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To M+D, A + I



Stop me, oh-ho stop me,

Stop me i f  you think y o u ’ve 

heard this one before.

Stephen Morrissey (1987), from ‘Strangeways, here we com e’.

0  all o f  you whose intellects are sound,

look now and see the meaning that is hidden 

beneath the veil that covers my strange verses.

D ante (transla ted  by M ark Musa, 1985), Inferno, Canto IX , 11. 61-63.



Abstract

T his thesis splits na turally  into two topics, field aligned flow in a two dim ensional plasm a, and 

the application of genetic algorithm s to the solution of Poisson equations. G enetic algorithm ic 

techniques were developed as a new m ethod of num erical solution to  a problem  arising in field 

aligned flow. The relation between plasm a physics and com puting (particularly  novel com puting 

m ethods) is in troduced in chapter 1 .

In chapter 2, we begin w ith M axwell’s equations and a fluid description of a p lasm a, and  derive 

under various assum ptions, equations governing the structure  of a field aligned two dim ensional 

p lasm a. T he appearance of field aligned flow in the E a rth ’s m agnetotail is discussed along w ith 

some trea tm en ts  in the literature.

C hap ter 3 exam ines the fields arising from having the fluid flow along the field lines tim e 

independent. It is shown th a t only very special fields support exact field aligned flow. These fields 

can be classed by their corresponding flow function. An equation is derived th a t describes fields 

where the flow function is a constant everywhere, which provides the spur for genetic algorithm  

application. Some m agneto tail relevant solutions of this equation are presented.

C hap ter 4 investigates tim e dependent field aligned flow. I t is shown th a t th is situa tion  is 

som ew hat m ore com plicated than  the tim e independent case, and th a t a  singularity  in the flow 

m ay appear, indicating  the presence of a large fluid acceleration and the breakdown of the present 

m odel.

In chapter 5, the  basic concepts of genetic algorithm s are introduced. An algorithm  is developed 

to  test the efficacy of th is m ethod for application to  the solution of a class of ordinary differential 

equations. T his work is built on in chapter 6 , where a Poisson equation solver is constructed. 

C om parisons are m ade between this and other more trad itional m ethods.

Finally, chapter 7 describes some possible extensions to  the work presented. Suggestions for 

b o th  genetic algorithm s and field aligned flow are discussed. Appendices A and B contain a  listing 

of the  Poisson solver POISG EN  and sam ple input files respectively.
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C hapter 1

Plasm a Physics and 

Com putational M ethods

P lasm a physics as a  d istinct discipline arose in the 20th century, yet much of the  basic physics 

- fluid mechanics, M axwell’s equations and the sta tis tica l description of a collection of particles, 

was developed in the 19th century. We have som ething of an anom aly - a m odern discipline using 

largely 19th century physics. The emergence of easily available com puting power m aking m any 

previously incalculable problem s trac tab le  has helped to  m ain tain  interest in bo th  p lasm a and 

com putational physics. Careful calculation of plasm as of interest can act as valuable tool aiding 

theory  and experim ent [1], In addition, the nature of genetic algorithm ic techniques (first suggested 

in the 1950s) requires th a t we perform  a large num ber of operations: such calculations and their 

application  to  relevant problem s become possible only w ith fast enough com puters.

Below is a brief sum m ary  of the larger fields of in terest in plasm a physics, and an in troduction  

to  some of the com putational techniques th a t are currently being used to  advance the subject.

1.1 Controlled Thermonuclear Fusion

P lasm a physics is essential in understanding the processes involved in controlling therm onuclear 

fusion. T he biggest experim ent, JE T  a t C ulham , Oxfordshire, has recently run w ith a deu­

te r iu m /tr itiu m  plasm a, the  candidate fuel m ixture for a commercial fusion reactor. M any other 

experim ents are underw ay around the world exploring alternative m ethods e.g., START (Sm all 

T ig h t Aspect R atio  Torus, also a t C ulham ), JT-60U  in Japan , W S-A7, a s te llara to r device in 

G erm any.

All the above are exam ples of m agnetic confinement, where m agnetic fields are used to  contain 

the (fusing) plasm a. Inertia l confinement seeks controlled therm onuclear fusion by the ab lation  of
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sm all pellets of fuel m ix tu re  by extrem ely high energy laser beam s. T he plasm as produced here 

are much denser th an  those seen in m agnetic confinement devices and hence the plasm a physics 

can be very different.

C om puter m odelling plays a fundam ental role in the design and costing of new m achines or 

im provem ents to  old ones. Recently, Boucher [2] reported on m odelling work done on IT E R  

(In ternational T herm onuclear Experim ental Reactor) concerning ignition, L and H modes, and 

divertor coupling.

1.2 Astrophysical Plasmas

A strophysical p lasm as provide m any areas in which the subject m ay be applied e.g., the Sun. The 

Sun is an exam ple of a  successful therm onuclear reactor, and exhibits m any phenom ena of interest 

- the solar wind, sunspots, prominences, solar flares all are being actively studied.

Away from  the Sun planetary  and com etary m agnetospheres, coupled w ith their solar wind 

in teractions are coming under greater study, bo th  theoretically, and observationally. Experim ents 

have largely delineated the E a rth ’s m agnetosphere [3] and num erous theories exist to explain the 

phenom ena in regions such as the m agnetotail, auroral zones and the bow shock.

P ulsar m agnetospheres provide an exam ple of an equal mass plasm a: in such a plasm a, the 

positive and negative charged particles carry the sam e charge and have the  sam e mass. A pu lsa r’s 

m agnetosphere is though t to  consist largely of electrons and positrons. Using an equal m ass plasm a 

m odel Stew art [4] found th a t the Faraday ro tation  of the m agnetic field from  such a p lasm a is zero, 

which is observed experim entally  from pulsars. The study of m agnetised accretion discs represent 

im p o rtan t problem s in black hole physics and planetary  form ation.

1.3 Industrial Uses

A large num ber of industria l processes use a plasm a in one form or another, and their academ ic 

study, as opposed to  their em pirical use, is becoming more widespread [5]. T heir application m ay 

be divided in to  three broad  bands: inform ation technology, m aterials science and environm ental 

processing.

T he inform ation technology industry  uses plasm a processing to  etch and deposit different layers 

of m ateria l on the in tegrated  circuit substrate. This is closely linked w ith m ateria l science, which 

deals w ith engineering or m odifying a surface w ith a p lethora of techniques, for exam ple, plasm a 

vapour deposition, which seeks to  deposit ionised m ateria l on a surface in a controllable m anner. 

More crudely arc welding and sm elting/refining are com plicated, dusty p lasm a system s. P lasm as 

are also being used to  tre a t noxious emissions e.g., nitrous (NOx) and sulphurous (SOx) oxides from
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power sta tions, and also waste m aterial; contam inated soil, tyres, chemical weapons and household 

refuse.

All these system s require be tter understanding and are of im m ediate practical use. In particular, 

the s tudy  of dusty plasm as, com m on in m any applications technology, has m any overlaps w ith 

astrophysical situations, such as interstellar gas and com etary outgassings.

1.4 Com putational M ethods in Physics

The com putational sim ulation of m any physical system s has become essential to  m any branches 

of physics, not least to  plasm as. There are num erous techniques th a t m ay be used, depending on 

w hat is required, giving the com putational physicist’s job the repu ta tion  of being a  ‘black a r t ’.

One approach is to  solve the relevant m agnetohydrodynam ic equations numerically, using some 

form  of discretisation of the differentials. F inite difference, finite elem ent and finite volum e m ethods 

are com m only used and find favour in m any applications [6 ].

F in ite  difference schemes are perhaps the m ost popular form of num erical discretisation. The 

m ethod  is based upon the use of Taylor series expansions to build a  toolkit of equations th a t 

describe the (partia l) derivatives of a variable as the differences between values of the variable a t 

different points in space and tim e. Consider the  dependent variable U w ith independent variables 

x , t .  We m ay consider two points a  sm all distance in space h away from  some central point xo on 

the x-axis. We also fix tim e a t <o- The Taylor series expansions for U a t these two points are

L N T T ,   ̂ h d U  , , h 2 d 2U ,  , h3 d3U ,
U (x 0 +  M o )  =  u  (xo,*o) +  Y\~fa (^o,*o) +  Y \~ dx^  +  31" +  "  '

— exp

and

U ( x 0, t 0) (1.1)

, X r r ,  N h d U  , , h ? d 2U ,  . h3 d3U /
u (x 0 -  M o )  =  u { x 0, t 0) -  y t - ^ m o ^ o )  +  yyr -  (Xo' to>+

exp - h —
dx U( x o , t o )  ( 1.2)

Here we have used the no tation  of Mitchell and Griffiths [7] to  com pactly write the Taylor expansion 

in term s of the exponential of the differential operator. By adding and sub tracting  these two 

equations, new equations can be found for the first and second partia l space derivative of U a t the 

central point xo,

d 2U _  U (x 0 +  h , t 0) -  2U (x 0 , to) +  U (x 0 -  h, t 0) , ^  n  oN
d x * ~  h  ̂ ^

and
dU  _  U ( x 0 + h, to)  - U ( x 0 -  M o )  . n  / h2 \ n
d x ~  2  h + u {n )

3



where 0 { h n) denotes term s of order hn and higher. These expressions are known as the centred 

difference replacem ents for and O ther estim ates are available from  the Taylor expansions; 

if we tru n ca te  ( 1 .1 ) up to  order h then  we have

dU _ U ( x 0 +  h, tg) -  U (so, to) | Q ,
dx  h \ ■ )

which is accurate up to  order h. These difference formulae allow differential equations to  be 

described a t points in the  region of interest, bu t at the  expense of a m axim um  accuracy of O  (hn ). 

W hich replacem ent to  use in a particu lar situa tion  is not im m ediately clear, which can lead to  false 

answers or even the breakdown of the m ethod. The finite difference replacem ents are used a t the 

core of the genetic algorithm s described in chapters 5 and 6 .

Radically new techniques borrowed from  com puting science are ju s t beginning to  m ake their 

presence felt in com putational physics. P rincipal am ong these are neural networks, cellular auto­

mata  and genetic algorithms [8 ]. Cellular au to m a ta  and genetic algorithm s are exam ples of artificial 

life: in bo th  cases the basic ideas are borrowed from  the way natu re  evolves and creates new organ­

isms. N eural networks were born ou t of artificial intelligence research and draw their inspiration  

from  the structu re  of the hum an brain. A hum an brain  has a large num ber of cells called neurons 

th a t  are thought to  be actively involved in inform ation processing. Each of these cells also has a 

num ber of connections to  other cells. It is thought th a t this struc tu re  enables the brain  to  process 

large am ounts of inform ation efficiently to  provide for exam ple, p a tte rn  recognition and sight, tasks 

th a t  are notoriously difficult im plem ent artificially. A neural network works sim ilarly, by assigning 

a weighting to each one of the interconnections between nodes. A node is analogous to  a neuron, 

and some active processing of input d a ta  m ay occur here. The weighting values are determ ined by 

giving the network some test input da ta , for which a correct ou tp u t is known. The o u tp u t from  the 

network is com pared to  the known data , and the errors are be used to refine the weightings. This 

is known as the tra in ing  phase. This allows the network to  ‘learn ’ som ething about the  problem . 

A fter train ing, the network m ay be used as a problem  solver on real input da ta .

These com puting techniques are beginning to  find applications in problem s th a t require some 

form  p a tte rn  seeking or m atching. A neural network has been used to analyse the charge exchange 

recom bination d a ta  from  DIII-D (a m agnetic confinement device a t General A tom ics, San Diego) 

to  provide inform ation on ion tem peratures and ro ta tion  velocities [9] . The problem  is to  separate 

out and analyse the correct peaks from  a large num ber (up to ~  2 0 0 ,0 0 0  a  day) of m ultipeaked 

spectra. This type of problem  is ideal for the p a tte rn  recognition qualities of a neural network, 

and given a fast enough com puter, the au thors can analyse a  day’s spectral results in 1 0 0  seconds. 

Another application of neural networks is to  the prediction of sunspot num ber [10].

A prom ising developm ent is the use of cellular automata  in fluid and p lasm a sim ulations. Cel­

lular au to m ata  are based on the behaviour of colonies of cells growing in culture [11] . T he creation 

of a new cell, or equally, the  destruction of an existing cell, depends on w hat is happening locally
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to  the cell. If there are too m any cells in a particular region, then resources are placed under great 

dem and which prohibits the growth of new cells, and m ay even kill off existing ones. Hence there 

emerges a com plicated overall colony behaviour th a t has been determ ined by purely local rules.

T his has been successfully recreated com putationally. Instead of cells, each un it in the system  

is term ed an  au tom aton . In the early sim ulations, a set of local rules was defined governing the 

creation of a  new autom aton.

The advantage to  m agnetohydrodynam ic sim ulation is th a t the local natu re  of the cellular 

au to m a ta  approach makes it very easily parallelisable; each node on a parallel m achine could handle 

a fluid elem ent, the local interaction rules governing the influence of one elem ent on another [1 2 ].

G enetic algorithm s will be discussed in some detail in chapter 5, bu t the basic philosophy is 

simple. Taking a lead from  Darw inian evolution, a  genetic algorithm  solves problem s by breeding 

successively b e tte r answers from the best of the previous generation. They have been applied 

successfully to a num ber of problems, in particu lar classifier system s (for m achine learning) and 

com binatorial problem s. In classifier system  problem s [13], a  genetic algorithm  is used to  discern 

rules of behaviour of some com plicated system. Less successful rules are elim inated, and the 

com puter learns an optim ised (but not necessarily optim um ) set of rules for the problem . Such 

program s have found application in economics m odelling [14] and maze learning [13]. The travelling 

salesm an problem  is a famous exam ple of a com binatorial problem  (see section 5.2.1). T im etab ling  

is a  com binatorial problem  th a t has been successfully attacked w ith a genetic algorithm : indeed, 

the D epartm ent of Artificial Intelligence at the University of Edinburgh now tim etab les its M.Sc. 

exam s using a genetic algorithm [13].

>
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C h ap ter  2

The Fluid Description of a Field  

Aligned Plasm a

In this chapter we introduce a set of m agnetohydrodynam ic equations and specialise them  to  the 

case of 2 dim ensional field aligned flow. Section 2.3 discusses the appearance of field aligned flow 

in the E a r th ’s m agnetotail. A short review of some relevant field aligned flow trea tm en ts in the 

lite ra tu re  is also given.

2.1 The M agnetohydrodynamic Equations

A plasm a is collection of interacting  particles [15] th a t exhibits a  collective behaviour, and  as such, 

we can w rite down an equation of m otion for each of these particles. For a collection of N  particles 

there are 6 N  values to  be determ ined - the three space co-ordinates and three velocity com ponents 

of each particle. Hence we m ust have 6 JV equations to fully describe the system . I t is obviously 

im practical to  a ttem p t to  solve such a set of equations. Therefore we m ust somehow cut down the 

num ber of variables required to  adequately describe the plasm a. The exact m eaning o f ‘adequate ly ’ 

depends largely on the type of plasm a or on the type of problem  being exam ined. In th is case we 

shall use a set of m agnetohydrodynam ic equations. This is because we wish in principle to  exam ine 

the overall fluid m otion of the plasm a in a field aligned flow situation.

Many textbooks detail the necessary m anipulations th a t  m ay be perform ed to  reduce a full 

partic le  by particle description down to a m agnetohydrodynam ic system . The derivation of such a 

set of equations will no t be repeated here, bu t the interested reader is invited to  consult [16], [17]. 

By resorting to a m agnetohydrodynam ic description, we are in some sense sm earing out the
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particu la te  n a tu re  of a plasm a. Often the predictions concur w ith experim ent, which is justification 

enough for a m agnetohydrodynam ic approach. This is taken as evidence th a t the  system  is acting 

in a m agnetohydrodynam ic m anner.

Since we are dealing w ith an ionised m edium  Maxwell equations m ust hold, i.e.,

V .B  =  0 ( 2 .1 )

V .D  -  pe (2 .2 )

V x H  =  f + j (2.3)

V x E = - f
(2.4)

In th is set E  is the electric field and D =  | . E  +  P  is the electric displacem ent. P  is the electric 

polarization of the m edium  and e is the dielectric tensor. pe =  pf  +  pi is the to ta l electric charge 

density, where pj  is the free charge density and pj =  — V .P  is the bound charge density.

We will assum e th a t the m aterial is isotropic and therefore e =  where I  is the  iden tity  tensor 

and eo is the perm ittiv ity  of free space. We also take P  =  0.

H  is m agnetic field strength  and B is the m agnetic flux density [18, 19]. A gain these are linked 

via B  =  poH  +  M  where po is the perm eability of free space and M  is the m agnetisation  of the 

m edium . A lready we have m ade some m ajor assum ptions in denying the inherent anisotropy of the 

m edium . Such changes in the dielectric nature of the m edium  can be handled in different trea tm en ts 

and again show the need for different models (for example, the passage of an electrom agnetic wave 

in a p lasm a m edium  [20]). The question we want to answer guides the choice of m odel. Since we 

are m ore concerned abou t the m otion of the plasm a, ra ther than  its electrom agnetic properties, we 

shall use the reduced set w ith no m agnetisation or electric polarization and w ith the  perm ittiv ity  

and perm eability  set to  their free space values.

T he rem aining quan tity  to be defined is j, the to ta l current density. The expression governing j 

in a  p lasm a is usually called O hm ’s Law [21] and takes on a form as required by the situ a tio n . The 

p lasm a we are considering here is one in which the num bers of positively and negatively charged 

particles are roughly equal. We also assume th a t the m ass of the negative ion m _ is very much 

less th an  the m ass of the  positive ion m +. The plasm a is also assumed to  be collisional; i.e., there 

are a  large num ber of particle-particle interactions of one form  or another. A lthough in general the 

pressure is a  tensor, under the collisional assum ption, the pressure may be taken to  be isotropic. 

Under these assum ptions it may be shown th a t

m +m _ d\ _  „  m + . n  m+ „  1 . _
2 t j t ^ E  +  u x B H --------- j x B  +  -  V p ------ j  (2.5)

pez ot pe 2pe a

T his is known as the generalised O hm ’s Law, and will be reduced to a more appropriate  form  later. 

T he quantity  cr is the electrical conductivity of the plasm a. Charge is conserved in th is  plasm a;
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therefore on defining q =  n_e  +  n+e+ as the charge density in the plasm a, one can show th a t

t  +  V j  =  0 (2.6)

(In relativ istic  plasm as, charge need not be conserved, as pair production can change charge dens-

ity).

Having sm eared out the particles into a fluid, we m ust now describe it. T he equation of m ass 

conservation sta tes th a t

^  +  V .0 * i)  =  0 (2.7)

T he equation  of charge conservation follows from the Maxwell Equations. The fluid m ay also 

undergo acceleration, which is described by

p-jj£  =  —V p +  j  x B  (2.8)

where ^  =  J y -f(u .V ). Note th a t this is the isotropic pressure version of the m om entum  equation,

and th a t in general we should replace V p w ith V .p , where p is the pressure tensor. Assum ing

ad iabatic ity  in the gaseous plasm a we can write

§ 1  ( pp- y ) = 0 (2.9)

where j  = cp/ c v , the ra tio  of the specific heats. Using equation (2.7) we can rew rite th is as

^  +  u. V p +  p7 V .11 =  0 (2.10)

T his p articu lar form  will be im portan t later.

The equations (2.1) to (2.9) form a closed set of fifteen scalar equations in q, p , P,  u , j , E  and

B .

2.2 The M odel Equations

We now wish to  reduce the m agnetohydrodynam ic set above to a more m anageable form . Firstly, 

a dim ensional analysis of (2.4) reveals th a t

E  uiL 
B ~  ~

where L  and  u> ~ 1 are typical length and tim e scales over which the fields change appreciably. Now 

in this fluid description we expect th a t the fluid flow and the electrom agnetic fields to  in teract: to 

change E , B  significantly we would expect th a t

U ~ l>L
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where U is a  typical flow speed. If we assume th a t ^  <  1 then we are restricted to  non-relativistic 

regimes. T his is a reasonable assum ption as (2.8) is not relativistically  invariant, and in any case 

we do no t wish to  look at relativistic effects. If we now exam ine (2.3) dim ensionally we find th a t

dEI /  T\  2
laTl L

|V  x B | \  c 

Hence in th is lim it of low velocity we may write

<C 1

I*oj =  V x B (2.11)

Consider now the  term s in (2.5). In the order they appear they m ay be w ritten  as (the left hand 

side of the equation  is the first term  in the list below)

2U)

where

a y  (z) e )  ‘(£) (&)■=(z) (z) &  <>■«>
e~B e+ B P

Qe = -------, Qi = — , ca ~ J -  (2.13)
m~ m + \ p

are the cyclotron frequencies of the positive and negative species, the sound speed and u>2 = 

is the electron p lasm a frequency. The quantity  vc is the negative-positive collision frequency.

The first term  m ay be neglected if
u  U

—  < C  -
Up c

The j  x B term  in (2.5) m ay be ignored if

u,ne f u x 2

^  v c

The pressure dependent p a rt may also be removed when

2
Oi <  Vc.

This leaves (2.5) as

fioj =  & (E +  u  x B ) (2-14)

The quantity  cr is the electrical conductivity of the plasm a, which we will take to  be constant. If 

we take the curl of (2.11) and substitu te  in E  as defined from (2.14) we have

<9B
—  =  V x (u  x B ) +  t7V 2B  (2.15)

where r) = (/xo<t)- 1 , the m agnetic diffusitivity. E quation (2.15) is known as the m agnetic induction 

equation for constan t 77. T his can be seen as an evolution equation for B in m uch the sam e way 

th a t (2.8) can be seen as an evolution equation for u . The equivalence is m ore easily seen on 

rewriting (2.15) as

n n

—  =  (B .V )u +77V2B  (2.16)
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This is basically a diffusion equation with an ex tra  ‘d ynam o’ term . (This te rm  is very im p o rtan t 

in studies of the E a r th ’s core).

If we assum e fu rther th a t the plasm a is a  perfect conductor i.e., infinite conductivity  then  (2.14) 

and (2.16) become

E  +  u  x B  =  0 (2.17)

(2.18)

The p lasm a is now said to  be ideal A perfectly conducting plasm a implies th a t

in (2 .1 2 ); in some sense, the  collision frequency is sm all, which is consistent w ith the idea of a  very 

good conductor.

Equations (2.7), (2.8), (2.11), (2.18) and (2.9) are the  equations of ideal hydrom agnetics. These

Setting  p =  constant  simplifies the set drastically. Firstly, the fluid is now incom pressible since 

its density is everywhere fixed. This reduces (2.7) to

the fam iliar incom pressibility condition. This arises as a result of constant density. In (2.9), it

the case. Incom pressibility  also corresponds to  7  —► 0 0 , m eaning th a t equation  (2.10) can no 

longer govern the pressure. The pressure is no longer an independent variable and is com pletely

specified by equation  (2.8). The pressure a t any point in the fluid is now com pletely specified by

the m agnetic and velocity fields, and has no life of its own.

Collecting the relevant equations together we shall use

equations form  the basis of the papers described in section 2.3. We will work w ith a still fu rther 

reduced set.

V .u  =  0 (2.19)

appears th a t  the  pressure m ust now be convected along by equation (2.10). However, this is not

V .B  =  0 (2 .20 )

P j j j  u  =  - V p  +  j x B

— B  =  (B .V )u  
Dt  v '

Poj =  V x B

(2 .21 )

(2 .22 )

(2.23)

to  describe the p lasm a.
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2.3 Parallel Flow

In a field aligned plasm a, we assume th a t the velocity u  is everywhere parallel (or an ti-parallel) to 

B , the m agnetic field direction at th a t point, i.e.,

u ||B

or, in troducing a function of proportionality,

u  =: F B  (2.24)

T he function F  m ay be related to the m agnetic Alfven Mach num ber M a  , defined as

U.U U n O U . U

M l  = I f  = “ a i "  <2 '25>

T he Alfven velocity is given by v \  — W ith  the above field aligned relation  between u  and B  

it can be seen th a t =  popF 2. The function F  carries directional inform ation in its  sign which 

is lost in the definition M a - The sign of F  will be seen to be im po rtan t in chapter 4.

T he following sections (2.3.1-2.3.3) review some features of parallel flow already seen in the 

lite ra tu re .

2.3 .1  T h e G eom agn etic  Tail

Field aligned flow has been observed experimentally, principally in the boundary  layer and  p lasm a 

sheet of the E a r th ’s magnetotail, or geomagnetic tail. To properly delineate these regions, we first 

describe the m agnetic structures surrounding the E arth .

It was no t realised th a t the Earth  was surrounded by a complex p lasm a system  interacting 

w ith  the solar wind until the discovery of the Van Allen radiation belts in 1958 [22], Since then 

m any experim ental observations have m apped the various regions of the E a r th ’s m agnetic influence 

(see [23] descriptions of some of the observations). The region of space around the E arth  may 

be separated  in to  three m ain regions (see figure 2.1). F irst of these is the region where the 

solar wind dom inates. As the wind impinges on the m agnetic field of the E arth , it creates a 

bow shock, lying upstream  of the Earth  on the sunw ard side. This represents the boundary 

between the solar wind and the second region, the m agnetosheath. The m agnetosheath  contains 

in itia lly  com pressed and subsonic, sometimes tu rbu len t p lasm a th a t expands to  super-Alfvenic 

speeds as it flows along the boundary between the th ird  region - the m agnetosphere - and the 

m agnetosheath . T he m agnetosheath is characterised by discontinuities in plasm a param eters, 

including the  m agnetic field B.

The m agnetosphere itself may also be subdivided into m any regions, as is shown in figure 

(2.1). I t is the  region where the E arth ’s m agnetic field dom inates. As one moves ou t from the
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E arth , downwind from the Sun, the field elongates to  form  the geom agnetic ta il, or the  E a rth ’s 

m agneto tail.

The m agneto tail is formed by the elongated rem ainder of the E a r th ’s m agnetic field, stretching 

out on the E a rth ’s nightside. S tructures have been observed on the scale (10 — 2 0 )R eartfl a t a 

distance ~  30R earth from  the E arth , and it is clearly perceptible up to ~  80R earth, although ta il 

phenom ena have been observed up to  ~  1000i2eart/i- The neutral sheet in the geom agnetic ta il is 

abou t (0 .1  — 1 ) R earth wide and separates regions in which the m agnetic field po in ts in opposing 

d irections [22], The neutral sheet is also known as the current sheet, due to  the large current 

associated w ith it. The boundary layer is differentiated from the p lasm a sheet by the presence of 

stream ing  ion beam s, travelling towards and away from  the Sun above and below the neu tra l sheet 

[24]. T he central p lasm a sheet is characterised by a m ore isotropic electron and pro ton  distribution  

th an  is seen in the boundary layer.

T he m agneto ta il m ay also influence events closer to  the E arth . E lectron -proton islands in the 

m agneto tail have been observed w ith energy spectra very close to  those seen in aurorae[22]. This 

suggests th a t  the m agnetotail m ay be im portan t in determ ining auroral flux behaviour. There is 

also evidence for the existence of topologically isolated regions of m agnetic field, d istinct from  the 

background m agnetotail. Therefore, there are X -poin t type configurations present, which suggest 

reconnection m ay play a role in the system [25].

The boundary  layer and plasm a sheet are of principal interest, as it is here th a t field aligned 

flow is observed experim entally. E astm an ei al. [26] describe the presence of high speed field 

aligned p lasm a flow in the boundary layer of the m agnetotail. DeCoster and Frank [27] observed 

protons m oving faster than  400fcms-1 in the boundary layer, in a m anner consistent w ith parallel 

flow. E astm an  et al [24] states th a t the transport properties of the p lasm a sheet and its boundary 

layer m ake it  a  very im portan t region for the overall m odelling of the m agnetosphere. W ith  this 

in m ind, we tu rn  now to some modelling studies of the m agnetotail, and their use of field aligned 

flow.

2.3 .2  T h eoretica l S tudies o f the G eom agnetic  Tail

The study  of the effect of field aligned flow in a p lasm a has largely been confined to  the use 

m agnetohydrodynam ic equations. G ebhardt and Kiessling’s 1992 paper [28] studies 3d steady, in­

com pressible ideal MHD model w ith field aligned flow. By using the Euler po ten tia l representation 

of a  m agnetic field B =  V a ( x , y , z )  x V 0 ( x , y , z )  they describe a m ethod to find the m agnetic 

and velocity fields given the appropriate boundary and pressure inform ation. From  th is one can 

define a function of proportionality  designating how much faster the fluid flow is com pared to  the 

local Alfven velocity (for each field line) by using the parallel specification (2.24) above. However, 

the au thors consider flows in which the function of proportionality  for each field line is constant
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Figure 2.1: Plasm a regions near the E arth



on th a t  field line. As they consider steady s ta te  equations, the possibility of tim e dependent flow 

along the field lines is no t adm itted .

It is shown th a t for super-Alfvenic flows w ith >  1 the kinetic energy dom inates the  system  

and the principles of sta tionary  hydromechanics (SHM) for an incom pressible fluid apply. W hen 

M \  < 1 the  flow is sub-Alfvenic and the system  of equations become equivalent to  m agnetohydro- 

sta tics (M HS). Physically, one m ay say th a t in those regions where the m agnetic energy density 

dom inates the kinetic energy, the m agnetohydrodynam ic flow structure  of the fluid is governed by 

the principles th a t control MHS. If kinetic energy dom inates in a region, then the rules of SHM 

apply. T ransitions from  sub- to super-Alfvenic flows m ean th a t we move from  one equivalence to 

the o ther. T he analysis in the paper is generalised and properly includes the transitional M \  =  1 

case. T his shows the special case of m aterial m oving a t the Alfven velocity, which will be trea ted  

in chapter 3.

Schindler and Birn [29] describe a m echanism  to  generate field aligned flow a t the boundary  

of the p lasm a sheet in the E arth s’ m agnetotail. Using a set of 2d steady incom pressible m agneto­

hydrodynam ic equations they describe the generation of parallel flow from an A -p o in t reconnection 

diffusion region. Such reconnection events are thought to occur in the m agneto tail [3, 25], and  m ay 

be responsible for the  form ation of large blobs of m aterial, known as plasm oids, in the m agneto tail. 

They find th a t parallel flow along the separatrix  is the dom inant form of tran sp o rt from  such a 

reconnection region. F lux tubes emerging from  regions close to  the non-ideal reconnection zone will 

have weak m agnetic fields which increase in strength  w ith distance from the A -po in t. As the field 

increases in streng th , the frozen in approxim ation m eans th a t the flux tubes decrease in volume, 

collim ating the flow along the field. The analysis relies on a sm allness param eter th a t perm its them  

to  drop the inertia  te rm  p ( u .V ) u  in the m om entum  balance equation. Since th is paper a ttem p ts  

to  m odel an experim entally  measured system , it has som ething less to  say abou t the struc tu re  

of field aligned m agnetohydrodynam ics than  G ebhardt and Kiessling. However, after m odelling 

the fields for a m agneto ta il, they calculate a field aligned flow of a m agnitude concom itant w ith 

observation.

T his lends support to  the idea of plasmoids form ing by reconnection. Two consecutive A -po in ts 

in the  m agneto ta il would create a closed blob of m aterial. The m agneto tail also gives a context 

to  B irn ’s work on field aligned flow in stretched 3d equilibria. Experim ental studies show th a t  the 

m agneto ta il is strongly field aligned, a fact th a t is included in [30] as a generalisation of his paper on 

m agneto ta il equilibria, [31]. The author assumes th a t the m agnetic field varies strongly in one space 

direction only, and weakly in the other two, using a set of 3d ideal, steady m agnetohydrodynam ic 

equations. P lasm oids are also formed, travelling a t speeds “not inconsistent” w ith observation. 

P lasm oids are stud ied  by Young and Hameiri [32] in a 2 dim ensional steady field aligned m odel of 

the m agneto tail.
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Lee and Yan [33] go further w ith field aligned flow in a reconnection context. They exam ine 

a 2  dim ensional incompressible m agnetohydrodynam ic sim ulation, set up to  m odel m agnetic sep- 

aratrices in a reconnecting plasm a. They find th a t the field aligned p lasm a je ts  are form ed slightly 

dow nstream  of the m agnetic separatrices by a com bination of a slow shock wave and a ‘compres- 

sionaP structure: by compressional they m ean a structure  in which the  p lasm a pressure increases 

along the  stream line. This compression resemble a fast Alfven m ode if the  m agnetic field decreases 

w ith  increasing p lasm a pressure: a slow Alfven type m ode is seen if the m agnetic field increases 

w ith  increasing plasm a pressure. The shock accelerates the fluid by converting m agnetic energy 

into kinetic and therm al energy. The ‘fast m ode’ compression struc tu re  (located dow nstream  of 

the  shock) decelerates the plasm a, converting kinetic energy into therm al and m agnetic energy. 

T his collim ates the flow with the field so th a t it is nearly field aligned.

A lot of the work is modelling led which, in the case of the m agneto ta il, perm its one to  use 

the geom etry of the m agnetic fields to reduce the com plexity of the problem . In this thesis we 

shall exam ine field aligned flow in a 2  dim ensional m agnetofluid, bu t w ith the  m inim um  num ber 

of assum ptions on field shape. Also, we shall consider tim e dependent field aligned flow, and its 

consequences for fluid acceleration and flow geometries. We will not  look for any m echanism s to 

generate field aligned flow, bu t rather look at the effect parallel flow has on the shape and nature  

of the plasm a.

2 .3 .3  N eg a tiv e  Inertia

T he concept of negative inertia is an unusual one, bu t is a direct result of field aligned flow. 

Shercliff [34] describes and names this effect which arises in incom pressible, ideal and steady 

m agnetohydrodynam ics. The argum ent describing this term  will be reproduced here, as it serves 

to  po in t ou t th a t field aligned flow is an unusual situation .

We shall s ta r t w ith an ideal, steady plasm a, fluid density p constant. Equation (2.21) m ay be 

rew ritten  as

p ( u . V ) u =  -  V p + j  x B  (2.26)

By the  argum ent of section 2.2, the pressure is now defined by equation (2.26) and has no inde­

pendent life of its  own. If we take the curl of this, and further set B  =  a u ,  where a  is a  constant, 

then  we ob ta in  the equation [35]

/ ) - - ] v x ( $ x u )  =  0 (2.27)
/ W

where $  =  V x u ,  the  fluid vorticity. If a 2 =  pop then equation (2.27) does no t restrict the choice 

of flow, and any velocity field will do. However, if a 2 ^  pop then we have a  restricted choice of 

fields, governed by V  x ( $  x u) =  0. (This will be described in m ore detail in chapter 3.)
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9  "Ip u *
P +  ~---P 2

a 2
=  — ( $ x u )  +  F  (2.28)

Po

Suppose we now introduce a force F V x F /  0, to the m om entum  equation  (2.26), 

p(3> x u ) +  V

On tak ing  the curl and  defining p* = p — we obtain

p*V x ( ^  x u ) =  V x F (2.29)

p* is the effective density, and it can be positive or negative, depending on the size of a.  Let v be 

a  typical velocity a t a  point in the fluid, and b =  the Alfven velocity. Bo is the field streng th

a t th a t  point. If v /b > 1 then by the field aligned specification above, a 2 < pop  and p* is positive. 

T his m eans th a t by equation (2.29) the vorticity increases in the sam e direction as the  ro ta tiona lity  

of the force F - which is entirely expected. However suppose we have v/b  <  1. T his im plies th a t

a 2 >  pop,  m aking p* negative. If we consider a fluid element, equation (2.29) now offers the

uncom fortable prospect of such an element increasing its spin in the opposite direction from  the 

torques applied to  it. The fluid seems to have negative inertia. T he origin of th is te rm  is m ost 

easily understood  by considering the simple equation V — 16 [36]. For the angular acceleration 9 

to  have the opposite sign to the torque T, the inertia  I  m ust be negative.

W hen p* is negative, v < b, and by G ebhardt and Kiessling [28] we are in a m agnetohydrostat- 

ically dom inated  regime. Hence, the balance of forces is m ainly between F and j  x  B.  Therefore, 

by the ‘frozen in ’ approxim ation of ideal m agnetohydrodynam ics, the fluid m ust move in such a 

way as to  deform  the m agnetic field into a configuration th a t largely balances F w ith  j x (since 

we are tak ing  inertia l forces to be unim portan t compared to  m agnetic forces). W h at the fluid 

actually  does when p* < 0 can be seen by writing p* — —q, where q > 0. M ultiplying both  sides 

of equation  (2.29) by —1 yields

gV x ( f  x u ) =  V  x (—'F ) (2.30)

T his looks like the equation  governing the vorticity for a fluid of density q under the  action of a 

force —F. A fluid of negative effective density w ith forces F will arrange itself to  look like a fluid 

of density q w ith  forces — F.

T his is m ost easily seen when we use a concrete example. Suppose F =  77V 2 u  i.e, the fluid is 

viscous. T he m om entum  balance equation can be w ritten  as

p* (u .V ) u  =  -V p *  +  77V 2 (u ) (2.31)

2

where p* = p  +  £~- .  T hen provided p* is positive, the fluid behaves like any o ther of density p* 

and  viscosity 77. The tension in the field lines lowers the effective inertia  by helping the viscous 

forces change the vorticity. In lam inar viscous flow close to  a plate, the fluid velocity increases 

from  zero as we move away from the plate. The sliding layers of different speed create vorticity  in
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^FIELD & VELOCITY PROFILES^

FIELD AND STREAM LINES '

Figure 2.2: Viscous wake flow

the fluid. Since we have a field aligned flow, the tension in the field lines represents a torque and 

this also creates vorticity. Additionally, the viscous layer close to the plate where this differential 

sliding of the layers of fluid occurs increases. As p* decreases to zero then the inertial term in 

(2.30) becomes less im portant in comparison and the diffusion of vorticity proceeds more quickly. 

At p* =  0, the fluid must move so tha t the force F  is irrotational; in this case u  is irrotational.

As the magnetic field becomes stronger still, p* becomes negative, and negative inertial effects 

begin to appear. The m om entum  balance equation now becomes

-p *  ( - u .V )  ( - u )  =  - V  ( -p * )  +  77Y 2 ( - u )  (2.31)

The motion is exactly like that of an ordinary fluid of density — /?*, viscosity 77 travelling in the 

opposite direction. If we consider a viscous wake flow as shown in figure (2.2) then we can see the 

effect of this flow reversal. In the case v 6 , we are in ordinary hydrodynamics. Figure (2.2) 

represents a flow from left to right. The velocity profile will flatten out due to viscosity. The 

case v <C b demonstrates negative inertia. The fluid must move to convect the field into a form 

so th a t  the tensions can balance the viscous forces. A fluid element at the point .Y experiences 

a viscous force to the left. The field gains a y —component, allowing force balance between j  x B 

and viscosity r/V2v (remember tha t  explicit mention of j  x B forces will be subsumed by the field 

aligned specification and vector identity manipulation in equation (2.30).) The field line has now 

changed the direction in which it is pointing, which means tha t  energy must have been used to do 

this. Since there are no sources of energy in this system, the energy to do this must have come 

from the velocity available at X .  Therefore, we must have slowed down the fluid along this field 

line. Hence the streamwise viscous forces decelerate the fluid at X , giving the illusion of negative 

inertia. We have therefore steepened the velocity profile, where we would expect viscosity to level 

the profile out.

This is a rather subtle effect and we shall not consider it directly in much of what follows, as
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we set F  =  0 for the purposes of this work. However, it m ay be im plicated in o ther results where 

we change the direction of the fluid flow relative to the background field (see chapter 4 ).

2.4 The Field Aligned Flow Equations

In  section (2.2), we derived a set of m agnetohydrodynam ic equations describing a plasm a, subject 

to  our assum ptions. We use cylindrical polar co-ordinates th roughout, although C artesian  co­

ord inates are entirely equivalent. This is m otivated by the geom etry of the  system s we wish 

to  exam ine; looking from  above, a torus has an annular cross section. Solar flares on the Sun 

and  sm aller events have arc shapes, and hence it is na tu ra l to consider first cylindrical polar 

co-ordinates. C artesian co-ordinates may be employed in m agnetotail applications.

We specialise the m agnetohydrodynam ic equations by dropping all z-dependence in all quan t­

ities and setting  u  =  (ur ,ue,  0) and B  =  (Br ,Be,  0). To remove explicit m ention of p, the  fluid 

pressure we take the curl of equation (2.21). Note th a t both  u  and B  are in the (r, 6) p lane only 

and  since neither have a z-dependency, the curl of each quan tity  points in the z direction only. 

Therefore, (j.V ) =  j z - ^  =  0 and (3TV) =  =  0 where we introduce $  =  V  x u  the fluid

vorticity. Using the iden tity 1 V x [(u.V )u] =  (u.V)^k we obtain  a convective form  of equation  

(2 .21 ),

p F *  =  (B .V )j (2.33)

An expression for p may be regained by taking the divergence of (2.21),

V 2p =  V.[j x B] -  pV .[(u .V )u] (2.34)

E quation  (2.33) relates the vorticities of the two vector fields u , B  and equation (2.22) the fields 

them selves. Equations (2.19) and (2.20) are treated as in itial conditions.

As we w ant to  look at both  tim e dependent and tim e independent field aligned flow in th is we 

set F  = F  (r, 9, t). F  is not dimensionless but carries dim ension y/pop. If we define a dimensionless 

function /  =  / ( r ,  9, t)  by setting F  =  then this allows us to  s ta te  th a t M \  — f 2 . We call /

the flow function. Hence we have

u  = f ( r , 6 , t ) - J L =  (2.35)
y/JioP

An im p o rtan t consequence of (2.35) is th a t by (2.22), B  can only be tim e independent. B ut by 

specifying a tim e dependency in /  this allows us to exam ine the possibility of tim e dependent flow 

along tim e independent field lines. Substituting (2.35) into (2.19) yields

B . V / = 0  (2.36)

1 V alid  on ly  in  th is sp ecia lised  geom etry.
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T his says th a t  / m ay a t m ost be a function of tim e only on a field line. To express the field aligned 

form  of equation (2.33), we first note th a t //o (B .V )j =  B x V 2B , and analogously, (u.V)*& =  

u  x V 2u  identity  holds for u . E quation (2.33) becomes

Hop— if! = B  x V 2B -  popu  x V 2u  (2.37)

If we now p u t po =  1 , p =  1, then on inserting the field aligned specification and using the identity  

V 2 ( /B )  =  / V 2B +  B V 2/  +  2 / (V / .V )B  we obtain

p\
— [V x ( /B )]  =  (1 -  f 2)B  x V 2B +  B x [V (l -  / 2 ).V ]B  (2.38)

E quation  (2.38) m ay be seen as an evolution equation for /w i th  (2.36) a constrain t on /. Phys­

ically, any solution we obtain  am ounts to a fluid moving along the field lines in such a way so th a t 

the m om entum  equation (2.21) is balanced, and th a t fluid incom pressibility (2.19) is m aintained. 

Note th a t  for a rb itra ry  choice of field B there are always a t least two values th a t  /  m ay assume 

which triv ia lly  solve the equations, nam ely /  =  ± 1 . In this s ituation  the fluid is m oving a t the 

Alfven speed either parallel ( /  =  -f 1) or anti-parallel ( /  =  —1) to  B . In particu lar, equation (2.21) 

reduces to  V  [p +  =  0, i.e., the fluid pressure is sim ply p  -f =  constant .  However, if

we w ant to  move the fluid w ith (more interesting) sub/super-A lfvenic velocities by asking for /  

non-triv ia l, then  we m ust solve equations (2.36) and (2.38). There are three equations in three 

unknow ns here: (2.36), (2.38) and (2.20) in the variables B r ,Bg and the flow function / .  The 

pressure is a dependent function, and is not p a rt of the problem  for the equation set (2.20)-(2.23).

We can show th a t solutions to equation (2.38) define the pressure p in such a way th a t equation 

(2.21) is balanced. Equation (2.38) is sim ply the curl of equation (2.21), w ith the field aligned flow 

specification. Hence (2.38) may be w ritten  as

=  0 (2.39)

Therefore, if we find a suitable /, B , th a t does solve (2.39) then  by using the vector identity  

V x V ? =  0 (for any q) then we know th a t there m ust exist a function q so th a t we can w rite

V ? =  +  J x B  (2.40)

Hence by (2.40) we can identify q as the fluid pressure p, balancing the m om entum  equation. 

Consequently, solutions to  (2.38) perm it field aligned flow, provided (2.36) is true  also. This 

n a tu ra lly  introduces the idea th a t only certain  choices o f/, B  perm it field aligned flow, as arb itrary  

choices will not solve (2.38) or (2.36). The effort has been concentrated on finding suitable /, B , as 

pressure calculations are relatively straightforw ard once these have been found. We first consider 

/ tim e independent.

V x — £ ( / B ) + j x B
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C h ap ter  3

Tim e Independent Field Aligned  

Flow

We apply the field aligned m agnetohydrodynam ic equations derived in the previous chapter to  the 

case of tim e independent flow. A general solution of these equations is presented for nontrivial 

flow functions. In particu lar, the case /  =  constant  is described in some detail, as th is forms the 

basis of the m agneto ta il models presented and m otivates the application of genetic algorithm s to  

differential eq ua tion ’s (chapters 5 and 6 ).

3.1 The Flow Function

In the previous chapter we derived two equations governing field aligned flow for a general flow 

function  /  =  /  (r, 6, t).  By dropping the tim e dependency in the flow function we exam ine the case 

of tim e independent flow. Equation (2.38) m ay now be w ritten  as

i / B x V 2B  +  B x [V i/ .V ]B  =  0 (3.1)

where u =  1 — f 2■ A lthough in vector form  (3.1) has only a z-component, and, after some 

m anipu la tion  it m ay be re-expressed as a scalar equation,

4?  + 6l  + c" = 0 (3-2>
where

a = —  (3.3)
r

6 =  £  (8-4)

c = ^  + ; ^  = " ' ( B x V 2 B )  =  * ' (B-v ) j  (35)
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=  B l  +  B i  + B  9Be

fa  = r [ B .

a d B r 
e + tfr 06 e 06 

OBg 0 B r

(3.6)

(3.7)Or Or

We wish to  look for m agnetic field topologies which support non-trivial values of /; by nontriv ia l 

we m ean /  ^  ± 1 , 0. Expanding equation (2.36) we get

Ou Ou
9 9 ~ (3.8)

Ou c Ou _ cd
06 ~ ~ b — ad v, Or <31 U

for r B r ^  0,where

* =  ^  

E quations (3.2), (3.8) can be seen as a system of linear equations in two variables, |^ .  Hence 

one can m an ipu la te  them  and obtain expressions in term s of u th a t form ally solve (3 .2 ), (3 .8 ), i.e.,

(3.10)

On in tegration  of (3.10), both forms of u m ust be identical, and for an a rb itra ry  choice of B , this 

m ay not be true. As an example, consider the following simple field

Bg = h, Br = -  
r

where h = constant  ^  0 and g =  constant  ^  0. W ith  this choice of field (3.10) becomes

0u h Ou h 2
na = ~ rly’ ~  2 ru ’06 g Or g1

In tegra ting  yields
h

log (u) = ci (r) +  —r6, log (u) = c2 (6) -  - r r
9 ' ' ' 2 g2

where ci ,C2 are a rb itra ry  functions. Since the two expressions for u m ust be identical we m ust 

have
/ \  / n\ /l h n

Cl (r) -  c2 (6) =  r6 -  — -r
9 2 gz

Clearly, no such functions c i , c 2 exist. Hence (3.10) cannot be solutions to  (3.2), (3.8) for an 

a rb itra ry  choice of m agnetic field. This introduces the recurring idea th a t for nontriv ia l flow 

functions, we m ust be in a precisely defined geometry. Alternatively, one can say th a t a  given 

m agnetic field topology can support only very particu lar flow functions. We find a set of m agnetic 

fields th a t do solve (3.2),(3 .8 ) by making an assum ption on u, th a t is,

(3.11)

u is twice continuously differentiable, or more loosely, is ‘sm ooth’. T his prescription chooses fields 

which obviate the a rb itra ry  function problem above. By applying (3.11) to  (3.10) we o b ta in  the 

s ta tem en t

| : ( x )  +  ^(x>s>)| = o  (3.12)

0 0u' 0 Ou
Or .96. ~  06 Or
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where x  — Trivially we may have 1/ = 0 which is sim ply /  =  ± 1 . However, if

O p\
—  (x ) _|_ —  -  0 
dr  u ;  86 U  ' (3.13)

then  v  m ay be nonzero, and /  nontrivial. This depends critically on the m agnetic field arrangem ent. 

If (3.13) does not hold then by (3.12), /  =  ± 1  and the flow velocity follows the m agnetic field 

variable dependency at all points. If (3.13) does hold then v  is given by in tegration  of (3.10) 

yielding

v  =  Ci  (r ) exp 

v — C 2 (0) exp

[-/
[/>

Xd0

(3.14)

Both functions C\  (0) , G2 (?*) are specified (guaranteed by (3.11)). Any arb itra ry  functions or 

constants left over are specified by boundary conditions for the flow. Hence equation (3.13) can 

be viewed as a geometrical condition th a t the m agnetic field m ust satisfy to  perm it nontriv ial field 

aligned flows.

3.2 A Bernoulli Equation

So far, we have set u  =  F'B and exam ined the model equations (2.19)-(2.23) An equivalent field 

aligned flow specification is B  =  G u, for some function G. Obviously, G  =  1 / F , F  0 b u t the

previous form at is easier to handle in the set of equations chosen. Using B =  G u , reduces the 

induction equation (2.22) to (G u) =  0, as well as the equivalents of (2.19) and (2.21). Hence we 

have three equations to  solve instead of two. Previously, V .u  =  0 gave rise to  B .V /  =  0. Here, 

V .B  =  0 yields

( u . V ) G  =  0 (3.15)

on substitu tion  of the field aligned condition. If we consider the special case of G =  constant  then 

(3.15) is solved leaving the m om entum  balance equation

( u . V ) u  =  —V p  +  G 2 (V  x u)  x u  (3.16)

The induction equation tells us th a t u  is tim e independent. If we take the dot p roduct of (3.16) 

w ith u  then we have
p u .11

pH  — =  constant  (3-17)

along any m agnetic, and hence fluid field line in the flow. This is ju s t B ernoulli’s equation  for an 

incompressible, inviscid fluid. Hence this m agnetohydrodynam ical system  is effectively equivalent 

to  the steady flow of an inviscid fluid of constant density.
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3.3 Solutions for special cases o f the flow function

3 .3 .1  /^ c o n s ta n t

W hen the flow function is globally constant (and /  /  ± 1 ) then  we have a  sim pler system  to  solve 

as equation  (3.8) is solved trivially  by /  =  constant .  T his choice of flow function im plies th a t 

=  0, § 7  =  0 and hence by (3.10) (assum ing d /  0) we have

c =  0 (3.18)

where c is defined by (3.5). Solving (3.18) will generate field topologies which support flow functions 

of /  =  constant .  We can rewrite c in the form

( B . V ) j  =  0 (3.19)

which sim ply s ta tes th a t the current is constant on a field line. E quation  (3.19) is a nonlinear

partia l differential equation in two variables B r and B q. Since we are only considering B  =

(B r (r, 9 ) , B q (r, 9 ) , 0) we may write the m agnetic field in term s of the vector po ten tia l A

B =  V  x A  =  V x [A (r, 9) z] (3.20)

Since we are u ltim ate ly  interested in the curl of A  its gauge is u n im portan t. Note th a t V .B  =  0 

identically  and  V x B  =  z V 2A. We may now re-express the problem  in term s of A.  A t first sight, 

th is does not seem very promising, as the resulting equation is highly nonlinear and a  degree higher 

th an  before: it would appear th a t we have m ade the problem  m ore difficult. However, if we m ake 

the m odelling assum ption

V 2A =  A( r , 0 ) A (3.21)

for a rb itra ry  A, then  th is makes a considerable difference to the algebra: c =  0 becomes

8<f>\ 8<f> 2
H f  Vl ) r  =

8 A 8 A _  8 A 8 X  
89 dr dr  89

-  0

i.e., we require
8A  8 \  8A  8 \
~ 8 9 l k ~  l h l ) 9 =  (3’22)

P u ttin g  A =  g (A) for an arb itrary  function g solves (3.22) and hence solves c =  0. This is subject 

to  finding an answer to  (3.21), in general, a Poisson equation. We also need boundary conditions 

to determ ine p articu la r solutions i.e., A  =  h ( r , 9 ) on the boundary  of the region. For instance, 

A =  AoAn solves (3.22): choosing n = 0 yields the  Helmholtz equation in (3.21), solutions of which 

have been extensively covered in the literature. If we pu t A =  — p 2 for p = constant ,  then (3.21) 

reduces to
1 8 8 A 1 8 2A 2



Figure 3.1: Field (3.24) with m =  5 ,p  =  1.

Equation (3.23) may be solved by the technique of separation of variables: if we set A ( r ,  6) =  

R  (r)  cos (rn6) (m  > 1,integral) then (3.23) is soluble by R { r )  — J m (pr), where J m represent the 

Bessel functions of the first kind • A  = Jm (pr) cos (m9)  is a solution for (3.23), which corresponds 

to  a magnetic field

B =  ~ 2  [sin(m^) {Jm_i (pr) + Jm+1 (p r )} ,co s (m6) { J m - 1 (pr) -  J m + 1 ( p r ) } , 0 ] (3.24)

This is an example of a magnetic field which can support a globally constant value of /  (see 

figure 3.1). Hence by the assumption of (3.21) we have reduced an intricate geometrical condition 

(3.13) to the solution of Poisson’s equation.

We may also reverse the procedure and ask for A = h(X) for some function h. This procedure 

may give us access to solutions not easily derived by the method above. Equation (3.22) is satisfied 

identically, leaving (3.21) as

d \  \  2
A h '

i a _ /  a \ \  i o 2x
r dr  V dr  J ^  r 2 862

— h \  =  0 (3.25)

where the dash (') on h means derivative with respect to A. We can make this an ordinary 

differential equation with dependent variable A if the coefficients of h"  and h'  are functions of A 

and they are not both zero, i.e.,

. . .  1 f d x y  ( 8 A V  1 8 (  8 \ \  1 8 2A
" l ( A ) - e ( i w J  + ( e ? J  ’ <t- ( X ) - v ¥ v \ r d ~ v ) J r ^ W

( 3 .2 6 )
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To find solutions, we m ust first find A such th a t qi, <72 are suitably defined. T his fixes the  ordinary  

differential equation (3.25) which m ust then be solved: any arb itrary  functions found on in tegration  

are no t functions of A. R esubstitution of a tria l solution after this process will fu rther refine the 

a rb itra ry  functions.

Consider the case for A =  r[cos(0) + sin (0 )]: qi =  2 and 52 =  0 leaving (3.25) as

h"  =  ~ h  (3.27)

known as A iry ’s equation [37]. Solutions of this equation m ay be defined in term s of the A iry 

functions, Ai(X) ,Bi (X) .  It can be shown th a t

A(r ,9)  =  k i A i  j--^=r[cos(0) +  sin(0)]J +  k 2B i  |-^ = r[c o s (0 )  + s in ( 0 ) ] j  (3.28)

solves (3.25) for k\ ,  &2 — constants.

A nalytic solutions offer one avenue for exploration in this field aligned system . However, m ore 

solutions are available com putationally  and in section 3.5.1 some m agnetotail relevant results are 

described. For choices other than  A =  c\ + c\ , C2 =  constants,  (3.21) is a Poisson equation w ith 

a nonlinear source term . Using the alternate specification of A  = h{ A) presents its own problem s, as 

we have more stages to go through to find a solution. Discussion of the novel num erical techniques

th a t m ay be used to find solutions to equations (3.21) and (3.25) is deferred until chapters 5 and

6 .

Section (3.4) deals w ith current free solutions to  (3.1,3.8) and shows how these solutions can 

also be extended to  flow functions /  =  constant  very easily.

3 .3 .2  f  =  f ( r )

E quation  (3.8) dem ands th a t B r — 0 with this choice of / ,  and by (2.20) we m ust have B  =  b(r)9 

- i.e., the  flow is m oving in rings around the origin. Using (3.2), =  0 by assum ption and since

(f)2 =  0, then a = c = 0. Therefore the system  is solved completely for arb itrary  /  =  /  (r).

T he flow profile is then given by

\i = f ( r ) b ( r ) 9  (3.29)

A lthough we do not specify a t any tim e w hat would cause field aligned flow, it is often useful to 

look a t the fluid pressure p  in these systems. If  we substitu te  th is back into (2.21) then we find 

th a t
b2 r  b2 (s')

A*op-\------ =  constant  +  I ---------[ f 2 (s) — l] ds  (3.30)
 ̂ J r 0 s

T he in tegral contains two term s; one is a fluid term , integrand oc / 2, and the o ther is a  m agnetic 

tension term .

Consider the  following example: the m agnetic field is given by

K r  -
B ( 0  = a  +  r z
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which may be rew ritten more usefully as a  function w ith a dimensionless argum ent if we define 

77=  i.e.,

B W  =  - 7 =

If the  flow function /  is

then  the fluid velocity is

1 +  T]2 

/ 2(t7) =  g [2 +  r72]

11(77) =  K
1 +  772

T his p articu lar flow function is chosen to make the integration easier. T he system ’s equivalence 

to  s ta tionary  hydrom echanics and m agnetohydrostatics (section 2.3.2 and G ebhard t and Kiessling 

[28]) can also change a t a particu lar radius, depending on the value of g. T his is given by

2
Vchang t =  1 - 2

9

which defines a real radius when 0 <  <7 < | .  A t 77 >  T]change the system  is equivalent to  s ta tionary  

hydrodynam ics. For 77 <  r]change, the principles of m agnetohydrostatics apply.

