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Stop me, oh-ho stop me,
Stop me if you think you’ve

heard this one before.

Stephen Morrissey (1987), from ‘Strangeways, here we come’.

O all of you whose intellects are sound,
look now and see the meaning that is hidden

beneath the veil that covers my sirange verses.

Dante (translated by Mark Musa, 1985), Inferno, Canto IX, Il. 61-63.



Abstract

This thesis splits naturally into two topics, field aligned flow in a two dimensional plasma, and
the application of genetic algorithms to the solution of Poisson equations. Genetic algorithmic
techniques were developed as a new method of numerical solution to a problem arising in field
aligned flow. The relation between plasma physics and computing (particularly novel computing
methods) is introduced in chapter 1.

In chapter 2, we begin with Maxwell’s equations and a fluid description of a plasma, and dertve
under various assumptions, equations governing the structure of a field aligned two dimensional
plasma. The appearance of field aligned flow in the Earth’s magnetotail is discussed along with
some treatments in the literature.

Chapter 3 examines the fields arising from having the fluid flow along the field lines time
independent. It is shown that only very special fields support exact field aligned flow. These fields
can be classed by their corresponding flow function. An equation is derived that describes fields
where the flow function is a constant everywhere, which provides the spur for genetic algorithm
application. Some magnetotail relevant solutions of this equation are presented.

Chapter 4 investigates time dependent field aligned flow. It is shown that this situation is
somewhat more complicated than the time independent case, and that a singularity in the flow
may appear, indicating the presence of a large fluid acceleration and the breakdown of the present
model.

In chapter 5, the basic concepts of genetic algorithms are introduced. An algorithm is developed
to test the efficacy of this method for application to the solution of a class of ordinary differential
equations. This work is built on in chapter 6, where a Poisson equation solver is constructed.
Comparisons are made between this and other more traditional methods.

Finally, chapter 7 describes some possible extensions to the work presented. Suggestions for
both genetic algorithms and field aligned flow are discussed. Appendices A and B contain a listing

of the Poisson solver POISGEN and sample input files respectively.
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Chapter 1

Plasma Physics and
Computational Methods

Plasma physics as a distinct discipline arose in the 20th century, yet much of the basic physics
- fluid mechanics, Maxwell’s equations and the statistical description of a collection of particles,
was developed in the 19th century. We have something of an anomaly - a modern discipline using
largely 19th century physics. The emergence of easily available computing power making many
previously incalculable problems tractable has helped to maintain interest in both plasma and
computational physics. Careful calculation of plasmas of interest can act as valuable tool aiding
theory and experiment [1]. In addition, the nature of genetic algorithmic techniques (first suggested
in the 1950s) requires that we perform a large number of operations: such calculations and their
application to relevant problems become possible only with fast enough computers.

Below is a brief summary of the larger fields of interest in plasma physics, and an introduction

to some of the computational techniques that are currently being used to advance the subject.

1.1 Controlled Thermonuclear Fusion

Plasma physics is essential in understanding the processes involved in controlling thermonuclear
fusion. The biggest experiment, JET at Culham, Oxfordshire, has recently run with a deu-
terium/tritium plasma, the candidate fuel mixture for a commercial fusion reactor. Many other
experiments are underway around the world exploring alternative methods e.g., START (Small
Tight Aspect Ratio Torus, also at Culham), JT-60U in Japan, WS-A7, a stellarator device in
Germany.

All the above are examples of magnetic confinement, where magnetic fields are used to contain

the (fusing) plasma. Inertial confinement seeks controlled thermonuclear fusion by the ablation of



small pellets of fuel mixture by extremely high energy laser beams. The plasmas produced here
are much denser than those seen in magnetic confinement devices and hence the plasma physics
can be very different.

Computer modelling plays a fundamental role in the design and costing of new machines or
improvements to old ones. Recently, Boucher [2] reported on modelling work done on ITER
(International Thermonuclear Experimental Reactor) concerning ignition, L and H modes, and

divertor coupling.

1.2 Astrophysical Plasmas

Astrophysical plasmas provide many areas in which the subject may be applied e.g., the Sun. The
Sun is an example of a successful thermonuclear reactor, and exhibits many phenomena of interest
- the solar wind, sunspots, prominences, solar flares all are being actively studied.

Away from the Sun planetary and cometdry magnetospheres, coupled with their solar wind
interactions are coming under greater study, both theoretically, and observationally. Experiments
have largely delineated the Earth’s magnetosphere [3] and numerous theories exist to explain the
phenomena in regions such as the magnetotail, auroral zones and the bow shock.

Pulsar magnetospheres provide an example of an equal mass plasma: in such a plasma, the
positive and negative charged particles carry the same charge and have the same mass. A pulsar’s
magnetosphere is thought to consist largely of electrons and positrons. Using an equal mass plasma
model Stewart {4] found that the Faraday rotation of the magnetic field from such a plasma is zero,
which is observed experimentally from pulsars. The study of magnetised accretion discs represent

important problems in black hole physics and planetary formation.

1.3 Industrial Uses

A large number of industrial processes use a plasma in one form or another, and their academic
study, as opposed to their empirical use, is becoming more widespread [5]. Their application may
be divided into three broad bands: information technology, materials science and environmental
processing.

The information technology industry uses plasma processing to etch and deposit different layers
of material on the integrated circuit substrate. This is closely linked with material science, which
deals with engineering or modifying a surface with a plethora of techniques, for example, plasma
vapour deposition, which seeks to deposit ionised material on a surface in a controllable manner.
More crudely arc welding and smelting/refining are complicated, dusty plasma systems. Plasmas

are also being used to treat noxious emissions e.g., nitrous (NOz) and sulphurous (SOz) oxides from



power stations, and also waste material; contaminated soil, tyres, chemical weapons and household
refuse.

All these systems require better understanding and are of immediate practical use. In particular,
the study of dusty plasmas, common in many applications technology, has many overlaps with

astrophysical situations, such as interstellar gas and cometary outgassings.

1.4 Computational Methods in Physics

The computational simulation of many physical systems has become essential to many branches
of physics, not least to plasmas. There are numerous techniques that may be used, depending on
what is required, giving the computational physicist’s job the reputation of being a ‘black art’.

One approach is to solve the relevant magnetohydrodynamic equations numerically, using some
form of discretisation of the differentials. Finite difference, finite element and finite volume methods
are commonly used and find favour in many applications [6].

Finite difference schemes are perhaps the most popular form of numerical discretisation. The
method is based upon the use of Taylor series expansions to build a toolkit of equations that
describe the (partial) derivatives of a variable as the differences between values of the variable at
different points in space and time. Consider the dependent variable U with independent variables
z,t. We may consider two points a small distance in space h away from some central point zg on

the x-axis. We also fix time at £5. The Taylor series expansions for U at these two points are

h oU h? 52U h3 53U

U (zo+ h,to) = U (zo,t0) + ﬁ(‘)—a:(xo’to) t 5T 5.2 (zo,t0) + TR (zo, o)+ ---
=ex h—a— U (zq,10) (1.1)
= exp oz ZLao,to0 .

and

h oU h? 92U h3 83U
U (zg — h,to) = U (xo,t0) — ﬂ(?_:c(xo’to) + o 322 (zo,t0) — 31 923 (zo,t0) + -

= exp [—héaz] U (zo,t0) (1.2)
Here we have used the notation of Mitchell and Griffiths [7] to compactly write the Taylor expansion
in terms of the exponential of the differential operator. By adding and subtracting these two
equations, new equations can be found for the first and second partial space derivative of U at the
central point zg,

2 — —_
o°U _ U (zo + h,to) — 2U (zo,t0) + U (zo — h, to) 4o (hZ)

da? [z (13)

and

6_U= U($Q+h,t0)—U(£0—h,to) +O(h2)

oz 2h (1.4)



where O (h™) denotes terms of order h” and higher. These expressions are known as the centred

difference replacements for % and g?g. Other estimates are available from the Taylor expansions;

if we truncate (1.1) up to order h then we have

OU _ U(zo+h,to) — U (20,0)
8z h

+0(h) (1.5)

which is accurate up to order h. These difference formule allow differential equations to be
described at points in the region of interest, but at the expense of a maximum accuracy of O (h™).
Which replacement to use in a particular situation is not immediately clear, which can lead to false
answers or even the breakdown of the method. The finite difference replacements are used at the
core of the genetic algorithms described in chapters 5 and 6.

Radically new techniques borrowed from computing science are just beginning to make their
presence felt in computational physics. Principal among these are neural networks, cellular auto-
mataand genetic algorithms[8]. Cellular automata and genetic algorithms are examples of artificial
life: in both cases the basic ideas are borrowed from the way nature evolves and creates new organ-
isms. Neural networks were born out of artificial intelligence research and draw their inspiration
from the structure of the human brain. A human brain has a large number of cells called neurons
that are thought to be actively involved in information processing. Each of these cells also has a
number of connections to other cells. It is thought that this structure enables the brain to process
large amounts of information efficiently to provide for example, pattern recognition and sight, tasks
that are notoriously difficult implement artificially. A neural network works similarly, by assigning
a weighting to each one of the interconnections between nodes. A node is analogous to a neuron,
and some active processing of input data may occur here. The weighting values are determined by
giving the network some test input data, for which a correct output is known. The output from the
network is compared to the known data, and the errors are be used to refine the weightings. This
is known as the training phase. This allows the network to ‘learn’ something about the problem.
After training, the network may be used as a problem solver on real input data.

These computing techniques are beginning to find applications in problems that require some
form pattern seeking or matching. A neural network has been used to analyse the charge exchange
recombination data from DIII-D (a magnetic confinement device at General Atomics, San Diego)
to provide information on ion temperatures and rotation velocities [9] . The problem is to separate
out and analyse the correct peaks from a large number (up to ~ 200,000 a day) of multipeaked
spectra. This type of problem is ideal for the pattern recognition qualities of a neural network,
and given a fast enough computer, the authors can analyse a day’s spectral results in 100 seconds.
Another application of neural networks is to the prediction of sunspot number [10].

A promising development is the use of cellular automata in fluid and plasma simulations. Cel-
lular automata are based on the behaviour of colonies of cells growing in culture [11] . The creation

of a new cell, or equally, the destruction of an existing cell, depends on what is happening locally



to the cell. If there are too many cells in a particular region, then resources are placed under great
demand which prohibits the growth of new cells, and may even kill off existing ones. Hence there
emerges a complicated overall colony behaviour that has been determined by purely local rules.

This has been successfully recreated computationally. Instead of cells, each unit in the system
is termed an automaton. In the early simulations, a set of local rules was defined governing the
creation of a new automaton.

The advantage to magnetohydrodynamic simulation is that the local nature of the cellular
automata approach makes it very easily parallelisable; each node on a parallel machine could handle
a fluid element, the local interaction rules governing the influence of one element on another [12].

Genetic algorithms will be discussed in some detail in chapter 5, but the basic philosophy is
simple. Taking a lead from Darwinian evolution, a genetic algorithm solves problems by breeding
successively better answers from the best of the previous generation. They have been applied
successfully to a number of problems, in particular classifier systems (for machine learning) and
combinatorial problems. In classifier system problems [13], a genetic algorithm is used to discern
rules of behaviour of some complicated system. Less successful rules are eliminated, and the
computer learns an optimised (but not necessarily optimum) set of rules for the problem. Such
programs have found application in economics modelling [14] and maze learning [13]. The travelling
salesman problem is a famous example of a combinatorial problem (see section 5.2.1). Timetabling
Is a combinatorial problem that has been successfully attacked with a genetic algorithm: indeed,
the Department of Artificial Intelligence at the University of Edinburgh now timetables its M.Sc.

exams using a genetic algorithm[13].



Chapter 2

The Fluid Description of a Field
Aligned Plasma

In this chapter we introduce a set of magnetohydrodynamic equations and specialise them to the
case of 2 dimensional field aligned flow. Section 2.3 discusses the appearance of field aligned flow
in the Earth’s magnetotail. A short review of some relevant field aligned flow treatments in the

literature is also given.

2.1 The Magnetohydrodynamic Equations

A plasma is collection of interacting particles [15] that exhibits a collective behaviour, and as such,
we can write down an equation of motion for each of these particles. For a collection of N particles
there are 6N values to be determined - the three space co-ordinates and three velocity components
of each particle. Hence we must have 6N equations to fully describe the system. It is obviously
impractical to attempt to solve such a set of equations. Therefore we must somehow cut down the
number of variables required to adequately describe the plasma. The exact meaning of ‘adequately’
depends largely on the type of plasma or on the type of problem being examined. In this case we
shall use a set of magnetohydrodynamic equations. This is because we wish in principle to examine
the overall fluid motion of the plasma in a field aligned flow situation.

Many textbooks detail the necessary manipulations that may be performed to reduce a full
particle by particle description down to a magnetohydrodynamic system. The derivation of such a
set of equations will not be repeated here, but the interested reader is invited to consult [16], [17].

By resorting to a magnetohydrodynamic description, we are in some sense smearing out the



particulate nature of a plasma. Often the predictions concur with experiment, which is justification
enough for a magnetohydrodynamic approach. This is taken as evidence that the system is acting
in a magnetohydrodynamic manner.

Since we are dealing with an ionised medium Maxwell equations must hold, i.e.,

VB=0 (2.1)
V.D=p, (2.2)
VxH= 66—]? +J (2.3)
VxE= _86_lt3 (2.4)

In this set E is the electric field and D = ¢.E + P is the electric displacement. P is the electric
polarization of the medium and ¢ is the dielectric tensor. p, = ps + p is the total electric charge
density, where py is the free charge density and p = —V.P is the bound charge density.

We will assume that the material is isotropic and therefore € = €gI where I is the identity tensor
and ¢g is the permittivity of free space. We also take P = 0.

H is magnetic field strength and B is the magnetic flux density [18, 19]. Again these are linked
via B = poH + M where pg is the permeability of free space and M is the magnetisation of the
medium. Already we have made some major assumptions in denying the inherent anisotropy of the
medium. Such changes in the dielectric nature of the medium can be handled in different treatments
and again show the need for different models (for example, the passage of an electromagnetic wave
in a plasma medium [20]). The question we want to answer guides the choice of model. Since we
are more concerned about the motion of the plasma, rather than its electromagnetic properties, we
shall use the reduced set with no magnetisation or electric polarization and with the permittivity
and permeability set to their free space values.

The remaining quantity to be defined is j, the total current density. The expression governing j
in a plasma is usually called Ohm’s Law [21] and takes on a form as required by the situation. The
plasma we are considering here is one in which the numbers of positively and negatively charged
particles are roughly equal. We also assume that the mass of the negative ion m_ is very much
less than the mass of the positive ion m,. The plasma is also assumed to be collisional; i.e., there
are a large number of particle-particle interactions of one form or another. Although in general the
pressure is a tensor, under the collisional assumption, the pressure may be taken to be isotropic.
Under these assumptions it may be shown that

mym- 0j
pe? ot

- My Mt gp— L
_E+uXB+pe‘]XB+2peVp g (2.5)

This is known as the generalised Ohm’s Law, and will be reduced to a more appropriate form later.

The quantity o is the electrical conductivity of the plasma. Charge is conserved in this plasma,;



therefore on defining ¢ = n_e~ + nyet as the charge density in the plasma, one can show that

9q .

(In relativistic plasmas, charge need not be conserved, as pair production can change charge dens-
ity).
Having smeared out the particles into a fluid, we must now describe it. The equation of mass
conservation states that
dp

Bt +V.(pu) =0 (2.7)

The equation of charge conservation follows from the Maxwell Equations. The fluid may also

undergo acceleration, which is described by

u .
PDor = -Vp+jxB (2.8)

where g; = %+(u.V). Note that this is the isotropic pressure version of the momentum equation,
and that in general we should replace Vp with V.p, where p is the pressure tensor. Assuming

adiabaticity in the gaseous plasma we can write

D

o PP77) =0 (2.9)

where v = ¢, /¢y, the ratio of the specific heats. Using equation (2.7) we can rewrite this as

%?+u.Vp+p7V.u: 0 (2.10)

This particular form will be important later.

The equations (2.1) to (2.9) form a closed set of fifteen scalar equations in ¢, p, P,u,j,E and
B.

2.2 The Model Equations

We now wish to reduce the magnetohydrodynamic set above to a more manageable form. Firstly,

a dimensional analysis of (2.4) reveals that

F wlL

—_—~—

B c

where L and w™! are typical length and time scales over which the fields change appreciably. Now
in this fluid description we expect that the fluid flow and the electromagnetic fields to interact: to

change E, B significantly we would expect that

U~wL



where U is a typical flow speed. If we assume that % < 1 then we are restricted to non-relativistic
regimes. This is a reasonable assumption as (2.8) is not relativistically invariant, and in any case
we do not wish to look at relativistic effects. If we now examine (2.3) dimensionally we find that

3] (L) o4
|V x B| c

Hence in this limit of low velocity we may write
HoJ =V xB (2.11)

Consider now the terms in (2.5). In the order they appear they may be written as (the left hand

side of the equation is the first term in the list below)

B BB O o

where
e” B etB P
Qe = m- y Qi = F, Cg ™~ ; (213)
are the cyclotron frequencies of the positive and negative species, the sound speed and wlg = :l‘_esz

is the electron plasma frequency. The quantity v, is the negative-positive collision frequency.

The first term may be neglected if
w U
—_— << —
Wp c

The j x B term in (2.5) may be ignored if

w2, (U)2
<< —

2
wp Cc

The pressure dependent part may also be removed when
w < U\?
Q,‘ Cg

po) =0 (E+ux B) (2.14)

This leaves (2.5) as

The quantity o is the electrical conductivity of the plasma, which we will take to be constant. If
we take the curl of (2.11) and substitute in E as defined from (2.14) we have

%_? =V x (ux B)+7nV’B (2.15)

where n = (poo)_l, the magnetic diffusitivity. Equation (2.15) is known as the magnetic induction
equation for constant 7. This can be seen as an evolution equation for B in much the same way
that (2.8) can be seen as an evolution equation for u. The equivalence is more easily seen on
rewriting (2.15) as

B
ll))—t = (B.V)u+1V?B (2.16)



This is basically a diffusion equation with an extra ‘dynamo’ term. (This term is very important

in studies of the Earth’s core).

If we assume further that the plasmais a perfect conductor i.e., infinite conductivity then (2.14)

and (2.16) become

E+uxB=0 (2.17)
DB

The plasma is now said to be ideal. A perfectly conducting plasma implies that

in (2.12); in some sense, the collision frequency is small, which is consistent with the idea of a very
good conductor.
Equations (2.7), (2.8), (2.11), (2.18) and (2.9) are the equations of ideal hydromagnetics. These

equations form the basis of the papers described in section 2.3. We will work with a still further

reduced set.

Setting p = constant simplifies the set drastically. Firstly, the fluid is now incompressible since

its density is everywhere fixed. This reduces (2.7) to
Vau=0 (2.19)

the familiar incompressibility condition. This arises as a result of constant density. In (2.9), it
appears that the pressure must now be convected along by equation (2.10). However, this is not
the case. Incompressibility also corresponds to 7y — co, meaning that equation (2.10) can no
longer govern the pressure. The pressure is no longer an independent variable and is completely
specified by equation (2.8). The pressure at any point in the fluid is now completely specified by
the magnetic and velocity fields, and has no life of its own.

Collecting the relevant equations together we shall use

V.B =0 (2.20)
P—u =-Vp+jxB 2.21
Pt =~V +ix] (2.21)
D
—B = (B. .
DtB (B.V)u (2.22)
pj=VxB (2.23)

to describe the plasma.
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2.3 Parallel Flow

In a field aligned plasma, we assume that the velocity u is everywhere parallel (or anti-parallel) to

B, the magnetic field direction at that point, i.e.,
u||B
or, introducing a function of proportionality,
u=FB (2.24)

The function F' may be related to the magnetic Alfvén Mach number M4, defined as

uu _ gopuu

M2 = =
AT 2 B.B

(2.25)

The Alfvén velocity is given by v4 = 13_(.11;' With the above field aligned relation between u and B
it can be seen that M2 = popF?. The function F' carries directional information in its sign which
is lost in the definition M4. The sign of F will be seen to be important in chapter 4.

The following sections (2.3.1-2.3.3) review some features of parallel flow already seen in the

literature.

2.3.1 The Geomagnetic Tail

Field aligned flow has been observed experimentally, principally in the boundary layer and plasma
sheet of the Earth’s magnetotasl, or geomagnetic tail. To properly delineate these regions, we first
describe the magnetic structures surrounding the Earth.

It was not realised that the Earth was surrounded by a complex plasma system interacting
with the solar wind until the discovery of the Van Allen radiation belts in 1958 [22]. Since then
many experimental observations have mapped the various regions of the Earth’s magnetic influence
(see [23] descriptions of some of the observations). The region of space around the Earth may
be separated into three main regions (see figure 2.1). First of these is the region where the
solar wind dominates. As the wind impinges on the magnetic field of the Earth, it creates a
bow shock, lying upstream of the Earth on the sunward side. This represents the boundary
between the solar wind and the second region, the magnetosheath. The magnetosheath contains
initially compressed and subsonic, sometimes turbulent plasma that expands to super-Alfvénic
speeds as it flows along the boundary between the third region - the magnetosphere - and the
magnetosheath. The magnetosheath is characterised by discontinuities in plasma parameters,
including the magnetic field B.

The magnetosphere itself may also be subdivided into many regions, as is shown in figure

(2.1). It is the region where the Earth’s magnetic field dominates. As one moves out from the

11



Earth, downwind from the Sun, the field elongates to form the geomagnetic tail, or the Earth’s
magnetotail.

The magnetotail is formed by the elongated remainder of the Earth’s magnetic field, stretching
out on the Earth’s nightside. Structures have been observed on the scale (10 — 20)R,q,11 at a
distance ~ 30R¢qrtn from the Earth, and it is clearly perceptible up to ~ 80R.qrsp, although tail
phenomena have been observed up to ~ 1000Rcq4rtn. The neutral sheet in the geomagnetic tail is
about (0.1 — 1)Reqren wide and separates regions in which the magnetic field points in opposing
directions [22]. The neutral sheet is also known as the current sheet, due to the large current
associated with it. The boundary layer is differentiated from the plasma sheet by the presence of
streaming ion beams, travelling towards and away from the Sun above and below the neutral sheet
[24]. The central plasma sheet is characterised by a more isotropic electron and proton distribution
than is seen in the boundary layer.

The magnetotail may also influence events closer to the Earth. Electron -proton islands in the
magnetotail have been observed with energy spectra very close to those seen in aurore[22]. This
suggests that the magnetotail may be important in determining auroral flux behaviour. There is
also evidence for the existence of topologically isolated regions of magnetic field, distinct from the
background magnetotail. Therefore, there are X-point type configurations present, which suggest
reconnection may play a role in the system [25].

The boundary layer and plasma sheet are of principal interest, as it is here that field aligned
flow is observed experimentally. Eastman et al. [26] describe the presence of high speed field
aligned plasma flow in the boundary layer of the magnetotail. DeCoster and Frank [27] observed
protons moving faster than 400kms~! in the boundary layer, in a manner consistent with parallel
flow. Eastman et al [24] states that the transport properties of the plasma sheet and its boundary
layer make it a very important region for the overall modelling of the magnetosphere. With this
in mind, we turn now to some modelling studies of the magnetotail, and their use of field aligned

flow.

2.3.2 Theoretical Studies of the Geomagnetic Tail

The study of the effect of field aligned flow in a plasma has largely been confined to the use
magnetohydrodynamic equations. Gebhardt and Kiessling’s 1992 paper [28] studies 3d steady, in-
compressible ideal MHD model with field aligned flow. By using the Euler potential representation
of a magnetic fleld B = Vea(z,y,2) x Vf(z,y, z) they describe a method to find the magnetic
and velocity fields given the appropriate boundary and pressure information. From this one can
define a function of proportionality designating how much faster the fluid flow is compared to the
local Alfvén velocity (for each field line) by using the parallel specification (2.24) above. However,

the authors consider flows in which the function of proportionality for each field line is constant
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on that field line. As they consider steady state equations, the possibility of time dependent flow
along the field lines is not admitted.

It is shown that for super-Alfvénic flows with M2 > 1 the kinetic energy dominates the system
and the principles of stationary hydromechanics (SHM) for an incompressible fluid apply. When
M2 < 1 the flow is sub-Alfvénic and the system of equations become equivalent to magnetohydro-
statics (MHS). Physically, one may say that in those regions where the magnetic energy density
dominates the kinetic energy, the magnetohydrodynamic flow structure of the fluid is governed by
the principles that control MHS. If kinetic energy dominates in a region, then the rules of SHM
apply. Transitions from sub- to super-Alfvénic flows mean that we move from one equivalence to
the other. The analysis in the paper is generalised and properly includes the transitional M2 = 1
case. This shows the special case of material moving at the Alfvén velocity, which will be treated
in chapter 3.

Schindler and Birn [29] describe a mechanism to generate field aligned flow at the boundary
of the plasma sheet in the Earths’ magnetotail. Using a set of 2d steady incompressible magneto-
hydrodynamic equations they describe the generation of parallel flow from an X-point reconnection
diffusion region. Such reconnection events are thought to occur in the magnetotail [3, 25], and may
be responsible for the formation of large blobs of material, known as plasmoids, in the magnetotail.
They find that parallel flow along the separatrix is the dominant form of transport from such a
reconnection region. Flux tubes emerging from regions close to the non-ideal reconnection zone will
have weak magnetic fields which increase in strength with distance from the X-point. As the field
increases in strength, the frozen in approximation means that the flux tubes decrease in volume,
collimating the flow along the field. The analysis relies on a smallness parameter that permits them
to drop the inertia term p(u.V)u in the momentum balance equation. Since this paper attempts
to model an experimentally measured system, it has something less to say about the structure
of field aligned magnetohydrodynamics than Gebhardt and Kiessling. However, after modelling
the fields for a magnetotail, they calculate a field aligned flow of a magnitude concomitant with
observation.

This lends support to the idea of plasmoids forming by reconnection. Two consecutive X-points
in the magnetotail would create a closed blob of material. The magnetotail also gives a context
to Birn’s work on field aligned flow in stretched 3d equilibria. Experimental studies show that the
magnetotail is strongly field aligned, a fact that is included in [30] as a generalisation of his paper on
magnetotail equilibria, [31]. The author assumes that the magnetic field varies strongly in one space
direction only, and weakly in the other two, using a set of 3d ideal, steady magnetohydrodynamic
equations. Plasmoids are also formed, travelling at speeds “not inconsistent” with observation.
Plasmoids are studied by Young and Hameiri [32] in a 2 dimensional steady field aligned model of

the magnetotail.
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Lee and Yan [33] go further with field aligned flow in a reconnection context. They examine
a 2 dimensional incompressible magnetohydrodynamic simulation, set up to model magnetic sep-
aratrices in a reconnecting plasma. They find that the field aligned plasma jets are formed slightly
downstream of the magnetic separatrices by a combination of a slow shock wave and a ‘compres-
sional’ structure: by compressional they mean a structure in which the plasma pressure increases
along the streamline. This compression resemble a fast Alfvén mode if the magnetic field decreases
with increasing plasma pressure: a slow Alfvén type mode is seen if the magnetic field increases
with increasing plasma pressure. The shock accelerates the fluid by converting magnetic energy
into kinetic and thermal energy. The ‘fast mode’ compression structure (located downstream of
the shock) decelerates the plasma, converting kinetic energy into thermal and magnetic energy.
This collimates the flow with the field so that it is nearly field aligned.

A lot of the work is modelling led which, in the case of the magnetotail, permits one to use
the geometry of the magnetic fields to reduce the complexity of the problem. In this thesis we
shall examine field aligned flow in a 2 dimensional magnetofluid, but with the minimum number
of assumptions on field shape. Also, we shall consider time dependent field aligned flow, and its
consequences for fluid acceleration and flow geometries. We will not look for any mechanisms to
generate field aligned flow, but rather look at the effect parallel flow has on the shape and nature

of the plasma.

2.3.3 Negative Inertia

The concept of negative inertia is an unusual one, but is a direct result of field aligned flow.
Shercliff [34] describes and names this effect which arises in incompressible, ideal and steady
magnetohydrodynamics. The argument describing this term will be reproduced here, as it serves
to point out that field aligned flow is an unusual situation.

We shall start with an ideal, steady plasma, fluid density p constant. Equation (2.21) may be

rewritten as
p(uV)u=-Vp+jxB (2.26)

By the argument of section 2.2, the pressure is now defined by equation (2.26) and has no inde-
pendent life of its own. If we take the curl of this, and further set B = cu, where a is a constant,
then we obtain the equation [35]
o?
(p——)Vx('I'xu):O (2.27)
Ho
where ¥ = V x u, the fluid vorticity. If a? = pop then equation (2.27) does not restrict the choice
of flow, and any velocity field will do. However, if o # pop then we have a restricted choice of

fields, governed by V x (® x u) = 0. (This will be described in more detail in chapter 3.)
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Suppose we now introduce a force F V x F # 0, to the momentum equation (2.26),

pu? a?
p(lI!xu)+V[p+T]:E]—(lleu)+F (2.28)

On taking the curl and defining p* = p — ;‘L—z we obtain
PFVX(Exu)=VxF (2.29)

p* is the effective density, and it can be positive or negative, depending on the size of a. Let v be
a typical velocity at a point in the fluid, and b = —ﬁf};, the Alfvén velocity. By is the field strength
at that point. If v/b > 1 then by the field aligned specification above, a? < pgp and p* is positive.
This means that by equation (2.29) the vorticity increases in the same direction as the rotationality
of the force F - which is entirely expected. However suppose we have v/b < 1. This implies that
a? > pop, making p* negative. If we consider a fluid element, equation (2.29) now offers the
uncomfortable prospect of such an element increasing its spin in the opposite direction from the
torques applied to it. The fluid seems to have negative inertia. The origin of this term is most
easily understood by considering the simple equation I' = I g [36]. For the angular acceleration )
to have the opposite sign to the torque I', the inertia I must be negative.

When p* is negative, v < b, and by Gebhardt and Kiessling [28] we are in a magnetohydrostat-
ically dominated regime. Hence, the balance of forces is mainly between F and j x B. Therefore,
by the ‘frozen in’ approximation of ideal magnetohydrodynamics, the fluid must move in such a
way as to deform the magnetic field into a configuration that largely balances F with j x B (since
we are taking inertial forces to be unimportant compared to magnetic forces). What the fluid
actually does when p* < 0 can be seen by writing p* = —gq, where ¢ > 0. Multiplying both sides
of equation (2.29) by —1 yields

gV x (¥ xu) =V x (—F) (2.30)

This looks like the equation governing the vorticity for a fluid of density ¢ under the action of a
force —F. A fluid of negative effective density with forces F will arrange itself to look like a fluid
of density ¢ with forces —F.

This is most easily seen when we use a concrete example. Suppose F = pV?2u i.e, the fluid is

viscous. The momentum balance equation can be written as
p* (u.V)u= -Vp* + V2 (u) (2.31)

where p* = p+ ’"2‘—2 Then provided p* is positive, the fluid behaves like any other of density p*
and viscosity 1. The tension in the field lines lowers the effective inertia by helping the viscous
forces change the vorticity. In laminar viscous flow close to a plate, the fluid velocity increases

from zero as we move away from the plate. The sliding layers of different speed create vorticity in
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Figure 2.2: Viscous wake flow

the fluid. Since we have a field aligned flow, the tension in the field lines represents a torque and
this also creates vorticity. Additionally, the viscous layer close to the plate where this differential
sliding of the layers of fluid occurs increases. As p* decreases to zero then the inertial term in
(2.30) becomes less important in comparison and the diffusion of vorticity proceeds more quickly.
At p* = 0, the fluid must move so that the force F is irrotational; in this case u is irrotational.
As the magnetic field becomes stronger still, p* becomes negative, and negative inertial effects

begin to appear. The momentum balance equation now becomes

-p* (-u.V) (-u) = -V (-p*) + nY2(-u) (2.31)

The motion is exactly like that of an ordinary fluid of density —/?* viscosity 7 travelling in the
opposite direction. If we consider a viscous wake flow as shown in figure (2.2) then we can see the
effect of this flow reversal. In the case v 6, we are in ordinary hydrodynamics. Figure (2.2)
represents a flow from left to right. The velocity profile will flatten out due to viscosity. The
case v <C b demonstrates negative inertia. The fluid must move to convect the field into a form
so that the tensions can balance the viscous forces. A fluid element at the point .Y experiences
a viscous force to the left. The field gains a y—component, allowing force balance between j x B
and viscosity r/V2v (remember that explicit mention ofj x B forces will be subsumed by the field
aligned specification and vector identity manipulation in equation (2.30).) The field line has now
changed the direction in which it is pointing, which means that energy must have been used to do
this. Since there are no sources of energy in this system, the energy to do this must have come
from the velocity available at X. Therefore, we must have slowed down the fluid along this field
line. Hence the streamwise viscous forces decelerate the fluid at X , giving the illusion of negative
inertia. We have therefore steepened the velocity profile, where we would expect viscosity to level
the profile out.

This is a rather subtle effect and we shall not consider it directly in much of what follows, as

17



we set F' = 0 for the purposes of this work. However, it may be implicated in other results where

we change the direction of the fluid flow relative to the background field (see chapter 4).

2.4 The Field Aligned Flow Equations

In section (2.2), we derived a set of magnetohydrodynamic equations describing a plasma, subject
to our assumptions. We use cylindrical polar co-ordinates throughout, although Cartesian co-
ordinates are entirely equivalent. This is motivated by the geometry of the systems we wish
to examine; looking from above, a torus has an annular cross section. Solar flares on the Sun
and smaller events have arc shapes, and hence it is natural to consider first cylindrical polar
co-ordinates. Cartesian co-ordinates may be employed in magnetotail applications.

We specialise the magnetohydrodynamic equations by dropping all z-dependence in all quant-
ities and setting u = (u,, ug,0) and B = (B,, By,0). To remove explicit mention of p, the fluid
pressure we take the curl of equation (2.21). Note that both u and B are in the (r,4) plane only
and since neither have a z-dependency, the curl of each quantity points in the Z direction only.
Therefore, (j.V) = j; 2 = 0 and (£.V) = ¥, 2 = 0 where we introduce ¥ = V x u the fluid
vorticity. Using the identity! ¥V x [(u.V)u] = (u.V)¥ we obtain a convective form of equation
(2.21),

pl%qf = (B.V)j (2.33)

An expression for p may be regained by taking the divergence of (2.21),
V%p = V.[j x B] - pV.[(u.V)u] (2.34)

Equation (2.33) relates the vorticities of the two vector fields u, B and equation (2.22) the fields
themselves. Equations (2.19) and (2.20) are treated as initial conditions.

As we want to look at both time dependent and time independent field aligned flow in this we
set F' = F'(r,0,t). F is not dimensionless but carries dimension /gop. If we define a dimensionless
function f = f(r,8,t) by setting F = f_\/r%i_,g) then this allows us to state that M% = f2. We call f

the flow function. Hence we have

B
u= f(r,ﬂ,t)ﬁ (235)

An important consequence of (2.35) is that by (2.22), B can only be time independent. But by
specifying a time dependency in fthis allows us to examine the possibility of time dependent flow

along time independent field lines. Substituting (2.35) into (2.19) yields

B.Vf=0 (2.36)

1Valid only in this specialised geometry.
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This says that fmay at most be a function of time only on a field line. To express the field aligned
form of equation (2.33), we first note that po(B.V)j = B x V2B, and analogously, (u.V)¥ =
u x V?u identity holds for u. Equation (2.33) becomes

]
ugpa\I’ =B x V?B — pgpu x Vu (2.37)

If we now put pp = 1, p = 1, then on inserting the field aligned specification and using the identity
VZ(fB) = fV?B +BV2f +2f(Vf.V)B we obtain

%[V x (fB)=(1-f)Bx V’B+B x [V(1 - f?).V|B (2.38)

Equation (2.38) may be seen as an evolution equation for fwith (2.36) a constraint on f. Phys-
ically, any solution we obtain amounts to a fluid moving along the field lines in such a way so that
the momentum equation (2.21) is balanced, and that fluid incompressibility (2.19) is maintained.
Note that for arbitrary choice of field B there are always at least two values that f may assume
which trivially solve the equations, namely f = +1. In this situation the fluid is moving at the
Alfvén speed either parallel (f = +1) or anti-parallel (f = —1) to B. In particular, equation (2.21)
reduces to V [p+ B:B] = 0, i.e., the fluid pressure is simply p + BB = constant. However, if
we want to move the fluid with (more interesting) sub/super-Alfvénic velocities by asking for f
non-trivial, then we must solve equations (2.36) and (2.38). There are three equations in three
unknowns here: (2.36), (2.38) and (2.20) in the variables B,, By and the flow function f. The
pressure is a dependent function, and is not part of the problem for the equation set (2.20)-(2.23).

We can show that solutions to equation (2.38) define the pressure p in such a way that equation
(2.21) is balanced. Equation (2.38) is simply the curl of equation (2.21), with the field aligned flow

specification. Hence (2.38) may be written as
D .
V x —E(fB)+.]XB =0 (2.39)

Therefore, if we find a suitable f, B, that does solve (2.39) then by using the vector identity

V x Vg = 0 (for any g) then we know that there must exist a function ¢ so that we can write
D .
Vg = _E(fB) +jxB (2.40)

Hence by (2.40) we can identify ¢ as the fluid pressure p, balancing the momentum equation.
Consequently, solutions to (2.38) permit field aligned flow, provided (2.36) is true also. This
naturally introduces the idea that only certain choices of f, B permit field aligned flow, as arbitrary
choices will not solve (2.38) or (2.36). The effort has been concentrated on finding suitable f, B, as
pressure calculations are relatively straightforward once these have been found. We first consider

ftime independent.
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Chapter 3

Time Independent Field Aligned
Flow

We apply the field aligned magnetohydrodynamic equations derived in the previous chapter to the
case of time independent flow. A general solution of these equations is presented for nontrivial
flow functions. In particular, the case f = constant is described in some detail, as this forms the
basis of the magnetotail models presented and motivates the application of genetic algorithms to

differential equation’s (chapters 5 and 6).

