D  

FB D P S G S M N I Y L V L D G S D S  I G A S N

250 260 270

C2 F L I F K E S A S L M V D R I  F S F E I N V

FB F T G A K K C L V N L T E K V A S  Y G V K P

280 290

C2 S V A I I T F A S  E P K V L M S V L N D N  S

FB R Y G L V T Y A T Y P K  I W V K V  S E A D S

300 310

C2 R D M T E V  I S S L E N A N Y K D H E N G T

FB S N A D W V T K Q L N E  I N Y E D H K L K S
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320 330

C2 G T N T Y A A L N  S V Y L M M N N Q M R L L

FB G T N T K K A L Q A V Y S M M S Y P D D V  -

340 350

C2 G M E T M A W Q E  I R H A I  I L L T D G K S

FB - - P P E G W N R T R H V I  I L M T D G L M

360 370 380

C2 N M G G S P K T A V D H I R E  I L N I N Q K

FB N M G G D P  I T V I D E I R D L L Y I G K D

390

C2 - - - - R N D Y L D  I Y A  I G V G K L D V D

FB R K N P R E D Y L D V Y V F G V G P L  - V N

400 410 420

C2 W R E L N E L G S K K D G E R H A F  I L Q D

FB Q V N  I N A L A S  K K D N E Q H V F K V K D

430 440

C2 T K A L H Q V F E H M L D V S K L T D T  I C

FB M E N L E D V F F Q M I D E S  - Q S L S L C
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450 460

C2 G V G N M s A N A S D Q E R T P W H - - - V

FB G M V W E H R K G T D Y H K Q P W Q A K I S

TB I V G G Y T C G A N T V P Y Q - - - V

470 480

C2 T I K P - K S Q E T C R G A L I s D Q W V L

FB V I R P S K G H E S C M G A V V s F Y F V L

TB s L N - - S G Y H F c G G S L I N S Q W V V

* 1 1 1 * * * 1 *

490 500

C2 T A A H C F R D G ........................... N D H S L W R V

FB T A A H C F T V D D  - - - - K E H S I  - K V

TB S A A H C Y K S G I Q V R S G Q D N I  - - -

* I I I I * I

510 520

C2 N V G D P K S Q  W G K E L L I E K A V I s P

FB S V G G E K -  -  -  - R D L E I E V V L F H P

TB N V V E G N Q Q  -  - - F I S A S K S I V H P

1 * * * * I I

530 540

C2 G F D V F A K K N Q G I L E F Y G D D I A L

FB N Y N I N G K K E A G I P E F Y D Y D V A L

TB S Y N S N T L N N - - - D I M L
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550 560

C2 L K L A Q K V K M S T H A R P I C L P C T M

FB I K L K N K L K Y G Q T I R P I C L P C T E

TB I K L K S A A S L N s R V A S I S L P T S C

I

570 580

C2 E A N L A L R R P Q G S  T C R D M E N E L L  

FB G T T R A L R L P P T T T C Q Q Q K E E L L  

TB A - - ........................... S A G T Q C L  I S G W G N  -

590 600

C2 N K Q S V P A H F V A L N G S K L N - - - I

FB P A Q D I K A L F V S E E E K K L T R K E V

TB T K S S G T S Y P D V L K C

610 620

C2 N L K M G V E W T S c A E V V S Q  E K T M

FB Y I K N G D K K G S c E R D A - Q Y A P G

TB L K A P I L S N S S c K S

630 640 650

C2 P N L T D V R E V V T D Q  F L C S G T Q  E

FB D K V K D I S E V V T P R F L C T G G V S

TB - - - - A Y P G Q I T S N M F C A G Y L E

* I j ] * *
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660 670

C2 - - D E S P C K G E S G G A V F L E R R F R

FB Y A D P N T c R G D S G G P L I V H K R S R

TB G K D - - S C Q G D s G G P V V C S G K - -

l * I I I 1 I 1 I * * *

680 690

C2 F F Q V G L V s W G L Y N P C L G S A D K N

FB F I Q V G V I s W G V V D V C K N Q  K R Q  K

TB - - L Q  G I V s W G S - - G C A Q  K N K P G

I * * 1 1 1 I * *

700 710

C2 S R K R A P R S K V P P P R D F H I N L F R

FB Q V P A H ............................. - A R D F H I N L F Q

TB V Y T K V - - - - -  - - - - C N

720 730

C2 M Q p W L R Q H L G D  - V L N F L P L

FB V L p W L K E K L Q D E D L G F L

TB Y V s W I K Q T I A S N

* 1 * 1  *

Homologous Residues

1. D E K R

2. G A V

3. A V L I

4. V L I M

5. F Y W
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6 . S T

7. Q N

8 . G P

Diagram 6-1: Sequence Alignment Between C2, Factor B (FB) and bovine trypsin 

(TB). The * mark homologous residues between FB and TB, and a I denotes identical

residues between FB and TB.

6.2 Substitutions
As the similaritybetween the two protein sequences was so weak there were numerous 

substitutions that had to be carried out along the primary sequence of the parent sequence 

(TB) as it was changed to the sequence of the target structure (Bb). The method described 

in Chapter 4 for conservative and non - conservative substitutions was followed. There 

were no problems involved in the substitutions. This was to be expected as substitutions 

are the least disruptive of the three modelling techniques in going from the parent to the 

target structure.

6.3 Deletions In Bb Sequence
There are only two deletion modifications that have to be made in the modelling the Bb 

protein from the parent model, TB. The first is a four residue deletion at residue position 

Asp 62*. The deleted residues are Gin, Val, Arg and Ser. This deletion was modelled as for 

the short deletion method described in the previous chapter (Chapter 4). Although slightly 

longer than the normal three residues this method is limited to, the deletion was easily 

modelled by this method. There was no problem in closing such a large gap in the 

polypeptide chain left after the removal of the four residues using the energy minimisation 

routine. The extended bond closed rapidly and was of normal length within a few iterations 

of the energy minimiser.

The second of the deletions is a single residue deletion modelled at residue Lys 75. The 

residue removed from the model was Gin. There were no problems encountered in

* Chymotrypsin numbering
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removing the residue and running the protein fragment containing the extended peptide 

bond through the energy minimiser. The extended bond closed rapidly to the normal length.

6.3.1 Small Insertions Not Modelled Using The Conformation 
Generator
Insertions at Arg 34 and Val 217 are both two residues in length. These two insertions 

were modelled using COMMET’s insertion routine. This routine inserts one amino acid 

into the polypeptide chain. Therefore to model a two residue insertion involved calling the 

insert function twice. The insert routine is adequate for modelling small insertions but can 

not handle the larger insertions.

6.3.2 Large Insertions 3 Residues In Length and Longer
There are seven insertions three residues in length or longer which required to be modelled. 

They are at:

• Gin 30: 3 residues in length

• Ser 186: 3 residues in length

• Gly 129: 7 residues in length

• His 231: 8 residues in length

• Glu 101: 9 residues in length

• Leu 143: 9 residues in length

• Arg 170: 13 residues in length

A variety of methods were used to build each insertion depending on its length, its relative 

position in the primary structure and the local secondary structure of the parent model. 

Each of the large insertions are discussed separately below.

6.3.2.1 Insertion at Residue Position Gin 30

Two residues either side of the 3 residue insertion were included to be modelled as part of 

the loop. The reasoning behind this is to open a reasonable sized gap in the polypeptide 

chain so that the extra backbone atoms have some room to be accommodated. This
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increases the number of residues modelled in the loop conformation generator to seven. The 

primary sequence either side of the insertion is:

His Lys Gin Pro Trp* Gin Ala! Lys lie  Ser Val

lie Ser Val lie Arg Pro

The default setting in the loop conformation generator routine were used except for short 

non - bonded cutoff which was set at 10A. The results showing the minimisation of the 

conformations generated by the loop conformation generator can be found in Table 6-5 on 

page 175

As the energy of the lowest energy conformation (conf 8 ) was still quite high the insertion 

was put through the loop conformation generator a second time. This time three residues 

either side of the insertion was included as part of the loop. This was done in order to 

increase the size of the gap in the polypeptide backbone of the model into which the 

insertion is to be inserted. This increased the number of residues which are modelled in the 

loop conformation generator to nine. Again the primary sequence either side of the 

insertion is:

His Lys Gin Pro  T rp  Gin Ala Lys lie  Ser Val

De Ser Val He Arg Pro

The default setting in the loop conformation generator routine were used except for short 

non-bonded cut-off which was set at 10A. The results showing the minimisation of the 

conformations generated by the loop conformation generator can be found in Table 6- 6  on 

page 178

The longer insertion did not produce a conformation for the insertion of lower or 

comparable energy as conformation 8 from the short insertion run. Therefore conformation 

8 from the short insertion was used in the final model.

* The residues shown in bold were modelled in the loop conformation generator.
f The residues shown in bold italics are the residues that have to be inserted into the model
polypeptide.
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6.3.2.2 Insertion at Residue Position Ser 186

Looking at the alignment of the serine protease family in the papers by Greer110,111 it was 

noted that the insertion as it is positioned in the original alignment falls into a structurally 

conserved region. This structurally conserved region also contains the important residue at 

position 189 of the serine protease family. This residue is part of the substrate specificity 

pocket. It sits at the bottom of a pocket in the serine protease surface which is part of the 

binding site of the serine proteases. The residue which sits at the bottom of this pocket 

helps define the substrate selectivity of the particular serine protease. If this residue is 

charged then only oppositely charged residues are allowed into the pocket. Similarly if it is 

a bulky residue that is found at the bottom of the cleft then only small chain residues are 

able to dock into the pocket. The alignment in Greer’s paper moved the insertion in the Bb 

sequence three residues before this important residue. It was decided to use this alignment 

instead. The reason being that although residue 189 is not highly conserved within the 

family of serine proteases it is an important residue to the function of the protease and so is 

unlikely to move far from this position. In my original alignment the insertion occurs just 

after residue 189 which would cause residue 189 to be significantly moved away from its 

original position. The sequence alignment was altered from:

189

C2 G T Q E - - - D E S P C K G

FB G G V S P Y A D P N T C R G

TB G Y L E G G K D - - S c Q  G

to:

189

C2 G T Q - - Q - D E S P c K G

FB G G V S P Y A D P N T c R G

TB G Y L - - E G G K D S c Q  G

conserved 1 1 conserved region

region

The primary sequence around insertion 186 is:
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Gly Gly Val Ser Pro T y r Ala Asp P ro  Asn Thr

Cys

The parameters used in the loop conformation generator were the default parameters as 

given except for:

• Short non bonded cut off = 5

• sphere radius = 10A

• sphere violation = 10

The results showing the minimisation of the conformations generated by the loop 

conformation generator can be found in Table 6-7 on page 183.

Eventually conformation 27 was chosen to be added to the final model of Bb. The reason 

being conformation 27 was the conformation with the lowest energy after minimising the 

polypeptide fragment surrounding the insertion.

6.3.2.3 Insertion at Residue Position Gly 129
Due the length of the insertion at this position (7 residues) it became impractical to take 

two residues either side of the insertion to make a gap in the polypeptide chain for the 

insertion to fit into. Instead the polypeptide chain was rotated slightly. The idea using this 

method was to open up a gap in the polypeptide chain by choosing a (p or torsion angle 

which when rotated one or two degrees causes a large movement in the polypeptide chain. 

For insertion Gly 127 a torsion angle which causes a large movement in the position in the 

end of the gap is easy to find as the insertion is close to the end of a p strand. The primary 

sequence of the polypeptide chain either side of the insertion is:

Cys Leu Pro Cys Thr Glu Gly Thr Thr Arg A la

Leu Arg Leu  Pro Pro Thr Thr Thr

The default settings in the loop conformation generator routine were used except for short

non - bonded cut-off which was set at 10A. The results showing the minimisation of the
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conformations generated by the loop conformation generator can be found in Table 6 -8  on 

page 188.

Two generated conformations have similar minimised energies well below any other 

conformation. These two conformation, conformations numbered 26 and 28, were taken for 

further studies.

While examining the protein it became clear that the insertion residue position 127 and the 

insertion at residue position 231 were very close to each other in the three dimensional 

structure of the model. Although the two insertions are distant in terms of the primary 

structure they are found at opposite sides of a cleft in the model’s structure. As the two 

insertions are so close together there would be interactions between the residues of the two 

insertions. This meant that the insertions could not be modelled separately. As a result of 

the two insertions being so close to each other it was decided that one of the best 

conformations for the first modelled insertion, conformation 28 of insertion 127, should be 

introduced into the model while generating the conformations for insertion 231. 

Conformation 28 was chosen over conformation 26 in case some bias was added to the 

model in favour of conformation 26.

6.3.2.4 Insertion at Residue Position His 231

The insertion at residue position His 231 is eight residues in length. When the insertion is 

lengthened by a further two residues to start and open up some space in the polypeptide 

backbone, the number of residues to be modelled reaches close to the limit of the current 

version of the loop conformation generator. The primary sequence either side of the 

insertion is:

Val Pro Ala His Ala Arg Asp Phe His lie  A sn

Leu  Phe Gin Val Leu Pro

The default settings in the loop conformation generator routine were used except for short 

non - bonded cut-off which was set at 10A. The results showing the minimisation of the 

conformations generated by the loop conformation generator can be found in Table 6-9 on 

page 195.
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Four generated conformations of insertion 231 have comparable low energies after they 

have been through the energy minimiser. These four conformations, conformations 

numbered 49,60, 64 and 6 8  in Table 6-9, were tested with conformation 26 from insertion 

127. The results of the energy minimisations of these four conformations of insertion 231 

with conformation 26 from insertion 127 can be found in Table 6-10 on page 196.

Conformation numbered 49 of insertion 231 is clearly the lowest energy conformation for 

both conformation 26 and 28 of insertion 127. What has now to be decided is whether 

conformation number 26 or 28 is the lowest conformation for insertion 127. Using 

conformation 49 of insertion 231 two model fragments were built, one containing 

conformation 26 of insertion 127 and the other containing conformation 28 of insertion 

127. The results of this minimisation can be seen in Table 6-11 on page 197.

Using conformation 28 for insertion 127 in the model to generate the conformations of 

insertion 231 produced one low energy conformation for insertion 231, conformation 49. 

Conformation 49 for insertion 231 was used to decide which of the two low energy 

conformations generated for insertion 127 is the better. When minimisation of the two 

model fragments were carried out conformation 26 for insertion 127 is clearly the lower 

energy conformation. Therefore conformation 49 for insertion 231 and conformation 26 for 

insertion 127 were chosen for the final model.

Choosing the higher energy conformation for insertion 127, that of conformation 28, while 

modelling insertion 231 appears to have cleared the ambiguity between which 

conformation to choose, either conformation 26 or 28. Both conformations are of 

comparable low energy at the start of the modelling. Choosing conformation 28, the 

conformation with the slightly higher energy, shows that even when biasing the generation 

of the conformations of insertion 231 in its favour, conformation 26 still eventually 

produces the conformation with the lower energy. Had conformation 26 for insertion 127 

been chosen when modelling insertion 231 and the same result produced then it could easily 

be argued that choosing conformation 26 for insertion 127 biased the results in favour of 

insertion 26.
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6.3.2.5 Insertion at Residue Position Glu 101
There are two important points about the positioning of insertion 101. The first is that it is 

immediately before residue Asp 102 which is part of the catalytic triad. Factor B is still an 

active serine protease and contains the three functional amino acids required for catalysing 

the breaking of the peptide bond (the other two residues are His 57 and Ser 195). These 

three residues have to be in a very particular spatial position for the catalysis to take place. 

Within the family of serine proteases, for members that still actively cleave peptide bonds 

and have known 3D structures these three residues are in almost identical position relative 

to each other. The spatial positioning of these three residues is held constant within the 

serine protease family by the three residues being within regions with highly conserved 

primary sequence. Having a large insertion next to Asp 102 in the alignment of Fb and TB 

is going to cause the Aspartic acid residue to move. It is therefore very likely that the 

sequences are improperly aligned at this region.

The second point also supports the fact that the sequences are misaligned in this region. On 

examining the model structure it is found that the insertion in question occurs in a strong 

secondary structure feature. The insertions occurs in a P strand. In the original alignment 

the insertion occurs five residues from the P turn. As insertions, particularly large 

insertions tend not to occur in secondary structure it is highly likely that the insertion 

should be aligned to the P turn rather than within the P strand structure itself.

The insertion to be modelled is nine residues in length. Two residues either side of the 

insertion are added to the residues to be modelled to create a gap in the polypeptide 

backbone to accommodate the insertion. This increases the number of residues in the 

insertion to more than the current version of the loop conformation generator can handle in 

a feasible time period. Therefore another method had to be employed to model this 

insertion.

The original alignment of Bb and trypsin just before Asp 102 is shown below. In the 

original alignment the residues involved in the p turn are underlined and Asp 102 is 

highlighted in bold:
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FB N Y N  I N G K K E A G  I P E F Y D Y D V A L

TB S Y N S N T L N N ................................................... D I M L

6.3.2.5.1 Attempt 1
The insertion was split in two and put into the model either side of the i+1 and i+2 residues 

of the P turn of the original model. This means the alignment between Bb and trypsin is:

FB N Y N I N G K K E A G I  P E F Y D Y D V A L  

TB S Y N S _ ....................... N _T - - - -_ L  N N D I M L

The loop conformation generator could not be used to model the insertions therefore each 

residue was inserted into the polypeptide chain one at a time using the ‘Residue Insert’ 

function within COMMET. This function places the residue to insert directly on top of the 

two residues either side insertion. It then, for each of the nine low energy (p \|/ torsion angle 

combinations from the Ramachandran map of the inserted residue, carries out a rapid 

pattern search minimisation with a high potential set forcing the cp \|/ torsion angles to the 

appropriate angles. Out of the nine different <p \jr angle combinations tried the conformation 

which produces the lowest energy is chosen as the conformation for the inserted residue. 

After each residue is inserted using the “Residue Insert” function the polypeptide fragment 

around the insertion is put through the energy minimiser before the next residue is inserted 

into the polypeptide chain. The results can be found in Table 6-12 on page 199.

6.3.2.5.2 Attempt 2
Again the insertion was split into two and put into the model either side of the i+1 and i+2 

residues of the P turn of the original model. The new alignment is the same as for attempt 1 

but the order in which the residues are inserted into the model is different. The results of 

the modelling can be found in Table 6-13 on page 201.

6.3.2.5.3 Attempt 3
In this attempt the insertion was kept the original size and added one residue at a time 

between i+2 and i+3 residues of the p turn. The order the residues of the insertion were
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inserted into the polypeptide chain was to keep adding the residues to the end of the P 

sheet. The alignment between Bb and trypsin for this attempt at modelling the insertion is:

FB N Y N  I N G K K E A G  I P E F Y D Y D V A L  

TB S Y N S _ N ..................................................T _L  N N D I M L

The results can be found in Table 6-14 on page 203.

6.3.2.5.4 Attempt 4
The same alignment used in attempt 3 above was tried again. This time correcting the 

substitutions for the new alignment was carried out first. Then the residues were inserted 

into the polypeptide chain in the same position and same order as attempt 3. The results 

can be found in Table 6-15 on page 205.

Attempt 2 gives the most compact structure of all the attempts and has the lowest 

conformational energy. This conformation was put into the final model.