Note th a t the  definition of /  dem ands th a t g > 0. This does not m a tte r  to  the  system , as 

the flow function appears as f 2 only in the m om entum  balance equation (3.1). Also, as 77 —► 0 0 , 

u  —► even although B —► 0 and /  —> 0 0  in the sam e lim it. The m om entum  balance

equation becomes
a  dp 77 [2g -  2  +  gp2}

K 2 dr

T his m ay be in tegrated  to yield

^  K 2
P =  ~2a

(1 + 77 2Y +
277-

(1 +  772)'

+ g < \ o g ( l + r )  ) -
1 +  V2 } ..1 +  V2

where C  =  constant .  Note th a t the pressure is dom inated by log(l +  rj2) which tends to  infinity 

as 77 —► 0 0 . T his is because as 77 increases, the fluid velocity becomes constant. Consider two 

fluid elem ents on different field lines at r i  >  7*2 . Both field elem ents have the sam e velocity in the 

azim uthal direction and hence the angular velocity of the fluid elem ent on 7*2 is greater th an  the 

elem ent on r i .  Since both  elements are moving in the azim uthal direction, each elem ent m ust be 

experiencing an acceleration. Therefore, there is a radially  directed force causing this acceleration. 

If there were no such force, the fluid elements would move off their field lines. Hence the pressure 

m ust increase as 77 increases in order for the pressure gradient to  be m aintained. T his pressure 

gradient keeps the fluid elements on the field lines.

T he factor g allows us to control the size of the fluid flow. For 0 <  g < 1, the pressure has a 

m inim um  value at 77 =  +  | . ^ / l  +  | .  A m inim um  in the pressure corresponds to  a point in

the fluid where ^  =  0, m eaning the net force a t this radius is zero. T his is caused by a balance 

between the m agnetic and fluid pressures in the system . W hen g >  1, the m inim um  pressure
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occurs a t 77 =  0 The system  in this case is dom inated by the fluid flow ra th er th a n  the m agnetic 

field.

3 .3.3 f  =  f ( 0 )

T he m agnetic field for this flow function is chosen by (3.2) again: B  =  E quation  (3.2) can

be in tegrated  to  find a functional form  for / ,

f2  = 1 ~ W )  ( 3 ' 3 1 )

On substitu tion  into (3.2) we may define a pressure for the system

0 2 ci ,
^°P  =  - ^  +  2 ?  +  C2 (3 -32)

where ci ,C2 =  constant.  A lthough the pressure diverges a t the origin, the function for p  form ally 

solves (3.2) for the flow function and corresponding m agnetic field dem anded. D epending on the 

region of application we m ay not even need to  worry about this.

3.4 Current free solutions

In th is section we consider (3.1) w ith /ioj =  V x B =  0; we are assum ing th a t the m agnetic field 

is of po ten tia l form, th a t is B =  V 0 for some poten tial (j). We m ust still have (3.8)

In vector form the equation (3.1) reduces to

B x [ ( V / . V ) B ]  =  0 (3.33)

In scalar form,
2 d f  <b\ d f

(3-34)
We can trea t these equations as a system: two linear equations in two unknowns, One

can ob ta in  conditions (by simple elim ination of one of the unknowns) in order th a t b o th  (3.8) and 

(3.34) are in fact the same equations. On m anipulation,

B r <f> 1 =  B e<t> 2 (3.35)

is the  condition B m ust satisfy in order to  solve (3.33) and (3.8). T he corresponding flow function 

is given by integrating (3.34) (or (3.8), their equivalence is guaranteed by (3.35)), a first order 

linear partia l differential equation in / .  We can solve this by the m ethod of characteristics: the 

equation  for the characteristic curve is given by integrating

d±  = ,
dr
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Figure 3.2: Field (3.38) with ci =  C2 =  1.

i.e.,

constant  = q{r, 9)

for some function q. the result of the integration. Fixing a constant will choose a particular 

characteristic This means /  has the general formal solution

f  = F[q] (3.36)

for some function F.  B is most easily obtained by using the vector potential A =  (r, 9 ) z  with

B =  V x A to reduce the number of unknowns. Assuming a solution of the form A  (r, 0) =  r n Q (9),

n > 1, integral, we find th a t

A (r, 9) = c2r  cos (ci — 9) (3.37)

with c i , c 2 =  constant  solves (3.35). This represents the field

B =  c2 [sin (ci — 9 ) , — cos (ci — 9 ) , 0] (3.38)

For this field the characteristic equation is

d.9 cos(ci — 9)
dr sin(ci — 9)

The characteristic curves of (3.34) for this choice of field are given by

constant  = rcos(ci — 9)
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Figure 3.3: Field (3.38) with c\ =  c2 =  1 and flow function /  =  sin[rcos(ci — 0)].

Hence the field (3.38) supports a flow function /  =  F [ r c o s (c \  — 0)], where F  is an arb itrary  

function of its argument. Two examples of this field aligned system are given: the first, figure 3.2 

has flow function /  =  1 and hence shows both the field and flow lines. Figure 3.3 shows the flow 

lines with /  =  sin[rcos(ci — 0)]. Note in this case the background magnetic field is still th a t  given 

by figure 3.2.

It is a simple m atte r  to extend these current free fields into fields with constant current and 

f  = constant .  Suppose we have a magnetic field B such that V x B =  kz = /y.0j , with k = constant .  

If we express the magnetic field in terms of its vector potential then

V 2A =  - k  (3.39)

Equation (3.39) is linear: therefore if we write A  = A 0 +  A\  where V 2T 0 =  0 along with the 

suitable boundary conditions, then we are left to solve

V 23li =  —k (3.40)

subject, of course to the boundary conditions. This is a linear inhomogeneous equation -  a Poisson

equation. But if we can solve it then we have increased the number of solutions available to the

f  = cons tant  analysis. Substituting the constant current field described above it can be seen th a t  

the first term in (3.1) is

uB x V 2B =  (B .V ) j  =  (B .V ) kz =  0
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leaving (3.8), which can be solved easily by pu tting  /  =  constant .  This also solves (3.8). T he final 

field is then  given by

B =  V x ( A 0z)  +  V  x (A iz) (3.41)

3.5 Application to a Problem in Field Aligned Flow

T he m agneto ta il is one region where field aligned flow, or a t least nearly field aligned flow, is found 

naturally . O ther features are also seen in the m agnetotail, principal of which are X -points and 

plasm oids. Section 2.3.2 describes some of the studies th a t have been undertaken  to  m im ic these 

features theoretically  in a field aligned context.

We aim  to  show here th a t the field aligned flow equations (3.21), (3.22), developed in section

3.3.1 can also reproduce the O and X -point regions seen experim entally and in o ther theoretical 

trea tm en ts.

3.5 .1  M a g n eto ta il geom etry  and sim ple m odels

As has been noted previously, field aligned flow has been observed in the m agneto ta il, concurrent 

w ith large flow velocities (see section 2.3.1). We will model the m agnetotail using a  highly simplified 

description and idealised m agnetotail conditions.

T he m agneto ta il geom etry is, overall, very simple. It consists of two roughly parallel b u t 

oppositely directed fields sandwiching a cu rren t/quasi-neutral sheet. Here n eu tra l refers to  the 

near zero m agnetic field measured here. We shall describe this w ith reference to  a square region of 

space viewing the m agneto tail ‘side on ’. In th is system , —x is directed tow ards the  Sun, + x  away 

from  the Sun. + y  is directed perpendicularly ou t of the E arth-Sun plane. The square region R  is 

centred a t the  origin of the x, y  co-ordinate system  and has side length of 2ro T he rem aining + z  

(in the  E arth-S un plane) is not considered: th is is equivalent to  assum ing th a t  the m agneto tail 

does no t vary in th is direction, and th a t x , y  p lanar sections are equivalent a t different values of 

the 2  coordinate. Hence we assume th a t no quantity  in the system  depends on z. T he flow and 

fields are therefore 2 dim ensional. These are the same geom etrical assum ptions th a t  were m ade in 

chapter 2, and allow us to  apply field aligned flow to  this situation. The basic p icture  we require 

is shown in figure 3.4. T his diagram  shows the m agnetic field and fluid lines.

T he m agnetic field is zero (or near zero) a t the neu tral sheet and increases in m agnitude 

as we move in the ± y  directions. We can approxim ate the field by assum ing th a t  it has only 

one com ponent, B x , parallel to the x-axis. By M axwell’s equations and the assum ptions above 

B x  = B x {y). Such a field m ust also satisfy one of the field aligned flow equations we have 

developed. We choose to  model the flow w ith Cartesian versions of the equations developed in
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Figure 3.4: Idealised field structure for the m agnetotail

section 3.3.1, nam ely

V 2A  = \ ( x , y ) A  (3.42)

and

< • ■ « >

where B  =  V x  [.A ( x , y) z]. These m ay be derived in an exactly analogous way to  equations (3.21) 

and (3.22). Again, (3.43) m ay be solved by p u tting  A =  A(A), and from  here on, A will take 

th is form . There are a num ber of reasons why we m ight s ta r t w ith th is equation. F irstly, it is 

tim e independent which means th a t we are looking a t steady flows. Steady flows are observed 

experim entally  over long tim e scales, with reconnection events happening infrequently. Solutions 

to  (3.42) represent fields th a t have flow function /  =  constant  ^  ±1 everywhere. Therefore we 

can fix the  Alfven Mach num ber to an average derived experim entally, ignoring local changes. In 

any case, it  does not m a tte r as /  does not affect the field structure . Thirdly, it is relatively easy 

to  calculate when com pared to the other equations on offer.

If we ju s t have one com ponent of B  in the  ^-direction then (3.42) becomes an ordinary  differ­

ential equation,

2 =  A \ { A )  (3.44)
d M
dy

Using (3.42) also allows us to  influence the current, since in th is m odel —j z =  V 2Az =  AX(A)z .  

Therefore, changing A changes the current d istribu tion  over the surface. For choices of A other 

th an  A =  ci +  ^-, the equation is nonlinear. (A special nonlinear case is A =  6 A: the solution is
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A  = P ( C 2 +  y; 0, C i), C i, C 2 constants where P  is the W eierstrassian elliptic function.) Equation 

(3.44) can be form ally in tegrated to give

dA/ ^ /C i +  2 [ /  A \ ( A ) i A \
= y + C? (3.45)

Analytic solutions are ra ther special, bu t num erical m ethods could be used e.g., NAG D02HAF. 

Additionally, the  genetic algorithm  ODE could be used to  provide in itial approxim ations. However, 

we will only consider three analytic solutions as a basis for further m odelling.

1. A(A) = j-, k = constant .

W ith  th is choice, equation (3.42) becomes A "  = k,  and on in tegration  A{y)  =  k y 2 +  aoy +  ai- 

The curl of A z  is the m agnetic field, and we can use this to  determ ine the values of the 

constants k , a0 , a\.  At y = ± ro , B  =  ±£?ox and B  =  0 a t y =  0, fixing a0 =  0 and k = 

Hence A  = ^ y 2 +  a i and B =  7^-yx.

Note th a t this m odel cannot describe the gross structure  of the m agneto tail as the current 

is constant everywhere. This description is more readily applicable nearer the neutral sheet 

where the current is approxim ately constant and the field is zero. We can im agine this m odel 

representing field aligned flow near neutral sheets in regions of constant current.

2. A(A) = k, k = constant .

T his is the next sim plest case. There are two types of solution to  the  equation

d 2 A

l ^  = kA  (3'46)

depending on the sign of k. Note th a t the current is now proportional to  A,  and therefore we 

have an opportun ity  to model the current as well as the m agnetic field. Taking the lead from  

observations, we would like to  have the current profile peaked tow ards y =  0 , (the centre 

of the square region) then tailing off to lower values tow ards y =  d=ro, while m ain tain ing  

the sam e m agnetic field profile as before, i.e., -Bx(O) =  0 and 5 x ( ± r 0 ) =  ±B o. W hen 

k = c2 >  0, c real , A  =  a e x p (—cy) +  /?exp(cy) is an acceptable solution to  equation (3.46) 

by itself. However, the boundary conditions forbid this solution, as we cannot generate the 

required current brightening towards y =  0. W ith k =  — c2, c real, the general solution 

is A  — <*sin(—cy) +  /?cos(cy). This solution can be fitted to  the m agneto tail boundary  

conditions, yielding A  = M  cos (cy) and B  =  cM sin(cy)x  where we define B 0 = c M . T he 

constants c and r 0 should be chosen so th a t range of y  values pass th rough one half period of 

the cosine function only, lim iting us to only one current peak in the region. This allows us to  

m odel the m agneto tail on a bigger scale as we have now reproduced the current brightening 

a t the neu tra l sheet.
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-T w  = k A  + p  (3.47)

3. A(A) =  k  +  k , p  = constants.

T his choice of A combines 1 and 2 above into

<PA 
dy

an inhom ogeneous second order ordinary differential equation. Again, we have two solutions 

depending on the sign of k. W hen k =  — c2, c real, then on su b stitu tion  of the  m agneto ta il 

boundary  conditions, the solution is

A(y)  =  M  -  cos (cy) +  (3.48)

where A(0) =  M  and c [M  — ^ ]  =  Bo. The m agnetic field is given by B  =  sin̂ eQro) sin(cy)x, 

sin(cro) 0, w ith current j =  sir̂ ° 0) cos(cy)x. W hen k = c1, c real, then  the analytic  

so lution A  =  a e x p (—cx) +  j3exp(cx) — ^  cannot reproduce the m agneto ta il conditions 

required. It appears th a t there is not th a t much to  be gained from  th is m odel: the m agnetic 

field and currents are the same as in 2 above. However, th is A function when applied to  a 

pertu rbed  system  (see section (3.5.2)) m ay generate different fields.

These three models are useful bases to  begin describing more com plicated geom etries. In the 

next section, we exam ine the effect of perturbing the above systems.

3 .5 .2  P ertu rb ed  m agn etota il m od els

T he above m odels represent idealisations of the structure of the m agneto tail. If  we now pertu rb  

these m odels using equations (3.42) and (3.43) very slightly, then we will keep the m ain  features 

of the  system  while hopefully introducing some more realistic structure. We w ant to m ain ta in  

the parallel bu t oppositely directed flows of the original idealisations as th is is one of the  largest 

scale features of the  m agnetotail. We also want to keep (or a t least introduce current brightening 

tow ards the centre of the  system , the plane y  =  0.

There are two features we can pertu rb  easily, the  A function and the boundary  conditions. 

P ertu rb ing  A and keeping the same boundary inform ation is equivalent to  changing the  current 

d istribu tion  over the surface influencing B . Varying the boundary conditions b u t keeping A con­

stan t changes the m agnetic field w ithout perturb ing  the current directly.

It is easiest to  pertu rb  A in such a way th a t the pertu rbation  is also a function of A,  as th is 

will satisfy condition (3.43) exactly. This changes the current d istribution  and hence the m agnetic 

field in the  system . Suppose we have a system

V 2A° =  A°A°(A°)  , where A 0 = f ( x ,  y) , ' \ / ( x , y ) E d R

where we denote the  boundary of a region R  by dR.  The superscript 0 denotes an unpertu rbed  

quantity . Now pertu rb  A0 so th a t A(A) =  A0(A) +  eC(-^) and keep the boundary  conditions the
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sam e. Then the system  becomes

V 2A =  AX°(A)  +  e[AC(A)] (3.49)

As e —► 0, we regain the original system. If |e| is too large, then we will lose the features of the 

original m odel. In order to rem ain ‘close’ to  the original model, the p e rtu rba tion  m ust be small: 

the new current eA£(A)  m ust not change the original current A0A0 by very much. If j ^ ax and j ^ in 

are the largest and sm allest values of the unperturbed  current, then the current over the entire 

surface m ust lie is the range i ^ aa. — j ^ i n  • Any pertu rbation  we m ake m ust be sm all com pared to  

this range, otherwise we are varying j  too much. Hence

M «  I' (3 50)
Jm ax  Jm in

\/(x, y) £  R.  This ensures th a t we do not deviate too far from  the m odels described in the  previous 

section.

If e is chosen to break condition (3.50), then the equations still hold, bu t we can no longer expect 

the field to  be much like the modelled version. This is because the pertu rbed  current significantly 

changes the to ta l current. It also becomes increasingly difficult to  see w hat the corresponding 

m agnetic field looks like. Increasing e varies the current nonlinearly, as A  is unknown until the 

e-dependent Poisson equation is solved. Therefore, choosing e large only guides the final outcom e.

We can also vary the boundary conditions of the above models keeping the A function constant. 

Again, we want to  stay close to  the desirable modelled features, and so we m ust pertu rb  the 

boundary  conditions only very slightly. Define A ^ a x  and A ^ in respectively to be the m axim um  

and m inim um  values of A 0 on the boundary for the unperturbed  system . All the boundary values 

of A 0 m ust lie in the range A ^ aa, — A ‘sm all’ pertu rbation  is one th a t does not change the

boundary inform ation greatly. If the perturbed boundary d a ta  is

A  = f ( x , y )  +  6g(x,y ) , V ( x , y ) e d R  (3.51)

then for a sm all pertu rbation  we m ust have

lei  ^  lfl,(®)?/ ) |  / o  c o \
\6 \ C  a ~° - A 0  ̂ ’m ax m m

V(a?, j/) E dR.  T his does not say anything about w hat happens locally: the  value m ay change 

drastically  locally, b u t not perturb  the system greatly overall by the definition above. The equation 

we have to solve is

V 2A =  AA°(A) (3.53)

w ith boundary inform ation (3.51) subject to condition (3.52). Condition (3.43) is satisfied since 

we keep the same functional form for A0.
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To use equation (3.42) we m ust extend the ordinary differential equation boundary  inform ation 

into two dimensions. Below we quote the unperturbed  A0 functions and the corresponding unper­

tu rbed  boundary  inform ation required to generate the m odels using (3.42). Since the y com ponent 

of B  is everywhere zero, A  is a  constant on y  =  ± t * o

1. A°(A°) =  -to, k =  constant.

A u(x ,y )  =

V 2A° =  k 

%y2 +  a i , x  =  ± r 0

!»o +  a i > V =  ± r o
(3.54)

where a i =  constant .

2. A°(yl0) =  —c2, c a real constant.

V 2A° =  —c2A °

0 j M  cos (cy) , x  = ± ro
A { x , y ) = <  (3.55)

I M  cos(cr0) , y = ± r 0

3. A0(,40) =  —c2 ±  -fa, c , p  real constants.

V 2^ 0 =  - c 2A° + p

. | \ M  — -%1 cos (cy) +  -$2 , x  =  ± ro
^ ° ( ^ , ? / ) = <  (3-56)

[ [M -  js\  cos(c7*0) +  ^  , y  =  ± r 0

where M , p  = constants .

We are now in a  position to  calculate A  for a perturbed  model. We shall give exam ples of 

current and boundary pertu rbations to each of the three models. Figures (3.5)-(3.17) show the 

m agnetic field and fluid lines of the perturbed models.

1. (a) Model (3.54) w ith perturbed current.

Since the current profile is flat everywhere, it is very likely th a t any pertu rbation  to  A 

will change it. Some brightening of the current tow ards the centre of the region would 

be welcome as the beginnings of a m ore realistic m agnetotail, w ithin the confines of this 

m odel. B ut as has been noted, changing A and c varies A  nonlinearly, since A  m ust be 

determ ined by solving a Poisson equation.

In all the  pertu rbation  work, we shall calculate the m agnetic field on a square region 

of side length 4. This fixes ro — 2. The region of interest is shown in figure (6.2). 

The unpertu rbed  vector potential A 0 has a m axim um  value of 10 a t y =  0, fixing 

k = 20, a i  =  0, and A  — 0 (excepting m odel (3.56)) on the upper and lower boundaries. 

The unpertu rbed  current is —j  = k = 20 everywhere.
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Choosing C(^) — 1 requires th a t M everywhere by condition (3.50). W ith  e =

0.05, we generate w hat looks like the s ta rt of an O -point type field (see figure (3.6)). 

However, when e =  —0.05, the field takes on an X -po in t type field (figure (3.5)). T he 

direction of the perturbed current relative to  the unperturbed  current has an effect on 

the new field shape. It is encouraging th a t these fields reproduce two features seen in the  

m agnetotail - plasm oids and X -poin ts - in a field aligned flow context. O ther choices 

of C(-<4) also create this type of behaviour, and it will be seen again in  the  following 

models.

(b) Model (3.54) w ith perturbed boundary.

The models described have no #-dependence, which suppresses the y  com ponent of the 

m agnetic fields. Therefore, if we introduce an ^-dependence we will force a  y  com ponent 

into the m agnetic field. Hence we will add a ^-dependent function g(x)  to  the y = ± ro  

boundary. In all the boundary perturbations, g( x ) =  exp . Hence the m axim um

pertu rbation  will be located a t x =  0: away from this, g drops to 1 /e  a t the  edge of the  

region. One can im agine th a t this represents some sm all, localised current outside the 

region of interest creating a field described by this vector po ten tial d istribu tion .

Using the sam e choice of param eters as above bu t w ith 8 = 1, we o b ta in  an X -po in t 

(figure (3.7). Perturbing the current with e positive produced an O -point. Therefore, 

these two types of perturbation  affect the system  in opposing ways

For the O -point, the vector potential has a slight dip along y =  0 w ith the largest dip a t the 

origin, x = y = 0. C oncom itant w ith this is a sim ilarly shaped current profile. T he vector 

po ten tia l exhibits a slight brightening along y =  0 for X -points, the m axim um  located at 

the origin: again, the current profile resembles the vector po ten tia l shape. Hence X -poin ts 

appear to  brighten the current, while O-points depress the current. A lthough the effect is 

sm all, it is definitely present; the new field com ponents are larger th an  those generated by 

approxim ation errors in the expression of the derivatives required by the vector po ten tial 

representation of the m agnetic field.

2. (a) Model (3.55) w ith perturbed current.

M  is fixed a t 10 and we define c =  This guarantees only one peak in the vector 

po ten tia l over the range. A  also takes on the sam e range of values as the previous 

model, i.e., A°max -  A ^ in =  10, bu t j ^ ax -  j Qmin =  5 |1 . W ith  £ =  1, we m ust have 

|e| <C |c2|. e =  —0.05 creates a be tter defined X -po in t (figure (3.8)). Similarly, on 

setting  e = 0.05, the O-point is again more apparent, even although we are a t the same 

level of perturbation . This is caused by the gradients present in the background profile; 

we have to  perturb  the field more to  balance the equation.
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Increasing c breaks the sim ilarity with the m agnetotail conditions, b u t still solves equa­

tion (3.43). W ith  e =  —0.4 (figure (3.10)), the  field strongly resembles an X -po in t. The 

O-point is also much more pronounced (figure (3.11)) w ith e =  0.4.

(b) Model (3.55) w ith perturbed boundary.

Changing the boundary conditions in this model gives results very sim ilar to  those above 

(see figure (3.12) for 6 =  +1, and figure (3.13) for 8 = —1.) Again, the  shape is more 

pronounced for the same level of perturbation.

The sam e features in A  and j  are seen in this m odel as were seen in the  previous case. X - 

points generate a current brightening and O -points a slight depression in the sam e m anner 

as seen previously. These features are naturally  much stronger in the extrem e e cases.

3. (a) Model (3.56) w ith perturbed current.

Again, M  is set to  be 10 and c =  ^ • This fixes A ^ aa, to  be the sam e as previously, 

w ith a m inim um  of ^  on y  =  ± r 0. C(^) 1 also. We also set p — 1. W ith  e — —0.05

which is much sm aller than  the range j max — j min = c2M  — p  we ob ta in  the expected 

X -point: c = 0.05 yields an O-point. The background A causes an increased bending in 

the field required to balance equation (3.56).

(b) Model (3.56) w ith perturbed boundary.

A  on the boundaries ranges from =  1 to A ^ aa. = M  — ^- =  10 — In figures

(3.17) and (3.16), 8 =  —0.8 and 8 =  0.8 respectively. T his is close to the level of 

pertu rbation  perm itted , but dem onstrates well the fact th a t one can create the same 

features w ith this model.

The choice of A here combines the two models above and appears to give the strongest features 

for approxim ately the same level of perturbation. In the unpertu rbed  case, the current will 

have the same shape as model (3.56), bu t on pertu rbation  the effect o fp  as a source term  of 

A  will be apparent. This will have a knock on effect in the m agnetic field.

All three models generate much the same kind of features for m ost choices of pertu rbation . Of 

course, we cannot hope to describe all types of perturbation  possible, bu t it seems th a t w hatever 

is chosen, field aligned flow can describe at least a qualitative agreem ent w ith features seen exper­

im entally. The above shows th a t the correct shapes - X  and O  points - can be generated in this 

simplified model. The X -poin t configurations are taken to  be analogues for reconnection regions 

in the m agnetotail. This should not be taken to im ply th a t reconnection exists in this model. 

R ather, we sim ply s ta te  th a t the m odel can be made to resemble the trad itiona l X -po in t picture 

of reconnection.

The O -points are taken to represent plasmoids in the m agnetotail. T he m odel is lim ited, as 

the plasm oids are seen to  move in the m agnetotail, whereas the plasm a here is taken to  be tim e
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independent and does not transla te  in space.

3.6 Summary and Conclusions

The key conclusion we can m ake is th a t for flows w ith flow function other th an  /  =  ± 1  we m ust 

be in a very particu lar m agnetic field geometry. This is expressed by equation (3.13). If B  solves 

this equation, then we can say th a t the system  can now support flow functions o ther th an  /  =  ± 1 . 

If the field does not solve (3.13) then the fluid can only move a t the Alfven velocity, either parallel 

or anti-parallel to the field direction - i.e., /  =  ±1.

Further classifications have been m ade. In the m ain, we have fixed the flow function and asked 

w hat fields m ay support such a flow. B ut we have also adopted the com plem entary approach of 

fixing a class of field and asking w hat form  of flow function is permissible.

This process of classification has allowed us to identify and choose a set of equations th a t have 

been used to  m odel a  field aligned flow system , the m agnetotail. We have used three idealised m od­

els of the m agnetotail in order to generate some features th a t are observed experim entally, nam ely 

Y -poin ts and O-points. We can com pare this to  the system  trea ted  by Birn [30]. In this paper he 

specialises an earlier 3-dimensional trea tm en t [31] to a 2-dimensional, steady incompressible sys­

tem . The density p is not constant in this model. T he pressure is given and the equivalent of the 

flow function are given, along with the relevant boundary conditions. It is found th a t a  plasm oid 

is form ed w ith a shape not dissim ilar from  those quoted here. This m odel is ra ther different from  

the one presented here; for instance, the pressure now plays a role in determ ining the topology of 

the plasm a. In the models presented here, it is merely a bystander. However, bo th  approaches 

generate O -points which are taken to be plasm oids. T his suggests th a t the  com m on field aligned 

natu re  of the  plasm a is more im portan t than  the differences between the models.

Lee and Yan [33] describe the structure of field aligned plasm a je ts  associated w ith m agnetic 

reconnection. Since reconnection is not a principal concern of this thesis, we merely s ta te  th a t in 

the models presented here we can generate Y -poin t configurations th a t are entirely field aligned, 

as opposed to  the field aligned je ts  seen in [33]. Lee and Yan exam ine the flip-side of this coin, 

the creation of field aligned flow by an Y -po in t w ith reference to  the m agnetotail. Hence bo th  

trea tm en ts have a degree of overlap.
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Figure 3.5: Magnetotail model (3.54) with perturbed A, e negative
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Figure 3.6: Magnetotail model (3.54) with perturbed A, e positive
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Figure 3.7: Magnetotail model (3.54) with perturbed boundary conditions, 6 positive
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Figure 3.8: Magnetotail model (3.55) with perturbed A, e negative
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Figure 3.9: Magnetotail model (3.55) with perturbed A, c positive
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Figure 3.10: Magnetotail model (3.55) with perturbed A, e extreme and negative
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Figure 3.11: Magnetotail model (3.55) with perturbed A, e extreme and positive
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P'igure 3.12: Magnetotail model (3.55) with perturbed boundary conditions, S positive
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Figure 3.13: Magnetotail model (3.55) with perturbed boundary conditions, 6 negative
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Figure 3.14: Magnetotail model (3.56) with perturbed A, e negative and within approximation
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Figure 3.15: Magnetotail model (3.56) with perturbed A, e positive and within approximation.

j  I . , i I i i i I i , i L

0 2 4 6 8 10

Figure 3.16: Magnetotail model (3.56) with perturbed boundary conditions, 6 positive
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Figure 3.17: Magnetotail model (3.56) with perturbed boundary conditions, 6 negat:
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C hapter 4

Tim e D ependent Field Aligned  

Flow

The field aligned equations of chapter 2 are considered w ith /  tim e dependent. Two approaches are 

taken to their solution. The first m ethod specifies the variable dependency of /  (as in chapter 3) 

and derives conditions th a t the m agnetic field m ust satisfy. The second m ethod fixes the m agnetic 

field and looks a t the resulting equation for / .  Note also th a t we will som etim es denote the partia l 

derivative §£ by f x .

4.1 The Flow Function and the Governing Equation

Fully tim e dependent field aligned flow in this m odel is governed by two equations: (2.36)

(B .V ) /  =  0

and equation (2.38)

r \

x ( /B )]  =  (1 -  f 2)B  x V 2B  +  B  x [V (l -  / 2).V ]B

both  of which were derived in section 2.4. A lthough w ritten  in vector form, only the z-com ponent 

of (2.38) is nonzero. Hence, in full we may write

d 2f  B r d 2f
drd t  r 393t

1 3 ( r B e) l d B r
r dr  r 36

3 1
3t

h  f 2, , ^ 5 ( i - / 2) 4 i d ( i - f 2) \
- j c [ l - / ] + -  d r  + - J  de  1 = 0  (4.1)

where 0 i ,^ 2  and c are defined in section (3.1). In th is chapter we shall exam ine tim e dependent 

solutions to  (2.36) and (4.1).
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4.2 Solutions to the Full Flow Equation

We a ttem p t here to  look for solutions by specifying a t the outset the variable dependency in the 

flow function / .  I t is found again th a t specifying /  chooses very particu lar m agnetic fields.

4.2 .1  f  =  f ( r , t )

By equation (4.1), B r (r, 9) is identically zero. By the Maxwell equations, th is chooses fields of the

form B  =  B  (r)  9. Since now both  the m agnetic field and the velocity do not depend on 9, we m ust

m ake sure th a t the pressure does not either: it is unreasonable to  expect the pressure profile to

depend on 9 when noth ing  else does. Hence, <j>i — B 2 and <j>2 =  0. E quation (4.1) reduces to  the

solution of

| | V x ( / B ) ]  =  0 

i.e., V x ( /B )  =  c (r, 9) (4.2)

for some function c. T h is m ay be solved by setting c =  [0, 0, c (r)], c ( r )  arbitrary , yielding,

f l 'r ' i )  =  7 B  j  s c ( s ) d s  +  T b  ( 4 ' 3 )

for a rb itra ry  function r ( t ) .  The corresponding fluid velocity is

J s c ( s ) d s  9 (4-4)11 -
r{t)  +

r

W hen c (r) =  0, such a velocity profile is known in fluid mechanics as a  line vortex. T he underlying 

m agnetic field geom etry m ay be a com plicated function of r , bu t the fluid m otion in th is case is 

well known, and  is independent of the m agnetic field. The pressure associated w ith th is flow is 

found by su b stitu tion  in to  (2.21), and is form ally given by

B 2 f r l  f r B 2
VoP H-------^— =  constant  +  / [ / 2 (s) — l] — ds — t '9 (4-5)

^ J r 0 s

Again, th is is the form al form  th a t p  m ust take in order to  solve (2.21). Note, however, th a t th is

form al solution carries a 9 dependence, which we have already disallowed on physical grounds. We

can rectify the  situ a tio n  and  balance the m om entum  equation in a satisfactory way by postu la ting

the existence of an additional external force F  th a t will drive the system  in the correct fashion.

Suppose the force is of the form  F  =  F9: th is choice is reasonable since the fluid is m oving in the

9 direction also. On exam ining the com ponents of (2.21) we obtain

_ f B ^ _ _ d p _ B d ( r B l  
r dr  r dr

9-  =  +  F
‘ dt r d 9
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Here we see the need for an external driving force. If F  =  0, then in teg ra tion  of the 0-com ponent 

of the m om entum  equation means the pressure function picks up a  0 dependence, which is not 

perm itted . However, if

F - 9 f R
F ~ m B

then the 0-component of (2.21) merely tells us th a t p  is a  function of r  and t, as required. This 

force is a  driver to  the system which sets up the field aligned flow we have asked for. It ensures 

th a t the pressure profile is a function of r  and t  only, the sam e variables as m agnetic field and the 

flow. One can im agine th a t the force F  drives m ateria l around the concentric circles described by 

the field. The pressure is given by

PoP = ~ B 2~r ' + f  I f  (s) ~  !] — ds + T( t )
Z J r 0 S

where T( t )  is an arb itrary  function of tim e to be determ ined by boundary  conditions.

4 .2 .2  f  =  f ( 0 , t )

W hen we ask for this variable dependency we find th a t this chooses fields B  =  by (2.36)

and (2.20). However, when we substitu te  /  =  f ( 9 , t )  w ith the correct field in to  (4.1) then  we find

th a t there exists no function /  solving (4.1) for any choice of 0 ( 0 ) .  Again, the  problem  can be

resolved by looking a t com ponents of the m om entum  equation (2.21) under the assum ptions of 

th is subsection.
„ d f  O f 2Q 2 _  dp  Q

dt r r 3 dr  r

In tegration of the r  com ponent will give a form for p  and an arb itrary  function qi(9, t):  similarly,

the 0-com ponent also yield a form for p and a different arb itrary  function q2 ( r, t ) .  The two answers

for p  m ust be identical and therefore we m ust have

Pi2 d f
qi (9, t)  -  q2( r , t ) =  —  [ f 2 -  1] +  —  01og(r)

No such functions q\ ,q 2 exist and therefore the m om entum  equation cannot be balanced by a 

su itab ly  defined pressure p. Again, if we include an external force F =  Gv  (in the  sam e direction 

as the flow and the field) we can define a pressure for this field aligned system . T he equivalence of 

the  integrals of each com ponents m eans th a t G,q i  and q2 m ust satisfy

f r Pi2 d f
9i (9, t ) ~  Q2 {r, t) + J G ( s , 0, t )ds  =  —  [ / 2 -  l] +  — 0  log(r)

T he pressure in this system  is now given by

F  0 2 d f
p =  J  G (s ,9 , t ) d s - \ - q 1(9, t)  -  7̂ 2 / 2 -  ©log(r)
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and  so (2.21) is balanced.

So by postu lating  an external force we can solve the system  consistently. These external forces 

(F  and G)  can be im agined as drivers th a t push the fluid in the required m anner in order to  achieve 

a field aligned flow.

4 .2 .3  f  =  f ( t )

W ith  th is choice of / ,  equation (2.36) is redundant and only (2.38) need be considered; this m ay 

be solved by separation of variables. If the constant of separation is c\ then

f f  =  ^! (1 - f )  (4.6)

[B.V  — ci] j =  0 (4.7)

The tim e dependency is now completely described by /  =  tan h  (c2 +  c\t) ,  C2 =  constant .  T he 

m agnetic fields th a t support this flow function are given by solving (4.7). Note th a t as t —► ±oo, 

then  | / |  —»■ 1: in the lim it, | / |  =  1 which we know implies th a t any m agnetic field topology will 

suffice. B ut the geom etry is fixed by (4.7) since we originally considered /  =  /(< )  and not /  =  ±  1. 

A field which solves this is B  =  ^ rex p  ^  , 0^, where a and b are a rb itra ry  constants.

4 .2 .4  A Linear A nalysis o f th e  Full E quation

We exam ine first a linearised version of (4.1). We perturb  the system  by m odifying the velocity

field only. If we have an initial condition of tim e independence in the unpertu rbed  flow function /o

(the unpertu rbed  velocity field is therefore tim e independent also) then  we preserve field aligned 

flow by perturbing /o by a small, bu t tim e dependent function, i.e.,

f  = fo + cg (r ,9 , t )  (4.8)

where e is a sm all param eter. The to ta l fluid velocity is then given by

u = [ f 0 (r,9)  + e g ( r , 9 , t ) ] - ^ = z  (4.9)
V^o P

B  is still tim e independent, bu t we allow tim e dependent flow. S ubstitu ting  (4.8) into (4.1) and

linearising to  first order in e, then by our choice of in itial condition we obtain

^  [V x (SB)] +  ( /B .V )  [V x ( ,B ) ]  +  («B .V) [V x ( /B ) ]  =  0 (4.10)

If we further suppose th a t g (r, 9, t) = r  (t ) h (r, 9) then  we obtain  by separation  of variables

t  (t) oc exp (ct) (4-11)

and

c [V x (hB)} + ( /B .V )  [V x (/iB)] +  (/iB .V ) [V x ( /B ) ]  =  0 (4.12)
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where c is the constant of separation. Since we are perturbing the velocity we m ust also satisfy

(B .V ) h = 0 (4.13)

to m ain tain  incom pressibility up to order e, and hence exactly. It is a t th is point th a t the  choice 

of in itial conditions becomes im portan t to  further progress. As we have seen, fixing /  chooses B 

and w hether a  properly defined h exists th a t can solve (4.12, 4.13) is not obvious. If we choose 

f  = constant  /  ±1  then we know we have chosen fields such th a t (B .V ) j  =  0 by section (3.3.1). 

T his in tu rn  m ay be satisfied by pu tting  j  =  V x B  =  0, leaving the equation

(c +  /B .V )[V /»  x B] =  0 (4.14)

along w ith (4.13). A simple solution is h — cons tant , yielding

g
u  — [ /  +  eh exp (ct)]   (4.15)

V^o p

T he fluid moves along the field lines, chosen by the in itial conditions by defining / ,  w ith a  velocity 

either exponentially decreasing or increasing, depending on the sign of c. For c positive, the analysis 

will become invalid when the perturbing function eg(r, 9, t ) becomes too large. W hen c is negative, 

the fluid will eventually become sta tic  everywhere.

In general, however, to continue w ith this analysis we have to  solve 4 equations sim ultaneously: 

(2.36), (2.38), (4.12) and (4.13). We can sidestep (2.36) and (2.38) by explicitly choosing /  =  ±1  

as the equilibrium  condition. This means th a t B  is not fixed by the unpertu rbed  sta te , leaving us 

free to find a suitable g, B pair th a t solve (4.12) and (4.13). Therefore, th is analysis asks for those 

fields th a t can support a first order tim e dependency in a field aligned flow travelling close to  the 

Alfven velocity.

Again we have two equations to solve sim ultaneously, and we m ay proceed in a sim ilar way 

as in the tim e independent case, as considered in section 3.1. A lthough (4.12) is a  second order 

differential equation in h, when we preferentially remove the partia l derivatives of h, using (4.13), 

the second order derivatives drop out. By (4.13), =  —̂ § f  ( w h e r e i s  defined in section 3.1)

leaving

^  =  C ( r , e ) h  (4.16)

where

C  = - B r x ^

Cl =  2r B ^  -  2r B ^  +  2 r > * ^  -  2B ,9̂  +  ( B r -  c r ) 9 B '
dOdr d6dr d r 2 892 89

+ r (2Br + c r ) ^ -  + “  2 S ^)
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C 2 = - 2  B r
dB r dBg 

+  r
dO dr  

Similarly, w ith =  — j  § |  we get

dBe dB r 
— r-

dO dr
+ ( B l  +  B 2e ) ( B r - c  r)

where

with

f r = D ( r , 6 ) h

Bg Di
D =  x —

r D 2

(4.17)

q2 d
D l = —2 rB r — f  -  2Bg

dOdr
d2B r dBg

D 2 — 2 Br

+ (2 B r -  cr)

d B r dBg 
+  r-

dO2 dO 

dBg

+  r* 2 B ^  + c9 B ‘
d r 2 dr

dr

+  (-B 2r -  B j )dO dr

We make another ‘sm oothness’ assum ption, th is tim e on h, i.e.,

d B r _  dBg 
dr dO

d dh d 'dh '
dr .90. ~  dO dr

S ubstitu ting  in (4.16) and (4.17) we arrive at

dD__  d £ _  
dO dr (4.18)

The fields which satisfy (4.18) support a first order tim e dependency in field aligned flow, when 

perturbed  away from  the Alfven velocity. A simple solution to (4.18) is B  =  B  (r) 0 which yields

9 = r B

where a = constant .  This has a perturbed flow profile of

1 +
ea exp (ct)

r B
BO = B  +

ca exp (ct)

This solution is only valid in the region of tim e and space where =f - exP(~ct) e. The fluid m otion 

is the original fluid m otion w ith a line vortex m otion superposed.

T he above analyses suggest th a t tim e dependent flow along tim e independent field lines is 

possible. Instead of considering the full equation for tim e dependent field aligned flow we next 

consider a reduced form  by specifying a t the outset a particu lar class of m agnetic fields.
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4.3 A Nonlinear Flow Equation

A m ajo r drawback of the linear analysis in section (4.2.4) is th a t it is not possible to  let the 

linearised quantities generate any ‘sharp ’ or ‘large’ features in such a system  w ithout the  analysis 

breaking down. Such features in the flow function /  would indicate a position in space and tim e 

where the m agnetohydrodynam ic model breaks down. We are drawn to  a ttem p t a m ore dem anding 

trea tm en t to find if such features exist in this model. We consider a reduced form  of (2.38), m aking 

the  assum ption th a t

(B .V ) j  =  0 (4.19)

T his drops the ( l  — / 2) term  in (2.38). T his choice of field m ay appear ra th e r arb itrary , bu t 

has been seen before in section 3.3.1. We have chosen to  work w ith  those fields th a t  support 

f  = c on s t ant ; th is can perm it a linear analysis m aking the flow function  weakly tim e dependent, 

in a sim ilar fashion to th a t seen above in section 4.2.4. Allowing /  =  f ( r , 0 , t ) equation (2.38) 

becomes

x ( /B )]  =  B x [V (l -  / 2).V ]B (4.20)

or, in scalar form

d 2f  B r d 2f
drd t  r dOdt

+ 1 d {r B e) I d B r 
r dr r d6

d f

dt

m(i- n  ! _ 0
dr dO (4.21)

E quation  (4.21) is a nonlinear partia l differential equation in three variables which m ust be solved 

in conjunction w ith (3.8). Using (3.8) we can elim inate f r in preference to fg and vice versa. T his 

process yields two equations

where

f r t  +  <*i (r, 0) f t +(3 (r, 0) f f r =  0 

f e t  +  a 2 ( r > e ) f t  +  I3 ( r > 0) f f o  =  0

Bo<j)i -  B r(j)2

B r
O i 2 ~ ~

B 2r + B 2

r(fir2 + 5|)
Of i =  — ̂ a 2

d { r B e) d B r ' r B r
ZJB* + B* •’

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)
dr  dO

B oth (4.22) and (4.23) m ust give the same answer on in tegration and this generates conditions 

th a t  B  m ust satisfy in order th a t this is so. Again, th is is done by imposing a condition on / ,  

nam ely,

[fot]r =  [frt]g (4-27)
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T his gives a ra ther com plicated set of conditions on B ,

da  2 dai
w -  W ='0 (4'28>

and

%  = (4.29)

%  = - “ 2/? (4.30)

If we assum e
d \ m d \ m

dr de do dr (4.31)

then we can drop either (4.29) or (4.30), since this effectively restates condition (4.28).

In the following work, we do not expressly find a field th a t solves (4.28) and (4.29), b u t m erely 

look for a  region in a known field where the conditions hold approxim ately. Some of the fields 

th a t solve (B .V ) j  =  0 described in chapter 3 also solve (4.28) and (4.29) approxim ately in certain  

regions of space. These regions were found by substitu ting  a test field and num erically calculating 

the left hand side of each equation. By specifying an upper lim it to  the deviation away from  a 

perfect solution, one can find regions of approxim ate solution. It was found th a t the Bessel function 

field (3.24) contained regions where (4.28) and (4.29) held approxim ately (where we assum e (4.31)).

Any solutions to the nonlinear equations (4.22),(4.23) m ay be applied in these regions. They 

are also consistent with a linear analysis where the flow function equation used is also approxim ate 

(see section (4.3.1)). Further comment on these conditions is reserved for section (4.3.5). We m ay 

a ttem p t to solve each of (4.23,4.22) separately: treating  6 as a param eter in the coefficients of 

(4.23), for example, and sim ilarly with r  (4.22). Assuming th a t we have a  suitable m agnetic field, 

this approach leads natu ra lly  to  the study of an equation of the form

f xt +  a ( x ) f t + / 3 ( x ) f f x =  0 (4.32)

as the m ain  equation of interest; a second order nonlinear, hyperbolic p artia l differential equation.

The coefficients depend on the m agnetic field and contain inform ation on the tim e and space

gradients in the problem . It is easily seen th a t

a  (x ) ~  i— I— F  ~  sP ace Sra d ie n tlengthscale

a  (z) carries inform ation on the space evolution of the flow function. (3 (#) is more subtle and 

entertains an aspect of nonlinearity

/3 (x)  ~  —:----  x —------— ~  characteristic frequency
t ime  size of  f

(3 carries not only the tim e evolution inform ation, bu t also a solution ‘am plitude’. Equation (4.32) 

forms the basis for further investigation into tim e dependent field aligned flow.

In the following sections (4.3.1 -4.3.4) we shall consider (4.32) under a hierarchy of increasingly 

sophisticated assum ptions.
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4 .3 .1  Linear A nalyses

Linear analysis of (4.32) will provide some understanding of its full nonlinear behaviour. The 

nonlinear term  is simple and the equation is already in canonical form. We will use a variety of 

assum ptions and m ethods to  draw inform ation out about the natu re  of the  flow function.

Suppose /  is of the form

/  =  fo ( x , t )  + €ip(x,t) (4.33)

where fo(x,  t) solves (4.32). On substitu tion , e is a sm all param eter we can use to  linearise equation 

(4.32). By the in itia l conditions we arrive a t the  linear equation

ipxt  +  <*\pt +  P M x  +  0 { f o ) x ^  =  o (4.34)

E quation  (4.34) governs a sm all linear pertu rbation  to  the m ain flow function fo(x ,  t ), and we can 

use th is to  investigate modes of behaviour for various values of a ,/? . The last two term s carry the 

original, fully tim e and space dependent background flow. We have gone from  a nonlinear partia l 

differential equation w ith space dependent coefficients to a linear inhom ogeneous equation w ith 

tim e and space dependent coefficients. It is arguable th a t the linear equation is no t m uch of an 

im provem ent on the nonlinear one, as we have m ade the coefficients dependent on both  tim e and 

space. If  we make the further simplification

f 0 =  constant

then (4.34) becomes

ipxt +  <xipt +  (Pfo) ipx — 0 (4.35)

which is a much friendlier equation. We shall use (4.35) as a basis for fu rther study. Note th a t 

we have bracketed the coefficient of gx . It can now be seen th a t /?/o ~  and represents a

n a tu ra l frequency in this problem. It depends on both  the background dom inant flow and P the 

tim e evolution param eter. Equation (4.35) now m eans we are looking a t sm all tim e dependent 

p e rtu rba tions away from  a constant background flow function; in effect, we are considering the 

linear onset of tim e dependent field aligned flow from a tim e independent background.

In the  following sections 4.3.2-4.3.5 we shall make various assum ptions on a,  ft and ip in order 

to  draw  out some of the behaviour possible from solutions to  equation (4.35). We shall also show 

how these assum ptions relate to each other, and how the linear analysis can be linked to  solutions 

of the  nonlinear flow problem , equation (4.32).

4 .3 .2  Solu tion  by separation o f variables

Using the tria l solution ip = r ( t ) X  (x) in (4.35) we can separate the variables to  get

ip (a;, t )  oc exp
, a ( x ' )  . .

ct — c  .  ̂ , .. dx
~ ‘ JJ  X c c +  foP  (x ' )

(4 .3 6 )

54



where c is the separation constant. This solution is valid where | ^  |^> c. We have a ra ther 

com plicated space dependence and hence this solution does not tell us m uch th a t is im m ediately 

useful about the flow function. If we pu t c =  m  + in,  perm itting  evanescent/oscillatory behaviour, 

then  the resulting flow function is

rp(x, t ) oc exp [(m +  in)t] x

m 2 +  n 2 +  mfof3(x')  +  i n f o f t x ' )
exp -

J  X n

dx 1 (4.37)
[m + fo/3(x')\ +  n 2

R etaining the full space dependence of a  and f3 m eans th a t this is really only form ally useful 

and alm ost certainly not integrable; the flow behaviour in this linearisation is still not easily 

understood. A more m easured approach is required th a t will yield relevant answers. However, 

(4.36) is of p rim ary im portance when considering the nonlinear analysis of section 4.3.5, where the 

conditions for validity are discussed.

4.3 .3  a  =  c o n s ta n t  and /? =  c o n s ta n t

Consider (4.34) with a  = constant  and j3 =  constant .  These are the sim plest forms th a t o;,/? can 

take. W ith  these values, (4.34) becomes very simple

ipxt + aij>t +  (3 foipx = o

We can substitu te  a linear travelling wave form

tp ~  exp [i (kx  — w<)] (4.38)

By choosing this form, we are effectively looking at the Fourier com ponents of a d isturbance in the 

plasm a. Hence the relation between u> and k will tell us w hat happens to particu lar frequencies in 

the Fourier decom position of the disturbance.

On substitu tion , we have

cok — iuioi +  ik/3fo = 0 (4.39)

In general, u> and k may be complex; therefore if we substitu te

u> =  cur +  iu>i k — kR + ik j

then, on expressing kR, k j  in term s of u j r , u j i  we get

WRflfo
kR = a k i  = a wR "k W2 +  Û lPfo

wR “k “k m

(4.40)

(4.41)

We are now in a position to analyse the behaviour of these waves and their relation  to  o ther solution 

forms.
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1. E q u iv a le n c e  to  e q u a t io n  4 .3 7

T his trea tm en t is entirely equivalent to  equation (4.37) when we set j3(x) = /3 = constant  

and o (x ) =  a  = constant .  W ith  this, (4.37) becomes

tp(x, t ) oc exp [(m +  in)t] x

m 2 +  n 2 + mfo/3
exp < a

n 2 +  [m +  fo(3Y
x  — ta nfof i

n 2 +  [m +  foftY
(4.42)

By com paring the tim e dependencies of (4.42) w ith (4.38) we find th a t m  = u>i and n = —ujr. 

This m eans th a t the evanescent and oscillatory coefficients of x  in (4.42) are equal to  those 

of (4.41), i.e,

Icr = ot ■
—n/p/? _  m 2 +  n 2 +  m /0/?0

n 2 +  [m +  fo/3]2 1 n 2 +  [m +  /o/?]2

2. ‘L o n g  la s t in g ’ w aves

We m ay more usefully express kR, k j  in term s of dimensionless variables scaled to the na tu ra l 

frequency. Therefore w ith a = b — j j ^

kR k j  a2 + b2 + b
(4.43)

a  a2 +  (6 -f l ) 2 ’ a  a2 +  (b +  l ) 2 

For a long lasting wave, i.e., one th a t rem ains for a num ber of wavelengths we require th a t 

the evanescent tim e factor a>j is much greater than  the oscillatory frequency u j r . T his will 

tell us the com ponents of any disturbance th a t propagate the furthest w ithout significant 

exponential growth or decay.

In term s of the frequencies u j j  and u j r  we m ust have

uji

Therefore

UJR

b
a

< 1

<  1

(4.44)

(4.45)

We also need the m otion to  be weakly dam ped in space (characterised by the value of k j ) 

com pared to  the oscillatory wavenumber kR i.e.,

k i
<  1

or,

We can guarantee this by setting

kR

a2 +  b2 +  b
<  1

Id  <C 1

(4.46)

(4.47)

(4.48)

This sim ply says th a t the wave m ust have an oscillatory frequency much less than  the natu ra l 

frequency, and th a t the evanescent decay constant uij m ust be much less this.
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We can also carry out the same analysis by expressing u jr , wi  in term s of Icr, ki .  Using the 

dimensionless variables c =  ^a-, d  =a  ’ ct ’

evanescent term s are very much smaller th an  the oscillatory term s which them selves are very 

much sm aller th an  the natural, background scales a  and /?/o. This dem ands th a t the  wave 

changes more slowly in tim e and space th an  the m edium  it is m oving in. T he ‘larger’ scale 

wave effectively does not see the m edium  in the lim it.

3. W ave b eh a v io u r  in  lim its  o f  lor, l>j  a n d  (3fo

We can force the system  into extreme situations if we take one of the param eters  to  be very 

m uch larger than  the other.

(a) W hen /?/o —*■ oo, then the natural frequency increases. This forces a —► 0 and b 0 

m eaning th a t k /,kR  —> 0. Hence the space dependent p a rt of the wave disappears and 

we are left w ith an oscillatory/evanescent m otion, iji ~  exp [1{ujr

(b) As l o r  —► oo, a —► oo. The wavenumber k tends to ia,  i.e., kR =  0, k j  = a  in the 

lim it. Again the wave nature  of the solution is destroyed as ip ~  ex p (—a x )  exp(iu>i); the 

wave is dam ped according to the na tu ra l scale. By asking for too  high an oscillatory 

frequency, we have dam ped out the wave.

(c) Similarly, as w/ —* oo, the wave tends to  ~  exp(—a x )  exp(iu>t). We can conclude 

th a t if we want the wave to change quickly in tim e, we will destroy the wave n a tu re  of 

the m otion. The m otion will either die or grow w ith increasing x  according to  the  sign 

of a , m eaning th a t this linear analysis is no longer adequate to  handle the increasing 

am plitude of the perturbed solution.

Hence those waves w ith u j r  and u j j  very much larger than  the na tu ra l background frequency 

f3fo undergo either exponential growth or decay a t the ra te  given by a . If grow th is seen, then  one 

m ust move to  a nonlinear trea tm en t to  properly take account of the growing com ponents.

4.3 .4  A ssu m ed  form  for

In th is section we assume th a t a(ar) and j3{x) depend linearly on x,  i.e., we have

a(ar) =  c*o +  «i(a? — ®o)

o j r  c ujj d  —  d 2 — c2
(4.49)

Using the long lasting wave conditions (4.44), (4.46) we obtain  sim ilar conditions

I C l «  1, | ^ | « 1 (4.50)

Hence to  have long lasting waves we need to  be in a region of param eter space where the
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and

/3(x) =  (3q +  /?i(x -  a?0)

exactly everywhere. Ju s t as we have already assum ed a,/3 to  be constant everwhere (see section 

4.3.3), we now assume th a t they are exactly linear functions of the independent variable x.

We can specialise th is solution to  the case of a ( x )  and /?(x) bo th  slowly varying sim ply by

assum ing th a t <*o << 1 and Po <  1 for some Xo- This would be equivalent to  saying 

th a t the m edium  is nearly homogeneous. If we do not constrain the x dependence, we can look a t 

the behaviour of wavelike solutions in a strongly inhomogeneous m edium .

W ith  the forms of a  and (3 above, equation (4.35) becomes

i>zt +  [»o +  a i  (x -  x 0)] f t  +  fo [ f t  +  f t  (x -  x 0)] f t ,  =  0 (4.51)

The x-dependent coefficients m ean th a t we cannot use a simple linear travelling wave. However, 

we m ay still have a harm onic tim e dependence, e~%wt. Therefore we postu la te  a  solution of the 

form

ip(x, t) ~  <j){x)e~lUit (4.52)

with u) =  u r  +  iu i

On substitu tion  we get an equation for (f>;

where

and

E ( x ) =  —[c*o +  a i ( z  -  x 0)]

^  =  E{x)  +  i F ( x )
9

U r  ~j~ U j  [ u i  J  +  f o f i o  +  f o P l ( x  -  X 0 ) ]

. u \  +  [u;/ +  /o/?o +  fo/3i(x -  x 0)]2 

UR[fo(3Q +  foPi (x  -  x 0)]
Ur  +  [ui +  / 0/?o +  foP i (x  -  x 0)]2.

F ( x )  = [a 0 +  c*i(x -  x 0)]

Equation (4.53) can be in tegrated  in closed form, yielding

(j)(x) oc exp[Q i(x)] exp[z'Q2(z)]

where, w ith n  =  1,2,

Q n ( x )  = X -  xo) +  [2B n H D n -  G A n D n -  G B n Cn]

(4.53)

(4.54)

(4.55)

(4.56)

2 G 3
Z (x )

and

+  \.E B " D " +  H A » D » + G H B n Cn -  G 2A n Cn -  H 2B „ D n]

Y ( x )  = ta n -1
H  +  G(x  — xo)

U R
, Z ( x )  = l o g { £  +  [ f '+ G ( x - x 0)]2}
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where E  = H  =  u G  =  fopi  and

-4 i  — 4̂ 2 — — c*o

-Bi =  a i  B 2  — — « i  

C \ =  UJr +  Ul] +  U) l fa0Q C2 =  W r / o P o

D\  =  UlfoPl  -D2 — ^R fo P l  

Consider (4.53) as |x — xq| —*► 0; the evanescent and oscillatory factors E{ x )  and F ( x )  becom e

E (x )  —► - a 0 UR +  +  ^ i f o P o

F(x )  —► o 0

- w i i  4" +  M o ] 2 .