3.1 The Flow Function

In the previous chapter we derived two equations governing field aligned flow for a general flow
function f = f (r,6,t). By dropping the time dependency in the flow function we examine the case

of time independent flow. Equation (2.38) may now be written as
vB x V’B +B x [Vv.V]B =0 (3.1)

where v = 1 — f2. Although in vector form (3.1) has only a z-component, and, after some

manipulation it may be re-expressed as a scalar equation,

ov Ov
where
_ 9
o= - (3.3)
¢
1941 104, _, 2B) = ; -
c=ags trar - #BXVB)=1BY) (39



0By 0B,

— R4 B2 _

¢1=B.+B; + B, 0 By 50 (3.6)
0By 0B,

p2=r (Br o By r ) (3.7

We wish to look for magnetic field topologies which support non-trivial values of f; by nontrivial

we mean f # +1,0. Expanding equation (2.36) we get

v ov
ar + 19% =0 (3.8)
for rB, # 0,where
Bs
9=
"B, (3.9)

one can manipulate them and obtain expressions in terms of v that formally solve (3.2), (3.8), i.e.,
Ov ¢ ov cd
= S P (310)
On integration of (3.10), both forms of ¥ must be identical, and for an arbitrary choice of B, this

may not be true. As an example, consider the following simple field

By=h, B.=2
r

where h = constant # 0 and g = constant # 0. With this choice of field (3.10) becomes
ov h Ov h?

i ;rv, 5= —g—zru,

Integrating yields
log(v) =¢; (r) + Er&, log (v) = c2 () — ﬁz—rz
9 29°
where c1, ¢y are arbitrary functions. Since the two expressions for ¥ must be identical we must
have ,
c1(r)—ca(9) = —gre — 2’:?7'2

Clearly, no such functions ¢, ¢y exist. Hence (3.10) cannot be solutions to (3.2), (3.8) for an
arbitrary choice of magnetic field. This introduces the recurring idea that for nontrivial flow
functions, we must be in a precisely defined geometry. Alternatively, one can say that a given

magnetic field topology can support only very particular flow functions. We find a set of magnetic

fields that do solve (3.2),(3.8) by making an assumption on v, that is,

d [ov 0 [dv
ar [6_3] =% [E] (3.11)
v is twice continuously differentiable, or more loosely, is ‘smooth’. This prescription chooses fields

which obviate the arbitrary function problem above. By applying (3.11) to (3.10) we obtain the

statement

|57 00+ 35 )] =0 (312)
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where x = ;=55. Trivially we may have v = 0 which is simply f = +1. However, if

%)

2 (0 + % (x9) =0 (3.13)

then v may be nonzero, and f nontrivial. This depends critically on the magnetic field arrangement.
If (3.13) does not hold then by (3.12), f = £1 and the flow velocity follows the magnetic field
variable dependency at all points. If (3.13) does hold then v is given by integration of (3.10)
yielding

v = Cy (r)exp [- / Xda]
v =Cy (8) exp [ / der] (3.14)

Both functions Cj (8),C2(r) are specified (guaranteed by (3.11)). Any arbitrary functions or
constants left over are specified by boundary conditions for the flow. Hence equation (3.13) can
be viewed as a geometrical condition that the magnetic field must satisfy to permit nontrivial field

aligned flows.

3.2 A Bernoulli Equation

So far, we have set u = F'B and examined the model equations (2.19)-(2.23) An equivalent field
aligned flow specification is B = Gu, for some function G. Obviously, G = 1/F, F # 0 but the
previous format is easier to handle in the set of equations chosen. Using B = Gu, reduces the
induction equation (2.22) to & (Gu) = 0, as well as the equivalents of (2.19) and (2.21). Hence we
have three equations to solve instead of two. Previously, V.u = 0 gave rise to B.Vf = 0. Here,
V.B = 0 yields

(uV)G=0 (3.15)

on substitution of the field aligned condition. If we consider the special case of G = constant then

(3.15) is solved leaving the momentum balance equation
(u.V)u=-Vp+G?(Vxu)xu (3.16)

The induction equation tells us that u is time independent. If we take the dot product of (3.16)

with u then we have

P+ @2—11 = constant (3.17)

along any magnetic, and hence fluid field line in the flow. This is just Bernoulli’s equation for an
incompressible, inviscid fluid. Hence this magnetohydrodynamical system is effectively equivalent

to the steady flow of an inviscid fluid of constant density.
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3.3 Solutions for special cases of the flow function

3.3.1 f=constant

When the flow function is globally constant (and f # +1) then we have a simpler system to solve
as equation (3.8) is solved trivially by f = constant. This choice of flow function implies that

%;— =0, g—: = 0 and hence by (3.10) (assuming J # 0) we have

c=0 (3.18)

where c is defined by (3.5). Solving (3.18) will generate field topologies which support flow functions

of f = constant. We can rewrite ¢ in the form
(B.V)j=0 (3.19)

which simply states that the current is constant on a field line. Equation (3.19) is a nonlinear
partial differential equation in two variables B, and Bs. Since we are only considering B =

(Br (r,8), By (r,6),0) we may write the magnetic field in terms of the vector potential A
B=VxA=Vx[A(r8)i] (3.20)

Since we are ultimately interested in the curl of A its gauge is unimportant. Note that V.B = 0
identically and V x B = 2V?A. We may now re-express the problem in terms of A. At first sight,
this does not seem very promising, as the resulting equation is highly nonlinear and a degree higher
than before: it would appear that we have made the problem more difficult. However, if we make

the modelling assumption
VIA=X(r,0)A (3.21)

for arbitrary A, then this makes a considerable difference to the algebra: ¢ = 0 becomes

041 a¢2_A[aAaA aAaA]zo

2 "o |30 or o8
l.e., we require
BAON _0AD
96 or  or o0 (3.22)

Putting A = g (A4) for an arbitrary function g solves (3.22) and hence solves ¢ = 0. This is subject
to finding an answer to (3.21), in general, a Poisson equation. We also need boundary conditions
to determine particular solutions i.e., A = h(r,8) on the boundary of the region. For instance,
A = Mg A” solves (3.22): choosing n = 0 yields the Helmholtz equation in (3.21), solutions of which
have been extensively covered in the literature. If we put A = —p? for p = constant, then (3.21)

reduces to

10 [84A] 18%4
[ ] -p*A (3.23)

rar "or| T -
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Figure 3.1: Field (3.24) with m = 5,p = 1

Equation (3.23) may be solved by the technique of separation of variables: if we set A(r, 6) =
R (r) cos (rn6) (m > l,integral) then (3.23) is soluble by R{r) —Jm (pr), where Jm represent the
Bessel functions of the first kinds 4 = Jm (pr) cos (m9) is a solution for (3.23), which corresponds

to a magnetic field

B = -2 [sin(m”") {Jm_i (pr) + Jm+tl (pr)},cos(m6) {Jm-1 (pr) - Jm+1 (pr)},o] (3.24)

This is an example of a magnetic field which can support a globally constant value of / (see
figure 3.1). Hence by the assumption of (3.21) we have reduced an intricate geometrical condition
(3.13) to the solution of Poisson’s equation.

We may also reverse the procedure and ask for 4 = h(X) for some function 4. This procedure
may give us access to solutions not easily derived by the method above. Equation (3.22) is satisfied

identically, leaving (3.21) as

di\ 2 ia_ / a\\ i 02x
Ah' - —h\l =0 (3.25)
rdr V drJ” r2 862

where the dash (Y) on & means derivative with respect to A We can make this an ordinary
differential equation with dependent variable A if the coefficients of 4" and k' are functions of A

and they are not both zero, i.e.,

L fdxy  (8AV 18 ( 8\l 1 82A

3.26
"I(A)-e (iw T+ (e?] ° H(X)-v¥vird-v)Jr* W (326
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To find solutions, we must first find A such that ¢y, g3 are suitably defined. This fixes the ordinary
differential equation (3.25) which must then be solved: any arbitrary functions found on integration
are not functions of A. Resubstitution of a trial solution after this process will further refine the
arbitrary functions.

Consider the case for A = r[cos(f) +sin(f)]: ¢1 = 2 and g2 = 0 leaving (3.25) as

A
A = §h (3.27)

known as Airy’s equation [37]. Solutions of this equation may be defined in terms of the Airy
functions, Ai(A), Bi(A). It can be shown that

A(r,0) = ki Ai {é—ir[cos(ﬂ) + sin(B)]} + k2 Bi {%r[cos(@) + sin(g)]} (3.28)
solves (3.25) for k1, k2 = constants.

Analytic solutions offer one avenue for exploration in this field aligned system. However, more
solutions are available computationally and in section 3.5.1 some magnetotail relevant results are
described. For choices other than A = ¢; + <2, ¢1, c3 = constants, (3.21) is a Poisson equation with
a nonlinear source term. Using the alternate specification of A = h()) presents its own problems, as
we have more stages to go through to find a solution. Discussion of the novel numerical techniques
that may be used to find solutions to equations (3.21) and (3.25) is deferred until chapters 5 and
6.

Section (3.4) deals with current free solutions to (3.1,3.8) and shows how these solutions can

also be extended to flow functions f = constant very easily.

3.3.2 f=f(r)

Equation (3.8) demands that B, = 0 with this choice of f, and by (2.20) we must have B = b(r)f
- i.e., the flow is moving in rings around the origin. Using (3.2), g—; = 0 by assumption and since
¢2=0, 1= ’r’—; then a = ¢ = 0. Therefore the system is solved completely for arbitrary f = f (r).
The flow profile is then given by

u=f(r)b(r)é (3.29)
Although we do not specify at any time what would cause field aligned flow, it is often useful to
look at the fluid pressure p in these systems. If we substitute this back into (2.21) then we find
that

B2

pop+ 5 = constant + /r @ [f%(s) — 1] ds (3.30)

To

The integral contains two terms; one is a fluid term, integrand o« f2, and the other is a magnetic
tension term.

Consider the following example: the magnetic field is given by



which may be rewritten more usefully as a function with a dimensionless argument if we define

S
n= ﬁ,l.e.,

If the flow function f is
) =g[2+7"]

atn) = iy /2

This particular flow function is chosen to make the integration easier. The system’s equivalence

then the fluid velocity is

241,
1492

to stationary hydromechanics and magnetohydrostatics (section 2.3.2 and Gebhardt and Kiessling

[28]) can also change at a particular radius, depending on the value of g. This is given by

2
Nehange = ; -2

which defines a real radius when 0 < g < % At 1) > Nechange the system is equivalent to stationary
hydrodynamics. For 9 < 7jchange, the principles of magnetohydrostatics apply.

Note that the definition of f demands that ¢ > 0. This does not matter to the system, as
the flow function appears as f? only in the momentum balance equation (3.1). Also, as 7 — 00,
u — K\/gé, even although B — 0 and f — oo in the same limit. The momentum balance
equation becomes

adp 7 (29 — 2+ g7?] 273

Ko~ (14w (47
This may be integrated to yield

K? 1
p:C+——[

2a 1472 +g{10g(1+"2) - 1+1172}]
where C = constant. Note that the pressure is dominated by log(1 + n?) which tends to infinity
as 7 — oo. This is because as 7 increases, the fluid velocity becomes constant. Consider two
fluid elements on different field lines at r; > r3. Both field elements have the same velocity in the
azimuthal direction and hence the angular velocity of the fluid element on r, is greater than the
element on 1. Since both elements are moving in the azimuthal direction, each element must be
experiencing an acceleration. Therefore, there is a radially directed force causing this acceleration.
If there were no such force, the fluid elements would move off their field lines. Hence the pressure
must increase as 7 increases in order for the pressure gradient to be maintained. This pressure
gradient keeps the fluid elements on the field lines.

The factor g allows us to control the size of the fluid flow. For 0 < ¢ < 1, the pressure has a
minimum value at 7 = 4/ ‘73 +% 1+ %. A minimum in the pressure corresponds to a point in
the fluid where %g = 0, meaning the net force at this radius is zero. This is caused by a balance

between the magnetic and fluid pressures in the system. When g > 1, the minimum pressure
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occurs at 7 = 0 The system in this case is dominated by the fluid flow rather than the magnetic

field.

3.3.3 f=f(0)

The magnetic field for this flow function is chosen by (3.2) again: B = ggﬂi'. Equation (3.2) can

be integrated to find a functional form for f,

2=1- z! .
f R10) (3.31)
On substitution into (3.2) we may define a pressure for the system
A 3.32
pop = =55 + 53 02 (3.32)

where ¢y, co = constant. Although the pressure diverges at the origin, the function for p formally
solves (3.2) for the flow function and corresponding magnetic field demanded. Depending on the

region of application we may not even need to worry about this.

3.4 Current free solutions

In this section we consider (3.1) with poj = V x B = 0; we are assuming that the magnetic field

is of potential form, that is B = V¢ for some potential ¢. We must still have (3.8)
of . 49f _

o T3 =0
In vector form the equation (3.1) reduces to
Bx[VfV)B]=0 (3.33)
In scalar form,
%g—{+%g—£:0 (3.34)

We can treat these equations as a system: two linear equations in two unknowns, %E, %g. One
can obtain conditions (by simple elimination of one of the unknowns) in order that both (3.8) and

(3.34) are in fact the same equations. On manipulation,
B,¢1 = Byga (3.35)

is the condition B must satisfy in order to solve (3.33) and (3.8). The corresponding flow function
is given by integrating (3.34) (or (3.8), their equivalence is guaranteed by (3.35)), a first order
linear partial differential equation in f. We can solve this by the method of characteristics: the
equation for the characteristic curve is given by integrating

de

Z =9

dr
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Figure 3.2: Field (3.38) with ci = G = 1

constant = q{r, 9)

for some function ¢. the result of the integration. Fixing a constant will choose a particular

characteristic This means / has the general formal solution

S = Flq] (3.36)

forsome function F. B ismost easily obtained by using the vectorpotential A = (r,9)z with
B = V x A toreduce the number of unknowns. Assuming a solutionofthe form4 (r, 0) = rnQ (9),
n > 1, integral, we find that

A (r, 9) = c2r cos (ci —9) (3.37)

with ci,c2 = constant solves (3.35). This represents the field
B = c2[sin (ci —9),—cos (ci —9),0] (3.38)

For this field the characteristic equation is

d9 cos(ci —9)
dr sin(ci —9)

The characteristic curves of (3.34) for this choice of field are given by

constant = rcos(ci —9)
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Figure 3.3: Field (3.38) with ¢! = ¢2= 1 and flow function / = sin[rcos(ci —0)].

Hence the field (3.38) supports a flow function / = F/[rcos(c\ —0)], where F is an arbitrary
function of its argument. Two examples of this field aligned system are given: the first, figure 3.2
has flow function / = 1 and hence shows both the field and flow lines. Figure 3.3 shows the flow
lines with / = sin[rcos(ci —O0)]. Note in this case the background magnetic field is still that given
by figure 3.2.

It is a simple matter to extend these current free fields into fields with constant current and
f = constant. Suppose we have a magnetic field B such that Vx B = kz = A0, with £ = constant.

If we express the magnetic field in terms of its vector potential then

V2A = -k (3.39)

Equation (3.39) is linear: therefore if we write 4 = 40+ A\ where V2TO0 = 0 along with the

suitable boundary conditions, then we are left to solve

V23li = —k (3.40)

subject, of course to theboundaryconditions. This is a linearinhomogeneous equation - a Poisson
equation. But if we can solve itthen we have increased the number of solutions available to the
f = constant analysis. Substituting the constant current field described above it can be seen that
the first term in (3.1) is

uB x V2B = (B.V)j = (B.V) kz = 0
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leaving (3.8), which can be solved easily by putting f = constant. This also solves (3.8). The final

field is then given by
B =V x (Apz) + V x (4:%) (3.41)

3.5 Application to a Problem in Field Aligned Flow

The magnetotail is one region where field aligned flow, or at least nearly field aligned flow, is found
naturally. Other features are also seen in the magnetotail, principal of which are X-points and
plasmoids. Section 2.3.2 describes some of the studies that have been undertaken to mimic these
features theoretically in a field aligned context.

We aim to show here that the field aligned flow equations (3.21), (3.22), developed in section
3.3.1 can also reproduce the O and X-point regions seen experimentally and in other theoretical

treatments.

3.5.1 Magnetotail geometry and simple models

As has been noted previously, field aligned flow has been observed in the magnetotail, concurrent
with large flow velocities (see section 2.3.1). We will model the magnetotail using a highly simplified
description and idealised magnetotail conditions.

The magnetotail geometry is, overall, very simple. It consists of two roughly parallel but
oppositely directed fields sandwiching a current/quasi-neutral sheet. Here neutral refers to the
near zero magnetic field measured here. We shall describe this with reference to a square region of
space viewing the magnetotail ‘side on’. In this system, —x is directed towards the Sun, +x% away
from the Sun. +y is directed perpendicularly out of the Earth-Sun plane. The square region R is
centred at the origin of the z,y co-ordinate system and has side length of 2r; The remaining +z
(in the Earth-Sun plane) is not considered: this is equivalent to assuming that the magnetotail
does not vary in this direction, and that &,y planar sections are equivalent at different values of
the z coordinate. Hence we assume that no quantity in the system depends on z. The flow and
fields are therefore 2 dimensional. These are the same geometrical assumptions that were made in
chapter 2, and allow us to apply field aligned flow to this situation. The basic picture we require
is shown in figure 3.4. This diagram shows the magnetic field and fluid lines.

The magnetic field is zero (or near zero) at the neutral sheet and increases in magnitude
as we move in the +y directions. We can approximate the field by assuming that it has only
one component, Bx, parallel to the x-axis. By Maxwell’s equations and the assumptions above
Bx = Bx(y). Such a field must also satisfy one of the field aligned flow equations we have

developed. We choose to model the flow with Cartesian versions of the equations developed in
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Figure 3.4: Idealised field structure for the magnetotail

section 3.3.1, namely
VA= )Mz, A (3.42)

and

pA0r 04N _
oxr 0y Oy 0z
where B = V x [A(z,y)z]. These may be derived in an exactly analogous way to equations (3.21)

and (3.22). Again, (3.43) may be solved by putting A = A(4), and from here on, A will take

(3.43)

this form. There are a number of reasons why we might start with this equation. Firstly, it is
time independent which means that we are looking at steady flows. Steady flows are observed
experimentally over long time scales, with reconnection events happening infrequently. Solutions
to (3.42) represent fields that have flow function f = constant # %1 everywhere. Therefore we
can fix the Alfvén Mach number to an average derived experimentally, ignoring local changes. In
any case, it does not matter as f does not affect the field structure. Thirdly, it is relatively easy
to calculate when compared to the other equations on offer.

If we just have one component of B in the z-direction then (3.42) becomes an ordinary differ-

ential equation,
—— = A)MA 3.44
7 = AAA) (3.44)
Using (3.42) also allows us to influence the current, since in this model —jz = V247 = AX(A)z.
Therefore, changing A changes the current distribution over the surface. For choices of A other

than A = ¢, + %, the equation is nonlinear. (A special nonlinear case is A = 6A: the solution is
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A = P(C2+ y;0,C1), Ci,Cy constants where P is the Weierstrassian elliptic function.) Equation
(3.44) can be formally integrated to give
/ dA _
Vo2 ([ ANA)da] !

+ Cq (345)

Analytic solutions are rather special, but numerical methods could be used e.g., NAG DO2HAF.
Additionally, the genetic algorithm ODE could be used to provide initial approximations. However,

we will only consider three analytic solutions as a basis for further modelling.

1. A(A) = £, k = constant.

With this choice, equation (3.42) becomes A” = k, and on integration A(y) = ky? +aoy+a1.
The curl of Az is the magnetic field, and we can use this to determine the values of the
constants k,ap,a;. At y = +rg, B=xByxand B =0 at y =0, fixing ap = 0 and k£ = .%’u-.

Hence A = %yz +a; and B = %‘lyﬁ.

Note that this model cannot describe the gross structure of the magnetotail as the current
is constant everywhere. This description is more readily applicable nearer the neutral sheet
where the current is approximately constant and the field is zero. We can imagine this model

representing field aligned flow near neutral sheets in regions of constant current.

2. MA) =k, k = constant.
This is the next simplest case. There are two types of solution to the equation
c(%/;— =kA (3.46)
depending on the sign of k. Note that the current is now proportional to A, and therefore we
have an opportunity to model the current as well as the magnetic field. Taking the lead from
observations, we would like to have the current profile peaked towards y = 0, (the centre
of the square region) then tailing off to lower values towards y = +rp, while maintaining
the same magnetic field profile as before, i.e., Bx(0) = 0 and Bx(%rg) = £By. When
k=c?>0,creal , A = aexp(—cy) + fexp(cy) is an acceptable solution to equation (3.46)
by itself. However, the boundary conditions forbid this solution, as we cannot generate the
required current brightening towards y = 0. With k = —c?, ¢ real, the general solution
is A = asin{—cy) + Bcos(cy). This solution can be fitted to the magnetotail boundary
conditions, yielding A = M cos(cy) and B = cM sin(cy)x where we define By = cM. The
constants ¢ and rg should be chosen so that range of y values pass through one half period of
the cosine function only, limiting us to only one current peak in the region. This allows us to

model the magnetotail on a bigger scale as we have now reproduced the current brightening

at the neutral sheet.
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3. MA) =k + &, k,p = constants.

This choice of A combines 1 and 2 above into
— =kA+p (3.47)

an inhomogeneous second order ordinary differential equation. Again, we have two solutions

2

depending on the sign of k. When k£ = —c®, ¢ real, then on substitution of the magnetotail

boundary conditions, the solution is
Ay) = [M — c%] cos(ey) + 52- (3.48)

where A(0) = M and ¢ [M — %] = By. The magnetic field is given by B = 82— sin(cy)x,

sin(ero)
sin(erg) # 0, with current j = ﬁgo—)cos(cy)fc. When k = c?, ¢ real, then the analytic
solution A = aexp(—cz) 4+ fexp(cz) — & cannot reproduce the magnetotail conditions
required. It appears that there is not that much to be gained from this model: the magnetic
field and currents are the same as in 2 above. However, this A function when applied to a

perturbed system (see section (3.5.2)) may generate different fields.

These three models are useful bases to begin describing more complicated geometries. In the

next section, we examine the effect of perturbing the above systems.

3.5.2 Perturbed magnetotail models

The above models represent idealisations of the structure of the magnetotail. If we now perturb
these models using equations (3.42) and (3.43) very slightly, then we will keep the main features
of the system while hopefully introducing some more realistic structure. We want to maintain
the parallel but oppositely directed flows of the original idealisations as this is one of the largest
scale features of the magnetotail. We also want to keep (or at least introduce current brightening
towards the centre of the system, the plane y = 0.

There are two features we can perturb easily, the A function and the boundary conditions.
Perturbing A and keeping the same boundary information is equivalent to changing the current
distribution over the surface influencing B. Varying the boundary conditions but keeping A con-
stant changes the magnetic field without perturbing the current directly.

It is easiest to perturb A in such a way that the perturbation is also a function of A, as this
will satisfy condition (3.43) exactly. This changes the current distribution and hence the magnetic

field in the system. Suppose we have a system
VZA® = A°A%(A%) |, where A° = f(z,y) ,V¥(z,y) €OR

where we denote the boundary of a region R by dR. The superscript 0 denotes an unperturbed

quantity. Now perturb A? so that A(A) = A°(A4) + €((A) and keep the boundary conditions the
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same. Then the system becomes
VZA = AX°(A) + €[AL(A)] (3.49)

As € — 0, we regain the original system. If |e| is too large, then we will lose the features of the
original model. In order to remain ‘close’ to the original model, the perturbation must be small:
the new current e A{(A) must not change the original current A° A° by very much. If 58, . and ;2.
are the largest and smallest values of the unperturbed current, then the current over the entire
surface must lie is the range j9,,, — j%,;,. Any perturbation we make must be small compared to

this range, otherwise we are varying j too much. Hence

e AL

0 (3.50)
maz ~ Jmin
V(z,y) € R. This ensures that we do not deviate too far from the models described in the previous
section.

If € is chosen to break condition (3.50), then the equations still hold, but we can no longer expect
the field to be much like the modelled version. This is because the perturbed current significantly
changes the total current. It also becomes increasingly difficult to see what the corresponding
magnetic field looks like. Increasing ¢ varies the current nonlinearly, as A is unknown until the
¢-dependent Poisson equation is solved. Therefore, choosing € large only guides the final outcome.

We can also vary the boundary conditions of the above models keeping the A function constant.
Again, we want to stay close to the desirable modelled features, and so we must perturb the
boundary conditions only very slightly. Define A%,,. and A% respectively to be the maximum
and minimum values of A° on the boundary for the unperturbed system. All the boundary values
of A° must lie in the range A%, — A%... A ‘small’ perturbation is one that does not change the

boundary information greatly. If the perturbed boundary data is
A= f(z,y) + 69(z,y) ,Y(z,y) € OR (3.51)
then for a small perturbation we must have

lg(z, )
6] € ——""— 3.52

A?na.z - A?‘nin ( )
V(z,y) € JR. This does not say anything about what happens locally: the value may change
drastically locally, but not perturb the system greatly overall by the definition above. The equation

we have to solve is
V24 = AX(4) (3.53)

with boundary information (3.51) subject to condition (3.52). Condition (3.43) is satisfied since

we keep the same functional form for A°.
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To use equation (3.42) we must extend the ordinary differential equation boundary information

into two dimensions. Below we quote the unperturbed A° functions and the corresponding unper-

turbed boundary information required to generate the models using (3.42). Since the y component

of B is everywhere zero, A is a constant on y = %7

1. A%(A4%) = %5, k = constant.

A0
VA =k
A%z, y) = W't =t
Eri+ar ,y=+n
where a1 = constant.
2. A%(A%) = —c?, ¢ a real constant.
V2AO — _C2A0
A(z,y) = M cos(ey) ,z==rp

M cos(erg) ,y==ro
3. A%(A%) = —c? + &5, ¢, p real constants.
V2A02—62A0+p

[M = B]cos(ey) + 5,2 =ro
[M — B]cos(cro) + & ,y==ro

¢

AO(.’C, y) =

where M, p = constants.

(3.54)

(3.55)

(3.56)

We are now in a position to calculate A for a perturbed model. We shall give examples of

current and boundary perturbations to each of the three models. Figures (3.5)-(3.17) show the

magnetic field and fluid lines of the perturbed models.

1. (a) Model (3.54) with perturbed current.

Since the current profile is flat everywhere, it is very likely that any perturbation to A

will change it. Some brightening of the current towards the centre of the region would

be welcome as the beginnings of a more realistic magnetotail, within the confines of this

model. But as has been noted, changing A and ¢ varies A nonlinearly, since A must be

determined by solving a Poisson equation.

In all the perturbation work, we shall calculate the magnetic field on a square region

of side length 4. This fixes rg = 2. The region of interest is shown in figure (6.2).

The unperturbed vector potential A° has a maximum value of 10 at y = 0, fixing

k=20,a; =0, and A = 0 (excepting model (3.56)) on the upper and lower boundaries.

The unperturbed current is —j = k& = 20 everywhere.
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2.

Choosing ((A) = 1 requires that |¢|] < % everywhere by condition (3.50). With ¢ =
0.05, we generate what looks like the start of an O-point type field (see figure (3.6)).
However, when ¢ = —0.05, the field takes on an X-point type field (figure (3.5)). The
direction of the perturbed current relative to the unperturbed current has an effect on
the new field shape. It is encouraging that these fields reproduce two features seen in the
magnetotail - plasmoids and X-points - in a field aligned flow context. Other choices
of ((A) also create this type of behaviour, and it will be seen again in the following

models.

(b) Model (3.54) with perturbed boundary.

The models described have no z-dependence, which suppresses the y component of the
magnetic fields. Therefore, if we introduce an z-dependence we will force a y component
into the magnetic field. Hence we will add a z-dependent function g(z) to the y = +rg
boundary. In all the boundary perturbations, g(z) = exp (— %) Hence the maximum
perturbation will be located at £ = 0: away from this, g drops to 1/e at the edge of the
region. One can imagine that this represents some small, localised current outside the
region of interest creating a field described by this vector potential distribution.

Using the same choice of parameters as above but with 6 = 1, we obtain an X-point

(figure (3.7). Perturbing the current with € positive produced an O-point. Therefore,

these two types of perturbation affect the system in opposing ways

For the O-point, the vector potential has a slight dip along y = 0 with the largest dip at the
origin, ¢ = y = 0. Concomitant with this is a similarly shaped current profile. The vector
potential exhibits a slight brightening along y = 0 for X-points, the maximum located at
the origin: again, the current profile resembles the vector potential shape. Hence X-points
appear to brighten the current, while O-points depress the current. Although the effect is
small, it is definitely present; the new field components are larger than those generated by
approximation errors in the expression of the derivatives required by the vector potential

representation of the magnetic field.

(a) Model (3.55) with perturbed current.

M is fixed at 10 and we define ¢ = % This guarantees only one peak in the vector
potential over the range. A also takes on the same range of values as the previous
model, i.e., A%, — A%. =10, but j2,.. — i, = %. With ¢ = 1, we must have
le] < |c?|. € = —0.05 creates a better defined X-point (figure (3.8)). Similarly, on
setting € = 0.05, the O-point is again more apparent, even although we are at the same
level of perturbation. This is caused by the gradients present in the background profile;

we have to perturb the field more to balance the equation.
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3.

Increasing € breaks the similarity with the magnetotail conditions, but still solves equa-
tion (3.43). With ¢ = —0.4 (figure (3.10)), the field strongly resembles an X-point. The

O-point is also much more pronounced (figure (3.11)) with ¢ = 0.4.

(b) Model (3.55) with perturbed boundary.

Changing the boundary conditions in this model gives results very similar to those above
(see figure (3.12) for § = +1, and figure (3.13) for § = —1.) Again, the shape is more

pronounced for the same level of perturbation.

The same features in A and j are seen in this model as were seen in the previous case. X-

points generate a current brightening and O-points a slight depression in the same manner

as seen previously. These features are naturally much stronger in the extreme € cases.

(a) Model (3.56) with perturbed current.

(b)

Again, M is set to be 10 and ¢ = 3-. This fixes AR .. to be the same as previously,
with a minimum of f% on y = +rg. {(4A) = 1 also. We also set p = 1. With ¢ = —0.05
which is much smaller than the range jmaz — jmin = ¢2M — p we obtain the expected
X-point: € = 0.05 yields an O-point. The background A causes an increased bending in

the field required to balance equation (3.56).
Model (3.56) with perturbed boundary.

A on the boundaries ranges from A%, =1 to A%,, = M — & = 10 — 1§, In figures
(3.17) and (3.16), 6 = —0.8 and 6§ = 0.8 respectively. This is close to the level of
perturbation permitted, but demonstrates well the fact that one can create the same

features with this model.

The choice of A here combines the two models above and appears to give the strongest features

for approximately the same level of perturbation. In the unperturbed case, the current will

have the same shape as model (3.56), but on perturbation the effect of p as a source term of

A will be apparent. This will have a knock on effect in the magnetic field.

All three models generate much the same kind of features for most choices of perturbation. Of

course, we cannot hope to describe all types of perturbation possible, but it seems that whatever
is chosen, field aligned flow can describe at least a qualitative agreement with features seen exper-
imentally. The above shows that the correct shapes - X and O points - can be generated in this
simplified model. The X-point configurations are taken to be analogues for reconnection regions
in the magnetotail. This should not be taken to imply that reconnection exists in this model.
Rather, we simply state that the model can be made to resemble the traditional X-point picture

of reconnection.

The O-points are taken to represent plasmoids in the magnetotail. The model is limited, as

the plasmoids are seen to move in the magnetotail, whereas the plasma here is taken to be time
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independent and does not translate in space.

3.6 Summary and Conclusions

The key conclusion we can make is that for flows with flow function other than f = +1 we must
be in a very particular magnetic field geometry. This is expressed by equation (3.13). If B solves
this equation, then we can say that the system can now support flow functions other than f = +1.
If the field does not solve (3.13) then the fluid can only move at the Alfvén velocity, either parallel
or anti-parallel to the field direction - i.e., f = %1.

Further classifications have been made. In the main, we have fixed the flow function and asked
what fields may support such a flow. But we have also adopted the complementary approach of
fixing a class of field and asking what form of flow function is permissible.

This process of classification has allowed us to identify and choose a set of equations that have
been used to model a field aligned flow system, the magnetotail. We have used three idealised mod-
els of the magnetotail in order to generate some features that are observed experimentally, namely
X-points and O-points. We can compare this to the system treated by Birn [30]. In this paper he
specialises an earlier 3-dimensional treatment [31] to a 2-dimensional, steady incompressible sys-
tem. The density p is not constant in this model. The pressure is given and the equivalent of the
flow function are given, along with the relevant boundary conditions. It is found that a plasmoid
is formed with a shape not dissimilar from those quoted here. This model is rather different from
the one presented here; for instance, the pressure now plays a role in determining the topology of
the plasma. In the models presented here, it is merely a bystander. However, both approaches
generate O-points which are taken to be plasmoids. This suggests that the common field aligned
nature of the plasma is more important than the differences between the models.

Lee and Yan [33] describe the structure of field aligned plasma jets associated with magnetic
reconnection. Since reconnection is not a principal concern of this thesis, we merely state that in
the models presented here we can generate X-point configurations that are entirely field aligned,
as opposed to the field aligned jets seen in [33]. Lee and Yan examine the flip-side of this coin,
the creation of field aligned flow by an X-point with reference to the magnetotail. Hence both

treatments have a degree of overlap.
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Figure 3.5: Magnetotail model (3.54) with perturbed A, e negative

Figure 3.6: Magnetotail model (3.54) with perturbed A, e positive



Figure 3.7: Magnetotail model (3.54) with perturbed boundary conditions, 6 positive
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Figure 3.8: Magnetotail model (3.55) with perturbed A e negative
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Figure 3.9: Magnetotail model (3.55) with perturbed A, c positive

Figure 3.10: Magnetotail model (3.55) with perturbed A, e extreme and negative
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Figure 3.11: Magnetotail model (3.55) with perturbed A, e extreme and positive
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P'igure 3.12: Magnetotail model (3.55) with perturbed boundary conditions, § positive
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Figure 3.13: Magnetotail model (3.55) with perturbed boundary conditions, 6 negative

Figure 3.14: Magnetotail model (3.56) with perturbed A, e negative and within approximation



Figure 3.15: Magnetotail model (3.56) with perturbed A, e positive and within approximation.

Figure 3.16: Magnetotail model (3.56) with perturbed boundary conditions, 6 positive
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Figure 3.17: Magnetotail model (3.56) with perturbed boundary conditions, 6 negat:
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Chapter 4

Time Dependent Field Aligned
Flow

The field aligned equations of chapter 2 are considered with f time dependent. Two approaches are
taken to their solution. The first method specifies the variable dependency of f (as in chapter 3)
and derives conditions that the magnetic field must satisfy. The second method fixes the magnetic
field and looks at the resulting equation for f. Note also that we will sometimes denote the partial

derivative %5 by fz.

4.1 The Flow Function and the Governing Equation
Fully time dependent field aligned flow in this model is governed by two equations: (2.36)
(B.V)f=0
and equation (2.38)
%[V x (fB)]=(1-f)Bx V?B+B x [V(1 - f?).V]B

both of which were derived in section 2.4. Although written in vector form, only the z-component
of (2.38) is nonzero. Hence, in full we may write

0*f B, 0°f  [10(rBy) 10B,]of
borot ~ r 000t ot

r Or r 00

_{c[l-f2]+%%(;f—z)+%a(l—6;f—zl}=o (4.1)

where ¢1,¢2 and c are defined in section (3.1). In this chapter we shall examine time dependent

solutions to (2.36) and (4.1).
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4.2 Solutions to the Full Flow Equation

We attempt here to look for solutions by specifying at the outset the variable dependency in the

flow function f. It is found again that specifying f chooses very particular magnetic fields.

4.2.1 f=f(rt)

By equation (4.1), B, (r,8) is identically zero. By the Maxwell equations, this chooses fields of the
form B = B (r) . Since now both the magnetic field and the velocity do not depend on 6, we must
make sure that the pressure does not either: it is unreasonable to expect the pressure profile to
depend on @ when nothing else does. Hence, ¢; = B? and ¢, = 0. Equation (4.1) reduces to the

solution of

5[V x (/B =0
ie, Vx (fB)=c(r0) (4.2)

for some function c. This may be solved by setting ¢ = [0,0, ¢ (r)], ¢(r) arbitrary, yielding,

f(r1)= %/ sc(s)ds + T;) (4.3)

r
for arbitrary function 7 (t). The corresponding fluid velocity is

u= [lff—) + / sc(s) ds] 6 (4.4)

When ¢ (r) = 0, such a velocity profile is known in fluid mechanics as a line vortex. The underlying
magnetic field geometry may be a complicated function of », but the fluid motion in this case is
well known, and is independent of the magnetic fleld. The pressure associated with this flow is

found by substitution into (2.21), and is formally given by

2 r 2
pop + B (1) = constant +/ [f%(s)—1] BTds -9 (4.5)
[}

2 \
Again, this is the formal form that p must take in order to solve (2.21). Note, however, that this
formal solution carries a 8 dependence, which we have already disallowed on physical grounds. We
can rectify the situation and balance the momentum equation in a satisfactory way by postulating
the existence of an additional external force F that will drive the system in the correct fashion.
Suppose the force is of the form F = F g: this choice is reasonable since the fluid is moving in the

6 direction also. On examining the components of (2.21) we obtain

;. P8 __op_Bd(rB)

T r T or  r dr
of 10p
A T
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Here we see the need for an external driving force. If ' = 0, then integration of the #-component
of the momentum equation means the pressure function picks up a # dependence, which is not

permitted. However, if

of
ot
then the f-component of (2.21) merely tells us that p is a function of » and ¢, as required. This

F = B

force is a driver to the system which sets up the field aligned flow we have asked for. It ensures
that the pressure profile is a function of r and ¢ only, the same variables as magnetic field and the
flow. One can imagine that the force F' drives material around the concentric circles described by

the field. The pressure is given by

2 T 2
pop = — 2r +/ [f?(s)-1] BTds+T(t)

where T'(t) is an arbitrary function of time to be determined by boundary conditions.

4.2.2 f=f(0,t)

When we ask for this variable dependency we find that this chooses fields B = 9@1 , by (2.36)
and (2.20). However, when we substitute f = f (,¢) with the correct field into (4.1) then we find
that there exists no function f solving (4.1) for any choice of © (). Again, the problem can be
resolved by looking at components of the momentum equation (2.21) under the assumptions of
this subsection.