6.3.2.6 Insertion at Residue Position Leu 143
The insertion at Leu 143 occurs in a loop region of the model. Again the insertion is too 

large to use in the loop conformation generator. Instead each of the nine residues in the 

insertion is put into the model and the polypeptide chain about the insertion is put through 

the energy minimiser. This is repeated until all nine residues of the insertion are inserted 

into the model. The results showing the minimisation of the conformations generated by the 

loop conformation generator can be found in Table 6-16 on page 206.

After Gin, the fourth residue of the insertion, was added to the model and minimised the 

following residues inserted caused the energy to increase sharply. The model was saved 

after Gin was inserted and minimised to be the starting point of further modelling. To try 

and keep the energy of the model low hydrogen atoms were added to the model and to the 

inserted residues to see if this would make a difference in the energy of the insertion. The 

following table shows the result of taking this strategy. Building the insertion with
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hydrogen atoms already added to the model prevents the energy of the insertion from 

escalating. The results of this modelling strategy can be seen in Table 6-17 on page 207

This method produces a fairly compact structure with an acceptable energy. Further energy 

minimisation was carried out on this structure with the hydrogen atoms removed (see Table 

6-18 on page 207.

Looking at the insertion more closely at this point showed that the aromatic ring of 

phenylalanine at residue position 144 had distorted from planar. The torsion and valence 

angles of the distorted aromatic ring were reset to their standard planar value and the 

energy minimisation restarted, the results of this modification can be seen in Table 6-19 on 

page 208. Again after several iteration of the energy minimisation steps the aromatic ring 

of the phenylalanine at position 144 was distorted. Once again the ring’s torsion and 

valence angles were reset to the standard planar angles. The results can be followed in 

Table 6-20 on page 210.

Further energy minimisation and alterations to Phe 144 and Glu 142 reduces the energy of 

the fragment model to 221.0 kcalsmol'1. In the model Phe 144 and Glu 142 point into the 

same cleft in the model surface. Once they are in this conformation, pointing into the cleft 

the energy of the fragment is low and the two residues stable.

6.3.2.7 Insertion at Residue Position Arg 170

In the original alignment of Fb with TB the insertion at residue 170 occurs within an a  

helix structure and two residues away from a disulphide bridge found at Cys 168. Due to 

the disulphide bridge it is very unlikely that there will be much change in the structure of 

the proteins prior to the disulphide bridge. Also as this segment is in an a  helix it is in a 

stable conformation and is unlikely to change its conformation. Therefore it is reasonable 

to expect to find the a  helix up to at least residue 168 which is the Cys residue of the 

disulphide bridge. There are several possibilities that can occur after residue 168 in the 

model:
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1. The Helix continues for one more residue, up to residue 169. After which there is a 

random coil due to the insertion at this point.

2. The a  helix is kept the same length in the Bb model as found in TB, extending up to 

residue 171. The insertion is moved to be just after the end of the helix.

3. The helix is extended for at least part of the insertion.

To examine the possibilities mentioned above a simple sequence analysis of this region of 

the Bb sequence was carried out manually. Chou and Fasman secondary structure 

prediction112 was used as this algorithm can be carried out manually. Looking at the 

segment of the Bb primary sequence immediately before the insertion and the insertion 

itself the following probability figures for the residues being in the a  helix conformation 

are from the Chou Fasman algorithm:

Lys Gly Ser Cys Glu Arg Asp Ala Gin Tyr Ala Pro

l a Ba i« ia H a I« l a H a ha ba H « Ba

1.08 0.53 0.79 0.77 1.33 0.79 0.98 1.45 1.17 0.61 1.45 0.59

Gly Tyr Asp Lys Val Lys Asp Be Ser Glu Val Val

Ba b a la l a l a la l a l a ia

0.53 0.61 0.98 1.07 1.09 1.06 1 .02 0.92 0.79

Using the rules developed by Chou and Fasman the a  helix has a high probability of 

extending five residues into the insertion up to the Pro residue. As Pro is a strong a  helix 

breaker and tends not to occur at the C terminal of an a  helix it is very unlikely the a  helix 

would extend past the Pro residue.

As the insertion is too long to model using the loop conformation generator the number of 

residues to be modelled by the loop conformation generator was reduced by modelling the 

first five residues in the insertion in the a  helix conformation. This left seven residues of 

the insertion to be modelled. These residues along with three residues immediately after the 

insertion in the primary sequence were modelled using the loop conformation generator.
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The three residues added to the loop to be modelled by the loop conformation generator 

were included to create a space in the model to add the insertion. The primary sequence 

around the insertion to be modelled looked like:

Lys Gly Ser Cys Glu Arg Asp* Ala Gin T vr Ala Prof 

Gly Tyr Asp Lys Val Lys Asp* De Ser Glu Val Val

The first part of modelling this insertion was building the a  helix. First a five residue helix 

was built using the COMMET’s build function. This function allows the user to build a 

short chain of residues of a given primary sequence and then define the (p and \\f torsion 

angles of the model. After the five residue a  helix was built it was manually added to the 

protein model at residue position 170. This was accomplished by joining the two models at 

the Ccarbonyl atom of residue 170 and the Namide terminal atom of the short a  helix fragment. 

This newly formed bond was shortened to the correct length and the torsion angle spanning 

the new bond set the correct value for being part of an a  helix.

Three residues before the insertion and the newly inserted residues in the a  helix 

conformation were allowed to move in the energy minimiser. The C ^ny i atom of the last 

residue in the a  helix was not bonded to any other residue during this procedure. To 

prevent the helix from unwinding this Coubonyi atom was held fixed while the model was put 

through the energy minimiser. The results of this minimisation can be seen in Table 6-21 

on page 2 1 1 .

Looking at the <p \j/ torsion angles of the a  helix at this stage the angles do not drift far 

from the idealised torsion angles at the start of the energy minimisation and are still very 

much in the allowed region of the Ramachandran map for a  helix 9  \jf torsion angles.

* The residues in bold and underlined were part of the insertion but were modelled as part of the 
a  helix.
+ The residues shown in bold italics were the part of the insertion modelled using the loop 
conformation generator.
* The residues in plain bold were modelled in the loop conformation generator along with the 
residues from the insertion.
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To model the remaining residues of the insertion the loop conformation generator was used. 

The default settings in the routine were used except for short non-bonded cutoff which was 

set at 10A. The results of minimising the conformations generated by the loop 

conformation generator can be found in Table 6-22 on page 220.

Eventually conformation 96 was chosen to be added to the final model of Bb. The reason 

being conformation 96 was the conformation with the lowest energy after minimising the 

energy of the polypeptide fragment surrounding the insertion.

6.4 Global Minimisation
The final model is built by putting all the modifications into the one model. This gives a 

model with the correct primary sequence for Bb but due to the many alterations carried out 

on the model has regions of high steric energy. Next the disulphide bridges were remade. 

Then new charges for the inserted residues were calculated. This was done using the ‘Delre 

Charge’ function within COMMET. This function calculates the charge on each atom in a 

residue. The charge calculation depends on the local environment of the residue which is 

most closely affected by the residue before and after it in the primary sequence. The 

residues in the model that were not altered or inserted kept the original charges from the 

bovine trypsin model. The model is now ready to be put through the energy minimiser.

At the start of the energy minimisation procedure the model is put through 10 iterations of 

the energy minimiser before being checked for serious steric clashes that the minimiser can 

not resolve. This problem is most easily noticed by watching the bond lengths for any 

dramatic deviations from the normal. After each set of ten iterations of the energy 

minimiser the bonds in the model was analysed for large deviations. The first 60 iterations 

of the energy minimiser are shown below:

All energy in kcalsmol' 1

lOx lOx lOx lOx lOx lOx
----- > ----- > ----- > ----- > ----- > ----- >

******* ******* 25010 17310 15950 1570 1500
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At this point the backbone breaks between residues lie 118 and Arg 119 due to residue Tyr 

114. The aromatic group of the Tyr has bad steric contacts with the Ocarbonyi of lie. Going 

back to the original model the COMMET routine ‘SITAR’ was used on residues Tyr 114 

and Tyr 101. Tyr 101 was put through SITAR as this was also causing steric clashes in 

the region. This slightly altered model was now used as the starting position for the energy 

minimisation. The energy minimisations were started again. The first 70 iterations of the 

energy minimiser are shown below:

All energy in kcalsmol' 1

lOx lOx lOx lOx lOx lOx lOx
----- » ----- > ----- » ----- > ----- » ----- > ----- >

******* 12610 9310 8007 7476 7172 7007 6 8 6 6

At the end of this energy minimisation procedure the residue He 118 again had a very high 

energy bond. The residue was clashing with Lys 79. Using the ‘SITAR’ function on Lys 

79 moves it into such a position that it clashes with many other residues. Using ‘SITAR’ 

on He 118 is a better option producing less clashes. The energy minimisation of the model 

continues after the modifications to He 118 is carried out. The next set of iterations of the 

energy minimiser give the energies for the model:

All energy in kcalsmol' 1

lOx lOx lOx
----- > ----- > ----- »

1140 4906 4070 3864

Carrying out an analysis of the bond lengths in the model shows that the phenyl ring in 

residue Phe 49 becomes greatly distorted and the bond lengths grow large. Phe 49 was 

clashing with residue Lys 111. The aromatic ring of Phe 49 is set to the correct geometry 

with the correct bond lengths, after which the ‘SITAR’ routine is carried out on it. The
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energy minimisation carried on after the above alterations were made to the model. The 

next 80 iterations of the energy minimiser are:

All energy in kcalsmol' 1

lOx lOx lOx lOx lOx lOx lOOx lOOx
----- > ----- > ----- > ----- » ----- > ----- > ----- > ----- »

2535 2320 2154 2067 1946 1853 1769 1216 992.3

At this stage the hydrogen atoms were added to the model. The addition of hydrogen atoms 

was carried out in two stages. First the polar hydrogens were added to the model and then 

the remaining hydrogens added to the model. The results of energy minimising the model 

after the addition of just the polar hydrogens is:

All energy in kcalsmol' 1

lOx lOx lOx lOx 500x 500x
----- > ----- » ----- > ----- > ----- > ----- >

7844 7457 7358 7232 7181 6149 5799

After the addition of the aliphatic hydrogens the model was again minimised:

All energy in kcalsmol' 1

lOx lOx 500x 500x
----- > ----- > ----- > ----- »

15940 8867 8016 6198 5992

Any improvements in the energy of the protein model now come from trying to mimic the 

environment the protein would find itself. Looking at the crystal structure of the original 

structure bovine trypsin there are some solvent molecules, in this case water, that are 

strongly bound to the protein structure. These water molecules help stabilise the structure 

of the protein. As the new model, Bb is homologous to bovine trypsin, a starting point for 

adding important waters to the new model is taking the strongly bound water molecules 

from the original crystal structure and putting them into the new model in the same relative
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position. This is achieved by first superimposing the TB crystal structure onto the new Bb 

model. The residues used to superimpose the two models are chosen as those least likely to 

be in different positions in the two models. These residues are the six residues involved in 

the three disulphide bridges common to both proteins and the three residues involved in the 

catalytic triad of the serine protease family. Using these nine residues TB was 

superimposed onto Bb. The water molecules associated with TB were also moved as part 

of the TB model.

The TB residues are removed from superimposed molecules leaving behind Bb and the 

crystallographic waters. To continue with the energy minimisation of the model the Bb 

residues were held fixed and the water molecules allowed to move in the energy minimiser 

procedure. The results of this are:

All energy in kcalsmol' 1 Hydrogen atoms fixed

lOx lOx lOx lOx lOx
----- » ----- » ----- > ----- > ----- >

454200 453800 ******* 31950 31360 31220

At this point the entire model is allowed to move freely in the energy minimiser routine. 

The results of carrying out the energy minimisation routine on the model are:

All energy in kcalsmol' 1

lOx lOx 500x 500x lOOOx lOOOx lOOOx
----- > ----- > ----- » ----- > ----- > ----- > ----- >

67280 10220 8561 5817 5691 5541 5433 5355

At this point in the model building process the model is examined closely for any possible 

errors. The most easily noticed one is that residue His 57, which is part of the catalytic 

triad, is in the wrong orientation for an active serine protease. As previously mentioned, the 

residues involved in the catalytic reaction in the serine protease family are highly conserved 

and found to be in the same spatial position for the members of the family that have had 

their crystal structure determined. As Bb is an active serine protease this very strongly
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suggests that the three residues central to the catalytic reaction are in the same spatial 

position in Bb as other members of the family that already have their crystal structure 

determined. As His 57 was in the wrong orientation it was decided that this part of the 

model required to be remodelled.

Starting from the model produced by the last energy minimisation the water molecules and 

hydrogens were removed from the model.

The alignment between Bb and BT around this region is

TB Val53 Ser Ala Ala His57 Cys Tyr Lys Ser Gly Be63

Bb Leu Thr Ala Ala His Cys Phe Thr Val Asp Asp

TB Gin Val Arg Leu Gly69 Glu Asp Asn Be73

Bb - - - - Lys Glu His Ser Be - Lys

TB - Asn Val Val Glu Gly Asn

Bb Val Ser Val Gly Gly Glu Lys

Gin Gin8 - Phe 

Arg Asp

TB Be 

Bb Leu

Ser

Glu

Ala Ser84

Be Glu

The above region, that is residues 53 Leu to 84 Ser was cut out of the crystal structure 

model of BT and inserted into the equivalent region of Bb. The residues previously in the 

model of Bb in this region were discarded. The appropriate residues were substituted so 

that the new section of polypeptide chain added to Bb was of the correct primary sequence. 

Next the two residue insertion 73 Be was added to the model using COMMET’s protein 

buUd function.
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After the substitutions and the two residue insertion is remodelled in the Bb model the four 

residue deletion at Asp 63 is modelled. The modelling is carried out taking residues either 

side of the deletion and modelling this section of the peptide chain with the loop 

conformation generator. The primary sequence of Bb either side of the residues to be 

modelled with the loop conformation generator is:

Ala His Cys Phe Thr Val Asp Asp Lys Glu His Ser 

He Lys Val

The default setting in the loop conformation generator routine were used except for the 

short non-bonded cut-off which was set to 10A. The results of energy minimisation on the 

conformations produced by the loop conformation generator can be found in Table 6-23 on 

page 2 2 2 .

Conformation numbered 1 has the lowest conformation by a considerable margin and was 

inserted into the model.

With the new conformation for the region inserted into the model the global minimisation 

of the Bb model can be resumed. First the entire model is put through the energy minimiser

All energy in kcalsmol' 1

lOx lOx lOx lOOx
----- > ----- > ----- » ----- >

6387000 5628 2078 1563 706.9

After the above energy minimisation was completed the hydrogen atoms were added to the 

model. This was carried out in two stages. First the polar hydrogens were added the 

resulting structure was put through the energy minimiser:

All energy in kcalsmol' 1

lOx lOx lOOx 500x
----- » ----- > ----- > ----- >

5209 5013 4919 4875 4497
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The second step is the addition of the remaining hydrophilic hydrogens to the structure. 

This drastically increases the number of atoms in the resulting model. Putting this model 

through the energy minimiser gives the following energy results:

All energy in kcalsmol' 1

lOx 500x 500x
----- > ----- > ----- >

7168 6304 4779 4589

Next the oxygen atoms from the crystallographic waters were added to the model. The 

oxygen atoms were added to this model in the same position as they were in the previous 

partially minimised model of Bb before the alterations to the polypeptide chain took place. 

These positions originally came from the waters closely bound to bovine trypsin as found 

in its crystal structure. The results of carrying out the minimisation of this model are:

All energy in kcalsmol' 1

lOx lOx lOx lOOx
----- > ----- > ----- » ----- »

9|c9|cs|e9|e3|e9|eiic 22650 9494 9271 9212

At this point the hydrogen atoms of the water molecules were added to the model. The 

entire Bb model was fixed and only the newly inserted hydrogen atoms of the water 

molecules were allowed to move while the entire model is run through the energy 

minimiser. The results are:

All energy in kcalsmol' 1

lOx lOx lOx
----- > ----- > ----- »

379500 11670 10830 1006
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Then just the water molecules of the model were allowed to move freely in the energy 

minimiser routine while the polypeptide chain was kept in a fixed conformation:

All energy in kcalsmol' 1

lOx lOx lOx lOx lOOx
----- > ----- » ----- » ----- » ----- »

10880 9641 9566 9527 9513 9477

Finally the entire model was allowed to freely move during the energy minimisation runs. 

The resultant energies are:

All energy in kcalsmol' 1

lOx lOOx 500x 500x lOOOx lOOOx lOOOx
----- > ----- » ----- » ----- » ----- > ----- » ----- >

2368 7396 4815 4442 4339 4202 4118 4115

6.5 Refinements To The Model
After global minimisation was carried out the model of Bb was evaluated by putting it 

through a structure analysis package. The structural analysis package used was the one 

found in the W hatlf package (see section 7.1.1 on page 223). This showed there were 

numerous serious errors in the model which had to be fixed. The errors in the structure 

which were tackled in the refinement process were:

1. The wrong chirality of certain amino acids

2. The wrong chirality of certain lie Cp atoms

3. The surface loop at Insertion 170 extends too far out of the surface

As the refinement modelling was carried out several years after the initial project the 

original software and hardware used in the rest of the project was not available. Instead the 

molecular modelling package InsightH® version 2.3.0 and the molecular simulations 

package Discover® from Biosym Technologies113,114 was used.
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There were a total of 35 amino acids which had the wrong chirality at the Ca atom. It has 

long been known that the naturally occurring chiral amino acids only ever occur in the L 

isomer in nature. Therefore any amino acids in the model which have the D isomer are very 

obviously incorrect. It is an easy procedure to step through the residues in the model and 

change the D amino acids to L. The Biopolymer ® module of Insightll allows the user to 

change the amino acids chirality. After changing the chirality of the amino acid the 

Biopolymer module steps through the library of possible side chain rotamers and selects 

the rotamer with the least stefic clashes. The library of rotamers is developed from analysis 

of the Brookhaven database. It was noted that each side chain prefers to adopt certain 

conformations (rotamers). It is much quicker stepping through the list of possible rotamers 

for an amino acid than rotating through all the possible conformations that the side chain 

can adopt.

A suggested reason why there were so many D amino acids in the structure is because the 

hydrogen atoms weren’t added to the model until quite late into the energy minimisation 

procedure of the model. It wasn’t until the heavy atom model was nearly fully relaxed that 

the hydrogen atoms were added. During the energy minimisation of the heavy atom model 

there was no constraints on keeping the chiral Ca atoms in the correct chirality. When the 

hydrogen atoms were added by the COMMET modelling package the criteria for where the 

hydrogen atoms should be placed was purely geometrical, no consideration of the chiral 

centre’s preferred chirality was taken into consideration. In such a case with hind sight the 

chirality of the amino acids in the model should have been checked when the hydrogen 

atoms were added and not left until the refinement stages of the model.

The next step in the refinement was to correct the chiral Cp atoms of the lie residues which 

were the wrong chirality. Throughout nature only the one isomer is used in nature. lie is no 

exception even though it has two chiral centres (Ca and Cp atoms) only the one enantiomer 

is used in nature. The same reason as above for the incorrect chiral C« atoms is the likely 

cause of the incorrect chirality in some lie Cp atoms. To fix the chirality the Biopolymer 

function “invert” was used. This works by reflecting through 180° the chiral centre along 

the axis chosen. The axis is made up by the first atom selected, the chiral centre selected 

and the third atom selected. In this case the chiral centre was the Cp atom and the other two
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atoms defining the axis were Hp and C52 atoms. This effectively changed the position of the 

Hp and C§2 atoms.