UR0ofo

d- f  F  = &Q

.UR 4" [w/  +  foPo]2.

d e f
= F0

which recovers the results of the a , 0  =  constant  analysis (section 4.3.3). Locally, the  m edium  is 

homogeneous and no t position dependent. In the opposite lim it of |a? — a?o| —*■ 0 0  the  coefficients 

a(x) ,  0{x)  tend to infinity also for aq, 0i  nonzero. Equations (4.54) and (4.55) become

7-1/ x Oc\UJi de f
E(x)  -> - - r —  =  Ec

F{x)

M i
OtiOJR de f

— -T
M i

respectively. The num erical values of the space oscillatory and evanescent factors (F ( x ) and E ( x )  

respectively) depends on their tim e equivalents u>r  and u>i, i.e., if the wave is dam ped only very 

slightly in tim e then this scale percolates through to the space evanescent properties.

Suppose now we assume th a t the wave has no evanescent tim e com ponent, i.e., u j  = 0. In the 

lim it of |x — x 0 1 —* 0 0 , we have

F~

but

E c

Ql Ur

M i

0

The wavelength of the m otion transform s slowly to a fixed value while the evanescent behaviour 

disappears completely. The new wavelength is entirely independent of the wavelength a t \x — xo| —► 

0 since it depends on the gradient term s oq and 0\ .  If we let 0\  —> 0 keeping a  1 nonzero and 

jP- 0 then

l^ooI 0 0  (4.57)

This m eans th a t as 0(x)  —*■ constant  w ith a(x)  dependent on x, the wavenumber F ( x )  will tend 

to infinity, m eaning th a t the effective wavelength of the  m otion will tend to  zero.

If we have
Po<*i
M i

> (PofoY

w r  +  {Pofo)2
(4.58)
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Figure 4.1: F(x) ,  c o s [ Q 2(*k)] for a () =  1, aq =  1, /?0 =  10, f3\ =  1, u j r  == 30.1 and / 0 =  1

then the equivalent of the wavenumber F(x)  will increase smoothly via equation (4.55) from Fq 

to Foo, a value numerically larger than F0. Since F  increases, we are effectively making the 

wavelength of the motion shorter. Figure 4.1 shows the behaviour of F( x )  and cos( f  F ( x ) dx )  

when (4.58) is true. The ‘wavenumber’ F  transforms smoothly into a larger positive number, 

causing the wavelength of the motion to decrease with increasing x.

This amounts to moving the energy present in the motion onto a different length scale. If

(4.58) is true, then the energy is moving to a shorter length scale. If not, then the energy is being 

redistributed onto longer scales.

This analysis brings out yet another feature of (4.35). Remember tha t this equation describes 

the linear onset on time dependent field aligned flow. Therefore, we have shown th a t  if we give 

the correct variable dependence to the coefficients of the differential terms in (4.35) (see equations 

(4.51) and (4.58)), the motion can effectively redistribute energy onto different length scales, in 

this linear limit. In the limit f3\ —+ 0, this length scale tends to zero since |Foo| —> oo. This, 

coupled with the possible exponential growth behaviour seen in section 4.3.3 points to something 

interesting in the behaviour of the nonlinear flow equation, (4.32). The following section deals with 

this equation and shows how it may be linked to the linear analyses of sections 4.3.1-4.3.4. See 

figure 4.4 for a schematic outline of treatments given for equation (4.32).
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4.3 .5  N onlin ear A nalysis

We tu rn  away now from  linear analyses to  considering equation (4.32) directly, a  hyperbolic equa­

tion  w ith non-constant coefficients. Unfortunately, we do not possess an analytic  solution to  (4.32) 

for a  and 0  both  fully varying in x. To ease the problem  slightly, we suppose th a t  0  = constant  

or a t least § f  This can be seen as a nonlinear trea tm en t of the case seen in the  previous

section, where 0 { x ) =  constant  bu t a  ^  constant  (see equation (4.57)). Since the equation  is

hyperbolic, we postu late solutions of the form  /  =  ip [77], where 77 =  c\ (a;) +  c2t  On substitu tio n

into (4.32) we obtain
a (z )  . 0  . .

c'l c2

If we set ^ P- = k = constant  and ^  = z then we have a second order ordinary  differential

equation w ith constant coefficients,

V’r/r, +  +  Z'lp 'lp ,, =  0

or,
d_

dr]
i>v + kxp + -v>2 =  0

which, on in tegration yields

(4.59)

where w ^  w(r}). We have reduced the problem  from a nonlinear hyperbolic pa rtia l differential 

equation to  solving a R icatti equation, some solutions of which are detailed below. We will exam ine 

a particu lar class of solution by specifying th a t

V
^  q + Kv)

E quation (4.59) now becomes an equation in h, i.e.,

+  h
■ 2 j w _ k

+ h2
w

. P . P .

zp wq 
= k q +   -----------2 p

(4.60)

(4.61)

A lthough we still have a R icatti equation, we can m anipulate this form  to generate analytic answers 

relatively easily. Additionally, we will only consider the sim pler solutions of the large spectrum  

available.

1. Consider (4.59),(4.61) w ith w =  0.

Equation  (4.61) is now a linear equation since th is specification drops the h 2 term :

hfj — Jch = kq — y

Additionally, if we set k =  1 and kq — ^  — 0 then h =  exp(?7). W orking back th rough the 

variables we find th a t th is fixes c\ and c2 to  be

f  ( 'W ' toCl = J  a ( x  )dx  , c2 =  —
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w ith final solution

f ( x , t )  = V

q +  exp
(4.62)

I X 0 " '  2q '

D etailed com m ent on this solution can be found later in th is section.

2. Consider (4.59),(4.61) w ith — k = 0.

T his drops the term  proportional to  h in equation (4.61), so we still have a  nonlinear equation 

to  solve, nam ely
9m « a*m 7/n

(4.63)h , - , 2 _  r w zp 
h v  — h  -  —  —W h*

p ~  p  2

which has two solutions depending on the sign of the coefficient of h 2.

(a) Suppose th a t h =  mQ,  for m  =  constant  ^  0 and Q = Q{rf). Then on substitu tion  into

(4.63) we have
q w  zp  

. P 2 .
T his factor m  allows us to rewrite the equation in a clearer fashion:

Qr) H Q — —p m

Qr) “b (4.64)

where 6 =  ^  =  £p m
1 W    £ £

P 2 . The second equality defines m  in term s of the variables 

already given. Equation (4.64) has solution Q = tanh(<5?7) m eaning th a t h = m  tanh(<5?7). 

R esubstitu tion  of this tria l solution into (4.32) fixes m  = 1 and 6 = j  ^  which in 

tu rn  determ ines c\ and c2 as

Pp1 [ x
ci = —  J  oc(x')dx, c2 = 

The final form  of the flow function /  is

2 ( 1 - * 2 )

f ( x , t ) = p
q +  tanh

(4.65)
Tq Ix  0 f t M  d x ' +  2 ( 1 ^ 1

The behaviour of this solution is described in Table 4.2.

(b) As has been noted, the sign of the coefficient of h2 is im portan t in the determ ination  

of a solution. We can obtain  a sign change in this coefficient by perform ing a sim ilar 

analysis. This tim e we put h = —m Q  which gives

m w  2 1
Q r )  Q  = ------p m

rq2w zp

L P 2

when substitu ted  into (4.63). This tim e we define a quantity  8 such th a t —8 = —in̂ L =
1 W   ££
p 2

; therefore (4.63) becomes

Qr) -  8Q2 = 8 (4.66)
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with solution Q = tan(?7<5). Again, resubstitu tion into (4.32) fixes the superfluous 

variables to  m  = 1 and 8 = j  This tu rn  fixes the original quantities c i, C2 to  be

i r  , i\ j  foc' = - tJ  a(x)ix' C2 = 2(TT?)
The final flow function is

/  ( M )  = -----------  .  :------ T (4-67)
q +  tan

The param eter dependent behaviour of th is solution is described in Table 4.3.

O ther solutions to  (4.61) certainly exist and m ay be easily found if we already have a solution. 

If hi(r}) is a known solution to  (4.61) then w ith u = u(r]),

h = h 1 + -  
u

is also a solution. The function u is given by the solution to  the linear ordinary differential equation

u =  0
du w 
dr) p

^ 2qw

P P \

Each of the solutions detailed above have two free param eters p  and q. Equations (4.62,4.65,4.67) 

are exact solutions when /? =  constant  and are approxim ate where /? varies w ith x  m uch more 

slowly th an  a.  The param eter p takes the form of an am plitude and contains directional inform a­

tion in its sign: for a fixed point in space and tim e, the sign of p  controls the fluid flow relative to 

the m agnetic field. The param eter q is a tim e scale and can be used to control the appearance (or 

otherwise) of singularities in the solution, since it appears in the denom inator of each solution.

To m ore clearly illum inate the role of p , q , a  and (3 we describe solution (4.62) when a ,/?  are 

bo th  constant. Consider first the case q > 0: the denom inator of (4.62) can never be zero and the 

solution is governed by the exponential. The case q <  0 is more interesting. The denom inator of 

(4.62) is zero when

x = M z l l + ( M ) t ( 4 .68)

i.e., the  position of the singularity is a function of tim e. It corresponds to  a point in space and 

tim e where the fluid velocity is infinite. Now, t  >  0, x > 0 for any physical set of (x, t )  pairs. 

These conditions allow us to  determ ine which values of p,q,ct  and /? generate which particu lar 

behaviours. Table (4.1) displays the com bination of param eter ranges which yields x > 0 in (4.68), 

and the tim es, if any, a t which a singularity m ay be seen.

The fact th a t a singularity is present is consistent w ith the linear result (4.57) of section 4.3.4. 

T h a t result predicted th a t given certain conditions, the effective wavelength would decrease to 

zero, m oving energy onto sm aller length scales. One would expect th a t the appearance of sm aller 

length scales in the system  would m ean th a t such scales would become im portan t to  the system
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a q /3p singularity occurs a t tim e t [Eq.(4.62)]

> 0 q < - 1 > 0 0 <  t < t m

< 0 t > 0

0 >  q > - 1 > 0 does not appear

< 0 t ^  tm

<  0 q < - 1 > 0 t >  t m

< 0 does not appear

0 >  q > - 1 > 0 t > 0

< 0 0 <  t < t m

Table 4.1: Singularity behaviour for values of p, q, a  and f3 in (4.62)

as a whole. This seems to  be borne out by the appearance of the singularity  in th is nonlinear 

solution, where the m odel breaks down at a single point.

Note th a t we define t m = — j ^ 2 q l o g ( —q) for this solution. This q uan tity  is im p o rtan t in 

determ ining the solution behaviour. The factor 1 / (0p) is a characteristic tim e of the  solution, 

com bining both  the am plitude of the solution and the tim e scaling in the original equation . It 

can be seen th a t when it exists, the singularity has three characteristic tim e dependencies. If 

t m is negative, then x  > 0 for all times t >  0 and we get a singularity  appearing in itia lly  at 

(x , t ) =  ^ logO~g); ; an(i thereafter moving through the fluid following equation  (4.68). If t m is

positive then there are two possible behaviours. Firstly, the singularity  can appear after tim e t m 

has elapsed, i.e., the singularity first appears a t (x , t ) =  ^0, an(j then  moves via (4.68).

A lternatively, the singularity exists at tim es t, 0 <  t < t m : in this case, the singularity  first appears 

a t (x , t ) =  } and then moves to its final position (x , t ) =  ^0, at  tim e t >  t m

where it becomes unphysical due to the dem and x > 0. Table (4.1) tells us th a t  the  sign of p 

is crucial: if the sign of p  is changed (for any given oc,/d,q <  0) then we move from  one type of 

behaviour to  another. Hence the direction of the fluid flow relative to  the m agnetic field controls 

when, where and if a t all the singularity appears. T he reason for this behaviour lies in equation 

(4.20); if we substitu te  /  w ith —/  then we get

A

- - [ V  x ( /B )]  =  B  x [V (l -  / 2) .V ]B  (4.69)

E quation  (4.69) is a different equation from (4.20) and hence we should expect it to  have a  different 

behaviour. T his shows up in tables 4.1, 4.2 and 4.3 where changing the sign of p  changes the 

behaviour of the singularity. A sign change from  ip —► —ip does not affect equation  (4.34), i.e., 

changing the direction of the perturbed flow relative to the background flow does no t change 

(4.34). However, changing the background flow /o —► —/o does change (4.34): the coefficient of ipx
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changes from /?/o —> —/3fo. Note also th a t we can obtain  (4.69) from  (4.20) sim ply by reversing 

the direction th a t tim e runs in. If we let t =  —t  then Hence

- | : [ V  X ( / M , r ) B ) l  =  B x [ V ( 1 - / 2M , t ).V ]B

which is sim ply equation (4.69) w ith r  instead of t. Therefore, changing the relative direction of 

the fluid flow com pared to the m agnetic field direction is equivalent to  changing the  direction of 

tim e.

E q u iv a le n c e  to  (4 .3 3 ) a n d  (4 .36 )

We have already shown th a t sections 4.3.3-4.3.4 m ay be reduced to  considering special cases 

of equation (4.36). By looking at these special cases we have elucidated some features of the flow 

function. We can show also th a t (4.62) contains (4.33) in the correct lim it, w ith (4.36) governing 

the tim e and space behaviour.

Previously, we linearised a nonlinear equation (see section 4.3) and solved the  resulting  linear 

equation. We will now linearise the result of solving the sam e nonlinear equation and  show th a t 

the two are equal. Note also th a t we can only consider (3(x) =  constant since we do not have 

analytic  solutions to  equation (4.32) with f3(x) nonconstant.

Consider equation (4.62) with the extra condition

M >> exp f  a  (x') dx'  — ^ - t
I J X0 J

(4.70)

This im m ediately excludes us from regions in tim e and space where singularities can exist, since 

there is no way we can make the denom inator approach zero. Hence

Pf ( x , t ) =  -
1

q { 1 +  \  exP [/*„ «  (* ') d x ' ~  

which becomes on Taylor expansion to  the first order only,

f { x , t )  m  n exp
q q2

[  a  (x') dx '  — ~ t
JXn .

We com pare this to equation (4.33), i.e.,

f ( x , t )  = f 0 +  e ^ ( x , t )  

and using equation (4.36) to describe i>(x,t) we have

f ( x , t )  =  / 0 +  eexp ct —
c + fo0

j  a(x ' )d x '
J X n

as the full pertu rbed  flow function.

Firstly, we m ust have /o =  Now, equation (4.73) is valid where 

Exam ining equation (4.72) we find equivalently th a t

exp f ^ a l x ' / d x '  -  ^  I

(4.71)

(4.72)

q exp ( — J a  ( x !) dx'  — j-

(4.73)

>  e for e <  1.

>  1
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by assum ption (4.70). This is certainly bigger than  the required c. Therefore we also satisfy the 

sam e criterion for the validity for the analysis. Further if we com pare the tim e dependent parts 

then  we m ust also have c = Using this value for c and the expression for /o , the coefficient

of the integrand in (4.73) is

~ C _  2 q _  1
c +  /„ /?  = M + t , £

which is precisely the factor required in (4.72). Hence the solution to the linearised equation 

((4.73)) is equal to  the linearisation of the nonlinear solution ((4.72)) when we are ‘far aw ay’ from  

any singularities.

4.4 Summary and Conclusions

Fixing a form  for the flow function /  chooses a particu lar class of fields, in a  sim ilar way to  chapter 

3. The m agnetic fields concom itant w ith flow functions /  =  f  = f ( 9 , t ) and /  =  f ( t ) are

described for the full flow equation (4.1), bu t the case /  =  f ( r , 9 , t ) has only been trea ted  for 

reduced situations, e.g. the linearisation study of section 4.2 which showed th a t a  ‘first o rder’ tim e 

dependent field aligned flow was possible for only a particu lar class of fields, if the flow was close 

to  the Alfven velocity.

Progress has been swiftest using the reduced flow equation (4.3). Here we specified a class 

of m agnetic fields and looked in detail a t the nonlinear hyperbolic p artia l differential equation 

governing the flow function. A hierarchy of analysis was developed in order to elucidate the 

features present in the equation. Figure 4.4 represents the relationship between all the analyses 

relevant to  equation (4.20).

We have found th a t the na tu ra l scales in the system  a  and /?o/o (space gradient and frequency 

respectively) control the behaviour of the wavelike solutions to a linearised version of (4.32), equa­

tion (4.35). Equation (4.35) represents the linear onset of tim e dependent field aligned flow from 

a constant background flow function.

The linearisation treatm en ts show th a t a wavelike fluid m otion can persist in the flow, against 

a constant background flow. These treatm ents also show th a t the m otion appears to  move wave 

energy around onto different length scales. For instance, in section 4.3.4 (for the case \x — #o| —*" oo,

—* 0) we saw th a t the effective wavelength of the m otion tended to  zero (equation (4.57)) , 

m eaning th a t the m otion, and hence the energy, was m oving to different length scales.

This led to  the consideration of analytic and exact solutions to  (4.32) w ith the assum ption of 

/3(x) =  constant .  It was found th a t a singularity could appear in the flow function /  and hence 

in the flow, given the correct param eter range. The fluid accelerates tow ards the singular point, 

where the m odel m ust break down. This acceleration seems to  indicate th a t energy is being moved 

onto length scales which cause the breakdown of the model. Therefore we m ay conclude th a t,
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a q Pp singularity occurs a t tim e t [Eq.(4.67)]

> 0 q > 0 > 0 t  >  tm

< 0 does not appear

q <  0 > 0 does not appear

< 0 t >  t m

<  0 q >  0 > 0 t ■‘C t m

<  0 t  > 0

q < 0 >  0 t > 0

<  0 t K. t m

Table 4.2: Singularity behaviour for values of p, q, a  and /?, defining t m =  — p j  tan  1 (—9 ) in 

(4.67)

given the correct param eter range, a tim e dependent field aligned flow will generate a singularity  

in the fluid flow. We have found, via wave steepening, a possible m echanism  for the generation of 

localised fluid acceleration.
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f xt  +  oc(x)ft +  P ( x ) f f x = 0

L inear A n a y lses

See sections 4.3.1-4.3.4 for m ore detail 

/  =  fo + eip(x,t)

P u t /o =  constant

I

tpxt +  a(x)rpt +  P {x ) fQ'ij)x =  0 

1

1. a,  ft fully varying: eq.(4.36)

2. a,/3 linearly dependent on x: 

see eq.(4.53): special case of (4.36)

Ican be reduced to{

3. a , P  bo th  constant: eq.(4.38)

and (4.41)

N o n lin ea r  A n a ly s is

See section 4.3.5 for m ore detail 

P u t f3(x) = constant  

1 

I

f xt  +  Ot(x)ft + P f f x  =  0

I

A nalytic Solutions 

see equations (4.62)

(4.67), (4.65) 

lean be reduced to{

I

Eq.(4.72): equivalent to  (4.33) 

and (4.36) w ith j3{x) =  constant

R e su lts  R e su lts

Wave steepening and Possible appearance

exponential amplitude variation of  singularity in flow

Asymptot ic change of  - breakdown o f model

wavelength

Figure 4.2: Relationship between analyses in section 4.3



a q (3p singularity occurs a t tim e t  [Eq.(4.65)]

> 0 0 <  q <  1 > 0 does not appear

< 0 t ^  tm

0 >  q > —1 > 0 t >  tm

< 0 does not appear

< 0 q <  - 1 > 0 t  > 0

< 0 t  ^  t m

0 >  q >  —1 > 0 t  ^  t m

< 0 t > 0

2 r i q j
Table 4.3: Singularity behaviour for values of a , b , a  and /?, defining t m =  — —^-tanh-1 (—q). 

in (4.65)
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C hapter 5

An Application of G enetic  

Algorithm s to Differential 

Equations

There once was a brainy baboon,

Who always breathed down a bassoon,

For he said, ‘It appears 

That in billions of  years 

I  shall certainly hit on a tune. ’

Sir A rthur Stanley Eddington, New Pathw ays in Science, 1935

We now consider the calculation of num erical solutions to  two second order differential equa­

tio n ’s th a t arose from  a problem  in field aligned flow in chapter 3. Genetic algorithm s are in tro­

duced by analogy w ith the D arwinian theory of evolution coupled w ith the DNA representation 

of genetic inform ation. Detailed consideration is given to a variation on an existing m ethod  of 

applying genetic algorithm ’s to ordinary differential equations [38]. Genetic answers are com pared 

to  b o th  analytical results and existing num erical m ethods.

5.1 Finite Difference Solutions

In chapter 3 we introduced two m ethods of solving the equations describing a set of m agnetic field 

topologies th a t support a flow of /  =  constant ,  nam ely equation 3.21

V 2A =  A(r,  0 ) A
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and equation  3.22,
8 A  d \  d A  8 X _
89 dr  dr 89

where A  is the  vector potential of the field B =  V x  (^ z ) .

We m ay solve (3.22) by setting A = g (A)  leaving

V 2A  = A g ( A )  (5.1)

For any choice of /  other than  /  =  c\ +  ci, C2 =  constants  we are left w ith  solving the nonlinear 

Poisson equation (5.1) w ith the relevant boundary equations (which are derived from  the physical 

s itu a tio n  we wish to  em ulate). As analytic solutions to nonlinear Poisson equations are few and 

far between we m ust use num erical and com putational techniques to solve (5.1). A num ber of 

lib rary  routines are available to solve the Poisson equation num erically by using a finite difference 

replacem ent. These routines set up m atrix  equations where the unknowns are the  values of A a t 

each grid point. An initial guess at the answer can be supplied by the user to give the rou tine 

s ta rtin g  values to  work with: NAG routine D03EBF offers this facility. M atrix  m ethods and 

m anipu la tions are then used to solve the (commonly) linear equations. T his approach is described 

in m ore detail in section 6.1.1.

A lternately , w ith A  =  h{A) we are left to solve an ordinary differential equation, (3.25)

q i ( \ ) h "  + q2{ \ ) t i  - h \  =  0

where the dash ' refers to  differentiation w ith respect to A, and ?i(A) =  ^  (§ £ )2 +  ( f ^ ) 2, and 

q2(A) =  XA. ( r |£ )  +  ^ § ^ 4 -  Given a suitable A such th a t <71 ,22  are functions of A we still have to 

solve a  second order ordinary differential equation. Iterative num erical routines exist to  solve such 

equations. And again, some of these routines can be given an ‘in itia l guess’ (for exam ple, NAG 

D 02R A F) to  s ta r t the  routine off.

One possible way through which we can improve the perform ance of these routines is to  generate 

a b e tte r in itia l guess to the final answer. If we have a ‘good enough’ in itial guess then the solver 

(whichever one we wish to  use) can finish the task. Finding a good guess is not easy or obvious 

in all cases (indeed, for NAG routine D03EBF the recom m ended action is to  sim ply set the in itia l 

guess to  be everywhere zero!). It is a t this point we can introduce genetic algorithm s as a possible 

way of generating  a ‘good enough initial guess’.

5.2 The G enetic Algorithm Concept.

A genetic a lgorithm  (GA) is a com putational technique th a t solves search / m inim isation problem s 

by applying the ideas of Darwinian evolution. By the above definition then, m ost genetic algorithm s 

m ust follow the sam e outline [39] which is sum m arised in figure (5.1). Each of the sta tem ents in

71



P r o c e d u r e  G e n e tic  A lg o r ith m

begin

initialise population  P  (0) 

evaluate P  (0) 

t =  1 

repeat

select best npar  parents from  population  P  (t — 1)

recombine parents to  create nchild  children and new population  P  (t)

mutate  entire population P  (t)

evaluate entire population P  (t )

t = t +  1

until (term ination  condition satisfied) 

final population of fit individuals P  (f i n i s h )

end

Figure 5.1: Scheme for general genetic algorithm

figure (5.1) has a close analogy in the theory of evolution, and it is profitable to  consider this first.

In the theory, species evolve by a com bination of m echanism s to produce individuals be tter 

adapted  to  their environm ent. This ultim ately  m eans th a t we m ust change the DNA coding, or 

genotype of the individual in order to change its physical characteristics, or phenotype. This leads 

to the first requirem ent for a genetic algorithm  th a t is, a suitable encoded representation of the 

problem  we wish to  solve. In a genetic algorithm  each candidate is represented by a string  of 

symbols, in analogy w ith the A G TC alphabet th a t encodes genes in a DNA molecule [40] . (Each 

of the letters stands for a chemical structure  basic to all DNA molecules: adenine, guanine, thym ine 

and cytosine.) The representation used in a  genetic algorithm  allows us to  evolve new phenotypes 

by appropria te  im itation  of the m utation  and recom bination m echanism s available in nature. We 

m ay change the distribution  of genes in a population  and their contents by

1. Reproduction. This introduces variety into the population  by recom bining genetic m ateria l 

from  the previous generation in new orders, creating new genotypes and hence new pheno­

types.

2. M utation. The content of the genetic code m ay be changed by a num ber of mechanisms; 

for exam ple, copying errors during DNA m anipulation  can cause the deletion, reordering 

or m ultip lication  of genes. Ionising rad iation  can also dam age and hence change the DNA 

content. The classic exam ple of m uta tion  conferring a phenotypic advantage is sickle cell
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anaem ia, which is prevalent in m any hum an populations in Africa. A lthough the  affected 

individuals are rendered anaemic, they are also much less susceptible to  m alaria , which is 

found to  be endemic in those areas where sickle cell anaem ia is common. T he m u ta tio n  is due 

to  an error in only one nucleotide in the DNA which causes a  subsequent s tru c tu ra l change 

in the protein th a t it encodes [41].

3. ‘Survival of the fitte s t’1. The environm ent th a t an individual finds itse lf in determ ines 

whether its genes will survive to the next generation. If it well adapted  to  the  environ­

m ent then  it is more likely to survive to  a breeding age than  one th a t is less well adap ted . 

This is sum m arised in the phrase ‘survival of the fitte s t’.

By these mechanisms, populations m ay evolve into forms th a t are be tte r su ited  to the ir envir­

onm ent, and m ay im plem ent analogous operations in a genetic algorithm .

A t some initial tim e we have a population  of candidates -P(O), encoding the relevant features 

of the problem  in an appropriate representation. The ‘quality ’ of each candidate solution, i.e., 

how well it solves the problem  may be evaluated by the use of a suitable ‘fitness’ or ‘w eighting’ 

function. This is the analogue of the environm ent in nature: this function determ ines the v iability  

of individuals. Using this weighting operator, we can assign a weight to  each candidate  and then  

rank them  accordingly. Usually we wish to generate individuals w ith as low a weighting as possible. 

H aving ranked the population from best to worst (lowest weights being more ‘f it’ candidates), we 

can now select the top npar  individuals of the ranked population  as the breeding parents for the 

next generation. T his m ay be likened to survival of the fittest in an environm ent causing the best 

genes to  propagate into the next generation.

By allowing the best individuals to  breed and by the in troduction of new genes v ia m u ta tio n  we 

create new daughter candidate solutions. Also, by keeping the breeding parents we ensure th a t the 

new population is no worse than  the previous one. The daughters are now in direct com petition  

w ith their parents. If we now re-rank the entire population we can repeat the process, breeding 

from the best and generating new daughters until some specified condition is fulfilled, usually the 

com pletion of a  fixed m axim um  num ber of iterations, or the achievement of a particu lar weight. 

On exit, the population P  (f i n i s h ) is ranked from  the ‘b es t’ solution to  the worst.

5.2.1 A n exam ple application  o f G en etic  A lgorith m s

One well known exam ple th a t may be treated  by a genetic algorithm  is the travelling salesm an 

problem  [39]. The problem  is: given a set of N  cities to visit, find the shortest route th a t visits each 

city exactly once. A lthough simply sta ted , the travelling salesm an problem  is an exam ple of an 

N P-hard problem , i.e., the solution tim e increases exponentially w ith N ,  the num ber of elem ents

'D u e  to H erbert Spencer (1820- 1903), Principles  of Biology  III
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in the problem . Such problem s probably (the question is open a t the tim e of w riting) do no t have 

any polynom ial tim e - solution tim e varying as N p, p  >  0 - algorithm ic solution.

A na tu ra l representation for this problem  is to  num ber each of the cities and form  a string  

of num bers which describe the order in which each city is to  be visited. The weighting function 

which m ay be used to  rank the population is the  to ta l route distance each string  represents. Hence 

by a su itable im plem entation of recom bination and m uta tion  operators, one m ay create a  genetic 

algorithm  to  solve the problem , or at least generate close to  op tim al routes.

A practical application of this particular problem  is circuit board  building by robot. Instead  of 

cities, we have circuit com ponent slots and soldering points to  visit, To com plete as m any circuits 

as possible, the robot m ust take as little tim e as possible on each and hence m ust move as short 

as distance as possible over each board. This is merely a  resta tem ent of the travelling sta tem en t 

problem  and has been successfully solved by genetic algorithm s.

5.3 A Genetic Boundary Value Ordinary Differential Equa­

tion solver

To show th a t it is a t least worthwhile to apply genetic algorithm s to differential equations let us 

first consider a basic ordinary differential equation

Co (x ) y"  +  Ci (z) y +  C 2 (z) y +  C3 (z) y 2 +  C4 (z) =  0 (5.2)

where ' =  The equation lies over the range z  £  ( z o ,z end) w ith boundary conditions

y{xo) = yo, y(Xend) = yend (5.3)

This equation has a num ber of features th a t m ake it a good test bed for learning abou t the 

problem s associated w ith a genetic algorithm  type solution to  differential equations. F irstly, there 

are m any analytic solutions available, solving bo th  linear and nonlinear versions of (5.2) w ith which 

we can check the a lgorithm s’ final answer. Secondly, being a one dim ensional problem , the ‘size’ 

of the genetic code will be small enough to allow a large num ber of iterations in a reasonable tim e. 

This was im po rtan t as we wanted to optim ise convergence strategies in as short a  developm ent 

tim e as possible before moving onto larger scale Poisson equation problem s. Many of the problem s 

associated w ith the application of genetic algorithm s to differential equations have been solved 

already by Diver [38] in the algorithm  GENODE. However there are a num ber of im provem ents 

possible th a t speed up program  performance and convergence tim es. Therefore, in describing the 

new algorithm , reference shall be made to G EN O D E and to  the changes th a t have been m ade in 

an a ttem p t to  improve algorithm  performance

To create a genetic algorithm  to solve ordinary differential equations we need 3 basic com­

ponents: a representation, a weighting function and a com plem ent of operations th a t can change
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the genetic content of the candidates. At each iteration  level there are npar  paren ts th a t will 

generate nchild  children by breeding, giving a to ta l population a t any one tim e of npar  +  nchild.  

The program  itself is called ODE and the following subsections discuss some of the  features of its 

design.

5.3 .1  R ep resen tation

We represent the genetic algorithm  solution to (5.2) as a set of npoint  points, y“l9°rtthm discrete 

points in the range X{ E (xo, x end), 1 <  * <  npoint  spaced a t intervals h = npoint* -1  • T his choice is 

in tim ately  tied up w ith the weighting function. Diver chooses to  describe each y‘*I9°riihm as integer 

m ultiples of two real num bers p  and v  w ith p  >  v. G EN O D E then finds integers m, n  E (—50, 50) 

such th a t

yk = m ki p + n ki v  (5.4)

The num bers p, v  are chosen in such a way as to  span a reasonable range of possible y  values, and 

to  allow some fine tuning to be done using the v  graining. The program  then  creates a  genetic 

code for the  fc’th  candidate in the population by forming a string from the integers m k and n k . 

The fc’th  candidate now resembles

yk =  (m f n f) • • • (m jn ? ) • • • (m knpointn knpoint)

where 1 <  i < npoint,  1 <  k < npar  +  nchild. The m otivation behind th is represen tation  can 

be understood if one considers the way in which the ordinary differential equation is represented 

com putationally. The ordinary differential equation is rendered via a centred finite difference 

representation of the differentials, i.e.,

; / ( * < ) =  W+12~ / '~ 1 

y "  ( X i )  -  m + 1  ~  +  m ~ '  +  0 ( h 2 )  (5.5)

where h =  npoint-°i • differentials are represented up to  order 0 (h2), and any num erical

solution cannot do better th an  this. Hence it makes sense not to  dem and a  greater accuracy from  

a genetic algorithm  solution. Since we cannot do be tte r than  0 ( h 2) the choice of v  should reflect 

this and therefore v  should be larger than  0 (h2).

A lthough th is adequately describes the candidate y k there are two m ajo r problem s w ith this 

approach. Firstly, there are large tim e overheads involved in transla ting  from  the genetic code for 

a point yk to  a floating point num ber and vice versa. (This transla tion  m ust be perform ed because 

the weighting function uses floating point num bers). For one iteration  the rou tine as it stands m ust

perform  (npar  +  nchild ) x npoint  of these translations: this is com puter tim e th a t is no t usefully

spent. Secondly, there is an upper lim it to the best possible error a t each point, nam ely

true value _  k ’th algorithm  candidate
Vi y% <  m ax 0 (h2) j  (5-6)
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where the true value is either from  an analytic answer or from  another num erical routine having a t 

least the sam e 0 ( h 2) accuracy. If |  is sm aller than  0 ( h 2 ) then the m axim um  error is dom inated 

by the discretisation procedure. This can result in G EN O D E (and any other differential equation 

solving genetic algorithm ) trying to  minimise the error where no useful benefits can be had, since 

the discretisation is only 0 ( h 2) accurate. To span the range of gene values, one can im agine a 

situa tion  where a  poor choice of y, m eans th a t u  is much larger th an  0 ( h 2) .  If 0 ( h 2) is sm aller than  

^  then  G EN O D E cannot reach the lim it of the discretisation error, which is w hat we w ant to  aim  

for. T his is directly a result of the representation chosen in GEN O D E. It m eans th a t G EN O D E can 

waste tim e trying to  improve the fitness of a point where no im provem ent is possible because of the 

constraints of the v  graining: the error for th is point has reached a m inim um . It also m eans th a t 

there m ust be (unless we are fo rtunate  enough to choose a problem  in which all the points on the 

curve y  can be exactly represented by (5.4)) a nonzero m inim um  to  the fitness value which cannot 

be reduced. Therefore it is not clear if the routine has reached the optim um  answer or if we are in 

a genetic cul-de-sac from which the algorithm  cannot remove itself. The problem  of convergence 

to sub-optim ised candidates requires special trea tm en t, and is detailed below in section 5.3.4.

Clearly then it would be profitable to  consider alternative representations. In their 1993 review 

paper, Beasley, Bull and M artin  [42] report on a paper by Janikow and Michalewicz [43] in which 

a com parison is m ade between binary and floating point representations. B inary num bers have for 

a long tim e been seen as the only reasonable and indeed understandable problem  representation 

in the genetic algorithm  community. The binary expression of integers form the basis of these 

genetic codes, the individual bits being m anipulated  by the processes described above. T his is in 

effect analogous to  the G EN O D E trea tm en t as again we are necessarily working w ith  a reduced 

alphabet of m ’s and n ’s. It was found th a t the floating point version gave faster, m ore consistent 

and more accurate results. A lthough this result tends to  run counter to  accepted wisdom in genetic 

algorithm  circles, it was decided to  move over to  a floating point representation

There are considerable advantages to  be had from  using floating point num bers to  describe the 

points y*’aI9 °rtthm m em b ers Gf  th e population  m ay be easily stored as a list of floating point

num bers in an array, i.e.,

yk = y\ • • • yf • • • ylpoint

In biological term s, the phenotype and genotype have now become identical. The tim e penalties 

incurred by any transla tion  process from genotype to  phenotype are now sim ply not present. A 

floating point representation also addresses one half of the accuracy problem  (5.6) by effectively 

setting  v, the sm allest increm ental change to  be machine precision. Crucially, the num ber and 

type of m eaningful m uta tion  operators available to  us is increased, as floating point num bers may 

be m anipulated  in a variety of ways to yield another floating point num ber (see the section below).
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5.3 .2  W eighting  O perator

In every generation, na tu ra l selection dem ands th a t only the ‘b e s t’ individuals be selected as the 

breeding parents for the next generation. In a genetic algorithm  th is process is carried ou t using a 

weighting operator th a t assigns a weight to  every individual. In an ordinary differential equation 

solver, we m ust assess how well each candidate solves the  differential equation  along w ith the 

boundary conditions. C onstant value boundary conditions are handled easily, as a t each iteration  

all individuals in the population sim ply have the boundary  conditions w ritten  directly in to  their 

genetic representation.

The ordinary differential equation is represented num erically by substitu ting  the differentials 

using central finite difference replacem ents (5.5). The differential equation (5.2) is im plem ented as

Co (x()Co (®i) Ci  (•*'*)
h 2 ' 2 h V i + 1  +

C 0 (xi)  C i ( x i )

C 2 (xi) — 2- y% +

h2 2 h

h -2

y i - i  +  C 3 (xi) y f  +  C 4  (xi) (5.7)

One m ust take special care a t the endpoints as clearly a t the left and right hand sides there 

are no points corresponding to  1 and 1 respectively. G EN O D E solves this problem  by using 

quadratic  extrapolan ts to  generate estim ates for and y

- Z y i  +  4y2 -  yz
y '  ( * 1 )  =  

y"  ( * 1 )  =

2 h
y i  -  2y2 +  y z  

h2 (5.8)

Sim ilar expressions are calculated for y'npoint and y'nV0%nt • Using (5.8) and (5.7) equation (5.2) 

m ay be im plem ented num erically in a discretised form. If we use the y^sonthm  va]ues for 

candidate in the population then we can calculate an error R f  for every point in every candidate 

solution. T his error tells us how well th a t particular point fits the discretised form  of the ordinary 

differential equation. Hence,

C 0 (xi) '
R,k ,algori thm  _ C q (x%) C 1 (Xi)

h 2 ' 2 h
C q ( # i )  C i  ( ^ i )

yf+i + C 2 ( x i ) ~  2 -
h2 y ki +

yk-i + C3(xi) (yf) + c4 (xi) (5.9)
h 2 2 h

We can now calculate some measures of the fit, l  <  j  < 4 of each individual, based on the 

above R \  values, and use these to  calculate an overall weighting. Again, following Diver we use 

fitting measures

1.
npoint

=1 =  E
i =  l

(5.10)

e* is a m easure of the overall ‘d istance’ the candidate is away from  the actual solution.
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npoint

f k ~  Co — n (5-n)
t=i

A candidate th a t has a num ber of points w ith R k fa 0 will have a low value of ek . Therefore 

candidate w ith low ek contain at least some points th a t fit the discretised operator (5.7) very 

well.

3.

4 =  exP [/i X (i/i)* -  9vr  +  A  X (y ' npo i nt )k ~ 9 vl -  1 (5.12)

G radient inform ation is supplied for each of the endpoints, gvr  and gvl. This is a  well known 

and accepted m ethod in the num erical solution of differential equations: one overspecifies 

the problem  by supplying both  gradient and boundary  value inform ation a t bo th  ends of 

the range. However, only two of these pieces of inform ation are exact and both  cannot hold 

a t the sam e point. T he other two pieces are then used as an estim ate  in such num erical 

routines. The currently described genetic algorithm  fixes the boundary inform ation but 

generates penalties if the candidate gradients a t the endpoints differ from  the user supplied 

values. The factor / i  >  0 allows the strength  of this error to  be controlled; a higher f \  

penalises poor gradients more. Thus €% is a  m easure of how well candidate k satisfies the 

gradients dem anded by the user.

4.

e\ = m ax. . (5 1 3 )* =  1, npoint

This is a crude m easure of the continuity of the fc’th  candidate. C andidates w ith a large ck 

have a t least one point th a t does not fit the operator well. These candidates can be selected 

against as it would be relatively harder to relax to  a lower weighted individual from  one th a t 

has poor continuity.

The above m easures are combined to form a final overall weight for the fc’th  candidate in the 

form ula

W ‘ =  pie{ +  p 2 f |+ p 3 fS + P 4 e *  (5.14)

The factors P i,P 2 ,P3  and p$ allow the user of the algorithm  to  choose which features are to  be 

selectively penalised over others. T he weighting factors chosen can play a crucial role in determ ining 

good convergence tim es (see section 5.3.5). By assigning a weight W k to  all the candidates, one 

m ay now rank the entire population from  best (lowest W k) to  worst (highest W k). T his allows 

one to  choose the best individuals to  form  the breeding stock for the next generation.
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5.3 .3  B reed in g , M u tation  and C om bination  O perators

By choosing a floating point representation we increase the num ber of operations we can perform  

on the genes. Any operation we perform  on the gene, or pair of genes in the  case of the com bination 

operators, m ust also produce a valid gene. This would exclude m ost of these operato rs from  an 

integer trea tm en t as an integer would not be returned. One could always perform  these operators 

and choose the nearest integer value bu t this takes up com puter tim e needlessly and for a large 

num ber of operations, produce no change in the genetic content. This is because the  changes 

would be too sm all for the integer representation to notice even if the floating poin t num ber 

generated conferred some advantage to  the individual; the inform ation is lost in the  coarseness of 

the im plem entation. Some possible functionality is listed below [42].

1. C om bination O perators

(a) Average - take the (weighted) average of a pair of genes

(b) Geometric Mean - take the square root of the product of a pair of genes

(c) Extension  - take the absolute difference between a pair of a  pair of genes and sub trac t 

it from  the lower or add it to the higher

2. M utation  O perators

(a) Random replacement - replace the gene with a random  value

(b) Creep - add or sub trac t a sm all (sm aller than  the gene value itself) random ly  generated 

num ber

(c) Geometric Creep - m ultiply the gene by a random  num ber close to 1

G EN O D E already im plem ents operations 2(a) and 2(6) bu t a floating point representation  perm its 

a wider choice of possible functionality. There are m any alternative ways of im plem enting these: 

for instance, one can choose the type of random  distribution, say, random  or G aussian, used in the 

m uta tion  operators. These operators are really only feasible in a floating point representation: it is 

not hard  to  see th a t these new operators would be very unlikely to work in an integer representation . 

In the code the six operators were im plem ented under full user control.

As described above, we now have a genetic code representing each m em ber of the  popu lation . In 

order to redistribute the existing parental genetic code in new ways am ongst the children one m ust 

im plem ent a  form of reproduction between individuals i.e., d istinct candidates produce children 

w ith genetic codes m ade up from  their parents. There are very m any schemes available to  do this, 

coming under the generic title  of crossover schemes. This refers to  the swapping of the  genetic 

m aterial. In a crossover scheme each candidate is broken into two or m ore subsections, and  these 

subsections are then recombined to  create new children. In a one-point crossover [14] scheme,
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O n e p o in t  crossover

parent 1: o o o o o o o o o  parent 2:

paren t 1 o o o o o o  | o o o

T

breeds crossover

w ith  point

i

paren t 2 • • • • • • ! • • •

o o o o o o * * *  new

•  • • • • • o o o  children

Figure 5.2: One point crossover breeding scheme

the one im plem ented in the program  each string is split a t the sam e point and the fragm ents 

are swapped. This is m ost easily seen pictorially (see figure 5.2). There is some justification  

for choosing a one point scheme as opposed to  the random  scheme im plem ented in G EN O D E. 

G EN O D E creates new individuals by taking a random ly sized piece of genetic m ateria l from  a 

random  position in the first parent and adding it to a  sim ilarly chosen piece of genetic m ateria l 

from  the second parent. The routine then makes sure the child is of the correct size, which goes 

on to form  p art of the population. The m otivation for using this random  scheme is th a t it allows 

the children to have a more m ixed up genetic structure  when com pared to  the ir parents, hence 

prom oting the d istribution  of genes across the genotype. However, if we consider the  problem  th a t 

we are try ing to solve, we would hope th a t after a  few iterations all the breeding population would 

a t least show the approxim ate shape of the final solution. From this point onwards the routine 

should now relax the candidates down to  the true solution.

Indeed, this fact is displayed in [38], where after a  few iterations, the best candidate of each 

generation has a very good approxim ate shape. Thus a random  scheme th a t swaps the ordering in 

the  string, while m aintaining a good distribution  of genetic m aterial, will be inefficient in generating 

new com binations th a t are be tter than  the parents as inappropria te  curve segm ents will be swapped. 

T his in tu rn  m eans th a t a  large num ber of children will be very unfit as they m ay be highly 

discontinuous, inhibiting the overall im provem ent of the population.. A random  scheme will be 

very good in earlier iterations to  quickly get to  a  reasonable shape, bu t a  one point scheme will 

perm it efficient evaluation of the appropriate curve segm ents in their correct positions.
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5.3 .4  C onvergence stra teg ies

It frequently occurs in genetic algorithm s th a t a sub-optim al candidate comes to  dom inate the 

population. Such an individual need not be even a rem otely accurate solution. It survives because 

the genotypic variation strategies of section 5.3.3 create an insufficient spectrum  of gene values to 

allow the weighting function to  move out of its local m inim um . Therefore the routine is stuck w ith 

a poor best candidate.

ODE employs a num ber of strategies to  avoid p rem ature convergence of the population onto 

a poor candidate, aside from  the essential com ponents of selection, breeding and  m uta tion . By 

themselves, they are not enough to  ensure good convergence, and so som ething else m ust be done. 

(These routines are also im plem ented in POISGEN, which is described in chapter 6.)

1. Som etim es the entire breeding population can consist of very sim ilar parents. T his is charac­

terised by each m em ber having identical or near identical weights, which we assum e implies 

th a t the parents are very sim ilar. The genetic diversity of  the breeding population  is m easured 

by
 ̂ npar

mtot = ------- )
npar '

n = l

If mtot  is close to zero then the weights assigned to the breeding population  are all very 

sim ilar and the parents are assumed to be genetically sim ilar. This is an assum ption, as it is 

conceivable th a t genetically dissim ilar candidates have sim ilar weights. However, in practice 

th is situa tion  is not seen to  arise. If mtot  is close to 1 then candidates 2 —* npar  are assum ed 

to be genetically dissim ilar com pared to  the best in the population  (see appendices A, B). 

Ideally m tot  should lie somewhere between the two extrem es, indicating a healthy  spread of 

potentially  useful genes.

It is difficult to ob tain  a genetically diverse population  from  genetically sim ilar parents; hence 

the evolution towards better individuals will norm ally proceed very slowly, if a t all (excepting 

the freak appearance of a dram atically  b e tte r candidate). The routine has converged on a sub­

optim ised answer. W hen this happens ODE throws away the entire ranked population  except 

the very best individual by overwriting those candidates ranked 2 to  npar  +  nchild  — 1 w ith 

com pletely random  genotypes. The population is then re-ranked and bred as norm al. This 

new genetic m ateria l m ay contain genes th a t are beneficial to  evolutionary progress, allowing 

the best candidate to  evolve in a m anner previously unavailable to  it since the required 

genetic m aterial sim ply was not present. (This routine is called tw ea k  in PO ISG EN .)

2. Frequently one point in the best candidate has a far worse fit th an  any other. O D E takes 

rem edial action by m aking two copies of the best individual and m uta ting  the worst point very 

slightly, every few generations. A geom etric creep is perform ed on the point, one candidate 

having new gene value gene x (1 — sm a ll) a t the worst point, the other being gene  x (1 +

w eigh t( l)
weight(n)
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sm a ll) a t the worst point. These individuals are then placed in the last two positions in the 

population to ensure th a t m inim um  dam age is done to  the best genes. The population  is then 

re-ranked and the program  continues. (This stra tegy  is called via the profiling subroutine in 

PO ISG EN .)

3. If the routine is very successful early on, ODE reaches a low best weight relatively quickly. In 

th is case, large scale changes to the breeding population  are unlikely to  create dram atically  

be tte r individuals, as they are already highly evolved. Since they have low weights, they are 

unlikely to  have a single gene much worse than  any other: it is more likely th a t  each gene has a 

sim ilar fitting error as determ ined by equation (5.9). In order to  prom ote further evolution, 

two copies of the best individual are m ade bu t this tim e every gene value (excepting the 

boundaries) are changed. One copy consists of genes gene  x (1 — sm a ll ) (where gene  is the 

gene value of the best individual), the other gene x (1 +  small).  T he value of sm all  should 

be very sm all compared to 1 as we do not want to pertu rb  the gene values too much. This 

routine is known as w o b b le  in both  ODE and POISGEN.

4. We want the routine to  converge as quickly as possible to an optim ised answer. This implies 

th a t the best weight should decrease by a ‘reasonable’ am ount every few iterations. W hat 

constitu tes ‘reasonable’ is left to the user to decide by changing the relevant program  vari­

ables. If the evolutionary history is flat - by this we m ean th a t the best weight has not 

changed much over a  certain num ber of iterations - then it makes sense to try  to  influence 

progress by changing the breeding stock slightly. The evolutionary history can be flat in a 

breeding population th a t is genetically diverse. Therefore, convergence stra tegy  2 will not be 

activated. Hence ODE has another strategy to com bat this situation . W hen the evolutionary 

history is flat, the individuals ranked 2 —► npar  i.e., the top  (npar  — 1) individuals excluding 

the very best, have a genotype-wide geometric creep perform ed on them . T he value of small  

in gene x (1 ±  sm a ll) is larger than  in strategy 3 in order to  introduce some new genes th a t 

are not very d istan t or too sim ilar to  the current genes in the breeding population. T his is 

different from strategy 3 where we do not want to change the gene values very much, since 

the breeding population is already highly evolved.

This particu lar strategy (known as j ig g le  in both  ODE and PO ISG EN ). is also activated after 

a user determ ined num ber of iterations in order to  inject some diversity into the population  

a t regular intervals.

5. It is possible to  run the genetic algorithm  using a breeding population composed entirely of 

random ly selected individuals. If this is done, then it is likely th a t m ost of the population 

will be assigned very high weights since it is unlikely th a t such individuals will present a 

good solution to  the ordinary differential equation - one random  candidate will look much
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like another. To improve convergence, we seed the routine w ith a specially defined candidate 

(see routine sp e c ia l  in appendix A). Given boundary  conditions y = yQ a t x = xq and 

y = Vend a t x  =  x end we define

special  Xi  -  Xq \h ighbdry  -  lowbdry'
Vi = ----------------1- R  x ----------- -----------------

Xend ~  Xo L J rac

to  be the seeding individual. R  is a random  num ber between —1 and 1. highbdry  and lowbdry  

are the m axim um  and m inim um  perm itted  gene values in the routine. The variable f r a c  > 1 

allows the second ‘noise’ term  to  be scaled against the range of p erm itted  gene values. T his is 

added for two reasons: to  prevent a possibly ‘spurious’ solution from  tak ing  over the routine 

im m ediately and to allow some guided variability to  these special gene values.

It is not clear th a t in all cases this individual will be an im provem ent over a  com pletely 

random ly defined one. However, com pare the results of a crossover between two random  

individuals and a random  candidate w ith the special. Two ‘random s’ m atin g  are likely to  

produce random -looking children. Hence the chances for im provem ent are poor, as they are 

likely to  be sim ilar to  their parents. However, the two children of a  special-random  crossover 

are very different from either parent. Therefore, we have increased the genetic diversity by 

creating very different children. This leads to a much more extensive search of the solution 

space, which improves convergence.

5 .3 .5  E xp erim en ta l R esu lts and A lgorith m  B ehaviour

I t is naive to  expect th a t such a general technique as genetic algorithm s will yield a  perfect answer 

every tim e. By its very nature , we cannot expect exactly repeatable answers. ‘R easonably’ accurate 

answers (a t least exhibiting a sim ilar shape to  the true solution) in a ‘reasonable’ tim e would 

constitu te  satisfactory behaviour i.e., a ‘low’ weight after a fixed num ber of iterations.

However, if we can generate answers accurate enough to  allow m ore trad itio n a l solvers to 

continue, then this too would constitute a  successful application of genetic algorithm s.

T he quality  of the final answer is assessed by both  the arithm etic  and geom etric m eans of the 

differences between the true and genetic answer.

1 npoint  — 1

^ = E I S i”“  -  y1 'sorith'n | (5.15)

Eo. —
n p o i n t — 1

II I Virue -  y ? 90rithm | (5.16)
i=2

where n  =  npoint — 2. The values y |rue come from  either the analytic solution, tables, or NAG 

routine D02HAF. For all the results in this section, npar  =  20 and nchild  =  900. This fairly 

a rb itra ry  choice reflects the experience gained while using the program : these values were chosen 

because they gave good convergence in m ost cases.
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T he first four sets of results describe O D E ’s a ttem p ts  to  solve

y" + y =  0 (5.17)

w ith boundary  conditions,

y  (0) =  0, y  (27t) =  0 (5.18)

T he values of the more influential variables for each experim ent are listed in Tables (5.3.5)—>-(5.6).

1. In itia l a ttem p t: Figures (5.3),(5.4), Table (5.3.5)

The first th ing to  notice about Figure (5.3) is th a t the answer is genetic answer is very poor: 

although it does have the general shape of the true answer, it does no t have the m agnitude. 

T his is seen tim e and tim e again in the experim ental results of bo th  O D E and PO ISG EN  

later; shapes seem to  be easy to come by, bu t the final m agnitude is very m uch m ore difficult. 

T his loss of size is caused by two effects: firstly, the m anner in which the gradient fitting  is 

im plem ented, and secondly, the slow percolation of boundary  inform ation in to  the genotype. 

E quation (5.17) is linear w ith general solution y =  Asin(:c) +  B  cos(x). T he boundary  values 

given should choose only the sin solution, leaving only the am plitude A  to  be determ ined. 

T he constant A  is determ ined by the gradient a t one of the endpoints. (The gradients given 

ensure th a t A  can be defined consistently.) However, the gradients are not fixed in the 

routine: the values gv l,gvr  are merely good suggestions given to  the  rou tine in order for it 

to  have som ething to  work on. The m easure € 3  assigns a weight to  how well the gradients 

fit a t the endpoints, bu t in a m anner th a t allows some leeway since gvl, gvr  are m eant to  be 

guesses.

T his m eans th a t if a gradient other than  the suggested one happens to  confer a  greater chance 

of survival to  an individual, then th a t individual will have a greater chance of surviving as 

a breeding parent for the next generation, despite the fact th a t its genotype does not solve 

the exact problem  well.

T his problem  can be handled by increasing the weighting assigned to  candidates th a t fit the  

required gradients poorly. T his m ay done by changing the values of bo th  P3  and / 1 . Table 

(5.2) shows the new values of P3 , f i , and figures (5.5), (5.6), the corresponding genetic answer 

and evolutionary history respectively.

Figure (5.4) displays the evolutionary history of the solution, and is typical of m any runs 

using ODE and POISGEN. The best candidate is relatively poor, bu t quickly evolves in to  

a fitter organism . U nfortunately, the evolution seems to  be largely com plete by ite ra tion  

50, the rem aining iterations only changing the best weight very slightly. Given the eventual 

answer, we seem to have reached a genetic cul-de-sac.
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2. Increased boundary weighting: Figures (5.5), (5.6), Table (5.2)

As can be seen from  figure (5.6), the best weight s ta rts  off a t a m uch higher value th an  in 

figure (5.4). This is because we have changed the weighting function; we are in some sense 

exaggerating the difference between individuals by penalising the gradient fitting  a t the 

boundaries. Figure (5.6) also dem onstrates another evolutionary feature. Between iterations 

10 and 20 the best weight is approxim ately constant. After the  tw entieth  ite ra tion , the  best 

weight drops dram atically  by over two orders of m agnitude. This indicates th a t  a very much 

m ore fit genotype has been created which quickly dom inates the population . Its  genes are 

propagated  through the population by breeding, im proving the overall quality  of the  stock. 

T his effect has been seen in m any n a tu ra l populations: for instance, the  w idespread use of 

D D T in areas where m alaria  is endemic has led to  the emergence of m osquitoes th a t  have 

developed resistance to  m any pesticides. This is an exam ple of selection pressure choosing 

individuals be tter adapted  to  their environm ent.

3. Point doubling: Figures (5.7), (5.8), Table (5.3)

As has been said, the naive approach yielding results sim ilar to  (5.17) does no t yield sa t­

isfactory answers. A lthough one can increase the weighting associated w ith the boundaries 

th is is unlikely to be satisfactory when we are using a very long genotype. T his is because 

the boundary inform ation will take a long tim e to influence the centre of the  genotype.

T his leads to  an im portan t feature in genetic algorithm  application. At large values of npoint, 

convergence to low weights is prohibitively poor. A far m ore efficient m ethod  is to  s ta r t a t a 

low value of npoint,  run the genetic algorithm  to  find an approxim ate answer, and then  double 

the length of the code by in terpolating new points in between the genetically determ ined ones. 

By th is process, we arrive a t a  longer genotype, describing a larger num ber of po in ts more 

accurately than  one could reasonably expect from the sam e num ber of ite ra tions a t the longer 

code length.

By s ta rting  a t a lower value of npoint  we gain greatly in the tim e taken  per ite ra tio n  speed, 

bu t lose out on accuracy. Note also th a t the centre portion of the genotype is now very 

close to  the boundaries and hence influences the centre of the range m uch m ore strongly 

th an  a genotype of twice its length. For a given genotype of length npoint,  the  doubled by 

in terpolation genotype has length 2 x (npo in t) — 1. Figure (5.7) shows the result of th is point 

doubling tactic. The final answer is much im proved on th a t shown in Figure (5.3). T he effect 

of this point doubling is very m arked in the evolutionary history, Figure (5.4). T he sudden 

spike in weight is generated by the increased num ber of points causing (na tu ra lly  enough) an 

increase in the error. This is because these new linearly interpolated  points are very unlikely 

to lie on the true curve, and hence create a fitting error th a t show up in the  final overall
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weight.