. 0fe fe? Op ©

P e = =

ot r B Orr
s ~_Op 00
6 : 0_6_9+ 2

Integration of the ¥ component will give a form for p and an arbitrary function ¢;(4,t): similarly,
the #-component also yield a form for p and a different arbitrary function ga(r,t). The two answers

for p must be identical and therefore we must have

of

00,0 -0 = oy [~ 1] + Lo105(r)

No such functions ¢, q2 exist and therefore the momentum equation cannot be balanced by a
suitably defined pressure p. Again, if we include an external force F = Gt (in the same direction
as the flow and the field) we can define a pressure for this field aligned system. The equivalence of

the integrals of each components means that G, ¢; and ¢z must satisfy

of

q1(0,t) — qa(r, t) + /Gsﬂt)ds._ 2[f2—1]+ —0log(r)

The pressure in this system is now given by

- o , o
:/ Gls,0,)ds +0:(0,0) ~ 577 6{@1 &(r)
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and so (2.21) is balanced.
So by postulating an external force we can solve the system consistently. These external forces
(F and G) can be imagined as drivers that push the fluid in the required manner in order to achieve

a field aligned flow.

4.23 f=f()

With this choice of f, equation (2.36) is redundant and only (2.38) need be considered; this may

be solved by separation of variables. If the constant of separation is ¢; then

of 5
5 = (1-£?) (4.6)
[BV—-c]j=0 (4.7)
The time dependency is now completely described by f = tanh(ca + ¢1t), ¢; = constant. The
magnetic fields that support this flow function are given by solving (4.7). Note that as t — Fco,

then |f| — 1: in the limit, |f| = 1 which we know implies that any magnetic field topology will
suffice. But the geometry is fixed by (4.7) since we originally considered f = f (¢) and not f = +1.

rr

A field which solves this is B = (5’4l ba oxp [;7‘2;] ,0), where a and b are arbitrary constants.

4.2.4 A Linear Analysis of the Full Equation

We examine first a linearised version of (4.1). We perturb the system by modifying the velocity
field only. If we have an initial condition of time independence in the unperturbed flow function f;
(the unperturbed velocity field is therefore time independent also) then we preserve field aligned

flow by perturbing fy by a small, but time dependent function, i.e.,
f=Ffot+eg(rb,i) (4.8)
where ¢ is a small parameter. The total fluid velocity is then given by

u=[fo(r,0)+eg(r8,1)] \/%—7 (4.9)

B is still time independent, but we allow time dependent flow. Substituting (4.8) into (4.1) and

linearising to first order in €, then by our choice of initial condition we obtain

0

219 x (4B + (/B.V) [V x (¢B)] + (¢B.Y) [V x (fB)] = 0 (4.10)
If we further suppose that g (r,8,t) = 7 (t) h (r,0) then we obtain by separation of variables

7 (t) < exp (ct) (4.11)

and

¢[V x (hB)] + (fB.V) [V x (kB)] + (hB.V) [V x (fB)] = 0 (4.12)
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where c is the constant of separation. Since we are perturbing the velocity we must also satisfy
(B.V)h=0 (4.13)

to maintain incompressibility up to order ¢, and hence exactly. It is at this point that the choice
of initial conditions becomes important to further progress. As we have seen, fixing f chooses B
and whether a properly defined h exists that can solve (4.12, 4.13) is not obvious. If we choose
f = constant # 1 then we know we have chosen fields such that (B.V)j = 0 by section (3.3.1).
This in turn may be satisfied by putting j = V x B = 0, leaving the equation

(c+fB.V)[VEAxB]=0 (4.14)
along with (4.13). A simple solution is h = constant, yielding

+ enexp (¢ L
u = [f + el p(t)]m (4.15)

The fluid moves along the field lines, chosen by the initial conditions by defining f, with a velocity
either exponentially decreasing or increasing, depending on the sign of ¢. For ¢ positive, the analysis
will become invalid when the perturbing function eg(r, 8,t) becomes too large. When c is negative,
the fluid will eventually become static everywhere.

In general, however, to continue with this analysis we have to solve 4 equations simultaneously:
(2.36), (2.38), (4.12) and (4.13). We can sidestep (2.36) and (2.38) by explicitly choosing f = 1
as the equilibrium condition. This means that B is not fixed by the unperturbed state, leaving us
free to find a suitable g, B pair that solve (4.12) and (4.13). Therefore, this analysis asks for those
fields that can support a first order time dependency in a field aligned flow travelling close to the
Alfvén velocity.

Again we have two equations to solve simultaneously, and we may proceed in a similar way
as in the time independent case, as considered in section 3.1. Although (4.12) is a second order
differential equation in h, when we preferentially remove the partial derivatives of h, using (4.13),

the second order derivatives drop out. By (4.13), $& = —9%% (where ¥ is defined in section 3.1)

leaving
g—z = C(r,6)h (4.16)
where C
C =—-B, x C—:
C, = 2rBy gzg: —2rB, gzg; +2r2B, 66259 2By 6;:; +(Br — 59
+7r(2B, +cr) 66B + 2By 3;? + By (cr — 2By)
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_ OB, OBg 2 2\ [ 0By 0B, 2 2
Cy = —2B, By [ 50 +r o J + (B2 — Bp) —56——7' B + (B + B{)(Br —cr)
Similarly, with 22 = —L 2% we get

Oh

o = D0k (4.17)
where

By Dy
= -2 x —
r Dz
with
8B, 0’B 0By 0?By 0By
=—9rB, L1 _op, |Z2r 220 4 2 19p T T6 | OT6
D= =25 Gor "[aez ae]” [QB a1 +“ar]
dB
+(2B, —cr) [Eﬂ - Bo]
Dz =285y [ 50 " or ] (B = Bs) |5~ 5
We make another ‘smoothness’ assumption, this time on h, i.e.,
5 [on]_ o [oh
or 66| 06 |or

Substituting in (4.16) and (4.17) we arrive at

oD oC

%~ 3 =" (4.18)

The fields which satisfy (4.18) support a first order time dependency in field aligned flow, when
perturbed away from the Alfvén velocity. A simple solution to (4.18) is B = B (r)# which yields

-2
g_rB

where a = constant. This has a perturbed flow profile of

" [1+ eaexp(ct)] Bl — [B+ eaexp(ct)]é
rB r

This solution is only valid in the region of time and space where @_—CQ > €. The fluid motion

is the original fluid motion with a line vortex motion superposed.
The above analyses suggest that time dependent flow along time independent field lines is
possible. Instead of considering the full equation for time dependent field aligned flow we next

consider a reduced form by specifying at the outset a particular class of magnetic fields.
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4.3 A Nonlinear Flow Equation

A major drawback of the linear analysis in section (4.2.4) is that it is not possible to let the
linearised quantities generate any ‘sharp’ or ‘large’ features in such a system without the analysis
breaking down. Such features in the flow function f would indicate a position in space and time
where the magnetohydrodynamic model breaks down. We are drawn to attempt a more demanding
treatment to find if such features exist in this model. We consider a reduced form of (2.38), making

the assumption that

(B.V)j=0 (4.19)

This drops the (1— f2?) term in (2.38). This choice of field may appear rather arbitrary, but
has been seen before in section 3.3.1. We have chosen to work with those fields that support
f = constant; this can permit a linear analysis making the flow function weakly time dependent,
in a similar fashion to that seen above in section 4.2.4. Allowing f = f(r,8,t) equation (2.38)

becomes

%[v x (fB)] = B x [V(1 - f?).V]B (4.20)

or, in scalar form

ot

$20(1—/%)  4:0(1-s)] _
‘{T IR TR (4.21)

*f B &*f + 19(rBs) 10B]of
b orot r 000t r Or r Of

Equation (4.21) is a nonlinear partial differential equation in three variables which must be solved
in conjunction with (3.8). Using (3.8) we can eliminate f, in preference to fy and vice versa. This

process yields two equations

fretai(r,0) fe+B(r,0) ffr =0 (4.22)
for+aa(r,0) fi +B(r,0) ffo =0 (4.23)
where
g = % (4.24)
o = —Yay (4.25)
2= _Bzing [6(;71?9) - 685;,] - Bzrfngi'j (4.26)

Both (4.22) and (4.23) must give the same answer on integration and this generates conditions
that B must satisfy in order that this is so. Again, this is done by imposing a condition on f,

namely,

[forl, = [frelo (4.27)
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This gives a rather complicated set of conditions on B,

6&2 8a1

S g =0 (4.28)
and
%{; — (4.29)
%g = —azp (4.30)
If we assume
2 [g—g] -2 [g—ﬂ (4.31)

then we can drop either (4.29) or (4.30), since this effectively restates condition (4.28).

In the following work, we do not expressly find a field that solves (4.28) and (4.29), but merely
look for a region in a known field where the conditions hold approximately. Some of the fields
that solve (B.V)j = 0 described in chapter 3 also solve (4.28) and (4.29) approximately in certain
regions of space. These regions were found by substituting a test field and numerically calculating
the left hand side of each equation. By specifying an upper limit to the deviation away from a
perfect solution, one can find regions of approximate solution. It was found that the Bessel function
field (3.24) contained regions where (4.28) and (4.29) held approximately (where we assume (4.31)).

Any solutions to the nonlinear equations (4.22),(4.23) may be applied in these regions. They
are also consistent with a linear analysis where the flow function equation used is also approximate
(see section (4.3.1)). Further comment on these conditions is reserved for section (4.3.5). We may
attempt to solve each of (4.23,4.22) separately: treating 6 as a parameter in the coefficients of
(4.23), for example, and similarly with r (4.22). Assuming that we have a suitable magnetic field,

this approach leads naturally to the study of an equation of the form

frot+a(z) fi +B(z) ffz =0 (4.32)

as the main equation of interest; a second order nonlinear, hyperbolic partial differential equation.
The coefficients depend on the magnetic field and contain information on the time and space

gradients in the problem. It is easily seen that
1
a(z)

~————— ~ dient
lengthscale space gradien
o () carries information on the space evolution of the flow function. £ (z) is more subtle and

entertains an aspect of nonlinearity

1 1
- X —
time  size of

~ characteristic frequency

B (z) ~

B carries not only the time evolution information, but also a solution ‘amplitude’. Equation (4.32)
forms the basis for further investigation into time dependent field aligned flow.
In the following sections (4.3.1 -4.3.4) we shall consider (4.32) under a hierarchy of increasingly

sophisticated assumptions.
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4.3.1 Linear Analyses

Linear analysis of (4.32) will provide some understanding of its full nonlinear behaviour. The
nonlinear term is simple and the equation is already in canonical form. We will use a variety of
assumptions and methods to draw information out about the nature of the flow function.

Suppose f is of the form
f = fo(z,t) + ey(z, 1) (4.33)

where fo(z,t) solves (4.32). On substitution, € is a small parameter we can use to linearise equation

(4.32). By the initial conditions we arrive at the linear equation

Wt + athy + Bfots + B(fo)sth = 0 (4.34)

Equation (4.34) governs a small linear perturbation to the main flow function fy(z,t), and we can
use this to investigate modes of behaviour for various values of «, 8. The last two terms carry the
original, fully time and space dependent background flow. We have gone from a nonlinear partial
differential equation with space dependent coefficients to a linear inhomogeneous equation with
time and space dependent coefficients. It is arguable that the linear equation is not much of an
improvement on the nonlinear one, as we have made the coefficients dependent on both time and

space. If we make the further simplification
fo = constant

then (4.34) becomes
¢rt + 0”% + (ﬂfO) "/)x =0 (435)

which is a much friendlier equation. We shall use (4.35) as a basis for further study. Note that
we have bracketed the coefficient of g,. It can now be seen that Sfy ~ ﬁ and represents a
natural frequency in this problem. It depends on both the background dominant flow and g the
time evolution parameter. Equation (4.35) now means we are looking at small time dependent
perturbations away from a constant background flow function; in effect, we are considering the
linear onset of time dependent field aligned flow from a time independent background.

In the following sections 4.3.2-4.3.5 we shall make various assumptions on «, # and % in order
to draw out some of the behaviour possible from solutions to equation (4.35). We shall also show
how these assumptions relate to each other, and how the linear analysis can be linked to solutions

of the nonlinear flow problem, equation (4.32).

4.3.2 Solution by separation of variables

Using the trial solution ¢ = 7 (¢) X (x) in (4.35) we can separate the variables to get

f_al@) L,

¥ (z,1) o exp [ct - c/ E:—fgﬁ—(m’)dx (4.36)
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where ¢ is the separation constant. This solution is valid where | ;/% |> ¢. We have a rather
complicated space dependence and hence this solution does not tell us much that is immediately
useful about the flow function. If we put ¢ = m + in, permitting evanescent/oscillatory behaviour,

then the resulting flow function is

P(z,t) o exp [(m + in)t] x

. ~ T (o m2 +n?+ mfoﬂ(wl) + anOﬂ(ml) '
p{ / = [ [m + foB(a")]" +n? ]d } Y

[t}

Retaining the full space dependence of o and § means that this is really only formally useful
and almost certainly not integrable; the flow behaviour in this linearisation is still not easily
understood. A more measured approach is required that will yield relevant answers. However,
(4.36) is of primary importance when considering the nonlinear analysis of section 4.3.5, where the

conditions for validity are discussed.

4.3.3 « = constant and [ = constant

Consider (4.34) with o = constant and § = constant. These are the simplest forms that «, 8 can

take. With these values, (4.34) becomes very simple

Yoo + oty + Bfope =0

We can substitute a linear travelling wave form
¥ ~ exp [i (kz — wt)] (4.38)

By choosing this form, we are effectively looking at the Fourier components of a disturbance in the
plasma. Hence the relation between w and k will tell us what happens to particular frequencies in
the Fourier decomposition of the disturbance.

On substitution, we have

wk —iwa +1kBfo =0 (4.39)
In general, w and k may be complex; therefore if we substitute
w=wrt+iwr k=kgr+ik;s (4.40)

then, on expressing kg, ky in terms of wg,wy we get

wrBfo ]

4 .41
w2 + (wr + Bfo) (1.41)

w? +w? +wrBfo ]
w? + (wr + Bfo)°

We are now in a position to analyse the behaviour of these waves and their relation to other solution

forms.

55



1. Equivalence to equation 4.37

This treatment is entirely equivalent to equation (4.37) when we set 8(z) = 8 = constant

and a(z) = o = constant. With this, (4.37) becomes

P(z,t) x exp [(m + in)t] x

{ m? +n? 4+ mfoﬁ] )
exp o r — 1@

n? + [m+ fof]’
By comparing the time dependencies of (4.42) with (4.38) we find that m = wy and n = —wg.

nfof -
n2 + [m + foﬂ]z} } (442

This means that the evanescent and oscillatory coefficients of z in (4.42) are equal to those
of (4.41), i.e,

~nfof ; _am2+n2+mfoﬁo
n? +[m + fof)’ n? +[m+ fofl]’

kR:a

2. ‘Long lasting’ waves

We may more usefully express kg, k; in terms of dimensionless variables scaled to the natural

frequency. Therefore with a = %}’;, b= pﬂff;

k 240
ke a ki @45 4b (4.43)
a a2+(b+1)2 o a2+ (b+1)?

For a long lasting wave, i.e., one that remains for a number of wavelengths we require that
the evanescent time factor wy is much greater than the oscillatory frequency wg. This will
tell us the components of any disturbance that propagate the furthest without significant

exponential growth or decay.

In terms of the frequencies wy and wg we must have

2«1 (4.44)
WR
Therefore
b
-l <1 (4.45)

We also need the motion to be weakly damped in space (characterised by the value of kr)

compared to the oscillatory wavenumber kg 1.e.,

]]:—; L1 (4.46)
or,
%—I)—‘ <1 (4.47)
We can guarantee this by setting
la| < 1 (4.48)

This simply says that the wave must have an oscillatory frequency much less than the natural

frequency, and that the evanescent decay constant wy must be much less this.
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We can also carry out the same analysis by expressing wg,wy in terms of kg, k;. Using the

dimensionless variables ¢ = £& d = £

WR c wr d—d?—¢?
Gf. = 2 20 Gf,  c2 2 (4.49)
Bfo 4+ -d)?" Bfo  c*+(1-d)
Using the long lasting wave conditions (4.44), (4.46) we obtain similar conditions
d
el 1, | - <1 (4.50)

Hence to have long lasting waves we need to be in a region of parameter spacé where the
evanescent terms are very much smaller than the oscillatory terms which themselves are very
much smaller than the natural, background scales a and 8fy. This demands that the wave
changes more slowly in time and space than the medium it is moving in. The ‘larger’ scale

wayve effectively does not see the medium in the limit.

3. Wave behaviour in limits of wg, w; and 8f

We can force the system into extreme situations if we take one of the parameters to be very

much larger than the other.

(a) When 8fy — oo, then the natural frequency increases. This forces @ — 0 and & — 0
meaning that kr, kg — 0. Hence the space dependent part of the wave disappears and
we are left with an oscillatory/evanescent motion, 1 ~ exp [i(wgr + wry)t].

(b) As wgp — o0, @ — co. The wavenumber k tends to ia, i.e., kg = 0, k; = « in the
limit. Again the wave nature of the solution is destroyed as ¢ ~ exp(—az) exp(iwt); the
wave is damped according to the natural scale. By asking for too high an oscillatory
frequency, we have damped out the wave.

(c) Similarly, as w; — oo, the wave tends to ¥ ~ exp(—az)exp(iwt). We can conclude
that if we want the wave to change quickly in time, we will destroy the wave nature of
the motion. The motion will either die or grow with increasing « according to the sign
of o, meaning that this linear analysis is no longer adequate to handle the increasing

amplitude of the perturbed solution.

Hence those waves with wgr and w; very much larger than the natural background frequency
Bfo undergo either exponential growth or decay at the rate given by a. If growth is seen, then one

must move to a nonlinear treatment to properly take account of the growing components.

4.3.4 Assumed form for a(z), 5(z)

In this section we assume that a(z) and f(z) depend linearly on z, i.e., we have
a(z) = ag + a1(z — o)
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and
B(z) = Bo + P1(z — zo)

ezactly everywhere. Just as we have already assumed «, § to be constant everwhere (see section
4.3.3), we now assume that they are exactly linear functions of the independent variable z.

We can specialise this solution to the case of a(z) and f(z) both slowly varying simply by

assuming that a—l[%l < 1 and &[%l & 1 for some zg. This would be equivalent to saying

that the medium is nearly homogeneous. If we do not constrain the z dependence, we can look at
the behaviour of wavelike solutions in a strongly inhomogeneous medium.

With the forms of o and 8 above, equation (4.35) becomes

Yot + [0 + a1 (2 — 2o)] ¥t + fo [Bo + B1 (z — z0)] o = 0 (4.51)

The z-dependent coefficients mean that we cannot use a simple linear travelling wave. However,
we may still have a harmonic time dependence, e~*!. Therefore we postulate a solution of the

form

(z,t) ~ p(x)e ™" (4.562)

with w = wg + wy

On substitution we get an equation for ¢;

where )
- _ wh +wrlwr + foBo + foBi(z — 0)] ]
E(z) = —[oo + a1( — 20)] [ w% F [wr + fofo + foBr (= — mo)]? (4.54)
and

wr[fofo + foBi(z — o)) ]
+ [wr + foBo + foBi(z — z0)]? (4.55)

Equation (4.53) can be integrated in closed form, yielding

F(z) = [ao + a1(z — z0)] [w}z{

¢(z) o< exp[Q1(x)] exp[iQ2(z)] (4.56)
where, with n =1, 2,
BaD, Y(z)
Qn(z) = — o2 (z —zo0) + PYeE 2B,HD, - GA,D,, — GB,C\,]
+23) (BB, D, + HAuDy + GHByCo — G*AnCr — H?BoD,]
G3wg

and

Y (z) = tan™* [W] , Z(z) =log {E + [F + G(z — 0)]?}

R
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where E = w%, H = wy, G = fo1 and

Al =ag Ay =-—ap

Bi=a1 By=-a;

Cy =wh +wi+wrfofo Ca2=wrfobo
D1 =wrfobr D2 =wrfofr

Consider (4.53) as |z — zo| — 0; the evanescent and oscillatory factors E(z) and F(z) become

wi +wi+ wzfoﬂo] def

Ele) =~ [w%z Tt o] 0

F(2) = ao [ wrPo fo ] def

wh+wr+ foBol?] T 77
which recovers the results of the a, 8 = constant analysis (section 4.3.3). Locally, the medium is
homogeneous and not position dependent. In the opposite limit of |z — zg| — oo the coefficients

a(z), B(z) tend to infinity also for a1, #; nonzero. Equations (4.54) and (4.55) become

a1Wy def

" b = Fe

E(z) —

Q1WR def
F(z) — = F
(=) Jof oo

respectively. The numerical values of the space oscillatory and evanescent factors (F(z) and F(z)
respectively) depends on their time equivalents wr and wy, i.e., if the wave is damped only very
slightly in time then this scale percolates through to the space evanescent properties.

Suppose now we assume that the wave has no evanescent time component, i.e., w; = 0. In the

limit of |z — zo| — oo, we have
a1WR

- fob

Feo

but
Fo — 0

The wavelength of the motion transforms slowly to a fixed value while the evanescent behaviour
disappears completely. The new wavelength is entirely independent of the wavelength at |z — zo| —
0 since it depends on the gradient terms a; and B;. If we let 8; — 0 keeping «; nonzero and
4% # 0 then

|Foo| — 00 (4.57)

This means that as f(z) — constant with a(z) dependent on z, the wavenumber F(z) will tend
to infinity, meaning that the effective wavelength of the motion will tend to zero.

If we have

(Bofo)?
w? + (Bofo)?

500'1
aofh

(4.58)

59



30

20
- cos(Q2(x))
=B F(x)

““WA/WVVWWVWVWWW
50 100 150

Figure 4.1: F(x), cos[Q2(*k)] for a()= 1,aq = 1, /20= 10, 3l = 1, vsr =30.1 and /0= 1

then the equivalent of the wavenumber F(x) will increase smoothly via equation (4.55) from FQ
to Foo, a value numerically larger than FO0. Since F increases, we are effectively making the
wavelength of the motion shorter. Figure 4.1 shows the behaviour of F(x) and cos(f F(x)dx)
when (4.58) is true. The ‘wavenumber’ F transforms smoothly into a larger positive number,
causing the wavelength of the motion to decrease with increasing x.

This amounts to moving the energy present in the motion onto a different length scale. If
(4.58) is true, then the energy is moving to a shorter length scale. If not, then the energy is being
redistributed onto longer scales.

This analysis brings out yet another feature of (4.35). Remember that this equation describes
the linear onset on time dependent field aligned flow. Therefore, we have shown that if we give
the correct variable dependence to the coefficients of the differential terms in (4.35) (see equations
(4.51) and (4.58)), the motion can effectively redistribute energy onto different length scales, in
this linear limit. In the limit f3!\ —+ 0, this length scale tends to zero since |Foo| —> oo. This,
coupled with the possible exponential growth behaviour seen in section 4.3.3 points to something
interesting in the behaviour of the nonlinear flow equation, (4.32). The following section deals with
this equation and shows how it may be linked to the linear analyses of sections 4.3.1-4.3.4. See

figure 4.4 for a schematic outline of treatments given for equation (4.32).
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4.3.5 Nonlinear Analysis

We turn away now from linear analyses to considering equation (4.32) directly, a hyperbolic equa-
tion with non-constant coefficients. Unfortunately, we do not possess an analytic solution to (4.32)
for @ and B both fully varying in z. To ease the problem slightly, we suppose that 8 = constant
or at least %g 4 g—‘;‘. This can be seen as a nonlinear treatment of the case seen in the previous
section, where B(z) = constant but o # constant (see equation (4.57)). Since the equation is
hyperbolic, we postulate solutions of the form f = 4 [5], where n = ¢; (z) + ¢at On substitution
into (4.32) we obtain

a(z)

Zr
¢nn + _,'¢17 +
1

B, _
;W/’n =0

If we set %(,ﬂ = k = constant and f’; = z then we have a second order ordinary differential
1

equation with constant coefficients,
1/)1717 + k'(j)q + Z’(/)'l/)ﬂ =0

or,

0

gy [rHEv+ 597 =0

which, on integration yields
Py + kY + %wz =w (4.59)

where w # w(n). We have reduced the problem from a nonlinear hyperbolic partial differential
equation to solving a Ricatti equation, some solutions of which are detailed below. We will examine

a particular class of solution by specifying that

4
Y= —— 4.60
g+ h(n) (4.60)
Equation (4.59) now becomes an equation in A, i.e.,
2 2
h,,+h[ﬂ— ]+h2[3]=kq+@—ﬂ (4.61)
p p 2 p

Although we still have a Ricatti equation, we can manipulate this form to generate analytic answers
relatively easily. Additionally, we will only consider the simpler solutions of the large spectrum

available.

1. Consider (4.59),(4.61) with w = 0.
Equation (4.61) is now a linear equation since this specification drops the A% term:

Zp
2

Additionally, if we set k = 1 and kg — %% = 0 then h = exp(n). Working back through the

hy — kh=kq—

variables we find that this fixes ¢; and ¢y to be

¢ Bp
¢ = a(z')dz', ¢y ==—
1 / (z') 2=,
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with final solution
D

g+ exp [f;n a(z’)dz’ — %t]

Detailed comment on this solution can be found later in this section.

fz,t)= (4.62)

. Consider (4.59),(4.61) with 3%2 —k=0.

This drops the term proportional to k in equation (4.61), so we still have a nonlinear equation
to solve, namely
2
w ¢w  zp
hy+ —h*= 21— -2 4.

which has two solutions depending on the sign of the coefficient of h2.

(a) Suppose that h = m@, for m = constant # 0 and Q = Q(n). Then on substitution into
(4.63) we have

mu e 1 [¢w 2
It [ p 2 ]
This factor m allows us to rewrite the equation in a clearer fashion:
Qn+6Q*=6 (4.64)
where § = ”;‘T‘" = # [% - 522] . The second equality defines m in terms of the variables

already given. Equation (4.64) has solution @) = tanh(én) meaning that A = m tanh(én).
Resubstitution of this trial solution into (4.32) fixes m = 1 and 6 = T = 21_4 which in

turn determines c¢; and ¢y as

1 ‘ / _ Bp
Cl—%/ a(z')dz, cy= 20—

The final form of the flow function f is

flz,1) = —~ (4.65)
q + tanh [ﬁ [p, e () de’ + T%t

The behaviour of this solution is described in Table 4.2.

(b) As has been noted, the sign of the coefficient of h? is important in the determination

of a solution. We can obtain a sign change in this coefficient by performing a similar

analysis. This time we put A = —m(@) which gives
muw 1 [¢®w 2p
P (N
p mlp 2

when substituted into (4.63). This time we define a quantity é such that —é = —""T‘” =
L [9:—"’ - 522], therefore (4.63) becomes

Qn—6Q*=56 (4.66)
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with solution @ = tan(né). Again, resubstitution into (4.32) fixes the superfluous

variablestom =1 and § = % = _21_q_ This turn fixes the original quantities ¢, ¢5 to be

_ 1 i ' _ ﬂp
C1 —_Qq/ Q(I )dI, Cz—m

The final flow function is

p
g+ tan [;—ql ffo a(z')de’ + Z—(I%t

f(z,t)= (4.67)

The parameter dependent behaviour of this solution is described in Table 4.3.

Other solutions to (4.61) certainly exist and may be easily found if we already have a solution.

If h1(n) is a known solution to (4.61) then with u = u(7),
h=h+ H
u

is also a solution. The function u is given by the solution to the linear ordinary differential equation

Each of the solutions detailed above have two free parameters p and ¢. Equations (4.62,4.65,4.67)
are exact solutions when § = constant and are approximate where § varies with £ much more
slowly than a. The parameter p takes the form of an amplitude and contains directional informa-
tion in its sign: for a fixed point in space and time, the sign of p controls the fluid flow relative to
the magnetic field. The parameter g is a time scale and can be used to control the appearance (or
otherwise) of singularities in the solution, since it appears in the denominator of each solution.

To more clearly illuminate the role of p, ¢, and # we describe solution (4.62) when «, § are
both constant. Consider first the case ¢ > 0: the denominator of (4.62) can never be zero and the

solution is governed by the exponential. The case ¢ < 0 is more interesting. The denominator of

z= lo—gi—_q—) + (2—‘;%) t (4.68)

(4.62) is zero when

i.e., the position of the singularity is a function of time. It corresponds to a point in space and
time where the fluid velocity is infinite. Now, ¢ > 0,z > 0 for any physical set of (z,t) pairs.
These conditions allow us to determine which values of p,q,a and § generate which particular
behaviours. Table (4.1) displays the combination of parameter ranges which yields z > 0 in (4.68),
and the times, if any, at which a singularity may be seen.

The fact that a singularity is present is consistent with the linear result (4.57) of section 4.3.4.
That result predicted that given certain conditions, the effective wavelength would decrease to
zero, moving energy onto smaller length scales. One would expect that the appearance of smaller

length scales in the system would mean that such scales would become important to the system
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q Bp | singularity occurs at time t [Eq.(4.62)]
>0 g< -1 >0 0<t<ty,
<0 t>0
0>¢g>-1|>0 does not appear
<0 >t
<0 g< -1 >0 t>t,
<0 does not appear
0>¢>-1|>0 t>0
<0 0<t<in

Table 4.1: Singularity behaviour for values of p, ¢, « and 3 in (4.62)

as a whole. This seems to be borne out by the appearance of the singularity in this nonlinear
solution, where the model breaks down at a single point.

Note that we define t,, = —%quog (—q) for this solution. This quantity is important in
determining the solution behaviour. The factor 1/(f8p) is a characteristic time of the solution,
combining both the amplitude of the solution and the time scaling in the original equation. It
can be seen that when it exists, the singularity has three characteristic time dependencies. If
tm is negative, then = > 0 for all times £ > 0 and we get a singularity appearing initially at
(z,t) = (lﬂa_—ql, 0), and thereafter moving through the fluid following equation (4.68). If ¢,, is
positive then there are two possible behaviours. Firstly, the singularity can appear after time %,
has elapsed, i.e., the singularity first appears at (z,t) = (0, :Z—L%OEL_JQ) and then moves via (4.68).
Alternatively, the singularity exists at times ¢,0 < ¢ < £,,,: in this case, the singularity first appears
at (z,t) = (bjia_—ql, 0) and then moves to its final position (z,t) = (O, qugf-(_—ql> at time ¢t > t,,
where it becomes unphysical due to the demand z > 0. Table (4.1) tells us that the sign of p
is crucial: if the sign of p is changed (for any given «, 3,9 < 0) then we move from one type of
behaviour to another. Hence the direction of the fluid flow relative to the magnetic field controls
when, where and if at all the singularity appears. The reason for this behaviour lies in equation

(4.20); if we substitute f with —f then we get
—%[v x (fB)] =B x [V(1- f*).V|B (4.69)

Equation (4.69) is a different equation from (4.20) and hence we should expect it to have a different
behaviour. This shows up in tables 4.1, 4.2 and 4.3 where changing the sign of p changes the
behaviour of the singularity. A sign change from % — —1 does not affect equation (4.34), i.e.,
changing the direction of the perturbed flow relative to the background flow does not change

(4.34). However, changing the background flow fo — — fy does change (4.34): the coefficient of 1,
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changes from 8fy — —ffo. Note also that we can obtain (4.69) from (4.20) simply by reversing

the direction that time runs in. If we let t = —7 then 56{ = —aa—T. Hence
—(%[V x (f(r,0,7)B)] = B x [V(1 - f3(r,0,7).V]B

which is simply equation (4.69) with 7 instead of ¢. Therefore, changing the relative direction of
the fluid flow compared to the magnetic field direction is equivalent to changing the direction of
time.

Equivalence to (4.33) and (4.36)

We have already shown that sections 4.3.3—4.3.4 may be reduced to considering special cases
of equation (4.36). By looking at these special cases we have elucidated some features of the flow
function. We can show also that (4.62) contains (4.33) in the correct limit, with (4.36) governing
the time and space behaviour.

Previously, we linearised a nonlinear equation (see section 4.3) and solved the resulting linear
equation. We will now linearise the result of solving the same nonlinear equation and show that
the two are equal. Note also that we can only consider #(z) = constant since we do not have
analytic solutions to equation (4.32) with #(z) nonconstant.

Consider equation (4.62) with the extra condition

lg] > exp U: a(z')de’ - g—gt] (4.70)

0

This immediately excludes us from regions in time and space where singularities can exist, since

there is no way we can make the denominator approach zero. Hence

1
f,n="L 4.71
1) q 1+%exp[f:0a(x’)dx'—g§t] (47

which becomes on Taylor expansion to the first order only,

P P s N PP ]
z, ) — — —ex a(z')de’ — =—t 4.72
set)xE =B | [ ae)as - (472
We compare this to equation (4.33), i.e.,
f(ﬂ?,t) = fU + €¢($,t)
and using equation (4.36) to describe ¥(z,t) we have
¢ - ,
z,t) = fo+cexp [t — —— oz’ d:c'] 4.73
)= ot e et - =5 [ a(a) (4.73)
as the full perturbed flow function.
Firstly, we must have fy = 5 Now, equation (4.73) is valid where % > € for ¢ € 1.

Examining equation (4.72) we find equivalently that

qexp{— [/za(:c')da:'—ggt]}’ >1
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by assumption (4.70). This is certainly bigger than the required €. Therefore we also satisfy the
same criterion for the validity for the analysis. Further if we compare the time dependent parts
then we must also have ¢ = :2%2. Using this value for ¢ and the expression for fg, the coefficient
of the integrand in (4.73) is 5

—cC 2q

= =1
ct+fof P+ pE

which is precisely the factor required in (4.72). Hence the solution to the linearised equation
((4.73)) is equal to the linearisation of the nonlinear solution ((4.72)) when we are ‘far away’ from

any singularities.

4.4 Summary and Conclusions

Fixing a form for the flow function f chooses a particular class of fields, in a similar way to chapter
3. The magnetic fields concomitant with flow functions f = f(r,t), f = f(6,t) and f = f(t) are
described for the full flow equation (4.1), but the case f = f(r,0,t) has only been treated for
reduced situations, e.g. the linearisation study of section 4.2 which showed that a ‘first order’ time
dependent field aligned flow was possible for only a particular class of fields, if the flow was close
to the Alfvén velocity.

Progress has been swiftest using the reduced flow equation (4.3). Here we specified a class
of magnetic fields and looked in detail at the nonlinear hyperbolic partial differential equation
governing the flow function. A hierarchy of analysis was developed in order to elucidate the
features present in the equation. Figure 4.4 represents the relationship between all the analyses
relevant to equation (4.20).

We have found that the natural scales in the system « and fy fo (space gradient and frequency
respectively) control the behaviour of the wavelike solutions to a linearised version of (4.32), equa-
tion (4.35). Equation (4.35) represents the linear onset of time dependent field aligned flow from
a constant background flow function.

Thé linearisation treatments show that a wavelike fluid motion can persist in the flow, against
a constant background flow. These treatments also show that the motion appears to move wave
energy around onto different length scales. For instance, in section 4.3.4 (for the case |z — x| — oo,
B1 — 0) we saw that the effective wavelength of the motion tended to zero (equation (4.57)) ,
meaning that the motion, and hence the energy, was moving to different length scales.

This led to the consideration of analytic and exact solutions to (4.32) with the assumption of
B(z) = constant. It was found that a singularity could appear in the flow function f and hence
in the flow, given the correct parameter range. The fluid accelerates towards the singular point,
where the model must break down. This acceleration seems to indicate that energy is being moved

onto length scales which cause the breakdown of the model. Therefore we may conclude that,

66



o q Bp | singularity occurs at time t [Eq.(4.67)]

>0g>0]>0 t>tm

<0 does not appear

g<0]|>0 does not appear
<0 t>t,
<0f{g>0]|>0 t<tm
<0 t>0
g<0]|>0 t>0
<0 t<tny

Table 4.2: Singularity behaviour for values of p, ¢, « and 3, defining t,, = —ﬂ%l tan=! (—¢q) in

(4.67)

given the correct parameter range, a time dependent field aligned flow will generate a singularity
in the fluid flow. We have found, via wave steepening, a possible mechanism for the generation of

localised fluid acceleration.
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fee +a(z)fi + B(2)ffz =0

Linear Anaylses
See sections 4.3.1-4.3.4 for more detail
f=fotey(z,t)
Put fo = constant
!
Yot + ()P + B(z) forps = 0
|
1. a, 8 fully varying: eq.(4.36)

2. «, B linearly dependent on z:
see eq.(4.53): special case of (4.36)
lcan be reduced to|
3. @, 3 both constant: eq.(4.38)
and (4.41)

Results
Wave steepening and
exponential amplitude variation
Asymptotic change of

wavelength

Nonlinear Analysis
See section 4.3.5 for more detail
Put B(z) = constant
!
!
foo+a(x)fi+Bffe =0

l
Analytic Solutions

see equations (4.62)
(4.67), (4.65)
lcan be reduced to|
!
Eq.(4.72): equivalent to (4.33)
and (4.36) with B(z) = constant

Results
Possible appearance
of singularity in flow

- breakdown of model

Figure 4.2: Relationship between analyses in section 4.3



Table 4.3: Singularity behaviour for values of a,b, @ and 3, defining ¢,

in (4.65)

q Bp | singularity occurs at time t [Eq.(4.65)]

>0 0<g<l [>0 does not appear
<0 t >t
0>¢>-1|>0 t>tn

<0 does nol appear
<0 g< -1 >0 t>0
<0 t<tn
0>g¢g>-1[>0 t<tm
<0 t>0
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Chapter 5

An Application of GGenetic
Algorithms to Differential

Equations

There once was a brainy baboon,
Who always breathed down a bassoon,
For he said, ‘It appears

That in billions of years

I shall certainly hit on a tune.’

Sir Arthur Stanley Eddington, New Pathways in Science, 1935

We now consider the calculation of numerical solutions to two second order differential equa-
tion’s that arose from a problem in field aligned flow in chapter 3. Genetic algorithms are intro-
duced by analogy with the Darwinian theory of evolution coupled with the DNA representation
of genetic information. Detailed consideration is given to a variation on an existing method of
applying genetic algorithm’s to ordinary differential equations [38]. Genetic answers are compared

to both analytical results and existing numerical methods.