The next step in the refinement was to address the problem that the loop at insertion 170 

extends too far from the protein surface. Although it is true that that surface loops are 

highly flexible and extend out into the solvent they do tend to rest on the protein surface. 

This is not the case for the second half section of Ins 170. To solve this problem the 

existing conformation was used as the starting point for further modelling studies. 

Molecular Dynamics was used in the attempt to find a conformation for the loop which 

does not extend out into the solvent to the same extent as the starting conformation. To 

encourage the loop to move back against the protein surface a constraining force was 

applied to the section of the loop allowed to move in the molecular dynamics. The 

constraining force that was set up such that it forced an atom towards the protein surface 

only if it was more than 16A from the centroid of the model. The atoms constrained in this 

way were the backbone heavy atoms (N, C«, C, O). This was to encourage the side chains 

of the residues that were moving in the molecular dynamics to point into the solvent. The 

reasoning behind this is that it is well known that surface residues tend to point out into the 

solvent. If the side chains were also constrained to move towards the surface there would 

be a danger that the side chains may become buried and expose the backbone to the 

solvent.

The residues allowed to move in the molecular dynamics run were from the fourth residue 

of Ins 170, which is the Tyr, to Val 176. This was a total of 15 residues. The dynamics mn 

was carried over 25,000 iterations with the temperature at 500.0 K and using the 

constraints talked about above. The reason for the elevated temperature was to allow the 

backbone to move out of its present conformation and sample other conformations. The co

ordinates of the model was saved to a history file every 2,500 steps. This gave 10 

conformations to examine.

The analysis of the loop conformation centred around the distance from the centroid of the 

protein model and the centroid of the moving residues in the loop. The smaller the distance 

between the two centroids the closer to the surface the loop is. Frame 8 gave the lowest
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total energy for the loop but frame 4 gave the smallest distance between centroids (see 

Diagram 6-2 on page 170 and Diagram 6-3 on page 170). Frame 8 was chosen because the 

difference in the distance was negligible.

24.5

23.5

$  22.5
£ .5 22
jj 21.5

20.5

3 6 82 4 5 7 9 10 111

Frame Number

Diagram 6-2: The chart shows the distance between the centroid of the protein and 
the centriod of the moving residues for each frame in the molecular dynamics.
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o
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Frame Number

Diagram 6-3: This chart shows the total energy of the moving residues in each frame
of the molecular dynamics.

Starting from the conformation of Frame 8 the same residues were allowed to move in a 

second molecular dynamics run. This time the temperature during the run was set to 

300.OK and no constraints were used. This allowed the conformation of ins 170 to find the 

local minimum conformation. Again the molecular dynamics was carried out for 25,000 

steps and the co-ordinates saved to a history file every 2,500 steps. The same analysis was
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used for this dynamics run as in the first run (see Diagram 6-4 on page 171 and Diagram 

6-5 on page 171). This time the conformation from frame 6  was chosen as it had the 

smallest centroid to centroid distance after the energy of the loop had settled. The new 

conformation of Ins 170 can be seen in Diagram 6-6  on page 172.

— 21.905
-T3

21.8

21.7

21.6
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6 8 93 4 5 7 10 111 2
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Diagram 6-4: The chart shows the distance between the model centroid and the 
centroid of the moving residues for each step in the molecular dynamics simulation.
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energy |

Diagram 6-5: This chart shows the total energy of the moving residues for each step in
the molecular dynamics simulation.
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Diagram 6-6: New and old conformation of Ins 170. The old conformation is in purple. This 
shows the new conformation of the insertion is lies more on the surface.

Finally the global minimisation was carried out. As before the minimisation procedure was 

carried out in stages. First the entire backbone was held rigid as the side chain residues 

were allowed to be minimised.

Then just the Ca atoms were fixed and the rest of the model allowed to move. At this point 

constraints were added to the model to try and fix some poor (p/\j/ angles in the model. To 

decide which cp/\j/ angles to constrain the BT crystal structure and the Bb model were put 

through W hatlf s MOTIF function. This superimposes two structures on the merit of 

conserved sections of their structure, disregarding the variable regions of the structures. At 

the end of this function an alignment is given which tells the user which sections of the two 

structures Whatlf considers conserved. The aligned conserved regions in the structure were
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used to constrain the equivalent <p,\y angles in the Bb model to the corresponding <p,\|/ 

angles from the BT crystal structure. The constraints were set up such that there was a 

force applied to the torsion angle if it deviated by more than 5A from the torsion angle 

found in the BT crystal structure. In total 272 torsion angles were constrained during the 

minimisation.

The model put through the Whatlf analysis is taken from the result of this minimisation. 

Resource and time constraints prevented any further refinement being carried out. The 

biggest problem was the lack of resources. As the initial modelling was carried out three 

years ago the original machine and software package were no longer available. Only 

limited access to molecular modelling packages was available at Daresbury Laboratory, 

which was compounded when Biosym’s Discover license was not renewed. The final 

minimisation calculations were carried out thanks to the good will of colleagues at Proteus 

Molecular Desigh Ltd.
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7 Discussion

7.1 Discussion of the Model

7.1.1 Assessment Of The Model
After the final minimisation the protein model was evaluated by running it through an

analysis program. The analysis routine was the Protein Analysis function “FULCHK” used

in the What if115116 package. The entire report can be read in Appendix A (chapter 8 ). A

discussion of the report follows:

1. The space group information was added by W hatlf automatically. It has no effect in 

the analysis of the protein model.

2. The model co-ordinates had already been rounded to the correct number of decimal 

places (three for Brookhaven files) when the co-ordinates were written to pdb format 

by Insightll.

3. This error is due to there being no crystal information in the pdb file and can be 

ignored

4. No problems with nomenclature. Previous problems with nomenclature appear to have 

been caused by having H atom co-ordinates in the pdb file. The pdb file format was 

designed for protein crystal structures which due to the nature of crystallography do 

not have H atoms assigned. Therefore there is sometimes problems with reading in 

pdb files which do contain H atom co-ordinates.

5. Everything is OK, see point 4 above.

6 . Everything is OK, see point 4 above.

7. Everything is OK, see point 4 above.

8 . Everything is OK, see point 4 above.

9. Everything is OK, see point 4 above.

10. Everything is OK, see point 4 above.
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11. Everything is OK, see point 4 above.

12. Everything is OK, see point 4 above.

13. Everything is OK. W hatlf could properly assign all the atoms in the file to the correct 

amino acid structure.

14. No side chains had the wrong chirality. This is a vast improvement on the original 

structure where 35 amino acids had the wrong chirality, a major error as only the L 

structure is ever found naturally in nature. The lie Cp atoms all now have the correct 

chirality. The problem that the chirality checker is having is due to the constraints on 

the backbone atoms of the model during the minimisation. This is causing the peptide 

bond to deviate significantly from planarity. This would quickly be resolved by 

carrying out further minimisations reducing the constraints on the backbone model. 

Unfortunately resource and time constraints do not allow further energy minimisation 

runs to be carried out.

15. Again the problem of the improper dihedral angles is down the constraints on the 

backbone during the final energy minimisation carried out.

16. The problem here is the way the original modelling package used, COMMET, 

renumbered the insertions. The standard expected by W hatlf is to use the last residue 

number before the insertion and use this as the base to number the insertion. The first 

residue in the insertion should be iA, the next iB, the next iC and so on. Instead 

COMMET numbers each insertion from 1, the next is numbered 2, the next 3 and so 

on. This means that the model has several residues named 1, 2, 3, etc. This is cause of 

the error.

17. Weights checked OK. They were all assigned 0.00 in the pdb file as default.

18. All atoms that W hatlf was expecting from examining the primary sequence were found 

in the pdb file.

19. C terminal oxygen atom was missing. This was missed out by COMMET package as 

the Bb primary sequence extends past the BT sequence. As no homology existed for this 

section of the primary sequence it was not modelled.
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20. Same reason as in 19. It is normal to add a neutral group to the end of C terminal end 

of the model so that the model does not have an extra charge where none exists in the 

native protein.

21. In total 97 unusual bond length were reported by Whatlf. Two reasons are possible. 

Having this many in a minimised structure strongly suggests that a different bond length 

library was used in Biosym’s CVFF force field. This is made more plausible 

considering that this problem was not seen in the original model minimised using the 

force field used by COMMET. The second reason is due the constraints on the 

backbone atoms used during the minimisation procedure. This second reason accounts 

for the many backbone bonds that deviate from the normal. Removal of the constraints 

while carrying out further minimisation would likely fix these bond angles.

22. The high bond length deviation is likely due to the constraints on the backbone dihedral 

angles. The z score is not that far above the normal that removing the constraints and 

carrying out further minimisations would solve this problem.

23. The possible cell scaling problem can be ignored as being a possible reason for the bond 

lengths being inaccurate. No cell units are applicable as this is a homology model and 

not a crystal structure.

24. 571 angles were reported as deviating from the default value by more than 4a . Again 

many of these angles are bond angles associated with the backbone of the protein 

model. The cause of these angles deviating from the normal is the constraints on the 

backbone torsion angles. The remaining bond angle deviations are probably due to a 

different bond angle being used as there were only 17 deviations reported in the original 

model.

25. The high bond angle deviation is likely due to the constraints on the backbone dihedral 

angles. The z score is not that far above the normal that removing the constraints and 

carrying out further minimisations would solve this problem.

26. The analysis found 15 side chains where a planar group deviates from planarity by 

more than 4.0 times the expected value. The cause of these deviations will be steric 

clashes with other side chain atoms. Examination of each reside is required to sort out
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the probable cause of the clash. The problem can then be fixed by changing the torsion 

angle of the affected side chain or the side chain causing the problem. This causes only 

minor local changes in the structure. O f the side chains that were reported two of the 

residues are highly distorted from planarity.

27. A total of 17 aromatic side chains had a connecting atom severely out of the plane of 

the aromatic ring. Seven of these warnings were for the hydroxyl group of the Tyr 

residue. These can be easily fixed by examination of the area and the movement of only 

a few atoms. The more serious problem concerns the other 10 warnings where the Cp 

atom is reported to being out of the aromatic plane. Due to the bulk of the aromatic ring 

it will involve moving more atoms to try and accommodate the aromatic side chain in a 

different conformation. Theses might hopefully improve as the structure is further 

refined with the removal of the constraints on the backbone torsion angles.

28. 5 Pro residues had unusually high puckering amplitude, two of which are worrying 

high. The three Pro with the lower values have their backbone torsion angles 

constrained. Removing the constraint would allow the conformation to relax a bit more 

and remove the problem. The two Pro with the very puckering amplitude are more 

worrying. The likely cause here is steric clashes. Examination of the area around these 

two residues would hopefully point to the atom in the model causing the puckering.

29. A total of 6  Pro residues have unusual Pro puckering phases. All the reported Pro 

residues have their backbone torsion angles constrained during the energy minimisation. 

None of the phases are widely out which suggests removing the constraints would solve 

this problem.

30. Only 4 residues have a worrying score for their torsion angles. No comment in the 

report tells you if the backbone torsion angles are to blame or the side chain torsion 

angles. For the 4 worrying residues it is likely to be the backbone torsion angles that 

will be wrong. The reason being there are several residues with bad backbone torsion 

angles, which can be seen in the Ramachandran map later in this report.

31. There is still problems with poor cp,\|/ torsion angles but not as bad as the original 

model. Although there are more lines reporting errors many of the are due to the £2 

angle being poor. The reason for the poor £2 angles is the constraints on the cp,\|/ angles
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on many of the residues. This has improved the look of the Ramachandran map but has 

made the £2 angles very badly constrained to planarity. Removing the backbone torsion 

angle constraints would help ease the Q  torsion angle problem without making the (p,vjr 

torsion angles worse.

32. The Ramachandran z score is still low but improved upon from the original model.

33. The warning about the £2 torsion angle restraint not being strong enough is because the 

minimisation has been set to favour good cp,\jf torsion angles by using constraints. This 

score can be greatly improved by the gradual easing of the constraints during following 

energy minimisations.

34. Although the analysis mentions that the Xi I Xi correlation z-score is low this is a 

reasonable score considering the poor homology between the starting structure, bovine 

trypsin and Bb. With the sequence identity being so low this meant that there were 

many non conservative side chain substitutions made. These substitutions have their 

side chain atoms remodelled as they are structurally different from the original side 

chain. To add the problems was the problem that 35 residues ended up with the wrong 

chirality. This is something that should not happen if their were proper chirality 

restraints added during minimisation of the model before the H atoms were added.

35. The diagram below shows a Ramachandran plot of the <p,\|/ torsion angles in the model 

of Bb. It is an improved map from the original model, especially in the bottom right 

quadrant which is disallowed to all residues except Gly. The allowed regions for helical 

residues is coloured blue, for strand residues in red, all other regions green. For residues 

that are part of a helix are shown in blue, strand residues red. The x - signs represent 

Gly , square represent Pro, and small + signs all other residues.
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Diagram 7-7: Ram achandran plot for the refined model of Bb. Produced by the 

protein structure analysis routine "FU LCH K " in W hatlf.

36. The inside / outside distribution warning is expected. This model, Bb, is only part of the 

Factor B protein. It is homologous to the serine proteases so will fold like a serine 

protease, hence we can model the homologous section. But this is only one domain of 

the protein. The other section of the protein, Ba, will be in close contact with the serine 

protease domain and it is therefore expected that part of what is normally expected to 

be the surface of the serine protease fold will in fact be buried and in contact with the 

Ba domain of the protein. The same is also true when Factor B is cleaved into Ba and
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Bb. Bb remains bound to the C3 / C5 convertase through protein - protein interactions. 

These interactions are nearly always through a large section of aliphatic residues on the 

surface of the two proteins. A normal score is 1.16, and Bb as modelled scored 1.236. 

This suggests that Bb is found on the surface of the C3 / C5 convertase which would 

also agree with its role in the complex which is cleave further C3 or C5 proteins. This 

role suggests that it should be easily accessible to the surrounding solution of the 

complex it is attached to.

37. Couldn’t find output plot from W hatlf!!

38. The DSSP program is inaccessible to the W hatlf package. Therefore W hatlf inferior 

secondary structure prediction program was run. This showed that the secondary 

structure elements from the BT structure were conserved.

39. The analysis reported 24 abnormally short interatomic distances. None of the clashes 

involved both atoms being part of the polypeptide backbone. This means that the 

backbone does not clash with itself at any point. For the worst clashes it would be a 

simple procedure to examine the structure around the clash and manually alter the cause 

of the clash. This would cause minimal disruption to the model.

40. 24 residues were reported to having unusual packing environments. A slight 

improvement on the original model. Reasons for poor packing score are: poor packing, 

misthreading, sequence misaligned, crystal contacts (not applicable in this case), 

contacts with a co-factor (not applicable), or the residue is part of the active site. The 

main reasons for the poor packing score in this model will be poor packing and 

misalignment of the sequences. Comparative / Homology modelling are dependent on 

the fact that the sequence alignment between the known structure and the sequence of 

the model is correct. If the alignment is wrong it is guaranteed the model will be wrong 

for the misaligned section. As the homology between the two sequences was so low then 

there is likely to be sections in the alignment of the two sequences that are wrong. Some 

of the poor packing is also likely to be some residues having the wrong conformation 

after non conservative substitution.
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41. The only section in the model where the packing environment was abnormal for three 

consecutive residues is in the middle of one of the loops. It is not unusual for loops to 

be have unusual conformations so the warning is not too severe.

42. The average quality control value for the structure is reported to be very low. The value 

given of -2.749 is acceptable for low homology models which normally have the range 

o f -2.00 to -3.00.

43. Couldn’t find quality value p lo t!!

44. A low packing z-score was reported for 16 residues. A score below -2.5 warrants 

having a look at the structure as they are “unusual”. This was not possible due o the 

time constraints.

4 5 . 3 sections of at least four residues had a second generation packing z-score below - 

1.75. Reasons are misthreading or part of a strange loop. The first stretch between Tyr 

24 and Gin 27 is the only real problem section as the other two sections that were 

reported are part of modelled insertions and are therefore part of surface loops.

46. The abnormally low structural average packing z-score is worrying. It is acceptable for 

low homology models to fall in the range -2.0 to -5.0. The value reported for Bb is an 

overall -6.79. This is likely to be due to the very low homology between the BT and Bb.

47. Couldn’t find the plot output from W hatlf!!

48. There is a warning in this section on backbone oxygen evaluation. The only report was 

for a Gly residue. As it is normal to get a few Gly residues in this section it is not a 

worry that the analysis routine pulled up one Gly residue from the model.

49. Only two residues were reported to having unusual rotamers. It is not necessarily an 

error if a few residues have a rotamer value below 0.3. No residues in the refined model 

had a value below .03.

50. There were 126 unusual backbone conformations reported. Two reasons for the unusual 

backbone conformations will be the constraints on the cp,\j/ torsion angle during the 

minimisation causing problems with the Q  torsion angle. The other reason will be the
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large number of insertions and deletions that had to be carried out while building the 

model.

51. The low reported z-score for the backbone conformation is due to the reasons given 

above in point 50

52. The average B-factor problems is a crystallographic check. This can be ignored for this 

model.

53. Again the B-factor plot is ignored because there is no crystallographic data in the 

model.

54. The report shows that 5 residues could have part of their terminal group on the side 

chain flipped to give a better H-bonding pattern. This is easy to carry out causing only 

local disruption. Unfortunately time restraints prevent further refinement from being 

carried out.

55. The rms Z-scores are much higher than 1 for the His residues reported. This suggests 

that the geometric assignment given here does not correspond to the type used in the 

refinement.

56. A total of 84 buried hydrogen bond donors are not involved in a hydrogen bond. This is 

a result of the many alterations to the starting structure to build the final model. All the 

alterations have severely disrupted the hydrogen bond network in the core of the protein.

57. There are only 8 buried hydrogen bond acceptors in the model that are not involved in a 

hydrogen bond. Again the reason for there being any at all is because of the numerous 

alterations to the starting structure which has disrupted the hydrogen bond network at 

the core of the model structure.

58. The reason for the poor results here is the fact that this is a very low homology model. 

The sequence homology between the starting structure, bovine trypsin, and the unknown 

structure Bb is very low. This means that there are likely to be misaligned sections in 

the sequence alignment, and the large number of non conservative substitutions, 

deletions and insertions introduce many more errors in to the model.
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7.1.2 A Look At The Model
An examination of a three dimensional image of the backbone of the Bb model shows that 

the protein fold has remained stable during the energy minimisation procedure, see 

Diagram 7-8 on page 234. The secondary structure has remained stable even though the 

model was highly strained at the start of the energy minimisation procedure due to the large 

number of substitutions, deletions and insertions modelled.

The relative positions of the seven large insertions in the structure of Bb can be seen in 

Diagram 7-9 on page 234. All the insertions occur on the surface of the protein model and 

remain on the surface during the energy minimisation procedure. The insertion at position 

170 where the first five residues of the insertion were modelled as a  helix can be seen in 

the top right hand comer of this diagram. It is obvious from the ribbon plot that these five 

residues have remained in the a  helix structure thoughout the energy minimisations 

procedure.

As mentioned in Chapter 5, while discussing the results of the insertions at position 129 

and 231, it was noted that the two insertions were very close to each other in the three 

dimensional structure of the model. This can be clearly seen in Diagram 7-10 on page 235. 