4. Com parison of answers for long genotype: Figures (5.9), (5.10), Table (5.4)

Figure (5.9) compares the two genetic solutions to (5.17). Solution (a) is very poor when 

com pared to  the true answer; it has such a low weight because m ost of the points are zero, 

fooling the routine into th inking th a t the candidate is solving the problem  well. Solution

(b) is much more realistic: once again, the shape is very good and it is quite close to  the

true solution. This dem onstrates the power of combining the point doubling and boundary  

weighting strategies to  get reasonable answers for long genotypes. From here on, the  solutions 

were generated using these approaches.

5. O D E solution to

y" + xy ' + y =  0 (5.19)

w ith boundary conditions,

y (0 ) =  l ,  y (5 ) =  0 (5.20)

(See Figures (5.11),(5.12) and Table (5.5))

The program  is set up to calculate the subdom inant solution y = exp V )  (5-19), a  stiff 

ordinary  differential equation. Again, the shape is good and is close to  the true  solution. The 

NAG routine outperform s ODE, bu t we are close enough to  the true solution to dem onstrate

th a t the essentially random , or blind genetic algorithm  is a reasonable approxim ation to  the

geom etric m ethods of trad itional num erical solvers.

6. O D E solution to

y" +  xy '  +  x 2y  +  2y2 =  0 (5.21)

w ith boundary  conditions,

y  (—1) — —1| » (1 ) =  - 1  (5-22)

(See Figures (5.13),(5.14) and Table (5.6))

Here ODE is tackling a nonlinear second order ordinary differential equation. The evolution 

a t various point resolutions is shown in figure (5.13). The routine quickly gets the shape 

a t npoint  =  6. At npoint  =  11, the sym m etry of the final answer is evident and it is only 

lacking in m agnitude, which is obtained by the end of the program  run a t npoint  =  21.

We have shown th a t genetic algorithm s may be successfully applied to  ordinary  differential 

equations to  a t least generate a reasonable answer. However, it seems fair to  say th a t trad itional 

num erical m ethods for solving ordinary differential equations rem ain the first choice in all bu t the 

m ost highly nonlinear situations. This still leaves a vast range equations th a t m ay be tackled 

genetically.
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Figure 5.3: Genetic versus true solution for eqn.(5.17)

The genetic algorithm experience gained here suggests tha t  it would be profitable to apply 

genetic algorithmic techniques to more demanding situations where traditional methods fall down. 

In chapter 6, wre discuss the implementation of a genetic algorithm to solve Poisson’s equation.

variable value

npoint 11

h 1.0

P 3 1.0

gvl 1.0

gvr 1.0

Table 5.1: ODE variable values for Fig. (5.3),(5.4)
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Figure 5.4: Best candidate weight at each iteration for eqn.(5.17)
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Figure 5.5: Genetic versus true solution for eqn.(5.17) with large boundary penalties
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Figure 5.6: Best candidate weight at each iteration for eqn.(5.17) with large boundary penalties

variable value

npoint 11

f i 10.0

P3 10.0

gvl 1.0

gvr 1.0

Table 5.2: ODE variable values for Fig. (5.5),(5.6)

variable value

npoint 6—T1

f i 1.0

P3 1.0

gvl 1.0

gvr 1.0

Table 5.3: ODE variable values for Fig. (5.7),(5.8)
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Figure 5.7: Genetic versus true solution for eqn.(5.17) with point doubling
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Figure 5.8: Best candidate weight at each iteration for eqn.(5.17) with point doubling.
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Figure 5.9: Genetic versus true solution for eqn.(5.17) with and without point doubling
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Figure 5.10: Best candidate weight at each iteration for eqn.(5.17) for point doubling run in figure 

(5.9)
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variable

genetic solution (a) 

value

genetic solution (b) 

value

npoint 41 6—+11-+21—+ 41

f i 10.0 10.0

P 3 10.0 10.0

gvl 1.0 1.0

gvr 1.0 1.0

Table 5.4: ODE variable values for Fig. (5.9),(5.10)

1.0

NAG d02haf: tol=5.10
-  q - x 2/ 2

8
-o Genetic solution

6

.4

2

0
0 1 2 3 4 5

x

Figure 5.11: Genetic versus true solution for eqn.(5.19)

variable value

npoint 6—► 11

f i 10.0

P3 10.0

gvl 0.0

gvr 0.0

Table 5.5: ODE variable values for Fig. (5.11),(5.12)
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Figure 5.12: Best candidate weight at each iteration for eqn.(5.19)
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Figure 5.13: Genetic versus true solution for eqn.(5.21)
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Figure 5.14: Best candidate weight at each iteration for eqn.(5.21)

variable value

npoint

f i

P3

gvl

gvr

6—»• 11— 21 

1.0 

100.0 

4.0 

-4.0

Table 5.6: ODE variable values for Fig. (5.13),(5.14)



C hapter 6

A G enetic Poisson Equation solver

A genetic algorithm  is developed for solving Poisson’s equation on a rectangular region w ith equally 

spaced grid points in bo th  the x  and y  directions. A num ber of new genetic operators are introduced 

to  b e tte r cope w ith the 2-dimensional natu re  of this problem . The genetic answers are com pared 

principally  against NAG routine D03EBF.

6.1 Poisson’s Equation

An obvious next step is to  go up to a 2 dim ensional version of (5.2), m oving from  ordinary  differ­

ential equations to  partia l differential equations. In view of equation (3.21) arising in chapter 3, 

we therefore consider a genetic algorithm  to  the solution of

V 1A =  s ( , , Vi A, (6.1)

for a rb itra ry  function S,  on a rectangular region x  £  (ar0, x end) , y E (yo ,yend) w ith Dirichlet

boundary  conditions

A  = g ( x , y )  (6.2)

on the  boundary  of the above rectangular region w ith g also arbitrary . Ideally, the genetic algorithm  

will provide in itial answers for a  m ore exact solver to  refine. Hence, we will first exam ine an existing 

num erical solution routine from the NAG library, NAG D03EBF [44]. T his program  is based on 

m a trix  m anipulation, and is described in section 6.1.1.

6 .1 .1  A  M atrix  M eth od  R outine: N A G  D 03E B F

We can apply NAG D03EBF to the solution of Poisson equations via the 5-point molecule finite 

difference replacem ent of V 2 on a square grid

V 2A «  —  [Aij+i  +  A i+ i j  +  A i j - i  +  A i - i j  — 4A i j]  (6-3)
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where h is the distance between nearest gridpoints [37], i.e.

■A* , j 4-1

I

I (6-4)

- 1

T his routine solves a set of sim ultaneous (possibly nonlinear) equations of the form

M A  = Q  (6.5)

M  is a  Ah x N 2 by N \  x N 2 m atrix  and Q is a  known m atrix  of size Â i x ^  by 1. The m atrix  A

is the sam e size as Q and represents the unknowns. Such a set of equations can be generated by a

finite difference representation of a two dim ensional partia l differential equation and can therefore 

be applied to  solve (6.9) w ith boundary conditions (6.10).

In general we have a set of equations which m ay be w ritten in the form

S i j A i j  — i +  t i j A {—1 j  T  U ijA i j+ i  +  V i jA i+ i j  +  W i j A i j  =  q ij  (b-6)

for i =  1, =  1, . . . ,N 2 where s , t , u , v  and q m ay depend on x , y  and A.  W hen any one of

the coefficients s , t ,  u or v depend on any of the A i j 's then (6.6) is a  set of nonlinear equations in 

A i tj .  T he system  is solved iteratively, from  a s ta rting  approxim ation T 1 by the form ulae

R n — Q — M T n

M S n = R n

rpn-\-l   rpn  _|_

R n is the  residual error m atrix  of the n ’th  approxim ate solution T n , and S n is the  updating  vector. 

The user m ust supply the in itial approxim ation T 1 and the m atrix  M .

T he boundary conditions are slotted in to  Q v ia qij  and for a source term  linearly dependent 

on A,  or ^  the m atrix  M  is su itably modified by the required finite difference representation. 

T his m ay be m ost easily explained in term s of an exam ple. Consider the Poisson equation

8  A
V 2A  = A — -— b 5 sin (:ry ) (6.7)

o x

The A  in the source term  m ay be accounted for by expressing it as A i j  and moving it in to  the 

m atrix  M  by changing the value of the coefficient Wi j .  We can handle the partia l derivative of 

A  sim ilarly by using the finite difference representation ^  w At'‘/+12 i f ' ' } ~ 1 • The sinusoidal source
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te rm  can be expressed in the m atrix  Q. W ith  th is equation the routine need only be called once, 

and will generate an answer for the -Aj.j’s on the grid hence solving (6.7).

B ut if we have a source term  nonlinear in A,  or ^  then  we have a choice as to  how best to  

represent and solve the equation. A common technique used to  solve a set of nonlinear equations 

is to  solve the current set, say AV™known w ith coefficients th a t depend on the previous iteration , 

say A f j .  Hopefully - although this is not guaranteed - the solution will converge, and  converge to  

som ething acceptable. The equation

V 2A =  A 2 (6.8)

m ay be im plem ented in a t least two ways, following the m ethod above of using a previous approx­

im ate  solution. One can express A 2 as the square of the A i j ’s of the  previous level: th is m eans 

th a t the m atrix  M  is ju s t the finite difference representation of V 2 whereas the  source term  looks 

like a function of x , y  only, and not A: we have effectively changed the above nonlinear equation 

(6.8) to  the linear V 2A =  k\  (x , y ) a t each iteration , for some function Aq. A lternatively, one can 

express A 2 as the product of the previously determ ined value m ultiplied by the unknow n a t the 

grid point, A f ^ A f rj known. T his resembles the linear equation V 2A =  k 2  ( a r ,  y ) A  for some function 

k 2.

Obviously the num ber of possible representations depends on the natu re  of the  nonlinear source 

term  and it is entirely likely th a t different im plem entations may yield differing answers or indeed, 

none at all.

This approach is very successful when both  the source term  and the boundary conditions are in 

some sense, ‘sim ple’ for instance, constant source term  and ‘sm oo th ’ boundary  conditions. However 

in some cases, these routines have very great difficulty in converging to  an answer, as is shown in 

section 6.1.2.

6 .1 .2  E xam ple app lication

Consider the following Poisson equation

V 2A =  A 2 (6.9)

on a square grid in Cartesian co-ordinates w ith boundary  conditions

f  4 sin (^f-) y=-2,-2
A = {  V 4 '  * (6.10)

[  4 s i n ( ^ )  x=-2,-2

T his system  was im plem ented using NAG D 03EBF [44]. The square grid, lying in the region

—2 <  x < 2, — 2 <  y < 2, consisted of N \ =  11 points in the z-direction and N 2 =  11 po in ts in the

y-direction. Following the advice given in the NAG m anual [44], the in itia l approxim ate  answer 

was set to be T° - =  0.
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Figure 6.1: NAG solution to equation (6.9) when set up as V 2A =  lc2 ( x , y ) A

Convergence is m easured against two user set criteria, the NAG variables conres  and conchn. 

conres  specifies the convergence criterion to  be used on the m axim um  absolute value of the norm al­

ised residual vector (m atrix  R  in NAG D 03E B F  - see section 6.1.1) com ponents. The com ponents 

are norm alised by the coefficient of A i j  stored in the array M  when th a t coefficient is non-zero. 

If the coefficient is zero, the residual is taken from  the vector as it is.

The NAG variable conchn is the  convergence criterion used on the m axim um  absolute value 

of the change m ade a t each iteration  to the elements of the array T  (see section 6.1.1 for more 

details), nam ely the dependent variable.

The routine was initially  run w ith conres = conchn  =  0.1 x 10- 5 . The routine was set up to 

successfully exit when both  criteria were satisfied, as recom m ended. Only when (6.9) was set up 

as V 2A  = k 2 ( x , y ) A  did the routine write out anything even rem otely sensible (see figure 6.1). 

W ith  the a lternate  representation V 2A  = ki  (x, y) NAG D03EBF exited containing an array of 

non-num bers, indicating the com plete collapse of the routine.

B oth im plem entations did not work and both  cases converged to  unphysical answers for all 

in ternal grid points 2 <  i , j  < 10. If we take the physical in terp reta tion  of the Poisson equation  as 

the tem pera tu re  d istribution in a p la te  then we see th a t the NAG derived answer m ust be wrong.

Varying the tolerances conres, conchn  does not aid convergence. It m ay be th a t  NAG D03EBF 

is seriously ham pered by the in itia l guess: it is ju s t not close enough to the final answer to  allow 

it to proceed. This is where a genetic algorithm  m ay be useful in generating an in itial guess.



In the following sections we describe the features and philosophy behind the construction of 

PO ISG EN , a genetic algorithm  for the solution of Poisson’s equation.

6.2 Representation

As we are now working w ith a partia l differential equation, the code length per cand idate  will 

be approxim ately the square of the size of a  candidate in ODE. We use a floating po in t num ber 

representation of the genetic code. If we have xpoint  points in the x-direction and ypoint  points 

in the  y-direction (including boundaries) then  each candidate contains xpoint  x ypoint  points, 

a lthough only (xpoin t  — 2) x (ypoint  — 2) of these need to  determ ined by the genetic algorithm , 

the rest being boundary  inform ation. B ut along w ith the ex tra  dim ension, we m ust now decide 

how to  store the genetic code. In order to  make good use of the existing code ODE, it was decided 

to  store the code in a sim ilar fashion, as ypoint  strips of xpoint  points going in the x-direction 

across the square grid, i.e., for a typical p ’th  candidate ■, 1 <  i < xpoint ,  1 <  j  < ypoin t , 

(where we drop the superscript denoting candidate num ber for clarity), the  grid of po in ts look like

■̂ 1 ,ypoint -̂ -2 ,ypoint *  ̂ A Xpoint,ypoint

A l t ypoint — 1 -̂ -2 ,ypoint — 1 * y A Xpoint,ypoint— 1

T T /  Z  T (6-11)

Ai,2 A.2,2 —*■ —+ Axpoint , 2

A\ , l  A.2,1 ► * Axpoint, 1

T he genotype is now form ed from the x-strips

A.i (l-A211 • ■ ■ Axpoint,1 A i :2 A.2,2 ' ' ' Axpoint , 2 ' ' •••• A \  ,ypoint A 2 ,ypoint ' ' ' A xpoint,ypoint (6.12)

As ODE perform s genetic operations on an array of floating point num bers, the genotype above 

is basically equivalent to  th a t in ODE. The existing genetic algorithm  m utation , com bination  and 

breeding routines will no t notice any difference. However, changes are required to  the  profiling 

subroutine and the boundary  condition writing routine, and are detailed below.

6.3 W eighting Operator

In analogy w ith the ordinary  differential equation routine above, we im plem ent a w eighting function  

via the finite difference representation of (6.1). The V 2 term  is easily handled  via the five point 

replacem ent of (6.3). C entral differences were used in the expression of S  when necessary. We 

generate a fitting  error R? ■ associated w ith point A^ ■ (the point (i, j )  in the  p ’th  candidate) using

R h  = Vk  +  +  + A ‘- ' J  ~ 4APA  ~  (6 -13)
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where 5 f  • is the value of the source term  applied to  the p ’th  candidate a t the point (i, j),  given 

the finite difference representation of S  and h =  ^ " ^ 1 ° , k  =  y ^ f n t 1- .1 • can now calculat e 

m easures of the fitness of each candidate. T his are sim ilar to  those seen in ODE. The operator 

(6.13) is only applied a t in ternal points, 2 <  i <  xpoint  — 1, 2 <  j  < ypoint  — 1. For this system  

it is not necessary to  introduce extrapolants to  points outside the region of in terest. Previously, 

ex trapolan ts were used to  calculate estim ates for y' and y"  a t the boundaries, and these values 

were used to  generate a  m easure of the fit of the candidate. T his was as m uch a feature of 

the original problem  as the m im icry of conventional num erical techniques (over specification of 

boundary  inform ation). However, in this problem  we can assess the continuity of a  candidate a t 

the boundary  by o ther means.

1.
xpoint  — 1

<T= £
i =  2

ypoint  —1

E
i=2

* j (6.14)

T his is a global estim ate of the error of the p ’th  candidate, and is sim ply the extension into 

two dimensions of (5.10).

2 .

xpoint  — 1

« =  n
i =  2

ypoint  — 1

n  I #
3 =  2

1J

/1  /1  >  1, if i= 2 o rx p o in t-l 

x < or j= 2 o ry p o in t- l (6.15)

1 otherwise

In the definition of ££ we a ttem p t to m easure the continuity of the p ’th  candidate, as well 

as the num ber of well fitting points in the string. By m ultiplying R ? 2 , ^ y p o i n t - i  an<^

R ^ p o i n t - 1 j  ky a factor f i  we are increasing the penalty  awarded to m ore discontinuous can­

didates. Hence, such candidates will have higher weights and will be preferentially discarded. 

T his favours the survival of candidates th a t are more continuous w ith the boundary.

3.

C3 — J'= rnax ^  | /£? . | (6.16)
i =  l ,xpoint

Again we extend (5.13) into two dimensions. T his enables us to  penalise those candidates 

th a t have one large error th a t dom inates the rest, m aking it difficult to  relax to  lower weighted 

individuals

There is no direct analogue to  (5.12) as we do not need to  supply an in itia l guess to  the gradient

of A  on the boundary. Boundary continuity is exam ined in ■ We define an overall weight assigned

to  the p ’th  candidate,

W p = q i ( f + q 2 ^ + q 3(S (6.17)

where <Zi,<72>?3 and f i  are a t the users’ discretion.
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6.4 Breeding, M utation, Combination and Transcription Op­

erators

In O D E, there was an entire class of genotypic operator missing from  the code th a t  come under the 

general title  of transcription errors. These ‘errors’ form  a v ital p a rt of P O IS G E N ’s functionality. 

W hen a DNA molecule is unzipped for reproduction, errors m ay occur. For instance, the copied 

m olecule m ay have one or more bases missing - deletion. Alternatively, the  copied molecule m ay 

have one or more genes repeated too often; this is known as addition. Entire segm ents of DNA 

m ay also be swapped over w ith others. At other tim es, the order of a particu lar set of genes can be 

reversed, which is known as inversion. Also seen is the random  rearrangem ent of a  set of genes in 

the DNA. Crucially, these errors change the content or order of the inform ation carried by the code 

and by doing so m aintain  diversity of genotype (and hence phenotype) in the  population  [40, 45]. 

The following operators were included in the POISGEN code (see appendix  A for more detail): 

genes appearing in new positions are denoted by a o symbol.

1. D eletion

A random ly sized segment of code from a random  point in the array  is removed. The array 

now has a chunk of code missing. Say for exam ple the genotype consists of 10 genes and we 

delete those num bered 6 and 7. The genotype now looks like

• l  *2 *3 *4 * 5 -------*8  *9*10

We need two genes to fill the gap. The gap is filled by taking a copy of the m ateria l towards 

the nearest end of the string and moving it along the string to  fill the gap, i.e.,

• l  *2 *3  *4 *5 ° 8  ° 9  °10  * 9*10

T his is done in order to com bat the problem  of the effective m ovem ent of boundary inform ­

ation  into the centre of the genotype. A lthough there is no guarantee th a t these genes will 

be of any use, it does crudely move inform ation to  where it is needed.

2. Copying

This operation is superficially sim ilar to  deletion. A random ly sized segm ent of genotype is 

copied and placed back in the array, in a position closer to  the centre. Consider the exam ple 

below; genes 4 and 5 are earm arked for this operation.

r i c°py
• l  *2 •3 [* 4 * 5 j  *6 *7  *8 * 9*10  —► *1 *2 *3  *4 *5 ° 4  ° 5  *8  * 9 * 1 0

Since we want to  move genes towards the centre, genes 4 and 5 now take the place of 6 and 

7, overwriting their values. If this were a deletion operation, 4 and 5 would be removed
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completely. We would have

r -I delet ion
• l  *2 • 3 [ # 4*5j *6 *7 *8 *9*10  —► *1 *2 °1  ° 2  ° 3  *6  * 7  *8 *9 * 1 0

Deletion involves shifting the genes along the array from  one end to  cover up the deleted 

region. Copying is im plem ented by only moving segments of genes tow ards the centre w ithout 

affecting the ends.

3. Inversion

A random ly selected piece of genotype of random  length is inverted and placed back in the 

sam e place in the array i.e.,

r  i  ITLt) GV S t  OTl
• l  *2 *3  *4 * 5 [# 6 *7  * 8 * 9 ]* 1 0  —> *1 *2  *3 *4 *5 ° 9  ° 8  ° 7  ° 6 * 1 0

4. Mixing

T he genes in a random ly sized piece of array are taken and rearranged in a random  order.

r 1 m ix
• l  *2  *3L*4 *5 *6 *7  •8 * 9 j* 1 0  ► *1 *2 *3  °5  ° 9  ° 8  ° 4  ° 7  °6 * 1 0

5. Swap

Two random ly sized pieces of code from  non-overlapping regions in the genotype are swapped 

in tac t w ithout any further operations acting on them  such as m ixing etc.

P I  p - |  swap
• l [*2 *3 *4j *5 *6 *7 1*8 *9 *loJ —► *1 ° 8  ° 9  °1 0  *5 *6 *7 ° 2  °3°4

It was found th a t these operators constitu ted  an im portan t im provem ent in P O IS G E N ’s per­

form ance when coupled w ith a code re-ordering on entry to the transcrip tion  subroutines.

We have chosen to  represent the genetic code in such a way th a t we can use the existing code 

O D E w ith  the m inim um  of refurbishm ent, and in doing so we have im posed a d irectionality  on the 

code. The norm al code order is th a t described by (6.12). Hence, the transcrip tion  operators can 

only shuffle m ateria l along one direction. This reduces their efficacy, as their is no reason in the 

general case why one direction should be preferred over another in the true  solution. On entry to 

the transcrip tion  subroutines, the program  random ly decides to  re-order the code to

- ^1, 1 ^ 1 , 2  • • • -A-i ,y p o i n t A.2,1 - -̂2,2 ' ' ' A-2,y p o i n t .............. A xpoint ,1-^-xpoint ,2 ' ' ' -^xpoint , ypo int (6.18)

T his allows the transcrip tion  error operators the chance to move genes around in bo th  directions, 

increasing gene m obility and genotypic variability. On exit, the code is decrypted back to  the 

norm al form of (6.12). The weighting routine only accepts norm ally directed code of the  type 

shown in (6.12).
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Care m ust be exercised in generating individuals w ith the correct boundary  conditions as the 

inform ation now no longer appears sim ply a t either end of the string: the  boundary  inform ation 

is w ritten  into the array a t the correct points.

T he m uta tion  and com bination operators described above for O D E can be carried over w ithout 

change to  PO ISG EN , as these merely act on the genes, regardless of w hat they m ean to  the solution 

of the problem , i.e., they are blind to  the origin of the genetic code. For a uniform  distribu tion  of 

m u ta tion  (or com bination) operations in the code, there is a chance th a t the boundary  inform ation 

will be altered. Obviously, such an individual cannot be perm itted  to  exist in this form  and 

rem edial action m ust be taken. Therefore, before a  weight is assigned to  each individual, the 

boundary  inform ation m ust be overw ritten into the code a t the correct place. T his is done after 

the transcrip tion  operations have taken place, as although incorrect for th is po in t in the  code, a 

gene not very different from  the boundary genes m ay be useful, especially near the  boundary.

ODE breeds children using one point crossover (see section 5.3.3) by copying the relevant genetic 

m ateria l from  each parent into a new entry of the population array. It then assigns a weight to 

the child. T he program  stores the entire population  in m em ory a t all tim es.

6.5 Convergence strategies

The techniques used for varying the content (section 5.3.4) of the gene pool rem ain largely the 

sam e as in ODE. W here and to  w hat extent they are used is based on experience gained while 

using the program . Since the routine is still a t an experim ental stage it should be understood th a t 

the current listing is a snapshot of a  program  in flux. The m ajor new features as com pared to 

O D E are described below.

1. The population  is seeded by a special individual calculated via the boundary conditions. 

A stra igh t line is calculated between opposing pairs of boundary points. For instance, the 

s tra igh t line joining AZjl and A ijypoint is given by «,■(%■) -  A iji +  [Ai,ypoint -  A iti].

Similarly, for points A i j  and A xpoint j  we have Wj(x{) =  A ltj +  [Axpoint,j — A i j ] .

This allow one to  define the in ternal points of the special individual as

highbdry — lowbdry  
f r a c

where 2 <  i < xpoint  and 2 <  j  < ypoint. R  is a random  num ber between —1 and 1 and 

f r a c  >  1, a scaling which allows one to  control w hat fraction of the range of gene values. 

highbdry  and lowbdry  are the m axim um  and m inim um  perm itted  gene values respectively 

(see appendices A, B for details). This acts as a seed from  which the algorithm  can s ta rt to 

evolve m ore advanced individuals.

^ s p e c i a l _ Vj(yj) +  w jjx j )  R  
i , j  2
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2. The breeding population replacem ent routine tw e a k  is kept in tac t w ith only m inor changes 

to  allow for the larger size of this new genotype.

3. PO ISG EN  uses the strategies of ODE detailed in section 5.3.4, bu t w ith some im portan t 

changes. Those strategies th a t changed gene values (aside from  replacing the entire popula­

tion) all used a geom etric creep to  effect this. In PO ISG EN , the sam e strategies are used, 

bu t a random  choice is m ade between using a geometric creep or an arithm etic  creep. This 

was found to  aid convergence rates, as we have access to  another im po rtan t operator.

4. Decision making.

PO ISG EN  has a subroutine called d e c id e  (see appendix A) th a t allows the user to  set 

tolerances for the activation of convergence strategies. After a fixed num ber of iterations, 

the  subroutine is called which takes stock of the  recent behaviour of the routine. T he other 

convergence strategies are called while the routine is still iterating  to  an answer. T his routine 

looks a t a finalised answer and decides on w hat course of action to  take. If  the answer is 

not good enough, it takes the breeding population  2 —*■ npar  and adds a sm all am ount of 

random  ‘noise’ over the entire genotype. This is set to be a fraction of the difference between 

the highest and lowest gene values in the current genotype m ultiplied by a random  num ber 

between —1 and 1. T he noise is therefore scaled to each genotype. A dditionally, some of 

the previous strategies are im plem ented a t th is point bu t w ith larger values of the perm itted  

range of variation. T his is done in a ttem p t to  introduce some bigger gene variations in the 

population outside the m ain loop.

If the answer is w ithin the set tolerances, then the point resolution along each direction 

is doubled. For the doubled genotype, a new set of tolerances are required to  control its 

evolution.

5. The worst point in the best candidate is also treated  here. This tim e four copies of the 

best are m ade, each having the points around it (see four-point molecule (6.4)) as well as 

the point itself changed. This was done to  recognise the fact the points surrounding a best 

point contribute to its fitting error to  some extent. Hence the fit a t a particu lar point can 

be im proved by m aking changes to  its neighbouring points.

6.6 Experim ental Results and Algorithm  Behaviour

Again, it is unreasonable to expect th a t a  random  technique will give us perfect results every tim e.

To aid the assessment of results, we introduce some num erical measures PO ISG E N ’s perform ance.

T he quality  of each answer was m easured using the extension into two dim ensions of the arithm etic
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and geometric means (5.15), (5.16).
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(6.19)

( 6 .2 0 )

where 7? =  (xpoint  — 2) x (ypoint — 2). The values Aj™e come from either the analytic solution or 

NAG routine D03EBF, fed with the genetic answer as an initial guess, or with zero initial guess, 

as specified. Note tha t  these are absolute errors and measure the average distance between the 

true solution and the genetic answer.

Although these are all crude measures they do give an idea of both algorithm performance and 

the features inherent in the equation chosen: for example, the sizes of the numbers involved and the 

difficulty of the equation. Below is a list of some equations tackled by POISGEN: each of them was 

solved on the region of space displayed in figure (6.2). Unless otherwise specified, POISGEN first 

calculates an answer with xpoint  =  ypoint =  6 and then doubles to xpoint = ypoint  =  11. The 

program was run using lowbdry  =  —10, highbdry  =  10: this defines the minimum and m axim um  

gene values possible (see appendix B for details). Evolutionary histories are not quoted in general, 

but some examples are shown.
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1.

V 2A =  0, A = 2 on all boundaries (6.21)

Errors: £\ =  2.40 x 10~4 £2 = 0.0

See figures (6.3),(6.4), (6.5) and (6.6).

One can see at a glance tha t  the genetic answer (figure (6.3)) appears identical to the analytic 

answer (figure(6.4)), .4 =  2 everywhere. The difference between the two, shown in figure (6.5), 

bears this out, as do the error measures. (Machine precision was exceeded in the second error 

and therefore zero was given). T h a t  they are so close is very encouraging. This shows tha t  

the routine has promise, but this should be tempered by the fact th a t  equation (6.21) is a 

very simple Laplace equation.

An obvious feature in the difference between the two solutions is the increase in error as 

we move away from the boundaries, exactly as expected. Hence we will expect most of the 

difference figures to peaked approximately in the middle of the region. This also denotes the 

region where the algorithm has the greatest difficulty in finding good points.

By using a floating point representation, the smallest permitted deformation to each point 

is limited by machine precision: this means th a t  evolution - by evolution we mean the 

emergence of a candidate with a lower best weight - may proceed by smaller increments. It
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2.

is not necessarily true th a t a sm all change to a gene value leads to  a sm all change in the 

weight of th a t candidate. B ut for m ost points away from  the boundary, th is is approxim ately 

true. Hence evolution m ay proceed in jum ps sm aller th an  previously available when using 

the G EN O D E representation.

The evolutionary history is shown in figure (6.6).

exp (y — 1), if 1 <  y  <  2, x  =  — 2

V ZA  = A,  A  =  ^ e x p ( |a?| — 1), if — 2 < x < — l , y  = 2 (6.22)

1, everywhere else

Errors: e\ — 1.56 x 10 2 £ 2  — 9-79 x 10 3

See figures (6.7),(6.8) and (6.9).

E quation (6.22) is slightly harder than  (6.21), being a Poisson equation w ith nonconstant 

boundary  conditions. PO ISG E N ’s perform ance is very good: there is a sm all absolute dis­

tance between the NAG and genetic answers. Again, the worst errors are tow ards the centre 

of the region. The equivalence of problem  difficulty in bo th  directions is also dem onstrated  

in the relatively sym m etrical d istribution of error. E xam ination of the difference between the 

NAG and genetic answers shows th a t close to the peak in A,  the error is the  least, suggesting 

th a t the high boundary weighting is working well w ith the relatively high value of the peak 

as com pared to the rest of the surface. The NAG routine also had no trouble  obtain ing this 

solution, as expected. This particu lar answer was generated using the coding V 2A  = A f f  

- see section 5.1 for details. W hen the NAG answer is subm itted  subm itted  to POISG EN  

a very sm all weight is generated - very much less than  1. This indicates th a t we the NAG 

routine is generating good answers we can tru st. If the NAG routine answer gave a ‘large’ 

non-zero weight then th is would indicate a poor NAG supplied answer.

3.

V 2A  = xy,  A  =  3 on all boundaries (6.23)

Errors: £\ — 2.80 x 10 2 £ 2  — 2.01 x 10 2 

See figures (6.10),(6.11) and (6.12).

This is an inhomogeneous problem , and again, POISG EN  shows no great difficulty in finding 

a very close answer w ithin 2000 iterations. The answer is sym m etrical, as are the point by 

point errors in figure (6.5); this is merely a reflection of the sym m etry  in the original problem .
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4.

9 4 s in ( 2!̂ -) , if y = — 2 ,2
V 2A =  xy,  A  = I  V 2 '  (6.24)

4 sin ( ^ )  , if a; =  —2, 2

Errors: £i =  0.144 £2 = 0.102

See figures (6.13),(6.14) and (6.15).

T his is the m ost dem anding problem  yet considered, and this shows up in the  error m easures. 

The m easured errors are beginning to  become significant, even although the  two solutions 

look quite sim ilar. Again, the NAG supplied answer yielded a  very low (<C 1) PO ISG EN  

weight, indicating a genuine solution. Figure (6.15) tells the story; sym m etrical and large 

errors exist a t all nonboundary points. This indicates a  feature of genetic algorithm s applied 

to  differential equations first m entioned in chapter 5, namely, the shape finding qualities of 

the program . The general shape is sim ilar to  the true answer, bu t the ac tual values are no t 

particu larly  accurate. However, this does suggest th a t we are on the righ t track  for using 

genetic algorithm s to  find approxim ate solutions to  more difficult Poisson equations.

5.

n o  I 4 s i n ( ^ - ) ,  if y =  — 2,2
V 2A  = A 2, A = l  K 2 )  y (6.25)

4 s i n ( ^ - ) ,  if x  =  —2, 2

Errors: £1 =  0.952 £2 =  0.434

See figures (6.16),(6.17), (6.18) and (6.19).

There are several features to  this problem  th a t make it an interesting exam ple.

(a) It seems to  be a relatively difficult problem  to  solve. The NAG routine failed com pletely 

for im plem entations equivalent to  V 2A =  k i (x ,  y )A  and V 2A =  £2(2 , y) (for some func­

tions k \ , k 2 - see sections, 6.1.1, 6.1.2 for more detail). Changing the various param eters 

in the NAG routine did not help in finding a solution.

(b) The evolutionary history (figure (6.19)) also reveals the difficulty of th is particu lar 

problem : there is a very high in itial best weight (the first 10 weights have been om itted  

as they beyond the range of the p lotting  program ) which drops quickly to  less th an  100. 

From here, evolution is slow and shallow, indicating th a t this candidate is relatively 

stable. On doubling the point resolution, the best weight increases by 6 orders of 

m agnitude: th is reflects the large num ber of new and relatively unfit in terpolated  points 

th a t have been created. Obviously, the more points we have, the  greater error we are 

likely to have. Again, evolution is initially  very fast and the best weight falls to  abou t

109



300. A flat phase is encountered, broken only by the emergence of a  noticeably fitte r 

candidate a t about 1420 iterations.

(c) After 2000 iterations, POISG EN  generated the candidate solution shown in figure (6.16). 

This was then supplied to  the NAG routine as an approxim ate in itia l guess. T his ‘guess’ 

was good enough for the NAG routine to  proceed, the result of a which is shown in figure 

6.17.

However, when th is answer (figure 6.17) is resubm itted  to  the genetic algorithm  we find 

th a t it has a large enough non-zero weight associated w ith it for us to  s ta te  th a t this 

is not the final answer. POISGEN generates an in itial approxim ate answer of typical 

weight 160 (see figure 6.19) for 11 x 11 grid points. W hen NAG returns an answer 

having been given the genetic answer as an initial guess, the weight as m easured by 

POISG EN  (keeping the weights constant - see section B .l)  is typically less by abou t 20. 

Therefore, the NAG routine has improved the solution, bu t no t by very much. A lthough 

NAG appears to  successfully com plete the problem , this cannot be so, because if it did, 

the weight assigned to it by POISG EN  would be substantially  lower th an  the original 

genetic guess.

A m ore detailed exam ination of the NAG answer is required. If one exam ines the residuals 

calculated by the NAG routine in the problem , then one finds an oscillatory behaviour. Typically, 

the NAG routine initially  generates residuals of the order 0.1 —► 10, which fails the ‘successful 

ex it’ criteria. However, as the iterations continue, the error m easures in bo th  the residuals and 

m axim um  change drop dram atically  to  below the exit criteria set by conres  and conchn.  T his 

is w hat triggers the apparently  successful determ ination  of an answer. As the routine progresses, 

the convergence measures increase again to  values greater than  105°. From  now on the routine 

oscillates between satisfying the convergence criteria and grossly exceeding them .

It is evident th a t th is is a very difficult problem , and th a t the NAG routine does im prove the 

solution, bu t not by as much as expected.

6.7 Further com ments on the genetic solution o f Equation  

(6.25)

Figure (6.18) reveals how much different the genetic and NAG derived answers are. There are very 

large errors present, yet they were sm all enough to perm it NAG to continue. T his indicates th a t 

the  solution set _4 &«**>0ene**c is £close’ enough to  a solution of the nonlinear equations represented 

by (6.25) to  perm it standard  num erical techniques to  continue. Therefore there is no question 

th a t the genetic algorithm  is generating spurious answers - if one accepts th a t an answer to  (6.25)
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can be reasonably represented by the point to point na tu re  of a finite difference technique. The 

genetic algorithm  is merely solving a set of nonlinear equations arising from the finite difference 

representation of (6.25). Therefore, the same caveat applies to  these solutions as applies to  all 

finite difference answers.

T his effect is am ply dem onstrated  by the results described in figures (6.20), (6.21), (6.22) and 

(6.23). These were generated in a ttem p t to  solve (6.25) again, bu t this tim e w ith a different range 

of perm itted  A  values, as governed by the program  variables lowbdry, highbdry  (see appendices 

A,B for m ore detail). W ith  lowbdry  =  —5, highbdry = 5, PO ISG EN  generated (6.20).

A lthough very sim ilar to  the earlier solution there are a num ber of differences. F irstly , the  range 

of gene values is much less than  in (6.16): for instance, there are regions where A  > 4 in figure 

(6.16), whereas no such values exist in (6.20). At first sight, these are tru ly  different solutions to 

the sam e equation.

T his m ay be possible, as we are a ttem pting  to solve a nonlinear problem : it seems th a t by 

reducing the range of values to  search through we appear to  have found another set of num erical 

values th a t solve the nonlinear problem  set, bo th  of which were unobtainable by NAG alone. 

Figures (6.23) and (6.22) also show the difference between this program  run and the previous one. 

T he best weight drops quickly to lower values which, and on point resolution doubling, the  best 

weight jum ps by only one order of m agnitude. This m ay be a ttrib u ted  to  the lower un-doubled 

weight, coupled w ith the lower range of gene values. Evolution is then rem arkably steady, showing 

th a t the genetic algorithm  is steadily im proving the candidate. The error values in (6.22) are also 

far lower th an  in (6.18). This indicates th a t the genetic solution represented by figure 6.20 is in fact 

closer to  the final NAG answer than  th a t obtained previously w ith lowbdry — —highbdry  =  —10.

The sam e answer was produced when each of these candidates were fed to  the NAG routine 

D 03EBF. T he final answer is shown in figure 6.21. This is a ra ther im po rtan t feature of th is genetic 

algorithm : it seems to find an approxim ate answer alm ost independent of the range of gene values 

perm itted .

This leads to a very interesting question in this particu lar application of genetic algorithm s. The 

original run had lowbdry = —highdry  = —10 and therefore included the possibility of determ ining 

the genes of the second run w ith lowbdry =  —highdry  =  —5. If this is so, why did the algorithm  

choose one and not the other? It m ay be th a t the original population  was biased in such a way to 

prefer the creation of higher valued solutions and so the genetic algorithm  would then  enhance this 

bias. Or it m ay be th a t the higher value solution is somehow ‘preferred’ over the o ther, and th a t 

unless the range is restricted, one will never see alternate  solutions. T his m eans th a t  the  higher 

value solution is acting as some form  of a ttrac to r for the algorithm .

W hether the solution finally generated has anything to do w ith w hat is m eant physically by 

A  is another question, and is one th a t will not be addressed here. T h a t the PO ISG EN  solution
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was good enough to perm it NAG to continue vindicates the application of genetic algorithm s to  

pa rtia l differential equations. A lthough the NAG routine is much faster in finding an answer, its 

perform ance is dram atically  disabled by a poor in itial guess, or by a difficult equation. We can 

use PO ISG EN  to  home in on an answer, and then let NAG polish it off.

6 .8  Summary and Conclusions

In chapters 5 and 6 we have developed genetic algorithm ic solutions to  two com m only occurring 

differential equations based on the techniques originally im plem ented in the FO RTRA N 77 code 

G EN O D E. We have shown th a t it is feasible to use a floating point genotypic representation, 

coupled w ith an expanded range of possible genetic operators to solve Poisson’s equation. T he 

resulting  program  POISGEN can be used as a stand  alone solver, or as an in itia l guess provider for 

m ore accurate routines. It was found th a t POISGEN generated answers th a t were consistent w ith 

o ther m ethods, although not as accurate. It was also found th a t in one particu lar case (equation 

(6.25)), no accurate answer could be generated by either POISG EN  or NAG D03EBF. The NAG 

routine did m anage to  improve the genetic answer in this case, suggesting th a t a  solution to  the 

finite difference equations representing (6.25) does exist.

T he m ajor benefit inherent in this approach is its independence from m atrix  m anipulations 

a n d /o r geom etric techniques. These m ethods can give rise to unrealistic solutions due to  num erical 

instability . Genetic algorithm s offer the possibility of increased stability, bu t a t the expense of 

accuracy and tim e. Badly fitting answers are sim ply throw n away; their poor genes are not allowed 

to  propagate into further iterations. In more trad itional m ethods, num erical errors can propagate 

disastrously into higher itearions, creating spurious answers.

The tim e taken to generate a ‘reasonable’ answer is the biggest factor weighing against the 

application of genetic a lgorithm ’s to differential equation’s. T his was especially noticeable in the 

re-design of O DE to  create POISGEN. POISGEN had to  be run on SU N /SPA RC w orkstations in 

order to generate answers in a reasonable tim e, whereas bo th  ODE and G EN O D E m ay confortably 

run  on P C ’s. This was largely due to the much increased length of genotype and to  the m ore 

sophisticated convergence strategies used.
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Figure 6.6: Evolutionary history of fig.(6.3)

Figure 6.7: Genetic solution to eqn.(6.‘22)
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Figure 6.13: Genetic solution to eqn.(6.24)
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Figure 6.16: Genetic solution to eqn.(6.‘25)
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C hapter 7

Future Work

The work of this thesis splits into two sections, genetic algorithm s and field aligned flow. Genetic 

algorithm ic techniques for the solution of differential equations were developed out of a  need to  

generate be tte r in itial guesses to solve an equation in field aligned flow, aside from  their intrinsic 

interest. As this application of genetic a lgorithm ’s is relatively new, there are several interesting 

routes down which research could go. Also, both  tim e dependent and tim e independent field 

aligned flow appear to offer some unusual features (a possible acceleration m echanism  and unusual 

field topologies, respectively) th a t are worthy of further study.

There are a num ber of ideas th a t m ay be explored in relation to  the work already carried out. 

Some of them  are listed below, in various states of genesis.

7.1 Field Aligned Flow

7.1 .1  C om p u tation al Solu tions

C om putational m ethods have not been applied in this thesis in great detail, aside from  the develop­

m ent of genetic algorithm s. An outstanding  problem  th a t m ay be only accessible v ia com putation  

is a solution to equation (4.32). This would be a valuable addition to  our knowledge of tim e 

dependent field aligned flow. However, this is an exam ple of one the trickiest type of equations 

to  solve [7]: a nonlinear hyperbolic partia l differential equation. S tability  is a problem  w ith such 

equations and care will be needed to  ensure th a t reasonable solutions are generated. Fortunately, 

the special case of (3(x) =  constant  can be used as a guide. It is difficult to  predict w hat the 

solution will look like: (3 is a space dependent tim e scale th a t also includes the ‘am plitu d e’ of the 

solution. T his suggests th a t the wave will evolve in a more com plicated fashion w ith tim e. I t is 

unclear w hat this will do to the presence of the singularity currently observed in the  analytic case. 

More generally, a sim ulation of the 2-dim ensional m agnetohydrodynam ic p lasm a described in
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section 2.4 would give im portan t insight into bo th  the situations we have considered analytically  

and to  m ore realistic geometries, such as je ts  and m agnetotails. As has been seen, the  geom etry 

plays a v ita l p a rt in exact field aligned flow, and it would be interesting to  m odel, say an arch of 

p lasm a in  cylindrical polar co-ordinates w ith field aligned flow. Again, th is m ay be the only way 

forward to  solve (2.38).

7.1 .2  A n a ly tica l W ork

In th is thesis we have in the m ain, considered only exact field aligned flow: no deviation is perm itted  

and hence by the induction equation the m agnetic field m ay not evolve in tim e. Obviously, th is 

is quite a  m a jo r restriction if we want to  apply field aligned flow to  a real situation , as it is very 

unlikely th a t  a  p lasm a would be purely field aligned. Hence it is na tu ra l to  consider flows th a t 

are p redom inantly  field aligned, bu t not exactly. Any non field aligned com ponent m eans th a t the 

to ta l field m ust evolve in tim e. This will add another, convective tim e scale to  the problem . It 

m ay be th a t  certain  field aligned configurations can persist w ith a  sm all non-parallel com ponent. 

Q uestions like th is could be answered by a pertu rbation  analysis combined w ith a linearisation  

procedure.

The question of stab ility  is an im portan t one, particularly  in connection w ith the singularity  

described in chapter 4. It seems intuitively reasonable to  suggest th a t the plasm a would not 

suffer the creation of such a feature, and th a t some other process would take over to  m itiga te  this 

singularity. It seems m ost reasonable to  tackle th is problem  by including a  new term  in the m odel. 

Following previous work, and guided by physical processes, consideration of a compressible p lasm a 

would be the next step. This m ay allow the m aterial to  pile up a t a  (moving?) point in the fluid, 

rem oving the infinite velocity. Alternatively, perhaps the inclusion of another tim e or space scale 

- v ia  m agnetic diffusitivity or fluid viscosity - would again give the p lasm a an avenue of escape, 

ra th e r th an  becom ing singular. The prospect for analytical progress looks best if we consider these 

effects to  be sm all pertu rbations to  the system  a t present. The inclusion of resistive effects in a 

field aligned system  would have an im portan t tie-in w ith reconnection work (bo th  analytic and 

com putational) and the concept of negative inertia  (see sections 2.3.2 and 2.3.3).

Recently, we have found th a t some field aligned flows can generate nonlinear Alfven waves, 

p ropagating  in the  r, 6  plane, bu t w ith field com ponents perpendicular to  it.

We s ta rt w ith the basic equation set describing the plasm a, equations (2.20)—> (2.23). In all 

previous work, we confined atten tion  to  the  r, 9 plane. Suppose now we describe the system  by 

setting:

B  —► B +  b, U - + U  +  W,

T he new com ponents to  the m agnetic field and velocity fields are w  =  wz  and h  = bz respectively. 

B  and  U  are the m agnetic and velocity fields in the plane. Incom pressibility dem ands th a t w is
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a function of r and 9 only; sim ilarly the Maxwell equations dem and th a t b = b(r, 9). I t tu rn s  ou t 

th a t the resulting equations m ay be split up into two parts: a set describing the behaviour in the 

plane
an

(7.1)— +  (U .V )B  =  (B .V )U

rw T
—  +  (U .V )U  =  - V p  +  J  x B  -  j  x b

and another describing the z-direction

db
dt

d w
dt

+  (U .V )b  =  (B .V )w  

+  (U .V )w  =  j  x B

(7.2)

(7.3)

(7.4)

where j  =  V x b  and J  =  V x B  and we have set p =  1 and fio =  1. These equations are, a t the 

m om ent, very general. Suppose we are given B  and U , then  we can solve for b  and w.  Let us 

assum e th a t
_  b

y/VoP

which is true for an Alfven wave. Since j  x B  =  (B .V )b , equations (7.3) and (7.4) become identical 

and equal

+  U .V w  =  (B .V ) w (7.5)

a  linear hyperbolic equation for w. If we impose the field aligned flow condition (equation (2.35)) 

then  the equation takes on a form

dw
dt -  (i -  / )

„  dw Be dw  
dr r d9

= 0 (7.6)

We have re-expressed (7.5) as a scalar equation. A lthough it is a linear equation (soluble by the 

m ethod  of characteristics [46]), the waves it describes are not ‘linearised’ because a t no stage in the 

analysis have we specified any particu lar size to w. The system  supports these nonlinear Alfven 

waves [34]. We have yet to  include the effect of the ‘feedback’ term  j  x b  in equations (7.1) and 

(7.2). This will change the values of U  and B in the plane which will in tu rn  change w.

The appearance of these waves and their subsequent effects for the system  are certainly worthy 

of further investigation.

7 .1 .3  M odelling

We have only scratched the surface in applying field aligned flow to  feasible, physical geom etries. 

As has been noted above, curved geometries m ay provide regions of interest for solar physics. 

T his may be best tackled com putationally. Even w ithin the confines of the Poisson equation 

developed in chapter (6), there is room  for m anoeuvre. One area in need of im provem ent is the 

boundary  description. It m ay be m ore realistic to describe the region w ith Robbins type boundary
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inform ation. On the upper and lower sides of the regions of interest we could set =  0, which 

would kill off the y-com ponent of B , reproducing the y-directed com ponents w ithout fixing a 

m agnitude to A  a t the boundary.

Solutions involving /  nonconstant are harder to  com pute, bu t m ay be m ore realistic from  a 

m odelling point of view. An interesting route to explore would be solutions to  the fields allowed 

by /  =  f ( t ) .  As  t —> 0 0 , /  —»■ ± 1 . At /  =  ± 1  exactly, the original equations s ta te  th a t any 

choice of B is perm itted . This is not true when /  —► ± 1 , as the tim e dependent flow function 

introduces a condition of the m agnetic field (see section 4.2.3). Therefore, there is som ething 

p articu lar abou t these fields: in the lim it, they are ju s t like another w ith /  =  ± 1 , bu t they have 

arisen from  considering a  m ore com plicated problem  th a t tends to  an easier one. It m ay be possible 

to  first write a  genetic algorithm  to  ob tain  some feel for the analytic solution of the field governing 

equation  (4.7), and then let more accurate m ethods take over.

7.2 Genetic Algorithms

It has been shown th a t genetic algorithm s m ay be useful in generating approxim ate num erical 

solutions to  trad itionally  difficult Poisson equations. These rough solutions are generally good 

enough to allow standard  num erical techniques to  calculate an accurate answer. There are very 

m any directions th a t m ay be taken to extend and improve the application of genetic algorithm s to  

differential equations, and some are listed below.

7.2 .1  E xten sion s to  P O ISG E N

T here are a num ber of ways in which we can extend the existing code.

1. M eta-G enetic A lgorithm s

PO ISG EN  is an exam ple of a complex, m ulti-param eter system  (see appendix  A,B) w ith a 

not easily described behaviour. T he optim isation  of its behaviour could be perform ed by 

using a mefa-genetic algorithm  to find an optim ised set of param eters for use in PO ISG EN . 

W ith  a genotype consisting of POISGEN param eters and each genotype being used to  run a 

copy of PO ISG EN  weights would be assigned according to  how well each copy reproduced 

the solution (whether analytic  or NAG defined) equation. Such a genetic algorithm  would 

be com putationally  expensive to run, bu t m ay be worthwhile to  obtain  b e tte r perform ance 

over a  wide range of problem s.

2. One obvious extension is to rewrite the code to solve Poisson equations on differently shaped 

regions in different co-ordinates system s i.e., cylindrical polars.
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3. PO ISG EN  solves the Poisson equation for Dirichlet boundary conditions (6.2). One could 

extend the problem  to  R obbin’s boudary conditions,

dA
a ( x , y ) A  + (3 (x ,y , )  —  = j ( x , y )  (7.7)

on the boundary d R  of a region R.  Here refers to  differentiation along the norm al directed 

away from  the interior of R.

7 .2 .2  A ltern ate  Solu tion  R ep resen tation s

In b o th  ODE and POISG EN  we have used a finite difference expression of the relevant equation to  

generate an approxim ate solution. This was done as it allows singularities to  develop in a solution, 

should any be present. Therefore, this representation is the m ost general. However, it is no t the 

only way we can describe a solution.

A function can also be described as a  weighted sum  of orthogonal functions, over the desired 

range. To discuss this im plem entation properly we m ust introduce some definitions [47]. The 

inner product  of two functions ip(x)  and p ( x ) ,  bounded and integrable over the range a < x < b 

is defined as

(0» VO =  /  p(x )< p (x ) i p (x )d x  
J  a

w ith respect to  a weight function p ( x )  > 0 in a < x < b. Commonly, p{ x )  =  1, bu t this is no t ne-
—  1 /  *y

cessarily true; for instance, Chebyshev polynom ials of the first kind have p (ar) =  ( l  — x 2) . The

inner product is clearly sym m etric, i.e., (<p, ip)  — (V’N )- Two functions are said to  be orthogonal 

on the interval a <  x  <  b w ith respect to the weight function p (a?) if

(< M ) =  0

A set of functions <pk, k =  1 , 2 , . . .  form an orthogonal set if

{<f>kAj) =  0, k ^ j  (7.8)

T he norm  of a function <p is defined by

II IN  v N N )

If || <p ||<  oo then <f> is said to  be square integrable. Also, (p m ay be norm alised by defining a  new 

function <p =  <f>/ || 0  [|.

Given an orthonorm al set of square integrable functions <j>k and a square integrable function 

ip (z) over a < x < b then the num bers ( ip,  <pk) m ay be called the Fourier coefficients of ip (x).  The 

form al series
OO

V’ N ) =  (7.9)
k = 1
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is called the Fourier series of ip.  Commonly, Fourier series refer to  an expansion in trigonom etric 

functions, bu t we can generalise th is m eaning to  the expansion of a  function in term s of a  set of 

orthonorm al functions.

We can of course apply this to  the solution of ordinary differential equations, and from  there, 

design a su itable genotype for a genetic algorithm  to  work with. Consider the ordinary  differential 

equation  boundary  value problem  we used in the code ODE (see section 5.3). We can substitu te  

the expansion (7.9) into (5.2). W riting A k =  { < p k , y  s o l u t i o n )  we get

2

Jfc=l
= C 4 (x)£  A t * !  +  Cl (x) Y . M &  +  c 2 (x) Y ^ A k<l,t  +

fc=l k = 1 k = 1

The unknowns are the num erical values of A k,  the Fourier coefficients, and it is th is th a t form s the 

genes for the  genotype. Obviously, the genetic algorithm  cannot use an infinite num ber of genes, 

so we truncate  the series a t some upper lim it n, using

A 1 A 2 A 3 ■ A n

as the genetic code for each individual. Choosing Fourier coefficients as genes differentiates between 

genotype and phenotype, a distinction blurred in m ost of this thesis. The transla tion  between the 

two is encapsulated in the Fourier decom position used to encode y  as a series of orthonorm al 

functions.

We can generate a local error a t each point Xi in the range for the p ’th  candidate

2

RPi = ^ZAkXk (*,•) +
k = i

C 3(x i )^2A pk<f>k (xi) 
k = 1

C4 (#i) (7.10)

where Xk{%i) — <Pk (x i) +  C \  (x») <pk (x{) +  C 2 (^i) <j>k (^i)- A weight can be assigned to  each 

candidate in a very sim ilar way to section (5.3.2) by generating separate m easures of fitness and 

com bining them : we can keep the sum , product and m axim um  error m easures as defined above, 

b u t we m ust trea t the boundary conditions differently. From (5.3), y ( x 0 ) =  y o , y ( x end) =  y e n d- 

A t the left hand boundary, for instance, we m ust have yo =  ]Cfc=i A k<Pk (^ 0), and sim ilarly for the 

o ther boundary. Therefore, for genes in the p ’th  candidate we should define

63 =  function of Vo (xo)
fc=i

yend, ■Ee n d )
k = 1

(7.11)

For a suitable function, th is should penalise candidates discontinuous w ith the boundary. A weight 

W p can de defined, com pleting the required elements for a  genetic algorithm .

There are disadvantages w ith this representation, ft is not quite as general as the previous 

scheme, as it m ay have trouble trying to  describe a single (non-infinite) spike in the solution. Also, 

it m ay be th a t the m ost im portan t com ponent in the expansion is a t high n  and the genotype 

m ay never be long enough to  contain it. This is tem pered by the analytic result th a t (0 , i p)  0
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as k —► oo. and hence higher com ponents provide sm aller contributions to  the overall expanded 

series. Also, since the proposed scheme does not explicitly w rite the boundary conditions in to  the 

genotype, then we can expect the fitting errors generated here to  be som ew hat m ore im po rtan t 

th an  in the finite difference scheme. Again, this effect can be m itigated  by m aking the penalties 

associated w ith € 3  as defined above very high, choosing those parents th a t best fit the boundary 

conditions.

However, it is not all bad  news. A m ajor advantage should be the global na tu re  of the orthonor­

m al functions, com pared to  the necessarily ‘local’ character of the discretisation approach. Each 

of the orthonorm al functions span the entire range of equation dependence, and hence the corres­

ponding Fourier coefficient approxim ates the solution everywhere. T he discretisation procedure is 

purely local which can cause problem s when generating a fitting error a t each point. T his can be 

explained by epistasis [48] , which is the effect of one gene on the expression (in the phenotype) 

of another. T his effect can be particularly  severe in bo th  ODE and PO ISG EN  and can fool the 

routine into propagating  poor genes. This is because bo th  codes rely on next nearest neighbour 

interaction  to  assess fitting  errors. If by chance, the i ’th  gene has two neighbours th a t happen to 

give a low value of even although when com pared to  the true solution they are very poor, then 

gene i in the  p ’th  candidate will be judged to  be ‘good’ and will therefore have an im proved chance 

of surviving to  the next generation. The finite difference genetic algorithm  technique relies on the 

efficient propagation  of boundary inform ation into the genotype to  com pensate for th is effect.

There should be no interaction of this type between neighbouring genes in th is new scheme, 

guaranteed by the orthogonality  of the expansion functions. There are also a  large num ber of o rtho­

gonal function sets to  choose from, which could make a big difference to  the length of the genotype 

and therefore convergence tim es. Such a program  could also be easily modified to  decompose, say, 

experim entally derived d a ta  into a Fourier series of trigonom etric functions.

Extending into a Poisson type problem  using a suitable Fourier decom position would follow 

much the sam e lines. It is envisaged th a t these program s would be used w ith o ther routines, either 

as decom position program s or straightforw ard equation solvers.

7 .2 .3  O ther D ifferential E quations

O f the three types of partia l differential equation, we have tackled only the elliptic type. Parabolic 

and hyperbolic equations are fundam entally  different equations.