5.1 Finite Difference Solutions

In chapter 3 we introduced two methods of solving the equations describing a set of magnetic field

topologies that support a flow of f = constant, namely equation 3.21

V2ZA=A(r,0) A
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and equation 3.22,
0AON O0AOX

86 ar ~ or 08
where A is the vector potential of the field B = V x (Az).
We may solve (3.22) by setting A = g (A) leaving

VZA = Ag(A) (5.1)

For any choice of f other than f = ¢1+ %, c1, ca = constants we are left with solving the nonlinear
Poisson equation (5.1) with the relevant boundary equations (which are derived from the physical
situation we wish to emulate). As analytic solutions to nonlinear Poisson equations are few and
far between we must use numerical and computational techniques to solve (5.1). A number of
library routines are available to solve the Poisson equation numerically by using a finite difference
replacement. These routines set up matrix equations where the unknowns are the values of A at
each grid point. An initial guess at the answer can be supplied by the user to give the routine
starting values to work with: NAG routine DO3EBF offers this facility. Matrix methods and
manipulations are then used to solve the (commonly) linear equations. This approach is described
in more detail in section 6.1.1.

Alternately, with A = h()) we are left to solve an ordinary differential equation, (3.25)

1(M)R" + ¢2(A)h' —hA =0

1

where the dash ’ refers to differentiation with respect to A, and ¢;1(A) = = (%)2 + %)2, and

g2(A) = %% (r%) + r%g%\ Given a suitable A such that ¢, g5 are functions of A we still have to
solve a second order ordinary differential equation. Iterative numerical routines exist to solve such
equations. And again, some of these routines can be given an ‘initial guess’ (for example, NAG
D02RAF) to start the routine off.

One possible way through which we can improve the performance of these routines is to generate
a better initial guess to the final answer. If we have a ‘good enough’ initial guess then the solver
(whichever one we wish to use) can finish the task. Finding a good guess is not easy or obvious
in all cases (indeed, for NAG routine DO3EBF the recommended action is to simply set the initial

guess to be everywhere zero!). It is at this point we can introduce genetic algorithms as a possible

way of generating a ‘good enough initial guess’.

5.2 The Genetic Algorithm Concept.

A genetic algorithm (GA) is a computational technique that solves search/ minimisation problems
by applying the ideas of Darwinian evolution. By the above definition then, most genetic algorithms

must follow the same outline [39] which is summarised in figure (5.1). Each of the statements in
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Procedure Genetic Algorithm
begin
initialise population P (0)
evaluate P (0)
t=1
repeat
select best npar parents from population P (¢t — 1)
recombine parents to create nchild children and new population P ()
mutate entire population P (t)
evaluate entire population P ()
t=t+1
until (termination conditicn satisfied)
final population of fit individuals P (finish)

end

Figure 5.1: Scheme for general genetic algorithm

figure (5.1) has a close analogy in the theory of evolution, and it is profitable to consider this first.

In the theory, species evolve by a combination of mechanisms to produce individuals better
adapted to their environment. This ultimately means that we must change the DNA coding, or
genotype of the individual in order to change its physical characteristics, or phenotype. This leads
to the first requirement for a genetic algorithm that is, a suitable encoded representation of the
problem we wish to solve. In a genetic algorithm each candidate is represented by a string of
symbols, in analogy with the AGTC alphabet that encodes genes in a DNA molecule [40] . (Each
of the letters stands for a chemical structure basic to all DNA molecules: adenine, guanine, thymine
and cytosine.) The representation used in a genetic algorithm allows us to evolve new phenotypes
by appropriate imitation of the mutation and recombination mechanisms available in nature. We

may change the distribution of genes in a population and their contents by

1. Reproduction. This introduces variety into the population by recombining genetic material

from the previous generation in new orders, creating new genotypes and hence new pheno-

types.

2. Mutation. The content of the genetic code may be changed by a number of mechanisms;
for example, copying errors during DNA manipulation can cause the deletion, reordering
or multiplication of genes. lonising radiation can also damage and hence change the DNA

content. The classic example of mutation conferring a phenotypic advantage is sickle cell
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anaemia, which is prevalent in many human populations in Africa. Although the affected
individuals are rendered anaemic, they are also much less susceptible to malaria, which is
found to be endemic in those areas where sickle cell anaemia is common. The mutation is due
to an error in only one nucleotide in the DNA which causes a subsequent structural change

in the protein that it encodes [41].

3. ‘Survival of the fittest’!. The environment that an individual finds itself in determines
whether its genes will survive to the next generation. If it well adapted to the environ-
ment then it is more likely to survive to a breeding age than one that is less well adapted.

This is summarised in the phrase ‘survival of the fittest’.

By these mechanisms, populations may evolve into forms that are better suited to their envir-
onment, and may implement analogous operations in a genetic algorithm.

At some initial time we have a population of candidates P (0), encoding the relevant features
of the problem in an appropriate representation. The ‘quality’ of each candidate solution, i.e.,
how well it solves the problem may be evaluated by the use of a suitable ‘fitness’ or ‘weighting’
function. This is the analogue of the environment in nature: this function determines the viability
of individuals. Using this weighting operator, we can assign a weight to each candidate and then
rank them accordingly. Usually we wish to generate individuals with as low a weighting as possible.
Having ranked the population from best to worst (lowest weights being more ‘fit’ candidates), we
can now select the top npar individuals of the ranked population as the breeding parents for the
next generation. This may be likened to survival of the fittest in an environment causing the best
genes to propagate into the next generation.

By allowing the best individuals to breed and by the introduction of new genes via mutation we
create new daughter candidate solutions. Also, by keeping the breeding parents we ensure that the
new population is no worse than the previous one. The daughters are now in direct competition
with their parents. If we now re-rank the entire population we can repeat the process, breeding
from the best and generating new daughters until some specified condition is fulfilled, usually the
completion of a fixed maximum number of iterations, or the achievement of a particular weight.

On exit, the population P (finisk) is ranked from the ‘best’ solution to the worst.

5.2.1 An example application of Genetic Algorithms

One well known example that may be treated by a genetic algorithm is the travelling salesman
problem [39]. The problem is: given a set of N cities to visit, find the shortest route that visits each
city exactly once. Although simply stated, the travelling salesman problem is an example of an

NP-hard problem, i.e., the solution time increases exponentially with N, the number of elements

1Due to Herbert Spencer (1820- 1903), Principles of Biology IIL
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in the problem. Such problems probably (the question is open at the time of writing) do not have
any polynomial time - solution time varying as NP, p > 0 - algorithmic solution.

A natural representation for this problem is to number each of the cities and form a string
of numbers which describe the order in which each city is to be visited. The weighting function
which may be used to rank the population is the total route distance each string represents. Hence
by a suitable implementation of recombination and mutation operators, one may create a genetic
algorithm to solve the problem, or at least generate close to optimal routes.

A practical application of this particular problem is circuit board building by robot. Instead of
cities, we have circuit component slots and soldering points to visit, To complete as many circuits
as possible, the robot must take as little time as possible on each and hence must move as short
as distance as possible over each board. This is merely a restatement of the travelling statement

problem and has been successfully solved by genetic algorithms.

5.3 A Genetic Boundary Value Ordinary Differential Equa-
tion solver

To show that it is at least worthwhile to apply genetic algorithms to differential equations let us

first consider a basic ordinary differential equation
Co(2)y" +Cy(2)y + Ca2(2)y+ C3(2) y* + Ca(z) = 0 (5.2)
where / = %. The equation lies over the range z € (o, eng) with boundary conditions

Yy (ZO) = Yo, y(zend) = Yend (53)

This equation has a number of features that make it a good test bed for learning about the
problems associated with a genetic algorithm type solution to differential equations. Firstly, there
are many analytic solutions available, solving both linear and nonlinear versions of (5.2) with which
we can check the algorithms’ final answer. Secondly, being a one dimensional problem, the ‘size’
of the genetic code will be small enough to allow a large number of iterations in a reasonable time.
This was important as we wanted to optimise convergence strategies in as short a development
time as possible before moving onto larger scale Poisson equation problems. Many of the problems
associated with the application of genetic algorithms to differential equations have been solved
already by Diver [38] in the algorithm GENODE. However there are a number of improvements
possible that speed up program performance and convergence times. Therefore, in describing the
new algorithm, reference shall be made to GENODE and to the changes that have been made in
an attempt to improve algorithm performance

To create a genetic algorithm to solve ordinary differential equations we need 3 basic com-

ponents: a representation, a weighting function and a complement of operations that can change
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the genetic content of the candidates. At each iteration level there are npar parents that will
generate nchild children by breeding, giving a total population at any one time of npar + nchild.
The program itself is called ODE and the following subsections discuss some of the features of its

design.

5.3.1 Representation

algorithm

We represent the genetic algorithm solution to (5.2) as a set of npoint points, y;

; at discrete

points in the range z; € (zo, Zeng), | <1 < npoint spaced at intervals h = —f;;%—f%. This choice is

intimately tied up with the weighting function. Diver chooses to describe each y;."g orithm o< integer

multiples of two real numbers 4 and v with g > v. GENODE then finds integers m, n € (=50, 50)
such that

y¥ =mbu+nfy (5-4)
The numbers p, v are chosen in such a way as to span a reasonable range of possible y values, and
to allow some fine tuning to be done using the v graining. The program then creates a genetic

code for the k’th candidate in the population by forming a string from the integers m} and nf.

The k’th candidate now resembles
k_— (, k k k, k k k
¥y = (""1 ny)--- (mi ni) e (mnpointnnpoint)

where 1 < ¢ < npoint, 1 < k < npar + nchild. The motivation behind this representation can
be understood if one considers the way in which the ordinary differential equation is represented
computationally. The ordinary differential equation is rendered via a centred finite difference

representation of the differentials, i.e.,

y/ (3:1') — Yi+1 Q_I'lyi—-l + O(hg)

Y () = BHZZUTYEL oh7) (5.5)
where h = Zewi=Zfa  The differentials are represented up to order O(h?%), and any numerical

npoint—1"

solution cannot do better than this. Hence it makes sense not to demand a greater accuracy from
a genetic algorithm solution. Since we cannot do better than O(h?) the choice of v should reflect
this and therefore v should be larger than O(h?).

Although this adequately describes the candidate y* there are two major problems with this
approach. Firstly, there are large time overheads involved in translating from the genetic code for
a point yf to a floating point number and vice versa. (This translation must be performed because
the weighting function uses floating point numbers). For one iteration the routine as it stands must
perform (npar + nchild) x npoint of these translations: this is computer time that is not usefully
spent. Secondly, there is an upper limit to the best possible error at each point, namely

y};rue value _ y}(’th algorithm candidate| < max (g) O(hQ)) (5.6)
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where the true value is either from an analytic answer or from another numerical routine having at
least the same O(h?) accuracy. If £ is smaller than O(h?) then the maximum error is dominated
by the discretisation procedure. This can result in GENODE (and any other differential equation
solving genetic algorithm) trying to minimise the error where no useful benefits can be had, since
the discretisation is only O(h?) accurate. To span the range of gene values, one can imagine a
situation where a poor choice of 1 means that » is much larger than O(h?). If O(h?) is smaller than
% then GENODE cannot reach the limit of the discretisation error, which is what we want to aim
for. This is directly a result of the representation chosen in GENODE. It means that GENODE can
waste time trying to improve the fitness of a point where no improvement is possible because of the
constraints of the v graining: the error for this point has reached a minimum. It also means that
there must be (unless we are fortunate enough to choose a problem in which all the points on the
curve y can be exactly represented by (5.4)) a nonzero minimum to the fitness value which cannot
be reduced. Therefore it is not clear if the routine has reached the optimum answer or if we are in
a genetic cul-de-sac from which the algorithm cannot remove itself. The problem of convergence
to sub-optimised candidates requires special treatment, and is detailed below in section 5.3.4.

Clearly then it would be profitable to consider alternative representations. In their 1993 review
paper, Beasley, Bull and Martin [42] report on a paper by Janikow and Michalewicz [43] in which
a comparison is made between binary and floating point representations. Binary numbers have for
a long time been seen as the only reasonable and indeed understandable problem representation
in the genetic algorithm community. The binary expression of integers form the basis of these
genetic codes, the individual bits being manipulated by the processes described above. This is in
effect analogous to the GENODE treatment as again we are necessarily working with a reduced
alphabet of m’s and n’s. It was found that the floating point version gave faster, more consistent
and more accurate results. Although this result tends to run counter to accepted wisdom in genetic
algorithm circles, it was decided to move over to a floating point representation

There are considerable advantages to be had from using floating point numbers to describe the
points y/*" orithm The members of the population may be easily stored as a list of floating point
numbers in an array, i.e.,

k_— k k k
Y =U1 Y Ynpoint

In biological terms, the phenotype and genotype have now become identical. The time penalties
incurred by any translation process from genotype to phenotype are now simply not present. A
floating point representation also addresses one half of the accuracy problem (5.6) by effectively
setting v, the smallest incremental change to be machine precision. Crucially, the number and
type of meaningful mutation operators available to us is increased, as floating point numbers may

be manipulated in a variety of ways to yield another floating point number (see the section below).
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5.3.2 Weighting Operator

In every generation, natural selection demands that only the ‘best’ individuals be selected as the
breeding parents for the next generation. In a genetic algorithm this process is carried out using a
weighting operator that assigns a weight to every individual. In an ordinary differential equation
solver, we must assess how well each candidate solves the differential equation along with the
boundary conditions. Constant value boundary conditions are handled easily, as at each iteration
all individuals in the population simply have the boundary conditions written directly into their
genetic representation.

The ordinary differential equation is represented numerically by substituting the differentials

using central finite difference replacements (5.5). The differential equation (5.2) is implemented as

[Coh(zxi) + 012(:0] Yit1 + [Cz (=) - 2—00]f:i) yi +
[Coh(:i) _ 012(’;L'i)] Yie1 + Cs (2:) y2 + Ca (z4) (5.7)

One must take special care at the endpoints as clearly at the left and right hand sides there
are no points corresponding to y;_1 and y;4+1 respectively. GENODE solves this problem by using

quadratic extrapolants to generate estimates for y; and y.

—3y1 +4y2 — y3
/ _ TN T2 I3
Y (21) = 2h
Y1 — 2y2 + y3
y' (z1) = e (5.8)

Similar expressions are calculated for yj,,in;: 8nd Yppsin:- Using (5.8) and (5.7) equation (5.2)
may be implemented numerically in a discretised form. If we use the y2'9°"***™ values for the k’th
candidate in the population then we can calculate an error R¥ for every point in every candidate
solution. This error tells us how well that particular point fits the discretised form of the ordinary

differential equation. Hence,

orithm C [ C 7 C i
R " :[ oh(:;’6)+ 12(; )] i+ [02("31')_2 oh(:) v+

[Co (z:) _ Ci(=)

B2 oh :| ytlc—l + Cs (z;) (yf)z + Cy (23) (5.9)

We can now calculate some measures of the fit, e;-‘, 1 < j < 4 of each individual, based on the
above R} values, and use these to calculate an overall weighting. Again, following Diver we use

fitting measures

npoint

ef= Y |RE| (5.10)
i=1

€% is a measure of the overall ‘distance’ the candidate is away from the actual solution.
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npoint

d=TI IR (5.11)
i=1

A candidate that has a number of points with R¥ ~ 0 will have a low value of €£. Therefore
candidate with low ¥ contain at least some points that fit the discretised operator (5.7) very

well.

&5 = exp [f1 x| 0)* = gvr| + fu % |(Whpoine) " = g01]] — 1 (5.12)

Gradient information is supplied for each of the endpoints, gvr and gvl. This is a well known
and accepted method in the numerical solution of differential equations: one overspecifies
the problem by supplying both gradient and boundary value information at both ends of
the range. However, only two of these pieces of information are exact and both cannot hold
at the same point. The other two pieces are then used as an estimate in such numerical
routines. The currently described genetic algorithm fixes the boundary information but
generates penalties if the candidate gradients at the endpoints differ from the user supplied
values. The factor fi > 0 allows the strength of this error to be controlled; a higher f;
penalises poor gradients more. Thus ¢£ is a measure of how well candidate k satisfies the

gradients demanded by the user.

¢ = max |RF| (5.13)

i=1,npoint
This is a crude measure of the continuity of the k’th candidate. Candidates with a large %
have at least one point that does not fit the operator well. These candidates can be selected
against as it would be relatively harder to relax to a lower weighted individual from one that

has poor continuity.

The above measures are combined to form a final overall weight for the k’th candidate in the

formula

WE = pre¥ + pack + paek + pack (5.14)

The factors p1, p2, ps and ps allow the user of the algorithm to choose which features are to be
selectively penalised over others. The weighting factors chosen can play a crucial role in determining
good convergence times (see section 5.3.5). By assigning a weight W* to all the candidates, one
may now rank the entire population from best (lowest W*) to worst (highest W*). This allows

one to choose the best individuals to form the breeding stock for the next generation.

78



5.3.3 Breeding, Mutation and Combination Operators

By choosing a floating point representation we increase the number of operations we can perform
on the genes. Any operation we perform on the gene, or pair of genes in the case of the combination
operators, must also produce a valid gene. This would exclude most of these operators from an
integer treatment as an integer would not be returned. One could always perform these operators
and choose the nearest integer value but this takes up computer time needlessly and for a large
number of operations, produce no change in the genetic content. This is because the changes
would be too small for the integer representation to notice even if the floating point number
generated conferred some advantage to the individual; the information is lost in the coarseness of

the implementation. Some possible functionality is listed below [42].
1. Combination Operators

(a) Awverage - take the (weighted) average of a pair of genes
(b) Geometric Mean - take the square root of the product of a pair of genes

(c) Ertension - take the absolute difference between a pair of a pair of genes and subtract

it from the lower or add it to the higher
2. Mutation Operators

(a) Random replacement - replace the gene with a random value

(b) Creep - add or subtract a small (smaller than the gene value itself) randomly generated

number

(¢) Geometric Creep - multiply the gene by a random number close to 1

GENODE already implements operations 2(a) and 2() but a floating point representation permits
a wider choice of possible functionality. There are many alternative ways of implementing these:
for instance, one can choose the type of random distribution, say, random or Gaussian, used in the
mutation operators. These operators are really only feasible in a floating point representation: it is
not hard to see that these new operators would be very unlikely to work in an integer representation.
In the code the six operators were implemented under full user control.

As described above, we now have a genetic code representing each member of the population. In
order to redistribute the existing parental genetic code in new ways amongst the children one must
implement a form of reproduction between individuals i.e., distinct candidates produce children
with genetic codes made up from their parents. There are very many schemes available to do this,
coming under the generic title of crossover schemes. This refers to the swapping of the genetic
material. In a crossover scheme each candidate is broken into two or more subsections, and these

subsections are then recombined to create new children. In a one-point crossover [14] scheme,
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One point crossover

parent 1: coooooocoo parent 2: eeeecesee

parent 1 000000 | 000

breeds crossover —» o©0o0o0O0OOCeeEe new
with point 000000000 children
parent 2 eecece | 0o

Figure 5.2: One point crossover breeding scheme

the one implemented in the program each string is split at the same point and the fragments
are swapped. This is most easily seen pictorially (see figure 5.2). There is some justification
for choosing a one point scheme as opposed to the random scheme implemented in GENODE.
GENODE creates new individuals by taking a randomly sized piece of genetic material from a
random position in the first parent and adding it to a similarly chosen piece of genetic material
from the second parent. The routine then makes sure the child is of the correct size, which goes
on to form part of the population. The motivation for using this random scheme is that it allows
the children to have a more mixed up genetic structure when compared to their parents, hence
promoting the distribution of genes across the genotype. However, if we consider the problem that
we are trying to solve, we would hope that after a few iterations all the breeding population would
at least show the approximate shape of the final solution. From this point onwards the routine
should now relax the candidates down to the true solution.

Indeed, this fact is displayed in [38], where after a few iterations, the best candidate of each
generation has a very good approximate shape. Thus a random scheme that swaps the ordering in
the string, while maintaining a good distribution of genetic material, will be inefficient in generating
new combinations that are better than the parents as inappropriate curve segments will be swapped.
This in turn means that a large number of children will be very unfit as they may be highly
discontinuous, inhibiting the overall improvement of the population.. A random scheme will be
very good in earlier iterations to quickly get to a reasonable shape, but a one point scheme will

permit efficient evaluation of the appropriate curve segments in their correct positions.
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5.3.4 Convergence strategies

It frequently occurs in genetic algorithms that a sub-optimal candidate comes to dominate the
population. Such an individual need not be even a remotely accurate solution. It survives because
the genotypic variation strategies of section 5.3.3 create an insufficient spectrum of gene values to
allow the weighting function to move out of its local minimum. Therefore the routine is stuck with
a poor best candidate.

ODE employs a number of strategies to avoid premature convergence of the population onto
a poor candidate, aside from the essential components of selection, breeding and mutation. By
themselves, they are not enough to ensure good convergence, and so something else must be done.

(These routines are also implemented in POISGEN, which is described in chapter 6.)

1. Sometimes the entire breeding population can consist of very similar parents. This is charac-
terised by each member having identical or near identical weights, which we assume implies
that the parents are very similar. The genetic diversity of the breeding population is measured

by

1 &~ ight(1
mtot = —— 3~ [1 - 2egil)
npar weight(n)
If mtot is close to zero then the weights assigned to the breeding population are all very
similar and the parents are assumed to be genetically similar. This is an assumption, as it is
conceivable that genetically dissimilar candidates have similar weights. However, in practice
this situation is not seen to arise. If mtot is close to 1 then candidates 2 — npar are assumed
to be genetically dissimilar compared to the best in the population (see appendices A, B).

Ideally mtot should lie somewhere between the two extremes, indicating a healthy spread of

potentially useful genes.

It is difficult to obtain a genetically diverse population from genetically similar parents; hence
the evolution towards better individuals will normally proceed very slowly, if at all (excepting
the freak appearance of a dramatically better candidate). The routine has converged on a sub-
optimised answer. When this happens ODE throws away the entire ranked population except
the very best individual by overwriting those candidates ranked 2 to npar 4 nchild — 1 with
completely random genotypes. The population is then re-ranked and bred as normal. This
new genetic material may contain genes that are beneficial to evolutionary progress, allowing
the best candidate to evolve in a manner breviously unavailable to it since the required

genetic material simply was not present. (This routine is called tweak in POISGEN.)

2. Frequently one point in the best candidate has a far worse fit than any other. ODE takes
remedial action by making two copies of the best individual and mutating the worst point very
slightly, every few generations. A geometric creep is performed on the point, one candidate

having new gene value gene x (1 — small) at the worst point, the other being gene x (1 +
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small) at the worst point. These individuals are then placed in the last two positions in the
population to ensure that minimum damage is done to the best genes. The population is then
re-ranked and the program continues. (This strategy is called via the profiling subroutine in

POISGEN.)

. If the routine is very successful early on, ODE reaches a low best weight relatively quickly. In
this case, large scale changes to the breeding population are unlikely to create dramatically
better individuals, as they are already highly evolved. Since they have low weights, they are
unlikely to have a single gene much worse than any other: it is more likely that each gene has a
similar fitting error as determined by equation (5.9). In order to promote further evolution,
two copies of the best individual are made but this time every gene value (excepting the
boundaries) are changed. One copy consists of genes gene x (1 — small) (where gene is the
gene value of the best individual), the other gene x (1 + small). The value of small should
be very small compared to 1 as we do not want to perturb the gene values too much. This

routine is known as wobble in both ODE and POISGEN.

. We want the routine to converge as quickly as possible to an optimised answer. This implies
that the best weight should decrease by a ‘reasonable’ amount every few iterations. What
constitutes ‘reasonable’ is left to the user to decide by changing the relevant program vari-
ables. If the evolutionary history is flat - by this we mean that the best weight has not
changed much over a certain number of iterations - then it makes sense to try to influence
progress by changing the breeding stock slightly. The evolutionary history can be flat in a
breeding population that is genetically diverse. Therefore, convergence strategy 2 will not be
activated. Hence ODE has another strategy to combat this situation. When the evolutionary
history is flat, the individuals ranked 2 — npar i.e., the top (npar — 1) individuals excluding
the very best, have a genotype-wide geometric creep performed on them. The value of small
in gene x (1 small) is larger than in strategy 3 in order to introduce some new genes that
are not very distant or too similar to the current genes in the breeding population. This is
different from strategy 3 where we do not want to change the gene values very much, since

the breeding population is already highly evolved.
This particular strategy (known as jiggle in both ODE and POISGEN). is also activated after

a user determined number of iterations in order to inject some diversity into the population

at regular intervals.

. It is possible to run the genetic algorithm using a breeding population composed entirely of
randomly selected individuals. If this is done, then it is likely that most of the population
will be assigned very high weights since it is unlikely that such individuals will present a

good solution to the ordinary differential equation - one random candidate will look much
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like another. To improve convergence, we seed the routine with a specially defined candidate
(see routine special in appendix A). Given boundary conditions y = yo at z = x, and

Y = Yend &t T = Topng We define

)

y.?pecial — i — Zo + R x hzghbdry — Iowbdry]
Lend — Lo frac

to be the seeding individual. R is a random number between —1 and 1. highbdry and lowbdry
are the maximum and minimum permitted gene values in the routine. The variable frac > 1
allows the second ‘noise’ term to be scaled against the range of permitted gene values. This is
added for two reasons: to prevent a possibly ‘spurious’ solution from taking over the routine

immediately and to allow some guided variability to these special gene values.

It is not clear that in all cases this individual will be an improvement over a completely
randomly defined one. However, compare the results of a crossover between two random
individuals and a random candidate with the special. Two ‘randoms’ mating are likely to
produce random-looking children. Hence the chances for improvement are poor, as they are
likely to be similar to their parents. However, the two children of a special-random crossover
are very different from either parent. Therefore, we have increased the genetic diversity by
creating very different children. This leads to a much more extensive search of the solution

space, which improves convergence.

5.3.5 Experimental Results and Algorithm Behaviour

It is naive to expect that such a general technique as genetic algorithms will yield a perfect answer
every time. By its very nature, we cannot expect exactly repeatable answers. ‘Reasonably’ accurate
answers (at least exhibiting a similar shape to the true solution) in a ‘reasonable’ time would
constitute satisfactory behaviour i.e., a ‘low’ weight after a fixed number of iterations.

However, if we can generate answers accurate enough to allow more traditional solvers to
continue, then this too would constitute a successful application of genetic algorithms.

The quality of the final answer is assessed by both the arithmetic and geometric means of the

differences between the true and genetic answer.

1 npoint—1
Bl =— true __ qlgorithm 515
1 ’npoint _ 2 ; | yl yz ( )
npoint—1 ]
Bo= 3 TL luire -y | (5.16)
i=2

where n = npoint — 2. The values y!™¢ come from either the analytic solution, tables, or NAG
routine DO2HAF. For all the results in this section, npar = 20 and nchild = 900. This fairly
arbitrary choice reflects the experience gained while using the program: these values were chosen

because they gave good convergence in most cases.
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The first four sets of results describe ODE’s attempts to solve
v +y=0 (5.17)

with boundary conditions,

y(0)=0, y(2m) =0 (5.18)

The values of the more influential variables for each experiment are listed in Tables (5.3.5)-—(5.6).

1. Initial attempt: Figures (5.3),(5.4), Table (5.3.5)

The first thing to notice about Figure (5.3) is that the answer is genetic answer is very poor:
although it does have the general shape of the true answer, it does not have the magnitude.
This is seen time and time again in the experimental results of both ODE and POISGEN
later; shapes seem to be easy to come by, but the final magnitude is very much more difficult.
This loss of size is caused by two effects: firstly, the manner in which the gradient fitting is
implemented, and secondly, the slow percolation of boundary information into the genotype.
Equation (5.17) is linear with general solution y = Asin(z)+ B cos(z). The boundary values
given should choose only the sin solution, leaving only the amplitude A to be determined.
The constant A is determined by the gradient at one of the endpoints. (The gradients given
ensure that A can be defined consistently.) However, the gradients are not fixed in the
routine: the values gvl, gvr are merely good suggestions given to the routine in order for it
to have something to work on. The measure €3 assigns a weight to how well the gradients
fit at the endpoints, but in a manner that allows some leeway since gvl, gvr are meant to be

guesses.

This means that if a gradient other than the suggested one happens to confer a greater chance
of survival to an individual, then that individual will have a greater chance of surviving as
a breeding parent for the next generation, despite the fact that its genotype does not solve

the exact problem well.

This problem can be handled by increasing the weighting assigned to candidates that fit the
required gradients poorly. This may done by changing the values of both ps and f;. Table
(5.2) shows the new values of ps, f1, and figures (5.5), (5.6), the corresponding genetic answer

and evolutionary history respectively.

Figure (5.4) displays the evolutionary history of the solution, and is typical of many runs
using ODE and POISGEN. The best candidate is relatively poor, but quickly evolves into
a fitter organism. Unfortunately, the evolution seems to be largely complete by iteration
50, the remaining iterations only changing the best weight very slightly. Given the eventual

answer, we seem to have reached a genetic cul-de-sac.
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2. Increased boundary weighting: Figures (5.5), (5.6), Table (5.2)

As can be seen from figure (5.6), the best weight starts off at a much higher value than in
figure (5.4). This is because we have changed the weighting function; we are in some sense
exaggerating the difference between individuals by penalising the gradient fitting at the
boundaries. Figure (5.6) also demonstrates another evolutionary feature. Between iterations
10 and 20 the best weight is approximately constant. After the twentieth iteration, the best
weight drops dramatically by over two orders of magnitude. This indicates that a very much
more fit genotype has been created which quickly dominates the population. Its genes are
propagated through the population by breeding, improving the overall quality of the stock.
This effect has been seen in many natural populations: for instance, the widespread use of
DDT in areas where malaria is endemic has led to the emergence of mosquitoes that have
developed resistance to many pesticides. This is an example of selection pressure choosing

individuals better adapted to their environment.

3. Point doubling: Figures (5.7), (5.8), Table (5.3)

As has been said, the naive approach yielding results similar to (5.17) does not yield sat-
isfactory answers. Although one can increase the weighting associated with the boundaries
this is unlikely to be satisfactory when we are using a very long genotype. This is because

the boundary information will take a long time to influence the centre of the genotype.

This leads to an important feature in genetic algorithm application. At large values of npoint,
convergence to low weights is prohibitively poor. A far more efficient method is to start at a
low value of npoint, run the genetic algorithm to find an approximate answer, and then double
the length of the code by interpolating new points in between the genetically determined ones.
By this process, we arrive at a longer genotype, describing a larger number of points more
accurately than one could reasonably expect from the same number of iterations at the longer

code length.

By starting at a lower value of npoint we gain greatly in the time taken per iteration speed,
but lose out on accuracy. Note also that the centre portion of the genotype is now very
close to the boundaries and hence influences the centre of the range much more strongly
than a genotype of twice its length. For a given genotype of length npoint, the doubled by
interpolation genotype has length 2 x (npoint) — 1. Figure (5.7) shows the result of this point
doubling tactic. The final answer is much improved on that shown in Figure (5.3). The effect
of this point doubling is very marked in the evolutionary history, Figure (5.4). The sudden
spike in weight is generated by the increased number of points causing (naturally enough) an
increase in the error. This is because these new linearly interpolated points are very unlikely

to lie on the true curve, and hence create a fitting error that show up in the final overall
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weight.

. Comparison of answers for long genotype: Figures (5.9), (5.10), Table (5.4)

Figure (5.9) compares the two genetic solutions to (5.17). Solution (a) is very poor when
compared to the true answer; it has such a low weight because most of the points are zero,
fooling the routine into thinking that the candidate is solving the problem well. Solution
(b) is much more realistic: once again, the shape is very good and it is quite close to the
true solution. This demonstrates the power of combining the point doubling and boundary
weighting strategies to get reasonable answers for long genotypes. From here on, the solutions

were generated using these approaches.

. ODE solution to
y'+zy +y=0 (5.19)

with boundary conditions,
y(©O) =1, y(5)=0 (5.20)
(See Figures (5.11),(5.12) and Table (5.5))

The program is set up to calculate the subdominant solution y = exp (— %) to (5.19), a stiff
ordinary differential equation. Again, the shape is good and is close to the true solution. The
NAG routine outperforms ODE, but we are close enough to the true solution to demonstrate
that the essentially random, or blind genetic algorithm is a reasonable approximation to the

geometric methods of traditional numerical solvers.
. ODE solution to

v +zy + 2y +2y° =0 (5.21)
with boundary conditions,

y(-1)=-1, y(1)=-1 (5.22)
(See Figures (5.13),(5.14) and Table (5.6))

Here ODE is tackling a nonlinear second order ordinary differential equation. The evolution
at various point resolutions is shown in figure (5.13). The routine quickly gets the shape
at npoint = 6. At npoint = 11, the symmetry of the final answer is evident and it is only

lacking in magnitude, which is obtained by the end of the program run at npoint = 21.

We have shown that genetic algorithms may be successfully applied to ordinary differential

equations to at least generate a reasonable answer. However, it seems fair to say that traditional

numerical methods for solving ordinary differential equations remain the first choice in all but the

most highly nonlinear situations. This still leaves a vast range equations that may be tackled

genetically.
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1.0
-Q y=sin(xj)
0 Genetic solution

Figure 5.3: Genetic versus true solution for eqn.(5.17)

The genetic algorithm experience gained here suggests that it would be profitable to apply
genetic algorithmic techniques to more demanding situations where traditional methods fall down

In chapter 6, we discuss the implementation of a genetic algorithm to solve Poisson’s equation.

variable value

npoint 11
1 1.0
P3 1.0
gvl 1.0
gvr 1.0

Table 5.1: ODE variable values for Fig. (5.3),(5.4)
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log( Best weight)

15

13
11
9
7
0 30 60 90 120
Iteration
Figure 5.4: Best candidate weight at each iteration for eqn.(5.17)
15
G y=sin(xj)
-© Genetic solution
5
3.0 4.5
5
1.5
X

Figure 5.5: Genetic versus true solution for eqn.(5.17) with large boundary penalties
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( Best Weight)

10°
0 40 80 120
iteration

Figure 5.6: Best candidate weight at each iteration for eqn.(5.17) with large boundary penalties

variable  value

npoint 11
fi 10.0
P3 10.0
gvl 1.0
gvr 1.0

Table 5.2: ODE variable values for Fig. (5.5),(5.6)

variable  value

npoint 6—T1

fi 1.0
P3 1.0
gvl 1.0
gvr 1.0

Table 5.3: ODE variable values for Fig. (5.7),(5.8)
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log( Best weight)

1.5

O-— o y=sin(xj)
Q- © Genetic solution
1.0
5
0
3.0\ 4.5
5
1.0
X
Figure 5.7: Genetic versus true solution for eqn.(5.17) with point doubling
10
Extra points in
5 genotype added here
2
1
0 40 80 120

iteration

Figure 5.8: Best candidate weight at each iteration for eqn.(5.17) with point doubling.
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1.5

A Genetic solution (a)
y=sin(x)
Q Genetic solution (b)

3-v\ 4.5

1.5

Figure 5.9: Genetic versus true solution for eqn.(5.17) with and without point doubling

-v Genetic solution (a)
-G Genetic solution (b)

106
z
2
()
=
3 Extra points added to
é genotype here

10°

0 30 60 920 120

iteration

Figure 5.10: Best candidate weight at each iteration for eqn.(5.17) for point doubling run in figure

(5.9)
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genetic solution (a)

variable value

npoint 41
fi 10.0
P3 10.0
gvl 1.0
gvr 1.0

genetic solution (b)
value
6—11-+21—+41
10.0
10.0
1.0

1.0

Table 5.4: ODE variable values for Fig. (5.9),(5.10)

1.0

NAG d02haf: tol=5.10

Q-Xx2/2

-0 Genetic solution

Figure 5.11:

Genetic versus true solution for eqn.(5.19)

variable  value

npoint 6—p11
fi 10.0
P3 10.0
gvl 0.0
gvr 0.0

Table 5.5: ODE variable values for Fig. (5.11),(5.12)
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( Best Weight)

10

Extra points in .
genotype added here

40 80 120

iteration

Figure 5.12: Best candidate weight at each iteration for eqn.(5.19)

-v Genetic solution: 20 iterations

-+ Genetic solution: 35 iterations

-0 Genetic solution: 160 iterations
NAG d02haf: tol=5.10'4

Figure 5.13: Genetic versus true solution for eqn.(5.21)
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Extra points in genotype
added here

60 120 180

iteration

Figure 5.14: Best candidate weight at each iteration for eqn.(5.21)

variable value

npoint 6—» 11— 21

fi 1.0
P3 100.0
gvl 4.0
gvr -4.0

Table 5.6: ODE variable values for Fig. (5.13),(5.14)



Chapter 6

A Genetic Poisson Equation solver

A genetic algorithm is developed for solving Poisson’s equation on a rectangular region with equally
spaced grid points in both the z and y directions. A number of new genetic operators are introduced
to better cope with the 2-dimensional nature of this problem. The genetic answers are compared

principally against NAG routine DO3EBF.

6.1 Poisson’s Equation

An obvious next step is to go up to a 2 dimensional version of (5.2), moving from ordinary differ-
ential equations to partial differential equations. In view of equation (3.21) arising in chapter 3,

we therefore consider a genetic algorithm to the solution of

01,04
'z’ Oy

ViA=S (z,y,A (6.1)

for arbitrary function S, on a rectangular region « € (2o, Zend) , ¥ € (Yo, Yena) with Dirichlet

boundary conditions
A=g(z,y) (6.2)

on the boundary of the above rectangular region with g also arbitrary. Ideally, the genetic algorithm
will provide initial answers for a more exact solver to refine. Hence, we will first examine an existing
numerical solution routine from the NAG library, NAG DO3EBF [44]. This program is based on

matrix manipulation, and 1s described in section 6.1.1.

6.1.1 A Matrix Method Routine: NAG DO3SEBF

We can apply NAG DO3EBF to the solution of Poisson equations via the 5-point molecule finite

difference replacement of V2 on a square grid

1
VA el [Aij+1+ Aigrj + Aijo1+ Ay — 445 5] (6.3)
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where  is the distance between nearest gridpoints [37], i.e.