In the diagram it is clear that the ends of the insertions are interacting with each other.

Looking at the acidic and basic residues (Asp, Glu, Lys, Arg, His) all the internal acidic 

and basic residues form salt bridges with each other. The remaining acidic and basic 

residues are all found on the surface of the protein (see diagram Diagram 7-11 on page 

236). The only exceptions are Glu 70, Lys 160, Arg 153 and a basic residue which is part 

of Ins 230. Examination of the model around Glu 70 does not show any obvious potential 

salt bridge. The only H-bond Glu 7Q is able to form is with the Namide of Gly 44, Diagram 

7-12 on page 237). This will relieve some of the energy of having a buried acidic group in 

the model but the Glu 70 is still in a high energy position. For Lys 160 the situation is 

slightly better as it forms a favourable H-bond with Asn 189. Again this is not ideal as 

there will still be some energy strain due to having a buried basic group, Diagram 7-13 on 

page 238. Finally for Arg 153, it forms two hydrogen bonds. The first to the Ocarbonyi of Cys 

136, and a second to the O carbonyl of Pro from Ins 186. For each of these buried acidic
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and basic groups there will be considerable energy for not being part of a salt bridge, but 

some energy is relieved by forming H-bonds with nearby potential sites, see Diagram 7-14 

on page 239.
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Diagram 7-8: A ribbon drawing tracing the Ca of each residue. It shows the a  helices 

and sections of P strands that have remained stable during the energy minimisation

procedure.

y ^

Diagram 7-9: A ribbon representation of the backbone of the Bb model. The 7 large

insertions are shown in black.
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Diagram 7-10: The two insertions a t 129 and 231 are shown in stick representation. 

The surrounding backbone is shown in a ribbon representation. The diagram  shows 

how close the two inserions are in the three dimensional struc tu re  of the protein.
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Diagram 7-11: View of all acidic and basic (Asp, Glu, Lys, Arg, His) residues not 

involved in a salt bridge. There is also a Calpha trace.
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Diagram 7-12: The residues around Glu 70 are shown. Gly 44 is labeled. Glu 70 

forms hydrogen bond with Namide of Gly 44.
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Diagram 7-13: This shows the residues around Lys 160. Asn 189 forms a strong 11-

bond with Lys 160.
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8A

3A

Diagram 7-14: This shows the residues around Arg 153. Arg 153 forms H-bonds with

Cys 136 and Pro 8 which are also labeled in the diagram .

7.1.3 Discussion on the Active Site

Bb is an active serine protease so it was important that the three residues His 57, Asp 102 

and Ser 195 are kept in the same spatial arrangement relative to each other. The primary 

sequence of Bb around each of these three residues are the most homologous sections of 

the alignment of Bb with bovine trypsin. The corresponding sections of alignment between 

Bb and bovine trypsin’s are given below:
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57

TB W V V S A A H C Y

Bb F V L T A A H C F

* 1 * * 1 1 1 1 *

102

TB N N D I M L I K L

Bb D Y D V A L I K L

1 * 1 1 1 1

195

TB S C Q G D S G G P

Bb T C R G D S G G P

* I 1 1 1 1 1 1

The His and Ser residues of the of the three catalytic residues are near the middle of a 

conserved region in the alignment. The fact that His 57 is next to a preserved cysteine 

residue also gives an indication of how important it is that the three dimensional structure 

of this region does not change. With both the His and Ser residues being near the centre of 

the conserved region of primary structure it strongly backs up the case that these two 

residues will be the same spatial position in the model of Bb as is found in the structure of 

bovine trypsin.

For the third residue in the catalytic triad, Asp 102, there is a large insertion just one 

position away in the original alignment between Bb and bovine trypsin. Looking at the 

structural environment of the Asp 102 in the bovine trypsin structure it is clear that the 

residue is in a (3 sheet. In fact the insertion at position 101 is positioned in this section of 

secondary structure in the original alignment. Two facts combine to bring one to the 

conclusion that the sequences are misaligned in this section. The first is the fact that Bb is 

an active serine protease and therefore Asp 102 must be found at the same three 

dimensional position as it is found in all other known structures of active serine proteases. 

The second fact is that large insertions do not occur in segments of secondary structure. 

The insertion is moved in the alignment to where the (3 turn in the bovine trypsin structure

240



is, allowing Asp 102 to be far enough away from the insertion so that it is unaffected by 

the loop in the conformation it adopts in the Bb model.

In the final minimised model the three catalytic residues can be superimposed onto the 
catalytic residues from the starting bovine trypsin structure with a high degree of overlap, 
see Diagram 7-15 on page 241 and 
Diagram 7-16 on page 242.

Diagram 7-15: Stereo view of the active site of Bb superimposed onto the active site of

the starting structure, bovine trypsin.
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Diagram 7-16: Active site of the Bb model superimposed onto the active site of bovine 

trypsin. The backbone of both structures is shown several residues either side of each

residue of the active site.

A final point about the active site is that in Bb some of the inserted loop appear to extend 

around the active site. This can be seen in Diagram 7-17 on page 243. This has the effect 

of burying the active site in a deeper valley. This would make the active site less accessible 

to substrates as they had to work their way down into the valley to reach the active site. 

Having the active site in the valley would also make Bb more specific as there would be 

plenty of potential enzyme - substrate interactions with the substrate protein and the walls 

of the valley. This seems to support the fact that Bb has only one substrate in nature, that 

is to be part of the C3 / C5 convertase in the Alternative Pathway of the Complement 

System and activate C3 or C5. The exact same view for TB can be seen in Diagram 7-18
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on page 244. Here it is obvious that the active site is much more exposed than in Bb. This 

allows easy access to many different protein substrates. This agrees with TB role in the 

body as a general digestive enzyme.

Diagram 7-17: A view along the catalytic triad of Bb with the Calpha trace shown in

green. It shows the insertions extend a good distance past the active site causing the 

active site to be more buried than in TB.

243



v \

Diagram 7-18: The same view for TB looking along the catalytic triad, with Calpha

trace in green. Shows the active site much more exposed than for Bb.

7.1.4 The Si Binding Site

In serine proteases there is a well defined substrate binding site, called S| which strongly 

infuences the specificity of the substrate that the serine protease will cleave. The S| site 

consists of a pocket in the surface of the serine protease enzymes. At the bottom of the 

pocket is position 189 whose side chain extends intot the pocket and can influence which 

type of residue is favourably bound in the pocket. At the entrance to the pocket, at either 

side are residues 216 and 226 which determine how wide the entrance to the pocket is (see

3.2.3.2.1 for a fuller description). In BT the important residues are Aps 189, Gly 216 and
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Gly 226. With the Gly residues at the mouth of the pocket the entrance is not blocked 

allowing the Pi residue from the substrate access to the pocket. At the bottom of the pocket 

Asp 189 strongly binds to basic side chains. It is therefore found that TB is strongly 

specific to having Lys or Arg at Pj. For Bb the residues that influence the Si site are Asn 

189, Gly 216 and Lys 226. With the Lys residue at the entrance to the Si binding pocket it 

strongly suggests that the entrance to the pocket will be at best if not completely blocked. 

Diagram Diagram 7-19 on page 246 shows that Lys 226 lies across the entrance to the 

binding pocket and into the pocket itself.
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Diagram 7-19: Calpha trace of Bb with Asn 189, Gly 216 and Lys 226 shown. Lys

226 can be seen to block the entrance to the Si pocket.

7.2 Where Protein Modelling Is At

7.2.1 W hy Protein Modelling Is Necessary
Modelling of protein structures is necessary due to the large number of DNA - derived 

sequences that are available compared to the number of known three dimensional protein 

structures. Even with the tremendous increase in the rate at which protein structures are 

being determined there is still an enormous number of sequences with unknown structure.
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This is all due to the molecular biology revolution of the early eighties. Modem molecular 

biology techniques now make it feasible to isolate and sequence the DNA which encodes 

for proteins. The entire process of extracting the DNA fragments and reading the code can 

fully automated.

7.2.2 There Are Only Certain Folding Motifs Proteins Adopt
As more protein structures were solved it became apparent that certain fold patterns were 

used repeatedly. Proteins with similar function had a similar three dimensional structure. 

This enabled proteins to be grouped into families of related function and structure117,118. 

Even some proteins with diverse functions were found to be structurally related. These 

folds appear more conserved than the primary sequence of the proteins119,120. Analysis of 

the protein folds (motifs) has shown that there could be a limit to the number of motifs that 

proteins adopt. The number of non homologous motifs could be as low as one thousand 

distinct motifs121. Already it has been determined that there are over 100 distinct non 

homologous motifs in the Brookhaven database122.

The reason for the distinct number of motifs available to proteins comes from the nature of 

the amino acid residues themselves. All the twenty naturally occurring amino acid residues, 

except for Gly, are chiral and all exist in nature in one enantiomer. This means that there is 

a difference in energy when there is a right handed join between two sections of secondary 

structure joined by a small number of residues to a left handed join e.g. the join between an 

a  helix and a p sheet. It also appears that the motifs found in protein structures are able to 

be stabilised by many different random sequences, whereas the other possible folds that a 

polypeptide sequence could adopt seem only to be stabilised by a few specific sequences123.

Modelling techniques take advantage of the fact that proteins only adopt certain folds. In 

comparative modelling a template from a known three dimensional structure of the same 

motif as the unknown sequence is known to adopt is used as a starting model. Threading 

methods take a sequence of unknown structure and try and find which motif the unknown 

best fits. It aligns the unknown’s sequence to the three dimensional structures. The other 

main technique is useful if the sequence with unknown structure can not be successfully
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fitted onto one of the known motifs. Genetic algorithms offer a hopeful ab initio method to 

fold protein sequences using the same optimisation procedures as natural genetic evolution.

7.2.3 Modelling Techniques

7.2.3.1 Comparative Modelling

Once a protein’s sequence has been determined and it has been found to be a new member 

of a structurally characterised protein family, it is relatively straight forward to build a 

molecular model of the protein using a set of simple guidelines124,125. The first step is to 

determine the structurally conserved regions and variable regions in the protein family the 

unknown belongs to. This can be carried out by looking at the known three dimensional 

structures of members of the family. The superposition of the known three dimensional 

structures of the family will clearly show the regions in the structure that are conserved and 

regions that have variable structures. Having as many three dimensional structures as 

possible in this process greatly improves in defining the structurally conserved regions and 

the variable regions. The next stage is to align the amino acid sequence of the family. The 

alignment is not carried out by the normal criteria for sequence alignment, that is sequence 

homology, it is strictly done on the basis of the structural information of the structurally 

conserved and the variable regions. The unknown is then aligned using the patterns found 

in the structurally conserved regions of the sequence alignments. It is essential for the 

alignment of the new sequence to be correct. If the alignment of the sequence is incorrect 

then the model will definitely be incorrect for the misaligned section of sequence. This is 

one of the reasons that the comparative modelling method currently depends so heavily on 

the retention of sequence homology.

For the structurally conserved regions the co-ordinates from one of the known structures 

can be taken. The amino acid residues are substituted and the side chains altered so that the 

section has the correct sequence to that of the unknown. This substitution procedure does 

not involve any alteration to the backbone atom co-ordinates. The variable regions are 

usually modelled by a database search, conformational search or some sort of molecular 

dynamics.
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7.2.3.2 Threading
A new development over the past two or three years in protein structure modelling has been 

the approach of identifying entire protein folds from the amino acid sequence126. This 

approach employs techniques for aligning sequences with three dimensional structures, 

known as threading, which are used to select the native folds of a given sequence from a 

database of alternatives127,128. This method is very much dependent on the fact that proteins 

with very different sequence and functions can adopt very similar folds, and, moreover that 

known folds fall into a limited set of families129.

Structure is conserved to a greater extent than sequence and threading may extend the 

range of molecular modelling to sequences which show little or no sequence similarity to 

proteins with known structure.

7.2.3.2.1 Motifs as linear Profiles
It is possible to represent folding motifs as linear profiles of local environment properties, 

such as solvent accessibility130 and secondary structure131 at each residue site in a protein 

of known structure. These local environment properties are assumed to remain the same in 

any protein which folds into a given motif. A residue preference for a particular 

environment can be calculated by examining the family of proteins where at least one 

member of the family has a known three dimensional structure. Representing the motif in 

this manner has the attraction of simplicity. Optimal threads, or alignments, of sequence 

and folding motif may be found using the dynamic programming algorithms which have 

been well developed and long used in sequence alignment.

7.2.3.2.2 Motifs as Contact Matrices
Several other groups have chosen to represent folding motifs as a two dimensional contact 

matrix132,133. This representation defines the spatial relationship of residue sites e.g. that 

position 2  in the primary sequence is close in three dimensional space to position 110  in the 

primary sequence. When a sequence is threaded through a folding motif, the identities of 

each position are assigned. An evaluation score, or appropriate conformational energy is 

then calculated by summing up the energies of all the contact pairs. The lookup tables

249



defining these contact energies are the evaluation. These energies have been empirically 

derived by analysing the pattern of pairwise contacts in known protein structures. The 

intentions are that the contact energies will represent entropic and solvation effects that are 

crucial in protein folding, but which can be represented in conventional molecular 

mechanic calculations only by lengthy simulations.

The contact energies are specific enough to distinguish correct sequences and alignments 

among the many million alternatives. It oddly appears rather too easy to find the best 

alignments of sequences and core folding motifs, even though this represents a formidable 

combinatorial optimisation problem. The answer appears to be that there are always few 

“misthreads” that have favourable contact energies134.

Once the core motif region has been aligned and the co-ordinates of the backbone for the 

sequence set the problem becomes much like the comparative modelling technique to solve. 

The side chain atoms must be set and any loop regions (insertion) must have their 

conformation calculated. The same methods of loop conformation generation are used: 

Molecular dynamic simulations, database searches, and conformation searches. These 

methods are all employed to calculate the loop conformation.

7.2.3.3 Genetic Algorithm
Genetic algorithm methods are so called because they utilise the same optimisation 

procedures as natural genetic evolution: mutation, crossover and replication operations on 

strings135. This is a fairly recent development to the protein folding problem and is still in 

its infancy, but it is quickly gaining in popularity. In genetic algorithms a population of 

current solutions is maintained. The solutions evolve by mutations and crossovers. The 

latter process, that is crossovers, is the heart of the method. Technically the operation 

consists of exchanging parts of strings between pairs of the solution, so as to yield new 

solutions. This has a large impact on the effectiveness of the search, since it allows 

exploration of regions of the search space not accessible to either of the two “parent” 

solutions. Through such interactions, good features from one solution can be transferred to 

the other solutions and explored. The population size is maintained by pruning, using 

certain criteria of fitness for each solution in such a way that better solutions have a higher
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chance of reproducing. The diversity of the population is maintained to allow for a large 

sampling of individual solutions so that many combined features may emerge. Experience 

with other “co-operative” problem solving methods has shown this feature of exchange of 

information between solutions is often a powerful way of extending the effectiveness of a 

search.

The common method of introducing mutations into the structure sequence in the genetic 

algorithm is an extension of the more familiar Monte Carlo methods136. A population of 

evolving conformations is maintained. Each conformation changes independently for some 

time by the Metropolis Monte Carlo137procedure in the usual manner, in a process 

equivalent to the accumulation of point mutations. Then selected polypeptide chains are cut 

and rejoined to another chain cut at the same point. This action is the crossover mutation in 

the genetic algorithm. Metropolis style criteria are used to see if each newly generated 

conformation should be accepted. Those that are accepted are used as the next generation 

of the population and enter the Monte Carlo phase again and the process is reiterated. The 

simple genetic algorithms that have been developed are dramatically more effective in 

searching than Monte Carlo methods alone.

As mentioned earlier this genetic algorithm method is still a fairly recent application to the 

problem of protein folding138. Using only simple criteria the results look fairly promising 

with the algorithm able to identify the main chain topology the protein will adopt139. The 

algorithm is not dependent on the size of the known structure database like the other two 

modelling techniques discussed, where the fold the unknown protein structure is a fold 

pattern that must already exist in the structural database. The genetic algorithm is very 

much a de novo protein folding algorithm140 which is producing some success.

7.2.4 Comparison Of The Modelling Techniques
Currently, comparative modelling / homology modelling is the most successful at 

producing reasonable structures of proteins. The reason being that it relies the most on 

information from the structural database to build the model. But because it relies so much 

on information from the structural database it is the modelling technique which can be used 

to build the three dimensional models of the most limited set of known protein structures.
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Comparative modelling depends on the fact that the unknown sequence is a member of a 

family of proteins where at least one member of that family has a known three dimensional 

structure. The sequence alignment of the unknown sequence and the sequence of the 

protein with known three dimensional structure is crucial in getting the comparative model 

correct. Any misalignment of the two sequences guarantees the structure of the model will 

be wrong for the misaligned residues141. This dependence on getting the sequence alignment 

correct is not a problem where the sequence of unknown three dimensional structure is 

highly homologous to the known structure’s primary sequence. With a high sequence 

identity between the two primary sequences (>70% sequence identity) then there will be no 

or few problems with getting the alignment of the sequences correct, hence a reasonable 

model can be expected to be built. If on the other hand the identity (and homology) of the 

sequences is much less (<30% sequence identity) then the alignment algorithm normally 

used (usually some implementation of the Needlemann and Wunch algorithm) is likely to 

produce an alignment with sections of the sequences misaligned. Even after manual 

adjustments to the alignment, or carrying out multiple sequence alignment, there will still 

be regions of the alignment that are uncertain.

Threading algorithms can be used if the unknown structure’s primary sequence is not 

significantly homologous to any known three dimensional structure’s sequence. Threading 

algorithms use the fact that structure folds and motifs are more conserved than the primary 

sequence. They are also highly dependent on the fact that there is a limited number of 

distinct, non-homologous motifs found in natural proteins and that as more classes of 

motifs are crystallised the number of unknown classes decreases. Threading algorithms use 

a variant of the alignment routines to align the sequence to different motifs. The threading 

algorithms so far can match the correct motif to a sequence but then the same methods 

used in comparative modelling (substitutions, deletions and insertions) are required to 

complete the model. At the moment threading algorithms offer a more sensitive alignment 

for a sequence that has a very low similarity to other sequences of known structure but 

other techniques are required to build the model from the alignment.

The genetic algorithm method is a highly promising ab initio modelling technique. It has 

shown some promising results using simplistic criteria. It is not dependent on finding some
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homologous sequence of similar fold in the three dimensional structure database so can be 

used to model novel classes of proteins that have not yet had a member of that family of 

proteins been crystallised. At the moment it is still being developed and can not yet offer 

high resolution models. To date the genetic algorithm method still only produces models of 

low resolution.

Although comparative modelling / homology modelling is the most successful and widely 

used modelling technique it does have severe shortcomings that still have to be improved. 

The hardest of these is the modelling techniques used to determine the conformation of a 

loop / many residue insertion. There are a few methods that can be used for loop modelling 

each with their own pitfalls. The modelling of loops can be considered as a mini protein 

folding problem. At an insertion the unknown structure deviates from the starting model, so 

the starting model is of no use unless the loop sequence of the loop in the unknown 

structure’s sequence is homologous to the sequence of the loop in the known structure, but 

this is rarely the case. If the model sequence is a member of a class with numerous proteins 

in that class with known structure, then these structures’ sequences can be aligned and if a 

loop segment in the unknown is homologous to one of the loops in an known structure this 

known loop structure can be used in the model. This method can only be used in a few 

cases where there are many known structures in the protein family i.e. the serine proteases. 