(7.12)

(7.13)

du d 2u
dt d x 2

d 2u d 2u

s? to d x 2
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either as in itial value problem s, or as boundary value problem s. A possible hyperbolic scheme 

involves generating an im plicit finite difference scheme for the next tim e step, using the previous 

tim e levels. The coefficients would depend on the values in the previous tim e level. One could 

use a  genetic algorithm  to  determ ine a rough solution, and then let a trad itional solver finish 

the job . T his hybrid technique would combine the best of bo th  worlds - an accurate solution to 

the equations representing the partia l differential equation in a reasonable tim e, free from  gross 

num erical instability.

A nother, perhaps even more im portan t class of problem s th a t we can exam ine genetically is 

the system

^  =  f i  (*, Vj) , 1 <  i , j  < n (7.14)

a set of n > 2 ordinary differential equations in the independent variable x. A study  of this system  

would also aid the study  of hyperbolic/parabolic equations, and would yield im portan t inform ation 

on the effect of epistasis, which was cited as a m ajor concern above.

The solution yi to  each equation depends on the other equations, which is very im portan t from 

a genetic point of view. The problem  of epistasis now becomes m uch worse as genes (points) from  

different genotypes m ust necessarily affect the viability of candidates. This is like saying th a t your 

health  depends on the health  of your neighbour. T his problem  also raises some difficult questions 

on how to  view the set i.e. is it best approached as n  separate bu t in teracting  populations, the 

best individuals from  each representing the best overall solution. Or perhaps the best m ethod is to 

sim ply concatenate the points required in each equation and call this the genotypic representation.

It is however, a very open question a t present: the only way to find for sure is to  try  it out!
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A p p en d ix  A

POISGEN: listing and 

docum entation

A .l  Outline of the code 

A . 1.1 D evelop m en ta l H istory

PO ISG EN  is a FORTRAN 77 code designed to  solve Poisson equations by genetic algorithm s 

on rectangular regions using a C artesian co-ordinate system . It is largely based on a  previously 

w ritten  code, an ordinary differential equation solver, ODE, which was itself inspired by [38]. The 

m ethod  is explained in greater detail in chapter 5. I t was developed in itially  on a PC  running 

SALFORD FTN77, and then refined on SU N /SPA RC workstations. I t is however, still very much 

in its infancy, and should be regarded as an research tool to  test the feasibility of the application 

of genetic algorithm s to differential equations. Many of the routines described are experim ental, 

and are included because they seemed like a  good idea at the tim e. The code is not optim ised in 

any particu lar fashion, bu t is w ritten  in as m odular a fashion as possible to  (hopefully) allow easy 

reading and m odification. There are also a liberal num ber of com m ents sprinkled in the code to 

aid understanding of its functionality.

The program  m ay be sectioned in three parts. The first p a rt describes the genetic algorithm  

itself by calling on various routines later in the code. T his p a rt controls the  behaviour of the entire 

program . The second, and bulkiest part, im plem ents the required genetic algorithm  behaviour: it is 

here th a t the actions of m uta tion , breeding, sorting, etc. are actually  perform ed on the population . 

T he final p a rt describes the equation we are try ing to  solve, th a t is, the boundary  conditions and 

source term .
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V a r ia b le  N a m e (S iz e ) , T y p e

npar, integer 

nchild, integer 

xpoint,  integer

ypoint,  integer

npoint,  integer

y (1000,1000),real array

weight  (1000), real array 

highbdry , real 

lowbdry, real

D e s c r ip t io n

N um ber of breeding parents per generation 

Num ber of children bred per generation 

Num ber of points in x-direction, including 

boundaries

Num ber of points in y-direction, including 

boundaries

npoint = (xpoint  — 2) x (ypoint — 2)

Total num ber of points(genes) per candidate

Genes of the entire population

y (n, i) holds the z’th

point of the n ’th  candidate

weight  (i) is the weight of the i ’th  candidate

m axim um  perm issible gene value

m inim um  perm issible gene value

Table A .l: Some POISGEN variables 

A . 1.2 Im p ortan t variables

Some of the m ost im portan t program  variables are listed in Table A .I. The tim e taken per 

generation varies as npoint  which in tu rn  depends on xpoint, ypoint. These variables govern 

the overall speed and behaviour of the algorithm . The variables npar, nchild, xpoint,  ypoint are 

user defined and loaded into POISGEN from  the input file GA.IN (see appendix B).

T he program  has a m axim um  upper capacity, lim ited by the size of the y  array. Currently, 

the program  runs w ith npar  +  nchild < 1000 and npoint  <  1000. T his m em ory lim it was set by 

the PC  th a t POISGEN was originally developed on. C om putation  tim e is roughly proportional to 

npoint  x (npar  +  nchild). However, a large population of coarsely grained individuals will tend to 

outweigh the benefits of a population  of more finely grained individuals (see com m ents on point 

doubling in chapters 5 and 6).

A .2 Description of POISGEN functions and subroutines

Below is a  list of the subroutines and functions as they appear in the PO ISG EN  listing. Figure 

(A .l)  denotes the layout of the description. Further functionality  details m ay be found in the 

listing itself, and in appendix (B).

1. p ro f i le(number) (integer)
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S U B R O U T IN E  N A M E  (variables) (variable types)

D escription of functionality

F U N C T IO N  N A M E  (variables) r e t u r n  t y p e ,  (variable types)

D escription of functionality

Figure A .l: Key to  function and subroutine descriptions

If number=-l  then  go to  z o o m e r  subroutine, else assign a weight to  candidates num bered 

1 —> number.

2. s o r t

sort the array weight  by heapsort m ethod in descending order: weight^  1) =  lowest and 

weight(npar + nchild ) =  highest. Also reorders y array from  best (lowest weight) to  worst 

(highest weight).

3. z o o m e r (xwor,ywor) (integer,integer)

vary the value of A].wor ywor, the worst point in the best candidate, in copies of the best 

candidate using g c re e p .

4. g e n e r8 (n j  (integer)

fill y(n, 1 —► npoin t) w ith a uniformly random  distribution of num bers between lowbdry, 

highbdry.

5. c o n t i n u i t y ^  (integer)

w rite boundary inform ation into the genotype of candidate n.

6. s p e c ia l (n,frac) (integer,frac)

generate a special individual. S traight lines are constructed between pairs of opposing edge 

grid points. The special individual is calculated by adding the values of b o th  the x and y 

directed lines a t a specified internal point.

7. sp e c ia l2  (n,frac) (integer, real)

add an am ount p  x hl9hbdry~J°w.Pdry ; — 1 <  p <  1 p random , to  all the points in the n ’th  

candidate.

8. s p e c ia l3 (n jra c )  (integer,real)

add an am ount p x h%3̂ ~J°w , — 1 <  P <  1 P random , to  all the points in the rz’th  candidate. 

high, low are the largest and sm allest gene values in the n ’th  candidate.

9. b r e e d

breed two children from  two parents by one point crossover
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10. i m i t a t e  (nlow,nup,mzlev) (integer,integer,integer)

perform  m zlev  m utations on candidates num bered from  nlow  —► nup  in y. The types of 

m u ta tion  operators used are decided by the variables loaded in from mutate.in.

11. c o m b in e  (nlow, nup, czlev) (integer, integer, integer)

perform  czlev  com binations on candidates num bered from  nlow —► nup  in y. T he types of 

com bination operators used are decided by the variables loaded in from  combine.in.

12. r a n r e p (dummy)  r e a l ,(real)

generates a uniform ly random  num ber in the range lowbdry < ranrep  < highbdry. d u m m y  

variable to m ain tain  legal FORTRAN.

13. c r e e p (gene,czmax,rantype) r e a l , (real,real,integer)

add a num ber p  x c zm a x  to  the gene value gene. If raniype  =  0, then p  =  ±1  (decided 

uniform ly random ly). If rantype — 1, p  is uniform ly random  in the range —1 <  p  <  1.

14. g c r e e p (gene,gczmax,rantype) re a l,  (real,real,integer)

m ultip ly  gene value gene  by (1 +  p  x gczm ax).  If rantype = 0, then p  =  ±1  (decided 

uniform ly random ly). If rantype — 1, p  is uniform ly random  in the range —1 < p <  1.

15. w a v  (genel,gene2,avzwil,avzwt2)  r e a l , (real,real,real,real)

calculate the weighted arithm etic average of two genes genel  and gene2. The average is

dp f in p d  a<? 1 n n v  — a e n e l . a v z w t l + g e n e l . a v z w t l  aennea as wav — abs ( a v z w t i ) + a b s ( a v z w t 2 )

16. g a v (genel,gene 2 ,gzop) real,(real,real,integer)

take the geometric average of the gene values genel,  gene2. The exact m ode of operation  of 

this function is governed by the value of gzop.

17. t r a n s  (nlow,nup,tzlev) (integer,integer,integer)

perform  tz lev  transcrip tion  operations on candidates num bered from  nlow  —► nup  in y. The 

types of transcrip tion  operators used are decided by the variables loaded in from  transcr.in.

18. sw a p  (parent,place, noof) (integer, integer, integer)

swap genes from  place —► p l a c e n o o f  — 1 w ith place —n o o f  —>■ place — 1  in candidate parent.

19. reverse(parent,place,noof) (integer,integer,integer)

reverse the order of n o o f  genes from place —*■ place +  n o o f  — 1 in candidate parent.

20. m i^(parent,place,noof) (integer,integer,integer)

random ly rearrange the order of n o o f  genes from  place —► place + n o o f  — 1 in candidate 

parent.
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21. co p y  (parent,place, noof) (integer, integer, integer)

takes a copy of the genes from  place —* place-\-noof — I in candidate parent  and moves them  

to  the next nonaffected region closest to the  centre of the genotype, overw riting the genes 

already present.

22. d e l (parent,place,noof)  (integer,integer,integer)

deletes the genes from place —> place +  n o o f  — 1 by copying the segm ents from  the  nearest 

end to  place + n o o f . Therefore, one end of the code will have 2 identical copies of n o o f  genes 

in order.

23. check

m easure the genetic diversity of the breeding population i.e., the top npar  paren ts of the 

ranked population. Genetic Diversity m tot  =  ^  Y Z = i  1 “

24. tw e a k (m to t )  (real)

keep top tw zp a r  parents and fill the rest of the population w ith com pletely random  individu­

als.

25. jigg le(ran 0) (real)

take each gene in the (ranked) candidates num bered 2 —► npar  +  nchild  and random ly decide 

to perform  a creep  or gcreep  operation. ranO is either czm ax  or gczm ax.

26. w o b b le  (ranO) (real)

make three copies of the best candidate, bu t perform  a creep  or g creep  on all the  points 

of the genotype. ranO is either czm ax  or gczm ax.  The first copy has a creep  or g creep  

(random ly decided) of random ly changing size perform ed on each gene. T he second copy has 

a creep  or g creep  (random ly decided) operation perform ed on each gene, b u t th is tim e the 

size of the operation is fixed a t gene  + p /  x ranO or gene  x (1 + p j  x ranO). p j  is fixed for 

all genes in the genotype and is a random  num ber, —1 < p j  < 1. T he th ird  copy is sim ilar 

to the second except this tim e —p f  is used.

27. d o u b le

double the point resolution in the x  and y  directions. G enotype length of every individual 

is increased by in terpolation  between known points.

28. u n ifran  (nlow, nup) in te g e r , (integer, integer)

generate a uniform ly random  integer num ber in the range nlow  —► nup.
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29. t  e(gene)  in te g e r ,  (re a I)

test if gene  is w ithin the range lowbdry < gene < highbdry. te =  0 if w ithin the range,

te =  — 1 if less than  lowbdry  and te — +1  if above highbdry.

30. p i (i,j)  i n t e g e r , (integer,integer)

calculate the norm al storage position in a candidate for the point A i j .

31. p l2  (i,j) i n t e g e r , (integer, integer)

calculate the norm al storage position in a candidate th a t is being doubled in size for the 

point A i j .

32. p l e d (i,j)  i n t e g e r , (integer,integer)

calculate the alternate  storage position in a  candidate for the point A { j .

33. x x l p t s 2 (xpints2,ypints2) (integer,integer) 

double the num ber of points in the x and y directions

34. a p t s 2 (n,xpints2,ypints2,npints2) (integer, integer,integer, integer)

in terpolate new points in candidate n  to  go along w ith doubled num ber of points in the x 

and y directions. W hen dbl =  0 interpolate using r a n r e p  points. If dbl =  1 then use linear 

in terpolation.

35. n c o d e (n )  (integer)

Reorder norm ally stored candidate n  genotype into alternative storage. See section 6.4.

36. n co d efn ,) (integer)

Reorder alternately  stored candidate n  genotype into norm al storage. See section 6.4.

37. lo a d z in

load in and check user set d a ta  - see appendix B. Sets up common blocks.

38. s e tu p

setup in itial population  and x , x l  arrays. Open m onitoring and o u tp u t files.

39. d u m p z o u t

dum p out algorithm  inform ation to  ou tpu t files

40. u p d a t e (noutzwt,noutzh,noof) integer, integer,integer 

update  evolutionary history files
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41. s o u r c e (i,j, a, ax, ay) r e a l ,  (integer, integer, real, real, real) 

calculate the value of the source term  S i j  - see section 6.6.

42. lo h d ( i , j )  r e a l ,  (integer,integer)

boundary conditions g i j  a t the lower edge of the rectangular region -see section 6.6.

43. u p b d f* ,^  re a l ,  (integer,integer)

boundary  conditions g i j  a t the upper edge of the rectangular region -see section 6.6.

44. lh s ( i , j )  real,(integer,integer)

boundary  conditions g i j  a t the left hand edge of the rectangular region -see section 6.6.

45. r h s  (i,j)  r e a l ,  (integer, integer)

boundary conditions g i j  a t the right hand edge of the rectangular region -see section 6.6.

46. d e c id e(iternow,bzwt,evolav) (integer,real,real)

given the best weight bzwt and average evolutionary gradient evolav a t iteration  iternow,  

decide w hat to  do next.

47. b ia s  (i,j) real,  (integer,integer)

biassing function for m uta tion /com bination  functions.

A .3 PO ISG EN listing

Below is a listing of the version of POISGEN used to calculate solutions to  the Poisson equations 

listed in chapter 6. The necessary input param eters are described in appendix B. A lthough not 

reproduced in stric t FORTRAN77 form at, it should be legible.
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.51.0 p r o g r a m  P O I S G E N

; S U N / S P A R C  V E R S I O N  

1 O n e  p o i n t  c r o s s o v e r  r o u t i n e  

/ T o  s o l v e  L a p l a c i a n / P o i s s o n  e q u a t i o n s  

' V 0. 0 :  n o  r u n s  y e t !  B a s e d  o n  n g q . f o r  

' V 0. 1 :  r u n s  b a s e d  o n  c o n s t a n t  v a l u e d  b d r y  

’ V 1.0:  L a p l a c i a n / P o i s s o n  s o l v e r  o n  r e c t a n g u l a r  g r id  

' T h i s  p r o g r a m  u s e s  N O  e x t r a p o l a n t s  i n  t h e  p r o f i l e  

' f u n c t i o n  a n d  N O  d i f f e r e n c e  r e p l a c e m e n t s  a t  t h e  

' b o u n d a r y .  T h e  b o u n d a r y  is o n l y  d i r e c t e d  c o n s i d e r e d  

/ w h e n  we  c o n s i d e r  p o i n t s  n e x t  t o  t h e  b o u n d a r y .

' N O T E  a l s o  t h a t  t h i s  is t h e  i n t e r a c t i v e  v e r s i o n  of  

' o f  l a p l . f o r .

* T h i s  v e r s i o n  is c o n t r o l l e d  b y  a  c o n t r o l  f i le ,  c o n t r o l . i n  

' V 1.1:  P o s i t i o n  d e p e n d e n t  b i a s s i n g  f u n c t i o n  g i v i n g  m o r e  m u t a -

' t o  t h o s e  p o i n t s  f u r t h e s t  a w a y  f r o m  t h e  b o u n d a r i e s  

' V  1 .2 :  E r r o r s  in  N c o d e , D c o d e  c o r r e c t e d . C o m m e n t i n g  o u t  of  

' e x t r a p o l a n t  f u n c t i o n a l i t y .  C o n t i n u i t y  w i t h  b o u n d a r y  

' c o n d i t i o n s  n o w  p e n a l i s e d  > m o r e  c o n t i n u o u s  s o l u t i o n s  

1 a r e  g i v e n  l o w e r  w e i g h t s .

' V 1.3:  S o u r c e  t e r m  n o w  c o n t a i n s  g r a d i e n t s  of  t h e  f u n c t i o n  A 

' i .e . ,  A x  a n d  Ay.  W h e n  we  h a v e  a  l a r g e  n u m b e r  o f  p o i n t s  

' i n  a  c a n d i d a t e  l e n g t h ,  t h e n  t h e  w e i g h t  o f  t h a t  

' c a n d i d a t e  c a n  b e  l a r g e ,  e v e n  a l t h o u g h  a  v i s u a l  c o m p a r i s o n  

' w i t h  t h e  t r u e  s o l u t i o n  t e l l s  y o u  t h a t  i t  i s i n  f a c t  a  

' g o o d  a p p r o x i m a t i o n .  I t  i s f o u n d

' t h a t  m o v i n g  t o  a  2 1 x 2 1  g r i d  - l a r g e ! -  a l m o s t  g u a r a n t e e s  

! t h a t  a l l  t h e  w e i g h t s  wil l  ’t o p  ou t*  a t  t h e  m a x i m u m  

! w e i g h t .  H e n c e  if a l l  c a n d i d a t e s ,  i n c l u d i n g  c o m p l e t e l y

■ r a n d o m  o n e s ,  h a v e  t h e  s a m e  w e i g h t  t h e r e  is n o t h i n g  t o  c h o o s e  

' b e t w e e n  t h e m  al l .  T h e r e f o r e ,  g i b b e r i s h  a n s w e r s  a r e  t h e

‘ f i n a l  r e s u l t .

: T o  c o u n t e r  t h i s  t h e  w e i g h t i n g  g i v e n  t o  e a c h  m e a s u r e  

! of  t h e  f i t n e s s  s h o u l d  c h a n g e  a c c o r d i n g  t o  t h e  n u m b e r  

: of  p o i n t s  in  t h e  c o d e .

■ V 1.4:  I t  i s f o u n d  t h a t  a n  e s p e c i a l l y  f i t  c a n d i d a t e  c a n  d o m i n a t e  

' t h e  p o p u l a t i o n  fo r  a  l a r g e  n u m b e r  of  i t e r a t i o n s .  T h i s

' m e a n s  t h a t  t h e  e v o l u t i o n a r y  g r a d i e n t  is f l a t  a n d  a c t i o n  

: m u s t  b e  t a k e n  t o  g e n e r a t e  b e t t e r  c a n d i d a t e s .  So v a r i o u s  

: s c h e m e s  t o  c o m b a t  t h i s  a r e  b e i n g  t r i e d  t o  c o m b a t  t h e  

' f l a t n e s s .  N o w  w e i n c r e a s e  t h e  w e i g h t i n g  p a r a m e t e r s  

' v e r y  s l i g h t l y  in  a  b i d  t o  d i f f e r e n t i a t e  b e t t e r  f r o m  

1 w o r s e  c a n d i d a t e s

: x p o i n t s  =  =  p o i n t s  i n  t h e  x d i r e c t i o n  

x p o i n t s  = =  p o i n t s  in  t h e  y d i r e c t i o n

n p o i n t s  =  =  x p o i n t s * y p o i n t s  t o t a l  n u m b e r  o f  p o i n t s  < = 2 0 0 0  

b e r  of  p a r e n t s  f o r  t h e  n e x t  g e n e r a t i o n  

r e n  t o  b e  g e n e r a t e dn c h i l d  = =  n u m b e r  o f  c h i l d

O p e r a t o r  I n f o r m a t i o n

C o m b i n a t i o n  O p e r a t o r s  a c t  o n  t h e  g e n e s  of  t h e  b r e e d i n g  s t o c k  

M u t a t i o n  O p e r a t o r s  a c t  o n  t h e  g e n e s  of  t h e  b r e e d i n g  s t o c k  

T r a n s c r i p t i o n  O p e r a t o r s  a c t  o n  t h e  g e n e s  of  t h e  b r e e d i n g  s t o c k  

T h i s  v e r s io n  i n t r o d u c e s  a  b i a s i n g  f u n c t i o n

t o  t h e  m a x i m u n  p e r m i t t e d  v a l u e  of  t h e  c r e e p  a n d  g e o m e t r i c  

: c r e e p  o p e r a t o r s .  S e e  s u b r o u t i n e  b i a s

r e a l  p z w t , g r a d , f l a t ( 1 0 0 ) , f l a t a v  

r e a l  e g r a d , e v o l ( 1 0 0 ) , e v o l a v  

i n t e g e r  e v o l b a c k

C

C  D o - l o o p  v a r i a b l e s  

i n t e g e r  i i ,k

C

C  I n / o u t - p u t  v a r i a b l e s  

i n t e g e r  n o u t z w t

c i n t e g e r , n o u t z h

C

C  D e c i s i o n  v a r i a b l e s  

i n t e g e r  k z e y

C

C  I t e r a t i o n  v a r i a b l e s  

i n t e g e r  i z l o w , i z u p

C

C  O t h e r  V a r i a b l e s

r e a l  w e i g h t ( l 0 0 0 ) , y ( l 0 0 0 , 2 0 0 0 )

C

C  G e n e t i c  A l g o r i t h m :  ’S i z e ’ o f  G A  v a r i a b l e s  

i n t e g e r  n p a r , n c h i l d , n t o t a l , n p o i n t s , i t e r m a x  

i n t e g e r  x p o i n t s , y p o i n t s

C

C  G e n e t i c  A l g o r i t h m :  o p e r a t o r s ’ v a r i a b l e s  

r e a l  j i g , w o b , w o b i f  

i n t e g e r  l o a d i n , j i g n o w , w o b n o w  

i n t e g e r  m z l e v , c z l e v , t z l e v  

i n t e g e r  w o r z p

i n t e g e r  s w a z s , r e v z s , m i x z s , c o p z s , d e l z s

i ,f a c t o r , p r o d O

C  P r o f i l i n g  v a r i a b l e s  

r e a l  p e n l , p e n 2 , d t e n

C

C  C o m m o n  B lo c k s

c o m m o n  / w t s /  w e i g h t  

c o m m o n  / z y s z /  y

C  G e n e t i c  a l g o r i t h m  d a t a

c o m m o n  / g a l /  n p a r , n c h i l d ,n p o i n t s

c o m m o n  / g a 2 /  

c o m m o n  / g a 3 /  

c o m m o n  / g a 5 /  

c o m m o n  / g a 6 /  

c o m m o n  / g a 7 /

o b , w o b n o w , w o b i f

i t e r m a x  

n t o t a l  

j i g , j i g n o i  

l o a d i n  

w o r z p

c o m m o n  / g a l l /  x p o i n t s , y p o i n t s  

c o m m o n  / m c t z d a t /  m z l e v , c z l e v , t z l e v  

c o m m o n  / t r a z d a t l /  s w a z s , r e v z s , m i x z s , c o p z s , d e l z s  

c o m m o n  / d e c /  k z e y , i z l o w , i z u p

C

C  P r o f i l i n g  d a t a

c o m m o n  / p r o f /  p e n  1 , p e n 2 , d t e r m , f a c t o r , p r o d O

C

C  P a r a m e t e r  s t a t e m e n t s  

p a r a m e t e r ( n o u t z w t = 2 0 )  

p a r a m e t e r (  n o u t z h  =  21 )

C  I N I T I A L I S A T I O N  A N D  S E T T I N G  U P  D A T A

C  G E N E T I C  A L G O R I T H M :  t h i s  is  t h e  t o p  l e v e l  of  t h e  p r o g r a m

i t  is  h e r e  t h a t  t h e  s t r u c t u r e  of  t h e  G A  

is f o r m e d

V a r i a b l e  S t a t e m e n t s  

S p e c i f i c  v a r i a b l e s

C  E v o l u t i o n  m o n i t o r i n g  v a r i a b l e s

C  I n i t i a l i s e  e v o l u t i c  

d o  108  i i = l , 5 0  

f l a t ( i i )  =  1 0 0 0 0 .0  

e v o l ( i i )  =  0.0  

108 c o n t i n u e  

C

C  L o a d  a n d  C h e c k  d a t a  

C a l l  L o a d z i n

m o n i to r in g  s t u f f
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C  D e f i n e  P r o g r a m  V a r i a b l e s  

C  I t e r a t i o n  v a r i a b l e s  

k z e y  =  0 

i z lo w  =  1 

i z u p = i t e r m a x  

C  S e t  p r e v i o u s  w e i g h t  p z w t  t o  d e f a u l t  

C  l a r g e  v a l u e  a n d  s t a r t . . .  

p z w t =  1 . 0 D 1 0 0  

f l a t a v r : !  .0 

e v o l b a c k = 5

C

C  S e t u p  i n i t i a l  d a t a : :  x  p o i n t s  a n d  i n i t i a l  s t o c k  

C  L o a d  i n  p r e v i o u s  d a t a  i f  l o a d i n  =  l  i n  f i le  g a . i n  

C  I n i t i a l  s t o c k  d u m p e d  t o  A D A M E V E . O U T  

if  ( l o a d i n . e q . l )  t h e n

p r i n t * , ’S e t u p  i n i t i a l  d a t a : :  b e s t  p a r e n t  f r o m  B Z P A R Z N . O U T ’ 

C a l l  S e t u p

c p r i n t * , ’D a t a  i n  g a . i n  m u s t  a g r e e  w i t h  t h e  s iz e  o f  p a r e n t ’ 

c p r i n t * , ’S i z e  of  i n p u t  p a r e n t  m u s t  b e  = ’, x p o i n t s * y p o i n t s  

o p e n ( u n i t = n o u t z w t , f i l e  =  ’B Z P A R Z N . O U T ’

, a c  c e s s  =  ’s e q u e n t i a l ’,

& s t a t u s  =  ’u n k n o w n ’) 

d o  1 07  k = l , n p o i n t s  

r e a d  ( u  n i t  =  n o u t z w t , f m t = 9 7 0 0 0 )  y ( l , k )

1 0 7  c o n t i n u e

cl o s e  (u  n i t  =  n o u t z w t )

C a l l  P r o f i l e ( l )

p r i n t * , ’L o a d e d  p a r e n t  w e i g h t  = ’, w e i g h t ( l )  

e ls e

p r i n t * , ’S e t u p  i n i t i a l  d a t a : :  i n i t i a l  s t ock *

C a l l  S e t u p  

e n d  if

C

C  O p e n  f i le s  t o  m o n i t o r  t h e  h i s t o r y  o f  t h e  e v o l u t i o n

o p  e n  (u  n i t  =  n o u t z w t ,  f i le  =  ’B Z W T Z H . O U T * , a c c e s s =  ’s e q u e n t i a l ' ,  

& s t a t u s = ’u n k n o w n * )

C

C  I n i t i a l i s e  e n t i r e  p o p u l a t i o n

p r i n t * , ’B r e e d i n g  f r o m  i n i t i a l  s t o c k ’

C a l l  B r e e d

C

C  K e e p  t h e  f i r s t  i n d i v i d u a l .  A t  t h i s  p o i n t  i t  i s  e i t h e r  t h e  o n e  

C  g e n e r a t e d  b y  s p e c i a l 2 ,  a  p r e v i o u s l y  l o a d e d  o n e .

C a l l  K e e p ( l )

C

C ........

C ......

C

C  M A I N  I T E R A T I O N  L O O P :  T H E  G A  I T S E L F

C

C ......

C

67 8  p r i n t * , ’E n t e r i n g  m a i n  i t e r a t i o n  l o o p ’

C

C  S t a r t  of  i t e r a t i o n  d o - l o o p  

d o  1 00  i i = i z l o w , i z u p

C

C  M a k e  t h e  w h o l e  s t o c k  c o n t i n u o u s  

d o  1 56  k = l  , n p a r - f - n c h i l d  

C a l l  C o n t i n u i t y ( k )

15 6  c o n t i n u e

C

C  p r o f i l e ( n p a r - j - n c h i l d )  t h e  e n t i r e  s t o c k  

C a l l  P r o f i l e ( n p a r - i - n c h i l d )

C

C  S o r t  t h e  e n t i r e  s t o c k  l o w e r  w e i g h t s ,  h i g h e r  e n t r y

C a l l  S o r t

c i f  ( ( l e v e I . e q . 2 ) . a n d . ( i i . e q . i z l o w ) )  t h e n

c o p e n  (u  n i t = 14 ,  f i le  =  ’t e s t  4 ’ , s t  a t  u s  =  ’u n k n o w n ’,

c &  a c c e s s = ’s e q u e n t i a l ’) 

c d o  2 9 5  k = l , n p o i n t s

c w r i t e ( u n i t = 1 4 , f m t  =  9 7 0 0 0 )  y ( l , k )

c 2 9 5  c o n t i n u e  

c c l o s e ( u n i t = 1 4 )

c e n d  i f

C

C  V a r y  p o i n t  i n  b e s t  p a r e n t  h a v i n g  w o r s t  f i t  

i f  ( m o d ( i i , w o r z p ) . e q . O  ) t h e n  

C a l l  P r o f i l e ( - l )

C a l l  P r o f i l e ( n p a r * f n c h i l d )

C a l l  S o r t  

e n d  i f

C

C  J i g g l e  b r e e d i n g  s t o c k  e v e r y  j i g n o w  i t e r a t i o n s  

i f ( m o d ( i i , j i g n o w ) . e q . O  ) t h e n  

p r i n t * , ’J ig g le : :  j i g = ’, j ig  

C a l l  J i g g l e ( j i g )

C a l l  P r o f i l e ( n p a r + n c h i l d )

C a l l  S o r t  

e n d  i f

C

C  E v o l u t i o n  h i s t o r y  m a y  b e  f l a t !  C h e c k  a n d  t a k e  a c t i o n

C  w i t h  a  j i g g l e , s p e c i a l 3  a n d  z o o m

if  ( f l a t a v . l t . 0 . 0 0 0 0 0 0 1 )  t h e n

p r i n t * , ’E v o l u t i o n  is  f l a t : :  J i g g l e  j i g = ’, j ig  

C  D o  a  j i g g l e

C a l l  J i g g l e ( j i g )

C a l l  P r o f i l e ( n p a r + n c h i l d )

C a l l  S o r t

C  A d d  s c a l e d  r a n d o m n e s s  t o  t h e  b r e e d i n g  s t o c k  

d o  146 k = 2 , n p a r  

C a l l  S p e c i a l 3 ( k , 5 0 . 0 )

146  c o n t i n u e

C a l l  P r o f i l e ( n p a r - f - n c h i l d )

C a l l  S o r t

C  D o  a  z o o m  o n  t h e  w o r s t  p o i n t  i n  t h e  b e s t  c a n d i d a t e  

C a l l  P r o f i l e ( - l )

C a l l  P r o f i l e ( n p a r - f - n c h i l d )

C a l l  S o r t  

C  W o b b l e  t h e  b e s t  c a n d i d a t e  

C a l l  W o b b l e ( w o b )

C a l l  P r o f i l e ( n p a r - ) - n c h i l d )

C a l l  S o r t  

e n d  i f

C

C  S w i t c h  o n  g e n e  w o b b l e  o p e r a t o r

C  W h e n  t r i g g e r e d ,  i t  wi l l  w o b b l e  t h e  p a r e n t  g e n e s

C  V E R Y  S L I G H T L Y ,  h o p e f u l l y  k e e p i n g  i t  i n  t h e

C  b r e e d i n g  s e t  b u t  a d d i n g  s l i g h t l y  d i f f e r e n t  m a t e r i a l  

i f  ( ( i i . g e . w o b n o w ) . o r . ( w e i g h t ( l ) . l t . w o b i f ) )  t h e n  

p r i n t * , ’W o b b l e : :  w o b = ’,w o b  

C a l l  W o b b l e ( w o b )

C a l l  P r o f i l e ( n p a r - | - n c h i l d )

C a l l  S o r t  

e n d  i f

C

C  C u r r e n t  b e s t  w e i g h t

p r i n t * , i i , ’ B e s t  w e i g h t  = ’, w e i g h t ( l )

C

C  C a l c u l a t e  m e a s u r e s  of  t h e  e v o l u t i o n  

g r a d  =  w e i g h t  ( 1 ) - p z w t  

e g r a d  =  l  .0-  w e i g h t  ( l )  / p z w t  

d o  109  k = l , e v o l b a c k - l  

f l a t ( k ) = f l a t ( k + l )  

e v o l ( k )  =  e v o l ( k - | - l )

1 09  c o n t i n u e  

f l a t ( e v o l b a c k ) = a b s ( g r a d )

e vol  ( e v o l  b a c k )  =  a b s ( e  g r a d )

f l a t a v = 0 . 0

e v o l a v = 0 . 0

d o  110 k = l , e v o l b a c k

f l a t a v = f l a t  a v  +  a b s  ( f l a t  ( k ) )  

e v o l a v  =  e v o l a v  +  a b s ( e v o l ( k ) )

1 10  c o n t i n u e
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e v o l a v  =  e v o l a v / e v o l b a c k  

f l a t a v = f l a t a v / e v o l b a c k

C

C  If  t h e  n e w  b e s t  w e i g h t  is b i g g e r  - e r r o r  i n  r o u t i n e  - s t o p  

i f  ( ( p z w t . l t . w e i g h t ( l ) ) . a n d . ( i i . n e . i z l o w )  ) t h e n  

p r i n t * , ’ S o m e t h i n g  w r o n g  i n  r o u t i n e !  ’ 

s t o p  

e n d  i f

c p r i n t * , ’C h a n g e  in  b e s t  w e i g h t  = ’,g r a d

c p r i n t * , ’R e l a t i v e  c h a n g e  in  b e s t  w e i g h t  E  =  ’,e gTa d

c p r i n t * , ’A v e r a g e  c h a n g e  in  b e s t  w e i g h t  E g r a d = ’, e v o la v

C

C  S e t  n e w  p r e v i o u s  b e s t  w e i g h t  

p z  w t = w e i g h t  ( l )

C

C  B r e e d  t o p  n p a r  e n t r i e s  i n  y t o  g e n e r a t e  n c h i l d  c h i l d r e n  

C a l l  B r e e d

C

C  U p d a t e  h i s t o r y  of  e v o l u t i o n  f i les  

C a l l  U p d a t e ( n o u t z w t , n o u t z h , i i )

C

C  C h e c k  g e n e t i c  d i v e r s i t y  of  p a r e n t s  -  i f t o o  l o w ,  t w e a k .

C a l l  C h e c k

C

C  M u t a t e  t h e  s t o c k  i n d i c a t e d  

C a l l  M u t a t e ( 2 , n t o t a l , m z l e v )

C

C  C o m b i n a t i o n  o p e r a t i o n s  p e r f o r m e d  o n  i n d i c a t e d  s t o c k  

C a l l  C o m b i n e ( 2 , n t o t a l , c z l e v )

C

C  T r a n s c r i p t i o n  o p e r a t i o n s  p e r f o r m e d  o n  i n d i c a t e d  s t o c k  

C a l l  T r a n s ( 2 , n t o t a l , t z l e v )

1 00  c o n t i n u e

C

C ......

C

C  E N D  O F  M A I N  L O O P .

C ......

C ........

C  P r o f i l e , s o r t  a n d  u p d a t e  t h e  e n t i r e  p o p u l a t i o n  

d o  111 k =  l  , n p a r + n c h i l d  

C a l l  C o n t i n u i t y ( k )

111  c o n t i n u e

c C a l l  P r o f i l e ( n p a r + n c h i l d )

c C a l l  S o r t

c C a l l  U p d a t e ( n o u t z w t , n o u t z h , i i )

C

C  C u r r e n t  b e s t  w e ig h t

p r i n t * , ’B e s t  w e i g h t  = ’, w e i g h t ( l )

C

C  D u m p  o u t  t h e  c u r r e n t  g e n e r a t i o n  of  b e s t  c a n d i d a t e s  

C a l l  D u m p z o u t

C

C  D e c i d e  w h a t  t o  d o  n o w .  T h i s  s e t s  k z e y  a n d  t h e  i t e r a t i o n  

C  s i ze  iz lo w  a n d  i z u p

C a l l  D e c i d e ( i i , w e i g h t ( l ) , e v o l a v )

C

C  O p t i o n s

C  k z e y = 0  :: Q u i t  a n d  e x i t  p r o g r a m

C  k z e y  =  l  :: R e s t a r t  w i t h  b e s t  of  p r e v i o u s  l e v e l

C  k z e y  =  2 :: C o n t i n u e  a t  t h i s  p o i n t  r e s o l u t i o n  l e v e l

C  k z e y  =  3 :: D o u b l e  p o i n t s  a n d  c o n t i n u e

if  (k z e y .e q .O ) t h e n  

C  C l o s e  f i les  t h a t  m o n i t o r  t h e  h i s t o r y  o f  t h e  e v o l u t i o n  

c l o s e ( a n i t  =  n o u t z w t )  

c c l o s e ru n i t  =  n o u t z h )

p r i n t * , ’H i s t o r y  of  b e s t  w e i g h t  p e r  g e n e r a t i o n  in  B Z W T Z H . O U T ’ 

c p r i n t * , ’H i s t o r y  of  b e s t  c a n d i d a t e ’

c  p r i n t * , ’p e r  g e n e r a t i o n  in  B Z C A N Z H . O U T ’

e n d  i f

C

if  ( k z e ) . e q  l )  t h e n

p z w t = 1 . 0 D 1 0 0  

C  R e s e t  e v o l u t i o n  m o n i t o r i n g  s t u f f  

d o  1081 i i = l , 5 0  

f l a t  ( i i )  =  1 0 0 0 0 .0  

e v o l ( i i ) = 0 . 0

1081 c o n t i n u e  

g o t o  6 78  

e n d  i f

C

i f  ( k z e y . e q . 2 )  t h e n  

g o t o  6 78  

e n d  i f

C

if  ( k z e y . e q . 3 )  t h e n

if  ( ( ( 2 * x p o i n t s - l ) * ( 2 * y p o i n t s - l ) ) . g t . 2 0 0 0 )  t h e n  

C  C lo s e  f i l es  t h a t  m o n i t o r  t h e  h i s t o r y  o f  t h e  e v o l u t i o n

c lo s e  (u  n i t = n o u t z w t )  

c c lo s e  ( u n i t = n o u t z h )

p r i n t * , ’N o t  e n o u g h  a r r a y  s p a c e  t o  d o u b l e  p o i n t s ’ 

p r i n t * , ’C l o s i n g  f i l e s . . . . ’

p r i n t * , ’H i s t o r y  o f  b e s t  w e i g h t  p e r  g e n e r a t i o n  i n  B Z W T Z H . O U T ’ 

p r i n t * , ’H i s t o r y  o f  b e s t  c a n d i d a t e ’ 

p r i n t * , ’p e r  g e n e r a t i o n  in  B Z C A N Z H . O U T ’ 

p r i n t * , ’E x i t i n g  p r o g r a m . . . . B y e B y e ,  B y e B y e ,  B y e B y e ! ’ 

s t o p  

else

C a l l  D o u b l e  

p z w t = l  . 0 D 1 0 0

o p  en  ( u  n i t =  14,  f i l e = ’t e s t 3 ’, s t a t u s =  ’u n k n o w n ’,

&  a c c e s s  =  ’s e q u e n t i a l ’)

d o  2 9 9  k = l , n p o i n t s  

w r i t e ( u n i t  =  1 4 , f m t = 9 7 0 0 0 )  y ( l , k )

2 9 9  c o n t i n u e

c l o s e ( u n i t  —14)

C  R e s e t  e v o l u t i o n  m o n i t o r i n g  s t u f f  

d o  10 82  11=1 ,50  

f l a t ( i i )  =  1 0 0 0 0 .0  

e v o l ( i i ) = 0 . 0

1 0 8 2  c o n t i n u e  

C

C  V a r y  p r o f i l e  p a r a m e t e r s  a c c o r d i n g  t o  l e v e l  

C  of  p o i n t  r e s o l u t i o n

1 0 8 3  C a l l  P r o f i l e ( n p a r + n c h i I d )

C a l l  S o r t

i f  ( l o g ( w e i g h t ( l ) ) . g e . ( 3 0 0 . 0 * l o g ( l 0 . 0 ) )  ) t h e n  

p r i n t * , ’C h a n g e  in  p o i n t  r e s o l u t i o n : ’ 

p r i n t * , ’c h a n g e  p r o f i l e  p a r a m e t e r s ’ 

p r o d 0 = p r o  d 0 / 2 . 0  

g o t o  1 0 8 3  

e n d  i f 

g o t o  678  

e n d  if 

e n d  i f

p r i n t * , ’p r o d 0 = ’, p r o d 0  

p r i n t * , ’p e n l  =  ’, p e n l  

p r i n t * , ’p e n 2 = ’, p e n 2

C

C  F o r m a t  S t a t e m e n t s

9 7 0 0 0  f o r m a t ( f l 5 . 8 )

C

E N D

C

C ......

C

C  G E N E T I C  A L G O R I T H M  R O U T I N E S

C  T h e s e  r o u t i n e s  o p e r a t e  d i r e c t l y  o n  t h e  s t r i n g s  t o  p r o v i d e  

C  t h e  g e n e t i c  a l g o r i t h m  f u n c t i o n a l i t y .  O n c e  t h e  s t r i n g s  h a v e  

C  b e e n  s e t  u p  t h e s e  r o u t i n e s  e x i s t  a s  t h e  t o p  l e v e l  o f  b e h a v i o u r ,

C  a n d  ca l l  o n  o t h e r  r o u t i n e s / f u n c t i o n s  t o  i m p l e m e n t  t h e  r e ­

td

C  g e n e t i c  a l g o r i t h m .
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c .... 
c
C  C a l c u l a t e  t h e  w e i g h t s  o f  a l l  t h e  c a n d i d a t e s  

S u b r o u t i n e  P x o f i l e ( n u m b e r )

C

C  S u b r o u t i n e  s p e c i f i c  v a r i a b l e s  

r e a l  f i t ( 2 0 0 0 ) , s u m , w o r s t , w o r s t p  

r e a l  e d 2

i n t e g e r  i ^ u m b e r ^ u m b ^ o o m ^ w o r ^ w o r

r e a l  r r s ( 2 0 0 0 )

i n t e g e r  n n , n

i n t e g e r  p l a c e

r e a l  d z m a x , s m a l l

C

C  O t h e r  v a r i a b l e s

r e a l  y ( 1 0 0 0 , 2 0 0 0 ) , x ( l 0 0 ) , x l ( l 0 0 )

i n t e g e r  n p a r , n c h i l d , n p o i n t s

i n t e g e r  x p o i n t s , y p o i n t s

r e a l  w e ig h t ( l O O O )

r e a l  p e n l , p e n 2

r e a l  d t e r m , f a c t o r , p r o d O , p r o d

r e a l  h s t e p , k s t e p

C

C  O t h e r  f u n c t i o n s  

i n t e g e r  t e  

i n t e g e r  p i  

r e a l  s o u r c e

C

C  C o m m o n  s t a t e m e n t s  r e q u i r e d

c o m m o n  / g a l /  n p a r , n c h i l d , n p o i n t s  

c o m m o n  / g a l l /  x p o i n t s , y p o i n t s  

c o m m o n  / z y s z /  y 

c o m m o n  / z d i m z /  x , x l  

c o m m o n  / w t s /  w e i g h t  

c o m m o n  / d i s c /  r r s

c o m m o n  / p r o f /  p e n  1 , p e n 2 , d t e r m  . f a c t o r , p r o d O  

c o m m o n  / s i z e /  h s t e p , k s t e p

C

C  M u s t  e v a l u a t e  p d e  a t  e v e r y  p o i n t .

C  P o i s s o n / l a p l a c i a n  e q u a t i o n s  

C  N B  2 n d  o r d e r  f i n i t e  d i f f e r e n c e .

C

C  R o u t i n e

d z m a x  =  3 0 0 . 0 * l o g ( l 0 . 0 )  

s m a l l  =  l  .Oe-15 

z o o m = 0

if  ( n u m b e r . e q . - l )  t h e n  

n u m b  =  l

c p r i n t * , ’V a r y i n g  w o r s t  p o i n t  in  b e s t  c a n d i d a t e ’

els e

n u m b = n u m b e r  

e n d  i f

d o  3 0 0 0  i =  l , n u m b  

e d 2  =  h s t e p * k s t e p  

s u m = 0 . 0  

w o r s t  =  0.0

p r o d  =  0.0

d o  3 5 0 0  n = 2 , y p o i n t s - l  

d o  35 01 n n = 2 , x p o i n t s - l  

p l a c e  =  p l ( n n , n )

i f  ( t e (  y ( i , p l a c e )  ) . n e . 0  ) t h e n  

p r i n t * , i , p l a c e , ’ * , y ( i , p l a c e ) , ’ O u t s i d e  b d r y . . . ’ 

s t o p  

e n d  if

C  C o n s t r u c t  t h e  o p e r a t o r  h e r e

C  N o n b d r y  p o i n t s

f i t c  =  ((  y (  i , p l ( n n  +  l , n )  ) + y (  i , p l ( n n , n  +  l )  ) +  

ic y ( i , p l ( n n - l , n )  ) +  y (  i , p l ( n n , n - l )  )-

Sc 4 . 0 * y (  i , p l a c e  )

Sc ) / e d 2 ) - s o u r c e (  n n , n , y ( i , p l a c e ) ,

&  ( y ( i , p l ( n n + l , n ) ) - y ( i , p l ( n n - l >n ) ) ) / ( 2 . 0 * h a t e p ) ,

As ( y ( i . p H n n »n +  1) ) - y ( i »pl(“ » . o - l ) ) ) / ( 2 . 0 * k a t e p )

&= )
r r a  ( p l a c e )  =  & b s (f i t c )  

f i t  ( p l a c e )  = a . b a ( f i tc ) ^ - a m a . l l  

C  G i v e s  u s  t h e  p o s ’n  o f  w o r s t  d e p a r t u r e  f r o m  o d e  s o ln  

w o r s t p  =  a m a x l ( w o r s t , f i t ( p l a c e ) )  

i f ( w o r s t p . g t . w o r s t )  t h e n  

x w o r s n n  

y w o r = n  

e n d  i f

w o r s t = w o r s t p  

C  C a l c u l a t e  m e a s u r e s  o f  t h e  f i t n e s s  

i f (  ( n n . e q . 2 ) . o r . ( n . e q . 2 ) . o r .

Sc ( n n . e q .  ( x p o i n t s - 1 ) ) . o r .  ( n n . e q . ( y p o i n t s - l ) )

Sc ) t h e n

p ro  d =  p r o  d + p r o d 0 * l o g ( f i t  ( p l a c e ) )  

s u m = s u m - | - f i t  ( p l a c e )  

e lse

p r o  d =  p r o d - f l o g ( f i t  ( p l a c e ) )  

s u m = s u i D ' ) -  f i t  ( p l a c e )  

e n d  i f 

3501  c o n t i n u e  

3 5 0 0  c o n t i n u e  

C

C  N o w  d o  t h e  b o u n d a r y  p o i n t s ,  c o r n o r s  e x c e p t e d  s i n c e  t h e y  

C  p l a y  n o  d i r e c t  r o l e  in  t h e  e v a l u a t i o n  of  t h e  l a p l a c i a n  

C  L o w e r  b d r y  

c n  =  l

c d o  3 5 0 2  n n = 2 , x p o i n t s - 1 

c p U c c  =  p l ( n n , n )

c f i t c  =  ((  y ( i , p l ( n n + l , n )  ) +  y (  i , p l ( n n , n  +  l )  ) +

c Sc y (  i , p l ( n n - l , n )  ) - f e x t r a p (  i , n n , n  )-  

c Sc 4 . 0 * y (  i , p l a c e  ) 

c Sc ) / e d 2 ) - s o u r c e (  n n , n , y ( i , p l a c e )  ) 

c r r s ( p l a c e ) = a b s ( f i t c )  

c f i t ( p l a c e )  =  a b s ( f i t c ) - { - s m a l l

c C  G i v e s  u s  t h e  p o s ’n o f  w o r s t  d e p a r t u r e  f r o m  o d e  s o ln  

c w o r s t p  =  a m a x l ( w o r s t , f i t ( p l a c e ) )  

c i f  ( w o r s t p . g t . w o r s t )  t h e n  

c x w o r = n n

c y w o r z n

c e n d  i f 

c w o r s t  =  w o r s t p

c C  C a l c u l a t e  m e a s u r e s  o f  t h e  f i t n e s s  

c p r o d  =  p r o d + l o g ( f i t ( p l a c e ) )

c a u m = a u m + f i t ( p l a . c e )  

c 3 5 0 2  c o n t i n u e  

C

C  U p p e r  b d r y  

c n  =  y p o i n t s

c d o  3 5 0 3  n n  =  2 , x p o i n t s - 1 

c p l a c e  =  p l ( n n , n )

c  f i t c  =  ((  y ( i , p l ( n n  +  l , n )  ) +  e x t r a p (  i , n n , n  ) +

c ic y ( i , p l ( n n - l , n )  ) + y (  i , p l ( n n , n - l )  )

c Sc - 4 . 0 * y (  i , p l a c e  ) 

c Sc ) / e d 2 ) - s o u r c e (  n n , n , y ( i , p l a c e )  ) 

c  r r s ( p l a c e ) = a b s ( f i t c )  

c f i t  (p i  a c  e ) = a b s  (f i t  c)-{ -sm all

c C  G i v e s  u s  t h e  p o s ’n  of  w o r s t  d e p a r t u r e  f r o m  o d e  so ln  

c w o r s t p  =  a m a x l ( w o r s t , f i t ( p l a c e ) )  

c i f ( w o r s t p . g t . w o r s t )  t h e n  

c x w o r = n  n

c y w o r = n

c e n d  if 

c w o r s t  := w o r s t p

c C  C a l c u l a t e  m e a s u r e s  o f  t h e  f i t n e s s  

c p r o d  =  p ro d - { - lo g ( f i t  ( p l a c e ) )

c  s u m = s u m  -{-fit ( p l a c e )

c 3 5 0 3  c o n t i n u e

c C

c C  L e f t  h a n d  b d r y  

c n n  =  l
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c d o  3 5 0 4  n =  2 , y p o i n t s - 1 

c p l a c e  =  p l ( n n , n )

c c f i t c  =  ((  y (  i , p l ( n n  +  l , n )  ) +  y (  i , p l ( n n - l  ,n )  ) +

c As e x t r a p (  i , n n , n  ) +  y (  i , p l ( n n , n - 3 )  )

c A: - 4 . 0 * y (  i , p l a c e  )

c A: ) / e d 2 ) - s o u r c e (  n n , n , y ( i , p l a c e )  )

c r r s  ( p l a c e )  =  a b s ( f i t c )

c f i t ( p l a c e )  =  a b s ( f i t c ) - f s m a l l

c C  G i v e s  u s  t h e  p o s ’n o f  w o r s t  d e p a r t u r e  f r o m  o d e  s o ln

c w o r s t p  =  a m a x l ( w o r s t , f i t ( p l a c e ) )

c i f  ( w o r s t p . g t . w o r s t )  t h e n  

c x w o r z n n

c y w o r z n

c e n d  i f 

c w o r s t = w o r s t p

c C  C a l c u l a t e  m e a s u r e s  o f  t h e  f i t n e s s  

c p r o  d =  p r o d + l o g ( f i t  ( p l a c e ) )

c s u m = s u m + f i t  ( p l a c e )

c 3 5 0 4  c o n t i n u e

c C

c C  R i g h t  h a n d  b d r y

c n n  =  x p o i n t s  

c d o  3 5 0 5  n = 2 , y p o i n t s - 1 

c p l a c e  =  p l ( n n  ,n)

c f i t c  =  ((  e x t r a p (  i , n n  +  l , n ) - f y (  i , p l ( n n - l , n )  ) +

C & y (  i , p l ( n n , n  +  l )  ) +  y (  i , p l ( n n , n - l )  ) 

c As - 4 . 0 * y (  i , p l a c e  ) 

c  &  ) / e d 2 ) - s o u r c e (  n n , n , y ( i , p l a c e )  ) 

c r r s ( p l a c e )  =  a b s ( f i t c )

c f i t ( p l a c e )  =  a b s ( f i t c )  +  s m a l l

c C  G i v e s  u s  t h e  p o s ’n o f  w o r s t  d e p a r t u r e  f r o m  o d e  so ln

c w o r s t p  =  a m a x l ( w o r s t , f i t ( p l a c e ) )

c i f  ( w o r s t p . g t . w o r s t )  t h e n  

c x w o r z n n

c y w o r z n

c e n d  i f 

c w o r s t  =  w o r s t p

c C  C a l c u l a t e  m e a s u r e s  of  t h e  f i t n e s s

c  p r o  d =  p r o d + l o g ( f i t  ( p l a c e ) )

c s u m  =  s u m  +  f i t  ( p l a c e )  

c 3 5 0 5  c o n t i n u e  

C

C  C a l c u l a t e  f i n a l  w e i g h t  f o r  t h e  i ’t h  c a n d i d a t e  

C  M a k e  s u r e  t h a t  p r o d  d o e s  n o t  e x c e e d  m a c h i n e  l i m i t .

C  I F  i t  d o e s ,  s e t  t o  b e  v e r y  l a r g e .

C

if  ( ( p r o d ) . g t . d z m a x  ) t h e n  

p r o d  =  e x p ( d z m a x )  

e ls e

p r o d  =  e x p ( p r o d )  

e n d  if

w e i g h t ( i )  =  p e n  l * w o r s t + p e n 2 * s u m  +  p r o d  

3 0 0 0  c o n t i n u e

if  ( z o o m . e q . l )  t h e n

C a l l  Z o o m e r ( x w o r , y w o r )  

e n d  i f 

r e t u r n  

e n d  

C ......

C  S o r t  o u t  a l l  t h e  c a n d i d a t e s  a n d  p u t  t h e m  in  o r d e r  

S u b r o u t i n e  S o r t

C

C  S u b r o u t i n e  s p e c i f i c  v a r i a b l e s  

i n t e g e r  n s o r t , l , i r , i i , i , j  

r e a l  s a v e w t  

r e a l  s a v e y ( 2 0 0 0 )

C

C  O t h e r  v a r i a b l e s

i n t e g e r  n p a r , n c h i l d , n t o t a l , n p o i n t s  

r e a l  y ( l 0 0 0 , 2 0 0 0 )  

r e a l  w e ig h t ( l O O O )

C

C  C o m m o n  s t a t e m e n t s  r e q u i r e d

c o m m o n  / g a l /  n p a r , n c h i l d ,n p o i n t s

c o m m o n  / g a 3 /  n t o t a l

c o m m o n  / z y s z /  y

c o m m o n  / w t s /  w e i g h t

C

C  R o u t i n e :  s o r t  b y  h e a p s o r t  -  s e e  N u m e r i c a l  R e c i p e s  

n s o r t = n t o t a l  

l = ( n s o r t / 2 )  +  l  

i r = n s o r t  

101 c o n t i n u e

if ( l . g t . l )  t h e n  

1= 1-1

s a v e  w t = w e i g h t  (1) 

d o  1 0 1 1  ii =  l ,  n p o i n t s  

sa . ve y(i i )  =  y (I , i i )

101 1 c o n t i n u e  

el se

s a v e  w t = w e i g h t  ( i r )  

d o  1 0 1 2  ii =  l , n p o i n t s  

s a v e y  ( i i ) =  y ( i r , i i )

10 1 2  c o n t i n u e  

w e i g h t ( i r )  =  w e i g h t  (1)  

d o  1 0 1 3  i i = l , n p o i n t s

y ( i r , i i )  =  y ( l , i i )

1 0 1 3  c o n t i n u e  

i r = i r - l

i f  ( i r . e q . l )  t h e n  

w e i g h t ( l )  =  s a v e w t  

d o  1014 i i = l , n p o i n t s  

y ( l . i i )  =  » » v e y ( i i )

1014  c o n t i n u e  

r e t u  rn

e n d i f  

e n d i f  

i = l  

j  =  2» l  

20 2  i f ( j . l e . i r )  t h e n  

i f  ( j . l t . i r )  t h e n

if  ( w e i g h t ( j ) . l t . w e i g h t ( j  +  l ) )  t h e n

j = j  +  l
e n d  i f 

e n d  i f

i f  ( s a v e w t . I t . w e i g h t ( j ) )  t h e n  

w e i g h t ( i )  =  w e i g h t ( j )  

d o  2 0 2 1  i i = l , n p o i n t s

y(>.“ ) = y ( j . i > )
2 0 2 1  c o n t i n u e

»=j  

j  =  2*j  

e l s e

j = i r + l  

e n d i f  

g o t o  2 02  

e n d i f

w e i g h t  ( i ) = s a v e w t  

d o  2 0 2 2  ii =  l , n p o i n t s  

y ( i , i i )  =  s a v e y ( i i )

2 0 2 2  c o n t i n u e  

g o t o  101 

e n d

C  Z o o m  in  o n  a  b a d  p o i n t

S u b r o u t i n e  Z o o m e r ( x w o r , y w o r )

C

C  R o u t i n e  s p e c i f i c  v a r i a b l e s  

i n t e g e r  i i , x w o r , y w o r  

r e a l  r a n l , g e n e l , g e n e 2

C

C  O t h e r  v a r i a b l e s

r e a l  y ( 1 0 0 0 , 2 0 0 0 ) , z o o m y  

i n t e g e r  n p a r , n c h i l d ,n p o i n t s
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i n t e g e r  x p o i n t s , y p o i n t s

C

C  O t h e r  f u n c t i o n s  

i n t e g e r  t e , p l  

r e a l  g 0 5 c a f

C

C  C o m m o n  b l o c k s  

c o m m o n  / z y s z /  y

c o m m o n  / g a l /  n p a r , n c h i l d , n p o i n t s  

c o m m o n  / g a l l /  x p o i n t s , y p o i n t s  

c o m m o n  / g a 8 /  z o o m y

C

C  R o u t i n e

C  C o p y  t h e  b e s t  p a r e n t  i n t o  t h e  l o w e s t  p o s i t i o n s  

d o  7 1 0 0  ii =  2 , n p o i n t s - 1 

y ( n p a r + n c h i l d  ,i i) =  y ( l , i i )  

y ( n p a r + n c h i l d - 1  , ii ) =  y ( l , i i )

7 1 0 0  c o n t i n u e

r a n l = z o o m y * 2 * (  g 0 5 c a f ( l . 0 ) - 0 . 5  )

C

C  W h e r e  is t h e  p o i n t ?