Aijy1
|
Ay — Ay — Aipg (6.4)
|
Aij-1
This routine solves a set of simultaneous (possibly nonlinear) equations of the form
MA=Q (6.5)

M is a N1 x Ny by N1 x Ns matrix and @) is a known matrix of size Ny x N by 1. The matrix A
is the same size as () and represents the unknowns. Such a set of equations can be generated by a
finite difference representation of a two dimensional partial differential equation and can therefore
be applied to solve (6.9) with boundary conditions (6.10).

In general we have a set of equations which may be written in the form
SijAij—1+tijAimy +uijAijer + i Air +wijAi; =g (6.6)

fori=1,...,N;,7 = 1,..., Ny where s,t,u,v and ¢ may depend on z,y and A. When any one of
the coefficients s,¢,u or v depend on any of the A; ;’s then (6.6) is a set of nonlinear equations in

A; ;. The system is solved iteratively, from a starting approximation 7 by the formulae

R"=Q-MT"
MS* =R"
Tt =T 4 S"

R™ is the residual error matrix of the n’th approximate solution 7", and S™ is the updating vector.
The user must supply the initial approximation 7 and the matrix M.

The boundary conditions are slotted in to @ via g; ; and for a source term linearly dependent
on A, % or %—‘; the matrix M is suitably modified by the required finite difference representation.
This may be most easily explained in terms of an example. Consider the Poisson equation

VA= A- g—i + 5sin (zy) (6.7)

The A in the source term may be accounted for by expressing it as A; ; and moving it into the
matrix M by changing the value of the coefficient w; ;. We can handle the partial derivative of

A similarly by using the finite difference representation 42 ﬂ%ﬁ—’. The sinusoidal source
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term can be expressed in the matrix @. With this equation the routine need only be called once,
and will generate an answer for the A; ;’s on the grid hence solving (6.7).

But if we have a source term nonlinear in A, %% or %—‘; then we have a choice as to how best to
represent and solve the equation. A common technique used to solve a set of nonlinear equations
is to solve the current set, say A}‘,;"“”"’”" with coefficients that depend on the previous iteration,
say A?'¢. Hopefully - although this is not guaranteed - the solution will converge, and converge to

something acceptable. The equation

VA = A2 (6.8)

may be implemented in at least two ways, following the method above of using a previous approx-
imate solution. One can express A2 as the square of the A; ;’s of the previous level: this means
that the matrix M is just the finite difference representation of V2 whereas the source term looks
like a function of z,y only, and not A: we have effectively changed the above nonlinear equation
(6.8) to the linear V2A = k; (z,y) at each iteration. for some function k;. Alternatively, one can
express A? as the product of the previously determined value multiplied by the unknown at the
grid point, A:-’”fA}"?k"""m. This resembles the linear equation V24 = k, (z,y) A for some function
ko.

Obviously the number of possible representations depends on the nature of the nonlinear source
term and it is entirely likely that different implementations may yield differing answers or indeed,
none at all.

This approach is very successful when both the source term and the boundary conditions are in
some sense, ‘simple’ for instance, constant source term and ‘smooth’ boundary conditions. However
in some cases, these routines have very great difficulty in converging to an answer, as is shown in

section 6.1.2.

6.1.2 Example application

Consider the following Poisson equation
V24 = A? (6.9)
on a square grid in Cartesian co-ordinates with boundary conditions

4sin (£ =-2,-2
4= 4 CE) (6.10)

4sin (%L) x=-2,-2
This system was implemented using NAG DO3EBF [44]. The square grid, lying in the region
—2< <2, -2<y<2, consisted of N; = 11 points in the z-direction and N2 = 11 points in the

y-direction. Following the advice given in the NAG manual [44], the initial approximate answer

was set to be T;;?j =0.
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Genetic A(xy)

Figure 6.1: NAG solution to equation (6.9) when set up as V2A = ka(z,y)A

Convergence is measured against two user set criteria, the NAG variables conres and conchn.
conres specifies the convergence criterion to be used on the maximum absolute value of the normal-
ised residual vector (matrix R in NAG DO3EBF - see section 6.1.1) components. The components
are normalised by the coefficient of A; ; stored in the array M when that coefficient is non-zero.
If the coefficient is zero, the residual is taken from the vector as it is.

The NAG variable conchn is the convergence criterion used on the maximum absolute value
of the change made at each iteration to the elements of the array T (see section 6.1.1 for more
details), namely the dependent variable.

The routine was initially run with conres = conchn = 0.1 x 10~°. The routine was set up to
successfully exit when both criteria were satisfied, as recommended. Only when (6.9) was set up
as V2A = ky(z,y) A did the routine write out anything even remotely sensible (see figure 6.1).
With the alternate representation V2A = ki (z,y) NAG DO3EBF exited containing an array of
non-numbers, indicating the complete collapse of the routine.

Both implementations did not work and both cases converged to unphysical answers for all
internal grid points 2 < ¢,j < 10. If we take the physical interpretation of the Poisson equation as
the temperature distribution in a plate then we see that the NAG derived answer must be wrong.

Varying the tolerances conres, conchn does not aid convergence. It may be that NAG DO3EBF
is seriously hampered by the initial guess: it is just not close enough to the final answer to allow

it to proceed. This is where a genetic algorithm may be useful in generating an initial guess.
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In the following sections we describe the features and philosophy behind the construction of

POISGEN, a genetic algorithm for the solution of Poisson’s equation.

6.2 Representation

As we are now working with a partial differential equation, the code length per candidate will
be approximately the square of the size of a candidate in ODE. We use a floating point number
representation of the genetic code. If we have zpoint points in the x-direction and ypoint points
in the y-direction (including boundaries) then each candidate contains zpoint X ypoint points,
although only (2point — 2) x (ypoint — 2) of these need to determined by the genetic algorithm,
the rest being boundary information. But along with the extra dimension, we must now decide
how to store the genetic code. In order to make good use of the existing code ODE, it was decided
to store the code in a similar fashion, as ypoint strips of zpoint points going in the x-direction

across the square grid, i.e., for a typical p’th candidate AY., 1 < i < zpoint, 1 < j < ypoint,

1,50
(where we drop the superscript denoting candidate number for clarity), the grid of points look like

Al,ypoint AZ,ypoint - - Azpoint,ypoint

Al,ypoint—l AZ,ypaint—l - - Azpoint,ypoint—l

T 1 e 1 (6.11)
A1,2 A2,2 - - A:r:point,Z
Al,l A2,1 - - A:l:point,l
The genotype is now formed from the x-strips
A1,1A2,1 o 'A:vpoint,lAl,2A2,2 o 'Awpoint,2 """ Al,ypointA2,ypoint v 'A:cpoint,ypoint (612)

As ODE performs genetic operations on an array of floating point numbers, the genotype above
is basically equivalent to that in ODE. The existing genetic algorithm mutation, combination and
breeding routines will not notice any difference. However, changes are required to the profiling

subroutine and the boundary condition writing routine, and are detailed below.

6.3 Weighting Operator

In analogy with the ordinary differential equation routine above, we implement a weighting function
via the finite difference representation of (6.1). The V2 term is easily handled via the five point
replacement of (6.3). Central differences were used in the expression of S when necessary. We

generate a fitting error R} ; associated with point A ; (the point (7, j) in the p’th candidate) using

1
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where Sf, ; 1s the value of the source term applied to the p’th candidate at the point (7, j), given
the finite difference representation of S and h = Fenizfe f = %. We can now calculate
measures of the fitness of each candidate. This are similar to those seen in ODE. The operator
(6.13) is only applied at internal points, 2 < ¢ < zpoint ~ 1, 2 < j < ypoint — 1. For this system
it is not necessary to introduce extrapolants to points outside the region of interest. Previously,
extrapolants were used to calculate estimates for 3’ and y” at the boundaries, and these values
were used to generate a measure of the fit of the candidate. This was as much a feature of
the original problem as the mimicry of conventional numerical techniques (over specification of

boundary information). However, in this problem we can assess the continuity of a candidate at

the boundary by other means.

zpoint—1 |ypoint—1

a= 3 | ¥ Iu (619

=2 j=2
This is a global estimate of the error of the p’th candidate, and is simply the extension into

two dimensions of (5.10).

zpoint—1 | ypoint—1 fl fl > 1, if i:?orxpoint-l
G = H H | R, | x or j=2orypoint-1 (6.15)

i=2 ji=2 X
1 otherwise

In the definition of {§ we attempt to measure the continuity of the p’th candidate, as well

as the number of well fitting points in the string. By multiplying Rf ,, R ;, R in,—; and

RE ini—1; by a factor fi we are increasing the penalty awarded to more discontinuous can-

didates. Hence, such candidates will have higher weights and will be preferentially discarded.

This favours the survival of candidates that are more continuous with the boundary.

3.
p_ j=1,ypoint P 1
43 - i:]l.’g‘%int I Rz,] I (6 6)

Again we extend (5.13) into two dimensions. This enables us to penalise those candidates
that have one large error that dominates the rest, making it difficult to relax to lower weighted

individuals

There is no direct analogue to (5.12) as we do not need to supply an initial guess to the gradient
of A on the boundary. Boundary continuity is examined in (§. We define an overall weight assigned
to the p’th candidate,

WP = qi1¢7 + q2¢% + 38 (6.17)

where ¢1,¢2,¢s and f; are at the users’ discretion.

100



6.4 Breeding, Mutation, Combination and Transcription Op-
erators

In ODE, there was an entire class of genotypic operator missing from the code that come under the
general title of transcription errors. These ‘errors’ form a vital part of POISGEN’s functionality.
When a DNA molecule is unzipped for reproduction, errors may occur. For instance, the copied
molecule may have one or more bases missing - deletion. Alternatively, the copied molecule may
have one or more genes repeated too often; this is known as addition. Entire segments of DNA
may also be swapped over with others. At other times, the order of a particular set of genes can be
reversed, which is known as inversion. Also seen is the random rearrangement of a set of genes in
the DNA. Crucially, these errors change the content or order of the information carried by the code
and by doing so maintain diversity of genotype (and hence phenotype) in the population [40, 45].
The following operators were included in the POISGEN code (see appendix A for more detail):

genes appearing in new positions are denoted by a o symbol.

1. Deletion

A randomly sized segment of code from a random point in the array is removed. The array
now has a chunk of code missing. Say for example the genotype consists of 10 genes and we

delete those numbered 6 and 7. The genotype now looks like
®; 830308, 0; — — 03090

We need two genes to fill the gap. The gap is filled by taking a copy of the material towards

the nearest end of the string and moving it along the string to fill the gap, i.e.,
®1 03 83 84 85 03 09 010 8981

This is done in order to combat the problem of the effective movement of boundary inform-
ation into the centre of the genotype. Although there is no guarantee that these genes will

be of any use, it does crudely move information to where it is needed.

2. Copying

This operation is superficially similar to deletion. A randomly sized segment of genotype is
copied and placed back in the array, in a position closer to the centre. Consider the example

below; genes 4 and 5 are earmarked for this operation.
copy
o1 03 03[0 05/ 0507050501 — o] @3 830, 0504 05 838981

Since we want to move genes towards the centre, genes 4 and 5 now take the place of 6 and

7, overwriting their values. If this were a deletion operation, 4 and 5 would be removed
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completely. We would have
deletion
o] ez 03[0 05] 0c 07 05000);  — @] 8501 03 03 @G 87 eg egeq

Deletion involves shifting the genes along the array from one end to cover up the deleted
region. Copying is implemented by only moving segments of genes towards the centre without

affecting the ends.

3. Inversion

A randomly selected piece of genotype of random length is inverted and placed back in the

same place in the array i.e.,

inversion
®) 0303 04 .5[.6 o7 .8.9].10 i ®) &) 838, 85 Og Og 07 0@
4. Mixing

The genes in a randomly sized piece of array are taken and rearranged in a random order.

miz
o) o °3['4 o5 05 07 '8’9]'10 — @) @3 83 O5 Og 0g O4 07 0@

5. Swap

Two randomly sized pieces of code from non-overlapping regions in the genotype are swapped

intact without any further operations acting on them such as mixing etc.
swap
01[02 o3 04] o5 oG o7 [‘8 o9 ‘10] — @] 08 Og 010 @5 @5 @7 O3 O304

It was found that these operators constituted an important improvement in POISGEN’s per-
formance when coupled with a code re-ordering on entry to the transcription subroutines.

We have chosen to represent the genetic code in such a way that we can use the existing code
ODE with the minimum of refurbishment, and in doing so we have imposed a directionality on the
code. The normal code order is that described by (6.12). Hence, the transcription operators can
only shuffle material along one direction. This reduces their efficacy, as their is no reason in the
general case why one direction should be preferred over another in the true solution. On entry to

the transcription subroutines, the program randomly decides to re-order the code to
A1,1A1,2 te Al,ypointA2,1A2,2 e A2,ypoint """ A:z:point,lepoint,2 T ‘A:z:point,ypoint (618)

This allows the transcription error operators the chance to move genes around in both directions,
increasing gene mobility and genotypic variability. On exit, the code is decrypted back to the
normal form of (6.12). The weighting routine only accepts normally directed code of the type

shown in (6.12).
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Care must be exercised in generating individuals with the correct boundary conditions as the
information now no longer appears simply at either end of the string: the boundary information
is written into the array at the correct points.

The mutation and combination operators described above for ODE can be carried over without
change to POISGEN, as these merely act on the genes, regardless of what they mean to the solution
of the problem, i.e., they are blind to the origin of the genetic code. For a uniform distribution of
mutation (or combination) operations in the code, there is a chance that the boundary information
will be altered. Obviously, such an individual cannot be permitted to exist in this form and
remedial action must be taken. Therefore, before a weight is assigned to each individual, the
boundary information must be overwritten into the code at the correct place. This is done after
the transcription operations have taken place, as although incorrect for this point in the code, a
gene not very different from the boundary genes may be useful, especially near the boundary.

ODE breeds children using one point crossover (see section 5.3.3) by copying the relevant genetic
material from each parent into a new entry of the population array. It then assigns a weight to

the child. The program stores the entire population in memory at all times.

6.5 Convergence strategies

The techniques used for varying the content (section 5.3.4) of the gene pool remain largely the
same as in ODE. Where and to what extent they are used is based on experience gained while
using the program. Since the routine is still at an experimental stage it should be understood that
the current listing is a snapshot of a program in flux. The major new features as compared to

ODE are described below.

1. The population is seeded by a special individual calculated via the boundary conditions.
A straight line is calculated between opposing pairs of boundary points. For instance, the

straight line joining A;,1 and Ajypoine is given by vi(y;) = A1 + 77520 [Aiypoint — A

Similarly, for points A, ; and Agpoint; we have w;(z;) = A1 ; + x—”:;d_—fg; [Azpoint,j — A1)

This allow one to define the internal points of the special individual as

Afp~edal _ v;(y;) + wj(=i) +Rx highbdry — lowbdry]
i 2 frac

where 2 < 7 < zpoint and 2 < j < ypoint. R is a random number between —1 and 1 and

frac > 1, a scaling which allows one to control what fraction of the range of gene values.

highbdry and lowbdry are the maximum and minimum permitted gene values respectively

(see appendices A, B for details). This acts as a seed from which the algorithm can start to

evolve more advanced individuals.
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2. The breeding population replacement routine tweak is kept intact with only minor changes

to allow for the larger size of this new genotype.

3. POISGEN uses the strategies of ODE detailed in section 5.3.4, but with some important
changes. Those strategies that changed gene values (aside from replacing the entire popula-
tion) all used a geometric creep to effect this. In POISGEN, the same strategies are used,
but a random choice is made between using a geometric creep or an arithmetic creep. This

was found to aid convergence rates, as we have access to another important operator.

4. Decision making.

POISGEN has a subroutine called decide (see appendix A) that allows the user to set
tolerances for the activation of convergence strategies. After a fixed number of iterations,
the subroutine is called which takes stock of the recent behaviour of the routine. The other
convergence strategies are called while the routine is still iterating to an answer. This routine
looks at a finalised answer and decides on what course of action to take. If the answer is
not good enough, it takes the breeding population 2 — npar and adds a small amount of
random ‘noise’ over the entire genotype. This is set to be a fraction of the difference between
the highest and lowest gene values in the current genotype multiplied by a random number
between —1 and 1. The noise is therefore scaled to each genotype. Additionally, some of
the previous strategies are implemented at this point but with larger values of the permitted
range of variation. This is done in attempt to introduce some bigger gene variations in the

population outside the main loop.

If the answer is within the set tolerances, then the point resolution along each direction
is doubled. For the doubled genotype, a new set of tolerances are required to control its

evolution.

5. The worst point in the best candidate is also treated here. This time four copies of the
best are made, each having the points around it (see four-point molecule (6.4)) as well as
the point itself changed. This was done to recognise the fact the points surrounding a best
point contribute to its fitting error to some extent. Hence the fit at a particular point can

be improved by making changes to its neighbouring points.

6.6 Experimental Results and Algorithm Behaviour

Again, it is unreasonable to expect that a random technique will give us perfect results every time.
To aid the assessment of results, we introduce some numerical measures POISGEN’s performance.

The quality of each answer was measured using the extension into two dimensions of the arithmetic
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Boundary of Domain

Domain of Dependence

Genetic/b(ag Values

determine id in here

Value of A on the boundary

is given by the user

Figure 6.2: Region of dependency for equations (6.21) to (6.25)

and geometric means (5.15), (5.16).

1 xpoint—1 ypoint —1
. true Adalgorithm 6.19
i = (xpoint —2) (ypoint —2) - p *7 (6.19)
i= 7=2
xpoint—lypoint—I
algorithm
IAL6- A (6.20)

\ i—I 7=2 !
where 7 = (xpoint —2) x (ypoint —2). The values Aj™e come from either the analytic solution or
NAG routine DO3EBF, fed with the genetic answer as an initial guess, or with zero initial guess,
as specified. Note that these are absolute errors and measure the average distance between the
true solution and the genetic answer.

Although these are all crude measures they do give an idea of both algorithm performance and
the features inherent in the equation chosen: for example, the sizes of the numbers involved and the
difficulty of the equation. Below is a list of some equations tackled by POISGEN: each of them was
solved on the region of space displayed in figure (6.2). Unless otherwise specified, POISGEN first
calculates an answer with xpoint = ypoint = 6 and then doubles to xpoint = ypoint = 11. The
program was run using lowbdry = —I10, highbdry = 10: this defines the minimum and maximum
gene values possible (see appendix B for details). Evolutionary histories are not quoted in general,

but some examples are shown.
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ANy)

NG A(x,y)-Genetic

0.0002

Figure 6.5: Difference between (6.3) and (6.4)

V2A =0, A = 2on all boundaries (6.21)

Errors: £ = 2.40 x 10~4 £2 = 0.0

See figures (6.3),(6.4), (6.5) and (6.6).

One can see at a glance that the genetic answer (figure (6.3)) appears identical to the analytic
answer (figure(6.4)), .4 = 2 everywhere. The difference between the two, shown in figure (6.5),
bears this out, as do the error measures. (Machine precision was exceeded in the second error
and therefore zero was given). That they are so close is very encouraging. This shows that
the routine has promise, but this should be tempered by the fact that equation (6.21) is a

very simple Laplace equation.

An obvious feature in the difference between the two solutions is the increase in error as
we move away from the boundaries, exactly as expected. Hence we will expect most of the
difference figures to peaked approximately in the middle of the region. This also denotes the

region where the algorithm has the greatest difficulty in finding good points.

By using a floating point representation, the smallest permitted deformation to each point
is limited by machine precision: this means that evolution - by evolution we mean the

emergence of a candidate with a lower best weight - may proceed by smaller increments. It
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is not necessarily true that a small change to a gene value leads to a small change in the
weight of that candidate. But for most points away from the boundary, this is approximately
true. Hence evolution may proceed in jumps smaller than previously available when using

the GENODE representation.

The evolutionary history is shown in figure (6.6).

exp{y—1), ifl<y<2,z=-2
VA=A, A=X exp(le|-1), if —2<z<-1,y=2 (6.22)

1, everywhere else

Errors: €1 = 1.56 x 1072 £, =9.79 x 10~2

See figures (6.7),(6.8) and (6.9).

Equation (6.22) is slightly harder than (6.21), being a Poisson equation with nonconstant
boundary conditions. POISGEN’s performance is very good: there is a small absolute dis-
tance between the NAG and genetic answers. Again, the worst errors are towards the centre
of the region. The equivalence of problem difficulty in both directions is also demonstrated
in the relatively symmetrical distribution of error. Examination of the difference between the
NAG and genetic answers shows that close to the peak in A, the error is the least, suggesting
that the high boundary weighting is working well with the relatively high value of the peak
as compared to the rest of the surface. The NAG routine also had no trouble obtaining this
solution, as expected. This particular answer was generated using the coding V24 = Aff;-i
- see section 5.1 for details. When the NAG answer is submitted submitted to POISGEN
a very small weight is generated - very much less than 1. This indicates that we the NAG
routine is generating good answers we can trust. If the NAG routine answer gave a ‘large’

non-zero weight then this would indicate a poor NAG supplied answer.

V2A =zy, A=3on all boundaries (6.23)

Errors: ¢; = 2.80 x 1072 &5 = 2.01 x 10~2

See figures (6.10),(6.11) and (6.12).

This is an inhomogeneous problem, and again, POISGEN shows no great difficulty in finding
a very close answer within 2000 iterations. The answer is symmetrical, as are the point by

point errors in figure (6.5); this is merely a reflection of the symmetry in the original problem.
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4sin (%), ify=-2,2

ViA=1zy, A=
4sin (%), ifz=-2,2

(6.24)

Errors: €7 = 0.144 €5 = 0.102

See figures (6.13),(6.14) and (6.15).

This is the most demanding problem yet considered, and this shows up in the error measures.

The measured errors are beginning to become significant, even although the two solutions

look quite similar. Again, the NAG supplied answer yielded a very low (& 1) POISGEN

weight, indicating a genuine solution. Figure (6.15) tells the story; symmetrical and large

errors exist at all nonboundary points. This indicates a feature of genetic algorithms applied

to differential equations first mentioned in chapter 5, namely, the shape finding qualities of

the program. The general shape is similar to the true answer, but the actual values are not

particularly accurate. However, this does suggest that we are on the right track for using

genetic algorithms to find approximate solutions to more difficult Poisson equations.

4sin (%) , fy=-22

(6.25)
4 sin (121) , ifz=-2,2

WA:ﬁ,A:{

Errors: ¢, =0.952 £ =0.434

See figures (6.16),(6.17), (6.18) and (6.19).

There are several features to this problem that make it an interesting example.

(a)

(b)

It seems to be a relatively difficult problem to solve. The NAG routine failed completely
for implementations equivalent to V2A = k;(z,y)A and V2A = ko(z,y) (for some func-
tions ki, k2 - see sections, 6.1.1, 6.1.2 for more detail). Changing the various parameters

in the NAG routine did not help in finding a solution.

The evolutionary history (figure (6.19)) also reveals the difficulty of this particular
problem: there is a very high initial best weight (the first 10 weights have been omitted
as they beyond the range of the plotting program) which drops quickly to less than 100.
From here, evolution is slow and shallow, indicating that this candidate is relatively
stable. On doubling the point resolution, the best weight increases by 6 orders of
magnitude: this reflects the large number of new and relatively unfit interpolated points
that have been created. Obviously, the more points we have, the greater error we are

likely to have. Again, evolution is initially very fast and the best weight falls to about
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300. A flat phase is encountered, broken only by the emergence of a noticeably fitter

candidate at about 1420 iterations.

(c) After 2000 iterations, POISGEN generated the candidate solution shown in figure (6.16).
This was then supplied to the NAG routine as an approximate initial guess. This ‘guess’
was good enough for the NAG routine to proceed, the result of a which is shown in figure
6.17.

However, when this answer (figure 6.17) is resubmitted to the genetic algorithm we find
that it has a large enough non-zero weight associated with it for us to state that this
is not the final answer. POISGEN generates an initial approximate answer of typical
weight 160 (see figure 6.19) for 11 x 11 grid points. When NAG returns an answer
having been given the genetic answer as an initial guess, the weight as measured by
POISGEN (keeping the weights constant - see section B.1) is typically less by about 20.
Therefore, the NAG routine has improved the solution, but not by very much. Although
NAG appears to successfully complete the problem, this cannot be so, because if it did,
the weight assigned to it by POISGEN would be substantially lower than the original

genetic guess.

A more detailed examination of the NAG answer is required. If one examines the residuals
calculated by the NAG routine in the problem, then one finds an oscillatory behaviour. Typically,
the NAG routine initially generates residuals of the order 0.1 — 10, which fails the ‘successful
exit’ criteria. However, as the iterations continue, the error measures in both the residuals and
maximum change drop dramatically to below the exit criteria set by conres and conchn. This
is what triggers the apparently successful determination of an answer. As the routine progresses,
the convergence measures increase again to values greater than 10°°. From now on the routine
oscillates between satisfying the convergence criteria and grossly exceeding them.

It is evident that this is a very difficult problem, and that the NAG routine does improve the

solution, but not by as much as expected.

6.7 Further comments on the genetic solution of Equation
(6.25)

Figure (6.18) reveals how much different the genetic and NAG derived answers are. There are very
large errors present, yet they were small enough to permit NAG to continue. This indicates that
the solution set A?fj”’ge"e”c is ‘close’ enough to a solution of the nonlinear equations represented
by (6.25) to permit standard numerical techniques to continue. Therefore there is no question

that the genetic algorithm is generating spurious answers - if one accepts that an answer to (6.25)
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can be reasonably represented by the point to point nature of a finite difference technique. The
genetic algorithm is merely solving a set of nonlinear equations arising from the finite difference
representation of (6.25). Therefore, the same caveat applies to these solutions as applies to all
finite difference answers.

This effect is amply demonstrated by the results described in figures (6.20), (6.21), (6.22) and
(6.23). These were generated in attempt to solve (6.25) again, but this time with a different range
of permitted A values, as governed by the program variables lowbdry, highbdry (see appendices
A,B for more detail). With lowbdry = -5, highbdry = 5, POISGEN generated (6.20).

Although very similar to the earlier solution there are a number of differences. Firstly, the range
of gene values is much less than in (6.16): for instance, there are regions where A > 4 in figure
(6.16), whereas no such values exist in (6.20). At first sight, these are truly different solutions to
the same equation.

This may be possible, as we are attempting to solve a nonlinear problem: it seems that by
reducing the range of values to search through we appear to have found another set of numerical
values that solve the nonlinear problem set, both of which were unobtainable by NAG alone.
Figures (6.23) and (6.22) also show the difference between this program run and the previous one.
The best weight drops quickly to lower values which, and on point resolution doubling, the best
weight jumps by only one order of magnitude. This may be attributed to the lower un-doubled
weight, coupled with the lower range of gene values. Evolution is then remarkably steady, showing
that the genetic algorithm is steadily improving the candidate. The error values in (6.22) are also
far lower than in (6.18). This indicates that the genetic solution represented by figure 6.20 is in fact
closer to the final NAG answer than that obtained previously with lowbdry = —highbdry = —10.

The same answer was produced when each of these candidates were fed to the NAG routine
DO03EBF. The final answer is shown in figure 6.21. This is a rather important feature of this genetic
algorithm: it seems to find an approximate answer almost independent of the range of gene values
permitted.

This leads to a very interesting question in this particular application of genetic algorithms. The
original run had lowbdry = —highdry = —10 and therefore included the possibility of determining
the genes of the second run with lowbdry = —highdry = —5. If this is so, why did the algorithm
choose one and not the other? It may be that the original population was biased in such a way to
prefer the creation of higher valued solutions and so the genetic algorithm would then enhance this
bias. Or it may be that the higher value solution is somehow ‘preferred’ over the other, and that
unless the range is restricted, one will never see alternate solutions. This means that the higher
value solution is acting as some form of attractor for the algorithm.

Whether the solution finally generated has anything to do with what is meant physically by
A is another question, and is one that will not be addressed here. That the POISGEN solution
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was good enough to permit NAG to continue vindicates the application of genetic algorithms to
partial differential equations. Although the NAG routine is much faster in finding an answer, its
performance is dramatically disabled by a poor initial guess, or by a difficult equation. We can

use POISGEN to home in on an answer, and then let NAG polish it off.

6.8 Summary and Conclusions

In chapters 5 and 6 we have developed genetic algorithmic solutions to two commonly occurring
differential equations based on the techniques originally implemented in the FORTRAN77 code
GENODE. We have shown that it is feasible to use a floating point genotypic representation,
coupled with an expanded range of possible genetic operators to solve Poisson’s equation. The
resulting program POISGEN can be used as a stand alone solver, or as an initial guess provider for
more accurate routines. It was found that POISGEN generated answers that were consistent with
other methods, although not as accurate. It was also found that in one particular case (equation
(6.25)), no accurate answer could be generated by either POISGEN or NAG DO3EBF. The NAG
routine did manage to improve the genetic answer in this case, suggesting that a solution to the
finite difference equations representing (6.25) does exist.

The major benefit inherent in this approach is its independence from matrix manipulations
and/or geometric techniques. These methods can give rise to unrealistic solutions due to numerical
instability. Genetic algorithms offer the possibility of increased stability, but at the expense of
accuracy and time. Badly fitting answers are simply thrown away; their poor genes are not allowed
to propagate into further iterations. In more traditional methods, numerical errors can propagate
disastrously into higher itearions, creating spurious answers.

The time taken to generate a ‘reasonable’ answer is the biggest factor weighing against the
application of genetic algorithm’s to differential equation’s. This was especially noticeable in the
re-design of ODE to create POISGEN. POISGEN had to be run on SUN/SPARC workstations in
order to generate answers in a reasonable time, whereas both ODE and GENODE may confortably
run on PC’s. This was largely due to the much increased length of genotype and to the more

sophisticated convergence strategies used.
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Figure 6.6: Evolutionary history of fig.(6.3)

Figure 6.7: Genetic solution to eqn.(6.22)
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NG A(x,y)-Genetic
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0.00

Figure 6.8: NAG routine solution to eqn.(6.22)

Figure 6.9: Difference between fig.(6.7) and fig.(6.8)
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NG  A>(x,y)-Genetic

0.00

Figure 6.12: Difference between fig.(6.10) and (6.11)

Figure 6.13: Genetic solution to eqn.(6.24)
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Figure 6.14: NAG routine solution to eqn.(6.24)

Figure 6.15: Difference between fig.(6.13) and fig.(6.14)
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Figure 6.16: Genetic solution to eqn.(6.25)

Figure 6.17: NAG routine solution to eqn.(6.25)
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Figure 6.18: Difference between fig.(6.16) and fig.(6.17)
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Figure 6.19: Evolutionary history of figure (6.16)

119

2500



Figure 6.20: Genetic solution to eqn.(6.25) with different range of gene values loiubdry =

—highbdry ——5

Figure 6.21: NAG routine solution to eqn.(6.25) with different, range of gene values lowbdry =
—highbdry = —5
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Chapter 7

Future Work

The work of this thesis splits into two sections, genetic algorithms and field aligned flow. Genetic
algorithmic techniques for the solution of differential equations were developed out of a need to
generate better initial guesses to solve an equation in field aligned flow, aside from their intrinsic
interest. As this application of genetic algorithm’s is relatively new, there are several interesting
routes down which research could go. Also, both time dependent and time independent field
aligned flow appear to offer some unusual features (a possible acceleration mechanism and unusual
field topologies, respectively) that are worthy of further study.

There are a number of ideas that may be explored in relation to the work already carried out.

Some of them are listed below, in various states of genesis.

7.1 Field Aligned Flow

7.1.1 Computational Solutions

Computational methods have not been applied in this thesis in great detail, aside from the develop-
ment of genetic algorithms. An outstanding problem that may be only accessible via computation
is a solution to equation (4.32). This would be a valuable addition to our knowledge of time
dependent field aligned flow. However, this is an example of one the trickiest type of equations
to solve [7]: a nonlinear hyperbolic partial differential equation. Stability is a problem with such
equations and care will be needed to ensure that reasonable solutions are generated. Fortunately,
the special case of B(z) = constant can be used as a guide. It is difficult to predict what the
solution will look like: 3 is a space dependent time scale that also includes the ‘amplitude’ of the
solution. This suggests that the wave will evolve in a more complicated fashion with time. It is
unclear what this will do to the presence of the singularity currently observed in the analytic case.

More generally, a simulation of the 2-dimensional magnetohydrodynamic plasma described in
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section 2.4 would give important insight into both the situations we have considered analytically
and to more realistic geometries, such as jets and magnetotails. As has been seen, the geometry
plays a vital part in exact field aligned flow, and it would be interesting to model, say an arch of
plasma in cylindrical polar co-ordinates with field aligned flow. Again, this may be the only way

forward to solve (2.38).

7.1.2 Analytical Work

In this thesis we have in the main, considered only exact field aligned flow: no deviation is permitted
and hence by the induction equation the magnetic field may not evolve in time. Obviously, this
is quite a major restriction if we want to apply field aligned flow to a real situation, as it is very
unlikely that a plasma would be purely field aligned. Hence it is natural to consider flows that
are predominantly field aligned, but not exactly. Any non field aligned component means that the
total field must evolve in time. This will add another, convective time scale to the problem. It
may be that certain field aligned configurations can persist with a small non-parallel component.
Questions like this could be answered by a perturbation analysis combined with a linearisation
procedure.

The question of stability is an important one, particularly in connection with the singularity
described in chapter 4. It seems intuitively reasonable to suggest that the plasma would not
suffer the creation of such a feature, and that some other process would take over to mitigate this
singularity. It seems most reasonable to tackle this problem by including a new term in the model.
Following previous work, and guided by physical processes, consideration of a compressible plasma
would be the next step. This may allow the material to pile up at a (moving?) point in the fluid,
removing the infinite velocity. Alternatively, perhaps the inclusion of another time or space scale
- via magnetic diffusitivity or fluid viscosity - would again give the plasma an avenue of escape,
rather than becoming singular. The prospect for analytical progress looks best if we consider these
effects to be small perturbations to the system at present. The inclusion of resistive effects in a
field aligned system would have an important tie-in with reconnection work (both analytic and
computational) and the concept of negative inertia (see sections 2.3.2 and 2.3.3).

Recently, we have found that some field aligned flows can generate nonlinear Alfvén waves,
propagating in the r, 8 plane, but with field components perpendicular to it.

We start with the basic equation set describing the plasma, equations (2.20)— (2.23). In all
previous work, we confined attention to the 7,6 plane. Suppose now we describe the system by
setting:

B—-B+b, U—>U+w,

The new components to the magnetic field and velocity fields are w = wz and b = bz respectively.

B and U are the magnetic and velocity fields in the plane. Incompressibility demands that w is
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a function of r and 6 only; similarly the Maxwell equations demand that b = b(r,8). It turns out

that the resulting equations may be split up into two parts: a set describing the behaviour in the

plane
0B
W + (UV)B = (BV)U (71)
au .
W-I-(U.V)U:—vp-f-JXB—JXb (72)

and another describing the z-direction

%; +(U.V)b = (B.V)w (7.3)
%? +(UV)w=jxB (7.4)

where j = V x b and J = V x B and we have set p = 1 and po = 1. These equations are, at the
moment, very general. Suppose we are given B and U, then we can solve for b and w. Let us

assume that

b
Viop

which is true for an Alfvén wave. Since j x B = (B.V)b, equations (7.3) and (7.4) become identical

W =

and equal

ot

a linear hyperbolic equation for w. If we impose the field aligned flow condition (equation (2.35))

[ﬁ + U.V] w=(B.Y)w (7.5)

then the equation takes on a form
(7.6)

We have re-expressed (7.5) as a scalar equation. Although it is a linear equation (soluble by the
method of characteristics [46]), the waves it describes are not ‘linearised’ because at no stage in the
analysis have we specified any particular size to w. The system supports these nonlinear Alfvén
waves [34]. We have yet to include the effect of the ‘feedback’ term j x b in equations (7.1) and
(7.2). This will change the values of U and B in the plane which will in turn change w.

The appearance of these waves and their subsequent effects for the system are certainly worthy

of further investigation.

7.1.3 Modelling

We have only scratched the surface in applying field aligned flow to feasible, physical geometries.
As has been noted above, curved geometries may provide regions of interest for solar physics.
This may be best tackled computationally. Even within the confines of the Poisson equation
developed in chapter (6), there is room for manoeuvre. One area in need of improvement is the

boundary description. It may be more realistic to describe the region with Robbins type boundary
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information. On the upper and lower sides of the regions of interest we could set g—‘: = 0, which
would kill off the y-component of B, reproducing the y-directed components without fixing a
magnitude to A at the boundary.

Solutions involving f nonconstant are harder to compute, but may be more realistic from a
modelling point of view. An interesting route to explore would be solutions to the fields allowed
by f = f(t). Ast — oo, f — +1. At f = %1 exactly, the original equations state that any
choice of B is permitted. This is not true when f — %1, as the time dependent flow function
introduces a condition of the magnetic field (see section 4.2.3). Therefore, there is something
particular about these fields: in the limit, they are just like another with f = 41, but they have
arisen from considering a more complicated problem that tends to an easier one. It may be possible
to first write a genetic algorithm to obtain some feel for the analytic solution of the field governing

equation (4.7), and then let more accurate methods take over.

7.2 Genetic Algorithms

It has been shown that genetic algorithms may be useful in generating approximate numerical
solutions to traditionally difficult Poisson equations. These rough solutions are generally good
enough to allow standard numerical techniques to calculate an accurate answer. There are very
many directions that may be taken to extend and improve the application of genetic algorithms to

differential equations, and some are listed below.

7.2.1 Extensions to POISGEN

There are a number of ways in which we can extend the existing code.

1. Meta-Genetic Algorithms

POISGEN is an example of a complex, multi-parameter system (see appendix A,B) with a
not easily described behaviour. The optimisation of its behaviour could be performed by
using a meta-genetic algorithm to find an optimised set of parameters for use in POISGEN.
With a genotype consisting of POISGEN parameters and each genotype being used to run a
copy of POISGEN weights would be assigned according to how well each copy reproduced
the solution (whether analytic or NAG defined) equation. Such a genetic algorithm would
be computationally expensive to run, but may be worthwhile to obtain better performance

over a wide range of problems.

2. One obvious extension is to rewrite the code to solve Poisson equations on differently shaped

regions in different co-ordinates systems i.e., cylindrical polars.
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3. POISGEN solves the Poisson equation for Dirichlet boundary conditions (6.2). One could

extend the problem to Robbin’s boudary conditions,
0A

on the boundary 0R of a region R. Here % refers to differentiation along the normal directed

away from the interior of R.