This still leaves the majority of model loops where a structure of the loop has to be 

determined. Even for protein families with many known structures only a very few loop 

will be modelled directly from existing loops found in one of the known structures of the 

protein family.

7.2.5 Methods Used To Model Loop Regions
7.2.5.1 Database Searches

Database search methods search the database of known structures (Brookhaven 

Database142) for a segment of a structure that will fit into the space for the insertion. For 

this to be accomplished at least three of the residues from the conserved region of the 

model have to be included in the loop so that the new segment can be properly aligned with 

the rest of the structure. The new segment’s sequence must be homologous to the loop
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region sequence being modelled. Once a suitable loop structure been found from the 

structural database it is attached to the model and its residues substituted so that its 

sequence matches the sequence of the model being built.

7.2.5.2 High Temperature Molecular Dynamics Simulated Annealing

The idea with high temperature molecular dynamics simulated annealing is that the high 

temperature molecular dynamics run will produce many different conformations covering a 

wide range of conformational space for the loop being modelled. This is achieved by 

carrying out the molecular dynamics at a very high temperature. After so many iterations 

the current conformation is used as the starting point for simulated annealing of the loop. 

The loop will be in a strained high energy conformation due to the high temperature that 

the original molecular dynamics was carried out at. Having the molecular dynamics run at 

such a high temperature gives the loop sufficient thermal energy to jump from 

conformation to conformation without getting trapped into a local minima. Running the 

molecular dynamics for long enough and at a high enough temperature it is hoped the loop 

will be able to reach every conformation theoretically feasible for it to adopt. Taking 

conformations at time intervals throughout the molecular dynamics run there should be a 

spread of conformations for the loop. These act as the starting positions for the simulated 

annealing part of the method. During the simulated annealing the temperature is slowly 

cooled down to 0 K while the molecular dynamic simulation is continued.

7.2.5.3 Monte Carlo Simulated Annealing
This is a similar method to the molecular dynamics simulated annealing except the changes 

in the conformation are determined by the Metropolis Monte Carlo algorithm. The original 

conformation is randomly generated. Then a random segment of the chain is altered. If the 

new energy of the loop is of lower energy than the starting conformation it is automatically 

accepted. If the energy is higher than the starting conformation then the conformation is 

accepted on a probability proportional to the difference in energy between the old and new 

conformations and some “temperature” factor. The temperature factor is slowly cooled 

(reduced) which means that over time of the simulation run there is less chance of 

accepting the new conformation if it is of higher energy than the previous conformation.
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After cooling a new conformation is randomly generated and the cooling method is started 

again. After so many attempts there should be a consensus from the different runs what is 

the lowest energy conformation for the loop.

7.2.5.4 Conformation Searching
This has previously been described in detail earlier in Chapter 4. Conformational searching 

used by other researchers have a similar methodology to that described.

7.2.6 Comparison Of The Loop Modelling Techniques
Each of the methods described above have serious short comings. The simulated annealing 

methods are computationally intensive but worse they do not guarantee to examine every 

conformation. The annealing process can be guaranteed to find the global minimum but 

only over a very long time scale and with a very slow and controlled rate of cooling. They 

did not produce many promising results and appear to have fallen from popularity over the 

last few years. This may change if a genetic algorithm method is developed for the smaller 

case of insertions rather than for the entire protein folding problem which was discussed 

earlier.

Database methods assume that the set of known structures is large enough to contain 

adequately accurate conformations of all short segments of chains that occur in proteins. 

This is true for short segments of chain up to seven residues in length, when an overall low 

root mean square deviation (r.m.s.d.) is the criterion for similarity. However as longer 

lengths are considered the percentage of unobserved structures rises rapidly. For the 

database of known three dimensional structures of proteins segments longer than seven 

residues are not well represented. Increased database size will reduce the fraction of 

missing conformations, but even for eight residue segments a much larger database will be 

required than there is at present. There is no prospect of obtaining an adequate database 

for lengths longer than that143.

From the viewpoint of comparative modelling / homology modelling, there are serious 

problems in using the database to select conformations for even short lengths of chain. 

There are two reasons for this:
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1. In order to align the new segment with the rest of the structure, at least three additional 

residues must be included. For seven residue segments it is estimated only ~4% of 

structures are absent from the database. But for eight residues this rises to at least 30% 

and is much greater for nine residues. Therefore the information required is not present 

in the database in a large fraction of cases when building five residue fragments.

2. Even when the segment, including the root, is well represented in the database, aligning 

with just the root residues produces unacceptable results in a large percentage of cases. 

This problem is not an artefact of a poor alignment procedure, but rather reflects the 

fact that obtaining a low overall r.m.s.d. by aligning the ends of a segment with a 

reference structure is a more stringent requirement than aligning the whole segment and 

requires a larger database for adequate sampling.

The systematic search methods are guaranteed to sample all feasible conformational space. 

There is no requirement to sample in an even distribution as much of the (p \|f conformation 

space is disallowed due to steric clashes in the backbone atoms. Unfortunately this still 

leaves eight or nine <p \(/ angle pairs in COMMET and 11 pairs in CONGEN144 for each 

residue except for Pro and Gly. This means that the number of discrete conformations that 

have to be generated increases exponentially with the length of the segment being modelled. 

This does have the advantage that conformation space is adequately sampled for short and 

long segments, unlike database searches, but the time taken to generate all conformations 

becomes prohibitive. For CONGEN this is seven residues and for COMMET about ten 

residues.

To make the time taken to generate all the conformations for long residues acceptable two 

steps can be taken. Increase of computational power available to run the calculation and 

secondly decrease the density of sampling. Increasing the computational power is not a 

particularly elegant solution because the length of time it takes to generate all the 

conformations grows exponentially. Therefore to increase the number of residues in the 

segment by one you have to exponentially increase the computing power available to take 

the same amount of time as the previous calculation. Decreasing the density of sampling of 

the conformation space required is a better method for speeding up the calculation by
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drastically reducing the number of conformations generated by the algorithm. 

Unfortunately the density of sampling required is dictated by the ability of the available 

discriminatory functions to identify a correct conformation against the background of 

incorrect conformations. In future, discriminatory functions less sensitive to errors than the 

current energy based ones may be developed and these may be better able to identify more 

approximate solutions.

Although time consuming, systematic conformational searching is more robust at finding 

the global minimum structure than database searches and simulated annealing techniques. 

There is a limitation on the length of the segment though before less thorough and less 

reliable procedures have to be used.

7.3 How Computer Generated Models Of Proteins Are Used In 
Research By The Pharmaceutical Industry

To pharmaceutical companies involved in research computer generated models of proteins 

are a great benefit in the drug discovery process. The use of models of the target protein 

can drastically cut down the time required to develop a new drug, greatly reducing the 

number of potential drugs candidates that have to be synthesised and tested in the 

laboratory, and potentially reduce the number and severity of any side effects.

Many drugs are effective by binding to one specific protein in the body and acting as an 

inhibitor but occasionally agonist or superagonist. The ideal drug candidate is a molecule 

which binds only to the desired protein. The best drug candidates bind strongly to only one 

specific site on the target protein. The targeting of the dmg to a specific protein reduces the 

number of side effect that the dmg may cause by not having the dmg interact with other 

proteins in the body.
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7.4 What Use Is The Model Of Bb To The Pharmaceutical 
Industry

The key use for the model of Bb will be in rational drug design studies, the reason being it 

is a key protein in the Alternative Pathway of the Complement System (see section 2.2 on 

page 35). If the enzyme function of Bb were inhibited then:

1. The Alternative Pathway would not get any further than the spontaneous 

nucleophilic attack of C3 to C3i.

2. The positive amplification loop which is a central feature to the Alternative 

pathway would not get started.

3. The Alternative Pathway C3 convertase and C5 convertase would be 

unable to attack C3 and C5 respectively

The effect of blocking the catalytic function of Bb would be to effectively block the 

Alternative Pathway.

The beauty of blocking Bb is that the Classical Pathway is unaffected since Bb plays no 

part in the Classical Pathway. The Classical Pathway continues to function normally 

ensuring that the body still has a functioning immune system that can respond to 

antigens detected by the antibodies. The bodies effectiveness to fight off bacterial, viral 

and fungal infections remains.

The reason behind wanting to block the Altemaitve Pathway of the complement system 

is the fact that it is believed that the Alternative Pathway is linked to auto immune 

diseases. It is believed that the positive amplification loop gets out of control and the 

immune response can become excessive. Effectively blocking the Alternative Pathway 

prevents this amplification loop making the immune response milder but hopefully as 

successful since the Classical Pathway is still active.
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7.5 Rational Drug Design

7.5.1 QSAR

Traditionally drugs were discovered by screening as many different molecules as possible 

for the desired biological effect. It involved trying to cover as wide a range of compounds 

as possible and was very much a process of luck. Even when a possible drug candidate 

was found it was a process of trial and error modifying the original molecule to get an 

improvement on the biological activity. This whole process was becoming ever more 

expensive and the time taken to develop a drug to market ever increasing.

A major early development in rational drug design was the introduction of Quantitative 

Structure - Activity Relationship method (QSAR). This method involves large databases of 

compounds describing each compound by its chemical structure and activity. The first step 

in the analysis is to replace the chemical structure by some general description in terms of 

free energy , and to assume that steric, electronic and solvent dependent properties make 

linear contributions to that free energy.

In practise it is some pharmacological property Q (i.e. the inhibitory effect of a compound 

to the target protein) which varies in a series of compounds which are to various extents 

analogous compounds. These Q values can be related to physiochemical or other properties 

( i.e. p, q, r...) of each analogue through a linear equation:

Q  =  a +  bp +  cq +  d r+ ...

Where a, b, c, d... are coefficients. Considering that any one analogue i has 

pharmacological property Qj and other properties pi, qj, rj ..., then we have a set of 

equations, one for each analogue, but each with the same coefficients a, b, c... . These 

coefficients can be determined as those which give the best fit overall to all the Q values 

and the corresponding values of p, q, r... . This best fit is usually found by a least squares

259



method. In fact, Q need not be related to p, q, r... through a linear equation. The only 

demand is that Q be a continuous function of p, q, r . . . .

Failure to take into account any conformational behaviour can lead to discontinuous 

relationships between Q and the properties p, q, r... and no curve can be fitted by a least 

squares or similar method. The promising QSAR method is an approach well known to be 

the most likely to fail in the case of conformationally flexible compounds.

The QSAR method infers the structural conformation of the binding site by the shape and 

chemical properties of the analogues used in the study. Using QSAR any interesting or 

unusual features of the binding pocket can be easily missed unless one of the analogue 

structures in some way uses the feature. For example, for the QSAR method to detect a 

polar group in the binding site of the target protein one of two cases must occur in the data 

set of analogue compounds. A hydrogen bond must form between the specific polar group 

on the target protein and a polar group of one of the analogue compounds. This will have 

the effect of increasing the binding of the compound to the target protein and so 

information about the existence of the polar group will be incorporated into the QSAR 

model. The other possibility of detecting the polar group in the binding site is if a 

hydrophobic segment of one of the analogue compounds interacts with the specific polar 

region. This has the effect of decreasing the binding affinity of that particular compound to 

the target protein, again this gives information about the existence of the polar group in the 

binding site of the target protein. If on the other hand none of the analogue compounds in 

the data set interact with the particular polar group in question then no information about 

the existence of this polar group will exist in the QSAR model. The effect will be that the 

polar group in the binding site of the target protein will not be used in designing 

compounds with improved binding to the target protein. Any new leads using this polar 

group in the binding site will be missed in the design study using the QSAR methods. Some 

other screening of compounds against the target protein is required to bring this polar 

group to the attention of the design study.
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7.5.2 Protein Modelling

When the three dimensional structure of proteins became available through x-ray 

crystallography it opened up a whole new field in rational drug design. It was possible to 

manipulate the view of a protein on the computer screen and visually examine the site of 

interest. This site of interest could be the catalytic centre of an enzyme, the site of protein - 

protein interaction, or the docking site of a small organic molecule. This ability to visualise 

the three dimensional structure of the area of interest on the target protein allows for 

greater understanding in how to design a candidate drug compound with better binding 

affinities.

Protein modelling techniques can be used in rational drug design when two key points are 

satisfied. Firstly the underlying molecular biology of the disease must be reasonably well 

understood so that a single key protein can be targeted. This key protein should be either 

central to developing the disease, or be the cause of the symptoms. For example, the 

reverse transcriptase of the AIDS virus carries out the reverse transcription of the virus’s 

RNA genetic information into DNA. It is the DNA that is then inserted into the cell’s 

genome and is replicated by the host’s DNA transcription machinery. The initial reverse 

transcriptase is part of the protein coat of the AIDS virus. Inhibiting the reverse 

transcriptase prevents it from transcribing the viral RNA to DNA, an essential step as the 

cell itself has no mechanism to do this. The viral RNA can not be used by the cell to 

produce the proteins coded by it hence the AIDS virus is not replicated if no functional 

reverse transcriptase is present. The reverse transcriptase is an ideal target as it is essential 

for the AIDS disease to develop. It plays an essential role in the replication of the virus and 

has no counterpart in the mammalian cell. The other approach, of targeting a protein that is 

the key cause of the symptoms is something that the pharmaceutical companies also adopt. 

Here inhibiting the key protein will not cure the disease but only alleviate the symptoms. 

This then means the inhibitory compound must continually be taken or else the disease will 

flare up again. An example of this approach is in the development of treatments for 

rheumatoid arthritis. Here the target protein is usually some key protein in the 

inflammatory cascade. When this protein is inhibited the painful inflammation around the 

arthritic joints is reduced. This treatment does not tackle the underlying cause of the
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rheumatoid arthritis which is an auto immune response to proteins found on the membrane 

surface of the joints.

The second key point is that the three dimensional structure of the target protein must be 

known. The best, most reliable three dimensional structures are determined using x-ray 

crystallography. The problem with x-ray crystallography is in crystallising the protein. The 

first problem to overcome is often that the protein you want to crystallise is produced in 

only minute quantities. It is therefore necessary to use molecular biology techniques to 

transfer the gene that codes for the protein to a biological system where it is expressed 

more strongly. This will give you quantities of the protein to attempt to crystallise it. This 

is the second problem as most proteins are very difficult to crystallise and it can take a lot 

of work and skill to get the conditions right for crystallisation to occur and crystals of the 

required size to be formed.

An alternative approach is to find a protein which already has its three dimensional 

structure solved and is homologous to the target protein you want to study. After building 

the three dimensional model of the target protein the quality of this model, which is then 

used in the protein - drug binding studies, directly affects the success of the drug design 

process. The greater the homology between the target and starting protein primary 

sequences’ the closer the conformation of the protein model is to the biological protein and 

the more likely it is to design a dmg that will bind strongly and selectively to the protein in 

vivo.

The biggest problem faced by protein modellers is that compared to the number of protein 

sequences known relatively few three dimensional structures of proteins have been solved. 

This is a direct result of the molecular biology revolution. An excess of 50 times the 

number of protein sequences as three dimensional protein structures is known. It is then 

highly likely that the primary sequence of a target protein is known but its three 

dimensional structure unknown. This is when protein modelling can be used to build a 

model of the target protein from the structure of an homologous protein with known 

structure. Starting from the known structure the model can be altered in steps as described 

earlier to produce an accurate a model as possible of the required target protein.
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7.5.2.1 Confidence In The Protein Model

Different parts of the homologous protein model will have different confidence factors 

about how well the conformation of the model is likely to fit the protein in vivo. Areas of 

secondary structure and high homology have a higher confidence level than the modelled 

loop or surface regions. This can affect how good the model is at predicting which possible 

drug candidate will bind to the protein the most effectively. This can be seen as both good 

and bad news for drug design.

Where a drug is designed to block the catalytic function of an enzyme then the computer 

model should have a high confidence factor around this region as the catalytic site is highly 

conserved through a family of proteins. This gives the modeller confidence in knowing that 

the conformation and structure of the catalytic site is well known and a high probability of 

being correct in the target protein. The down side of this is that enzymes are normally 

highly specific. They behave in a manner like a lock and key with their specific substrate. 

The shape of the substrate is like a key fitting into the lock of the enzyme’s catalytic site. 

Therefore certain regions of the substrate binding site around the catalytic site are highly 

diverse within a family of proteins. It is more usual for a drug design to take some of the 

diverse regions into account so that the drug candidate is selective to only one member of a 

protein family. The confidence factor of these non-homologous regions is much lower as 

the structure and exact conformation of this region of the model is specific to the protein 

and likely to be quite different from the starting protein model. This has the effect of 

reducing the confidence in any compounds designed around this region of the model to bind 

as well as or better than another compound.

7.5.3 Building the Compound Around The Protein Model

The newer approach to rational drug design, that of protein modelling, gives a direct view 

of the structural conformation and chemical environment of the drug binding site. This 

allows compounds to be designed so that they can ‘fit’ into the binding site with no steric 

clashes between the designed compound and the protein atoms. The chemical groups on the 

designed compound can be chosen to complement the chemical environment of the binding
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site on the protein model. Both of these will enable the designed compound to bind more 

strongly to the target protein.

Building the compound to fit into the binding site of the target protein model starts by 

examining the surface of the binding site and building a three dimensional map of its 

features. The site is split into hydrogen acceptors, hydrogen donors, general hydrophobic 

regions.

The hydrogen acceptors found on the protein are the carboxyl groups of the polypeptide 

backbone, those found on the acidic residues (Asp and Glu) and the residues with amide 

groups on their sidechain (Asn and Gin). These carboxyl groups can act as acceptors in a 

hydrogen bond formed between the target protein and the bound compound. The hydrogen 

donors found on the protein surface are the N^de—H group of the peptide bond, the 

Namide—H group on the basic residues (Lys, Arg and His), and the OH groups on the polar 

residues (Ser, Thr and Tyr). These chemical groups can act as hydrogen donors in a 

hydrogen bond formed between the target protein and the bound compound. These acceptor 

and donor sites have directional and positional orientation. The best hydrogen bonds are 

formed when the complementary polar group is a given distance and direction from the site 

on the protein surface. The most favourable hydrogen bonds are formed when the donor— 

H— acceptor valence angle is 180°. This gives a cap of sites around each hydrogen bond 

acceptor and donor site.

The hydrophobic sites are general areas on the map. The hydrophobic regions of the 

binding site will attract the hydrophobic regions in the compound. These areas follow the 

contours of the surface of the binding site but are not directional. The driving force in the 

hydrophobic interactions is the loss of entropy by the water molecules of the solvent in 

contact with hydrophobic surfaces. The hydrogen bond network of the solvent water 

molecules is disrupted around the hydrophobic region. So it is the force of the water trying 

to minimise this disruptive effect and driving the hydrophobic regions together that causes 

the two hydrophobic surfaces into close contact and to remain in close contact.
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Once a complete map of the binding site of the target protein has been built potential drug 

candidates can be designed. Fast but simple scoring functions such as number of steric 

clashes and number of favourable interactions are used as the point is to build as many 

compounds as possible. The compounds are made by starting with a seed structure and 

building from that. The seed structure can be a single functional group that the drug must 

contain and the rest of the compound is grown from this starting position. Alternatively a 

few functional groups are positioned into the binding site at strategic positions to have 

specific favourable interactions with the target protein. The algorithm then joins up these 

fragments with bridging elements, adding other functional groups where possible. To speed 

up the building process libraries of pre-built molecule fragments are used which can be 

scanned quickly. This allows functional groups and bridging groups to be added to the 

growing molecule rapidly rather than trying to build the compound atom by atom. The 

building functions know how to add these fragments together keeping the geometry of the 

growing compound correct. The functional groups are the heteroatom containing sections 

such as alcohols, esters, amides and groups such as benzyl derivatives. These groups are 

used to bind to hydrogen bond acceptor and donors on the protein’s surface, or in the case 

of the hydrophobic fragments to interact with large hydrophobic pockets or regions on the 

protein surface. The bridging groups are mostly rigid extended structures used to span the 

gap between the functional groups. Using mainly rigid structures with as few rotational 

bonds as possible is an attempt to reduce the complication of having too flexible a 

compound.