C  B o t t o m  l e f t  h a n d  c o r n o r

if ( ( x w o r . e q . l )  . a n d  . ( y  w o r . e q .  1 ))  t h e n  

g e n e  l  =  y ( l , p l ( x  w o r + 1  , y w o r + 1 ) ) * (  1 . 0 + r a n  1) 

g e n e 2 = y  (1 , p l ( x w o r + l , y  w o r + 1  ) ) * ( 1  . 0 - r a n l )  

i f  ( t e ( g e n e l ) . n e . O  ) t h e n

g e n e l  =  y ( l , p l ( x  w o r + 1  ,y w o r + 1 ) )  

e n d  i f

i f  ( t e ( g e n e 2 )  .ne.O ) t h e n

g e n e 2  =  y (1 , p l ( x  w o r + l , y  w o r + 1 ) )  

e n d  i f

y (  n p a r + n c h i l d , p l ( x w o r + l , y w o r + l )  ) =  g e n e l  

y ( n p a r + n c h i l d - 1 , p l ( x w o r + 1 , y w o r + l )  ) =  g e n e 2

e n d  i f

C

C  B o t t o m  r i g h t  h a n d  c o r n o r

if ( ( x w o r . e q . x p o i n t s ) . a n d . ( y w o r . e q . l ) )  t h e n  

g e n e l = y ( l  , p l ( x w o r - l , y w o r + l ) ) * ( 1 . 0 + r » n l )  

g e n e 2  =  y ( l  , p l ( x w o r - l , y w o r - ( - l  ) ) * 0  - 0 - r a n l )  

i f ( t e ( g e n e l  ) . n e . 0  ) t h e n

g e n e l  = y ( l  , p l ( x w o r - l , y  w o r + 1 ) )  

e n d  i f

i f ( t e ( g e n e 2 ) . n e . 0  ) t h e n

g e n e 2  =  y (1 , p l ( x  w o r - l , y  w o r + 1 ) )  

e n d  if

y (  n p a r + n c h i l d  , p l ( x w o r - l  ,y w o r + 1 )  ) =  g e n e l  

y (  n p a r + n c h i l d - l , p l ( x w o r - l  , y w o r + l )  ) =  g e n e 2

e n d  if

C

C  T o p  l e f t  h a n d  c o r n o r

if ( ( x w o r . e q . l ) . a n d . ( y w o r . e q . y p o i n t s ) )  t h e n  

g e n e l  =  y ( l  , p l ( x w o r + 1  ,y  w or -1  ) ) * (  1 .0 +  r a n l )  

g e n e 2  =  y ( l , p l ( x w o r + l , y  w or -1  ) ) * ( 1 . 0 - r a n l )  

i f ( t e ( g e n e l ) . n e . 0  ) t h e n

g e n e l  =  y ( l , p l ( x  w o r + 1 ,  y w o r - 1 ) )  

e n d  i f

i f  ( t e ( g e n e 2 ) . n e . 0  ) t h e n

g e n e 2 = y ( l  , p l ( x w o r + l , y w o r - l ) )  

e n d  if

y (  n p a r + n c h i l d , p l ( x w o r + l , y w o r - 1 )  ) =  g e n e l  

y (  n p a r + n c h i l d - l , p l ( x w o r + l , y w o r - l )  ) =  g e n e 2  

e n d  if

C

C  T o p  r i g h t  h a n d  c o r n o r

if ( ( x w o r . e q . x p o i n t s ) . a n d . ( y w o r . e q . y p o i n t s ) )  t h e n  

g e n e l  = y  ( l  , p l ( x  w o r - 1 ,y w or-1  ) ) * ( 1 . 0 + r a n  1) 

g e n e 2  =  y (1 , p l ( x  w o r - 1 ,y w or-1  ) ) * (  1 . 0 - r a n l )  

i f ( t e ( g e n e l  ) .n e .O  ) t h e n

g e n e l  =  y ( l  , p l ( x w o r - l , y  w o r - l ) )  

e n d  i f

i f  ( t e ( g e n e 2 ) . n e . O  ) t h e n

g e n e 2  =  y ( l , p l ( x  wo r -  l , y  w o r - 1 ) )

e n d  i f

y (  n p a r + n c h i l d , p l ( x w o r - l , y w o r - l )  ) =  g e n e l  

y (  n p a r + n c h i l d - l , p l ( x w o r - l , y w o r - l )  ) =  g e n e 2  

e n d  i f

C

C  L o w e r  b d r y

if(  ( ( x w o r . g t . l ) . a n d . ( x w o r . I t . x p o i n t s ) )

S i . a n d . ( y  w o r . e q .  l )

S i  ) t h e n

g e n e l = y ( l  , p l ( x w o r , y w o r + l ) ) * ( l  .0 +  r a n  1) 

g e n e 2 = y ( l  , p l ( x w o r , y  w o r + 1  ) ) * ( l  . 0 - r a n l )  

i f  ( t e ( g e n e l ) . n e . O  ) t h e n

g e n e l  =  y ( l , p l ( x  w o r , y  w o r + 1 ) )  

e n d  i f

i f  ( t e ( g e n e 2 ) . n e . O  ) t h e n

g e n e 2 = y ( l  , p l ( x w o r , y  w o r + 1 ) )  

e n d  i f

y (  n p a r + n c h i l d , p l ( x w o r , y w o r + 1 )  ) = g e n e l  

y (  n p a r + n c h i l d - 1  , p l ( x w o r , y w o r + l )  ) =  g e n e 2  

e n d  if

C

C  U p p e r  b d r y

if(  ( ( x w o r . g t . l ) . a n d . ( x w o r . l t . x p o i n t s ) )

S i  . a n d  . ( y  w o r . e q . y  p o i n t s )

S i  ) t h e n

g e n  e 1 = y  (1 , p l ( x w o r , y  w o r - 1  ) ) * ( l  . 0 + r a n l )  

g e n e 2  =  y ( l  , p l ( x w o r , y  w o r - 1  ) ) * ( l  . 0 - r a n l )  

i f ( t e ( g e n e l ) . n e - 0  ) t h e n  

g e n e l  =  y (1 , p l (  x wo r ,y  w o r - 1 ) )  

e n d  if

i f  ( t e ( g e n e 2 ) . n e . O  ) t h e n

g e n e 2 = y  ( l , p l ( x  w o r , y  w o r - 1 ) )  

e n d  if

y (  n p a r + n c h i l d , p l ( x w o r , y w o r - l )  ) =  g e n e l  

y (  n p a r + n c h i l d - 1  , p l ( x w o r , y w o r - l )  ) =  g e n e 2  

e n d  i f

C

C  L e f t  h a n d  b d r y

if( ( ( y w o r . g t . l ) . a n d . ( y w o r . l t . y p o i n t s ) )

S i  . a n d .  ( x w o r . e q . l )

S i  ) t h e n

g e n e l  =  y ( l  , p l ( x  w o r + 1  ,y w o r ) ) * ( l  . 0 +  r a n  1) 

g e n e 2  =  y (1 ,p l ( x  w o r + 1  ,y w o r ) )  * ( l  . 0 - r a n  1) 

i f  ( t e ( g e n e l ) . n e . 0  ) t h e n

g e n e  1 =  y ( l  , p l ( x  w o r + 1  , y w o r ) )  

e n d  if

i f  ( t e ( g e n e 2 ) . n e . O  ) t h e n

g e n e 2  =  y ( l , p l ( x w o r + l , y w o r ) )  

e n d  if

y (  n p a r + n c h i l d , p l ( x w o r + 1  , y w o r )  ) =  g e n e l  

y (  n p a r + n c h i l d - 1 , p l ( x w o r + l , y w o r )  ) =  g e n e 2  

e n d  if

C

C  R i g h t  h a n d  b d r y

if(  ( ( y w o r . g t . l ) . a n d . ( y w o r . l t . y p o i n t s ) )

S i  . a n d .  ( x w o r . e q .  x p o i n t s )

S i  ) t h e n

g e n e l  =  y ( l , p l ( x  w o r - 1  ,y w o r ) ) * ( l . 0 + r a n  1) 

g e n e 2 = y  (1 , p l ( x  w o r - 1  ,y w o r ) ) * ( l  . 0 - r a n l )  

i f  ( t e ( g e n e l ) . n e . O  ) t h e n

g e n e  1 =  y (1 , p l ( x  w o r - 1  ,y w o r ) )  

e n d  if

i f  ( t e ( g e n e 2 ) . n e . O  ) t h e n

g e n  e 2 = y ( l , p l ( x  w o r - 1  ,y  w o r ) )  

e n d  if

y (  n p a r + n c h i l d , p l ( x w o r - 1  , y w o r )  ) =  g e n e l  

y (  n p a r + n c h i l d - 1 , p l ( x w o r - l , y w o r )  ) =  g e n e 2  

e n d  if

C

C  I n t e r n a l  p o i n t

i f ( ( ( y w o r . g t . l ) . a n d . ( y w o r . l t . y p o i n t s ) ) . a n d .

S i  ( ( x w o r . g t . l ) . a n d . ( x  wo r . l t . y  p o i n t s )  )
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& ) t h e n

d o  71 01 i i = 2 , n p o i n t s - 1

y ( n p a r + n c h i l d - 2 , i i )  =  y ( l , i i )  

y ( n p a r + n c h i l d - 3 , i i )  =  y (1 ,ii)

7 1 0 1  c o n t i n u e

g e n e l  = y ( l  , p l ( x w o r , y  w o r + 1  ) ) * 2 . 0 * (  g 0 5 c a f ( l  . 0 ) - 0 .5  ) 

g e n e 2 = y ( l  , p l ( x w o r , y  w o r - l ) ) * 2 . 0 * (  g 0 5 c a f ( l . 0 ) - 0 . 5  ) 

g e n e 3  =  y ( l ,  p i  (x  w o r + 1  ,y w o r ) )  * 2 . 0 *  ( g 0 5 c a f ( l . 0 ) - 0 . 5  ) 

g e n e 4  =  y ( l  , p l ( x w o r - 1 (y w o r ) ) * 2 . 0 * (  g 0 5 c a f ( l . 0 ) - 0 . 5  ) 

i f  ( t e ( g e n e l ) . n e . 0  ) t h e n

g e n e l  = y ( l  , p l ( x  w o r ,  y w o r + 1 ) )  

e n d  i f

i f  ( t e ( g e n e 2 ) . n e . O  ) t h e n

g e n e 2  =  y ( l  , p l ( x  w o r ,  y w o r - l ) )  

e n d  i f

i f  ( t e ( g e n e 3 ) . n e . O  ) t h e n

g e n e 3  =  y ( l  , p l ( x w o r + l , y w o r ) )  

e n d  i f

i f  ( t e ( g e n e 4 ) . n e . O  ) t h e n

g e n e 4  =  y ( l  , p l ( x  w o r - 1  ,y w o r ) )  

e n d  i f

d o  7 1 0 2  i i = 0 , 3

if  ( g 0 5 c a f ( l  . 0 ) . g t . 0 . 5  ) t h e n

y (  n p a r + n c h i l d - i i , p l ( x w o r , y w o r + l )  ) =  g e n e l

else

y (  n p a r + n c h i l d - i i , p l ( x w o r , y w o r + l )  ) =  y ( l  , p l ( x w o r , y  w o r + 1 ) )  

e n d  i f

i f  ( g 0 5 c a f ( l . 0 ) . g t . 0 . 5  ) t h e n

y(  n p a r + n c h i l d - i i , p l ( x w o r , y w o r - l )  ) =  g e n e 2

e ls e

y(  n p a r + n c h i l d - i i , p l ( x w o r , y w o r - l )  ) =  y ( l , p l ( x w o r , y w o r - 1 ))  

e n d  if

i f  ( g 0 5 c a f (  1 .0)  .g t  .0 . 5  ) t h e n

y (  n p a r + n c h i l d - i i , p l ( x w o r + l  ,y w o r )  ) =  g e n e 3

els e

y ( n  p  a r + n  c h i l d - i i ,  p i  (x  w o r + 1  , y w o r )  ) =  y ( l , p l ( x  w o r + 1  , y w o r ) )  

e n d  i f

i f ( g 0 5 c a f ( l  . 0 ) . g t . 0 . 5  ) t h e n

y (  n p a r + n c h i l d - i i , p l ( x w o r - l  , y w o r )  ) =  g e n e 4

el se

y ( n p a r + n c h i l d - i i , p l ( x w o r - l  , y w o r )  ) =  y (1 , p l ( x w o r - 1 , y w o r ) )  

e n d  i f

7 1 0 2  c o n t i n u e  

e n d  i f

C

C  C o n t i n u i t y

Ca. ll  C o n t i n u i t y ( n p a r + n c h i l d )

Ca. ll  C o n t i n u i t y ( n p a r + n c h i l d - l )

Ca. ll  C o n t i n u i t y ( n p a r + n c h i l d - 2 )

Ca. ll  C o n t i n u i t y ( n p a r + n c h i l d - 3 )

r e t u r n

e n d

C  G e n e r a t e  a  c o m p l e t l y  r a n d o m  s t r i n g  of  n u m b e r s  

S u b r o u t i n e  G e n e r 8 ( n )

C

C  R o u t i n e  s p e c i f i c  v a r i a b l e s  

i n t e g e r  n , i

C

C  O t h e r  v a r i a b l e s

i n t e g e r  n p a r , n c h i l d , n p o i n t s

r e a l  y  ( 1 0 0 0 , 2 0 0 0 ) ,  low b d r y ,  h i g h  b d r y

r e a l  g 0 5 c a f

C

C  C o m m o n  b l o c k s

c o m m o n  / e q n 2 /  l o w b d r y , h i g h b d r y  

c o m m o n  / g a l /  n p a r , n c h i l d , n p o i n t s  

c o m m o n  / z y s z /  y

C

C  R o u t i n e

d o  2 0 0 0  i =  l , n p o i n t s

y ( n , i ) = l o w b d r y +  ( h i g h b d r y - l o w b d r y ) * g 0 5 c a f ( l . 0 )

2 0 0 0  c o n t i n u e  

r e t u r n  

e n d

C ......

C  E n s u r e  c o n t i n u i t y  of  t h e  n t h  c a n d i d a t e  

S u b r o u t i n e  C o n t i n u i t y ( n )

C

C  S u b r o u t i n e  s p e c i f i c  

i n t e g e r  n

C

C  O t h e r  v a r i a b l e s

i n t e g e r  n p a r , n c h i l d , n p o i n t s  

i n t e g e r  x p o i n t s , y p o i n t s  

r e a l  y ( l 0 0 0 , 2 0 0 0 )

C

C  O t h e r  f u n c t i o n s  

i n t e g e r  p i

r e a l  l o b d , u p b d , l h a , r h s

C

C  C o m m o n  b l o c k s

c o m m o n  / g a l /  n p a r , n c h i l d ,n p o i n t s  

c o m m o n  / g a l l /  x p o i n t s , y p o i n t s  

c o m m o n  / z y s z /  y

C

C  R o u t i n e

C  T h e  r e g i o n  is x p o i n t s * y p o i n t s

C  B d r i e s , n o t  c o r n o r s

C  L e f t  a n d  r i g h t  h a n d  b o u n d a r i e s  

d o  7 6 5  i i =  2 , x p o i n t s - l

y (  n , p l ( i i , y p o i n t s )  ) =  u p b d ( i i , y p o i n t s )

y ( n , p l ( i i , l )  ) = l o b d ( i i , l )

7 6 5  c o n t i n u e

C  L o w e r  a n d  u p p e r  b d r i e s  

d o  7 66  ii =  2 , y p o i n t s - l  

y ( n , p l ( l , i i )  ) = l h s ( l , i i )

y (  n , p l ( x p o i n t s , i i )  ) =  r h s ( x p o i n t s , i i )

76 6  c o n t i n u e

C  C o r n o r s

y ( n , p l ( l ,1)  ) =  ( l o b d ( l , l ) + l h s ( l , l ) ) / 2 . 0  

y (  n , p l ( x p o i n t s , l )  )

=  ( l o b d ( x p o i n t s , l  ) +  r h s ( x p o i n t s , l ) ) / 2 . 0  

y ( n , p l ( l  , y p o i n t s )  ) =  ( u p b d ( l , y p o i n t s ) + l h s ( l  , y p o i n t s ) ) / 2 . 0  

y ( n , p l ( x p o i n t s , y p o i n t s )  ) =

& ( u p b d ( x p o i n t s , y p o i n t s )  +  r h s ( x p o i n t s , y p o i n t s ) ) / 2 . 0  

r e t u r n  

e n d

C ......

C  C a l u l a t e s  a n  a v e r a g e  v a l u e  o v e r  t h e  s q u a r e  p l u s  a  l i t t l e

C  r a n d o m n e s s

S u b r o u t i n e  S p e c i a l ( n , f r a c )

C

C  S u b r o u t i n e  s p e c i f i c  v a r i a b l e s  

i n t e g e r  i , j ,n

r e a l  f r a c , x h e r e , y h e r e , h e r e

C

C  O t h e r  v a r i a b l e s  r e q u i r e d  b y  t h i s  r o u t i n e  

r e a l  y ( l 0 0 0 , 2 0 0 0 )  

r e a l  x ( l 0 0 ) , x l ( 1 0 0 )  

r e a l  x z s t a r t , x z e n d  

r e a l  y z s t a r t , y z e n d  

r e a l  l o w b d r y , h i g h b d r y  

i n t e g e r  x p o i n t s , y p o i n t s

C

C  O t h e r  f u n c t i o n s  

i n t e g e r  t e , p l  

r e a l  g 0 5 c a f

r e a l  l h s , r h s , l o b d , u p b d

C

C  C o m m o n  s t a t e m e n t s  r e q u i r e d

c o m m o n  / e q n 2 /  l o w b d r y , h i g h b d r y  

c o m m o n  / e q n 4 /  x z s t a r t , x z e n d  

c o m m o n  / e q n 4 l /  y z s t a r t , y z e n d
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c o m m o n  / g i l l /  x p o i n t s , y p o i n t s  

c o m m o n  / z d i m z /  x . x l  

c o m m o n  / z y s z /  y

C

C  R o u t i n e

d o  2 5 0 0  j  =  2 , y p o i n t s - 1  

d o  2 5 0 2  i =  2 , x p o i n t s - 1

2 5 0 1  x h e r e = l h s ( l  , j) +

& ( ( x ( i ) - x z s t a r t ) * (  r h s ( x p o i n t s , j ) - l h s ( l , j )  )

Sc / ( x z e n d - x z s t a r t )  )

y h e r e = l o b d ( i , l )  +

Sc ( ( x l ( j ) - y z s t a r t ) * (  u p b d ( i , y p o i n t s ) - l o b d ( i , l )  )

Sc / ( y z e n d - y z s t a r t )  )

h e r e  =  ( x h e r e  +  y h e r e ) / 2 . 0  +

Sc ( 2 . 0 * ( g 0 5 c a f ( 1 . 0 ) - 0 . 5 ) * ( h i g h b d r y - l o w b d r y ) / f r a c )  

i f  ( t e ( h e r e )  .ne.O ) t h e n  

g o t o  250 1 

el se

y( n, pl (> > j) )  =  h « re
e n d  i f

2 5 0 2  c o n t i n u e  

2 5 0 0  c o n t i n u e

C a.11 C o n t i n u i t y ( n )  

r e t u r n  

e n d  

C ......

C  T a k e s  t h e  c a n d i d a t e  a n d  a d d s  a  l i t t l e  r a n d o m n e s s ,  t h e  s i ze  

C  of  w h i c h  is  d e p e n d e n t  o n  t h e  r a n g e  o f  A - v a l u e s  p e r m i t t e d  

S u b r o u t i n e  S p e c i a l 2 ( n , f r a c )

C s

C  S u b r o u t i n e  s p e c i f i c  v a r i a b l e s  

i n t e g e r  i , n  

r e a l  f r a c , h e r e

C

C  O t h e r  v a r i a b l e s  r e q u i r e d  b y  t h i s  r o u t i n e  

i n t e g e r  n p a r , n c h i l d , n p o i n t s  

i n t e g e r  x p o i n t s , y p o i n t s  

r e a l  y ( l 0 0 0 , 2 0 0 0 )  

r e a l  h i g h b d r y , l o w b d r y

C

C  O t h e r  f u n c t i o n s  

i n t e g e r  t e , p l  

r e a l  g 0 5 c a f

C

C  C o m m o n  s t a t e m e n t s  r e q u i r e d  

c o m m o n  / g a l l /  x p o i n t s , y p o i n t s  

c o m m o n  / e q n 2 /  l o w b d r y , h i g h b d r y  

c o m m o n  /gA .1 /  n p a r ,n c h i l d , n p o i n t s  

c o m m o n  / z y s z /  y

C

C  R o u t i n e

d o  2 6 0 0  j  =  2 , y p o i n t s - 1 

d o  2 60 1 i = 2 , x p o i n t s - 1

h e r e  =  y ( n , p l ( i , j ) )  +  ( h i g h b d r y - l o w b d r y ) *

Sc 2 . 0 * ( g 0 5 c a f ( l . 0 ) - 0 . 5 ) / f r a c

if  ( t e ( h e r e ) . e q . l  ) t h e n  

h e r e = h i g h b d r y  

e n d  i f

i f ( t e ( h e r e ) . e q . - l  ) t h e n

h e r e = l o w b d r y

e n d  i f

y ( n , p l ( i , j ) )  =  h e r e  

2 6 0 1  c o n t i n u e  

2 6 0 0  c o n t i n u e

C a l l  C o n t i n u i t y ( n )  

r e t u r n  

e n d  

C ......

C  T a k e s  a  c a n d i d a t e  a n d  a d d s  a  l i i t l e  r a n d o m n e s s ,  t h e  s iz e  

C  o f  w h i c h  is d e p e n d e n t  o n  t h e  r a n g e  of  v a l u e s  a c t u a l l y  

C  s t o r e d  in  t h e  c a n d i d a t e  

S u b r o u t i n e  S p e c i a l 3 ( n , f r a c )

C

C  S u b r o u t i n e  s p e c i f i c  v a r i a b l e s  

i n t e g e r  i , n  

r e a l  f r a c , h e r e  

r e a l  h i g h , l o w

C

C  O t h e r  v a r i a b l e s  r e q u i r e d  b y  t h i s  r o u t i n e  

i n t e g e r  n p a r , n c h i l d ,n p o i n t s  

i n t e g e r  x p o i n t s , y p o i n t s  

r e a l  y ( l 0 0 0 , 2 0 0 0 )  

r e a l  l o w b d r y , h i g h b d r y

C

C  O t h e r  f u n c t i o n s  

i n t e g e r  t e , p ]  

r e a l  g 0 5 c a f

C

C  C o m m o n  s t a t e m e n t s  r e q u i r e d  

c o m m o n  / g a l l /  x p o i n t s , y p o i n t s  

c o m m o n  / g a l /  n p a r , n c h i l d , n p o i n t s  

c o m m o n  / e q n 2 /  l o w b d r y , h i g h b d r y  

c o m m o n  / z y s z /  y

C

C  R o u t i n e

h i g h s l o w b d r y  

lo w  =  h i g h b d r y  

C  F i r s t  f i n d  t h e  h i g h e s t  a n d  l o w e s t  v a l u e s  

d o  2 551  j  =  2 , y p o i n t a - 1  

d o  2 5 5 2  i =  2 , x p o i n t s - l

i f ( y ( n . p l ( i > j ) ) - g t - b i g h  ) t h e n

h i g h  =  y ( n , p l ( i , j ) )  

e n d  i f

i f ( y ( n , p l ( i , j ) ) . l t . l o w  ) t h e n  

low =  y ( n , p l ( i , j ) )  

e n d  i f  

2 5 5 2  c o n t i n u e  

2551 c o n t i n u e  

C  N o w  v a r y  t h e  c a n d i d a t e  

d o  2 6 3 0  j  =  2 , y p o i n t s - 1 

d o  2 631  i = 2 , x p o i n t s - 1

h e r e  =  y ( n , p l ( i , j ) )  +  ( h i g h - l o w ) *

&: 2 . 0 * ( g 0 5 c a f ( 1 . 0 ) - 0 . 5 ) / f r a c

if  ( t e ( h e r e ) . e q . l  ) t h e n  

h e r e  =  h i g h b d r y  

e n d  i f

i f ( t e ( h e r e ) . e q . - l  ) t h e n

h e r e = l o w b d r y

e n d  if

y ( n , p l ( i , j ) )  =  h e r e  

26 3 1  c o n t i n u e  

2 6 3 0  c o n t i n u e

C a l l  C o n t i n u i t y ( n )  

r e t u r n  

e n d  

C ......

C  B r e e d  n e w  c a n d i d a t e s  b y  s i m p l e  o n e  p o i n t  c r o s s o v e r  

C  N o  b i a s i n g  in  f a v o u r  o f  a n y  p a r t i c u l a r  c a n d i d a t e  

C  T o p  n p a r  c a n d i d a t e s  a r e  n u m b e r e d  in  t h e  y a r r a y  in  o r d e r  

C  b e s t  in  y ( l ) ,  s e c o n d  b e s t  i n  y ( 2 )  e t c . . .

C  [ P a r e n t s ]  [ C h o p ]  [ S w a p ] [ C h i l d r e n ]
Q  J * * * * * * *  * * * *  *** * * * *  ****♦»»

C  2 !*!!!!! !!!! +  !!! !!!! +  * **  !!!!***

S u b r o u t i n e  B r e e d

C

C  S u b r o u t i n e  s p e c i f i c  v a r i a b l e s  

i n t e g e r  p a r e n t l , p a r e n t 2 , c h o p  

r e a l  y 1 ( 2 0 0 0 ) , y 2 ( 2 0 0 0 )  

i n t e g e r  r e o r d

C

C  O t h e r  v a r i a b l e s  r e q u i r e d  b y  t h i s  r o u t i n e  

i n t e g e r  n p a r , n c h i l d  , n p o i n t s  

i n t e g e r  u n i f r a n  

r e a l  y ( 1 0 0 0 , 2 0 0 0 )
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C  C o m m o n  s t a t e n  

c o m m o n  / g a l /  

c o m m o n  / g a 3 /  

c o m m o n  / z y s z /

e n t s  r e q u i r e d  

n p a r ,  n c h i l d ,  n p o i n t s

i n t e g e r  i,j

i n t e g e r  n l o w , n u p , m z l e v  

i n t e g e r  p a r e n t l ,p l a c e  

i n t e g e r  m u t z o p  

r e a l  g e n e , m u t a n t

C  R o u t i n e

d o  5 0 0 0  k =  n p a r + l ,n t o t a l , 2 

p a r e n t l = u n i f r a n ( l  , n p a r )

5 6 7 0  p a r e n t 2 = u n i f r a n ( l , n p a r )  

i f  ( p a r e n t 2 . e q . p a r e n t l )  t h e n  

g o t o  5 6 7 0  

e n d  i f

c h o p = u n i f r a n ( l , n p o i n t s )

C

C  R e o r d e r  t h e  c o d e  o f  t h e  p a r e n t s  i f  r e o r d > 5 0  

r e o r d  =  u n i f r a n  ( 1 ,1 0 0 )  

i f ( r e o r d . g t . 5 0 )  t h e n  

C a l l  N c o d e ( p a r e n t l )

C a l l  N c o d e ( p a r e n t 2 )  

e n d  i f

C  S t o r e  c h o p p e d  c o d e  fron  

d o  3 0 1 0  i =  c h o p , n p o i n t s  

y l ( i )  =  y ( p a r e n t 1 ,i) 

y 2 ( i )  =  y ( p a r e n t 2 , i )

3 0 1 0  c o n t i n u e

c h o p  t o  n p o i n t s

C  O t h e r  v a r i a b l e s

i n t e g e r  x p o i n t s , y p o i n t s

r e a l  y ( l 0 0 0 , 2 0 0 0 )

i n t e g e r  n p a r , n c h i l d  , n p o i n t s , n t o t a l

C

C  O t h e r  f u n c t i o n s  

i n t e g e r  t e  

i n t e g e r  pi  

i n t e g e r  u n i f r a n  

r e a l  r a n r e p , c r e e p , g c r e e p  

c r e a l  b i a s  

C

C  C o m m o n  b l o c k s  r e q u i r e d

c o m m o n  / m u t z d a t a /  r z l o , r z u p , r a n t y p e l ,  

& c z l o , c z u p , r a n t y p e 2 , c z m a x ,

& g c z l o , g c z u p , r a n t y p e 3 , g c z m a x ,

& m u t z l e v

c o m m o n  / g a l /  n p a r , n c h i l d , n p o i n t s  

c o m m o n  / g a 3 /  n t o t a l  

c o m m o n  / z y s z /  y 

c o m m o n  / g a l l /  x p o i n t s , y p o i n t s

C  P u t  c r o s s e d  o v e r  c o d e  in  c h i l d  f r o m  c h o p  t o  n p o i n t s  

d o  3 0 2 0  i = c h o p , n p o i n t s  

y ( k . i )  =  y 2 ( i )  

y ( k + l , i )  =  y l ( i )

3 0 2 0  c o n t i n u e

C  R e t a i n  o r i g i n a l  p a r e n t  c o d e  f r o m  1 t o  c h o p - 1

d o  3 0 3 0  i =  l  , c h o p - l  

y ( k , i )  =  y ( p a r e n t l  ,i) 

y ( k + l , i )  =  y ( p a r e n t 2 , i )

3 0 3 0  c o n t i n u e  

C

C  R e o r d e r  t h e  c o d e  of  t h e  p a r e n t s  i f  r e o r d > 5 0  

i f ( r e o r d . g t . 5 0 )  t h e n  

C a l l  D c o d e ( p a r e n t l )

C a l l  D c o d e ( p a r e n t 2 )

C a l l  D c o d e ( k )

C a l l  D c o d e ( k - l - l )  

e n d  i f 

5 0 0 0  c o n t i n u e  

r e t u r n  

e n d

C  M u t a t i o n  O p e r a t o r s .  R a n d o m l y  c h o o s e  w h i c h  is t o  b e  

C  u s e d .  E a c h  c a n  b e  w e i g h t e d  t o  b e  p r e f e r e n t i a l l y  c h o s e n  

C  P i c k  a  r a n d o m  n u m b e r  b e t w e e n  1 ,1 0 0 .  I f  t h a t  n u m b e r  l ies

C  w i t h i n  a  p a r t i c u l a r  m u t a t i o n  o p e r a t o r s '  r a n g e  of i n f l u e n c e

C  t h e n  t h a t  o p e r a t o r  wil l  b e  c h o s e n .

C  O p e r a t o r s  c a n  a l s o  o b e y  d i f f e r e n t  r a n d o m n e s s  d i s t r i b u t i o n s  

C  j u s t  t o  p l a y  a r o u n d

C  T h i s  v e r s i o n  i n t r o d u c e s  a  b i a s i n g  f u n c t i o n

C  t o  t h e  m a x i m u n  p e r m i t t e d  v a l u e  o f  t h e  c r e e p  a n d  g e o m e t r i c  

C  c r e e p  o p e r a t o r s .  S e e  s u b r o u t i n e  b i a s

C  M u t a n t s  a l s o  s a t i s f y  c o n t i n u i t y

S u b r o u t i n e  M u t a t e ( n l o w , n u p , m z l e v )

C

C  M u t a t i o n  O p e r a t o r  V a r i a b l e s

i n t e g e r  r z l o , r z u p , r a n t y p e l  

i n t e g e r  c z l o , c z u p , T a n t y p e 2  

r e a l  c z m a x

i n t e g e r  g c z l o , g c z u p , r a n t y p e 3  

r e a l  g c z m a x  

i n t e g e r  m u t z l e v

C

C  R o u t i n e  V a r i a b l e s

C  R o u t i n e  

g e n e  =  0.0

d o  6 0 0 0  k = l , m z l e v

C

C  W h e r e  t o  m u t a t e

p a r e n t  1 =  u n i f r a n  ( n l o w , n u p )  

i = u n i f r a n  ( 2 , x p o i n t s - l )  

j  =  u n i f r a n ( 2 , y p o i n t s - l )  

pla.ce  =  p l ( i , j )

C

C  G e t  t h e  g e n e  t o  b e  m u t a t e d  

g e n e  =  y ( p a r e n t  1, p l a c e )

C

C  W h i c h  o p e r a t o r

m u t z o p  =  u n i f r a n ( l  ,1 00)

C

C  E n s u r e  a t  l e a s t  g e n e  is r e p l a c e d  b y  i t s e l f  

m u t a n t = g e n e

C

C  R a n d o m  r e p l a c e m e n t

if ( ( m u t z o p . g e . r z l o ) . o r . ( m u t z o p . l e . r z u p ) )  t h e n  

m u t a n t  =  r a n  r e p  (1 .0 )

e n d  i f

C

C  C a l l  C r e e p

if  ( ( m u t z o p . g e . c z l o ) . o r . ( m u t z o p . l e . c z u p ) )  t h e n  

m u t a n t = c r e e p ( m u  t a n t  , c z m a x , r a n t y p e 2 )  

e n d  if

C

C  C a l l  G e o m e t r i c  c r e e p

if  ( ( m u t z o p . g e . g c z l o ) . o r . ( m u t z o p . l e . g c z u p ) )  t h e n  

m u t a n t s g c r e e p  ( m u t a n t  , g c z m a x , r a n t y  p e 3 )  

e n d  if

C

C  T h i s  g e n e  is t h e  m u t a t i o n  

i f  ( t e ( m u t a n t ) . n e . O  ) t h e n  

y ( p a r e n t  1 ,pl  a c e )  =  g e n e  

els e

y ( p a r e n t l  , p l a c e )  =  m u t a n t  

e n d  i f

C

6 0 0 0  c o n t i n u e  

r e t u r n  

e n d
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' M u t a t i o n  f u n c t i o n s  

' R a n d o m  r e p l a c e m e n t  

R e a l  F u n c t i o n  R a n r e p ( d u m m y )

' S p e c i f i c  v a r i a b l e s  

r e a l  d u m m y

O t h e r  v a r i a b l e s  

r e a l  l o w b d r y , h i g h b d r y

' O t h e r  f u n c t i o n s  

r e a l  g 0 5 c a f

C o m m o n  B lo c k s  

c o m m o n  / e q n 2 /  l o w b d r y , h i g h b d r y

R o u t i n e

r a n r e p = l o w b d r y * ( h i g h b d r y - l o w b d r y ) * g 0 5 c a f ( l  .0) 

r e t u r n  

e n d  

C r e e p

R e a l  F u n c t i o n  C r e e p ( g e n e , c z m a x , r a n t y p e )

S p e c i f i c  v a r i a b l e s  

i n t e g e r  r a n t y p e  

r e a l  g e n e , c z m a x

O t h e r  f u n c t i o n s  

r e a l  g 0 5 c a f

R o u t i n e  

i f  ( r a n t y p e . e q . O )  t h e n  

i f  ( g 0 5 c a f ( l  . 0 ) . g t . 0 . 5  ) t h e n  

c r e e p  =  g e n e - | - c z m a x  

else

c r e e p  =  g e n e - c z m a x

e n d  i f 

e n d  if

i f  ( r a n t y p e . e q . l )  t h e n

c r e e p  =  gene-f-  2 . 0 * c z m a x * ( g 0 5 c a f ( l . 0 ) - 0 . 5 )

e n d i f

r e t u r n

C  t h e n  t h a t  o p e r a t o r  wil l  b e  c h o s e n .  T h r e e  m a i n  m o d e s  o f  u s e ,

C  m o d e = 0  -  c o m b i n e  g e n e s  f r o m  s a m e  p o s i t i o n  o n  d i f f e r e n t  c a n ­

d i d a t e s

C  m o d e s l  -  c o m b i n e  g e n e s  f r o m  d i f f e r e n t  p o s i t i o n  o n  d i f f e r e n t

C  c a n d i d a t e s

C  m o d e s 2  - r a n d o m l y  f l i p  b e t w e e n  t h e  a b o v e  t w o  m o d e s

C

C  C o m b i n e d  o f f s p r i n g  a r e  f o r c e d  t o  s a t i s f y  c o n t i n u i t y  

S u b r o u t i n e  C o m b i n e ( n l o w , n u p , c z l e v )

C

C  S u b r o u t i n e  s p e c i f i c  v a r i a b l e s

i n t e g e r  p a r e n t l , p a r e n t 2 , p l a c e  1 , p l a c e 2 , c o m b z o p  

r e a l  c o m b , g e n e l , g e n e 2  

i n t e g e r  n l o w , n u p , c z l e v

C

C  O t h e r  v a r i a b l e s  r e q u i r e d  

i n t e g e r  a v e z l o , a v e z u p  

r e a l  a v z w t l , a v z w t 2  

i n t e g e r  g a v z l o , g a v z u p , g z o p  

i n t e g e r  e x t z l o , e x t z u p  

i n t e g e r  c o m z l e v  

i n t e g e r  m o d e  

i n t e g e r  n p a r , n c h i l d , n p o i n t s , n t o t a l  

r e a l  y ( l 0 0 0 , 2 0 0 0 )  

r e a l  l o w b d r y , h i g h b d r y

C

C  O t h e r  f u n c t i o n s  

i n t e g e r  u n i f r a n , t e  

r e a l  w a v , g a v , e x t o p

C

C  C o m m o n  b l o c k s  

c o m m o n  / z y s z /  y

c o m m o n  / e q n 2 /  l o w b d r y , h i g h b d r y

c o m m o n  / c o m z d a t a /  a v e z l o , a v e z u p , a v z w t l , a v z w t 2 ,

& g a v z l o , g a v z u p , g z o p ,

& e x t z l o , e x t z u p ,

c o m z l e v ,

m o d e

i o n  / g a l /  n p a r , n c h i l d , n p o i n t s  

i o n  / g a 3 /  n t o t a l

R o u t i n e  

d o  7 0 0 0  k =  l  ,cc

G e o m e t r i c  C r e e p

R e a l  F u n c t i o n  G c r e e p ( g e n e , g c z m a x , r a n t y p e )

S p e c i f i c  V a r i a b l e s  

i n t e g e r  r a n t y p e  

r e a l  g e n e , g c z m a x

O t h e r  f u n c t i o n s  

r e a l  g 0 5 c a f

R o u t i n e  

i f  ( r a n t y p e . e q . O )  t h e n  

i f  ( g 0 5 c a f ( l . 0 ) . g t . 0 . 5  ) t h e n  

c r e e p  =  g e n e * ( l  .0- j - gc zm a.x )  

e l s e

c r e e p = g e n e * ( l  . 0 - g c z m a x )  

e n d  i f 

e n d  i f

i f  ( r a n t y p e . e q . l )  t h e n

g c r e e p  =  g e n e * ( l . 0  -(- 2 . 0 * g c z m a x * ( g 0 5 c a f ( l  . 0 ) - 0 . 5 ) )

e n d i f

r e t u r n

C o m b i n a t i o n  O p e r a t o r s .  R a n d o m l y  c h o o s e  w h i c h  is t o  b e  

u s e d .  E a c h  c a n  b e  w e i g h t e d  t o  b e  p r e f e r e n t i a l l y  c h o s e n  

P i c k  a  r a n d o m  n u m b e r  b e t w e e n  1 ,1 0 0 .  If  t h a t  n u m b e r  l ies  

w i t h i n  a  p a r t i c u l a r  c o m b i n a t i o n  o p e r a t o r s '  r a n g e  of  i n f l u e n c

C h o o s e  t h e  p a r e n t s  

p a r e n t l  = u  n i f  r a n  ( n l o w , n u p )  

p a r e n t 2  =  u n i f r a n ( n l o w , n u p )

C h o o s e  t h e  p l a c e s  o n  t h e  c h r o m o s o m e s  

p l a c e l  =  u n i f r a n ( l  . n p o i n t s )  

p l a c e 2 = u n i f r a n ( l  ,n p o i n t s )

C h o o s e  t h e  o p e r a t o r  

co  m b z o p = u n i f r a n  ( 1 ,1 0 0 )

M o d u s  O p e r a n d i i  

i f  ( m o d e . e q . O )  t h e n

g e n e l  =  y ( p a r e n t  l , p l a c e l )  

g e n e 2 = y ( p a r e n t 2 , p l a c e l )  

p l a c e 2 = p l a c e l  

e n d  if

i f ( m o d e . e q . l )  t h e n

g e n e l  =  y ( p a r e n t l  . p l a c e  l )  

g e n e 2  =  y ( p a r e n t 2 , p l a c e 2 )  

e n d  if

i f ( m o d e . e q . 2 )  t h e n

if  ( g 0 5 c a f ( l . 0 ) . l e . 0 . 5 )  t h e n  

g e n e l  =  y ( p a r e n t l  , p l a c e l )  

g e n e 2  =  y ( p a r e n t  2 ,  p l a c e  1) 

p l a c e 2  =  p l a c e l  

e lse

g e n e l  =  y ( p a r e n t l  , p l a c e l )
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g e n e 2 = y  ( p a r e n t 2 , p l a c e 2 )  

e n d  if 

e n d  i f

C

C  A t  w o r s t ,  t h e  s t a t e m e n t  a l l o w  w il l  m a k e  n o  c h a n g e  t o  

C  t h e  g e n e .  W e  p u t  t h i s  in  t o  e n s u r e  a t  l e a s t  s o m e t h i n g  m i g h t  

C  h a p p e n  i f t h e  g e n e s  we  h a v e  c h o s e n  fa l l  i n b e t w e e n  a l l  t h e  

C  s t o o l s  b e l o w .

C

c o m b  =  g e n e l

C

C  A r i t h m e t i c  a v e r a g e

if ( ( c o m b z o p . g e . a v e z l o ) . a n d . ( c o m b z o p . l e . a v e z u p ) )  t h e n  

c o m b  =  w a v ( g e n e l , g e n e 2 , a v z w t l , a v z w t 2 )  

e n d  i f

C

C  G e o m e t r i c  a v e r a g e

if  ( ( c o m b z o p . g e . g a v z l o ) . a n d . ( c o m b z o p . l e . g a v z u p ) )  t h e n  

c o m b = g a . v ( g e n e l , g e n e 2 , g z o p )  

e n d  i f

C

C  E x t e n s i o n  O p e r a t o r

i f  ( ( c o m b z o p . g e . e x t z l o ) . a n d . ( c o m b z o p . l e . e x t z u p ) )  t h e n  

c o m b = e x t o p ( g e n e l  , g e n e 2 )  

e n d  i f

C

C  M a k e  s u r e  n e w  i n f o  is  w i t h i n  t h e  r a n g e  p e r m i t t e d  

i f  ( t e ( c o m b ) . e q . O  ) t h e n  

y ( p a r e n t l ,  p l a c e l ) = c o m b  

y ( p a r e n t 2 , p l a c e 2 ) = c o m b  

e n d  i f

i f  ( t e ( c o m b ) . e q . l  ) t h e n  

y ( p a r e n t l , p l a c e l  ) =  g e n e 2  

y ( p a r e n t 2 , p l a c e 2 )  =  g e n e l  

e n d  if

i f  ( t e ( c o m b )  . e q . - l  ) t h e n  

y ( p a r e n t  1, p l a c e  1 ) =  g e n e 2  

y ( p a r e n t  2 , p l a c e 2 )  =  g e n e l  

e n d  if 

7 0 0 0  c o n t i n u e  

r e t u r n  

e n d

C

C  C o m b i n a t i o n  o p e r a t o r s

C  A r i t h m e t i c  M e a n  C o m b i n a t i o n  O p e r a t o r  

C  Y i e l d s  a  w e i g h t e d  s u m  o f  t w o  g e n e s

R e a l  F u n c t i o n  W a v ( g e n e l , g e n e 2 , a v z w t l , a v z w t 2 )

C

C  S p e c i f i c  v a r a i a b l e s

r e a l  g e n e l  , g e n e 2 , a v z w t l  , a v z w t 2

C

C  R o u t i n e

w a v  =  ( a v z w t l * g e n e l  +  a v z w t 2 * g e n e 2 ) /

( a b s  ( a v z w t l  ) - j - a b s ( a v z w t 2 ) )  

r e t u r n  

e n d

C  G e o m e t r i c  M e a n  C o m b i n a t i o n  O p e r a t o r  

C  If  e i t h e r  o f  t h e  t w o  g e n e s  p a s s e d  t o  t h e  f u n c t i o n  

C  a r e  n e g a t i v e  t h e n  w e  h a v e  t h r e e  p o s s i b l e  o u t c o m e s  

C  g z o p  =  0 - p o s i t i v e  g e o m e t r i c  m e a n  

C  g z o p z s l  - n e g a t i v e  g e o m e t r i c  m e a n

C  g z o p = 2  - r a n d o m l y  a s s i g n  e i t h e r  t h e  p l u s  o r  m i n u s  g - m e a n  

C  O t h e r w i s e ,  t a k e  t h e  p o s i t i v e  g - m e a n  

R e a l  F u n c t i o n  G a v ( g e n e l , g e n e 2 , g z o p )

C

C  S p e c i f i c  v a r a i a b l e s  

i n t e g e r  g z o p  

r e a l  g e n e l , g e n e 2

C

C  O t h e r  f u n c t i o n s  

r e a l  g 0 5 c a f , w a v

C

C  R o u t i n e

g a v  =  w a v  ( g e n e l ,g e n e  2 , 1 . 0 , 1 . 0 )

i f ( ( ( g e n e l . l t . 0 . 0 ) . a n d . ( g e n e 2 . g t . 0 . 0 ) ) . o r .

&  ( ( g e n e 2 . I t . 0 . 0 ) . a n d . ( g e n e l . g t . 0 . 0 ) )  ) t h e n

if ( g z o p . e q . O )  t h e n

g a v = s q r t ( a b s ( g e n e l * g e n e 2 ) )  

e n d  i f

i f ( g z o p . e q . l )  t h e n

g a v s - s q r t  ( a b s  ( g e n e  l * g e n e 2 ) )  

e n d  if

i f  ( g z o p . e q . 2 )  t h e n

if ( g 0 5 c a f ( l . 0 ) . l e . 0 . 5 )  t h e n

g a v = s q r t ( a b s ( g e n e l * g e n e 2 ) )

els e

g a v = - s q r t ( a b s ( g e n e l * g e n e 2 ) )  

e n d  i f 

e n d  i f 

e n d  i f

i f ( ( g e n e l . l e . 0 . 0 ) . a n d . ( g e n e 2 . 1 e . 0 . 0 ) )  t h e n  

g a v s s - s q r t  ( a b s  ( g e n e  l * g e n e 2 ) )  

e n d  i f

i f  ( ( g e n e l . g t . 0 . 0 ) . a n d . ( g e n e 2 . g t . 0 . 0 ) )  t h e n

g a v = s q r t ( a b s ( g e n e l * g e n e 2 ) )

e n d  i f

r e t u r n

e n d

C  E x t e n s i o n  O p e r a t o r

C  T a k e  t h e  d i f f e r e n c e  b e t w e e n  t w o  g e n e s  a n d  r a n d o m l y  d e c i d e

C  a d d  i t  t o  t h e  h i g h e r ,  o r  s u b t r a c t  f r o m  t h e  l o w e r .

R e a l  F u n c t i o n  E x t o p ( g e n e l , g e n e 2 )

C

C  S p e c i f i c  v a r i a b l e s  

r e a l  g e n e l , g e n e 2

C

C  O t h e r  f u n c t i o n s  

r e a l  g 0 5 c a f

C

C  R o u t i n e

if  ( g 0 5 c a f  ( l  .0) . l e .0 .5 )  t h e n

e x t o p  =  m & x ( g e n e l , g c n e 2 )  +  a b s ( g e n e l - g e n e 2 )  

e l s e

e x t o p = m i n ( g e n e l , g e n e 2 )  - a b s ( g e n e l - g e n e 2 )

e n d  i f

r e t u r n

e n d

S u b r o u t i n e  T r a n s ( n l o w , n u p , t z l e v )

C

C  S p e c i f i c  v a r i a b l e s

i n t e g e r  n l o w , n u p , t z l e v , t z o p  

i n t e g e r  k , p a r e n t l ,p l a c e  

i n t e g e r  r e o r d

C

C  O t h e r  v a r i a b l e s

i n t e g e r  s w a z l o , s w a z u p , s w a z s  

i n t e g e r  r e v z l o , r e v z u p , r e v z s  

i n t e g e r  m i x z l o , m i x z u p , m i x z s  

i n t e g e r  c o p z l o , c o p z u p , c o p z s  

i n t e g e r  d e l z l o , d e l z u p , d e l z s  

i n t e g e r  n p a r , n c h i l d ,n p o i n t s

C

C  O t h e r  f u n c t i o n s  

i n t e g e r  u n i f r a n

C

C  C o m m o n  B lo c k s

c o m m o n  / t r a z d a t a /  s w a z l o , s w a z u p ,

& r e v z l o , r e v z u p ,

& m i x z l o , m i x z u p ,

&  c o p z l o , c o p z u p ,

&  d e l z l o , d e l z u p

c o m m o n  / t r a z d a t l /  s w a z s , r e v z s , m i x z s , c o p z s , d e l z s
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c o m m o n  / g a l /  n p a r , n c h i l d , n p o i n t s

C  R o u t i n e

d o  7 5 0 0  k = l , t z l e v

C

C  C h o o s e  p a r e n t

p a r e n t  l  =  u n i f r a n ( n l o w , n u p )

C

C  R e o r d e r  t h e  c o d e  o f  t h e  p a r e n t  i f  r e o r d > 5 0  

r e o r d  =  u n i f r a n ( l  ,1 0 0 )  

i f ( r e o r d . g t . 5 0 )  t h e n  

C a l l  N c o d e ( p a r e n t l ) 

e n d  if

C

C  C h o o s e  o p e r a t o r  

t z o p  =  u n i f r a n  (1 , 1 0 0 )

C

C  D o  t h e  t r a n s c r i p t i o n  ’e r r o r s '

C  R e v e r s e  t h e  o r d e r  a  s e q u e n c e  o f  g e n e s

if  ( ( t z o p . g e . r e v z l o ) . a n d . ( t z o p . l e . r e v z u p ) )  t h e n  

p l a c e = : u n i f r a n ( r e v z s  +  l , n p o i n t s - r e v z s - l )

C a l l  R e  v e r s e  ( p a r e n t  1 , p l a c e , r e v z s )  

e n d  i f

C

C  S w a p  t h e  p o s i t i o n  o f  o n e  o r  m o r e  g e n e s

if ( ( t z o p . g e . s w a z l o ) . a n d . ( t z o p . l e . s w a z u p ) )  t h e n  

p l a c e  =  u n i f r a n  ( s w a z s + 1 , n p o i n t s - s w a z s - l )

C a l l  S w a p ( p a r e n t l . p l a c e , s w a z s )  

e n d  i f

C

C  R a n d o m l y  r e o r d e r  a  s e q u e n c e  o f  g e n e s

if  ( ( t z o p . g e . m i x z l o ) . a n d . ( t z o p . l e . m i x z u p ) )  t h e n  

p l a c e = u n i f  r a n ( m i x z s  + 1 , n p o i n t s - m i x z s - l )

C a l l  M i x ( p a r e n t l ,p l a c e , m i x z s )

e n d  i f

7 5 0 0  c o n t i n u e

C

C  C o p y  d a t a  f r o m  e d g e s  a n d  m o v e  i t  i n t o  t h e  c e n t r e  

i f ( ( t z o p . g e . c o p z l o ) . a n d . ( t z o p . l e . c o p z u p ) )  t h e n  

p l a c e  =  u n i f r a n ( c o p z s +  l , n p o i n t s - c o p z s - l )

C a l l  C o p y ( p a r e n t l , p l a c e , c o p z s )  

e n d  i f

C

C  D e l e t e  d a t a  f r o m  p a r e n t  a n d  m o v e  t a i l  i n t o  t h e  c e n t r e  

i f  ( ( t z o p . g e . d e l z l o )  . a n d  . ( t z o p . l e . d e l z u p ) )  t h e n  

p l a c e  =  u n i f r a n ( d e l z s + l  , n p o i n t s - d e l z s - l )

C a l l  D e l ( p a r e n t l . p l a c e , d e l z s )  

e n d  i f

C

C  P u t  t h e  c o d e  b a c k  i n t o  n o r m a l  f o r m  if  r e o r d > 5 0  

i f  ( r e o r d . g t . 5 0 )  t h e n  

C a l l  D c o d e ( p a r e n t l )  

e n d  if 

r e t u r n  

e n d

C ......

C  T r a n s c r i p t i o n  e r r o r  r o u t i n e s

S u b r o u t i n e  S w a p  ( p a r e n t ,  p l a c e ,  n o  of)

C

C  S p e c i f i c  v a r i a b l e s

i n t e g e r  k , p a r e n t , p l a c e , n o o f  

r e a l  y s w a p ( 2 0 0 0 )

C

C  O t h e r  v a r i a b l e s  

r e a l  y ( l 0 0 0 , 2 0 0 0 )

C

C  C o m m o n  B lo c k s  

c o m m o n  / z y s z /  y

C

C  R o u t i n e

C  G e t  d a t a  f r o m  p l a c e  t o  p l a c e - | - n o o f - l  

d o  7 5 1 0  k = l , n o o f  

y s w a p  (k )  =  y ( p a r e n t ,  p l a c e  +  k - 1 )

7 5 1 0  c o n t i n u e

C

C  M o v e  d a t a  l o c a t e d  a t  ( p l a c e - n o o f ) z ( p l a c e - l )

C  t o  ( p l a c e ) z ( p l a c e - f n o o f - 1 ) 

d o  7 5 2 0  k = l , n o o f

y ( p a r e n t , p l a c e - | - k - l )  =  y (  p a r e n t , p l a c e - n o o f + ( k - l )  )

7 5 2 0  c o n t i n u e

C

C  t a k e  t h e  s w a p  d a t a  a n d  p u t  i t  i n  ( p l a c e - n o o f ) z ( p l a c e - l )  

d o  7 5 3 0  k = l , n o o f

y (  p a r e n t , p l a c e - n o o f + ( k - l )  ) =  y s w a p ( k )

7 5 3 0  c o n t i n u e  

r e t u r n  

e n d

C

S u b r o u t i n e  R e  v e r s e  ( p a r e n t ,  p l a c e ,  n o  of)

C

C  S p e c i f i c  v a r i a b l e s

i n t e g e r  k , p a r e n t , p l a c e , n o o f  

r e a l  y r e v ( 2 0 0 0 )

C

C  O t h e r  v a r i a b l e s  

r e a l  y ( l 0 0 0 , 2 0 0 0 )

C

C  C o m m o n  B lo c k s  

c o m m o n  / z y s z /  y

C

C  R o u t i n e

C  S t o r e  a n d  r e v e r s e  f r o m  ( p l a c e ) z ( p l a c e - f n o o f - l )  

d o  7 5 4 0  k = l , n o o f

y r e v ( n o o f - k  +  l )  =  y ( p a r e n t , p l a c e + k - 1 )

7 5 4 0  c o n t i n u e

C  R e p l a c e  s e g m e n t  ( p l a c e ) z ( p l a c e + n o o f - l ) w i t h  i t s  r e v e r s e  

d o  7 5 5 0  k =  l , n o o f  

y ( p a r e n t ,  p i  a c e + k - l )  =  y re  v ( k )

7 5 5 0  c o n t i n u e  

r e t u  rn 

e n d

S u b r o u t i n e  M i x  ( p a r e n t , p l a c e , n o  of)

C

C  S p e c i f i c  v a r i a b l e s

i n t e g e r  k , p a r e n t , p l a c e , n o o f  

i n t e g e r  p t l , p t 2  

r e a l  y l , y 2

C

C  O t h e r  v a r i a b l e s  

r e a l  y ( l 0 0 0 , 2 0 0 0 )

C

C  O t h e r  f u n c t i o n s  

i n t e g e r  u n i f r a n

C

C  C o m m o n  B lo c k s  

c o m m o n  / z y s z /  y

C

C  R o u t i n e

C  P i c k  t w o  p o i n t s  i n  t h e  r a n g e  a n d  s w a p  t h e m  o v e r  

d o  7 5 7 0  k = l , n o o f  

p t l  =  u n i f  r a n  ( p l a c e , p l a c e + n o o f - 1 ) 

p t 2  =  u n i f r a n  ( p l a c e  , p l a c e  +  n o  o f - 1) 

y l  =  y ( p a r e n t , p t l )  

y 2  =  y ( p a r e n t ,  p t 2 )  

y  ( p a r e n t , p t l )  =  y 2 

y ( p a r e n t , p t 2 )  =  y 1

7 5 7 0  c o n t i n u e  

r e t u r n  

e n d

C  C o p y  d a t a  f r o m  o u t s i d e  t o w a r d s  t h e  m i d d l e  

S u b r o u t i n e  C o p y  ( p a r e n t ,  p l a c e ,  n o  of)

C

C  S p e c i f i c  v a r i a b l e s

i n t e g e r  k , p a r e n t , p l a c e , n o o f
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C  O t h e r  va.r ia .bles  

r e a l  y ( 1 0 0 0 , 2 0 0 0 )  

i n t e g e r  n p a r , n c h i l d , n p o i n t s

C

C  C o m m o n  B lo c k s  

c o m m o n  / z y s z /  y

c o m m o n  / g a l /  n p a r , n c h i l d , n p o i n t s

C

C  R o u t i n e

i f  ( p l a c e . g t . ( n p o i n t s / 2 ) )  t h e n  

d o  7 5 8 0  k = l , n o o f

y ( p a r e n t , p l a c e - n o o f + k - l )  =  y ( p a r e n t , p l a c e  +  k - l )  

7 5 8 0  c o n t i n u e  

e l s e

d o  7 5 9 0  k = l , n o o f  

y ( p a r e n t ,  p l a c e + n  o o f + k - 1  ) = y  ( p a r e n t ,  p l a c e + k - 1 )  

7 5 9 0  c o n t i n u e  

e n d  i f 

r e t u r n  

e n d

C  D e l e t e  d a t a  a n d  m o v e  g e n e s  i n w a r d s  

S u b r o u t i n e  D e l  ( p a r e n t ,  p l a c e ,  n o  of)

C

C  S p e c i f i c  v a r i a b l e s

i n t e g e r  k , p a r e n t , p l a c e , n o o f

C

C  O t h e r  v a r i a b l e s  

r e a l  y ( l 0 0 0 , 2 0 0 0 )  

i n t e g e r  n p a r , n c h i l d , n p o i n t s

C

C  C o m m o n  B lo c k s  

c o m m o n  / z y s z /  y

c o m m o n  / g a l /  n p a r , n c h i l d , n p o i n t s

C

C  R o u t i n e

if ( p l a c e . g t . ( n p o i n t s / 2 ) )  t h e n  

d o  7 8 0 0  k =  l  , n p o i n t s - p l a c e + l

y ( p a r e n t ,  pi  a c e - n o o f + k - l )  =  y ( p a r e n t ,  p l a c e  +  k -1 )  

7 8 0 0  c o n t i n u e  

els e

d o  7 8 1 0  k = l , p l a c e

y ( p a r e n t , p l a c e  +  n o o f - k + l )  =  y ( p a r e n t ,  p l a c e +  1 -k )  

7 8 1 0  c o n t i n u e  

e n d  if 

r e t u r n  

e n d  

C ......