7.2.2 Alternate Solution Representations

In both ODE and POISGEN we have used a finite difference expression of the relevant equation to
generate an approximate solution. This was done as it allows singularities to develop in a solution,
should any be present. Therefore, this representation is the most general. However, it is not the
only way we can describe a solution.

A function can also be described as a weighted sum of orthogonal functions, over the desired
range. To discuss this implementation properly we must introduce some definitions [47]. The
inner product of two functions ¢ (z) and ¢ (z), bounded and integrable over the range a < z < b
is defined as )

6.9)= [ p@6@)¥(@)ds
with respect to a weight function p(z) > 0in @ < z < b. Commonly, p(z) = 1, but this is not ne-
cessarily true; for instance, Chebyshev polynomials of the first kind have p (z) = (1 — :cz) -z, The

inner product is clearly symmetric, i.e., (¢,%) = (¥, ¢). Two functions are said to be orthogonal

on the interval a < z < b with respect to the weight function p (z) if

(¢,9)=0

A set of functions ¢, k = 1,2,... form an orthogonal set if

(6%,¢5) =0, k#j (7.8)

The norm of a function ¢ is defined by

¢ ll= V(¢ ¢)

If || ¢ ||< oo then ¢ is said to be square integrable. Also, ¢ may be normalised by defining a new
function ¢ = ¢/ || ¢ |-

Given an orthonormal set of square integrable functions ¢; and a square integrable function
¥ (z) over a < z < b then the numbers (¢, #x) may be called the Fourier coefficients of 1 (x). The

formal series

¥ (e) = (¥, 61) ¢x (7.9)
k=1
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is called the Fourier series of 9. Commonly, Fourier series refer to an expansion in trigonometric
functions, but we can generalise this meaning to the expansion of a function in terms of a set of
orthonormal functions.

We can of course apply this to the solution of ordinary differential equations, and from there,
design a suitable genotype for a genetic algorithm to work with. Consider the ordinary differential
equation boundary value problem we used in the code ODE (see section 5.3). We can substitute
the expansion (7.9) into (5.2). Writing Ax = (¢, Ysolution) We get
2

Cs(z) Y Aegr| = Ca(z)

k=1

D ArdL+Ci(2)d ] Ardh +Ca(2) D Ardr +
k=1

k=1 k=1
The unknowns are the numerical values of A, the Fourier coefficients, and it is this that forms the
genes for the genotype. Obviously, the genetic algorithm cannot use an infinite number of genes,

so we truncate the series at some upper limit n, using

as the genetic code for each individual. Choosing Fourier coefficients as genes differentiates between
genotype and phenotype, a distinction blurred in most of this thesis. The translation between the
two is encapsulated in the Fourier decomposition used to encode y as a series of orthonormal
functions.

We can generate a local error at each point z; in the range for the p’th candidate

n
RE = Abxe (z:) +
k=1

Cs(z:) ) AL (xi)l — Ca (i) (7.10)

k=1

where xi (2:) = ¢4 (2i) + Ci(2i) ¢ (zi) + C2 () dr (zi). A weight can be assigned to each
candidate in a very similar way to section (5.3.2) by generating separate measures of fitness and
combining them: we can keep the sum, product and maximum error measures as defined above,
but we must treat the boundary conditions differently. From (5.3), y(zo) = Yo,y (Zend) = Yend-
At the left hand boundary, for instance, we must have yo = 3 ;_; Axéx (z0), and similarly for the
other boundary. Therefore, for genes in the p’th candidate we should define

S

)

Yo — ZAZ% (zo)

k=1

€5 = function of

Yend — 3 ALk (Tena) (7.11)
k=1

For a suitable function, this should penalise candidates discontinuous with the boundary. A weight
WP can de defined, completing the required elements for a genetic algorithm.

There are disadvantages with this representation. It is not quite as general as the previous
scheme, as it may have trouble trying to describe a single (non-infinite) spike in the solution. Also,
it may be that the most important component in the expansion is at high n and the genotype

may never be long enough to contain it. This is tempered by the analytic result that (¢,¢) — 0
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as k — oo. and hence higher components provide smaller contributions to the overall expanded
series. Also, since the proposed scheme does not explicitly write the boundary conditions into the
genotype, then we can expect the fitting errors generated here to be somewhat more important
than in the finite difference scheme. Again, this effect can be mitigated by making the penalties
associated with eg as defined above very high, choosing those parents that best fit the boundary
conditions.

However, it is not all bad news. A major advantage should be the global nature of the orthonor-
mal functions, compared to the necessarily ‘local’ character of the discretisation approach. Each
of the orthonormal functions span the entire range of equation dependence, and hence the corres-
ponding Fourier coefficient approximates the solution everywhere. The discretisation procedure is
purely local which can cause problems when generating a fitting error at each point. This can be
explained by episiasis [48] , which is the effect of one gene on the expression (in the phenotype)
of another. This effect can be particularly severe in both ODE and POISGEN and can fool the
routine into propagating poor genes. This is because both codes rely on next nearest neighbour
interaction to assess fitting errors. If by chance, the 7’th gene has two neighbours that happen to
give a low value of R even although when compared to the true solution they are very poor, then
gene i in the p’th candidate will be judged to be ‘good’ and will therefore have an improved chance
of surviving to the next generation. The finite difference genetic algorithm technique relies on the
efficient propagation of boundary information into the genotype to compensate for this effect.

There should be no interaction of this type between neighbouring genes in this new scheme,
guaranteed by the orthogonality of the expansion functions. There are also a large number of ortho-
gonal function sets to choose from, which could make a big difference to the length of the genotype
and therefore convergence times. Such a program could also be easily modified to decompose, say,
experimentally derived data into a Fourier series of trigonometric functions.

Extending into a Poisson type problem using a suitable Fourier decomposition would follow
much the same lines. It is envisaged that these programs would be used with other routines, either

as decomposition programs or straightforward equation solvers.

7.2.3 Other Differential Equations

Of the three types of partial differential equation, we have tackled only the elliptic type. Parabolic

and hyperbolic equations are fundamentally different equations.

ou  O%u
8u  8%u
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either as initial value problems, or as boundary value problems. A possible hyperbolic scheme
involves generating an implicit finite difference scheme for the next time step, using the previous
time levels. The coefficients would depend on the values in the previous time level. One could
use a genetic algorithm to determine a rough solution, and then let a traditional solver finish
the job. This hybrid technique would combine the best of both worlds - an accurate solution to
the equations representing the partial differential equation in a reasonable time, free from gross
numerical instability.

Another, perhaps even more important class of problems that we can examine genetically is
the system

dyi _
E—fz(

z,y;), 1<i,j<n (7.14)
a set of n > 2 ordinary differential equations in the independent variable z. A study of this system
would also aid the study of hyperbolic/parabolic equations, and would yield important information
on the effect of epistasis, which was cited as a major concern above.

The solution y; to each equation depends on the other equations, which is very important from
a genetic point of view. The problem of epistasis now becomes much worse as genes (points) from
different genotypes must necessarily affect the viability of candidates. This is like saying that your
health depends on the health of your neighbour. This problem also raises some difficult questions
on how to view the set i.e. is it best approached as n separate but interacting populations, the
best individuals from each representing the best overall solution. Or perhaps the best method is to
simply concatenate the points required in each equation and call this the genotypic representation.

It is however, a very open question at present: the only way to find for sure is to try it out!
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Appendix A

POISGEN: listing and

documentation

A.1 Outline of the code

A.1.1 Developmental History

POISGEN is a FORTRAN 77 code designed to solve Poisson equations by genetic algorithms
on rectangular regions using a Cartesian co-ordinate system. It is largely based on a previously
written code, an ordinary differential equation solver, ODE, which was itself inspired by [38]. The
method is explained in greater detail in chapter 5. It was developed initially on a PC running
SALFORD FTN77, and then refined on SUN/SPARC workstations. It is however, still very much
in its infancy, and should be regarded as an research tool to test the feasibility of the application
of genetic algorithms to differential equations. Many of the routines described are experimental,
and are included because they seemed like a good idea at the time. The code is not optimised in
any particular fashion, but is written in as modular a fashion as possible to (hopefully) allow easy
reading and modification. There are also a liberal number of comments sprinkled in the code to
aid understanding of its functionality.

The program may be sectioned in three parts. The first part describes the genetic algorithm
itself by calling on various routines later in the code. This part controls the behaviour of the entire
program. The second, and bulkiest part, implements the required genetic algorithm behaviour: it is
here that the actions of mutation, breeding, sorting, etc. are actually performed on the population.
The final part describes the equation we are trying to solve, that is, the boundary conditions and

source term.
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Variable Name(Size), Type Description

npar, integer Number of breeding parents per generation

nchild, integer Number of children bred per generation

zpoint, integer Number of points in x-direction, including
boundaries

ypoint, integer Number of points in y-direction, including
boundaries

npoint, integer npoint = (zpoint — 2) x (ypoint — 2)

Total number of points(genes) per candidate
y (1000, 1000),real array Genes of the entire population
y (n, i) holds the #’th
point of the n’th candidate
weight (1000), real array weight (i) is the weight of the ¢’th candidate
highbdry, real maximum permissible gene value

lowbdry, real minimum permissible gene value

Table A.1: Some POISGEN variables

A.1.2 Important variables

Some of the most important program variables are listed in Table A.1. The time taken per
generation varies as npoint which in turn depends on zpoint,ypoint. These variables govern
the overall speed and behaviour of the algorithm. The variables npar, nchild, zpoint, ypoint are
user defined and loaded into POISGEN from the input file GA.IN (see appendix B).

The program has a maximum upper capacity, limited by the size of the y array. Currently,
the program runs with npar + nchild < 1000 and npoint < 1000. This memory limit was set by
the PC that POISGEN was originally developed on. Computation time is roughly proportional to
npoint X (npar + nchild). However, a large population of coarsely grained individuals will tend to
outweigh the benefits of a population of more finely grained individuals (see comments on point

doubling in chapters 5 and 6).

A.2 Description of POISGEN functions and subroutines

Below is a list of the subroutines and functions as they appear in the POISGEN listing. Figure
(A.1) denotes the layout of the description. Further functionality details may be found in the
listing itself, and in appendix (B).

1. profile(number) (integer)
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SUBROUTINE NAME (variables) (variable types)
Description of functionality
FUNCTION NAME (variables) return type,(variable types)

Description of functionality

Figure A.1: Key to function and subroutine descriptions

If number=-1 then go to zoomer subroutine, else assign a weight to candidates numbered

1 — number.

2. sort

sort the array weight by heapsort method in descending order: weight(1l) = lowest and
weight(npar + nchild) = highest. Also reorders y array from best (lowest weight) to worst
(highest weight).

3. zoomer (zwor, ywor) (integer,integer)

vary the value of Az, yyor, the worst point in the best candidate, in copies of the best

candidate using gcreep.

4. gener8(n) (integer)
fill y(n,1 — npoint) with a uniformly random distribution of numbers between lowbdry,
highbdry.

5. continuity(n) (integer)

write boundary information into the genotype of candidate n.

6. special(n,frac) (integer, frac)
generate a special individual. Straight lines are constructed between pairs of opposing edge

grid points. The special individual is calculated by adding the values of both the x and y

directed lines at a specified internal point.

7. special2(n,frac) (integer,real)
add an amount p x W—’—y%”ﬂy-, -1 < p €1 p random, to all the points in the n’th
candidate.

8. special3(n,frac) (integer,real)

add an amount p X bﬂ%, —1 < p <1 prandom, to all the points in the n’th candidate.

high, low are the largest and smallest gene values in the n’th candidate.

9. breed

breed two children from two parents by one point crossover
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

mutate(nlow,nup,mzlev) (integer,integer,integer)

perform mzlev mutations on candidates numbered from nlow — nup in y. The types of
mutation operators used are decided by the variables loaded in from mutate.in.

combine (nlow,nup, czlev) (integer,integer,integer)

perform czlev combinations on candidates numbered from nlow — nup in y. The types of
combination operators used are decided by the variables loaded in from combine.in.

ranrep (dummy) real, (real)

generates a uniformly random number in the range lowbdry < ranrep < highbdry. dummy
variable to maintain legal FORTRAN.

creep (gene,czmaz, rantype) real, (real,real, integer)

add a number p x czmaz to the gene value gene. If raniype = 0, then p = +1 (decided
uniformly randomly). If rantype = 1, p is uniformly random in the range —1 < p < 1.
gcreep (gene,gczmaz, rantype) real, (real real, integer)

multiply gene value gene by (1 + p x gezmaz). If rantype = 0, then p = %1 (decided
uniformly randomly). If rantype = 1, p is uniformly random in the range —1 < p < 1.

wav (genel, gene2, avzwil,avzwil2) real, (real, real, real, real)

calculate the weighted arithmetic average of two genes genel and gene2. The average is

enel.avzwtl4genel.avzwtl
abs(avzwtl)+abs(avzwt2)

defined as wav = £

gav(genel,gene2,gzop) real, (real,real, integer)

take the geometric average of the gene values genel, gene2. The exact mode of operation of
this function is governed by the value of gzop.

trans(nlow,nup,tzlev) (integer,integer,integer)

perform tzlev transcription operations on candidates numbered from nlow — nup in y. The
types of transcription operators used are decided by the variables loaded in from transcr.in.
swap (parent,place,noof) (integer,integer,integer)

swap genes from place — place+noof —1 with place—noof — place—1 in candidate parent.

reverse(parent,place,noof) (integer,integer,integer)
reverse the order of noof genes from place — place + noof — 1 in candidate parent.
mix(parent,place,noof) (integer,integer,integer)

randomly rearrange the order of noof genes from place — place + noof — 1 in candidate

parent.
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21.

22.

23.

24.

25.

26.

27.

28.

copy (parent,place,noof) (integer,integer,integer)

takes a copy of the genes from place — place+mnoof —1 in candidate parent and moves them
to the next nonaffected region closest to the centre of the genotype, overwriting the genes

already present.

del(parent,place,noof) (integer,integer,integer)

deletes the genes from place — place + noof — 1 by copying the segments from the nearest
end to place+noof. Therefore, one end of the code will have 2 identical copies of noof genes

in order.

check

measure the genetic diversity of the breeding population i.e., the top npar parents of the

ranked population. Genetic Diversity mtot = nplar Sonper1— %fﬁ%(%

tweak (mtot) (real)

keep top twzpar parents and fill the rest of the population with completely random individu-

als.

Jiggle(ran0) (real)
take each gene in the (ranked) candidates numbered 2 — npar + nchild and randomly decide

to perform a creep or gcreep operation. ran0 is either czmaz or gczmaz.

wobble(ran() (real)

make three copies of the best candidate, but perform a creep or gereep on all the points
of the genotype. ran0 is either czmaz or gezmaz. The first copy has a creep or gereep
(randomly decided) of randomly changing size performed on each gene. The second copy has
a creep or gereep (randomly decided) operation performed on each gene, but this time the
size of the operation is fixed at gene + p; x ran0 or gene x (1+ ps; x ran0). py is fixed for
all genes in the genotype and is a random number, —1 < p;y < 1. The third copy is similar

to the second except this time —p; is used.

double

double the point resolution in the x and y directions. Genotype length of every individual

is increased by interpolation between known points.

unifran (nlow,nup) integer, (integer,integer)

generate a uniformly random integer number in the range nlow — nup.
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29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

te(gene) integer, (real)

test if gene is within the range lowbdry < gene < highbdry. te = 0 if within the range,
te = —1 if less than lowbdry and te = +1 if above highbdry.

pl{i,j) integer, (integer,integer)

calculate the normal storage position in a candidate for the point 4, ;.

pl2(i,j) integer",(integer, integer)

calculate the normal storage position in a candidate that is being doubled in size for the
point A; ;.

pled(i,j) integer, (integer,integer)

calculate the alternate storage position in a candidate for the point A; ;.

xx1pts2(zpints2, ypints?) (integer,integer)

double the number of points in the x and y directions

apts2(n,zpints2,ypints2,npinis?) (integer,integer,integer,integer)

interpolate new points in candidate n to go along with doubled number of points in the x
and y directions. When dbl = 0 interpolate using ranrep points. If dbl = 1 then use linear

interpolation.
ncode(n) (integer)

Reorder normally stored candidate n genotype into alternative storage. See section 6.4.

ncode(n) (integer)

Reorder alternately stored candidate n genotype into normal storage. See section 6.4.

loadzin

load in and check user set data - see appendix B. Sets up common blocks.

setup

setup initial population and z,z1 arrays. Open monitoring and output files.

dumpzout

dump out algorithm information to output files

update (noutzwt, noutzh,noof) integer,integer,integer

update evolutionary history files
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41.

42.

43.

44.

45.

46.

47.

source(i,j,a,az,ay) real, (integer,integer,real,real, real)

calculate the value of the source term S; ; - see section 6.6.

lobd(i,j) real, (integer,integer)

boundary conditions g; ; at the lower edge of the rectangular region -see section 6.6.
upbd(i,j) real, (integer,integer)

boundary conditions g; ; at the upper edge of the rectangular region -see section 6.6.
lhs(%,5) real, (integer,integer)

boundary conditions g; ; at the left hand edge of the rectangular region -see section 6.6.
rhs(i,j) real, (integer,integer)

boundary conditions g; ; at the right hand edge of the rectangular region -see section 6.6.

decide(iternow, bzwt, evolav) (integer,real, real)

given the best weight b2zwt and average evolutionary gradient evolav at iteration iternow,

decide what to do next.

bias(i,j) real, (integer,integer)

biassing function for mutation/combination functions.

A.3 POISGEN Ilisting

Below is a listing of the version of POISGEN used to calculate solutions to the Poisson equations

listed in chapter 6. The necessary input parameters are described in appendix B. Although not

reproduced in strict FORTRANT77 format, it should be legible.
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tion

1.51.0 program POISGEN

SUN/SPARC VERSION

One point crossover routine

To solve Laplacian/Poisson equations

V 0.0: no runs yet! Based on ngq.for

V 0.1: runs based on constant valued bdry

V 1.0: Laplacian/Poisson solver on rectangular grid
This program uses NO extrapolants in the profile
function and NO difference replacements at the
boundary. The boundary is only directed considered
when we consider points next to the boundary.
NOTE also that this is the interactive version of

of lapl.for.

This version is controlled by a control file, control.in

aocnoaocaa0o000000aaaa

V 1.1: Position dependent biassing function giving more muta-

to those points furthest away from the boundaries

V 1.2: Errors in Ncode,Dcode corrected. Commenting out of
extrapolant functionality. Continuity with boundary
conditions now penalised - more continuous solutions

are given lower weighta.

V 1.3: Source term now contains gradients of the function A
i.e., Ax and Ay. When we have a large number of points

in a candidate length, then the weight of that

candidate can be large, even although a visual comparison
with the true solution tells you that it is in fact a

good approximation. It is found

that moving to a 21x21 grid -large!- almost guarantees

that all the weights will "top out‘ at the maximum

weight. Hence if all candidates, including completely
random ones, have the same weight there is nothing to choose
between them all. Therefore, gibberish answers are the

final result.

To counter this the weighting given to each measure

of the fitness should change according to the number

of points in the code.

V 1.4: It is found that an especially fit candidate can dominate
the population for a large number of iterations. This

means that the evolutionary gradient is flat and action

must be taken to generate better candidates. So various
schemes to combat this are being tried to combat the
flatness. Now we increase the weighting parameters

very slightly in a bid to differentiate better from

worse candidates

xpoints == points in the x direction

xpoints == points in the y direction

npoints == xpoints*ypoints total number of points <=2000
npar == number of parents for the next generation

nchild == number of children to be generated

Operator Information

Combination Operators act on the genes of the breeding stock
Mutation Operators act on the genes of the breeding stock
Transcription Operators act on the genes of the breeding stock
This version introduces a biasing function

10 the maximun permitted value of the creep and geometric

creep operators. See subroutine bias

aaoaoaaoaaqagaaco0a0c0o00a0000Q00000Q000Q0C00C0C0CQCOC0C00QOC0000Q00Q0O00

C GENETIC ALGORITHM: this is the top level of the program

it is here that the structure of the GA

is formed

Variable Statements

Specific variables

aaacnan0aaa

Evolution monitoring variables

137

C

real pzwti,grad,flat(100),flatav

real egrad,evol(100),evolav

integer evolback

Deo-loop variables

integer ii,k

In/out-put variables

integer noutzwt

integer,noutzh

Decision variables

integer kzey

Iteration variables

integer izlow,izup

Other Variables
real weight(1000)

,¥(1000,2000)

Genetic Algorithm: ’'Size’ of GA variables

integer npar,nchil

1d,ntotal,npoints,itermax

integer xpoints,ypoints

Genetic Algorith

m: operators’ variables

real jig,wob,wobif

integer loadin,jignow,wobnow

integer mzlev,czlev,tzlev

integer worzp

integer swazs,revzs,mixzs,copzs,delzs

Profiling variabl

es

real penl,pen2,dterm,factor,prod0

Common Blocks

common /wis/ weight

common /zysz/ y

Genetic algorithm data

common /gal/
common /ga2/
common /ga3/
common /ga5/
common /ga6/
common /gaT/

commeon /gall/

npar,nchild,npoints

itermax

ntotal
jig,jignow,wob,wobnow,wobif
loadin

worzp

xpoints,ypoints

common /mctzdat/ mzlev,czlev,izlev

common /trazdat

common /dec/

Profiling data

common /prof/

1/ swazs,revzs,mixzs,copzs,delzs

kzey,izlow,izup

penl,pen2,dterm,factor,prod0

Parameter statements

parameter(noutzwt=20)

parameter(noutzh=21)

Initialise evoluti
do 108 ii=1,50
11at(ii)=10000.0
evol(ii)=0.0

108 continue

C

on monitoring stuff

C Load and Check data

C

Call Loadzin



C Define Program Variables
C Itcration variables
kzey=0

izlow=1

izup=itermax

C Set previous weight pzwt to default
C large value and start...

pzwt=1.0D100

flatav=1.0

evolback=5
C
C Setup initial data:: x points and initial stock
C Load in previous data if loadin=1 in file ga.in
C Initial stock dumped to ADAMEVE.QUT

if (loadin.eq.1) then
print*’Setup initial data:: best parent from BZPARZN.OUT’
Call Setup

¢ print*,’Data in ga.in must agree with the size of parent’

¢ print*,’Size of input parent must be =’,xpoints*ypoints
opcn(unit=noutzwt,ﬁ]e:’BZPARZN.OUT’
,access=’sequential’,

& status=’unknown’)

do 107 k=1,npoints
read(unit=noutzwi,fmt=97000) y(1,k)

107 continue

close(unit=noutzwt)
Call Profile(1)
print*,’Loaded parent weight =’,weight(1)
else
print* ’Setup initial data:: initial stock’
Call Setup
end if
C
C Open files to monitor the history of the evolution
open(unit=noutzwi,file="BZWTZH.OUT’access='sequential’,
&
C
C

status='unknown’)

Initialise entire population

print*,’Breeding from initial stock’

Call Breed

C

C Keep the first individual. At this point it is either the one
C generated by special2, a previously loaded one.

Call Keep(1)

678 print*,’Entering main iteration loop’
C
C  Start of iteration do-loop
do 100 ii=izlow,izup
C
C Make the whole stock continuous
do 156 k=1,npar+4nchild
Call Continuity(k)

156 continue

C

C  profile(npar+nchild) the entire stock
Call Profile(npar4nchild)

C

C Sort the entire stock lower weights, higher entry
Call Sort

< if ((level.eq.2).and.(ii.eq.izlow)) then

c open(unit=14,file='test4’,status=’unknown’,

c & access=’scquential’)

c do 295 k=1,npoints

c write(unit=14,fmt=97000) y(1,k)

€295 continue

c close(unit=14)

c end if

(o]

C  Vary point in best parent having worst fit

Q

146

C

aaQ0aaaq

109

110
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if ( mod(ii,worzp).cq.0 ) then
Call Profile(-1)
Call Profile(npar+4nchild)
Call Sort

end if

Jiggle breeding stock every jignow iterations
if ( mod(ii,jignow).eq.0 ) then

print*, Jiggle:: jig=",jig

Call Jiggle(jig)

Call Profile(npar+nchild)

Call Sort
end if

Evolution history may be flat! Check and take action
with a jiggle,apecial3 and zoom
if (flatav.1t.0.0000001) then
print*,’Evolution is flat:: Jiggle jig=",jig
Do a jiggle
Call Jiggle(jig)
Call Profile(npar+nchild)
Call Sort
Add scaled randomness to the breeding stock
do 146 k=2,npar
Call Special3(k,50.0)
continue
Call Profile(npar+nchild)
Call Sort
Do a zoom on the worst point in the best candidate
Call Profile(-1)
Call Profile(npar+nchild)
Call Sort
Wobble the best candidate
Call Wobble(wob)
Call Profile(npar+nchild)
Call Sort

end if

Switch on gene wobble operator
When triggered, it will wobble the parent genes
VERY SLIGHTLY, hopefully keeping it in the
breeding set but adding slightly different material
if ((ii.ge.wobnow).or.(weight(1).lt.wobif)) then
print*,’Wobble:: wob=’,wob
Call Wobble(wob)
Call Profile{npar4nchild)
Call Sort
end if

Current best weight
print*,ii,’ Best weight =’,weight(1)

Calculate measures of the evolution
grad=weight(1)-pzwt
egrad=1.0-weight(1)/pzwt
do 109 k=1,evolback-1
flat(k)=flat(k+1)
evol(k)=evol(k+1)

continue
flat(evolback)=abs(grad)
evol(evolback)=abs(egrad)
flatav=0.0
evolav=0.0
do 110 k=1,evolback

flatav=flatavtabs(flat(k))

evolav=evolav+tabs(evol(k))

continue



evolav=evolav/evolback pzwt=1.0D100

flatav=flatav/evolback C  Reset evolution monitoring stuff
e} do 1081 ii=1,50
C If the new best weight is bigger - error in routine - stop flat(ii)=10000.0
if ( (pzwt.lt.weight(1)).and.(ii.ne.izlow) ) then evol(ii)=0.0
print*,’ Something wrong in routine! ' 1081 continue
stop goto 678
end if end if
¢ print*,’Change in best weight =’,grad C
c print*’Relative change in best weight Ex’,egrad if (kzey.eq.2) then
c print*’Average change in best weight Egrad=’,evolav goto 678
C end if
C Set new previous best weight C
pzwt=weight(1) if (kzey.eq.3) then
(o] if (((2*xpoints-1)*(2*ypoints-1)).gt.2000) then
C Breed top npar entries in y to generate nchild children C Close files that monitor the history of the evolution
Call Breed close(unit=noutzwt)
(e} < close(unit=noutzh)
C Update history of evolution files print*,’Not enough array space to double points’
Call Update(noutzwt,noutzh,ii) print*,’Closing files....’
C print*,’History of best weight per generation in BZWTZH.OUT?
C  Check genetic diversity of parents - if too low, tweak. print*,’History of best candidate’
Call Check print*,’per generation in BZCANZH.OUT?
C print*,’Exiting program....ByeBye, ByeBye, ByeBye!’
C  Mutate the stock indicated stop
Call Mutate(2,ntotal,mzlev) else
C Call Double
C Combination operations performed on indicated stock pzwt=1.0D100
Call Combine(2,ntotal,czlev) open(unit=14,file="test3’,status='unknown’,
C & access=’sequential’)
C  Transcription operations performed on indicated stock do 299 k=1,npoints
Call Trans(2,ntotal,tzlev) write(unit=14,fmt=97000) y(1,k)
100 continue 299 continue
(o] close(unit=14)
C..... C Reset evolution monitoring stuff
(o] do 1082 ii=1,50
C END OF MAIN LOOP. flat(ii)=10000.0
C..... evol(ii)=0.0
C...... 1082 continue
C Profile,sort and update the entire population C
do 111 k=1,npar+4nchild C Vary profile parameters according to level
Call Continuity(k) C  of point resolution
111 continue 1083 Call Profile(npar+nchild)
¢ Call Profile(npar+nchild) Call Sort
¢ Call Sort if (log(weight(1)).gc.(300.0*10g(10.0)) ) then
c¢ Call Update(noutzwt,noutzh,ii) print*,’Change in point resolution:’
C print*,’change profile parameters’
C Current best weight prod0=prod0/2.0
print*,'Best weight =’,weight(1) goto 1083
C end if
C Dump out the current generation of best candidates goto 678
Call Dumpzout end if
C end if
C Decide what to do now. This sets kzey and the iteration print*,’prod0=’,prodo
C size izlow and izup print*,’penl=’,penl
Call Decide(ii,weight(1),evolav) print*,’pen2=",pen2
C C
C Options C Format Statements
C  kzey=0 :: Quit and exit program 97000 format(£15.8)
C  kzey=1 :: Restart with best of previous level C
C  kzey=2 :: Continue at this point resclution level END
C kzey=3 :: Double points and continue C
if (kzey.eq.0) then C.....
C  Close files that monitor the history of the evolution C
close(anit=noutzwt) € GENETIC ALGORITHM ROUTINES
c close’unit=noutzh) C These routines operate directly on the strings to provide
print® History of best weight per generation in BZWTZH.OUT’ C the genetic algorithm functionality. Once the strings have
c print*,’History of best candidate’ C been set up these routines exist as the top level of behaviour,
c print*,’per generation in BZCANZH.OUT® C and call on other routines/functions to implement the re-
end if quired
(o] C genetic algorithm.
if (kzey.eq.1) then [e]
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C..... & (y(i,pl(nn,041))-y(i,pl(nn,n-1)))/(2.0%kstep)

c & )
C Calculate the weights of all the candidates rrs(place)=abs(fitc)
Subroutine Profile(number) fit(place)=abs(fitc)+small
C C Gives us the pos’n of worst departure from ode soln
C Subroutine specific variables worstp = amax1(worst,fit(place))
real fit(2000),sum,worst,worstp if (worstp.gt.worst) then
real ed2 Xwor=nn
integer i,number,numb,zoom,xwor,ywor ywor=n
real rrs(2000) end if
integer nn,n worst=worstp
integer place C Calculate measures of the fitness
real dzmax,small if( (nn.eq.2).0r.(n.eq.2).0r.
C & (nn.eq.(xpoints-1)).or.(nn.eq.(ypoints-1))
C Other variables & ) then
real y(1000,2000),x(100),x1(100) prod=prod+prod0*log(fit(place))
integer npar,nchild,npoints sum=sum+fit(place)
integer xpoints,ypoints else
real weight(1000) prod=prod+log(fit(place))
real penl,pen2 sum=sum+fit(place)
real dterm,factor,prod0,prod end if
real hstep kstep 3501 continue
C 3500 continue
C Other functions C
integer te C Now do the boundary points, cornors excepted since they
integer pl C play no direct role in the evaluation of the laplacian
real source C Lower bdry
C < n=1
C Commeon statements required ¢ do 3502 nn=2,xpoints-1
common /gal/ npar,nchild,npoints ¢ place=pl(nn,n)
common /gall/ xpoints,ypoints ¢ fite=(( y(i,pl(nn41,n) )+y(i,pl(nn,n+1) )+
common [fzysz/ y < & y( i,pl(nn-1,n) )4extrap( i,nn,n )-
common /zdimz/ x,x1 c & 4.0*y( i,place )
common /wts/ weight c & )/ed2)-source( nn,n,y(i,place) )
common /disc/ rrs ¢ rra(place)=abs(fitc)
common /prof/ penl,pen2,dterm,factor,prod0 ¢ fit(place)=abs(fitc)+small
common /size/ hstep,kstep c¢C Gives us the pos’n of worst departure from ode soln
(o] ¢ worstp = amax1(worst,fit(place))
C Must evaluate pde at every point. ¢ if (worstp.gt.worst) then
C Poisson/laplacian cquations < xwor=nan
C NB 2nd order finite difference. < ywor=n
C ¢ endif
C Routine c worst=worstp
dzmax=300.0*10g(10.0) ¢C Calculate measures of the fitness
small=1.0e-15 ¢ prod=prod+log(fit(place))
zoom=0 ¢ sum=sum+fit(place)
if (number.eq.-1) then ¢c3502 continue
numb=1 C
¢ print*,’Varying worst point in best candidate’ C Upper bdry
zoom=1 ¢ n=ypoints
else ¢ do 3503 nn=2,xpoints-1
numb=number ¢ place=pl(nn,n)
end if ¢ fite=(( y(i,pl(nn+1,n) )+extrap( i,nn,n )+
do 3000 i=1,numb c & y( i,pl(nn-1,n) }4y( i,pl(an,n-1) )
ed2=hstep*kstep c & -4.0*y( i,place )
sum=0.0 ¢ & )/ed2)-source( nm,n,y(i,place) )
worst=0.0 c rrs(place)=abs(fitc)
prod=0.0 ¢ fit(place)=abs(fitc)+small
do 3500 n=2,ypoints-1 c¢C Gives us the pos’n of worst departure from ode soln
do 3501 nn=2,xpoints-1 ¢ worstp = amax1(worst,fit(place))
place=pl(nn,n) c¢ if (worstp.gt.worst) then
if ( te( y(i,place) ).ne.0 ) then c xwor=nn
print*,i,place,’ ’,y(i,place),’” Outside bdry...’ c ywor=n
stop ¢ endif
end if c worst=worstp
C Construct the operator here cC Calculate measures of the fitness
C Nonbdry points c prod=prod+log(fit(place))
fite=(( y( i,pl(nn+1,n) )+y( i,pl(nn,n+1) )+ ¢ sum=sum+{it(place)
& y(i,pl(nan-1,n) )+y( i,pl{nn,n-1) )- <3503 continue
& 4.0%y( i,place ) cC
& )/ed2)-source( nn,n,y(i,place), ¢C Left hand bdry
& (y(i,pl(nn+1,n))-y(i,pl(nn-1,n)))/(2.0*hstep), ¢ nn=1
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¢ do 3504 n=2,ypoints-1 C Common statements required

c¢ place=pl(nn,n) common fgal/ npar,nchild,npoints
cc fite=(( y( i,pl(nn+1,n) )4y( i,pl(nn-1,n) )+ commen /ga3/ ntotal
c & extrap( i,nn,n )4y( i,pl(nn,n-1) ) common [fzysz/ y
c & -4.0%y( i,place ) commeon /wis/ weight
¢ & )/ed2)-source( nn,n,y(i,place) ) C
c rrs(place)=abs(fitc) C Routine: sort by heapsort - see Numerical Recipes
¢ fit(place)=abs(fitc)+small nsort=ntotal
cC Gives us the pos’n of worst departure from ode soln ]=(nsort/2)+1
¢ worstp = amaxl1(worsi,fit(place)) ir=nsort
¢ if (worstp.gt.worst) then 101 continue
c xwor=nn if (1.gt.1) then
< ywor=n 1=1-1
< endif savewi=weight(l)
¢ worst=worstip do 1011 ii=1,npoints
¢C Calculate measures of the fitness savey(ii)=y(1,ii)
¢ prod=prod4log(fit(place)) 101 1 continue
¢ sum=sum+fit(place) else
c3504 continue savewt=weight(ir)
<C do 1012 ji=1,npoints
cC Right hand bdry savey(ii)=y(ir,ii)
¢ mnan=xpoints 1012 continue
¢ do 3505 n=2,ypoints-1 weight(ir)=weight(1)
¢ place=pi(nn,n) do 1013 ii=1,npoints
¢ fite=(( extrap( i,nn+1,n)4y( i,pl(nn-1,n) )+ y(ir,ii)=y(1,ii)
c & y( i,pl(nn,n+1) )+y(i,pl(nn,n-1)) 1013 continue
c & -4.0*y( i,place ) ir=ir-1
¢ & )/ed2)-source( nn,n,y(i,place) ) if (ir.eq.1) then
¢ rrs(place)=abs(fitc) weight(1)=savewt
¢ fit(place)=abs(fitc)+small do 1014 ii=1,npoints
cC Gives us the pos’n of worst departure from ode soln y(1,ii)=savey(ii)
¢ worstp = amaxl(worst,fit(place)) 1014 continue
c if (worstp.gt.worst) then return
c xwors=nn endif
c ywor=n endif
c end if i
c worst=worstp j=2*1
cC Calculate measures of the fitness 202 if (j.le.ir) then
¢ prod=prod+log(fit(place)) if (j.Jt.ir) then
¢ sum=sum+fit(place) if (weight(j).1t.weight(j41)) then
¢3505 continue i=i+1
C end if
C Calculate final weight for the i'th candidate end if
C Make sure that prod does not exceed machine limit. if (savewt.lt.weight(j)) then
C IF it does, set to be very large. weight(i)=weight(j)
c do 2021 ii=1,npoints
if ( (prod).gt.dzmax )then y(i,ii)=y(,ii)
prod=exp(dzmax) 2021 continue
else i=j
prod=exp(prod) j=2%
end if else
weight(i)=pen1*worst4pen2*sum + prod j=ir41
3000 continue endif
if (zoom.eq.1) then goto 202
Call Zoomer(xwor,ywor) endif
end if weight(i)=savewt
return do 2022 ii=1,npoints
end y(i,ii)=savey(ii)
C..... 2022 continue
C Sort out all the candidates and put them in order goto 101
Subroutine Sort end
C
C Subroutine specific variables C Zoom in on a bad point
integer nsort,l,ir,ii,i,j Subroutine Zoomer(xwor,ywor)
real savewt [e)
real savey(2000) C Routine specific variables
C integer ii,xwor,ywor
C Other variables real ranl,genel,gene2
integer npar,nchild,ntotal,npoints C
real y(1000,2000) C Other variables
real weight(1000) real y(1000,2000),zoomy
C integer npar,nchild,npoints
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integer xpoints,ypoints

C Other functions
integer te,pl
real gOS5caf

C Common blocks
common Jfzysz/ y
common /gal/ npar,nchild,npoints
common /gall/ xpoints,ypoints

common /ga8/ zoomy

Q

Routine

C Copy the best parent into the lowest positions
do 7100 ii=2,npoints-1
y(npar4nchild,ii)=y(1,ii)
y(npar+nchild-1,ii)=y(1,ii)

7100 continue
ranl=zoomy*2*( g05caf(1.0)-0.5 )

C

C Where is the point?