One of the first tests that the compounds produced by the molecule building routine is put 

through is an inspection to see how feasible it is to synthesise the molecule. Until recently 

there were no rules in the compound building algorithm on synthesis routes and it took an 

experienced organic chemist to tell whether a compound could be synthesised and how easy 

it could be done. Now knowledge based systems are becoming available. These systems 

have knowledge about chemical reactions built into the program. They are also linked to 

databases of known synthesis routes which are searched to give a possible route to 

synthesise the compound at the bench and can give a list of possible starting material. 

These possible routes give an indication of the possible difficulty or simplicity in
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synthesising a particular molecule. The list of starting material is retrieved from databases 

of available off the shelf compounds that can be readily purchased. It is the job of the 

program to amalgamate all this information together into a synthesis route from easily 

available starting material to the required compound via known chemical reactions. This 

idea of only producing compounds that can be synthesised as possible drug candidates can 

be taken into the modelling stages where the compound is built. By using libraries of 

fragments with known synthesis routes and with rules built in to the algorithm about 

different synthesis routes, the design compounds now produced as possible drug candidates 

are much more likely to be able to be synthesised.

7.5.4 Advantage Of Using Protein Model Over QSAR

Having the 3D structure of the entire binding site allows the design of the drug candidate to 

take into account any feature of the binding site. Compounds can be designed to fit exactly 

the actual contours of the binding site, making use of all the features present. As discussed 

above one of the drawbacks with the QSAR method is that it has an incomplete picture of 

the binding site. The QSAR method is very dependent on the database set of analogous 

compounds to pick out as many features of the binding site as possible. The advantage of 

having a three dimensional model of the target protein is that all the features of the binding 

site are already known. The specific features of the binding site can be used to the best 

advantage with the compound designed to interact with as many of these features as 

possible. Finding new leads of compounds that can dock into the binding site well is much 

simpler with the entire three dimensional structure of the binding site known. It is possible 

to experiment with different classes of compounds fitting them into the binding site of the 

model examining how well they potentially fit without having to carry out laboratory 

experiments. With the surface of the binding site well known it is possible to design 

compounds that follow the conformation of the surface making plenty of favourable 

interactions with the features found on the surface of the binding site.

The problem of the flexibility of the compounds designed and of the binding site can be 

more readily tackled with protein modelling. At worse the conformational flexibility can 

severely hinder the drug design process but an attempt can be made to solve the problem
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with the use of molecular mechanical techniques. At the very best the problem of 

conformational flexibility in the model greatly increases the time spent on the drug design 

process. The main problem with a flexible compound is knowing the conformation it will 

take when bound to the target protein. A favourable interaction of one polar site in the 

binding site with part of the compound can compensate for an increase in potential energy 

of the compound if it is in a slightly strained conformation. The outcome of this means that 

a compound may not bind to the binding site in its lowest energy conformation. Carrying 

out molecular dynamic simulations of the compound protein model can indicate how stable 

the compound is within the binding site. If the drug interacts strongly and favourably with 

the target protein in the binding site then little movement of the compound within the 

binding site will be observed over the time scale the simulation is allowed to run. The ideal 

situation is if the compound remains where it was designed to bind on the protein and the 

compound and target protein keep the same interactions over the time scale of the 

simulation. If the compound binds poorly to the binding site then during the molecular 

mechanics simulation the compound can be observed to ‘wander’ around the surface of the 

target protein or move off the surface completely. During the time scale of the simulation 

the compound will form arbitrary interactions with different regions of the protein surface 

as it moves around.

The molecular dynamic simulations can be very time consuming. The length of time for a 

calculation is dependent on the number of atoms in the model that is allowed to move and 

the number of time steps in the simulation. A reasonable time scale to take for each 

iteration in the calculation is 0.001 nanoseconds. Therefore for even 1 nanosecond of time 

in the simulation involves 1,000 iterations of the calculation. The number of atoms allowed 

to move in a calculation affects the time taken to carry out each iteration. The time taken 

for each iteration grows factorially as the number of atoms allowed to move in the 

simulation. This fast growth rate in time can be reduced by having a cut off distance, that 

is if two atoms are further than a given distance apart then the force between them is said 

to be negligible and so can be ignored. This greatly speeds up the time taken for each 

iteration. Due to the constraint in the size of each time step the calculation can take it still 

requires 10,000’s of iterations for any significant time elapse in the simulation. Over short
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time periods only valence bond vibrations will be seen in the simulation, any 

conformational changes occur in the nanosecond time scale.

7.5.5 Scoring Functions

Some measurement of how well a compound binds to the target protein model is required 

so that the best compounds can be selected for synthesis and screening with the protein in 

an assay. The QSAR method has a scoring function built into the developed model since 

the base of the model are physiochemical or other properties which can be related to some 

pharmacological property Q, in this case the binding affinity of a compound to a target 

protein. Therefore in the QSAR model that is developed, an increase in the value Q by a 

compound means that it is predicted to bind better to the target protein than a compound 

which has a lower Q value. This makes the decision of choosing which compounds are to 

be synthesised and screened against the protein easier. There is still the problem with 

QSAR in that it is not good at predicting new lead compounds to be screened so some care 

must be taken in screening a reasonably varied array of compounds in the chance one 

might bind well with the protein and give a new lead structure. The QSAR model can be 

refined with each iteration of drug design, compound synthesis and screening. The results 

of how well the compounds fared in the binding assay can be used to improve and refine 

the QSAR model. As more information is added to the model the confidence of its 

prediction abilities will increase.

Protein modelling on the other hand has no such easily defined scoring function. The 

scoring methods that have been used in rational drug design studies using protein modelling 

techniques are much more arbitrarily defined. The scoring functions used in these studies 

are more subjective than the scoring functions developed in the QSAR models.

One popular method is to use molecular mechanic calculation to carry out energy 

minimisations on the compound bound to the binding site of the target protein model. The 

best compounds are deemed to be those that have a high favourable interaction energy but 

where the compound is in a conformation close in energy to its global minimum energy. 

The high interaction energies come from hydrogen bonds forming between two polar
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groups, one on a residue of the protein model and another on the compound model. These 

hydrogen bonds have the same energies and geometries as the intramolecular hydrogen 

bonds found in proteins. Another important type of interaction that gives rise to a 

favourable intermolecular energy is when two hydrophobic surfaces are in contact. 

Although the energies involved can be much weaker than the electrostatic energies involved 

in the hydrogen bonding it still plays a significant role in protein - drug interactions. As 

mentioned the energy of the conformation the compound adopts on binding to the target 

protein should ideally be close to the compound’s global minimum. Finding the global 

minimum of small organic molecules up to 10’s of atoms can be carried out on the desktop 

workstation using semi - empirical techniques. An accurate minimum energy conformation 

can be calculated using these methods. Comparing this global minimum energy to the 

calculated intramolecular energy of the compound after the model has been minimised 

gives an indication of the strain in the conformation that the compound must contend with 

while bound to the protein. If the strain in the conformation is too great the compound will 

not bind to the target protein.

Carrying out an energy minimisation calculation for an entire protein and compound 

complex is very computationally expensive. Other strategies must be used to decrease the 

time taken to analyse the interactions of one compound in the binding site of the target 

protein model. To speed up each individual minimisation the number of atoms that are free 

to move during the calculation is drastically cut. In the most severe cases only the 

compound is free to move during the energy minimisation. Before the start of the rational 

drug design study the target protein model will have been through an energy minimisation 

calculation and be at or very near its local energy minimum. This forces the compound to 

adopt the complementary shape of the binding site and is very unrealistic to what actually 

occurs.

For most proteins what actually happens when a compound binds to a protein is that 

residues in the binding site move and will move to produce more favourable binding with 

the docked compound. The conformation change of the protein to a more strained 

conformation is offset with the more favourable interactions formed with the compound in
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this slightly strained conformation. Only those residues of the protein model neighbouring 

the docked compound change their conformation on binding to the compound. The change 

in the protein conformation on a compound docking to the protein model is localised to the 

area around the docked compound. The other residues of the protein model do not change 

conformation from their initial position. This allows the entire protein to be put through the 

energy minimiser once to give the local minimum energy conformation and when 

compounds are docked to the protein model only those residues in the binding site of the 

target protein need be allowed to move during the energy calculation. This approach 

greatly reduces the number of atoms that are free to move during the energy minimisation 

calculations when binding a compound to the target protein making the calculation 

significantly faster. This approach gives a more realistic model of what happens when the 

compound is bound to the target protein without increasing the length of the calculation too 

significantly.

Molecular dynamics can also be used to give an indication of how well a compound binds 

to the target protein model. Carrying out the molecular dynamics simulation at body 

temperature 31 OK gives a better indication of how the compound will bind in the screening 

process. If the compound binds tightly to the target protein model then little movement of 

the compound will be seen during the simulation. Ideally the interactions the compound 

was designed to make with the protein model will remain, specifically the same interatomic 

hydrogen bonds between compound and protein should stay or continually appear during 

the simulation time frame. If on the other hand the compound binds poorly to the protein 

model it will be seen drifting away from the starting binding site. Arbitrary hydrogen bonds 

will be formed during each time frame of the simulation as the compound moves across the 

surface. If the original binding of the compound to the protein model was particularly 

strained then the compound may leave the protein model’s surface completely. Molecular 

dynamic simulations are also good for looking at flexible compound models as previously 

discussed. Again if the entire protein model is free to move during the molecular dynamics 

simulation this makes the calculation too slow to be feasible. The simulation calculation 

can be made to run quicker if fewer atoms in the model are allowed to move during the 

calculation. The residues in the target protein model that are free to move in the simulation
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are those that point into the binding site. During a simulation at body temperature a 

compound that binds strongly to the target protein will remain within the binding site. This 

binding site is normally a reasonably well defined feature on the surface of the target 

protein like a cleft so there is a clearly defined subset of atoms in the protein model that are 

allowed to move during the molecular dynamics simulation.

Both molecular mechanic methods described above are time consuming. They do not allow 

for the quick analysis of many hundreds or thousands of compound designs. The molecular 

mechanic methods described above are used for more in depth studies of a few carefully 

selected compounds. For screening large numbers of compounds bound to the protein 

model a much quicker but more subjective method is required in selecting the compounds 

that best fit the binding site. These methods revolve around a simple scoring function that 

gives some indication of how good the compound is bound to the target protein model. 

They take into consideration only intermolecular effects and assume that the protein and 

compound are already in a minimum energy or low energy conformation. The methods add 

up all the favourable and unfavourable interactions between the compound and protein and 

the total gives some indication on how well the compound binds to the protein model. Each 

of the interactions taken into account by the function has a different weighting. These 

functions might not be as robust as the molecular mechanics methods but they allow for a 

faster throughput of possible drug candidates. This is important as the bottleneck in 

rational drug design is in the analysis of the potential dmg candidate.

7.6 Conclusions
The model of Bb as it stands is acceptable as a homology model but this does not mean 

that it is not impossible to improve the quality of the model. The analysis carried out on the 

structure clearly shows that there is plenty of scope for improvement. Many of the 

alterations that can be done are relatively quick and easy to carry out. A prime example of 

this is making sure all the residues in the model are of the L isomer. Any alterations carried 

out on the side chain atoms can be done relatively easily. After these fairly minor 

alterations are carried out the model can continue to be run through the energy minimiser. 

This will hopefully help improve the problems with the planarity of the peptide bonds in
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the structure. Protein crystallographers have had to carry out such analysis checks on the 

crystal structures of proteins that they produce, therefore it is only reasonable to expect 

protein modellers to carry out the same checks on their structures.

Comparative / Homology modelling is still the most effective and reliable method of 

producing a three dimensional model of a protein sequence which has yet to have its 

structure solved by x-ray crystallography. This does not seem likely to change in the near 

future. The depressing point is' the lack of progress in recent years of improving the quality 

of the model produced by comparative modelling. The main stumbling block of the 

comparative modelling technique is calculating the conformation of large insertions. The 

algorithms which generate all possible conformations an insertion can adopt are severely 

limited by the number of residues that they can handle. They also appear to have problems 

in deciding which conformation an insertion will adopt. Until these problems are solved the 

use of protein modelling will be restricted by the range of structures comparative / 

homology modelling can cope with.
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8 REPORT OF PROTEIN ANALYSIS by the WHAT IF 
program. D ate: 1997-22-12

8.1 INTRODUCTION
This document contains a report of findings by the WHAT IF program during the analysis 

of one or more proteins. It contains a separate section for each of the proteins that have 

been analysed. Each reported fact has an assigned severity, one of:

error: severe errors encountered during the analyses. Items marked as errors are

considered severe problems requiring immediate attention, 

warning: Either less severe problems or uncommon structural features. These still need

special attention.

note: Statistical values, plots, or other verbose results of tests and analyses that have

been performed.

If alternate conformations are present, only the first is evaluated, 

hydrogen atoms are ignored.

8.2 Legend
Some notations need a little explanation:

RESIDUE: Residues in tables are normally given in 4 parts:

1. - A number. This is the internal sequence number of the residue used by 

WHAT IF.

2. - The residue name. Normally this is a three letter amino acid name.

3. - The sequence number, between brackets. This is the residue number as it 

was given in the input file.

4. - The chain identifier. A single character. If no chain identifier was given in 

the input file, a i s  given.
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Z-VALUE: To indicate the normality of a score, the score may be expressed as a Z-value 

or Z-score. This is just the number of standard deviations that the score deviates from the 

expected value. A property of Z-values is that the root-mean-square of a group of Z- 

values is expected to be 1.0. Z-values above 4.0 and below -4.0 are very uncommon. If a 

Z-score is used in WHAT IF, the accompanying text will explain how the expected value 

and standard deviation

Compound code fb_44a.pdb

# 1 # Error: Missing unit cell information 

No SCALE matrix is given in the PDB file.

# 2 # Error: Missing symmetry information 

Problem: No CRYST1 card is given in the PDB file.

# 3 # Error: Threonine nomenclature problem

The threonine residues listed in the table below have their 

O-gamma-1 and C-gamma-2 swapped.

7 THR ( 2 2 ) A 

123 THR ( 4 )  A 

160 THR ( 2 )  A 

196 THR ( 177 ) A
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Compound code fb_44a_noH.pdb

# 1 # Warning: Class of space group could be incorrect 

The space group symbol indicates a different class than the 

unit cell given on the CRYST1 card of the PDB file.

Possible cause: The unit cell may have pseudo-symmetiy, or one of the 

cell dimensions or the space group might be given incorrectly.

Crystal class of the cell: CUBIC

Crystal class of the space group: TRICLINIC

Space group name: P 1

# 2 # Note: No rounded coordinates detected

No significant rounding of atom coordinates has been detected.

# 3 # Error: Matthews Coefficient (Vm) very high

The Matthews coefficient [REF] is defined as the density of the 

protein structure in cubic Angstroms per Dalton. Normal values are
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between 1.5 (tightly packed, little room for solvent) and 4.0 

(loosely packed, much space for solvent). Some very loosely packed 

structures can get values a bit higher than that.

Numbers this high are almost always caused by giving the wrong value 

for Z on the CRYST1 card.

Molecular weight of all polymer chains: 31572.467 

Volume of the Unit Cell V= 0 .1000E+10 

Cell multiplicity: 0

Matthews coefficient for observed atoms Vm= 31673.160

# 4 # Note: Valine nomenclature OK

No errors were detected in valine nomenclature.

# 5 # Note: Threonine nomenclature OK

No errors were detected in threonine nomenclature.

# 6 # Note: Isoleucine nomenclature OK

No errors were detected in isoleucine nomenclature.

# 7 # Note: Leucine nomenclature OK

No errors were detected in leucine nomenclature.
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# 8 # Note: Arginine nomenclature OK

No errors were detected in arginine nomenclature.

#  9 # Note: Tyrosine torsion conventions OK

No errors were detected in tyrosine torsion angle conventions.

# 10 # Note: Phenylalanine torsion conventions OK

No errors were detected in phenylalanine torsion angle conventions.

# 1 1 #  Note: Aspartic acid torsion conventions OK

No errors were detected in aspartic acid torsion angle conventions.

# 12 # Note: Glutamic acid torsion conventions OK

No errors were detected in glutamic acid torsion angle conventions.

# 13 # Note: Heavy atom naming OK

No errors were detected in the atom names for non-hydrogen atoms.

# 14 #  Warning: Chirality deviations detected

The atoms listed in the table below have an improper dihedral value 

that is deviating from expected values.

Improper dihedrals are a measure of the chirality/planarity of the 

structure at a specific atom. Values around -35 or +35 are expected
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for chiral atoms, and values around 0 for planar atoms. Planar side 

chains are left out of the calculations, these are better handled 

by the planarity checks.

Three numbers are given for each atom in the table. The first is 

the Z-score for the improper dihedral. The second number is the 

measured improper dihedral. The third number is the expected value 

for this atom type. A final column contains an extra warning if the 

chirality for an atom is opposite to the expected value.

1 TRP ( 16) A C -9.0 ••15.7 0.1

3 HIS ( 18) A CA -6.2 20.0 34.4

3 HIS ( 18) A C -8.2 - 15.9 •-0.1

7 THR ( 2 2 )  A CA 4.5 43.9 34.1

7 THR ( 22 ) A C -6.9 -13.1 -0.1

8 ASP ( 23 ) A CA -6.3 19.5 34.0

12 GLN ( 27 ) A CA -6.5 19.6 34.2

12 GLN ( 27 ) A C -4.1 -7.4 -0.1

18ILE ( 5 ) A CA -6.9 19.7 33.8

20V A L ( 7 ) A CA -6.7 19.3 33.7

2 1 ILE ( 33 ) A CB -8.9 15.6 33.3

26 GLY ( 38 ) A C 11.8 19.2 0.1

27 HIS ( 3 9 ) A C 9.3 17.9 -0.1

28 GLU ( 4 0 )  A CA 10.8 57.2 34.4

278



28 GLU ( 4 0 )  A C -10.2 -18.8 0.0

29 SER ( 4 1 )  A CA -8.1 14.9 34.3

30 CYS ( 4 2 )  A C -7.2 -13.0 -0.1

31 MET ( 4 3 )  A C 7.7 13.8 0.0

35 VAL ( 4 7 )  A C 4.6 8.6 -0.3

36 SER ( 48 ) A CA -6.0 20.0 34.3

4 0 VAL ( 5 2 ) A C 6.4 12.1 -0.3

41 LEU ( 5 3 )  A C 5.2 9.5 -0.1

42 THR ( 5 4 ) A C -6.5 -12.4 -0.1

46 CYS ( 5 8 ) A C 14.0 25.1 -0.1

47 PHE ( 59 ) A CA 6.6 49.6 34.2

And so on for a total of 147 lines

# 15 # Warning: High improper dihedral angle deviations

The RMS Z-score for the improper dihedrals in the structure is high. 