C  C h e c k  t h a t  t h e r e  is  s u f f i c i e n t  g e n e t i c  

C  d i v e r s i t y  in  t h e  b r e e d i n g  p o p u l a t i o n  

C  w e i g h t ( l ) / w e i g h t ( i i )  =  =

C  < =  1 b y  d e f i n i t i o n

C  m l  =  =

C  =  1 - s i m i l a r i t y  < =  1 

C  m t o t  =  [ ( s u m  i i =  l , n p a r )  of  m l  ] / n p a r  

C  = =  m e a s u r e  o f  t h e  p a r e n t a l  s i m i l a r i t y  

S u b r o u t i n e  C h e c k

C

C  S u b r o u t i n e  s p e c i f i c  v a r i a b l e s  

i n t e g e r  ii 

r e a l  m l , m t o t

C

C  O t h e r  r e q u i r e d  v a r i a b l e s  

r e a l  w e i g h t ( l 0 0 0 ) , g e n t o l  

i n t e g e r  n p o i n t s , n p a r , n c h i l d

C

C  C o m m o n  b l o c k s

c o m m o n  / w t s /  w e i g h t

c o m m o n  / g a l /  n p a r , n c h i l d , n p o i n t s

c o m m o n  / g a 4 /  g e n t o l

C

C  R o u t i n e  

m to tr r O .O

m  1 = 0 . 0

d o  9 0 0 0  ii =  l , n p a r  

m  1 =  1.0 -  w e i g h t  ( l ) /  w e i g h t  ( ii ) 

m t o t  =  m t o t + m  1 

9 0 0 0  c o n t i n u e

m t o t = m t o t / ( l  . 0 * n p a r )

p r i n t * , ’G e n e t i c  D i v e r s i t y  M e a s u r e ’, m t o t  

if ( m t o t . l e . g e n t o l )  t h e n  

C a l l  T w e a k ( m t o t )  

e n d i f  

r e t u r n  

e n d  

C ......

C  T w e a k  t h e  p a r e n t s

C  T h e  d i v e r s i t y  i n  t h e  b r e e d i n g  p o p u l a t i o n  is  les s  

C  t h a n  t h e  l ev e l  t o l e r a t e d  b y  g e n t o l .  N o w  T w e a k ! !  

S u b r o u t i n e  T w e a k ( m t o t )

C

C  S u b r o u t i n e  s p e c i f i c  v a r i a b l e s  

i n t e g e r  i i ,k  

r e a l  m t o t

C

C  O t h e r  r e q u i r e d  v a r i a b l e s  

i n t e g e r  n p a r , n c h i l d ,n p o i n t s  

i n t e g e r  t w z p a r  

r e a l  y ( 1 0 0 0 , 2 0 0 0 )

C

C  C o m m o n  b l o c k s

c o m m o n  / g a l /  n p a r , n c h i l d ,n p o i n t s  

c o m m o n  / z y s z /  y 

c o m m o n  / g a 9 /  t w z p a r

C

C  R o u t i n e :  t w e a k  al l  b u t  t h e  t w z p a r  p a r e n t ( s )

p r i n t * , ’T w e a k i n g . . . . ’. n p a r + n c h i l d - t w z p a r , ’ c a n d i d  a t e  ( s ) ’ 

w r i t e ( u n i t = 2 0 , f m t  =  *) ’T w e a k  h e r e ’ 

d o  1 0 0 0 2  i i = t w z p a r + l ,n p a r + n c h i l d  

C a l l  G e n e r 8 ( i i )

1 0 0 0 2  c o n t i n u e  

C

C  M a k e  ’e m  c o n t i n u o u s  

d o  1561  k = l , n p a r + n c h i l d  

C a l l  C o n t i n u i t y ( k )

1561 c o n t i n u e

C a l l  P r o f i l e ( n p a r + n c h i l d )

C a l l  S o r t  

r e t u r n  

e n d  

C ......

C  J i g g l e  t h e  b r e e d i n g  s t o c k

C  T w o  m e t h o d s  a r e  u s e d :  a d d  a  s m a l l  n u m b e r  

C  t o  e a c h  g e n e ,  o r  m u l t i p l y  b y  a  n u m b e r  c l o s e  t o  o n e .

C  B y  t h e  s a m e  n u m b e r  c l o s e  t o  o n e  

S u b r o u t i n e  J i g g l e ( r a n O )

C

C  S u b r o u t i n e  r e q u i r e d  v a r i a b l e s  

i n t e g e r  i ,i i 

r e a l  r a n , r a n 0 , y t e s t

C

C  O t h e r  v a r i a b l e s

i n t e g e r  n p o i n t s , n p a r , n c h i l d

r e a l  y ( 1 0 0 0 , 2 0 0 0 ) , l o w b d r y , h i g h b d r y

i n t e g e r  t e

r e a l  g 0 5 c a f

C

C  C o m m o n  B lo c k s  

c o m m o n  / z y s z /  y

c o m m o n  / g a l /  n p a r , n c h i l d ,n p o i n t s  

c o m m o n  / e q n 2 /  l o w b d r y , h i g h b d r y

C

C  R o u t i n e :

C  R a n d o m l y  d e c i d e  w h e t h e r  t o  m u l t i p l y  o r  a d d  a  l i t t l e  b i t  

C  i t  t h e  p a r e n t  s t o c k
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d o  8 8 8 0  i = : 2 , n p a r

r a n  =  r a n 0 * 2 * (  g 0 5 c a f ( l  . 0 ) - 0 .5  )

d o  8 8 8 1  ii =  2 , n p o i n t s - 1

i f  ( g 0 5 c a f (  1 .0 )  . g t . 0 . 5  ) t h e n  

y t e s t = y  ( i , i i ) * ( l  . 0 + r a n )  

e l s e

y t e s t  =  y ( i , i i )  +  ra-n 

e n d  i f

i f  ( t e ( y t e s t ) . e q . l  ) t h e n  

y t e s t  =  y ( i , i i )  

e n d  i f

i f  ( t e ( y t e s t ) . e q . - l  ) t h e n  

y t e s t  =  y ( i , i i )  

e n d  i f

y ( i , i i )  =  y t e s t  

88 81 c o n t i n u e

C a l l  C o n t i n u i t y ( i )

8 8 8 0  c o n t i n u e  

r e t u r n  

e n d

C  W o b b l e  t h e  b e s t  p a r e n t  v e r y  s l i g h t l y  

C  a n d  p u t  i t  a t  t h e  b o t t o m  o f  t h e  h e a p  

S u b r o u t i n e  W o b b l e ( r a n O )

C

C  S u b r o u t i n e  r e q u i r e d  v a r i a b l e s  

i n t e g e r  ii

r e a l  r a n i , r a n , r a n O  

r e a l  y t e s t l , y t e s t 2 , y t e s t 3

C

C  O t h e r  v a r i a b l e s

i n t e g e r  n p o i n t s , n p a r , n c h i l d

r e a l  y ( 1 0 0 0 , 2 0 0 0 ) , l o w b d r y , h i g h b d r y

C

C  O t h e r  f u n c t i o n s

i n t e g e r  t e  

r e a l  g 0 5 c a f

C

C  C o m m o n  B l o c k s

c o m m o n  / z y s z /  y

c o m m o n  / g a l /  n p a r , n c h i l d , n p o i n t s  

c o m m o n  / e q n 2 /  l o w b d r y , h i g h b d r y

C

C  C o p y  b e s t  p a r e n t  a n d  w o b b l e  V E R Y  s l i g h t l y

C  in  3 d i f f e r e n t  w a y s . . . . m u l t i p l y  e v e r y  g e n e  r a n d o m l y

C  a n d  2 c o p i e s  t h a t  a r e  s l i g h t l y  a b o v e  a n d  b e l o w  t h e  b e s t

C  p a r e n t

r a n l = : r a n 0 * 2 * (  g 0 5 c a f ( l . 0 ) - 0 . 5  ) 

d o  8 7 8 1  ii =  l  . n p o i n t s  

y t e s t  1 = y  (1 ,ii) 

y t e s t 2  =  y (1 ,i i) 

y t e s t 3  =  y (1 ,i i)

r a n  =  r a n 0 * 2 . 0 * (  g 0 5 c a f ( l  . 0 ) - 0 .5  ) 

i f ( g 0 5 c a f (  1 . 0 ) .g t . 0 . 5 )  t h e n  

y t e s t l  = y  ( l , i i ) * ( l  . 0 + r a n )  

e l s e

y t e s t l = y ( l  , ii ) +  r a n  

e n d  i f

i f  ( t e ( y t e s t l ) . e q . l  ) t h e n  

y t e s t l  = y  (1 ,i i) 

e n d  i f

i f  ( t e ( y t e s t l ) . e q . - l  ) t h e n  

y t e s t  1 = y  (1 ,i i) 

e n d  i f

y ( n p a r + n c h i l d , i i )  =  y t e s t  1

C

if  ( g 0 5 c a f ( l  . 0 ) . g t . 0 . 5 )  t h e n  

y t e s t 2  =  y ( l , i i ) * (  1 . 0 +  r a n i )  

e l s e

y t e s t 2  =  y ( l , i i )  +  r a n i  

e n d  if

i f  ( t e ( y t e s t 2 ) . e q . l  ) t h e n

y t e s t 2 = y  (1 ,i i) 

e n d  i f

i f ( t e ( y t e s t 2 ) . e q . - l  ) t h e n  

y t e s t 2  =  y ( l  ,ii) 

e n d  i f

y ( n p a r + n c h i l d -  l , i i )  =  y t e s t 2

C

if  ( g 0 5 c a f ( l . 0 ) . g t . 0 . 5 )  t h e n  

y t e s t 3  =  y (1 , i i ) * ( l  . 0 - r a n l )  

e l s e

y t e s t 3 = y ( l , i i )  -  r a n i  

e n d  if

i f  ( t e ( y t e s t 3 ) . e q . l  ) t h e n  

y t e s t 3 = y ( l , i i )  

e n d  i f

i f  ( t e ( y t e s t 3 ) . e q . - l  ) t h e n  

y t e s t 3  =  y (1 ,ii) 

e n d  i f

y ( n p a r + n c h i l d - 2 , i i )  =  y t e s t 3  

87 81  c o n t i n u e

C

C  C o n t i n u i t y

C a l l  C o n t i n u i t y  ( n p a r + n c h i l d - 2 )

C a l l  C o n t i n u i t y  ( n p a r + n c h i l d - 1 )

C a l l  C o n t i n u i t y ( n p a r + n c h i l d )

r e t u r n

e n d

C ......

C

C  G E N E  U  S T R I N G  M A N I P U L A T O R S / I N F O R M A T I O N  

C  T h e s e  a r e  n o t  G e n e t i c  A l g o r i t h m  O p e r a t o r s ,  b u t  

C  m a n i p u l a t e  a n d  r e a d  t h e  g e n e s  t o  p r o v i d e  n e w  i n f o r m a t i o n

C

C ......

C  C a l c u l a t e  n e w  s i z e s  a n d  d o u b l e  r e s o l u t i o n  in  x a n d  y d i r n s  

S u b r o u t i n e  D o u b l e

C

C  S p e c i f i c  v a r i a b l e s  

i n t e g e r  k

i n t e g e r  x p o i n t s 2 , y p o i n t s 2 , n p o i n t s 2

C

C  O t h e r  v a r i a b l e s  

r e a l  j i g , w o b , w o b i f  

i n t e g e r  j i g n o w , w o b n o w

i n t e g e r  x p o i n t s , y p o i n t s , n p a r , n c h i l d , n p o i n t s  

i n t e g e r  d b l

i n t e g e r  m z l e v , c z l e v , t z l e v

i n t e g e r  s w a z s , r e v z s , m i x z s , c o p z s , d e l z s

r e a l  h s t e p , k s t e p

r e a l  x z s t a r t , x z e n d

r e a l  y z s t a r t , y z e n d

C

C  C o m m o n  b l o c k s

c o m m o n  / g a l /  n p a r , n c h i l d ,n p o i n t s

c o m m o n  / g a l l /  x p o i n t s , y p o i n t s  

c o m m o n  / g a l O /  d b l

c o m m o n  / m c t z d a t /  m z l e v , c z l e v , t z l e v

c o m m o n  / t r a z d a t l /  s w a z s , r e v z s , m i x z s , c o p z s , d e l z s

c o m m o n  / g a 5 /  j i g , j i g n o w , w o b , w o b n o w , w o b i f

c o m m o n  / s i z e /  h s t e p . k s t e p

c o m m o n  / e q n 4 /  x z s t a r t , x z e n d

c o m m o n  / e q n 4 l /  y z s t a r t , y z e n d

C

C  R o u t i n e

C  D o u b l e  p o i n t  r e s o l u t i o n s  in  e a c h  d i r e c t i o n  

C  T h e s e  a r e  t h e  n e w  d o u b l e d  v a l u e s  o f  t h e  x a n d  y 

C  c o a r s e n e s s

x p o i n t s 2  =  2 * x p o i n t s - l  

y p o i n t s 2 = 2 * y p o i n t s - l  

n p o i n t s 2  =  x p o i n t s 2 * y p o i n t s 2

p r i n t * , ’D o u b l i n g  r e s o l u t i o n ,  q u a d r u p l i n g  c o d e  l e n g t h ’ 

p r i n t * , ’P o i n t s  in  x - d i r e c t i o n  ’, x p o i n t s 2
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p r i n t * , ' P o i n t s  i n  y - d i r e c t i o n  >, y p o i n t a 2  

p r i n t * , ’D o u b l i n g  A - p o i n t s  o f  p o p u l a t i o n : : : ’, n p a r + n c h i l d  

p r i n t * , ' G e n e t i c  c o d e  l e n g t h  p e r  c a n d i d a t e ' , n p o i n t s 2  

C  O p t i o n  o f  d o u b l i n g  m e t h o d  

i f ( d b l . e q . O )  t h e n

p r i n t * , ’D o u b l i n g  p o i n t s  b y  r a n d o m  r e p l a c e m e n t '  

e l s e

if  ( d b l . e q . l )  t h e n

p r i n t * , ' D o u b l i n g  p o i n t s  b y  i n t e r p o l a t i o n ’ 

e n d  i f 

e n d  if

C

C  D o u b l e  t h e  x a n d  y r e s o l u t i o n  w i t h  t h e  f u n c t i o n  b e l o w  

C a l l  X X l p t s 2 ( x p o i n t s 2 , y p o i n t s 2 )

C  C a l l  t h e  s u b r o u t i n e  t h a t  a c t u a l l y  d o u b l e s  t h e  p o i n t s  

d o  6 8 0  k = l , n p a r + n c h i l d

C a l l  A p t s 2 ( k , x p o i n t s 2 , y p o i n t s 2 , n p o i n t s 2 )

6 8 0  c o n t i n u e

C

C  N o w  a s s i g n  t h e  t e m p o r a r y  v a r i a b l e  v a l u e s  t o  t h e  

C  v a r i a b l e s  u s e d  in  t h e  r e s t  o f  t h e  p r o g r a m .  

x p o i n t s = x p o i n t s 2  

y p o i n t s = y p o i n t s 2  

n p o i n t s = n p o i n t s 2

C

C  R e c a l c u l a t e  s t e p  s i z e s  i n  e a c h  d i r e c t i o n  

h s t e p  =  ( x z e n d - x z s t a r t ) / (  ( x p o i n t s - l ) * 1 . 0 0  ) 

k s t e p = ( y z e n d - y z s t a r t ) / (  ( y p o i n t s - 1  )* 1 .00 )

C

C  N o w  t h a t  we  h a v e  d o u b l e d  p o i n t  s i z e s ,  we  c a n  m a k e  

C  t h e  d o u b l e d  c a n d i d a t e s  c o n t i n u o u s  

d o  6 0 8  k =  l ,n p a r + n c h i l d  

C a l l  C o n t i n u i t y ( k )

60 8  c o n t i n u e  

C

C  I n t r o d u c e  a  b i t  of  v a r i e t y  t o  t h e  p a r e n t s  o n  d o u b l i n g  

c d o  681 k =  n p a r + l ,n p a r + n c h i l d  

c C a l l  G e n e r 8 ( k )

c C a l l  C o n t i n u i t y ( k )

c6 8 1  c o n t i n u e  

C

C  W o b b l e  t h e  b e s t  c a n d i d a t e  

C a l l  W o b b l e ( w o b )

C  K e e p  t h e  b e s t  c a n d i d a t e  

C a l l  K e e p ( l )

C

C  D o u b l e  t h e  v a r i a b l e s  t h a t  s c a l e  w i t h  g e n e t i c  c o d e  s iz e  

p r i n t * , ' D o u b l i n g  m u t a t i o n , c o m b i n a t i o n '  

p r i n t * , ' a n d  t r a n s c r i p t i o n  r a t e s . . . ’ 

c z l e  v =  2 * c z l e v  

m z l e v  =  2 * m z l e v  

t z l e  v =  2 * t z l e v  

s w a z s  =  2 * s w a z s  

r e v z s = 2 * r e v z s  

m i x z s  =  2 * m i x z s  

c o p z s = 2 * c o p z s  

d e l z s = 2 * d e l z s

p r i n t * , ’c z l e v ’, c z l e v , '  m z l e v ' , m z l e v , ’ t z l e v ' , t z l e v

p r i n t * , ’s w a z s , r e v z s , m i x z s , c o p z s , d e l z s ’

p r i n t * , s w a z s , r e v z s , m i x z s , c o p z s , d e l z s

r e t u r n

e n d

C  G e n e r a t e  a  r a n d o m  i n t e g e r  b e t w e e n  m l o w , n u p  

I n t e g e r  F u n c t i o n  u n i f r a n ( n l o w , n u p )

C

C  S u b r o u t i n e  s p e c i f i c  

i n t e g e r  n l o w , n u p

C

C  O t h e r  f u n c t i o n s  

r e a l  g 0 5 c a f

C  R o u t i n e

u n i f r a n = s n l o w +  n i n t (  ( n u p - n l o w ) * g 0 5 c a f ( l  .0) )

r e t u r n

e n d

C ......

C  T e s t  i f g e n e  is o u t s i d e  t h e  b o u n d s  

I n t e g e r  f u n c t i o n  t e ( g e n e )

C

C  S u b r o u t i n e  s p e c i f i c  

r e a l  g e n e

C

C  O t h e r  v a r i a b l e s

r e a l  h i g h b d r y , l o w b d r y

C

C  C o m m o n  b l o c k s

c o m m o n  / e q n 2 /  l o w b d r y , h i g h b d r y

C

C  R o u t i n e  

t e  =  0

if ( g e n e . g t . h i g h b d r y )  t h e n  

t e  =  l  

e n d  if

i f ( g e n e . I t . l o w b d r y ) t h e n

t e = - l

e n d  i f

r e t u r n

e n d

C...
C  W h e r e  t o  p u t  t h e  v a l u e  in  t h e  s t r i n g  g i v e n  i t s  i , j c o - o r d s

C  U s e i n g  x - d i r e c t e d  s e g m e n t s  p i l e d  u p  

I n t e g e r  F u n c t i o n  p l ( i , j )

C

C  S p e c i f i c  v a r i a b l e s  

i n t e g e r  i,j

C

C  O t h e r  v a r i a b l e s

i n t e g e r  x p o i n t s , y p o i n t s

C

C  C o m m o n  B lo c k s

c o m m o n  / g a l l /  x p o i n t s , y p o i n t s

C

C  R o u t i n e

p l = i + ( j - l ) * x p o i n t s

r e t u r n

e n d

C ......

C  F o r  d o u b l i n g  p t s  w e n e e d  a  d i f f e r e n t  r o u t i n e :  u s e  x - d i r e c t e d

C  s t r i p s

I n t e g e r  F u n c t i o n  p l 2 ( i , j )

C

C  S p e c i f i c  v a r i a b l e s  

i n t e g e r  i ,j

C

C  O t h e r  v a r i a b l e s

i n t e g e r  x p o i n t s , y p o i n t s

C

C  C o m m o n  B lo c k s

c o m m o n  / g a l l /  x p o i n t s , y p o i n t s

C

C  R o u t i n e

p l 2 = i + ( j - l ) * ( 2 * x p o i n t s - l )

r e t u r n

e n d

C ......

C  A l t e r n a t e  s t o r a g e  m e t h o d : :  g i v e n  ( i , j )  p a i r ,  s t o r e  t h e

C  c o d e  in  s t r i p s  o f  y - d i r e c t e d  s e g m e n t s  

I n t e g e r  F u n c t i o n  p l c d ( i , j )

C

C  S p e c i f i c  v a r i a b l e s  

i n t e g e r  i,j

C

C  O t h e r  v a r i a b l e s
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i n t e g e r  x p o i n t s , y p o i n t s

C

C  C o m m o n  B lo c k s

c o m m o n  / g a l l /  x p o i n t s , y p o i n t s

C

C  R o u t i n e

p l e d  = j  +  ( i - l )  * y  p o i n t s

r e t u r n

e n d

C ......

C  D o u b l e  p t s  in  t h e  x a n d  y d i r e c t i o n s  

S u b r o u t i n e  X X l p t s 2 ( x p o i n t s 2 , y p o i n t s 2 )

C

C  S u b r o u t i n e  s p e c i f i c  

r e a l  s t o r e ( lO O )  

i n t e g e r  i i , x p o i n t s 2 , y p o i n t s 2

C

C  O t h e r  v a r i a b l e s

i n t e g e r  x p o i n t s , y p o i n t s  

r e a l  x ( l O O ) , x l ( l O O )

C

C  C o m m o n  b l o c k s

c o m m o n  / g a l l /  x p o i n t s , y p o i n t s  

c o m m o n  / z d i m z /  x , x l

C

C  R o u t i n e

C  D o  t h e  x - d i r e c t i o n :  d a t a  h e l d  i n  x  a r r a y  

C  S t o r e  o ld  p o i n t s  

d o  12 31 i i = l , x p o i n t s  

s t o r e ( i i )  =  x ( i i )

1231 c o n t i n u e  

C

C  D e l e t e  s t r i n g

d o  1261 i i = l  , x p o i n t s 2  

x ( i i )  =  0.0  

1261 c o n t i n u e  

C

C  R e a s s i g n  o l d  p o i n t s  in  n e w  p o s i t i o n s  

d o  1241 ii =  l , x p o i n t s  

x ( 2 * i i - l  ) =  s t o r e ( i i )

1241 c o n t i n u e

C

C  C a l c u l a t e  n e w  p o i n t s  in  n e w  p o s i t i o n s  

d o  1251 ii =  l , x p o i n t s 2  

i f ( m o d ( i i , 2 ) . e q . O  ) t h e n

x ( i i ) = 0 . 5 » (  x ( i i - l )  +  )

e n d  i f 

1251 c o n t i n u e  

C

C  D o  t h e  y - d i r e c t i o n :  d a t a  h e l d  in  x l  a r r a y  

C  S t o r e  o ld  p o i n t s

d o  12 31 1 ii =  l , y p o i n t s  

s t o r e ( i i )  =  x l  ( i i )

1 231 1 c o n t i n u e  

C

C  D e l e t e  s t r i n g

d o  12 61 1 ii =  l  , y p o i n t s 2  

x l ( i i )  =  0.0  

1 261 1 c o n t i n u e

C

C  R e a s s i g n  o ld  p o i n t s  in  n e w  p o s i t i o n s  

d o  12 4 1 1  ii =  l , y p o i n t s  

x l ( 2 * i i - l )  =  s t o r e ( i i )

12 41 1 c o n t i n u e

C

C  C a l c u l a t e  n e w  p o i n t s  in  n e w  p o s i t i o n s  

do  12 5 1 1  ii =  l , y p o i n t s 2

if ( m o d ( i i , 2 ) . e q . O  ) t h e n

x l ( i i )  =  0 . 5 * (  x l ( i i - l )  +  x l ( i i  +  l )  ) 

e n d  if 

12511 c o n t i n u e  

r e t u r n

e n d

C ......

C  D o u b l e  A - p o i n t s

S u b r o u t i n e  A p t s 2 ( n , x p o i n t s 2 , y p o i n t s 2 , n p o i n t s 2 )

C

C  S u b r o u t i n e  s p e c i f i c  

i n t e g e r  i i, j  

r e a l  s t o z y ( 2 0 0 0 )

i n t e g e r  n , x p o i n t s 2 , y p o i n t s 2 , n p o i n t s 2

C

C  O t h e r  v a r i a b l e s

i n t e g e r  n p a r , n c h i l d , n p o i n t s  

i n t e g e r  x p o i n t s , y p o i n t s  

i n t e g e r  d b l , n o u t  

r e a l  y ( l 0 0 0 , 2 0 0 0 )

C

C  O t h e r  f u n c t i o n s  

i n t e g e r  p l , p l 2  

r e a l  r a n r e p

C

C  C o m m o n  b l o c k s

c o m m o n  / g a l /  n p a r , n c h i l d , n p o i n t s  

c o m m o n  / g a l l /  x p o i n t s , y p o i n t s  

c o m m o n  / z y s z /  y 

c o m m o n  / g a l O /  d b l

C

C  R o u t i n e  

n o u t = 1 4

C  S t o r e  o ld  p o i n t s

d o  123 ii =  l , x p o i n t s * y p o i n t s  

s t o z y ( i i )  =  y (n , i i )

123  c o n t i n u e

if  ( n . e q . l )  t h e n

o p e n  ( u n i t = n  o u t , f i l e  =  ’t e s t O ’,s t  a t  us  = ’u n k n o w n  ’, 

Sc a c c e s s  = ’s e q u e n t i a l ’) 

d o  2 9 9  i i r r l , n p o i n t s

w r i t e ( u n i t = n o u t , f m t = 9 8 0 0 9 )  y ( n , i i )

29 9  c o n t i n u e

c l o s e ( u n i t = n o u t )  

e n d  i f

C

C  D e l e t e  s t r i n g

d o  126  ii =  l , n p o i n t s 2  

y (n , i i ) = 0 . 0

126  c o n t i n u e

C

C  R e a s s i g n  o ld  p o i n t s  in  n e w  p o s i t i o n s  

d o  124 j  =  l , y p o i n t s  

d o  1244  i i = l , x p o i n t s

y ( n , p l 2 ( 2 * i i - l , 2 * j - l ) ) = s t o z y (  p l ( i i , j )  )

1 2 4 4  c o n t i n u e

124 c o n t i n u e

if ( n . e q . l )  t h e n

o p e n ( u n i t  =  n o u t , f i l e  =  ’t e s t l  ’, s t a t u s  = ’u n k n o w n  ’, 

Sc a c c e s s = ’s e q u e n t i a l ’) 

d o  2 9 8  i i = l , x p o i n t s 2 * y p o i n t s 2

w r i t e ( u n i t  =  n o u t , f m t = 9 8 0 0 9 )  y ( n , i i )

2 9 8  c o n t i n u e

c l o s e ( u n i t = n o u t )  

e n d  i f

C

C  C a l c u l a t e  n e w  p o i n t s  i n  n e w  p o s i t i o n s  

i f  ( d b l . e q . O )  t h e n  

d o  1 2 4 5  j  =  l , y p o i n t s 2  

d o  1 2 4 6  i i = l , x p o i n t s 2

if(  ( ( m o d ( j , 2 ) . e q . l ) . a n d . ( m o d ( i i , 2 ) . e q . O )  ) . o r .  

Sc (  ( m o d  (j  ,2)  .eq.O ) . a n d  . ( m o d ( i i , 2 ) . e q . l )  ) . o r .

Sc ( ( m o d ( j , 2 ) . e q . 0 ) . a n d . ( m o d ( i i , 2 ) . e q . 0 )  )

Sc ) t h e n

y ( n , p l 2 ( i i , j ) )  =  r a n r e p ( 1 . 0 )  

e n d  i f

12 4 6  c o n t i n u e
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1 2 4 5  c o n t i n u e  

e n d  if

i f ( d b l . e q . l )  t h e n  

d o  125  j  =  l , y p o i n t s 2  

d o  1 2 5 5  i i = l , x p o i n t s 2

if  ( ( m o d ( j , 2 ) . e q . l ) . a n d . ( m o d ( i i , 2 ) . e q . O )  ) t h e n  

y ( n , p l 2 ( i i , j ) ) = 0 . 5 * (  y (n  , p l 2 ( i i - l , j ) ) + y ( n , p l 2 ( i i  +  l  , j ) )  ) 

e n d  i f

i f  ( ( m o d ( j , 2 ) . e q . 0 ) . a n d . ( m o d ( i i , 2 ) . e q . l )  ) t h e n  

y ( n , p l 2 ( i i , j ) ) = 0 . 5 * (  y ( n , p l 2 ( i i , j - l ) )  +  y ( n , p l 2 ( i i , j  +  l ) )  ) 

e n d  i f

i f  ( ( m o d ( j , 2 ) . e q . 0 ) . a n d . ( m o d ( i i , 2 ) . e q . 0 )  ) t h e n  

y ( n ,P 12 (i i >j ) )  =  0 . 2 5 * (  y (n  , p l 2 ( i i - l  , j - l ) )

&  + y ( n , p ] 2 ( i i + l , j - l ) )

&  + y ( n , p l 2 ( i i - l , j  +  l ) )

& + y ( n , p l 2 ( i i + l , j  +  l ) )

& ) 
e n d  i f 

1 2 5 5  c o n t i n u e  

125  c o n t i n u e  

e n d  i f

i f  ( n . e q . l )  t h e n

o p  e n ( u  n i t  ~ n  o u t , f i l e = ’t e s t 2 ’, s t a t u s = ’u n k n o w n ’,

&  a c c e s s  = ’s e q u e n t i a l ' )

d o  2 9 7  ii =  l  , x p o i n t s 2 * y p o i n t s 2

w r i t e ( u n i t  =  n o u t , f m t = 9 8 0 0 9 )  y ( n , i i )

2 9 7  c o n t i n u e

c lo s e  (u  ni  t  =  n o  u t )  

e n d  if

9 8 0 0 9  f o r m a t (  ( f 8 . 3 , t r l )  ) 

r e t u r n  

e n d

C ......

C  T a k e s  x - d i r e c t e d  c o d e  a n d  r e o r d e r s  i t  i n t o  y - d i r e c t e d  c o d e  

S u b r o u t i n e  N c o d e ( n )

C

C  S p e c i f i c  v a r i a b l e s  

i n t e g e r  n , i , j  

r e a l  y s t o r e ( 2 0 0 0 )

C

C  O t h e r  v a r i a b l e s

i n t e g e r  n p a r , n c h i l d , n p o i n t s  

r e a l  y ( l 0 0 0 , 2 0 0 0 )  

i n t e g e r  x p o i n t s , y p o i n t s

C

C  O t h e r  f u n c t i o n s  

i n t e g e r  p i , p l e d

C

C  C o m m o n  b l o c k s

c o m m o n  / g & l /  n p a r , n c h i l d ,n p o i n t s

c o m m o n  / z y s z /  y

c o m m o n  / g a l l /  x p o i n t s , y p o i n t s

C

C  R o u t i n e  

C  C o p y  c a n d i d a t e  

d o  7 0 0 1  i =  l , n p o i n t s  

y s t o r e ( i )  =  y ( n , i )

70 01  c o n t i n u e

C  R e o r d e r  g e n e t i c  c o d e  

d o  7 0 0 2  i =  l , x p o i n t s  

d o  7 0 0 3  j =  l , y p o i n t s  

y ( n , p l c d ( i , j )  ) =  y s t o r e (  p l ( i , j )  )

7 0 0 3  c o n t i n u e

7 0 0 2  c o n t i n u e  

r e t u r n

e n d  

C ......

C  T a k e s  y - d i r e c t e d  s t o r e d  c o d e  a n d  r e - o r d e r s  i t  i n t o  

C  n o r m a l  x - d i r e c t e d  c o d e  

S u b r o u t i n e  D c o d e ( n )

C

C  S p e c i f i c  v a r i a b l e s

i n t e g e r  n , i , j  

r e a l  y s t o r e ( 2 0 0 0 )

C

C  O t h e r  v a r i a b l e s

i n t e g e r  n p a r , n c h i l d , n p o i n t s  

r e a l  y ( l 0 0 0 , 2 0 0 0 )  

i n t e g e r  x p o i n t s , y p o i n t s

C

C  O t h e r  f u n c t i o n s  

i n t e g e r  p i , p l e d

C

C  C o m m o n  b l o c k s

c o m m o n  / g a l /  n p a r , n c h i l d , n p o i n t s

c o m m o n  / z y s z /  y

c o m m o n  / g a l l /  x p o i n t s , y p o i n t s

C

C  R o u t i n e

C  C o p y  c a n d i d a t e  

d o  7 0 0 4  i = l , n p o i n t s  

y s t o r e  ( i )  =  y ( n , i )

7 0 0 4  c o n t i n u e

C  R e o r d e r  g e n e t i c  c o d e  

d o  7 0 0 5  j ~ l , y p o i n t s  

d o  7 0 0 6  i = l , x p o i n t s  

y (  n , p l ( i , j )  ) = y s t o r e (  p l c d ( i , j )  )

7 0 0 6  c o n t i n u e

7 0 0 5  c o n t i n u e  

r e t u r n  

e n d

C ......

C

C  L O A D I N G  IN A N D  S E T T I N G  U P :  D I A G N O S T I C  O U T P U T S :  

F I L E S  I N / O U T

C

C ......

C

C  L o a d  in  t h e  n e c e s s a r y  d a t a  

S u b r o u t i n e  L o a d z i n

C

C  S u b r o u t i n e  s p e c i f i c  v a r i a b l e s  

i n t e g e r  i 

i n t e g e r  n i n l

C

C  O t h e r  f u n c t i o n s  

i n t e g e r  t e

r e a l  l h s , r h s , l o b d , u p b d

r e a l  y ( 1 0 0 0 , 2 0 0 0 )  , x ( l 0 0 )  , x l  ( l  00)

C

C  G e n e t i c  a l g o r i t h m  V a r i a b l e s  

i n t e g e r  l o a d i n  

i n t e g e r  ra nO

i n t e g e r  n p a r , n c h i l d , x p o i n t s , y p o i n t s  

i n t e g e r  i t e r m a x  

r e a l  j i g , w o b , w o b i f  

i n t e g e r  j i g n o w , w o b n o w  

i n t e g e r  w o r z p  

r e a l  z o o m y  

i n t e g e r  t w z p a r  

i n t e g e r  d b l

C

C  E q u a t i o n  V a r i a b l e s  

r e a l  x z s t a r t , x z e n d  

r e a l  y z s t a r t , y z e n d  

r e a l  l o w b d r y , h i g h b d r y  

r e a l  h s t e p , k s t e p

C

C  M u t a t i o n  O p e r a t o r  V a r i a b l e s  

i n t e g e r  r z l o , r z u p , r a n t y p e l  

i n t e g e r  c z l o , c z u p , r a n t y p e 2  

r e a l  c z m a x

i n t e g e r  g c z l o , g c z u p , r a n t y p e 3  

r e a l  g c z m a x
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r e a l  m u t z l e v l C  T r a n s c r i p t i o n  d a t a

i n t e g e r  m u t z l e v c o m m o n  / t r a z d a t a /  s w a z l o , s w a z u p ,

i n t e g e r  m z l e v Sc r e v z l o , r e v z u p ,

Sc m i x z l o , m i x z u p ,

2 C o m b i n a t i o n  O p e r a t o r  V a r i a b l e s Sc c o p z l o , c o p z u p ,

i n t e g e r  a v e z l o , a v e z u p Sc d e l z l o , d e l z u p

r e a l  a v z w t l , a v z w t 2 c o m m o n  / t r a z d a t l /  s w a z s , r e v z s , m i x z s , c o p z s , d e l z s

i n t e g e r  g a v z l o , g a v z u p , g z o p C

i n t e g e r  e x t z l o , e x t z u p C  P r o f i l e  d a t a

r e a l  c o m z l e v l c o m m o n  / p r o f /  p e n l , p e n 2 , d t e r m , f a c t o r , p r o d O

i n t e g e r  c o m z l e v C

i n t e g e r  m o d e C  C o n t r o l  d a t a

i n t e g e r  c z l e v c o m m o n  / c o n t r o l /  c o n t , l e v e l , l e v e l m

C

Z T r a n s c r i p t i o n  O p e r a t o r  v a r i a b l e s C  R o u t i n e

i n t e g e r  s w a z l o , s w a z u p n i n l  =  14

i n t e g e r  r e v z l o , r e v z u p C

i n t e g e r  m i x z l o , m i x z u p C  P r o f i l e  o p e r a t o r

i n t e g e r  c o p z l o , c o p z u p p r i n t * , ’P r o f i l i n g  d a t a  in  p r o f i l e . i n ’

i n t e g e r  d e l z ! o , d e l z u p o p e n  (u  n i t = n i n l , f i l e = ’p r o f i l e ,  in  ’, a c c e s s  =  ’s e q u e n t i a l ’

i n t e g e r  s w a z s , r e v z s , m i x z s , c o p z s , d e l z s Sc s t a t u  s = ’u n k n o w n  ’)

r e a l  s w a z s f , r c v z s f , m i x z s f , c o p z s f , d e l z s f r e a d ( u n i t = n i n l , f m t = 9 9 9 9 8 )  p e n l

r e a l  t r a z l e v l r e a d ( u n i t  =  n i n l , f m t  =  9 9 9 9 8 )  p e n 2

i n t e g e r  t r a z l e v r e a d ( u n i t = n i n l , f m t = 9 9 9 9 8 )  d t e r m

i n t e g e r  t z l e v r e a d ( u n i t = n i n l  , f m t = 9 9 9 9 8 )  f a c t o r  

r e a d ( u n i t = n i n l , f m t = 9 9 9 9 8 )  p r o d O

1 P r o f i l e  O p e r a t o r  V a r i a b l e s c lo s e  ( u n  i t  =  n i n i )

r e a l  p e n l , p e n 2 C

r e a l  d t e r m  ,f a c t o r , p r o d O C  R e a d  i n  E q u a t i o n  d a t a

p r i n t * , ’L o a d i n g  E q u a t i o n  d a t a  f r o m  e q u a t i o n . i n ’

’ C o n t r o l  f i le  d a t a o p e n ( u n i t  =  n i n l  , fi le = ’e q u a t i o n  . i n ’, a c c e s s = ’s e q u e n t i

r e a l  c o n t ( 5 , 1 0 ) Sc s t a t u s e s ’u n k n o w n ’)

i n t e g e r  l e v e l , l e v e l m r e a d ( u n i t  =  n i n  1 , f m t = 9 9 9 9 6 )  x z s t a r t , x z e n d  

r e a d ( u n i t  =  n i n l , f m t  =  9 9 9 9 6 )  y z s t a r t , y z e n d

: C o m m o n  B lo c k s r e a d  (u  n i t  =  n i n  1 , f m t = 9 9 9 9 6 )  low b d r y ,  h i g h  b d r y

) P r o g r a m c l o s e ( u n i t  =  n i n l )

c o m m o n  / z y s z /  y if  ( h i g h b d r y . l e . l o w b d r y ) t h e n

c o m m o n  / z d i m z /  x , x l p r i n t * , ’h i g h b d r y  l es s  t h a n  l o w b d r y ! ! ’ 

s t o p

G e n e t i c  a l g o r i t h m  d a t a e n d i f

c o m m o n  / g a l /  n p a r , n c h i l d  . n p o i n t s C

c o m m o n  / g a l l /  x p o i n t s , y p o i n t s C  R e a d  in  a n d  c h e c k  G e n e t i c  A l g o r i t h m  d a t a

c o m m o n  / g a 2 /  i t e r m a x p r i n t * , ’L o a d i n g  G e n e t i c  A l g o r i t h m  d a t a  f r o m  g a . i n ’

c o m m o n  / g a 3 /  n t o t a l o p e n  ( u n i t  =  n i n  1,f i le  =  ’g a . i n ’, a c c e s s = ’s e q u e n t i a l ’,

c o m m o n  / g a 4 /  g e n t o l Sc s t a t u  s = ’u n k n o w n  ’)

c o m m o n  / g a 5 /  j i g , j i g n o w , w o b , w o b n o w , w o b i f r e a d ( u n i t  =  n i n l , f m t = 9 9 9 9 9 )  l o a d i n

c o m m o n  / g a 6 /  l o a d i n r e a d ( u n i t  =  n i n l , f m t = 9 9 9 9 9 )  ra nO

c o m m o n  / g a 7 /  w o r z p r e a d ( u n i t  =  n i n l , f m t = 9 9 9 9 9 )  n p a r

c o m m o n  / g a f i /  z o o m y r e a d ( u n i t = n i n l , f m t = 9 9 9 9 9 )  n c h i l d

c o m m o n  / g a 9 /  t w z p a r r e a d ( u n i t = n i n  1 , f m t = 9 9 9 9 9 )  x p o i n t s

c o m m o n  / g a l O /  d b l r e a d ( u n i t = n i n l , f m t = 9 9 9 9 9 )  y p o i n t s  

r e a d ( u n i t  =  n i n  l , f m t = 9 9 9 9 9 )  i t e r m a x

E q u a t i o n  d a t a r e a d ( u n i t  =  n i n  1 , f m t  =  9 9 9 9 8 )  g e n t o l

c o m m o n  / e q n 4 /  x z s t a r t , x z e n d r e a d ( u n i t = n i n l , f m t  =  9 9 9 9 1 )  j i g , j i g n o w

c o m m o n  / e q n 4 l /  y z s t a r t , y z e n d r e a d ( u n i t = n i n l , f m t = 9 9 9 9 0 )  w o b , w o b n o w , w o b i f

c o m m o n  / e q n 2 /  I o w b d r y , h i g h b d r y r e a d ( u n i t = n i n l , f m t = 9 9 9 9 l )  z o o  m y ,  w o r z p

c o m m o n  / s i z e /  h s t e p , k s t e p r e a d ( u n i t = n i n l  , f m t = 9 9 9 9 9 )  t w z p a r  

r e a d ( u n i t = n i n l , f m t = 9 9 9 9 9 )  d b l

M u t a t i o n  d a t a c lo s e  ( u n i t = n i n l )

c o m m o n  / m u t z d a t a /  r z l o , r z u p , r a n t y p e l , i f  ( l o a d i n . e q . l )  t h e n

Sc c z l o , c z u p , r a n t y p e 2 , c z m a x , p r i n t * , ’L o a d i n g  d a t a  f r o m  B Z P A R Z N . O U T ’

Sc g c z l o , g c z u p , r a n t y p e 3 , g c z m a x , e n d  i f

Sc m u t z l e v if  ( r a n O . n e . l )  t h e n  

C a l l  G 0 5 c c f

C o m b i n a t i o n  d a t a p r i n t * , ’. . . n o n  r e p e a t a b l e  r a n d o m  n o s ’

c o m m o n  / c o m z d a t a /  a v e z l o . a v e z u p , a v z w t l , a v z w t 2 , el se

Sc g a v z l o , g a v z u p , g z o p , p r i n t * , ’ . . . r e p e a t a b l e  r a n d o m  n o s ’

Sc e x t z l o , e x t z u p , e n d i f

Sc c o m z l e v , n p o i n t s = x p o i n t s * y p o i n t s

Sc m o d e h s t e p = ( x z e n d - x z s t a r t ) / (  ( x p o i n t s - 1  )* 1 .0 0 )

c o m m o n  / m c t z d a t /  m z l e v , c z l e v , t z l e v k s t e p = ( y z e n d - y z s t a r t ) / (  ( y p o i n t s - l ) * 1 . 0 0  ) 

i f  ( ( n p o i n t s . l e . 5 ) . o r . ( n p o i n t s . g t . 2 0 0 0 ) )  t h e n
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p r i n t * , n p o i n t s

p r i n t * , ’M u s t  h a v e  5 <  n p o i n t s  <  =  2 0 0 0 ’ 

s t o p

e n d i f

n t o t a l = n p a r - f - n c h i l d  

i f  ( ( n t o t a l ) . g t . 1 0 0 0 )  t h e n

p r i n t * , ’n c h i l d - } - n p a r  m u s t  b e  l es s  t h a n  1 0 0 0 ’

s t o p

e n d  i f

j i g = j i g * ( h i g h b  d r y - l o w  b d r y )  

w o b = w o b *  ( h i g h  b d r y - l o w b d  ry )  

d o  8 0 0 1  j  =  l , y p o i n t s  

d o  8 0 0 2  i =  l , x p o i n t s

i f(  ( t e ( l h s ( i , j ) ) . n e . 0 ) . o r . ( t e ( r h s ( i , j ) ) . n e . 0 ) . o r .

Sc ( t e ( u p b d ( i , j ) ) . n e . 0 ) . o r . ( t e ( l o b d ( i , j ) ) . n e . 0 )

Sc ) t h e n

p r i n t * , ’A t  l e a s t  o n e  p o i n t  o n  t h e  b d r y  l ies  o u t s i d e ’ 

p r i n t * , ’t h e  r a n g e  o f  h i g h / l o w b d r y ’ 

s t o p  

e n d  i f 

6 0 0 2  c o n t i n u e  

8 0 0 1  c o n t i n u e  

C

C  R e a d  in  M u t a t i o n  O p e r a t o r  d a t a

p r i n t * , ’L o a d i n g  M u t a t i o n  O p e r a t o r  d a t a  f r o m  m u t a t e . i n ’ 

o p e n ( u n i t  =  n i n  1,f i le  = ’m u t a t e . i n  ’, a c  c e s s  =  ’s e q u e n t i a l ’,

Sc s t a t u s  =  ’u n k n o w n ’)

r e a d  ( u  n i t  =  n i n  1 , f m t  =  9 9 9 9 5 )  r z l o , r z u p , r a n t y p e l

r e a d  ( u n i t  =  n i n  l , f m t  =  9 9 9 9 4 )  c z l o , c z u p , r a n t y  p e 2 , c z m a x

r e a d ( u n i t = n i n  1 , f m t = 9 9 9 9 4 )  g c z l o , g c z u p , r a n t y p e 3 , g c z m a x

r e a d ( u n i t  =  n i n  1 , f m t  =  9 9 9 9 8 )  m u t z l e v  1

c lo s e  ( u n i t = n i n  1)

p r i n t * , ’

m u t z l e  v =  n i n t  ( m u  t z l e v  1 *n  t o t a l *  ( x p o i n t s - 2 ) * ( y  p o i n t s - 2 ) )  

p r i n t * , ’N o . o f  m u t a t i o n s  ’,m u t z l e v  

m z l e v  =  m u  t z l e v

C

C  C h e c k  i f a n y  o p e r a t o r s  a r e  s w i t c h e d  off

i f  ( ( ( r z l o . l t . 0 ) . a n d . ( r z u p . l t . 0 ) ) . o r .

Sc ( ( r z l o . g t . l O O ) . a n d . ( r z u p . g t . l O O ) )  ) t h e n  

p r i n t * , ’M U T A T I O N :  R a n d o m  R e p l a c e m e n t  o p e r a t o r  O F F ’ 

e n d i f

i f  ( ( ( c z l o . l t . 0 ) . a n d . ( c z u p . l t . 0 ) ) . o r .

Sc ( ( c z l o . g t . l 0 0 ) . a n d . ( c z u p . g t . 1 0 0 ) )  ) t h e n

p r i n t * , ’M U T A T I O N :  C r e e p  o p e r a t o r  O F F ’ 

e n d i f

i f  ( ( ( g c z l o . l t . 0 ) . a n d . ( g c z u p . l t . 0 ) ) . o r .

Sc ( ( g c z l o . g t . l O O ) . a n d . ( g c z u p . g t . l O O ) )  ) t h e n  

p r i n t * , ’M U T A T I O N :  G e o m e t r i c  C r e e p  o p e r a t o r  O F F ’ 

e n d i f

C

C  R e a d  in  C o m b i n a t i o n  O p e r a t o r  d a t a

p r i n t * , ’L o a d i n g  C o m b i n a t i o n  O p e r a t o r  d a t a  f r o m  c o m b i n e . i n ’ 

o p e n  (u  n i t  =  n i n  l , f i l e  =  ’c o m b i n e ,  i n ’, a c c e s s = ’s e q u e n t i a l ’,

Sc s t a t u  s = ’u n k n o w n  ’)

r e a d ( u n i t = n i n  1 , f m t = 9 9 9 9 3 )  a v e z l o , a v e z u p , a v z w t l , a v z w t 2

r e a d ( u n i t =  n i n  1 , f m t = 9 9 9 9 5 )  g a v z l o , g a v z u p , g z o p

r e a d ( u n i t = n i n  1 , f m t = 9 9 9 9 2 )  e x t z l o , e x t z u p

r e a d ( u n i t  =  n i n  1 , f m t = 9 9 9 9 8 )  c o m z l e v  1

r e a d ( u n i t = n i n  1 , f m t = 9 9 9 9 9 )  m o d e

c lo s e  ( u  n i t  =  n i n  1)

p r i n t * , ’

c o m z l e  v =  n i n t  ( c o m z l e v  1 * n t o t a l * n  p o i n t s )  

p r i n t * , ’N o .  of  co m b i  n  a t  i o n  s ’,co m z l e v  

c z l e v  =  co m z l e v

C

C  C h e c k  i f a n y  c o m b i n a t i o n  o p e r a t o r s  a r e  off 

i f  ( ( ( a v e z l o . l t . 0 ) . a n d . ( a v e z u p . l t . 0 ) ) . o r .

Sc ( ( a v e z l o . g t . l O O ) . a n d . ( a v e z u p . g t . l O O ) )  ) t h e n  

p r i n t * , ’C O M B I N A T I O N :  W e i g t e d  G e n e  A v e r a g i n g  o p e r a t o r  O F F ’ 

e n d i f

i f  ( ( ( g a v z l o . l t  .0)  . a n d  . ( g a v z u p . l t  . 0 ))  .or .

Sc ( ( g a v z l o . g t . l O O ) . a n d . ( g a v z u p . g t . l O O ) )  ) t h e n  

p r i n t * , ’C O M B I N A T I O N :  G e o m e t r i c  G e n e  A v e r a g i n g  o p e r a t o r

e n d i f

i f  ( ( ( e x t z l o . l t . 0 ) . a n d . ( e x t z u p . l t . 0 ) ) . o r .

Sc ( ( e x t z l o . g t . l O O ) . a n d . ( e x t z u p . g t . l O O ) )  ) t h e n  

p r i n t * , ’C O M B I N A T I O N :  G e n e  E x t e n s i o n  o p e r a t o r  O F F ’ 

e n d i f

C

C  R e a d  i n  T r a n s c r i p t i o n  O p e r a t o r  d a t a

p r i n t * , ’L o a d i n g  T r a n s c r i p t i o n  O p e r a t o r  d a t a  f r o m  t r a n s c r . i n ’ 

o p  e n  (u  n i t = n i n  l , f i l e  =  ’t r a n s c r .  i n ’, a c c e s s  =  ’s e q u e n t i a l ’,

Sc s t a t u s = ’u n k n o w n ’)

r e a d ( u n i t  =  n i n  1 , f m t = 9 9 9 6 9 )  s w a z l o , s w a z u p , s w a z s f  

r e a d  ( u n i t  =  n i n  1 , f m t = 9 9 9 8 9 )  r e v z l o , r e v z u p , r e v z s f  

r e a d ( u n i t = n i n l , f m t = 9 9 9 6 9 )  m i x z l o , m i x z u p , m i x z s f  

r e a d ( u n i t = n i n l , f m t  =  9 9 9 8 9 )  c o p z l o , c o p z u p , c o p z s f  

r e a d ( u n i t = n i n l , f m t = 9 9 9 8 9 )  d e l z l o , d e l z u p , d e l z s f  

r e a d  (u  n i t  =  n i n  1 , f m t = 9 9 9 9 8 )  t r a z l e v l  

c l o s e ( u n i t = n i n l )  

p r i n t * , ’

t r a z l e v  =  n i n t ( t r a z l e v l * n t o t a l *  n p o i n t s )  

p r i n t * , ’N o . o f  t r a n s c r i p t i o n s ’, t r a z l e v  

t z l e v = t r a z l e v

s w a z s = n i n t ( s w a z s f *  n p o i n t s )  

re  v z s = n i n t  ( r e  v z s f * n  p o i n t s )  

m i x z s  =  n i n t ( m i x z s f * n p o i n t s )  

c o p z s = n i n t  ( c o p z s f * n  p o i n t s )  

d e l z s = n i n t ( d e l z s f * n  p o i n t s )

C

C  C h e c k  i f a n y  t r a n s c r i p t i o n  o p e r a t o r s  a r e  off  

i f ( ( ( s w a z l o . l t . 0 ) . a n d . ( s w a z u p . l t . 0 ) ) . o r .

Sc ( ( s w a z I o . g t . l O O ) . a n d . ( s w a z u p . g t . l O O ) )  ) t h e n  

p r i n t * , ' T R A N S C R I P T I O N :  S w a p p i n g  o p e r a t o r  O F F ’ 

e n d i f

i f  ( ( ( m i x z l o . l t . 0 ) . a n d . ( m i x z u p . I t . 0 ) ) . o r .

Sc ( ( m i x z l o . g t . l O O ) . a n d . ( m i x z u p . g t . l O O ) )  ) t h e n  

p r i n t * ,’T R A N S C R I P T I O N : M i x i n g  o p e r a t o r  O F F ’ 

e n d i f

i f  ( ( ( r e v z l o . l t . 0 ) . a n d . ( r e v z u p . l t . 0 ) ) . o r .

Sc ( ( r e v z l o . g t . l O O ) . a n d . ( r e v z u p . g t . l O O ) )  ) t h e n  

p r i n t * , ’T R A N S C R I P T I O N :  R E V E R S A L  o p e r a t o r  O F F ’ 

e n d i f

i f  ( ( s w a z s . g t . n p o i n t s ) . o r . ( m i x z s . g t . n p o i n t s ) . o r .