C Bottom left hand cornor

if ((xwor.eq.1).and.(ywor.eq.1)) then

genel=y(1,pl(xwor+1,ywor+1))*(1.04ranl)

gene2=y(1,pl(xwor+1,ywor+41))*(1.0-ranl)

if ( te(genel).ne.0 ) then
genel=y(1,pl(xwor+1,ywor+1))

end if

if ( te(gene2).ne.0 ) then
gene2=y(1,pl(xwor+1,ywor+1))

end if

y( npar+nchild,pl(xwor+1,ywor+1) )=genel

y( npar+nchild-1,pl(xwor+1,ywor+1) )=gene2

end if

C Bottom right hand cornor

if ((xwor.eq.xpoints).and.(ywor.cq.1)) then

genel=y(1,pl(xwor-1,ywor+1))*(1.04ranl)

gene2=y(1,pl(xwor-1,ywor+1))*(1.0-ran1)

if ( te(genel).ne.0 ) then
genel=y(1,pl(xwor-1,ywor+1))

end if

if ( te(gene2).ne.0 ) then
gene2=y(1,pl(xwor-1,ywor+1))

end if

y( npar+nchild,pl(xwor-1,ywor+1) )=genel

y( npar+4nchild-1,pl(xwor-1,ywor+1) )=gene2

end if

C Top left hand cornor

if ((xwor.eq.1).and.(ywor.eq.ypoints)) then

genel=y(1,pl(xwor+1,ywor-1))*(1.04ranl)

gene2=y(1,pl(xwor41,ywor-1))*(1.0-ran1)

if ( te(genel).ne.0 ) then
genel=y(1,pl(xwor+1,ywor-1))

end if

if ( te(gene2).ne.0 ) then
gene2=y(1,pl(xwor+1,ywor-1))

end if

y( npar4nchild,pl(xwor41,ywor-1) )=genel

y( npar+nchild-1,pl(xwor+1,ywor-1) )=gene2

end if

C Top right hand cornor

if ((xwor.cq.xpoints).and.(ywor.eq.ypoints)) then

genel=y(1,pl(xwor-1,ywor-1))*(1.04ranl)

gene2=y(1,pl(xwor-1,ywor-1))*(1.0-ran1)

if ( te(genel).ne.0 ) then
genel=y(1,pl(xwor-1,ywor-1))

end if

if ( te(gene2).ne.0 ) then
gene2=y(1,pl(xwor-1,ywor-1))
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end if
y( npar+nchild,pl(xwor-1,ywor-1) )=genel
y( npar+nchild-1,pl(xwor-1,ywor-1) )=gene2
end if
C
C Lower bdry
if( ((xwor.gt.1).and.(xwor.lt.xpoints))
& .and.(ywor.eq.1)
& ) then
genel=y(1,pl(xwor,ywor+1))*(1.04ranl)
gene2=y(1,pl(xwor,ywor+1))*(1.0-ranl)
if (te(genel).ne.0 ) then
genel=y(1,pl(xwor,ywor+1))
end if
if ( te(gene2).ne.0 ) then
gene2=y(1,pl(xwor,ywor+1))
end if
y( npar+nchild,pl(xwor,ywor41) )=genel
y( npar+nchild-1,pl(xwor,ywor+1) )=gene2
end if
C
C Upper bdry
if( ((xwor.gt.1).and.(xwor.lt.xpoints))
& .and.(ywor.eq.ypoints)
& ) then
genel=y(1,pl(xwor,ywor-1))*(1.04ranl)
gene2=y(1,pl(xwor,ywor-1))*(1.0-ran1)
if ( te(genel).ne.0 ) then
genel=y(1,pl(xwor,ywor-1))
end if
if ( te(gene2).ne.0 ) then
gene2=y(1,pl(xwor,ywor-1))
end if
y( npar4nchild,pl(xwor,ywor-1) )=genel
y( npar4nchild-1,pl(xwor,ywor-1) )=gene2
end if
C
C Left hand bdry
if( ((ywor.gt.1).and.(ywor.lt.ypoints))
& .and.(xwor.cq.1l)
& ) then
genel=y(1,pl(xwor+1,ywor))*(1.04ranl)
gene2=y(1,pl(xwor+1,ywor))*(1.0-ranl)
if ( te(genel).ne.0 ) then
genel=y(1,pl(xwor+1,ywor))
end if
if ( te(gene2).ne.0 ) then
gene2=y(1,pl(xwor+1,ywor))
end if
y( npar+nchild,pl(xwor41,ywor) )=genel
y( npar$nchild-1,pl(xwor+1,ywor) )=gene2
end if
C
C Right hand bdry
if( ((ywor.gt.1).and.(ywor.lt.ypoints))
& .and.(xwor.eq.xpoints)
& ) then
genel=y(1,pl(xwor-1,ywor))*(1.04ranl)
gene2=y(1,pl(xwor-1,ywor))*(1.0-ranl)
if ( te(genel).ne.0 ) then
genel=y(1,pl(xwor-1,ywor))
end if
if ( te(gene2).ne.0 ) then
gene2=y(1,pl(xwor-1,ywor))
end if
y( npar+nchild,pl(xwor-1,ywor) )=genel
y( npar+nchild-1,pl(xwor-1,ywor) )=gene2
end if
C
C Internal point
if( ((ywor.gt.1).and.(ywor.l{.ypoints)).and.
& ((xwor.gt.1).and.(xwor.lt.ypoints))



& ) then
do 7101 ii=2,npoints-1
y(npar+4nchild-2,ii)=y(1,ii)
y(npar+nchild-3,ii)=y(1,ii)
7101
genel=y(1,pl(xwor,ywor+1))*2.0*( g05caf(1.0)-0.5 )
gene2=y(1,pl(xwor,ywor-1))*2.0%( g05caf(1.0)-0.5 )
gene3=y(1,pl(xwor+1,ywor))*2.0%( g05caf(1.0)-0.5 )
gened=y(1,pl(xwor-1,ywor))*2.0*( g05caf(1.0)-0.5 )
if ( te(genel).ne.0 ) then

continue

genel=y(1,pl(xwor,ywor41))
end if
if ( te(gene2).ne.0 ) then
gene2=y(1,pl(xwor,ywor-1))
end if
if ( te(gene3).ne.0 ) then
gened=y(1,pl(xwor+1,ywor))
end if
if ( te(gened).ne.0 ) then
gened=y(1,pl(xwor-1,ywor))
end if
do 7102 1i=0,3
if ( g05caf(1.0).gt.0.5 ) then
y( npar+nchild-ii,pl(xwor,ywor+1) )=genel
else
y( npar+4nchild-ii,pl(xwor,ywor+1) )=y(1,pl(xwor,ywor+1))
end if
if ( g05caf(1.0).gt.0.5 ) then
y( npar4nchild-ii,pl(xwor,ywor-1) )=gene2
else
y( npar+nchild-ii,pl(xwor,ywor-1) )=y(1,pl(xwor,ywor-1)}
end if
if ( g05caf(1.0).gt.0.5 ) then
y( npar+4nchild-ii,p}(xwor+1,ywor) )=gene3d
else
y( npar+4nchild-ii,pl(xwor+1,ywor) )=y(1,pl(xwor+1,ywor))
end if
if ( g05caf(1.0).5t.0.5 ) then
y( npar+nchild-ii,pl(xwor-1,ywor) )=gened
else
y( npar+nchild-ii,pl(xwor-1,ywor) )=y(1,pl(xwor-1,ywor))
end if
7102 continue
end if
C
C Continuity
Call Continuity(npar+nchild)
Call Continunity(npar+4nchild-1)
Call Continuity(npar+nchild-2)
Call Continuity(npar4nchild-3)
return

end

C Generate a completly random string of numbers

Subroutine Gener8(n)

C Routine specific variables

integer n,i

C Other variables
integer npar,nchild,npoints
real y(1000,2000),lowbdry,highbdry
real gOS5caf

C Common blocks
common /eqn2/ lowbdry,highbdry
common /gal/ npar,nchild,npoints

common /zysz/ y

C Routine
do 2000 i=1,npoints
y(n,i)=lowbdry+ (highbdry-lowbdry)*g05caf(1.0)
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2000 continue
return

end

C Ensure continuity of the nth candidate

Subroutine Continuity(n)

C Subroutine specific

integer n

C Other variables
integer npar,nchild,npoints
integer xpoints,ypoints

real y(1000,2000)

C Other functions
integer pl
real lobd,upbd,lhs,rhs

C Common blocks
common /gal/ npar,nchild,npoints
common /gall/ xpoints,ypoints

common [fzysz/ y

Routine
The region is xpoints*ypoints

Bdries,not cornors

aa0aaa

Left and right hand boundaries
do 765 ii=2,xpoints-1

y( n,pl(ii,ypoints)
y( =n,pl(ii,1) )=lobd(ii,1)

765 continue

)=upbd(ii,ypoints)

C Lower and upper bdries
do 766 ii=2,ypoints-1
y( n,pl(1,ii) )=1ha(1,ii)
y( n,pl{xpoints,ii) )=rhs(xpoints,ii})
T66 continue
C Cornors
y( n,p1(1,1) )=(lobd(1,1)41hs(1,1))/2.0
y( n,pl(xpoints,1) )
=(lobd(xpoints,1)+rhs(xpoints,1))/2.0
y( n,pl(1,ypoints) )=(upbd(1l,ypoinis)+lhs(1,ypoints))/2.0
y( n,pl(xpoints,ypoints) )=
& (upbd(xpoints,ypoints)+rhs(xpoints,ypoints))/2.0
return

end

C Calulates an average value over the square plus a little
C randomness

Subroutine Special(n,frac)

C Subroutine specific variables
integer i,j,n

real frac,xhere,yhere,here

C Other variables required by this routine
real y(1000,2000)
real x(100),x1(100)
real xzstart,xzend
real yzstart,yzend
real lowbdry,highbdry

integer xpoints,ypoints

C Other functions
integer te,pl
real gO5caf
real lhs,rhs,Jobd,upbd

C Common statements required
commeon /eqn2/ lowbdry,highbdry
common feqn4/ xzstart,xzend

common /eqndl/ yzstart,yzend



common /gall/ xpoints,ypoints
common /zdimz/ x,x1

common /zysz/ y

C Routine
do 2500 j=2,ypoints-1
do 2502 i=2,xpoints-1
2501 xhere=lhs(1,j) +
& ( ( x(i)-xzstart)*( rhs(xpoints,j)-lhs(1,j) )
& /(xzend-xzstart) )
yhere=lobd(i,1) +
& ( (x1(j)-yzstart)*( upbd(i,ypoints)-lobd(i,1) )
& /(yzend-yzstart) )
here=(xhere4yhere)/2.0 4+
& ( 2.0*(g05caf(1.0)-0.5)*(highbdry-lowbdry)/frac)
if ( te(here).ne.0 ) thea
goto 2501
else
¥(0,pI(i,j)) =here
end if
2502 continue
2500 continue
Call Continuity(n)
return

end

C Takes the candidate and adds a little randomness, the size
C of which is dependent on the range of A-values permitted
Subroutine Special2(n,frac)
Cs
C Subroutine specific variables
integer i,n

real frac,here

C Other variables required by this routine
integer npar,nchild,npoints
integer xpoints,ypoints
real y(1000,2000)
real highbdry,lowbdry

C Other functions
integer te,pl
real gO5caf

C Common statements required
common /gall/ xpoints,ypoints
common /eqn2/ lowbdry,highbdry
common /gal/ npar,nchild,npoints

common fzysz/ y

C Routine
do 2600 j=2,ypoints-1
do 2601 i=2,xpoints-1
here=y(a,pl(i,j)) + (highbdry-lowbdry)*
& 2.0*(g05caf(1.0)-0.5)/frac
if ( te(here).eq.1 ) then
here=highbdry
end if
if ( te(here).eq.-1 ) then
here=lowbdry
end if
y(n,pl(i,j))=here
2601 continue
2600 continue
Call Continuity(a)
return

end

C Takes a candidate and adds a liitle randomness, the size
C of which is dependent on the range of values actually
C stored in the candidate

Subroutine Special3(n,frac)
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C

C Subroutine specific variables
integer i,n
real frac,here

real high,low

C  Other variables required by this routine
integer npar,nchild,npoints
integer xpoints,ypoints
real y(1000,2000)
real lowbdry,highbdry

C Other functions
integer te,pl
real g05caf

C Common statements required
common /gall/ xpoints,ypoints
common /gal/ npar,nchild,npoints
common /eqn2/ lowbdry,highbdry

common /zysz/ y

C Routine
high=lowbdry
low=highbdry
C First find the highest and lowest values
do 2551 j=2,ypoints-1
do 2552 i=2,xpoints-1
if ( y(n,p1(i,j)).gt.high ) then
high=y(n,pl(i,j))
end if
if ( y(n,pl(i,j)).1t.Jow ) then
low=y(n,p1(i,j))
end if
2552 continue
2551 continue
C Now vary the candidate
do 2630 j=2,ypoints-1
do 2631 i=2,xpoints-1
here=y(n,pl(i,j)) + (high-low)*
& 2.0*(g05¢caf(1.0)-0.5)/frac
if ( te(here).eq.1 ) then
here=highbdry
end if
if ( te(here).eq.-1 ) then
here=lowbdry
end if
¥(n,p1(i,j))=here
2631 continue
2630 continue
Call Continuity(n)

return
end
C.....
C Breed new candidates by simple one point crossover
C No biasing in favour of any particular candidate
C Top npar candidates are numbered in the y array in order
C best in y(1), second best in y(2) etc...
C [Parents] [Chop] [Swap] [Children]
C ] rAeESs wake | owew aewa | gy wesegn
C 2 nunroun I S Bl
Subroutine Breed
C

C Subroutine specific variables
integer parentl,parent2,chop
real y1(2000),y2(2000)

integer reord

C Other variables required by this routine
integer npar,nchild,npoints
integer unifran

real y(1000,2000)



c integer i,j

C Common statements required integer nlow,nup,mzlev
common /gal/ npar,nchild,npoints integer parentl,place
commeon /ga3/ ntotal integer mutzop
common fzysz/ y real gene,mutant
C C
C Routine C Other variables
do 5000 k=npar+41,ntotal,2 integer xpoints,ypoints
parentl=unifran(1,npar) real y(1000,2000)
5670 parent2=unifran(1,npar) integer npar,nchild,npoints,ntotal
if (parent2.eq.parentl) then (o]
goto 5670 C Other functions
end if integer te
chop=unifran(1l,npoints) integer pl
C integer unifran
C Reorder the code of the parents if reord>50 real ranrep,creep,gcreep
reord=unifran(1,100) c real bias
if (reord.gt.50) then C
Call Ncode(parentl) C Common blocks required
Call Ncode(parent2) common /mutzdata/ rzlo,rzup,rantypel,
end if & czlo,czup,rantype2,czmax,
C & gczlo,gczup,rantyped,gczmax,
C Store chopped code from chop to npoints & mutzlev
do 3010 i=chop,npoints common /gal/ npar,nchild,npoints
yl(i)=y(parentl,i) common /ga3/ ntotal
y2(i)=y(parent2,i) common [zysz/ y
3010 continue common /gall/ xpoints,ypoints
C C
C  Put crossed over code in child from chop to npoints C Routine
do 3020 i=chop,npoints gene=0.0
y(k,i)=y2() do 6000 k=1,mzlev
y(k+1,i)=y1G) c
3020 continue C  Where to mutate
C  Retain original parent code from 1 to chop-1 parentl=unifran{nlow,nup)
do 3030 i=1,chop-1 i=uaifran(2,xpoints-1)
y(k,i)=y(parentl,i) j=unifran(2,ypoints-1)
y(k+1,i)=y(parent2,i) place=pl(i,j)
3030 continue C
C C  Get the gene to be mutated
C Reorder the code of the parents if reord >50 gene=y(parentl,place)
if (reord.gt.50) then C
Call Dcode(parentl) C  Which operator
Call Dcode(parent2) mutzop=unifran(1,100)
Call Dcode(k) (e}
Call Dcode(k+1) C Ensure at least gene is replaced by itself
end if mutant=gene
5000 continue C
return C Random replacement
end if ((mutzop.ge.rzlo).or.(mutzop.le.rzup)) then
C..... mutant=ranrep(1.0)
C Mutation Operators. Randomly choose which is to be end if
C used. BEach can be weighted to be preferentially chosen C
C Pick a random number between 1,100. If that number lies C Call Creep
C within a particular mutation operators‘ range of influence if ((mutzop.ge.czlo).or.(mutzop.le.czup)) then
C then that operator will be chosen. mutant=creep(mutant,czmax,rantype2)
C Operators can also obey different randomness distributions end if
C just to play around o]
C This version introduces a biasing function C Call Geometric creep
C to the maximun permitted value of the creep and geometric if ((mutzop.ge.gczlo).or.(mutzop.le.gczup)) then
C creep operators. See subroutine bias mutant=gcreep(mutant,gczmax,rantype3)
C Mutants also satisfy continuity end if
Subroutine Mutate(nlow,nup,mzlev) o]
C C  This gene is the mutation
C Mutation Operator Variables if ( te(mutant).ne.0 ) then
integer rzlo,rzup,rantypel y(parentl,place)=gene
integer czlo,czup,rantype2 else
real czmax y(parentl,place)=mutant
integer gczlo,gczup,rantype3 end if
real gczmax (e}
integer mutzlev 6000 continue
C return
C Routine Variables end
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Mutation functions
Random replacement

Real Function Ranrep(dummy)

Specific variables

real dummy

Other variables

real lowbdry,highbdry

Other functions

real gO5caf

Common Blocks

common /eqn2/ lowbdry,highbdry

Routine
ranrep=lowbdry*(highbdry-lowbdry)*g05cai(1.0)
return
end

Creep

Real Function Creep(gene,czmax,rantype)

Specific variables
integer rantype

real gene,czmax

Other functions

real gO5caf

Routine

if (rantype.eq.0) then

if ( g05caf(1.0).gt.0.5 ) then
creep=gene+czmax

else
creep=gene-czmax

end if

end if

if (rantype.eq.1) then

creep=gene+ 2.0*czmax*(g05caf(1.0)-0.5)

endif

return

end

Geometric Creep

Real Function Gcreep(gene,gczmax,rantype)

Specific Variables
integer rantype

real gene,gczmax

Other functions

real gO5caf

Routine
if (rantype.eq.0) then
if ( g0Scaf(1.0).gt.0.5 ) then
creep=gene*(1.04gczmax)
else
creep=gene*(1.0-gczmax)
end if
end if
if (rantype.eq.1) then
gcreep=gene*(1.0 4+ 2.0*gczmax™(g05caf(1.0)-0.5))
endif
return
end
Combination Operators. Randomly choose which is to be
used. Each can be weighted to be preferentially chosen
Pick a random number between 1,100. If that number lies

within a particular combination operators’ range of influence
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C then that operator will be chosen. Three main modes of use,

C mode=0 - combine genes from same position on different can-

didates

C mode=l - combine genes from different position on different
(e} candidates
C mode=2 - randomly flip between the above two modes
(e}
C Combined offspring are forced to satisfy continuity
Subroutine Combine(nlow,nup,czlev)
[e}
C Subroutine specific variables
integer parentl,parent2,placel,place2,combzop
real comb,genel,gene2
integer nlow,nup,czlev
C
C Other variables required
integer avezlo,avezup
real avzwtl,avzwt2
integer gavzlo,gavzup,gzop
integer extzlo,extzup
integer comzlev
integer mode
integer npar,nchild,npoints,ntotal
real y(1000,2000)
real lowbdry,highbdry
C
C Other functions
integer unifran,te
real wav,gav,extop
(o}
C Common blocks
common fzysz/ y
common /eqn2/ lowbdry,highbdry

common /comzdata/ avezlo,avezup,avzwtl,avzwi2,

& gavzlo,gavzup,gzop,
& extzlo,extzup,

& comzlev,

& mode

common /gal/ npar,nchild,npoints

common /ga3/ ntotal
C
C Routine

do 7000 k=1,comzlev
C

C Choose the parents
parentl=unifran(nlow,nup)
parent2=unifran(nlow,nup)
C
C Choose the places on the chromosomes
placel=unifran(1l,npoints)
place2=unifran(1,npoints)
C
C Choose the operator
combzop=unifran(1,100)
[e]
C Modus Operandii
if (mode.eq.0) then
genel=y(parentl,placel)
gene2=y(parent2,placel)
place2=placel

end if

if (mode.eq.1) then
genel=y(parentl,placel)
geneZ:y(parent?,place2)

end if

if (mode.eq.2) then
if (g0Scaf(1.0).1e.0.5) then
genecl=y(parentl,placel)
gene2=y(parent2,placel)
place2=placel
else

genel=y(parentl,placel)
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gene2=y(parent2,place2)
end if
end if

At worst, the statement allow will make no change to
the gene. We put this in to ensure at least something might
happen if the genes we have chosen fall inbetween all the

stools below.
comb=genel

Arithmetic average
if ((combzop.ge.avezlo).and.(combzop.le.avezup)) then
comb=wav(genel,gene2,avzwil,avzawt2)

end if

Geometric average
if ((combzop.ge.gavzlo).and.(combzop.le.gavzup)) then
comb=gav(genel,gene2,gzop)

end if

Extension Operator

if ((combzop.ge.extzlo).and.(combzop.le.extzup)) then
comb=cxtop(genel,gene2)

end if

Make sure new info is within the range permitted

if ( te(comb).eq.0 ) then
y(parentl,placel)=comb
y(parent2,place2)=comb

end if

if ( te(comb).eq.1 ) then
y(parentl,placel)=gene2
y(parent2,place2)=genel

end if

if ( te(comb).eq.-1 ) then
y(parentl,placel)=gene2
y(parent2,place2)=genel

end if
7000 continue
Teturn
end
C
C Combination operators
C Arithmetic Mean Combination Operator
C Yields a weighted sum of two genes
Real Function Wav(genel,gene2,avzwtl,avzwt2)
C
C Specific varaiables
real genel,gene2,avzwil,avzwi2
C
C Routine
wav=(avzwtl*geneltavzwt2*gene2)/
(abs(avzwil)tabs(avzwt2))
return
end
C Geometric Mean Combination Operator
C If either of the two genes passed to the function
C are negative then we have three possible outcomes
C gzop=0 - positive geometric mean
C gzop=1 - negative geometric mean
C gzop=2 - randomly assign either the plus or minus g-mean
C Otherwise, take the positive g-mean
Real Function Gav(genel,gene2,gzop)
C
C Specific varaiables
integer gzop
real genel,gene2
C
C Other functions
real gO5caf,wav
C
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C

&

Routine
gav=wav(genel,gene2,1.0,1.0)
if ( ((genel.1t.0.0).and.(gene2.gt.0.0)).or.
((genec2.1t.0.0).and.(genel.gt.0.0)) ) then
if (gzop.eq.0) then
gav=sqrt(abs(genel*gene2))
end if
if (gzop.eq.1) then
gav=-sqrt(abs(genel*gene2))
end if
if (gzop.cq.2) then
if (g05caf(1.0).1e.0.5) then
gav=sqrt(abs(genel*gene2))
else
gav=-sqrt(abs(genel*gene2))
end if
end if
end if
if ((genel.le.0.0).and.(gene2.1¢.0.0)) then
gav=-sqrt(abs(genel*gene2))
end if
if ((genel.gt.0.0).and.(gene2.£1.0.0)) then
gav=sqrt(abs(gencl*gene2))
end if
return
end
Extension Operator

Take the difference between two genes and randomly decide

add it to the higher, or subtract from the lower.
Real Function Extop(genel,gene2)

Specific variables

real genel,gene2

Other functions

real g05caf

Routine

if ( g05caf(1.0).1e.0.5) then
extop=max(genel,gene2) + abs(gencl-gene2)
else

extop=min(genel,gene2) - abs(genel-gene2)

_ end if

Q

Teturn
end

Subroutine Trans(nlow,nup,tzlev)

Specific variables
integer nlow,nup,tzlev,tzop
integer k,parentl,place

integer reord

Other variables

integer swazlo,swazup,swazs
integer revzlo,revzup,revzs
integer mixzlo,mixzup,mixzs
integer copzlo,copzup,copzs
integer delzlo,delzup,delzs

integer npar,nchild,npoints

Other functions

integer unifran

Common Blocks

common /trazdata/ swazlo,swazup,
&
&
&
&

common /trazdatl/ swazs,revzs,mixzs,copzs,delzs

revzlo,revzup,
mixzlo,mixzup,
copzlo,copzup,

delzlo,delzup



common /gal/ npar,nchild,npoints
C Routine
do 7500 k=1,tzlev

C  Choose parent

parentl=unifran(nlow,nup)

C Reorder the code of the parent if reord>50
reord=unifran(1,100)
if (reord.gt.50) then
Call Ncode(parentl)
end if

C Choose operator

tzop=unifran(1,100)

C Do the transcription ’errors’
C Reverse the order a sequence of genes
if ((tzop.ge.revzlo).and.(tzop.le.revzup)) then
place=unifran(revzs+1,npoints-revzs-1)
Call Reverse(parentl,place,revzs)

end if

C Swap the position of one or more genes
if ((tzop.ge.swazlo).and.(tzop.le.swazup)) then
place=unifran(swazs+41,npoints-swazs-1)
Call Swap(parentl,place,swazs)
end if

C Randomly reorder a sequence of genes
if ((tzop.ge.mixzlo).and.(tzop.le.mixzup)) then
place=unifran(mixzs+1,npoints-mixzs-1)
Call Mix(parentl,place,mixzs)
end if
7500 continue
C
C Copy data from edges and move it into the centre
if ((tzop.ge.copzlo).and.(tzop.le.copzup)) then
place=unifran{copzs+1,npoints-copzs-1)
Call Copy(parentl,place,copzs)
end if

C Delete data from parent and move tail into the centre
if ((tzop.ge.delzlo).and.(tzop.le.delzup)) then
place=unifran(delzs41,npoints-delzs-1)
Call Del(parentl,place,delzs)
end if

C Put the code back into normal form if reord>50
if (reord.gt.50) then
Call Dcode(parentl)
end if
return

end

C Transcription error rountines

Subroutine Swap(parent,place,noof)

C Specific variables
integer k,parent,place,noof

real yswap(2000)

C Other variables
real y(1000,2000)

C Common Blocks

common [zysz/ y

Q

Routine

C Get data from place to place+noof-1
do 7510 k=1,no00f
yswap(k)=y(parent,place+k-1)
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7510 continue
C
C Move data located at (place-noof)z(place-1)
C to (place)z(placetnoot-1)
do 7520 k=1,noof
y(parent,placet+k-1)=y( parent,place-noof+(k-1) )
7520 continue
C

C take the swap data and put it in (place-noof)z(place-1)

do 7530 k=1,no00f

y( parent,place-noof+(k-1) )=yswap(k)
7530 continue

return

end
C

Subroutine Reverse(parent,place,noof)

C Specific variables
integer k,parent,place,noof
real yrev(2000)

C  Other variables
real y(1000,2000)

C Common Blocks

common fzysz/ y

C Routine

C Store and reverse from (place)z(place4noof-1)
do 7540 k=1,noof
yrev(noof-k+1)=y(parent,place+k-1)

7540 continue

C Replace segment (place)z(place+noof-1) with its reverse

do 7550 k=1,noof

y(parent,placet+k-1)=yrev(k)
7550 continue

return

end

Subroutine Mix(parent,place,noof)

C Specific variables
integer k,parent,place,noof
integer ptl,pt2
Teal yl,y2

C Other variables
real y(1000,2000)

C Other functions

integer unifran

C Common Blocks

common fzysz/ y

C Routine

C Pick two points in the range and swap them over
do 7570 k=1,noof
ptl=unifran(place,place4nooi-1)
pi2=unifran(place,place4nooi-1)
yl=y(parent,ptl)
y2=y(parent,pt2)
y(parent,ptl)=y2
y{parent,pt2)=yl

7570 continue
return
end

C Copy data from outside towards the middle
Subroutine Copy(parent,place,noof)

C

C Specific variables
integer k,parent,place,noof

C



C Other variables
real y(1000,2000)

integer npar,nchild,npoints

C Common Blocks
common fzysz/ y

common /gal/ npar,nchild,npoints

C Routine
if (place.gt.(npoints/2)) then
do 7580 k=1,noof
y(parent,place-noof+4k-1)=y(parent,place+k-1)
7580 continue
else
do 7590 k=1,noof
y(parent,place4noof+k-1)=y(parent,place+tk-1)
7590 continue
end if
return
end
C Delete data and move genes inwards

Subroutine Del(parent,place,noof)

C Specific variables

integer k,parent,place,noof

C Other variables
real y(1000,2000)

integer npar,nchild,npoints

C Common Blocks
common /zysz/ y

common /gal/ npar,nchild,npoints

C Routine
if (place.gt.(npoints/2)) then
do 7800 k=1,npoints-place+1
y(parent,place-noof+k-1)=y(parent,place-fk-1)
7800 continue
else
do 7810 k=1,place
y(parent,place4+noof-k+1)=y(parent,place+1-k)

7810 continue

end if

return

end
C.....
C Check that there is sufficient genetic
C diversity in the breeding population
C  weight(1)/weight(ii) ==
C <= 1 by definition
C ml==
C =1 - similarity <=1
C mtot=[ (sum ii=1,npar) of ml }/npar
C == measure of the parental similarity

Subroutine Check

Q

C Subroutine specific variables
integer ii

real ml,mtot

C Other required variables
real weight(1000),gentol

integer npoints,npar,nchild

C Common blocks
common /wis/ weight
common /gal/ npar,nchild,npoints

common /gad4/ gentol

C Routine
mtot=0.0
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ml1=0.0

do 9000 ii=1,npar
m1=1.0-weight(1)/weight(ii)
mtot=mtot4m1l

9000 continue

mtot=mtot/(1.0*npar)

print*,’Genetic Diversity Measure’,mtot

if (mtot.le.gentol) then

Call Tweak(mtot)

endif

return

end

Tweak the parents

The diversity in the breeding population is less
than the level tolerated by gentol. Now Tweak!!
Subroutine Tweak(mtot)

Subroutine specific variables
integer iik

real mtot

Other required variables
integer npar,nchild,npoints
integer twzpar
real y(1000,2000)

Common blocks
common /gal/ npar,nchild,npoints
common [fzysz/ y

common /ga9/ twzpar

Routine: tweak all but the twzpar parent(s)

print*,’Tweaking....’,npar+nchild-twzpar,” candidate(s)’

write(unit=20,fmt=*) '"Tweak here’
do 10002 ii=twzpar+1,npar+nchild
Call Gener8(ii)

10002 continue

C
C

Make 'em continuous
do 1561 k=1,npar+nchild
Call Continuity (k)

1561 continue
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Call Profile(npar4nchild)

Call Sort

return

end

Jiggle the breeding stock

Two methods are used: add a small number

to each gene, or multiply by a number close to one.
By the same number close to one

Subroutine Jiggle(ran0)

Subroutine required variables
integer i,ii

real ran,ran0O,ytest

Other variables

integer npoints,npar,nchild

real y(1000,2000},lowbdry,highbdry
integer te

real gO5caf

Common Blocks
common fzysz/ y
common /gal/ npar,nchild,npoints

common /eqn2/ lowbdry,highbdry

Routine:

Randomly decide whether to multiply or add a litile bit

it the parent stock



do 8880 i=2,npar
ran=ran0*2%( g05caf(1.0)-0.5 )
do 8881 ii=2,npoints-1
if ( g05caf(1.0).g1.0.5 ) then
ytest=y(i,ii)*(1.0+ran)
else
ytest=y(i,ii)+ ran
end if
if (te(ytest).eq.l ) then
ytest=y(i,ii)
end if
if ( te(ytest).eq.-1 ) then
ytest=y(i,ii)
end if
y(i,ii)=ytest
8881 continue
Call Continuity(i)
8880 continue

return

C Wobble the best parent very slightly
C and put it at the bottom of the heap
Subroutine Wobble(ran0)

C Subroutine required variables return
integer ij end
real ranl,ran,ran0 C.....
real ytestl,ytest2,ytest3 C
C C GENE & STRING MANIPULATORS/INFORMATION
C Other variables C These arec not Genetic Algorithm Operators, but
integer npoints,npar,nchild C manipulate and read the genes to provide new information.
real y(1000,2000),lowbdry,highbdry C
[¢] C.....
C Other functions C Calculate new sizes and double resolution in x and y dirns
integer te Subroutine Double
real g0Scaf (o]
C C Specific variables
C Common Blocks integer k
common /zysz/ y integer xpoints2,ypoints2,npoints2
common /gal/ npar,nchild,npoints o}
common feqn2/ lowbdry,highbdry C Other variables
C real jig,wob,wobif
C Copy best parent and wobble VERY slightly integer jignow,wobnow
C in 3 different ways....multiply every gene randomly integer xpoints,ypoints,npar,nchild,npoints
C and 2 copies that are slightly above and below the best integer dbl
C parent integer mzlev,czlev,tzlev
ranl=ran0*2%( g05caf(1.0)-0.5 ) integer swazs,revzs,mixzs,copzs,delzs
do 8781 ii=1,npoints real hstep,kstep
ytestl=y(1,ii) real xzstart,xzend
ytest2=y(1,ii) real yzstart,yzend
ytest3=y(1,ii) [
ran=ran0%2.0%( g05caf(1.0)-0.5 ) C Common blocks
if ( g05caf(1.0).gt.0.5) then common /gal/ npar,nchild,npoints
ytestl=y(1,ii)*(1.04ran) common /gall/ xpoints,ypoints
else common /gal0d/ dbl
ytestl=y(1,ii) + ran common /mctzdat/ mzlev,czlev,tzlev
end if common ftrazdatl/ swazs,revzs,mixzs,copzs,delzs
if (te(ytestl).eq.1 ) then common /ga5/ jig,jignow,wob,wobnow,wobif
ytestl=y(1,ii) common /size/ hstep,kstep
end if common /eqn4/ xzstart,xzend
if ( te(ytestl).eq.-1 ) then common /eqn4l/ yzstart,yzend
ytestl=y(1,ii) C
end if C Routine
y(npar+nchild,ii)=ytestl C Double point resolutions in each direction
C C These are the new doubled values of the x and y
if ( g05caf(1.0).g1.0.5) then C coarseness

ytest2=y(1,ii)*(1.04ranl)

else ypoints2=2*ypoints-1
ytest2=y(1,ii) + ranl npoints2=xpoints2®ypoints2
end if print*,’Doubling resolution, quadrupling code length’

if ( te(ytest2).eq.1 ) then
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ytest2=y(1,ii)
end if
if (te(ytest2).eq.-1 ) then
ytest2=y(1,ii)
end if
y(npartnchild-1,ii)=ytest2

if ( g05caf(1.0).gt.0.5) then
ytest3=y(1,ii)*(1.0-ran1)
else
ytest3=y(1,ii) - ranl
end if
if ( te(ytest3d).eq.1 ) then
ytest3=y(1,ii)
end if
if { te(ytest3).eq.-1 ) then
ytest3=y(1,ii)
end if
y(npar+nchild-2,ii)=ytest3
8781 continue
C
C Continuity
Call Continuity(npar+nchild-2)
Call Continuity(npar+nchild-1)
Call Continuity(npar+tnchild)

xpoints2=2%*xpoints-1

print*,’Points in x-direction ’,xpoints2



print*,’Points in y-direction ’,ypoints2
print*,’Doubling A-points of population=',npar+4nchild
print*,’Genetic code length per candidate’,npoints2
C Option of doubling method
it (dbl.eq.0) then
print*,’Doubling points by random replacement’
else
if (dbl.eq.1) then
print*,’Doubling points by interpolation’
end if

end if

C Double the x and y resolution with the function below
Call XX1pts2(xpoinis2,ypoints2)

C Call the subroutine that actually doubles the points
do 680 k=1,npar+nchild
Call Apts2(k,xpoints2,ypoints2,npoints2)

680 continue

C

C Now assign the temporary variable values to the

C wvariables used in the rest of the program.
xpoints=xpoints2
ypoints=ypoints2

npoints=npoints2

C Recalculate step sizes in each direction
hstep=(xzend-xzstart)/( (xpoints-1)*1.00 )
kstep=(yzend-yzstart)/( (ypoints-1)*1.00 )

C Now that we have doubled point sizes, we can make
C the doubled candidates continuous
do 608 k=1,npar4nchild
Call Continuity(k)
608 continue
C
C Introduce a bit of variety to the parents on doubling
¢ do 681 k=npar+1,npar+4nchild
c¢ Call Geners(k)
¢ Call Continuity(k)
c681 continue
C
C Wobble the best candidate
Call Wobble(wob)
C Keep the best candidate
Call Keep(1)

C Double the variables that scale with genetic code size
print*,’Doubling mutation,combination’
print*,’and transcription rates...’
czlev=2%czlev
mzlev=2*mzlev
tzlev=2%tzlev
swazs=2%swazs
revzs=2%revzs
mixzs=2%mixzs
copzs=2*copzs
delzs=2%delzs
print* ’czlev’,czlev,’ mzlev’,mzlev,’ tzlev',izlev
print*,’swazs,revzs,mixzs,copzs,delzs’
print*,swazs,revzs,mixzs,copzs,declzs
return

end

C Generate a random integer between mlow,nup

Integer Function unifran(alow,nup)

C Subroutine specific

integer nlow,nup

C Other functions
real gO5caf
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C

Routine

unifran=nlow+ nint( (nup-nlow)*g05caf(1.0) )
return

end

Test if gene is outside the bounds

Integer function te(gene)

Subroutine specific

real gene

Other variables

real highbdry,lowbdry

Common blocks

common /eqn2/ lowbdry,highbdry

Routine

te=0

if (gene.gt.highbdry) then

te=1

end if

if (gene.lt.lowbdry) then

te=-1

end if

return

end

Where to put the value in the string given its i,j co-ords
Useing x-directed segments piled up

Integer Function pl(i,j)

Specific variables

integeri,j

Other variables

integer xpoints,ypoints

Common Blocks

common /gall/ xpoints,ypoints

Routine
pl=i+(j-1)*xpoints
return

end

For doubling pts we need a different routine: use x-directed

sirips

Integer Function pl2(i,j)

Specific variables

integer i,j

Other variables

integer xpoints,ypoints

Common Blocks

common /gall/ xpoints,ypoints

Routine

pl2=i+(j-1)*(2*xpoints-1)

return

end

Alternate storage method:: given (i,j} pair, store the
code in strips of y-directed segments

Integer Function plcd(i,j)

Specific variables

integer i,j

Other variables



integer xpoints,ypoints

C Common Blocks

common /gall/ xpoints,ypoints

C Routine
plcd=j+(i-1)*ypoints

return

C Double pts in the x and y directions
Subroutine XX1pts2(xpoints2,ypoints2)

C Subroutine specific
real store(100)

integer ii,xpoints2,ypoints2

C Other variables
integer xpoints,ypoints
real x(100),x1(100)

C Common blocks

common /gall/ xpoints,ypoints

common /zdimz/ x,x1

C

C Routine
C Do the x-direction: data held in x array
C

Store old points

do 1231 ii=1,xpoints
store(ii)=x(ii)

1231 continue

C

C Delete string
do 1261 ii=1,xpoints2
x(ii)=0.0

1261 continue

C

C Reassign old points in new positions
do 1241 ii=1,xpoints
x(2*ii-1)=store(ii)

1241 continue

C

C Calculate new points in new positions
do 1251 ii=1,xpoints2
if ( mod(ii,2).eq.0 ) then

x(ii)=0.5%( x(ii-1) + x(ii+1) )

end if

1251 continue

C

C Do the y-direction: data held in x1 array

C Store old points
do 12311 ii=1,ypoints
store(ii)=x1(ii)

12311 continue

C

C Delete string
do 12611 ii=1,ypoints2
x1(ii)=0.0

12611 continue

C

C Reassign cld points in new positions
do 12411 ii=1,ypoints
x1(2%ii-1)=store(ii)

12411 continue

[e]

C Calculate new points in new positions
do 12511 ii=1,ypoints2
if ( mod(ii,2).eq.0 ) then

x1(ii)=0.5%( x1(ii-1) 4+ x1(ii+1) )

end if

12511 continue

return

C Double A-points
Subroutine Apts2(n,xpoints2,ypoints2,npoints2)

C Subroutine specific
integer ii,j
real stozy(2000)

integer n,xpoints2,ypoints2,npoints2

C Other variables
integer npar,nchild,npoints
integer xpoints,ypoints
integer dbl,nout
real y(1000,2000)

C Other functions
integer pl,pl2

real ranrep

C Common blocks
common /gal/ npar,nchild,npoints
common /gall/ xpoints,ypoints
common fzysz/ y

common /gal0/ dbl

C Routine
nout=14
C Store old points
do 123 ii=1,xpoints*ypoints
stozy(ii)=y(n,ii)
123 continue
if (n.eq.1) then
open(unit=nout,file=’test0’,status=’unknown’,
& access=’sequential’)
do 299 ii=1,npoints
write(unit=nout,fmt=98009) y(n,ii)
299 continue
close(unit=nout)
end if
C
C Delete string
do 126 ii=1,npoints2
y(n,ii)=0.0
126 continue
C
C Reassign old points in new positions
do 124 j=1,ypoints
do 1244 ii=1,xpoints
y(n,pl2(2*ii-1,2*j-1))=stozy( pl(ii,j) )
1244 continue
124 continue
if (n.eq.1) then
open(unit=nout,file="testl’,status=’unknown’,
& acceas=’sequential’)
do 298 ii=1,xpoints2*ypoints2
write(unit=nout,fmt=98009) y(n,ii)
298 continue
close(unit=nout)
end if
C
C Calculate new points in new positions
if (dbl.eq.0) then
do 1245 j=1,ypoints2
do 1246 ii=1,xpoints2
if( ( (mod(j,2).eq.1).and.(mod(ii,2).cq.0) ).or.