For well refined structures this number is expected to be around 1.0. 

The fact that it is higher than 1.5 in this structure could be an 

indication of overrefinement.

Improper dihedral RMS Z-score : 4.153

# 16 # Error: Decreasing residue numbers

At least one residue in each of the chains mentioned below has 

a residue number that is lower than the previous residue in that
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chain represents a chain without chain identifier).

Chain identifier(s): A

# 17 # Note: Weights checked OK

All atomic occupancy factors (’weights') fall in the 0.0-1 .0  range.

# 18 # Note: No missing atoms detected 

All expected atoms are present.

# 19 # Warning: C-terminal oxygen atoms missing

The C-atoms listed in the table below belong to a C-terminal residue 

in a protein chain, but the C-terminal oxygen ("02" or "OXT") that it 

should be bound to was not found.

278 GLU (245 ) A C

# 20 # Note: No extra C-terminal groups found

No C-terminal groups are present for non C-terminal residues

# 2 1 #  Warning: Unusual bond lengths 

The bond lengths listed in the table below were found to deviate 

more than 4 sigma from standard bond lengths (both standard values 

and sigma for amino acid residues have been taken from Engh and
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Huber [REF], for DNA they were taken from Parkinson et al [REF]). In 

the table below for each unusual bond the bond length and the 

number of standard deviations it differs from the normal value is 

given.

Atom names starting with "<" belong to the previous residue in the 

chain. If the second atom name is "--SS", the disulphide bridge has 

a deviating length.

4 ARG ( 19) A CZ NH1 1.244 -4.5

7 THR ( 22 ) A CA CB 1.638 5.4

7 THR ( 22 ) A CB OG1 1.550 7.3

18ILE ( 5 )  A CA CB 1.619 4.5

19 SER ( 6 )  A CA CB 1.623 4.7

21IL E  ( 3 3 ) A CA CB 1.621 4.5

22 ARG ( 3 4 ) A N CA 1.562 5.5

22 ARG ( 3 4 ) A CD NE 1.545 4.7

27 HIS ( 39 ) A CG CD2 1.410 4.9

28 GLU ( 4 0 )  A CA CB 1.634 5.2

29 SER ( 4 1 )  A N CA 1.537 4.2

45 HIS ( 57 ) A CG CD2 1.403 4.3

45 HIS ( 5 7 )  A ND1 CE1 1.379 4.6

47 PHE ( 5 9 ) A N CA 1.550 4.9

48 THR ( 6 0 ) A N CA 1.534 4.0
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49 VAL ( 61 ) A N CA 1.555 5.1

49 VAL ( 6 1 ) A CA CB 1.654 6.2

50 ASP ( 6 2 )  A CG OD1 1.360 5.8

51 ASP ( 62A) A N <C 1.191 -6.9

52LY S ( 6 9 ) A N CA 1.545 4.6

52 LYS ( 6 9 ) A CA CB 1.628 4.9

53 GLU ( 7 0 )  A CD OE2 1.359 5.8

54 HIS ( 7 1 )  A CG CD2 1.408 4.8

54 HIS ( 7 1 )  A ND1 CE1 1.375 4.3

57 LYS ( 73B) A N CA 1.552 5.0

And so on for a total of 97 lines

# 22 # Warning: High bond length deviations

Bond lengths were found to deviate more than normal from the mean

standard bond lengths (standard values for protein residues were

taken from Engh and Huber [REF], for DNA/RNA these values were taken from

Parkinson et al [REF]). The RMS Z-score given below is expected to be

around 1.0 for a normally restrained data set. The fact that it is

higher than 1.5 in this structure might indicate that the

constraints used in the refinement were not strong enough. This

will also occur if a different bond length dictionary is used.

RMS Z-score for bond lengths: 1.806

RMS-deviation in bond distances: 0.037

282



# 23 # Warning: Possible cell scaling problem 

Comparison of bond distances with Engh and Huber [REF] standard 

values for protein residues and Parkinson et al [REF] values for 

DNA/RNA shows a significant systematic deviation. It could be that 

the unit cell used in refinement was not accurate enough. The 

deformation matrix given below gives the deviations found: the 

three numbers on the diagonal represent the relative corrections 

needed along the A, B and C cell axis. These values are 1.000 in a 

normal case, but have significant deviations here (significant at 

the 99.99\% confidence level)

There are a number of different possible causes for the 

discrepancy. First the cell used in refinement can be different 

from the best cell calculated. Second, the value of lambda used for 

a synchrotron data set can be miscalibrated. Finally, the 

discrepancy can be caused by a dataset that has not been corrected 

for significant anisotropic thermal motion.

Please note that the proposed scale matrix has NOT been constrained 

to obey the space group symmetry. This is done on purpose. The 

distortions can give you an indication of the accuracy of the 

determination.
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Unit Cell deformation matrix 

0.986365 -0.000932 0.000135 

-0.000932 0.987224 -0.000052 

0.000135 -0.000052 0.986245 

Proposed new scale matrix 

0.001014 0.000001 0.000000 

0.000001 0.001013 0.000000 

0.000000 0.000000 0.001014 

With corresponding cell 

A = 986.365 B = 987.224 C = 986.245 

Alpha= 90.006 Beta= 89.984 Gamma= 90.108

The CRYST1 cell dimensions 

A =1000.000 B =1000.000 C =1000.000 

Alpha= 90.000 Beta= 90.000 Gamma= 90.000

Variance: 1570.906 

(Under-)estimated Z-score: 29.211

# 24 # Warning: Unusual bond angles 

The bond angles listed in the table below were found to deviate 

more than 4 sigma from standard bond angles (both standard values 

and sigma for protein residues have been taken from Engh and Huber 

[REF], for DNA/RNA from Parkinson et al [REF]). In the table below
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for each strange angle the bond angle and the number of standard 

deviations it differs from the standard values is given. Please 

note that disulphide bridges are neglected. Atoms starting with "<" 

belong to the previous residue in the sequence.

1TR P ( 16) A CB CG CD1 114.044 -8.6

1 TRP ( 16) A CB CG CD2 136.320 6.8

1TR P ( 16) A NE1 CE2 CZ2 120.701 -6.3

1 TRP ( 16) A CE3 CD2 CG 127.036 -6.9

2 GLU ( 17) A < 0  <C N 116.017 -4.4

2 GLU ( 17) A N CA CB 92.401 -10.6

3 HIS ( 18) A N CA C 141.822 10.9 

3 HIS ( 18) A N CA CB 118.044 4.4 

3 HIS ( 18) A C CA CB 96.001 -7.4

3 HIS ( 18) A CA CB CG 127.488 13.7 

3 HIS ( 18) A CG ND1 CE1 98.063 -7.5 

3 HIS ( 18) A ND1 CE1 NE2 120.816 7.0 

3 HIS ( 18) A CE1 NE2 CD2 97.813 -7.0 

3 HIS ( 18) A CD2 CG ND1 111.148 5.0

3 HIS ( 18) A CB CG CD2 122.381 -5.2

4 ARG ( 19) A < 0  <C N 113.671 -5.8

4 ARG ( 19) A N CA CB 95.233 -9.0

4 ARG ( 19) A C CA CB 126.058 8.4

5 LYS ( 2 0 ) A C CA CB 122.541 6.5
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7 THR ( 2 2 ) A <C N CA 129.258 4.2 

7 THR ( 2 2 ) A CA C O 109.062 -6.9 

7 THR ( 22 ) A C CA CB 102.015 -4.3 

7 THR ( 22 ) A CA CB CG2 118.899 4.9 

7 THR ( 2 2 ) A CA CB OG1 119.684 6.7 

7 THR ( 2 2 ) A CG2 CB OG1 97.976 -5.7 

And so on for a total of 571 lines

# 25 # Warning: High bond angle deviations

Bond angles were found to deviate more than normal from the mean 

standard bond angles (normal values for protein residues were taken 

from Engh and Huber [REF], for DNA/RNA from Parkinson et al 

[REF]). The RMS Z-score given below is expected to be around 1.0 

for a normally restrained data set, and this is indeed observed for 

very high resolution X-ray structures. More common values are 

around 1.55. The fact that it is higher than 2.0 in this structure 

might indicate that the constraints used in the refinement were not 

strong enough. This will also occur if a different bond angle 

dictionary is used.

RMS Z-score for bond angles: 2.987 

RMS-deviation in bond angles: 5.608

# 26 # Error: Side chain planarity problems
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The side chains of the residues listed in the table below contain a 

planar group that was found to deviate from planarity by more than 

4.0 times the expected value. For an amino acid residue that has a 

side chain with a planar group, the RMS deviation of the atoms to a 

least squares plane was determined. The number in the table is the 

number of standard deviations this RMS value deviates from the 

expected value (0.0).

1 TRP ( 16) A 19.406

3 HIS ( 18) A 11.659

28 GLU ( 4 0 ) A 8.355

93 ASP (1 0 0 )  A 7.383

95 ASP ( 1 0 2 )A 6.808

15 GLN ( 2 )  A 5.710

238 TRP (:215) A 5.456

9 TYR ( 2 4 ) A 5.263

258 ARG ( 3 )  A 4.942

120 GLU ( 1) A 4.852

230 PHE ( 4 )  A 4.845

22 ARG ( 34 ) A 4.741

210 ASP ( 7 ) A 4.360

63 GLU ( 7 8 ) A 4.115

156 GLU ( 149) Al 4.022
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# 27 # Error: Connections to aromatic rings out of plane 

The atoms listed in the table below are connected to a planar 

aromatic group in the sidechain of a protein residue but were found 

to deviate from the least squares plane.

For all atoms that are connected to an aromatic side chain in a 

protein residue the distance of the atom to the least squares plane 

through the aromatic system was determined. This value was divided 

by the standard deviation from a distribution of similar values 

from a database of small molecule structures.

75 HIS ( 9 1 ) A CB 12.666

92 TYR ( 99 ) A OH 10.691

256 HIS ( 1 ) A CB 10.113

54 HIS ( 7 1 )  A CB 9.278

165 TYR ( 7 )  A OH 8.272

181 TYR ( 4 ) A OH 7.571

185 TYR ( 8 )  A CB 6.946

208 TYR ( 5 ) A OH 5.991

185 TYR ( 8 )  A OH 5.884

151 PHE (1 4 4 )  A CB 5.408

94 TYR (1 0 1 )  A OH 5.329

208 TYR ( 5 ) A CB 5.254

107 TYR (1 1 4 )  A CB 4.805
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181 TYR ( 4 ) A CB 4.686 

38 TYR ( 5 0 ) A CB 4.500 

199 PHE ( 180) A CB 4.398 

78 TYR ( 9 4 ) A OH 4.112

# 28 # Warning: Unusual PRO puckering amplitudes 

The proline residues listed in the table below have a puckering 

amplitude that is outside of normal ranges. Puckering parameters 

were calculated by the method of Cremer and Pople [REF]. Normal PRO 

rings have a puckering amplitude Q between 0.20 and 0.45 

Angstrom. If Q is lower than 0.20 Angstrom for a PRO residue, this 

could indicate disorder between the two different normal ring forms 

(with C-gamma below and above the ring, respectively). If Q is 

higher than 0.45 Angstrom something could have gone wrong during the 

refinement.

89 PRO ( 98B) A 0.72 HIGH 

143 PRO ( 2 )  A 0.73 HIGH 

211 PRO ( 8 )  A 0.55 HIGH 

221 PRO (1 9 8 )  A 0.45 HIGH 

254 PRO ( 229) A 0.55 HIGH

# 29 # Warning: Unusual PRO puckering phases

The proline residues listed in the table below have a puckering phase
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that is not expected to occur in protein structures. Puckering 

parameters were calculated by the method of Cremer and Pople 

[REF], Normal PRO rings approximately show a so-called envelope 

conformation with the C-gamma atom above the plane of the ring 

(phi=+72 degrees), or a half-chair conformation with C-gamma below 

and C-beta above the plane of the ring (phi=-90 degrees). If phi 

deviates strongly from these values, this is indicative of a very 

strange conformation for a PRO residue, and definitely requires a 

manual check of the data.

76 PRO ( 92 ) A 100.4 envelop C-beta (108 degrees)

113 PRO (1 2 0 )  A 48.9 half-chair C-delta/C-gamma (54 degrees) 

117 PRO ( 124)A -118.5  half-chair C-delta/C-gamma (-126 degrees) 

207 PRO ( 4 )  A 51.1 half-chair C-delta/C-gamma (54 degrees)

211 PRO ( 8 )  A -53.4 half-chair C-beta/C-alpha (-54 degrees)

254 PRO (2 2 9 )  A 138.7 envelop C-alpha( 144 degrees)

# 30 # Warning: Torsion angle evaluation shows unusual residues 

The residues listed in the table below contain bad or abnormal 

torsion angles.

These scores give an impression of how '"normal" the torsion 

angles in protein residues are. All torsion angles except omega are
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used for calculating a 'normality' score. Average values and 

standard deviations were obtained from the residues in the WHAT IF 

database. These are used to calculate Z-scores. A residue with a 

Z-score of below -2.0 is poor, and a score of less than -3.0 is 

worrying. For such residues more than one torsion angle is in a 

highly unlikely position.

42 THR ( 54 ) A -3.1854

143 PRO ( 2 )  A -3.1510

89 PRO ( 98B) A -3.1193

211 PRO ( 8 )  A -3.0911

185 TYR ( 8 )  A -2.9986

260 PHE ( 5 )  A -2.9651

230 PHE ( 4 )  A -2.9440

147 ILE ( 6 )  A -2.8843

261 HIS ( 6 j A -2.8521

265 PHE ( 10) A -2.7788

91 PHE ( 98D) A -2.7692

164 VAL ( 6 )  A -2.7508

208 TYR ( 5 )  A -2.7354

22 ARG ( 34 ) A -2.7111

244 CYS ( 5 )  A -2.7062

20 VAL ( 7 )  A -2.6770

150 LEU ( 9 )  A -2.6748
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264 LEU ( 9 )  A -2.5946 

54 HIS ( 7 1 )  A -2.5269 

92 TYR ( 9 9 )  A -2.5235 

240 VAL ( 1 ) A -2.5050 

259 ASP ( 4 )  A -2.4937 

2 1 ILE ( 3 3 ) A -2.4517 

222 LEU (1 9 9 )  A -2.3591 

10 HIS ( 25 ) A -2.3432 

And so on for a total of 61 lines

# 31 # Warning: Backbone torsion angle evaluation shows unusual conformations 

The residues listed in the table below have abnormal backbone torsion 

angles.

Residues with "forbidden" phi-psi combinations are listed, as 

well as residues with unusual omega angles (deviating by more than 

3 sigma from the normal value). Please note that it is normal if 

about 5 percent of the residues is listed here as having unusual 

phi-psi combinations.

2 GLU ( 17 ) A omega poor

3 HIS ( 18 ) A Poor phi/psi, omega poor

4 ARG ( 19 ) A Poor phi/psi 

7 THR ( 2 2 ) A omega poor
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8 ASP ( 23 ) A Poor phi/psi

9 TYR ( 2 4 ) A omega poor

10 HIS ( 25 ) A Poor phi/psi

11 LYS ( 2 6 ) A omega poor

12 GLN ( 27 ) A PRO omega poor

15 GLN ( 2 )  A Poor phi/psi

16 ALA ( 3 ) A omega poor

17 LYS ( 4 )  A Poor phi/psi 

1 8 ILE ( 5 ) A omega poor

19 SER ( 6 )  A Poor phi/psi

20 VAL ( 7 )  A Poor phi/psi, omega poor

21 ILE ( 3 3 ) A Poor phi/psi, omega poor

22 ARG ( 3 4 ) A Poor phi/psi, PRO omega poor

23 PRO ( 34A) A PoorPR O -phi

24 SER ( 34B) A Poor phi/psi

25 LYS ( 37 ) A Poor phi/psi

26G LY  ( 38 ) A Poor phi/psi, omega poor

27 HIS ( 39 ) A omega poor

28 GLU ( 4 0 )  A omega poor 

34 VAL ( 4 6 )  A omega poor 

36 SER ( 4 8 )  A omega poor

And so on for a total of 151 lines

# 32 # Error: Ramachandran Z-score very low
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The score expressing how well the backbone conformations of all residues 

are corresponding to the known allowed areas in the Ramachandran plot is 

very low.

Ramachandran Z -score: -5.194

#  33 # Warning: Omega angle restraints not strong enough 

The omega angles for trans-peptide bonds in a structure is 

expected to give a gaussian distribution with the average around 

+178 degrees, and a standard deviation around 5.5. In the current 

structure the standard deviation of this distribution is above 7.0, 

which indicates that the omega values have been under-constrained.

Standard deviation of omega values : 18.623

# 34 # Error: chi-l/chi-2 angle correlation Z-score very low

The score expressing how well the chi-l/chi-2 angles of all residues 

are corresponding to the populated areas in the database is 

very low.

chi-l/chi-2 correlation Z-score : -4.444

# 35 # Note: Ramachandran plot

In this Ramachandran plot X-signs represent glycines, squares represent
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prolines and small plus-signs represent the other residues. If too many 

plus-signs fall outside the contoured areas then the molecule is poorly 

refined (or worse).

In a colour picture, the residues that are part of a helix are 

shown in blue, strand residues in red. "Allowed" regions for 

helical residues are drawn in blue, for strand residues in red, and 

for all other residues in green.
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Chain identifier: A

# 36 # Warning: Inside/Outside residue distribution unusual 

The distribution of residue types over the inside and the outside of the 

protein is unusual. Normal values for the RMS Z-score below are between 

0.84 and 1.16. The fact that it is higher in this structure could be
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caused by transmembrane helices, by the fact that it is part of a 

multimeric active unit, or by mistraced segments in the density.

inside/outside RMS Z-score : 1.243

# 37 # Note: Inside/Outside RMS Z-score plot

The Inside/Outside distribution normality RMS Z-score over a 15 

residue window is plotted as function of the residue number. High 

areas in the plot (above 1.5) indicate unusual inside/outside 

patterns.

In the TeX file, a plot has been inserted here 

Chain identifier: A

# 38 # Note: Secondary structure

This is the secondary structure according to DSSP. Only helix (H), strand 

(S), turn (T) and coil (blank) are shown. [REF]

Secondary structure assignment 

The DSSP executable was not found 

/p6/exe 1/whatif/dssp/DSSP.EXE

WARNING. You don't have the DSSP program installed. Therefore 

the emulator will be used. This emulator gives rather poor results,
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but it prevents WHAT IF from crashing. See the writeup about this.

10 20 30 40 50

60

1 - 6 0

WEHRKGTDYHKQPWQAKISVIRPSKGHESCMGAWSFYFVLTAAHCFTVDDKEHSIKVSV

1 - 6 0  T T T S TTT S 3 TSS T 3 T S

TT 3

70 80 90 100  110

120

6 1 - 1 2 0

GGEKRDLEIEWLFHPNYNINGKKEAGIPEFYDYDVALIKLKNKLKYGQTIRPICLPCTE 

61 -  120 T SSS T T T TTT SSS

130 140  150  160  170

180

121  -  180

GTTRALRLPPTTTCQQQKEELLPAQDIKALFVSEEEKKLTRKEVYIKNGDKKGSCERDAQ

121 -  180 T SS T T T S

THHHHHHH H

190 200  210  220  230
240

181 -  240

YAPGYDKVKDISEWTPRFLCTGGVSPYADPNTCRGDSGGPLIVHKRSRFIQVGVISWGV

181 -  240  T T T  T T  T T T SS H

S S

250  260  270
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278  VDVCKNQKRQKQVPAHARDFHINLFQVLPWLKEKLQDE 

278 T T S T HHHHHHHHHHHH

# 39 # Error: Abnormally short interatomic distances 

The pairs of atoms listed in the table below have an unusually 

short distance.