Sc ( r e v z s . g t . n p o i n t s )  ) t h e n

p r i n t * , ' T o o  m a n y  p o i n t s  a s k e d  fo r  in  o n e  o f  t h e '  

p r i n t * , ’t r a n s c r i p t i o n  o p e r a t o r  f u n c t i o n s ! '  

s t o p  

e n d  i f

C

C  R e a d  in  c o n t r o l  p r o g r a m  d a t a

p r i n t * , ' L o a d i n g  d a t a  f r o m  c o n t r o l . i n  ’ 

o p e n ( u n i t = n i n l  , f i le = ’c o n t r o l . i n ' , a c c e s s = ' s e q u e n t i a l ' ,

Sc s t a t u s  =  ’u n k n o w n ’) 

d o  7 7 7 7  i =  l , 4

r e a d ( u n i t = n i n l  , f m t = 9 9 9 8 7 )  c o n t ( i , l ) , c o n t ( i , 2 )

Sc , c o n t ( i , 3 )

r e a d ( u n i t = n i n l , f m t = 9 9 9 8 8 )  c o n t ( i , 4 ) , c o n t ( i , 5 )

Sc , c o n t ( i , 6 ) , c o n t ( i , 7 )

7 7 7 7  c o n t i n u e

r e a d ( u n i t = n i n  1 , f m t  =  9 9 9 9 9 )  l e v e l  

r e a d ( u n i t = n i n l , f m t  =  9 9 9 9 9 )  l e v e l m  

c l o s e ( u n i t = n i n l )

C  S e t  i t e r m a x  t o  t h e  v a l u e  of  l i m i t n  f o r  t h e  f i r s t  l e v e l  

i t e r m a x  =  n i n t (  c o n t ( l e v e l , 3 )  ) 

i f  ( l e v e l m . g t . 4) t h e n

p r i n t * , ' l e v e l m  m u s t  b e  l es s  t h a n  o r  e q u a l  t o  4 ’

s t o p

e n d  if

C

C  F o r m a t  S t a t e m e n t s  

9 9 9 9 9  f o r m a t ( i 5 )
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9 9 9 9 8  f o r m & t ( f l 5 . 8 )  

c 9 9 9 9 7  f o r m & t ( 3 ( f  1 5 .8 ) )

9 9 9 9 6  f o r m a . t ( 2 ( f l 5 . 8 ) )

9 9 9 9 5  f o r m a . t ( 3 ( i 5 ) )

9 9 9 9 4  f o r m a t ( 3 ( i 5 ) , f l 5 . 8 )

9 9 9 9 3  f o r m a t ( 2 ( i 5 ) , 2 ( f l 5 . 8 ) )

9 9 9 9 2  f o r m o . t ( 2 ( i 5 ) )

9 9 9 9 1  f o r m a t ( f l 5 . 8 , t r l 0 , i 5 )

9 9 9 9 0  f o r m a t ( f l 5 . 8 , t r l 0 , i 5 , t r l 0 , f l 5 . 8 )

9 9 9 8 9  f o r m a t ( 2 ( i 5 ) , f  15 .8 )

9 9 9 8 8  f o r m a t ( 4 ( f l 5 . 8 , t r 8 ) )

9 9 9 8 7  f o r m a t ( 3 ( f l 5 . 8 , t r 8 ) )  

r e t u r n  

e n d  

C ......

C  S e t u p  i n i t i a l  p a r e n t s  -  s e e  o u t p u t  f i le A D A M E V E . O U T  

S u b r o u t i n e  S e t u p

C

C  S u b r o u t i n e  s p e c i f i c  v a r i a b l e s  

i n t e g e r  i , i i , n o u t

C

C  O t h e r  v a r i a b l e s

i n t e g e r  n p o i n t s , n p a r , n c h i l d  

i n t e g e r  x p o i n t s , y p o i n t s  

r e a l  y ( l 0 0 0 , 2 0 0 0 )  

r e a l  x ( l 0 0 ) , x l  ( 1 0 0 )  

r e a l  x z e n d , x z s t a r t  

r e a l  y z e n d ,y z s t a r t

C

C  C o m m o n  b l o c k s

c o m m o n  / z d i m z /  x , x l  

c o m m o n  / z y s z /  y 

c o m m o n  / e q n 4 /  x z s t a r t , x z e n d  

c o m m o n  / e q n 4 l /  y z s t a r t , y z e n d  

c o m m o n  / g a l /  n p a r ,n c h i l d , n p o i n t s  

c o m m o n  / g a l l /  x p o i n t s , y p o i n t s

C

C  R o u t i n e  

n o u t = 1 4

p r i n t * , ' S e t u p  i n i t i a l  d a t a : :  x  p o i n t s ’ 

d o  10 i = l , x p o i n t s

x ( i )  =  x z s t a r t + ( i - l  ) * ( x z e n d - x z s t a r t ) / ( l . O * ( x p o i n t s - l ) )

10 c o n t i n u e

p r i n t * , ' S e t u p  i n i t i a l  d a t a : :  y p o i n t s ’ 

d o l l  i = l , y p o i n t s

x 1 (i ) =  y z s t a r t - f * ( i - l  ) * ( y z e n d - y z s t a r t ) / ( l  . 0 * ( y  p o i n t s - 1 ))

11 c o n t i n u e

C  S e t u p  i n i t i a l  d a t a : :  i n i t i a l  s t o c k

p r i n t * , ' S e t u p  i n i t i a l  d a t a : :  i n i t i a l  p o p u l a t i o n ’ 

d o  20 i =  l , n p a r  

C a l l  G e n e r 8 ( i )

C a l l  C o n t i n u i t y ( i )

20  c o n t i n u e

p r i n t * , ' S e t u p  i n i t i a l  d a t a : :  s p e c i a l  i n d i v i d u a l ’

C a l l  S p e c i a l ( l ,1 0 .0 )

C a l l  C o n t i n u i t y  ( l )

C

C  D u m p  o u t  i n i t i a l  d a t a

p r i n t * , ’D u m p i n g  o u t  i n i t i a l  p a r e n t s  i n  A D A M E V E . O U T ’ 

p r i n t * , ' C u r r e n t l y  o n l y  f i r s t  10 0 e n t r i e s  p e r  c a n d i d a t e ’ 

o p  e n (u  n i t  =  n o u  t , f i l e = ' A D A  M E  V E . O U T ’, s t a t u s  = ' u n k n o w n ’ 

& a c c e s s = ' s e q u e n t i a l ’) 

d o  30  i =  l , n p a r

w r i t e ( u n i t  =  n o u t , f m t = 9 8 0 0 0 )  ( y ( i , i i ) ,  i i = l , 1 0 0  )

3 0  c o n t i n u e

c l o s e ( u n i t = n o u t )

C

C  F o r m a t  S t a t e m e n t s

9 8 0 0 0  f o r m a t ( 1 0 0 ( f l 5 . 8 , t r 8 ) )  

r e t u r n  

e n d

C ......

C  D i a g n o s t i c s :  d u m p  o u t  t h e  r e l e v a n t  i n f o r m a t i o n  

S u b r o u t i n e  D u m p z o u t

C

C  S u b r o u t i n e  s p e c i f i c  v a r i a b l e s  

i n t e g e r  i , i i , n o u t

C

C  O t h e r  r e q u i r e d  v a r i a b l e s  

i n t e g e r  n p o i n t s , n p a r , n c h i l d  

i n t e g e r  x p o i n t s , y p o i n t s  

i n t e g e r  l e v e l , l e v e l m  

r e a l  y ( l 0 0 0 , 2 0 0 0 )  

r e a l  w e ig h t ( l O O O ) 

r e a l  x ( l 0 0 ) , x l ( l 0 0 )  

r e a l  r r s ( 2 0 0 0 )  

r e a l  x z s t a r t , x z e n d  

r e a l  y z s t a r t , y z e n d  

r e a l  c o n t ( 5 , 1 0 )

C

C  C o m m o n  b l o c k s

c o m m o n  / c o n t r o l /  c o n t , l e v e l , l e v e l m

c o m m o n  / w t s /  w e i g h t

c o m m o n  / z y s z /  y

c o m m o n  / z d i m z /  x , x l

c o m m o n  / g a l /  n p a r , n c h i l d , n p o i n t s

c o m m o n / g a l l /  x p o i n t s , y p o i n t s

c o m m o n  / d i s c /  r r s

c o m m o n  / e q n 4 /  x z s t a r t , x z e n d

c o m m o n  / e q n 4 1 /  y z s t a r t , y z e n d

C

C  R o u t i n e  

n o u t  =  14

C

C  B e s t  p a r e n t ,  d e p e n d i n g  o n  l ev e l  

i f ( l e v e l . e q . l )  t h e n

p r i n t * , ' L e v e l  1 b e s t  p a r e n t  in  B Z P A R Z N l . O U T ’ 

p r i n t * , ' T o t a l  of  ’,n p o i n t s , ’ p o i n t s ’

o p e n ( u  n i t  =  n o u t , f i l e  =  ' B Z P A R Z N l  . O U T ’, s t a t  u s =  ' u n k n o w n  ’, 

& a c c  e ss  = ’s e q u e n t i a l ’) 

d o  2 99  i =  l , n p o i n t s

w r i t e ( u n i t = n o u t , f m t = 9 8 0 0 1 )  y ( l , i )

299  c o n t i n u e

c lo s e  (u n i t  =  n o u t )  

e n d  i f

i f ( l e v e l . e q . 2)  t h e n

p r i n t * , ' L e v e l  2 b e s t  p a r e n t  in  B Z P A R Z N 2 . 0 U T ’ 

p r i n t * , ’T o t a l  of  ’,n p o i n t s , ’ p o i n t s ’

o p e n ( u n i t = s n o u t , f i l e  =  ' B Z P A R Z N 2 . 0 U T ’, s t a t u s  =  ’u n k n o w n ’, 

& a c c e s s  = ’s e q u e n t i a l ’) 

d o  2 98  i = l , n p o i n t s

w r i t e ( u n i t = n o u t , f m t = 9 8 0 0 1 )  y ( l , i )

2 9 8  c o n t i n u e

c lo s e  ( u n i t  =  n o u t )  

e n d  i f

i f  ( l e v e l . e q . 3)  t h e n

p r i n t * , ’L e v e l  3 b e s t  p a r e n t  i n  B Z P A R Z N 3 . 0 U T ’ 

p r i n t * , ’T o t a l  of  ’,n p o i n t s , ’ p o i n t s ’

o p e n ( u n i t = n o u t , f i l e = ’B Z P A R Z N 3 . 0 U T ' , s t a t u s =  ' u n k n o w n ' ,  

&  a c c e s s = ’s e q u e n t i a l ’) 

d o  2 9 7  i s s l , n p o i n t s

w r i t e ( u n i t = n o u t , f m t = 9 8 0 0 l )  y ( l , i )

2 9 7  c o n t i n u e

c l o s e ( u n i t  =  n o u t )  

e n d  if

i f  ( l e v e l . e q . 4)  t h e n

p r i n t * , ' L e v e l  4 b e s t  p a r e n t  i n  B Z P A R Z N 4 . 0 U T ’

p r i n t * , ' T o t a l  of  ' , n p o i n t s , ’ p o i n t s ’

o p e n  ( u n i t  =  n o u t , f i l e = ’B Z P A R Z N 4 .  O U T '

, s t a t u s  =  ' u  n  k n o w n ',

& a c  c e s s  = ' s e q u e n t i a l ' )  

d o  2 9 6  i =  l , n p o i n t s

w r i t e ( u n i t = n o u t , f m t = 9 8 0 0 1 )  y ( l , i )

2 9 6  c o n t i n u e
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c l o s e ( u n i t  =  n o u t )  

e n d  i f

C

C  B e s t  p a r e n t  a t  c u r r e n t  l e v e l

p r i n t * , ’D u m p i n g  o u t  c u r r e n t  b e s t  p a r e n t  in  B Z P A R Z N . O U T ’ 

p r i n t * , ’T o t a l  o f  ’,n p o i n t s , ’ p o i n t s ’

o p  e n ( u n i t = n o u t , f i l e =  ’B Z P A R Z N . O U T ’, s t a t u s =  ’u n k n o w n ’,

& a c c e s s =  ’s e q u e n t i a l ’) 

d o  301  i =  l , n p o i n t s

w r i t e ( u n i t  =  n o u t , f m t = 9 8 0 0 1 ) y ( l , i )

301 c o n t i n u e  

c l o s e ( u n i t  =  n o u t )

C

C  W e i g h t s  o f  t h e  b e s t  p a r e n t s

p r i n t * , ’D u m p i n g  o u t  c u r r e n t  b e s t  p a r e n t s  w e i g h t s  in  B Z W T Z N . O U T ’ 

o p e n ( u  n i t  =  n o u t , f i l e  =  ’B Z W T Z N . O U T ’, s t a t u  s = ’u n k n o w n ’,

&  a c c e s s = ’s e q u e n t i a l ’) 

d o  3 02  i =  l , n p a r

w r i t e ( u n i t = n o u t , f m t = * )  i , w e i g h t ( i )

30 2  c o n t i n u e

c lo s e  ( u n i t = n o u t )

C

C  D i s c r e t i s a t i o n  e r r o r s  a s  f o u n d  b y  t h e  p r o f i l e r  

p r i n t * , ' D u m p i n g  o u t  c u r r e n t  b e s t  p a r e n t ’ 

p r i n t * , ’d i s c r e t i s a t i o n  e r r o r s  i n  B Z E R R Z N . O U T ’

C a l l  P r o f i l e ( n p a r + n  c h i l d )

C a l l  S o r t  

C a l l  P r o f i l e ( l )

o p e n  ( u n i t  =  n o u t , f i l e  =  ’B Z E R R Z N . O U T ’

, s t a t u s  =  ’u n k n o w n ’,

& a c c e s s  =  ’s e q u e n t i a l ’) 

d o  3 04  i i = l , n p o i n t s

w r i t e ( u n i t  =  n o u t , f m t  =  9 8 0 0 1 )  r r s (  ii )

30 4  c o n t i n u e

c l o s e ( u n i t  =  n o u t )

C

C  S o m e  i n f o r m a t i o n  a b o u t  c a l c u l a t i o n

p r i n t * , ' I n f o r m a t i o n  f o r  L I S T 3 D . F O R  p r o g r a m  i n  l i n f o . i n ’ 

o p e n  ( u n i t  =  n o u t  , fi le =  ’l i n f  o.  in  ’, s t a t u s = ’u n  k n o w n ’,

& a c c e s s = ’s e q u e n t i a l ’) 

w r i t e ( u n i t  =  n o u t , f m t  =  9 8 0 0 2 )  x p o i n t s  

w r i t e ( u n i t  =  n o u t , f m t  =  9 8 0 0 2 )  y p o i n t s  

w r i t e ( u n i t  =  n o u t , f m t = 9 8 0 0 1 )  x z s t a r t  

w r i t e ( u n i t  =  n o u t , f m t  =  9 8 0 0 1 ) x z e n d  

w r i t e ( u n i t  =  n o u t , f m t  =  9 8 0 0 l )  y z s t a r t  

w r i t e ( u n i t = n o u t , f m t = 9 8 0 0 1 ) y z e n d  

c lo s e  ( u n i t = n o u t )

C

C  F o r m a t  S t a t e m e n t s

9 8 0 0 1  f o r m a t ( f l 5 . 8 )

9 8 0 0 2  f o r m a t ( i 5 )  

r e t u r n

e n d

C ......

C  U p d a t e  t h e  e v o l u t i o n  h i s t o r y  f i l es

S u b r o u t i n e  U p  d a t e  ( n o u t z w t , n o u t z h  ,n o o f )

C

C  S u b r o u t i n e  s p e c i f i c  v a r i a b l e s

c i n t e g e r  ii 

i n t e g e r  n o o f

C

C  O t h e r  r e q u i r e d  v a r i a b l e s  

i n t e g e r  n o u t z w t , n o u t z h  

r e a l  w e i g h t (  1 0 0 0 ) , y ( 1 0 0 0 , 2 0 0 0 )

C

C  C o m m o n  b l o c k s

c o m m o n  / w t s /  w e i g h t  

c o m m o n  / z y s z /  y

C

C  R o u t i n e

w r i t e ( u n i t  =  n o u t z w t , f m t  =  *) n o o f , w e i g h t ( l )

c w r i t e ( u n i t  =  n o u t z h , f m t = 9 8 0 0 2 )  n o o f , (  y ( l , i i ) ,  ii =  l , 1 0 0  )

C

C  F o r m a t  S t a t e m e n t s

9 8 0 0 2  f o r m a t ( i 5 , 1 0 0 ( f l 5 . 8 , t r 8 ) )  

r e t u r n  

e n d

C ......

C

C  P H Y S I C S  S T U F F  F O R  T H E  E Q U A T I O N S  

C  T h e s e  f u n c t i o n s  d e s c r i b e  t h e  e q u a t i o n  w e  w a n t  t o  s o l v e ,  

C  i .e . ,  s o u r c e  a n d  b o u n d a r i e s

C

C ......

C  S o u r c e  t e r m  f o r  p o i s s o n  e q u a t i o n  

R e a l  F u n c t i o n  S o u r c e ( i , j , a , a x , a y )

C

C  S u b r o u t i n e  s p e c i f i c  v a r i a b l e s  

i n t e g e r  i,j  

r e a l  a , a x , a y

C

C  O t h e r  v a r i a b l e s  

r e a l  x ( l  0 0 )  ,x 1 ( 1 0 0 )

C

C  C o m m o n  s t a t e m e n t s  r e q u i r e d  

c o m m o n  / z d i m z /  x , x l

C

C  R o u t i n e

C  F o r  d e t a i l s  s e e  i n t e r n a l  r e p o r t  a n d  a n a l y s i s  n o . 16 

C  T h i s  p a r t i c u l a r  r u n  h a s  l a m b d a = l  

s o u r c e = a * * 2 . 0  

r e t u r n  

e n d  

C ......

C  B o u n d a r y  C o n d i t i o n s  

R e a l  F u n c t i o n  L o b d ( i , j )

C

C  S u b r o u t i n e  s p e c i f i c  v a r i a b l e s  

i n t e g e r  i ,j  

r e a l  pi  

c r e a l  rO

C

C  O t h e r  v a r i a b l e s  

r e a l  x ( 1 0 0 ) , x  1 (1 0 0 )  

i n t e g e r  x p o i n t s , y p o i n t s  

i n t r i n s i c  s i n

C

C  C o m m o n  s t a t e m e n t s  

c o m m o n  / z d i m z /  x , x l  

c o m m o n / g a l l /  x p o i n t s , y p o i n t s

C

C  R o u t i n e

c r0  =  ( x ( x p o i n t s ) - x ( l )  ) / 2 . 0  

c i f ( ( x ( i ) - x ( l ) ) . l t . r 0  ) t h e n  

c l o b d  =  e x p (  1 . 0 - ( x ( i ) - x ( l ) ) / r 0  ) 

c e l s e  

c  l o b d  =  1.0 

c  e n d  i f

p i = a c o s ( - l  .0)

l o b d = 4 . 0 » s i n (  2 . 0 * p i * (  ( x ( i ) - x ( l ) ) / ( x ( x p o i n t s ) - x ( l ) )  ) )  

c  l o b d  =  2.0 

r e t u r n  

e n d

C ......

R e a l  F u n c t i o n  U p b d ( i , j )

C

C  S u b r o u t i n e  s p e c i f i c  v a r i a b l e s  

i n t e g e r  i , j 

r e a l  p i

C

C  O t h e r  v a r i a b l e s  

r e a l  x ( 1 0 0 )  , x l  ( 1 0 0 )  

i n t e g e r  x p o i n t s , y p o i n t s  

i n t r i n s i c  s i n
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c
C  C o m m o n  s t a t e m e n t s  

c o m m o n  / z d i m z /  x , x l  

c o m m o n  / g a l l /  x p o i n t s , y p o i n t s

C
C  R o u t i n e

p i  =  a .c os (- 1. 0)

u p b d  =  4 . 0 * s i n (  2 . 0 * p i * (  ( x ( i ) - x ( l ) ) / ( x ( x p o i n t s ) - x ( l ) )  ) )  

c u p b d  =  x ( i )

c u p b d  =  2.0

r e t u r n  

e n d  

C..
R e a l  F u n c t i o n  L h s ( i , j )

C
C  S u b r o u t i n e  s p e c i f i c  v a r i a b l e s  

i n t e g e r  i, j

C

C  O t h e r  v a r i a b l e s  

r e a l  x (  1 0 0 )  ,x 1 ( 1 0 0 )  

i n t e g e r  x p o i n t s , y p o i n t s  

i n t r i n s i c  s i n  

c r e a l  rO 

C

C  C o m m o n  s t a t e m e n t s  

c o m m o n  / z d i m z /  x , x l  

c o m m o n  / g a l l /  x p o i n t s , y p o i n t s

C
C R o u t i n e

c  r 0 = (  x l ( y p o i n t s ) - x l ( l )  ) / 2 . 0  

c  i f ( ( x l  ( j ) - x l ( l  ) )  . l t . rO ) t h e n  

c  lh s  =  e x p (  1 . 0 -( x  l ( j ) - x l  ( l ) ) / r O  )

c  else  

c  l h a = l  .0 

c  e n d  i f

p i  =  a c o s ( - l  .0)

lh s  =  4 . 0 * s i n (  2 . 0 * p i * (  (x  1 ( j ) - x  1 ( 1 ) ) / ( x  1 ( y p o i n t s ) - x  1 ( 1 ) )  ))  

c  l h s  =  2.0 

r e t u r n  

e n d

C..
R e a l  F u n c t i o n  R h s ( i , j )

C

C  S u b r o u t i n e  s p e c i f i c  v a r i a b l e s  

i n t e g e r  i ,j  

r e a l  pi

C
C  O t h e r  v a r i a b l e s  

r e a l  x ( l 0 0 ) ,x 1 ( 1 0 0 )  

i n t e g e r  x p o i n t s , y p o i n t s  

i n t r i n s i c  s i n

C
C  C o m m o n  s t a t e m e n t s  

c o m m o n  / z d i m z /  x , x l  

c o m m o n  / g a l l /  x p o i n t s , y p o i n t s

C
C  R o u t i n e

p i = a c o s ( - l  .0)

r h s  =  4 . 0 * s i n (  2 . 0 * p i * (  ( x l ( j ) - x l ( l ) ) / ( x l ( y p o i n t s ) - x l ( l ) )  ))  

c r h s  =  x l ( j )  

c r h s = 2 . 0  

r e t u r n

e n d

C ......

C  M o n i t o r  t h e  e m e r g e n c e  of  t h e  b e s t  c a n d i d a t e

C  T h i s  r o u t i n e  c o n t r o l s  w h e n  t o  d o u b l e  p o i n t s ,  c o n t i n u e  o r  e x i t  

C  O n  e n t r y , i t e r n o w  s h o u l d  b e  a  m u l t i p l e  of  l i m i t n  

S u b r o u t i n e  D e c i d e ( i t e r n o w , b z w t , e v o l a v )

C

C  S u b r o u t i n e  s p e c i f i c  v a r i a b l e s  

i n t e g e r  i t e r n o w  

r e a l  b z w t , e v o l a v

i n t e g e r  l i m m a x , l i m i t n  

r e a l  f a c t , f a c t l  

r e a l  t z w t , s t e e p , s t e e p l  

i n t e g e r  i

C

C  O t h e r  v a r i a b l e s  

r e a l  y ( l 0 0 0 , 2 0 0 0 )  

r e a l  c o n t ( 5 , 1 0 )  

i n t e g e r  l e v e l , l e v e l m  

r e a l  k p ( 2 0 0 0 )  

i n t e g e r  x p o i n t s k , y p o i n t s k  

i n t e g e r  n p a r , n c h i l d , n p o i n t s  

i n t e g e r  x p o i n t s , y p o i n t s  

i n t e g e r  k z e y , i z l o w , i z u p  

i n t e g e r  m z l e v , c z l e v , t z l e v  

i n t e g e r  n o u t

C

C  C o m m o n  s t a t e m e n t s

c o m m o n  / c o n t r o l /  c o n t , l e v e l , l e v e l m  

c o m m o n  / k e e p l /  k p  

c o m m o n  / k e e p 2 /  x p o i n t s k , y p o i n t s k  

c o m m o n  / z y s z /  y

c o m m o n  / g a l /  n p a r , n c h i l d ,n p o i n t s  

c o m m o n  / g a l l /  x p o i n t s , y p o i n t s  

c o m m o n  / d e c /  k z e y , i z l o w , i z u p  

c o m m o n  / m c t z d a t /  m z l e v , c z l e v , t z l e v

C

C  R o u t i n e

C

n o u t  =  14

C  S e t u p  t h e  v a r i a b l e s  w e n e e d  - g iv e  t h e m  n i c e r  n a m e s  

I i m m a x = n i n t (  c o n t ( l e v e l , l )  ) 

t z w t = c o n t ( l e v e l , 2 )  

l i m i t n  =  n i n t (  c o n t ( l e v e l , 3 )  ) 

s t e e p = c o n t  ( l e v e l ,  4) 

f a c t = c o n t  ( l e v e l , 5)  

s t e e p l  = c o n t ( l e v e l , 6 )  

f a c t l  =  c o n t ( l e v e l , 7 )

C a l l  K e e p ( l )

C

C

C  W E  H A V E  N O T  R E A C H E D  T H E  U P P E R  I T E R A T I O N  L E V E L

C

C

I F  ( I T E R N O W . L T . L I M M A X )  T H E N  

C  S T A R T  A G A I N  C O N D I T I O N  

C  [B e s t  w e i g h t  g r e a t e r  t h a t  f a c t * t z w t ]  O R  

C  [ [ e v o l u t i o n  is  t o o  s h a l l o w ]  A N D

C  [ f a c t l * t z w t  <  b z w t  <  f a c t * t z w t  ]

C ]
P R I N T * , ’I T E R N O W  <  L I M M A X ’ 

if(  ( b z w t . g t . f a c t * t z w t ) . o r .

&  ( ( e v o l a v . l t . s t e e p ) . a n d .

As ( ( b z w t . g t . f a c t l * t z w t ) . a n d . ( b z w t . l t . f a c t * t z w t )  )

)
& ) t h e n

if  ( l e v e l . e q . l )  t h e n

p r i n t * , ’L E V E L  1:: S T A R T I N G  A G A I N ’

p r i n t * , ’E v o l u t i o n  g r a d i e n t  is t o o  s h a l l o w ’

p r i n t * , ’w i t h i n  u p p e r  a n d  l o w e r  l i m i t s  f o r  c o n t i n u a n c e ’

p r i n t * , ’O R  b e s t  w e i g h t  is  a b o v e  u p p e r  l i m i t ’

k z e y  =  l

C  N o  d o u b l i n g  a t  l e v e l  1 t h e r e f o r e  j u s t  s t a r t  a g a i n  u s i n g

C  i n i t i a l  c h o i c e

C  C o p y  t h e  s t r i n g  we k e p t  i n t o  t h e  t o p  l e v e l

d o  9 0 8 7  i =  l , n p o i n t s  

y ( l , i ) = k p ( i )

9 0 8 7  c o n t i n u e

C  G e n e r a t e  a  r a n d o m  s e t  o f  o t h e r  c a n d i d a t e s

d o  9 0 6 6  i = 2 , n p a r + n c h i l d  

C a l l  G e n e r 8 ( i )

C a l l  C o n t i n u i t y ( i )
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9 0 8 6  c o n t i n u e  

C  R e s e t  i t e r a t i o n  v a r i a b l e s

i z l o w = i z u p - | - l  

i z u p = i z u p - f  l i m i t n  

C  P r o f i l e  a n d  s o r t  t h e  p o p u l a t i o n

C a l l  P r o f i l e ( n p a r + n c h i l d )

C a l l  S o r t  

C  K e e p  t h e  b e s t  i n d i v i d u a l

C a l l  K e e p ( l )  

e l s e

k z e y  =  l

p r i n t * , ' L E V E L  ’,l e v e l , ’ :: S T A R T I N G  A G A I N '  

p r i n t * , ’E v o l u t i o n  g r a d i e n t  is t o o  s h a l l o w '  

p r i n t * , ' w i t h i n  u p p e r  a n d  l o w e r  l i m i t s  fo r  c o n t i n u a n c e ’ 

p r i n t * , ’O R  b e s t  w e i g h t  is a b o v e  u p p e r  l i m i t ’ 

d o  9 0 8 5  i = l , n p o i n t s  

y ( l , i )  =  k P (i)

9 0 8 5  c o n t i n u e

C  G e n e r a t e  a  r a n d o m  s e t  o f  o t h e r  c a n d i d a t e s

d o  9 0 8 4  i = 2 , n p a r - f - n c h i l d  

C a l l  G e n e r B ( i )

C a l l  C o n t i n u i t y ( i )

9 0 8 4  c o n t i n u e  

C  R e s e t  i t e r a t i o n  l e v e l s

i z l o w = i z u p  +  l  

i z u p = i z u p + l i m i t n  

C  P r o f i l e  a n d  S o r t  t h e  e n t i r e  p o p u l a t i o n

C a l l  P r o f i l e ( n p a r + n c h i l d )

C a l l  S o r t  

C  K e e p  t h e  b e s t  i n d i v i d u a l

C a l l  K e e p ( l )  

e n d  i f 

e n d  i f

C

C  C O N T I N U E  B E C A U S E  E V O L U T I O N  IS S T E E P  E V E N  A L ­

T H O U G H  H I G H  W E I G H T

C  [ e v o l u t i o n  is s t e e p  e n o u g h ]  A N D  [ f a c t l * t z w t  <  b z w t  <  f a c t * t z w t

]
C

if ( ( e v o l a v . g t . s t e e p ) . a n d .

Sc ( ( b z w t . g t . f a c t  1 * t z w t ) . a n d . ( b z w t . I t . f a c t * t z w t )  )

Sc ) t h e n

k z e y  =  2

p r i n t * , ' L E V E L  ' . l e v e l , '  :: C O N T I N U I N G ’

p r i n t * , ’C o n t i n u i n g : h i g h  w t  B U T  g r a d i e n t  g o o d  e n o u g h ! ! ! ’

C  K e e p  t h e  b e s t  i n d i v i d u a l

C a l l  K e e p ( l )

C  R e s e t  i t e r a t i o n  l e v e l s

i z l o w = i z u p + l  

i z u p  =  i z u p + l i m i t n  

e n d  i f

C

C  C O N T I N U E  B E C A U S E  W E I G H T  IS N E A R L Y  T H E R E  E V E N  

A L T H O U G H  E V O L U T I O N  

C  IS S H A L L O W

C  [ e v o l u t i o n  is  s h a l l o w ]  A N D  [ t z w t  <  b z w t  <  f a c t l * t z w t  ]

C

if  ( ( e v o l a v . l t . s t e e p l ) . a n d .

Sc ( ( b z w t . g t . t z w t ) . a n d . ( b z w t . I t . f a c t l * t z w t )  )

Sc ) t h e n  

k z e y  = 2

p r i n t * , ' L E V E L  ’,l e v e l , ’ :: C O N T I N U I N G ’

p r i n t * , ' C o n t i n u i n g : b e s t  w t  n e a r  a n d  e v o l u t i o n  is s h a l l o w ! ! ’

C  R e s e t  i t e r a t i o n  l e v e ls  

i z lo w  =  i z u p + l  

i z u p = i z u p + l i m i t n  

C  E x t r a  a c t i o n ! ! !

p r i n t * , ' E x t r a  a c t i o n ! ! ! '  

d o  8 9 9 9  i = 2 , n p a r  

C a l l  S p e c i a l 3 ( i , 2 0 . 0 )

8 9 9 9  c o n t i n u e

d o  9 0 0 3  i =  n p a r + l , n p a r + n c h i l d

C a l l  G e n e r 8 ( i )

C a l l  C o n t i n u i t y ( i )

9 0 0 3  c o n t i n u e

C a l l  W o b b l e ( O . l )

C  P r o f i l e  a n d  s o r t  t h e  e n t i r e  p o p u l a t i o n  

C a l l  P r o f i l e ( n p a r - f n c h i l d )

C a l l  S o r t  

C  K e e p  t h e  b e s t  i n d i v i d u a l  

C a l l  K e e p ( l )  

e n d  i f

C

C  C O N T I N U E  B E C A U S E  W E I G H T  I S  N E A R L Y  T H E R E  A N D  

E V O L U T I O N  IS  S T E E P

C  [ e v o l u t i o n  is s t e e p ]  A N D  [ t z w t  <  b z w t  <  f a c t l * t z w t  ]

C

if  ( ( e v o l a v . g t . s t e e p l ) . a n d .

Sc ( ( b z w t . g t . t z w t ) . a n d . ( b z w t . I t . f a c t l * t z w t )  )

Sc ) t h e n  

k z e y = 2

p r i n t * , ' L E V E L  ’. l e v e l , ’ :: C O N T I N U I N G ’

p r i n t * , ’C o n t i n u i n g : b e s t  w t  n e a r  a n d  e v o l u t i o n  is  s t e e p ! ! ’

C  R e s e t  i t e r a t i o n  l e v e ls  

i z l o w = i z u p - f l  

i z u p = i z u p + l i m i t n  

C  K e e p  t h e  b e s t  i n d i v i d u a l  

C a l l  K e e p ( l )  

e n d  i f

C

C  C O N T I N U E  B E C A U S E  W E I G H T  IS  G O O D  E N O U G H  B U T  

W E  C A N  M A K E  I T  B E T T E R  

C  A T  T H I S  L E V E L .

C  G R A D I E N T  is g o o d  e n o u g h ,  so c o n t i n u e  

C  [ b z w t  <  t z w t  ]

i f  ( ( b z w t . l e . t z w t )  . a n d  . ( e v o la v  . g t . s t e e p l  ) ) t h e n  

k z e y = 2

p r i n t * , ' L E V E L  ’. l e v e l , '  :: C O N T I N U I N G ’

p r i n t * , ' C o n t i n u i n g : t a r g e t  w t  r e a c h e d  b e l o w  L I M M A X ! ! ’

p r i n t * , ' A N D  e v o l u t i o n  is s t e e p  e n o u g h ’

C  R e s e t  i t e r a t i o n  l e v e ls  

i z l o w = iz u p - f * l  

i z u p = i z u p + l i m i t n  

C  K e e p  t h e  b e s t  i n d i v i d u a l  

C a l l  K e e p ( l )  

e n d  if

C  [ b z w t  <  t z w t  ] A N D  [ e v o l <  s t e e p l  ]

C  G R A D I E N T  is N O T  g o o d  e n o u g h ,  so n e e d  t o  f i d d l e  

i f  ( ( b z w t . l e . t z w t ) . a n d . ( e v o l a v . l e . s t e e p l ) )  t h e n  

k z e y  =  2

p r i n t * , ' L E V E L  ’. l e v e l , ’ :: C O N T I N U I N G ’ 

p r i n t * , ’C o n t i n u i n g : t a r g e t  w t  r e a c h e d  b e l o w  L I M M A X ! ! ’ 

p r i n t * , ' B U T  e v o l u t i o n  is n o t  s t e e p  e n o u g h .  A c t i o n ! ! '  

d o  9 0 0 2  i =  2 , n p a r  

C a l l  S p e c i a l 3 ( i , 5 0 . 0 )

9 0 0 2  c o n t i n u e

C a l l  W o b b l e ( O . l )

C  P r o f i l e  a n d  s o r t  t h e  e n t i r e  p o p u l a t i o n  

C a l l  P r o f i l e ( n p a r - | - n c h i l d )

C a l l  S o r t  

C  R e s e t  i t e r a t i o n  l e v e ls  

i z lo w = :iz up -} - l  

i z u p = i z u p + l i m i t n  

C  K e e p  t h e  b e s t  i n d i v i d u a l  

C a l l  K e e p ( l )  

e n d  if

C

E L S E

C

C

C  W E  A R E  A T  L I M M A X : :  O N L Y  T W O  O P T I O N S  A V A I L ­

A B L E  E X I T ,  O R  D O U B L E

C  P O I N T S  A S  L O N G  W E  A R E  W I T H I N  T H E  D O U B L I N G
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C  T A R G E T  N O T  R E A C H E D : :  E X I T  P R O G R A M  

C  [ b z w t  >  t z w t  ]

P R I N T * , ' I T E R N O W  >  L I M M A X '  

i f  ( b z w t . g t . t z w t )  t h e n

p r i n t * , ' L E V E L  ' . l e v e l , '  :: E X I T I N G ’ 

p r i n t * , ' T a r g e t  w e i g h t  n o t  r e a c h e d ’ 

p r i n t * , ' F o o l  a b o u t  w i t h  p a r a m e t e r s ’ 

k z e y  = 0  

e n d  i f

C

C  W E I G H T  IS  G O O D  E N O U G H  B U T  W E  A R E  A T  T H E  L I M I T  

O F  P O I N T

C  R E S O L U T I O N

C  [ b z w t > t z w t ]  A N D  [ [ l e v e l <  =  4] A N D  [ l e v e l = l e v e l m ]  ] 

i f (  ( b z w t . l e . t z w t ) . a n d .

( ( l e v e l . l e . 4)  . a n d  . ( l e v e l . e q . l e v e l m )  )

& ) t h e n

p r i n t * , ' L E V E L  ’. l e v e l , ’ :: E X I T I N G '  

p r i n t * , ’T a r g e t  w e i g h t  r e a c h e d ’ 

p r i n t * , ' R e s o l u t i o n  l e v e l  r e a c h e d '  

p r i n t * , ' E x i t i n g  p r o g r a m . . . '  

k z e y  =  0 

e n d  i f

C

C  D O U B L I N G  R E S O L U T I O N  A N D  C O N T I N U I N G  

C  L i m m a x  a n d  t a r g e t  w e i g h t  h a v e  b e e n  r e a c h e d  a n d  l e v e l  is o k  

C  d o u b l e  p o i n t s  a n d  c o n t i n u e  

i f  ( ( b z w t . I t . t z w t ) . a n d .

& ( le  v e l . l t .  4) .  a n d .  ( l e v e l . n e .  l e v e l m )

& ) t h e n

p r i n t * , ' L E V E L  ’. l e v e l , ’ :: D O U B L I N G ’ 

p r i n t * , ' T a r g e t  w e i g h t  r e a c h e d ’ 

p r i n t * , ' D o u b l i n g  p o i n t s  a n d  c o n t i n u i n g ’ 

l e v e l = l e v e l + l  

k z e y  =  3 

C  R e s e t  i t e r a t i o n  l e v e ls

i z lo w  =  i z u p + l

i z u p  =  i z u p - | - n i n t (  c o n t ( l e v e l , 3 )  )

C  P r o f i l e  a n d  s o r t  e n t i r e  p o p u l a t i o n  

c C a l l  P r o f i l e ( n p a r + n c h i l d )

c C a l l  S o r t

C  K e e p  t h e  b e s t  i n d i v i d u a l

C a l l  K e e p ( l )

p r i n t * , ' N O W  A T  L E V E L  ’. le ve l  

e n d  if 

E N D  I F

9 0 9 0  c o n t i n u e

x p o i n t  s k = x p o i n t s  

y p o i n t  s k = y  p o i n t s  

r e t u r n  

e n d

R e a l  F u n c t i o n  E x t r a p ( n , i , j )

S p e c i f i c  v a r i a b l e s  

i n t e g e r  n , i , j

O t h e r  v a r i a b l e s  

i n t e g e r  x p o i n t s , y p o i n t s  

r e a l  y ( 1 0 0 0 , 2 0 0 0 )

O t h e r  f u n c t i o n s  

i n t e g e r  pi

C o m m o n  B lo c k s  

c o m m o n  / g a l l /  x p o i n t s , y p o i n t s  

c o m m o n  / z y s z /  y

R o u t i n e  

i f  ( j . e q . l )  t h e n

e x t r a p = 2 . 0 * y (  n , p l ( i , j )  ) - y (  n , p l ( i , j  +  l )  )

e n d  i f

i f  ( j . e q . y p o i n t s )  t h e n

e x t r & p = 2 . 0 * y  ( n , p l ( i , j )  ) - y (  n , p l ( i , j - l )  ) 

e n d  if

i f ( i . e q . l )  t h e n

e x t r a p = r 2 . 0 * y (  n , p l ( i , j )  ) - y (  n , p l ( i  +  l , j )  ) 

e n d  i f

i f  ( i . e q . x p o i n t s )  t h e n

e x t r a p = 2 . 0 * y (  n , p ] ( i , j )  ) - y (  n , p l ( i - l , j )  )

e n d  i f

r e t u r n

R e a l  F u n c t i o n  B i a s ( i , j )

S p e c i f i c  v a r i a b l e s  

i n t e g e r  i ,j  

r e a l  c x . c x l  ,r,rO

O t h e r  v a r i a b l e s  

i n t e g e r  x p o i n t s , y p o i n t s  

r e a l  x ( l 0 0 ) , x l ( l 0 0 )

K e e p  t h e  n t h  c a n d i d a t e  

S u b r o u t i n e  K e e p ( n )

t e n s i o n s

C o m m o n  B lo c k s  

c o m m o n  / g a l l /  x p o i n t s , y p o i n t s  

c o m m o n  / z d i m z /  x , x l

S u b r o u t i n e  s p e c i f i c  v a r i a b l e s  

i n t e g e r  n , x p o i n t s k , y p o i n t s k  

r e a l  k p ( 2 0 0 0 )  

i n t e g e r  i

O t h e r  v a r i a b l e s  

r e a l  y ( l 0 0 0 , 2 0 0 0 )  

i n t e g e r  x p o i n t s , y p o i n t s  

i n t e g e r  n p a r , n c h i l d , n p o i n t s

C o m m o n  s t a t e m e n t s  

c o m m o n  / k e e p l /  k p  

c o m m o n  / k e e p 2 /  x p o i n t s k . y p o i n t s k  

c o m m o n  / z y s z /  y

c o m m o n  / g a l /  n p a r , n c h i l d ,n p o i n t s  

c o m m o n  / g a l l /  x p o i n t s , y p o i n t s

R o u t i n e  

d o  9 0 9 0  i = l , n p o i n t s  

k p ( i )  =  y ( n , i )

/ R o u t i n e  

' F i n d  t h e  c e n t r e

cx  =  ( x ( l )  -+* x ( x p o i n t s )  ) / 2 . 0  

c x l  =  ( x l ( l )  +  x l ( y p o i n t s )  ) / 2 . 0  

/ C a l c u l a t e  s t r a i g h t  l i n e  f r o m  c e n t r e  t o  p o i n t  a n d  

'  s c a l e  i t  t o  t h e  d i m e n s i o n s  we  h a v e  c h o s e n  f o r  t h i s  

/ c a l c u l a t i o n .  C a l l  t h e  s c a l e  l e n g t h  rO

r 0 = a m a x l (  x ( x p o i n t s ) - x ( l ) , x l ( y p o i n t s ) - x l  ( l )  ) 

r = s q r t (  ( c x - x ( i )  ) * * 2  +  ( c x l - x l ( j )  ) * * 2  ) / r 0  

’ B i a s i n g  f u n c t i o n : :  z e r o  i f o n  b d r y ,  n o n z e r o  e l s e w h e r e  

'  C h o i c e  o f  f u n c t i o n  a v a i l a b l e ,  b u t  s a y  f o r  m u t a t i o n  

2 we  c o u l d  h a v e  a  l a r g e r  v a r i a t i o n  i n  t h e  p e r m i t t e d  r a n g e  

/ t o w a r d s  t h e  c e n t r e ,  w h e r e  i t  i s  m o s t  n e e d e d  

i f ( ( i . e q . l ) . o r . ( i . e q . x p o i n t s )  .or .

& ( j . e q . l ) . o r . ( j . e q . y  p o i n t s )

& ) t h e n  

b i a s = 0 . 0  

else

b i a s = 2 . 0 - e x p ( r - l  .0) 

e n d  i f
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A p p en d ix  B

POISGEN: sample input files and 

com m ents

The philosophy of leaving the algorithm  as open as possible to m odification is m ost obviously 

expressed by the large num ber of input variables required to  control PO ISG E N ’s detailed behaviour. 

This hopefully allows the user the m axim um  freedom to  experim ent w ith the routine. I t is also 

a m easure of the current level of sophistication th a t these algorithm s have a tta ined: on the one 

hand, a large num ber of variables m ust m ean th a t we may influence the behaviour in very m any 

ways, bu t on the other, it m eans th a t the tru ly  significant variables are no t known. The variables 

are not divided arb itrarily  between the files. Those th a t bear some loose relation to each other are 

largely kept together.

1. g a .in  Genetic algorithm  variables: these control global algorithm  behaviour i.e., genotypic 

length and activation conditions for various convergence strategies.

2. e q u a t io n . in  equation variables such as the in itial num ber of points in the x and y directions.

3. m u t a t e . i n  variables th a t control the m uta tion  operations via subroutine m u t a t e  and related 

functions /  subroutines.

4. c o m b in e .in  variables th a t control the com bination operations via subroutine c o m b in e  and 

related  functions/subroutines.

5. t r a n s c r . i n  variables th a t control the transcrip tion  operations via subroutine t r a n s  and re­

la ted  functions/subroutines.

6. p ro f i le . in  variables th a t control the weighting given to  each individual in the population  via 

subroutine p ro f ile  and related functions/subroutines.
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f i le n a m e

row.(colum n letter) variable name: short description of use in program .

Figure B .l: Key to  variable descriptions

7. c o n t r o l . in  these variables are used in subroutine d e c id e  to  decide w hat action the algorithm  

should take after a  certain num ber of iterations.

It is entirely likely th a t no t all the variables are equally im portan t. Some m ay be dropped in 

later versions, as the program  is not yet in a finalised ‘black box’ sta te . Brief descriptions of all 

the user set variables are available in section B .l.

B .l  Description of input variables

Figure B .l provides a key to reading the variable descriptions. The input files also come w ith a 

short note of each variables’ use, which is expanded upon below, 

g a .in

1. loadin: if =  1 then load in old parental stock from BZPARZN.OUT, else s ta rt w ith random  

individuals.

2. rep: if =  1 then use repeatable random  num bers, else nonrepeatable.

3. npar: num ber of breeding parents per generation.

4. nchild: num ber of children created per generation.

5. xpoinls: num ber of points including boundaries in the x direction.

6. ypoints: num ber of points including boundaries in the y direction.

7. itermax: m axim um  num ber of iterations (generations) to  be perform ed.

8. gentol: m inim um  genetic diversity (see subroutine ch eck ) perm itted  in the breeding stock. 

If the genetic diversity falls below this level, rem edial action is taken.

9. (a) jig: j ig  x (highbdry — lowbdry) is the m axim um  value of the factor in subroutine j ig g le ,

(b) jignow: call subroutine j ig g le  every Jc x j ig n o w ’th  iteration .

10. (a) wob: wob x (highbdry — lowbdry) is the m axim um  value of the factor used in subroutine

w o b b le .
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(b) wobnow: call subroutine w o b b le  after wobnow  iterations.

(c) wobif. call subroutine w o b b le  if best weight is less th an  wobif.

11. (a) zoomy: m axim um  value of factor used in subroutine z o o m e r.

(b) worzp: call subroutine z o o m e r  every w orzp ’th  iteration.

12. twzpar: num ber of parents to  keep unchanged when calling subroutine tw e a k .

13. dbl: m ethod of in terpolation  used. If =  0, then call r a n r e p  a t all new points. If =  1, then 

user linear in terpolation  to find values for the new points.

p ro f i le .in

1. penl\ worst point weighting

2. pen2: sum m ation of discretisation errors weighting

3. dierm : not used a t present

4. factor: not used a t present

5. prodO: used in product of discretisation error m easure. This penalises for continuity  w ith the 

boundary  conditions.

e q u a t io n . in

1. (a) xzstari: left hand side of rectangular region.

(b) xzend: right hand side of rectangular region.

2. (a) yzstart: lower boundary of rectangular region.

(b) yzend: upper boundary side of rectangular region.

3. (a) yzm in: m inim um  permissible gene value

(b) yzmax : m axim um  permissible gene value

c o n tr o l . in

T he d a ta  in this file is used exclusively in the subroutine d e c id e . Each pair of rows contains 

conditions and inform ation on the desired program  behaviour a t differing point resolutions. The 

first two rows specify the conditions for carrying on to  the next point resolution level and also some 

conditions for activating rem edial action, should the calculation become bogged down in any way. 

T he design of the controlling m echanism  is detailed in appendix A.

1. (a) limmax: m axim um  num ber of iterations a t this point resolution level

(b) tzwt: ta rget best weight after l i m m a x  iterations.
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(c) limitn: call d ec id e  every l im i tn ’ih  iteration.

2. (a) steep: m inim um  evolutionary steepness for best weights ‘fa r’ from  target weight tzw t .

(b) fact: fa c t  x t zw t  is a ‘large’ or ‘fa r’ weight; used to decide how far away the best weight 

is from  the target weight tzw t.

(c) steepl: m inim um  evolutionary steepness for best weights ‘close’ to  the ta rg e t weight 

tzw t .

(d) factl:  fa c t  1 x t z w t  is a ‘low’ or ‘close’ weight; used to decide how close away the best 

weight is from  the target weight tzw t.

The following 6 lines of d a ta  are paired off in a  sim ilar fashion. The last two variables are

3. level: im plem ent lines 2 x level ,2 x level +  1 of c o n tro l.in  in d e c id e  as the d a ta  for the first 

level of point resolution

4. levell: im plem ent lines 2 x level 1,2 x level1 +  1 of co n tr o l.in  in d e c id e  as the d a ta  for the 

last level of point resolution

The m utation , com bination and transcrip tion subroutines work in very sim ilar ways. An integer 

num ber between 1 and 100 is generated and should th is num ber lie in the range ••■/<? to  • • - up, 

(where • • • represents a string of symbols; for exam ple rz for the random  replacem ent functiom ) 

then  the corresponding operator is im plem ented. Also, in all cases, if ra n typ e (n ) =  1, then a 

uniform ly random  distribu tion  is used. O ther random  distributions are no t yet fully im plem ented, 

m u ta te .in

1. variables used in function ran rep

(a) rzlo: lower lim it of range

(b) rzup: upper lim it of range

(c) rantypel: type of random  d itribu tion  used.

2. variables used in function creep

(a) czlo: lower lim it of range

(b) czup: upper lim it of range

(c) rantype2: type of random  d itribu tion  used.

(d) czmax: m axim um  arithm etic creep

3. variables used in function gcreep

(a) gczlo: lower lim it of range
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(b) gczup: upper lim it of range

(c) rantypeS: type of random  d itribu tion  used.

(d) gczmax: m axim um  geometric creep

4. m utlev l: percentage of genes to be m utated . T otal num ber of gen es= n p o in tx (n p a r  +  nchild).  

c o m b in e .in

1. variables used in function w av

(a) avezlo: lower lim it of range

(b) avezup: upper lim it of range

(c) avzwtl: weighting given to first gene

(d) avzwi2\ weighting given to second gene

2. variables used in function w av

(a) gavzlo: lower lim it of range

(b) gavzup: upper lim it of range

(c) gzop: w hat to  do in case of a -ve product of genes.

3. variables used in function e x t

(a) extzlo: lower lim it of range

(b) extzup: upper lim it of range

4. comlevl: num ber of com bination operations expressed as a percentage of the to ta l num ber 

of genes. Total num ber of genes—npoint  x (npar  -f nchild). The percentage of genes affected 

by these operations is 2 x comlevl.

5. mode: where to choose the genes from on differing candidates, 

tra n scr .in

1. variables used in subroutine sw ap

(a) swazlo: lower lim it of range

(b) swazup: upper lim it of range

(c) swazsf. percentage of genotype (length npoin t) to swap w ith neighbouring portion. 

Nearest integer value chosen.

2. variables used in subroutine rev
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(a) revzlo: lower lim it of range

(b) revzup: upper lim it of range

(c) revzsf. percentage of genotype (length npoin t) to  have its order reversed. Nearest integer 

value chosen.

3. variables used in subroutine m ix

(a) mixzlo : lower lim it of range

(b) mixzup : upper lim it of range

(c) mixzsf. percentage of genotype (length npoint)  to  have its order m ixed up. Nearest 

integer value chosen.

4. variables used in subroutine co p y

(a) copzlo: lower lim it of range

(b) copzup: upper lim it of range

(c) copzsf. percentage of genotype (length npoin t) to  be copied. Nearest integer value 

chosen. Overwrites consecutive genetic inform ation.

5. variables used in subroutine d e le te

(a) delzlo: lower lim it of range

(b) delzup: upper lim it of range

(c) delzsf: percentage of genotype (length npoin t) to be deleted. Nearest integer value 

chosen.

B.2 Sample input files

To run PO ISG EN , one m ust supply seven separate files, correctly fo rm atted  w ith the relevant 

inform ation. Below are the input files used to  generate the results of section 6.6.

1. M utation  data: M U T A T E .IN

1 33 1
33 66 0 0.2
1 100 1 0 . 2

0 . 0 1

MUTATE.IN for laplacian/poisson program LAP1.F0R
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Mutation Operator Data

[row] .[operator]......... .[variables]...[description]
1 .............. .random replacement..rzlo lower bound of d.o.i

rzup upper bound of d.o.i
rantypel random distrib type

2 ....... . creep.............. . czlo lower bound of d.o.i
czup upper bound of d.o.i
rantype2 random distrib type
czmax maximum effect

3 ....... geometric creep.... .gczlo lower bound of d.o.i
gczup upper bound of d.o.i
rantype3 random distrib type
gczmax maximum effect

4 ....... .mutzlevl '/, mutations of all
type applied to
entire stock

2. C om bination data: C O M B IN E .IN

1 33 1.0 1.0
34 90 1
67 100
0 . 0 1  

0

COMBINE.IN for laplacian/poisson program P0ISGEN 
Combination Operator Data

[row] . . [operator].......... [variables] .. . [description]
 1..... weighted average....avezlo lower bound of d.o.i

avezup upper bound of d.o.i
avzwtl weight to first gene
avzwt2 weight to second gene

 2..... geometric average...gavzlo lower bound of d.o.i
gavzup upper bound of d.o.i
gzop what to do with

+ve,-ve genes
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3  extension........... extzlo
extzup
comzlevl

.mode

3. Transcription data: T R A N S C R .IN

1 20 0.05
21 40 0.05
41 60 0.05
61 80 0.05
81 100 0.05
0.01

lower bound of d.o.i 
upper bound of d.o.i 
'/.combinations of all 
types acting on 
entire stock 
where to choose the 
genes from 
==0 same place on 

diff’t cands 
==1 diff’t places on 

diff’t cands 
==2 mix of the 

above two

TRANSCR.IN for laplacian/poisson program LAP1.F0R 
Transcription Operator Data

[row] [operator] [variables] [description]
1 swap swazlo lower bound of d.o.i

swazup upper bound of d.o.i
swazsf '/, genetic code to swap

2 reverse revzlo lower bound of d.o.i
revzup upper bound of d.o.i
revzsf '/, genetic code to reverse

3 mixing mixzlo lower bound of d.o.i
mixzup upper bound of d.o.i
mixzsf '/, genetic code to mix

4 copying copzlo lower bound of d.o.i
copzup upper bound of d.o.i
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deletion

trazlevl

copzsf
delzlo
delzup
delzsf

'/, genetic code to copy 
lower bound of d.o.i 
upper bound of d.o.i 
'/, genetic code to delete 
'/.transcriptions of all 
types applied to entire 
stock

4. A lgorithm  m ain  vaiables: G A .IN

0

0

20

100

6

6

5
0 . 0 0 00 0 0 1

0.0066667
0.0066667
0.05
1

1

10

100

2

200 .0

GA.IN for laplacian/poisson programs

[Row] [Variable(s)] [Description]
1 loadin if ==1 then load in old parental stock

from bzparzn.out
2 rep if ==1 then repeatable ran nos
3 npar no.of parents to breed
4 nchild no.of children to create
5 xpoint no.of points including endpoints

in the x d i m
6 ypoint no.of points including endpoints

in the y dirn
7 itermax maximum number of iterations
8 gentol minimum total genetic diversity
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jig,jignow

10 wob,wobnow, 
wobif

11

12

13

zoomy,worzp

twzpar

dbl

permitted in the breeding stock 
(j ig)* (highbdry-lowbdry)
- maximum multiplicative jiggle 

for entire candidates only 
acts like a gene gcreep except 
applied over entire candidate 
every k*jignow’th iteration

(wob)*(highbdry-lowbdry)
- maximum multiplicative wobble 

for genes only, acts like
a gene gcreep except applied 
to all non-bdry genes in 
candidate. Activated when 
after wobnow iterations or when the 
best weight is less than wobif 

zoom operator: max in gcreep and do a 
zoom eOvery worzp’th times 
tweak operator: activated by level of 
genetic diversity gentol. twzpar 
parent(s) to tweak 
Interpolation command 
==0, random replacement at new points 
==1, linear interpolation of y points

5. E quation  variables +  miscellany: E Q U A T IO N .IN

- 2 . 0

- 2 . 0

-5.0

2 . 0

2 . 0

5.0

EQUATION.IN for laplacian/poisson equations 

[Row] [Variable(s)] [Description]
1 xzstart,xzend start and endpoint of equation in x-dirn
2 yzstart,yzend start and endpoint of equation in y-dirn
3 yzmin,yzmax max and min y values

6. P rogram  co n tro l:C O N T R O L .IN
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1000.0 100.0 15.0
0.001 10.0 0.01 2.0
2000.0 100.0 15.0
0.0001 10.0 0.0001 2.0
1800.0 600.0 19.0
0.0001 13.0 0.0003 4.0
1504.0 200.0 96.0
0.0001 14.0 0.0001 5.0

CONTROL.IN for laplacian/poisson programs

[Row] [Variable(s)] [Description]
1 limmax,tzwt ] Level 1 resolution data

limitn ] limmax:: max iterations at this level
2 steep,fact, ] tzwt:: target weight after limmax

steepl.facti ] limitn:: subgoal test limit
steep:: steepness for distant weight 
fact:: multiplication factor for tzwt

to judge how far distant but 
desirable weight is 

steepl:: steepness for closer weight 
factl:: multiplication factor for tzwt

to judge how far closer but 
desirable weight is 

Each following pair of rows describes the same data 
but for the next resolution level. The data is stored 
in a real array cont(5,10) and any required integer values 
are calculated as needed.

10

level

levelm

Which level of point resolution 
to start with
Which level of point resolution 
to end with

7. Profile/W eighting d a ta :P R O F IL E .IN
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10.0

1 . 0

1 . 0

1. 0

2 0 . 0

PROFILE.IN in laplacian/poisson programs
penl worst point weighting
pen2 sum of discretisation error weighting
dterm not used
factor not used
prodO product of discretisation error

weighting for boundary
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To study, to finish, to publish.

Benjam in Franklin.

The day is done,

A nd  I ’m having fun,

I  think I ’m dumb,

Maybe just happy.

K urt C obain (1993), from  ‘In U tero’.