The contact distances of all atom pairs have been checked. Two 

atoms are said to 'bump' if they are closer than the sum of their 

Van der Waals radii minus 0.40 Angstrom. Forhydrogen bonded pairs 

a tolerance of 0.55 Angstrom is used. The first number in the 

table tells you how much shorter that specific contact is than the 

acceptable limit. The second distance is the distance between the 

centers of the two atoms.

The last text-item on each line represents the status of the atom 

pair. The text 'INTRA' means that the bump is between atoms that 

are explicitly listed in the PDB file. 'INTER' means it is an 

inter-symmetry bump. If the final column contains the text 'HB', 

the bump criterium was relaxed because there could be a hydrogen 

bond. Similarly relaxed criteria are used for 1 -3  and 1—4

241  -  

241  -
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interactions (listed as 'B2' and 'B3\ respectively). If the last 

column is 'BF, the sum of the B-factors of the atoms is higher 

than 80, which makes the appearance of the bump somewhat less 

severe because the atoms probably aren't there anyway.

Bumps between atoms for which the sum of their occupancies is lower 

than one are not reported. In any case, each bump is listed in only 

one direction.

142 LEU ( 1 ) A CG -  157 LYS (1 5 0 )  A CA 0.485 2.715 INTRA

142 LEU ( 1 ) A CD1 -  157 LYS (1 5 0 )  A CA 0.45C► 2.750 INTRA

142 LEU ( 1 ) A CB -  157 LYS (1 5 0 )  A CA 0.408 2.792 INTRA

4 ARG ( 19) A CB -  161 ARG ( 3 ) A CA 0.320 2.880 INTRA

142 LEU ( D A CD1 -  157 LYS ( 150) A C 0.277 2.923 INTRA

138 LYS ( 1 4 0 )A C -  148LYS ( 7 ) A NZ 0.270 2.830 INTRA

142 LEU ( 1 ) A CD1 -  157 LYS ( 150) A N 0.257 2.843 INTRA

149 ALA ( 8 ) A O -- 150LEU ( 9 )  A CD1 0.257 2.543 INTRA

140 GLU (1 4 2 )  A O -  142 LEU ( 1 ) A CD1 0.254 2.546 INTRA

138 LYS (1 4 0 )  A C -  148 LYS ( 7 ) A CE 0.237 2.963 INTRA

150 LEU ( 9 ) A CD1 -  214 CYS (1 9 1 )  A C 0.198 3.002 INTRA

142 LEU ( 1 ) A CG -  157 LYS (1 5 0 )  A c 0.184 3.016 INTRA

138 LYS ( 140) A NZ -  2 3 6 ILE ( 2 1 3 ) A CD1 0.165 2.935 INTRA

142 LEU ( 1 ) A CD2 -  157 LYS ( 150) A C 0.135 3.065 INTRA

209 ALA ( 6 ) A CB -  248 LYS (223  ) A N 0.115 2.985 INTRA
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138 LYS ( 1 4 0 )  A NZ -  2 3 6 ILE (213 ) A CGI 0.101 2.999 INTRA

140 GLU ( 142 ) A C -  142 LEU ( 1 ) A CD1 0.101 3.099 INTRA

161 ARG ( 3 )  A O -  162LYS ( 4 )  A CB 0.099 2.701 INTRA

48 THR ( 6 0 ) A c -  67 LEU ( 83 ) A N 0.085 3.015 INTRA

148 LYS ( 7 )  A N -  159 LEU ( 1 ) A CD1 0.070 3.030 INTRA

150 LEU ( 9 )  A 0 -  214 CYS ( 191 ) A SG 0.058 2.942 INTRA

138 LYS ( 140 ) A N -  148LYS ( 7 ) A NZ 0.019 2.981 INTRA

138 LYS (1 4 0 )  A NZ -  236 ILE (213  ) A CG2 0.004 3.096 INTRA 

67 LEU ( 83 ) A O -  68 GLU ( 8 4 ) A C 0.003 2.797 INTRA

# 40 # Warning: Abnormal packing environment for some residues 

The residues listed in the table below have an unusual packing 

environment.

The packing environment of the residues is compared with the 

average packing environment for all residues of the same type in 

good PDB files. A low packing score can indicate one of several 

things: Poor packing, misthreading of the sequence through the 

density, crystal contacts, contacts with a co-factor, or the 

residue is part of the active site. It is not uncommon to see a few 

of these, but in any case this requires further inspection of the 

residue.

124ARG ( 5 ) A -7.50
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185 TYR ( 8 )  A -7.20 

9 TYR ( 24 ) A -6.90 

128 LEU ( 9 )  A -6.60 

127 ARG ( 8 ) A -6.46 

25 LYS ( 37 ) A -6.43 

145 GLN ( 4 )  A -6.17 

126LEU ( 7 ) A -6.11 

215 ARG ( 1 9 2 )  A -6.07 

260 PHE ( 5 ) A -6.04 

27 HIS ( 3 9 ) A -6.03 

208 TYR ( 5 ) A -5.96 

83 LYS ( 96C) A -5.91 

109 GLN ( 1 1 6 )  A -5.91 

57 LYS ( 73B) A -5.56 

137 GLN ( 139) A -5.54 

189 LYS ( 12 ) A -5.53 

11 LYS ( 2 6 ) A -5.43 

112 ARG ( 1 1 9 )  A -5.36 

154 GLU ( 1 4 7 )  A -5.28 

263 ASN ( 8 ) A -5.25 

265 PHE ( 10) A -5.09 

65 ARG ( 5 ) A -5.07 

181 TYR ( 4 )  A -5.00



# 41 # Warning: Abnormal packing environment for sequential residues 

A stretch of at least three sequential residues with a questionable packing 

environment was found. This could indicate that these residues are part 

of a strange loop, but might also be an indication of misthreading.

The table below lists the first and last residue in each stretch found, 

as well as the average residue score of the series.

126 LEU ( 7 )  A — 128 LEU ( 9 )  A -6.39

#  42 # Error: Abnormal average packing environment

The average quality control value for the structure is very low.

A molecule is certain to be incorrect if the average quality score 

is below -3.0. Poorly refined molecules, very well energy 

minimized misthreaded molecules and low homology models give values 

between -2.0 and -3.0. The average quality of 200 highly refined X-ray 

structures was -0.5+/-0.4 [REF].

Average for range 1 - 278 : -2.749

# 43 # Note: Quality value plot

The quality value smoothed over a 10 residue window is plotted as
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function of the residue number. Low areas in the plot (below 

-2.0) indicate "unusual" packing.

In the TeX file, a plot has been inserted here

Chain identifier: A

# 44 # Warning: Low packing Z-score for some residues 

The residues listed in the table below have an unusual packing 

environment according to the 2nd generation quality check. The score 

listed in the table is a packing normality Z-score: positive means 

better than average, negative means worse than average. Only residues 

scoring less than -2.50 are listed here. These are the "unusual" 

residues in the structure, so it will be interesting to take a 

special look at them.

137 GLN ( 1 3 9 )  A -3.04 

251 LYS ( 2 2 6 )  A -3.01 

17 LYS ( 4 )  A -2.95 

198 ARG (179 ) A -2.93 

27 HIS ( 3 9 ) A -2.91 

191 ILE ( 14) A -2.88 

24 SER ( 34B) A -2.83 

52 LYS ( 6 9 ) A -2.75
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20 VAL ( 7 ) A -2.73 

254 PRO ( 2 2 9 )  A -2.71

10 HIS ( 2 5 )  A -2.65 

138 LYS ( 1 4 0 )  A -2.63 

250 GLN ( 225 ) A -2.63 

160 THR ( 2 ) A -2.62

11 LYS ( 2 6 )  A -2.61 

16 ALA ( 3 ) A -2.53

# 45 # Warning: Abnormal packing Z-score for sequential residues 

A stretch of at least four sequential residues with a 2nd 

generation packing Z-score below -1.75 was found. This could 

indicate that these residues are part of a strange loop or that the 

residues in this range are incomplete, but it might also be an 

indication of misthreading.

The table below lists the first and last residue in each stretch found, 

as well as the average residue Z-score of the series.

9 TYR ( 2 4 )  A — 12 GLN ( 27 ) A -2.50 

15 GLN ( 2 )  A — 18 ILE ( 5 )  A -2.41 

160THR ( 2 ) A — 164VAL ( 6 ) A -2.14

# 46 # Error: Abnormal structural average packing Z-score
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The quality control Z-score for the structure is very low.

A molecule is certain to be incorrect if the Z-score is below -5.0. 

Poorly refined molecules, very well energy minimized misthreaded 

molecules and low homology models give values between -2.0 and 

-5.0. The average quality of properly refined X-ray structures is 

0.0+ / - 1.0 .

All contacts : Average =-1.050 Z-score = -6.79 

BB-BB contacts : Average = -0.378 Z-score = -2.69

BB-SC contacts : Average = -1.106 Z-score = -6.00

SC-BB contacts : Average = -0.248 Z-score = -1.34

SC-SC contacts : Average = -0.929 Z-score = -4.80

# 47 # Note: Second generation quality Z-score plot

The second generation quality Z-score smoothed over a 10 residue window 

is plotted as function of the residue number. Low areas in the plot (below 

-1.3) indicate "unusual" packing.

In the TeX file, a plot has been inserted here

Chain identifier: A

# 48 # Warning: Backbone oxygen evaluation
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The residues listed in the table below have an unusual backbone 

oxygen position.

For each of the residues in the structure, a search was performed 

to find 5-residue stretches in the WHAT IF database with 

superposable C-alpha coordinates, and some constraints on the 

neighboring backbone oxygens.

In the following table the RMS distance between the backbone oxygen 

positions of these matching structures in the database and the 

position of the backbone oxygen atom in the current residue is 

given. If this number is larger than 1.5 a significant number of 

structures in the database show an alternative position for the 

backbone oxygen. If the number is larger than 2.0 most matching 

backbone fragments in the database have the peptide plane 

flipped. A manual check needs to be performed to assess whether the 

experimental data can support that alternative as well. The number 

in the last column is the number of database hits (maximum 80) used 

in the calculation. It is "normal" that some glycine residues show 

up in this list, but they are still worth checking!

82 GLY ( 96B) A 2.82 15 

# 49 #  Warning: Unusual rotamers
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The residues listed in the table below have a rotamer that is not 

seen very often in the database of solved protein structures. This 

option determines for every residue the position specific chi-1 

rotamer distribution. Thereafter it verified whether the actual 

residue in the molecule has the most preferred rotamer or not. If 

the actual rotamer is the preferred one, the score is 1.0. If the 

actual rotamer is unique, the score is 0.0. If there are two 

preferred rotamers, with a population distribution of 3:2 and your 

rotamer sits in the lesser populated rotamer, the score will be 

0.66. No value will be given if insufficient hits are found in the 

database.

It is not necessarily an error if a few residues have rotamer 

values below 0.3, but careful inspection of all residues with these 

low values could be worth it.

98 LEU (105 ) A 0.38 

123 THR ( 4 )  A 0.39

#  50 # Warning: Unusual backbone conformations 

For the residues listed in the table below, the backbone formed by 

itself and two neighboring residues on either side is in a 

conformation that is not seen very often in the database of solved 

protein structures. The number given in the table is the number of
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similar backbone conformations in the database with the same amino 

acid in the center.

For this check, backbone conformations are compared with database 

structures using C-alpha superpositions with some restraints on the 

backbone oxygen positions.

A residue mentioned in the table can be part of a strange loop, or 

there might be something wrong with it or its directly surrounding 

residues. There are a few of these in every protein, but in any 

case it is worth looking at!

3 HIS ( 18) A 0

8 ASP ( 23 ) A 0

9 TYR ( 2 4 ) A 0 

1 2 GLN ( 2 7 ) A 0

14 TRP ( 1 ) A 0

15 GLN ( 2 )  A 0 

1 8 ILE ( 5 ) A 0

19 SER ( 6 )  A 0

20 VAL ( 7 ) A 0

21 ILE ( 3 3 ) A 0

24 SER ( 34B) A 0

25 LYS ( 37 ) A 0
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27 HIS ( 3 9 )  A 0

28 GLU ( 4 0 )  A 0 

46 CYS ( 58 ) A 0 

51 ASP ( 62A) A 0

54 HIS ( 7 1 )  A 0

55 SER ( 7 2 )  A 0

56 ILE ( 73 ) A 0

57 LYS ( 73B) A 0

58 VAL ( 73C) A 0

59 SER ( 7 4 )  A 0

60 VAL ( 75 ) A 0

63 GLU ( 78 ) A 0

64 LYS ( 7 9 )  A 0

And so on for a total of 126 lines

# 51 # Error: Backbone conformation Z-score very low

A comparison of the backbone conformation with database proteins 

shows that the backbone fold in this structure is very unusual.

Backbone conformation Z-score : -9.841

# 52 # Warning: Average B-factor problem

The average B-factor for all buried protein atoms normally lies between 

10—20. Values around 3—5 are expected for X-ray studies performed
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at liquid nitrogen temperature.

Because of the extreme value for the average B-factor, no further analysis 

of the B-factors is performed.

Average B-factor for buried atoms : 0.000

# 53 # Warning: B-factor plot impossible

All average B-factors are zero. Plot suppressed.

Chain identifier: A

# 54 # Error: HIS, ASN, GLN side chain flips

Listed here are histidine, asparagine or glutamine residues for 

which the orientation determined from hydrogen bonding analysis are 

different from the assignment given in the input. Either they could 

form energetically more favorable hydrogen bonds if the terminal 

group was rotated by 180 degrees, or there is no assignment in the 

input file (atom type A ') but an assignment could be made. If a 

residue is marked "flexible" the flipped conformation is only 

slightly better than the non-flipped conformation.

10 HIS ( 25 ) A 

12 GLN ( 27 ) A
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135 GLN ( 137) A

137 GLN (1 3 9 )  A

# 55 # Note: Histidine type assignments

For all complete HIS residues in the structure a  tentative

assignment to HIS-D (protonated on ND1), HIS-E (protonated on NE2),

or HIS-H (protonated on both ND1 and NE2, positively charged) is

made based on the hydrogen bond network. A second assignment is

made based on which of the Engh and Huber [REF] histidine

geometries fits best to the structure.

In the table below all normal histidine residues are listed. The 

assignment based on the geometry of the residue is listed first, 

together with the RMS Z-score for the fit to the Engh and Huber 

parameters. For all residues where the H-bond assignment is 

different, the assignment is listed in the last columns, together 

with its RMS Z-score to the Engh and Huber parameters.

As always, the RMS Z-scores should be close to 1.0 if the residues 

were restrained to the Engh and Huber parameters during refinement.

Please note that because the differences between the geometries of 

the different types are small it is possible that the geometric 

assignment given here does not correspond to the type used in
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refinement. This is especially true if the RMS Z-scores are much 

higher than 1.0.

If the two assignments differ, or the "geometry" RMS Z-score is high, 

it is advisable to verify the hydrogen bond assignment, check the 

HIS type used during the refinement and possibly adjust it.

3 HIS ( 18) A HIS-E 2.05 HIS-D 2.53

10 HIS ( 2 5 ) A HIS-E 2.54 HIS-D 2.64

27 HIS ( 3 9 ) A HIS-E 2.84

45 HIS ( 5 7 ) A HIS-D 2.84 HIS-E 2.94

54 HIS ( 7 1 )  A HIS-D 2.84 HIS-E 2.96

75 HIS ( 9 1 ) A HIS-D 2.08 HIS-E 2.58

225 HIS ( 202) A HIS-D 2.85 HIS-E 2.8S

256 HIS ( 1 ) A HIS-E 3.02 HIS-D 3.16

261 HIS ( 6 )  A HIS-E 2.43 HIS-D 2.73

# 56 # Warning: Buried unsatisfied hydrogen bond donors 

The buried hydrogen bond donors listed in the table below have a 

hydrogen atom that is not involved in a hydrogen bond in the 

optimized hydrogen bond network.

Hydrogen bond donors that are buried inside the protein normally 

use all of their hydrogens to form hydrogen bonds within the
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protein. If there are any non hydrogen bonded buried hydrogen bond 

donors in the structure they will be listed here. In very good 

structures the number of listed atoms will tend to zero.

1 TRP ( 1 6 ) A N

1 TRP ( 16) A NE1

2 GLU ( 17) A N

3 HIS ( 18) A N

4 ARG ( 19) A N

4 ARG ( 19) A NE

4 ARG ( 19 ) A NH2

5 LYS ( 20 ) A N

14 TRP ( 1 ) A N

14 TRP ( 1 ) A NE1

17 LYS ( 4 )  A N

20 VAL ( 7 ) A N

32 GLY ( 44 ) A N

38 TYR ( 50 ) A N

44 ALA ( 5 6 ) A N

47 PHE ( 5 9 ) A N

52 LYS ( 69 ) A N

61 GLY ( 7 6 )  A N

65 ARG ( 5 ) A N

67 LEU ( 83 ) A N
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68 GLU ( 84 ) A N

86 ALA ( 97 ) A N

92 TYR ( 99 ) A N

92 TYR ( 9 9 ) A OH

93 ASP (1 0 0 )  A N

And so on for a total of 84 lines

# 57 # Warning: Buried unsatisfied hydrogen bond acceptors 

The buried side-chain hydrogen bond acceptors listed in the table 

below are not involved in a hydrogen bond in the optimized hydrogen 

bond network.

Side-chain hydrogen bond acceptors that are buried inside the 

protein normally form hydrogen bonds within the protein. If there 

are any not hydrogen bonded in the optimized hydrogen bond network 

they will be listed here.

15 GLN ( 2 )  A OE1

28 GLU ( 4 0 )  A OE1

120 GLU ( 1 ) A OE2

140 GLU (1 4 2 )  A OE1

163 GLU ( 5 ) A OE1

176 GLU (1 6 9 )  A OE1

212 ASN (1 8 9 )  A OD1
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252 GLN ( 227) A 0E1

# 58 # Note: Summary report for users of a structure 

This is an overall summary of the quality of the structure as 

compared with current reliable structures. This summary is most 

useful for biologists seeking a good structure to use for modelling 

calculations.

The second part of the table mostly gives an impression of how well 

the model conforms to common refinement constraint values. The 

first part of the table shows a number of constraint-independent 

quality indicators.

Structure Z-scores, positive is better than average:

1st generation packing quality : -5.622 (poor)

2nd generation packing quality : -6.790 (bad)

Ramachandran plot appearance : -5.194 (bad) 

chi-l/chi-2 rotamer normality : -4.444 (bad)

Backbone conformation : -9.841 (bad)

RMS Z-scores, should be close to 1.0:

Bond lengths : 1.806 (loose)

Bond angles : 2.987 (loose)

Omega angle restraints : 3.386 (loose)
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Side chain planarity : 3.505 (loose) 

Improper dihedral distribution : 4.153 (loose) 

Inside/Outside distribution : 1.243 (unusual)
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