& ( (med(j,2).eq.0).and.(mod(ii,2).eq.1) ).or.
& ( (mod(j,2).¢q.0).and.(mod(ii,2).eq.0) )
& ) then

y(n,pl2(ii,j))=ranrep(1.0)

end if

1246 continue



1245 continue integer n,i,j

end if real ystore(2000)
if (dbl.eq.1) then c
do 125 j=1,ypoints2 C Other variables
do 1255 ii=1,xpointa2 integer npar,nchild,npoints
if ( (mod(j,2).cq.1).and.(mod(ii,2).eq.0) ) then real y(1000,2000)
y(n,pl2(ii,j))=0.5*( y(n,pl2(ii-1,j))+y(n,pl2(ii+1,j)) ) integer xpoints,ypoints
end if (e}
if ( (mod(j,2).eq.0).and.(mod(ii,2).eq.1) ) then C Other functions
y(n,pl12(ii,j))=0.5*( y(n,pl2(ii,j-1))+y(n,pl2(ii,i+1)) ) integer pl,plcd
end if (o}
if ( (mod(j,2).eq.0).and.(mod(ii,2).eq.0) ) then C Common blocks
y(n,pl2(ii,j))=0.25*( y(n,pl2(ii-1,j-1)) common /gal/ npar,nchild,npoints
& +y(n,pl2(ii41,j-1)) common fzysz/ y
& 4y (n,pl2(ii-1,j41)) common /gall/ xpoints,ypoints
& +y(n,pl2(ii41,j+1)) C
& ) C Routine
end if C Copy candidate
1255 continue do 7004 i=1,npoints
125 continue ystore(i)=y(n,i)
end if 7004 continue
if (n.eq.1) then C Reorder genetic code
open(urnit=nout,file="test2’,status="unknown’, do 7005 j=1,ypoints
& access=’sequcntial’) do 7006 i=1,xpointis
do 297 ii=1,xpoints2*ypoints2 y( n,pl(i,j) )=ystore( plcd(i,j) )
write(unit=nout,fmt=98009) y(n,ii) 7006 continue
297 continue 7005 continue
close(unit=nout) return
end if end
98009 format( (f8.3,trl) ) C...oe
return ¢}
end C LOADING IN AND SETTING UP: DIAGNOSTIC OUTPUTS:
C..... FILES IN/OUT
C Takes x-directed code and reorders it into y-directed code C
Subroutine Ncode(n)
C C
C Specific variables C Load in the necessary data
integer n,i,j Subroutine Loadzin
real ystore(2000) C
o] C Subroutine specific variables
C Other variables integer i
integer npar,nchild,npoints integer ninl
real y(1000,2000) C
integer xpoints,ypoints C Other functions
C integer te
C Other functions real lhs,rhs,lobd,upbd
integer pl,plcd real y(1000,2000),x(100),x1(100)
C C
C Common blocks C Genetic algorithm Variables
common /gal/ npar,nchild,npoints integer loadin
common /zysz/ y integer ran0
common /gall/ xpoints,ypoints integer npar,nchild,xpoints,ypoints
C integer itermax
C Routine real jig,wob,wobif
C Copy candidate integer jignow,wobnow
do 7001 i=1,npoints integer worzp
ystore(i)=y(n,i) real zoomy
7001 continue integer twzpar
C Reorder genetic code integer dbl
do 7002 i=1,xpoints C
do 7003 j=1,ypoints C Egquation Variables
y( n,plcd(i,j) )=ystore( pl(i,j) ) real xzstart,xzend
7003 continue real yzstart,yzend
7002 continue real lowbdry,highbdry
return real hstep,kstep
end C
C Mutation Operator Variables
C Takes y-directed stored code and re-orders it into integer rzlo,rzup,rantypel
C normal x-directed code integer czlo,czup,rantype2
Subroutine Dcode(n) real czmax
o] integer gczlo,gczup,rantyped
C Specific variables real gczmax
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(o]
C

C
C

Q

a0

C

real mutzlevl
integer mutzlev

integer mzlev

Combination Operator Variables
integer avezlo,avezup
real avzwtl,avzwt2
integer gavzlo,gavzup,gzop
integer extzlo,extzup

real comzlevl

integer comzlev

integer mode

integer czlev

Transcription Operator variables
integer swazlo,awazup
integer revzlo,revzup
integer mixzlo,mixzup
integer copzlo,copzup
integer delzlo,delzup
integer swazs,revzs,mixzs,copzs,delzs
real swazsf,revzsf,mixzsf,copzsf,delzsf
real trazlevl
integer trazlev

integer tzlev

Profile Operator Variables
real penl,pen2

real dterm,factor,prod0

Control file data
real cont(5,10)

integer level,levelm

Common Blocks
Program
common /zysz/ y

common fzdimz/ x,x1

Genetic algorithm data

common /gal/ npar,nchild,npoints
common /gall/ xpoints,ypoints
common /ga2/ itermax

common /ga3/ ntotal

common /ga4/ gentol

common /ga5/ jig,jignow,wob,wobnow,wobif

common /ga6/ loadin
common /ga7/ worzp
common /ga8/ zoomy
common /ga9/ twzpar

common /gal0/ dbl

Equation data

common feqn4/ xzstart,xzend
common feqn4l/ yzstart,yzend
common /eqn2/ lowbdryhighbdry

common /size/ hstep,kstep

Mutation data

common /mutzdata/ rzlo,rzup,rantypel,

& czlo,czup,rantype2,czmax,
& gczlo,gczup,rantype3,gczmax,
& mutzlev

Combination data

common fcomzdata/ avezlo,avezup,avzwtl,avawt2,

& gavzlo,gavzup,gzop,
& extzlo,extzup,

& comzlev,

& mode

common /mctzdat/ mzlev,czlev,tzlev
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C Transcription data

common /trazdata/ swazlo,swazup,

& revzlo,revzup,
& mixzlo,mixzup,
& copzlo,copzup,
& delzlo,delzup

common /trazdatl/ swazs,revzs,mixzs,copzs,delzs
c
C Profile data
common /prof/ penl,pen2,dterm,factor,prod0
C
C Control data

common /control/ cont,level,levelm

C

C Routine
ninl=14

C

C Profile operator
print*,’Profiling data in profile.in’
open(unit=ninl,file="profile.in’,access=’sequential’,
& status=’'unknown’)
read(unit=ninl,fmt=99998) penl
read(unit=ninl,fmt=99998) pen2
read(unit=ninl,fmt=99998) dterm
read(unit=ninl,fmt=99998) factor
read(unit=ninl1,fmt=99998) prodo

close(unit=nin1)

C Read in Equation data
print*,’Loading Equation data from equation.in’
open(unit=ninl,file=’equation.in’,access=’sequential’,
&  status=’unknown’)
read(unit=ninl,fmt=99996) xzstart,xzend
read(unit=ninl,fmt=99996) yzstart,yzend
read(unit=nin1,/mt=99996) lowbdry,highbdry
close(unit=nin1)
if (highbdry.le.lowbdry) then
print*,’highbdry less than lowbdry!!’
stop
endif

C

C Read in and check Genetic Algorithm data
print*,’Loading Genetic Algorithm data from ga.in’
open(unit=ninl,file='ga.in’,access=’sequential’,
& status='unknown’)
read(unit=ninl,fmt=99999) loadin
read(unit=nin1,fmt=99999) ran0
read(unit=ninl,fmt=99999) npar
read(unit=ninl,fmt=99999) nchild
read(unit=ninl,fmt=99999) xpoints
read(unit=ninl,fmt=99999) ypoints
read(unit=ninl,fmt=99999) itermax
read(unit=ninl1,fmt=99998) gentol
read(unit=ninl,fmt=99991) jig,jignow
read(unit=nin1,fmt=99990) wob,wobnow,wobif
read(unit=ninl,fmt=99991) zoomy,worzp
read(unit=ninl,/mt=99999) twzpar
read(unit=ninl,fmt=99999) dbl
close(unit=ninl)
if (loadin.eq.1) then
print*,’Loading data from BZPARZN.OUT’
end if
if (ran0O.ne.1) then
Call G0O5ccf
print*,’...non repeatable random nos’
else
print*,’...repeatable random nos’
endif
npoints=xpoints*ypoints
hstep=(xzend-xzstart)/( (xpoints-1)*1.00 )
kstep=(yzend-yzstart)/( (ypoints-1)*1.00 )
if ((npoints.le.5).or.(npoints.gt.2000)) then



print*,npoints

print*,’Must have 5 < npoints <= 2000’

stop

endif

ntotal=npar+nchild

if ((ntotal).gt.1000) then

print* 'nchild4npar must be less than 1000’

stop

end if

jig=jig*(highbdry-lowbdry)

wob=wob*(highbdry-lowbdry)

do 8001 j=1,ypoints

do 8002 i=1,xpoints

if( (te(lhs(i,j)).ne.0).or.(te(rhs(i,j)).ne.0).or.
(te(upbd(i,j)).ne.0).or.(te(lobd(i,j)).ne.0)
) then

&
&
print*,’At least one point on the bdry lies outside’
print*,’the range of high/lowbdry’
stop
end if
8002 continue
8001 continue
C
C Read in Mutation Operator data
print*’Loading Mutation Operator data from mutate.in’
open(unit=ninl, file="mutate.in’,access='sequential’,
&

read{uni

status='unknown’)

=ninl,fmt=99995) rzlo,rzup,rantypel
read(unit=ninl,fmt=99994) czlo,czup,rantype2,czmax
read(unit=ninl,fmt=99994) gczlo,gczup,rantype3,gczmax
read(unit=nin1,fm1=99998) mutzlevl
close(unit=ninl)
print*,’
mutzlev=nint(mutzlevl*ntotal®*(xpoints-2)*(ypoints-2))
print*,’No.of mutations ’,mutzlev
mzlev=mutzlev

C

C Check if any operators are switched off
if ( ((rzlo.1t.0).and.(rzup.1t.0)).or.
&  ((rzlo.gt.100).and.(rzup.gt.100)) ) then
print* ’MUTATION: Random Replacement operator OFF’
endif
if ( ((czlo.1t.0).and.(czup.1t.0)).or.
& ((czlo.gt.100).and.(czup.gt.100)) ) then
print*,'MUTATION: Creep operator OFF’
endif
if ( ((gezlo.1t.0).and.(gczup.1t.0)).or.
& ((gczlo.gt.100).and.(gczup.gt.100)) ) then
print* "/MUTATION: Geometric Creep operator OFF’
endif

[of

C Read in Combination Operator data
print*,’Loading Combination Operator data from combine.in’
open(unit=ninl,file="combine.in’,access=’sequential’,
&
read(unit=ninl,fmt=99993)
read(unit=mninl,fmt=99995)

status='unknown’)
avezlo,avezup,avzwtl,avzwi2
gavzlo,gavzup,gzop

read(unit=nin1,fmt=99992) extzlo,extzup
read(unit=ninl1,/fm1=99998)

read(unit=ninl,fmt=99999)

comzlevl

mode
close(unit=nin1)
print*,’
comzlev=nint(comzlevl*ntotal*npoints)
print*,’No.of combinations’,comzlev
czlev=comzlev

(o}

C Check if any combination operators are off
if ( ((avezlo.1t.0).and.(avezup.1t.0)).or.
& ((avezlo.gt.100).and.(avezup.gt.100)) ) then

OFF’

print*,’COMBINATION: Weigted Gene Averaging operator OFF’

endif
if ( ((gavzle.lt.0).and.(gavzup.1t.0)).or.
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& ((gavzlo.gt.100).and.{gavzup.gt.100)) ) then
print*,’COMBINATION: Geometric Gene Averaging operator

endif
if ( ((extzlo.1t.0).and.(extzup.lt.0)).or.
&  ((extzlo.g1.100).and.(extzup.gt.100)) ) then
print*,’COMBINATION: Gene Extension operator OFF’
endif

C

C Read in Transcription Operator data

print*,’Loading Transcription Operator data from transcr.in’
open(unit=ninl,file="transcr.in’,access=’sequential’,
&

read(unit=ninl,fmt=99989) swazlo,swazup,swazsf

status='unknown’)

read(unit=nin1,fmt=99989) revzlo,revzup,revzs{
read(unit=nin1,fmt=99989) mixzlo,mixzup,mixzsf
read(unit=ninl,fmt=99989) copzlo,copzup,copzsf
read(unit=ninl,fmt=99989) delzlo,delzup,delzsf
read(unit=ninl,fmt=99998) trazlevl
close(unit=ninl)

print*)?

trazlev=nint(trazlevl*atotal*npoints)
print*,’No.of transcriptions’,trazlev

tzlev=trazlev

swazs=nint(swazsf*npoints)
revzs=nint(revzsf*npoints)

mixzs=nint(mixzsf*npoints)
copzs=nint(copzsf*npoints)

delzs=nint(delzsf*npoints)

[e]

C Check if any transcription operators are off

if ( ((swazlo.lt.0).and.(swazup.1t.0)).or.

& ((swazlo.gt.100).and.(swazup.gt.100)) ) then
print*,TRANSCRIPTION: Swapping operator OFF’
endif

if ( ((mixzlo.1t.0).and.(mixzup.1t.0)).or.

& ((mixzlo.gt.100).and.(mixzup.gt.100)) ) then
print*,"TRANSCRIPTION: Mixing operator OFF’
endif

if ( ((revzlo.lt.0).and.(revzup.1t.0)).or.

& ((revzlo.gt.100).and.(revzup.gt.100)) ) then
print*,'TRANSCRIPTION: REVERSAL opcrator OFF’
endif

if ( (swazs.gt.npoints).or.(mixzs.gt.npoints).or.

&

print*,’Too many points asked for in one of the’

(revzs.gt.npoints) ) then

print®*,’transcription operator functions!’
stop
end if

o}

C Read in control program data

print*,’Loading data from control.in *
open(unit=ninl,file="control.in’,access='sequential’,
&
do 7777 i=1,4

read(unit=ninl,fmt=99987) cont(i,1),cont(i,2)

status=’unknown’)

& ,cont(i,3)
read(unit=ninl,fmt=99988) cont(i,4),cont(i,5)
& ,cont(i,6),cont(i,7)

7777 continue

read(unit=ninl,fmt=99999) level
read(unit=nin1,fmt=99999) levelm
close(unit=ninl)

Set itermax to the value of limitn for the first level
itermax=nint( cont(level,3) )

if (levelm.gt.4) then

print*,'levelm must be less than or equal to 4’
stop

end if

C

C Format Statements

99999 format(i5)



99998 format(f15.8)

€99997 format(3(f15.8))

99996 format(2(f15.8))

99995 format(3(i5))

99994 format(3(i5),f15.8)

99993 format(2(i5),2({15.8))

99992 format(2(i5))

99991 format(f15.8,tr10,i5)

99990 format(f15.8,1r10,i5,tr10,{15.8)

99989 format(2(i5),f15.8)

99988 format(4(f15.8,118))

99987 format(3(f15.8,tr8))
return

end

C Setup initial parents - sce output file ADAMEVE.OUT
Subroutine Setup

C Subroutine specific variables

integer i,ii,nout

C Other variables
integer npoints,npar,nchild
integer xpoints,ypoints
real y(1000,2000)
real x(100),x1(100)
real xzend,xzstart

real yzend,yzstart

C Common blocks
common /fzdimz/ x,x1
common /zysz/ y
common feqn4/ xzstart,xzend
common /eqn4l/ yzstart,yzend
common /gal/ npar,nchild,npoints

common /gall/ xpoints,ypoints

C Routine
nout=14
print*,’Setup initial data:: x points’
do 10 i=1,xpoints
x(i)=xzstart+4(i-1)*(xzend-xzstart)/(1.0%(xpoints-1))
10 continue
print*,’Setup initial data:: y points’
do 11 i=},ypoints
x1(i)=yzstart4(i-1)*(yzend-yzstart)/(1.0*(ypoints-1))
11 continue
C Setup initial data:: initial stock
print*,’Setup initial data:: initial population’
do 20 i=1,npar
Call Gener8(i)
Call Continuity(i)
20 continue
print*,’Setup initial data:: special individual’
Call Special(1,10.0)
Call Continuity(1)
C
C Dump out initial data
print*,’Dumping out initial parents in ADAMEVE.OUT’
print*,’Currently only first 100 entries per candidate’
open(unit=nout,file="ADAMEVE.OUT’,status=’unknown’,
& access=’sequential’)
do 30 i=1,npar
write(unit=nout,fmt=98000) ( y(i,ii), ii=1,100 )
30 continue
close(unit=nout)
(e}
C Format Statements
98000 format(100(f15.8,tr8))
return

end
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C Diagnostics: dump out the relevant information

Subroutine Dumpzout

C Subroutine specific variables

integer i,ii,nout

C OQther required variables
integer npoints,npar,nchild
integer xpoints,ypoints
integer level,leveim
real y(1000,2000)
real weight(1000)
real x(100),x1(100)
real rrs(2000)
recal xzstart,xzend
real yzstart,yzend

real cont(5,10)

C Common blocks
common /control/ cont,levellevelm
common /wts/ weight
common /zysz/ y
common /zdimz/ x,x1
common /gal/ npar,nchild,npoints
common /gall/ xpoints,ypoints
common /disc/ rrs
common /eqn4/ xzstart,xzend

common /eqn4l/ yzstart,yzend

C

C Routine
nout=14

C

C Best parent, depending on level
if (level.eq.1) then
print*,’'Level 1 best parent in BZPARZN1.0UT’
print*,’Total of ’,npoints,’ points’
open(nnit=nout,file="BZPARZN1.OUT’,status="unknown’,
& access=’scqucntial’)
do 299 i=1,npoints
write(unit=nout,fmt=98001) y(1,i)
299 continue
close(unit=nout)
end if
if (level.eq.2) then
print*,’Level 2 best parent in BZPARZN2.OUT’
print*,’Total of ’,npoints,’ points’
open{unit=nout,file="BZPARZN2.0UT’,status=’unknown’,
& access=’sequential’)
do 298 i=1,npoints
write(unit=nout,fmt=98001) y(1,i)
298 continue
close(unit=nout)
end if
if (level.eq.3) then
print*,’Level 3 best parent in BZPARZN3.0UT’
print*,”Total of ’,npoints,’ points’
open(unit=nout,file=’BZPARZN3.0UT’,status="unknown’,
& access=’sequential’)
do 297 i=1,npoints
write(unit=nout,fmt=98001) y(1,i)
297 continue
close(unit=nout)
end if
if (level.eq.4) then
print*,’Level 4 best parent in BZPARZN4.OUT’
print*,’Total of ',npoints,’ points’
open(unit=nout,file="BZPARZN4.0UT"’
,status=’unknown’,
& access=’sequential’)
do 296 i=1,npoints
write(unit=nout,fmt=98001) y(1,i)

296 continue



close(unit=nout) ]

end if C Format Statements
c 98002 format(i5,100(115.8,tr8))
C Best parent at current level return
print*,’Dumping out current best parent in BZPARZN.OUT’ end
print*,’Total of ’,npoints,” points’
open(unit=nout,file="BZPARZN.OUT’,status=’unknown’, C
& access=’sequential’) C PHYSICS STUFF FOR THE EQUATIONS
do 301 i=1,npoints C These functions describe the equation we want to solve,
write(unit=nout,fmt=98001) y(1,i) C i.e., source and boundaries
301 continue C
close(unit=nout) C.....
o] C Source term for poisson equation

C Weights of the best parents Real Function Source(i,j,a,ax,ay)

print*,’Dumping out current best parents weights in BZWTZN.OUT’ C

open(unit=nout,file="BZWTZN.OUT’,status="unknown’, C Subroutine specific variables

& access=’sequential’) integer i,j

do 302 i=1,npar real a,ax,ay
write(unit=nout,fmt="*) i,weight(i) C

302 continue C  Other variables

close(unit=nout) real x(100),x1(100)

Q

C

C Discretisation errors as found by the profiler

Q

Common statements required
print*,’Dumping out current best parent’ common /zdimz/ x,x1
print*,'discretisation errors in BZERRZN.OUT?
Call Profile(npar+4nchild)

Call Sort

Call Profile(1)
open(unit=nout,file="BZERRZN.OUT"’

Routine

For details see internal report and analysis no.16

QaaQaa

This particular run has lambda=1

source=a**2.0

,status=’unknown’, return
& access='sequential’) end
do 304 ii=1,npoints C.....
write(unit=nout,fm1=98001) rrs( ii ) C Boundary Conditions
304 continue Real Function Lobd(i,j)
close(unit=nout) o}
C C Subroutine specific variables
C Some information about calculation integer i,j
print*,’Information for LIST3D.FOR program in linfo.in’ real pi
open(unit=nout,file="linfo.in’,status='unknown’, ¢ real r0
& access=’sequential’) (o]

Q

Other variables
real x(100),x1(100)

integer xpoints,ypoints

write(unit=nout,fmt=98002) xpoints
write(unit=nout,fmt=98002) ypoints
write(unit=nout,fmt=98001) xzstart

write(unit=nout,fmt=98001) xzend intrinsic sin

write(unit=nout,fmt=98001) yzstart C
write(unit=nout,fmt=98001) yzend C Common statements
close(unit=nout) common /zdimz/ x,x1
c common /gall/ xpoints,ypoints
C Format Statements o]
98001 format(f15.8) C Routine
98002 format(i5) ¢ r10=( x(xpoints)-x(1) )/2.0
return ¢ if ( (x(i)-x(1)).1t.r0 ) then
end ¢ lobd=exp( 1.0-(x(i)-x(1))/r0 )
C..... c else
C Update the evolution history files ¢ lobd=1.0
Subroutine Update(noutzwt,noutzh,noof) ¢ end if
C pi=acos(-1.0)

C Subroutine specific variables lobd=4.0%sin( 2.0"pi*( (x(i)-x(1))/(x(xpoints)-x(1)) ))

c integer ii c lobd=2.0
integer noof return
(o] end
C Other required variables C.....
integer noutzwt,noutzh Real Function Upbd(i,j)
Teal weight(1000),y(1000,2000) C
(o] C Subroutine specific variables
C Common blocks integer i,j
common /wts/ weight real pi
common [fzysz/ y C
(¢} C  Other variables
C Routine real x(100),x1(100)
write(unit=noutzwt,fmt=") noof,weight(1) integer xpoints,ypoints
¢ write(unit=noutzh,fmt=98002) noof,( y(1,ii), ii=1,100 ) intrinsic sin
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Common statements
common fzdimz/ x,x1

common /gall/ xpoints,ypoints

Routine

pi=acos(-1.0)

upbd=4.0%sin( 2.0*pi*( (x(i)-x(1))/(x(xpoints)-x(1)) ))
upbd=x(i)

upbd=2.0

return

end

Real Function Lhs(i,j)

Subroutine specific variables

integer i,j

Other variables

real x(100),x1(100)
integer xpoints,ypoints
intrinsic sin

real r0

Common statements
common /zdimz/ x,x1

common fgall/ xpoints,ypoints

Routine

r0=( x1(ypoints)-x1(1) )/2.0
if ( (x1(j)-x1(1)).1t.r0 ) then
lhs=exp( 1.0-(x1(j)-x1(1))/r0 )
else

lhe=1.0

end if

pi=acos(-1.0)

lhs=4.0"sin( 2.0*pi*( (x1(j)-x1(1))/(x1(ypoints)-x1(1)) ))
lhs=2.0

return

end

Real Function Rhs(i,j)

Subroutine specific variables
integer i,j

real pi

Other variables
real x(100),x1(100)
integer xpoints,ypoints

intrinsic sin

Common statements
common /zdimz/ x,x1

common /gall/ xpoints,ypoints

Routine
pi=acos(-1.0)
rhs=4.0%sin( 2.0*pi*( (x1(j)-x1(1))/(x1(ypoints)-x1(1)) ))
rhs=x1(j)

rhs=2.0
return
end

Monitor the emergence of the best candidate

This routine controls when to double points, continue or exit
On entry,iternow should be a multiple of limitn

Subroutine Decide(iternow,bzwt,evolav)
Subroutine specific variables

integer iternow

real bzwt,evolav
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integer limmax,limitn
real fact,factl
real tzwt,steep,steepl

integer i

C Other variables
real y(1000,2000)
real cont(5,10)
integer level,levelm
real kp(2000)
integer xpointsk,ypointsk
integer npar,nchild,npoints
integer xpoints,ypoints
integer kzey,izlow,izup
integer mzlev,czlev,tzlev
integer nout
C Common statements
common /control/ cont,level,levelm
common /keepl/ kp
common /keep2/ xpointsk,ypointsk
common /zysz/ y
common /gal/ npar,nchild,npoints
common /gall/ xpoints,ypoints
common /dec/ kzey,izlow,izup

common /mctzdat/ mzlev,czlev,tzlev

C
C Routine
(o]
nout=14
C Setup the variables we need - give them nicer names

limmax=nint( cont(level,1) )
tzwi=cont(level,2)
limitn=nint( cont(level,3) )
steep=cont(level,4)
fact=cont(level,5)
steepl=cont(level,6)
factl=cont(level,7)

Call Keep(1)

WE HAVE NOT REACHED THE UPPER ITERATION LEVEL

Qao0aaaq

IF (ITERNOW.LT.LIMMAX) THEN
START AGAIN CONDITION
[Best weight greater that fact*tzwt] OR
[ [evolution is too shallow] AND
[ fact1®tzwt < bzwt < fact*tzwt |

aaao0aan

1
PRINT*ITERNOW < LIMMAX’
if( (bzwt.gt.fact*tzwt).or.
& ( (evolav.lt.steep).and.
& ( (bzwt.gt.factl*tzwt).and.(bzwt.lt.fact*tzwt) )
& )
& ) then
if (level.eq.1) then
print*,’LEVEL 1:: STARTING AGAIN’
print*,’Evolution gradient is too shallow’
print*,’within upper and lower limits for continuance’

print*,’OR best weight is above upper limit’

kzey=1
C No doubling at level 1 therefore just start again using
C initial choice

C Copy the string we kept into the top level
do 9087 i=1,npoints
y(L,i)=kp(i)
9087 continue
C Generate a random set of other candidates
do 9086 i=2,npar+nchild
Call Gener8(i)
Call Continuity(i)



9086 continue
[e] Reset iteration variables
izlow=izup+41
izup=izup+4limitn
C Profile and sort the population
Call Profile(npar+4nchild)
Call Sort
C Keep the best individual
Call Keep(l)
else
kzey=1
print*,'/LEVEL ’]level,” :: STARTING AGAIN’
print*,’Evolution gradient is too shallow’
print* ’within upper and lower limits for continuance’
print*,OR best weight is above upper limit’
do 9085 i=1,npoints
¥(1,i)=kp(i)
9085 continue
C Generate a random set of other candidates
do 9084 i=2,npar4nchild
Call Gener8(i)
Call Continuity (i)
9084 continue
C Reset iteration levels
izlow=izup+1

izup=izup+limitn

C Profile and Sort the entire population
Call Profile(npar+nchild)
Call Sort
C Keep the best individual
Call Keep(1)
end if
end if
C

C CONTINUE BECAUSE EVOLUTION IS STEEP EVEN AL-
THOUGH HIGH WEIGHT

Call Gener8(i)
Call Continuity (i)

9003 continue

o}

Call Wobble(0.1)

Profile and sort the entire population
Call Profile(npar4nchild)

Call Sort

Keep the best individual

Call Keep(1)

end if

C

C CONTINUE BECAUSE WEIGHT IS NEARLY THERE AND
EVOLUTION IS STEEP

C
C

[evolution is steep] AND [ tzwt < bzwt < factl*tzwt ]

if ( (evolav.gt.steepl).and.

&
&

( (bzwt.gt.tzwt).and.(bzwt.lt.fact1*tzwt) )
) then
kzey=2
print* 'LEVEL ’,level,’ :: CONTINUING’
print*,’Continuing:best wt near and evolution is steep!?’
Reset iteration levels
izlow=izup+1
izup=izup-+limitn
Keep the best individual
Call Keep(1)

end if

(o]
C

CONTINUE BECAUSE WEIGHT IS GOOD ENOUGH BUT

WE CAN MAKE IT BETTER

C
C
C

AT THIS LEVEL.
GRADIENT is good enough, so continue
[ bzwt < tzwt ]

if ( (bzwt.le.tzwt).and.(evolav.gt.steepl) ) then

C  [evolution is steep enough] AND [ facti*tzwt < bzwt < fact*tzwt

o]
if ( (evolav.gt.steep).and.
& ( (bzwt.gt.factl®tzwt).and.(bzwt.lt.fact®*tzwt) )
& ) then
kzey=2
print* 'LEVEL ’]evel,’ :: CONTINUING’
print*,’Continuing:high wt BUT gradient good enough!!t’
C Keep the best individual
Call Keep(1)
(o] Reset iteration levels
izlow=izup+1
izup=izup+limitn
end if
C

kzey=2

print* 'LEVEL °’/level,” :: CONTINUING®
print*,’Continuing:target wt reached below LIMMAX!"
print*,’AND evolution is steep cnough’

Reset iteration levels

izlow=izup+1

izup=izup4limitn

Keep the best individual

Call Keep(1)

end if

(e}
(e}

[ bzwt < tzwt | AND [ evol< steepl ]
GRADIENT is NOT good enough, so need to fiddle

if ((bzwt.le.tzwt).and.(evolav.le.steepl)) then

C CONTINUE BECAUSE WEIGHT IS NEARLY THERE EVEN

ALTHOUGH EVOLUTION
C IS SHALLOW
C  [evolution is shallow] AND [ tzwt < bzwt < factl®tzwt ]
C
if ( (evolav.lt.steepl).and.
& ( (bzwt.gt.tzwt).and.(bzwt.lt.factl®*tzwt) )
& ) then
kzey=2
print* ’LEVEL ’,level,’ :: CONTINUING’
print*,’Continuing:best wt near and evolution is shallow!?
C  Reset iteration levels
izlow=izup+1
izup=izup+limitn
C  Extra action!!!
print*,’Extra action!!!’
do 8999 i=2,npar
Call Special3(i,20.0)
8999 continue
do 9003 i=npar+1,npar4nchild

kzey=2

print*,'LEVEL ’,level,’ :: CONTINUING'
print*,’Continuing:target wt reached below LIMMAX!?
print*,’BUT evolution is not steep enough. Action!!
do 9002 i=2,npar

Call Special3(i,50.0)

9002 continue

Call Wobble(0.1)

C  Profile and sort the entire population
Call Profile(npar+nchild)
Call Sort
C  Reset iteration levels
izlow=izup+1
izup=izup+4limitn
C Keep the best individual
Call Keep(1)
end if
C
ELSE
C
C
C WE ARE AT LIMMAX: ONLY TWO OPTIONS AVAIL-

ABLE EXIT, OR DOUBLE

C
LIMITS
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C TARGET NOT REACHED:: EXIT PROGRAM
C [ bzwt > tzwt ]
PRINT*ITERNOW > LIMMAX’
if (bzwt.gt.tzwt) then
print* 'LEVEL ’,level,’ :: EXITING’
print*,’Target weight not reached’
print*,’Fool about with parameters’
kzey=0
end if
C
C WEIGHT IS GOOD ENOUGH BUT WE ARE AT THE LIMIT
OF POINT
C RESOLUTION

C

C
C
C
C

a

[bzwt>tzwt] AND [ [level<=4] AND [level=levelm] |
if( (bzwt.le.tzwt).and.

& { (level.le.4).and.(level.eq.levelm) )
& ) then

print* 'LEVEL ’,level,’ :: EXITING’
print*, Target weight reached’
print* ’Resolution level reached’
print*’Exiting program...’
kzey=0

end if

DOUBLING RESOLUTION AND CONTINUING

Limmax and target weight have been reached and level is ok

double points and continue

if ( (bzwt.lt.tzwt).and.

& (level.lt.4).and.(level.ne.levelm)
& ) then

print* ’"LEVEL ’,level,’ :: DOUBLING"’
print*,’Target weight reached’
print*,’Doubling points and continuing’
level=]evel+1
kzey=3
Reset iteration levels
izlow=izup+1
izup=izup+nint( cont(level,3) )
Profile and sort entire population
Call Profile(npar+nchild)
Call Sort
Keep the best individual
Call Keep(1)
print*'NOW AT LEVEL ’,level
end if
END IF
return

end

Keep the nih candidate and dimensions

Subroutine Keep(n)

Subroutine specific variables
integer n,xpointsk,ypointsk
real kp(2000)

integer i

Other variables
real y(1000,2000)
integer xpoints,ypoints

integer npar,nchild,npoints

Common statements

common /keepl/ kp

common /keep2/ xpointsk,ypointsk
common [zysz/ y

common /gal/ npar,nchild,npoints

common /gall/ xpoints,ypoints

Routine
do 9090 i=1,npoints
kp(i)=y(n,i)
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9090 continue
xpointsk=xpoints
ypointsk=ypoints
return

end

Real Function Extrap(n,i,j)

C Specific variables

integer mn,i,j

C Other variables
integer xpoints,ypoints

real y(1000,2000)

C

C Other functions
integer pl

C

C Common Blocks
common /gall/ xpoints,ypoints

common fzysz/ y

C Routine
if (j.eq.1) then
extrap=2.0*y( n,pl(i,j) )-y( n,pl(i,i+1) )
end if
if (j.eq.ypoints) then
extrap=2.0*y( n,pl(i,j) )-y( n,pl(i,j-1) )
end if
if (i.eq.1) then
extrap=2.0%y( n,pl(i,j) )-y( 2,p1(i+1,j) )
end if
if (i.eq.xpoints) then
extrap=2.0*y( n,pl(i,j) )-y( n,pl(i-1.j) )
end if
return

end

Real Function Bias(i,j)

C Specific variables
integer i,j

real cx,cx1,r,r0

C Other variables
integer xpoints,ypoints
real x(100),x1(100)

C Common Blocks
common /gall/ xpoints,ypoints

common /zdimz/ x,x1

C Routine

C Find the centre
cx=( x(1) + x(xpoints) )/2.0
cx1=( x1(1) + x1(ypoints) )/2.0

C Calculate straight line from centre to point and

Q

scale it to the dimensions we have chosen for this

C calculation. Call the scale length r0

rO=amax1( x(xpoints)-x(1),x1(ypoints)-x1(1) )
r=sqrt( ( cx-x(i) )**2 4 ( cx1-x1(j) )**2 )/r0
Biasing function:: zero if on bdry, nonzero elsewhere
Choice of function available, but say for mutation

we could have a larger variation in the permitied range

Qaaaan

towards the centre, where it is most neceded
if ( (i.eq.1).or.(i.eq.xpoints).or.
& (j.eq.1).or.(j.eq.ypoints)
& ) then
bias=0.0
else
bias=2.0-exp(r-1.0)
end if
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Appendix B

POISGEN: sample input files and

comments

The philosophy of leaving the algorithm as open as possible to modification is most obviously
expressed by the large number of input variables required to control POISGEN’s detailed behaviour.
This hopefully allows the user the maximum freedom to experiment with the routine. It is also
a measure of the current level of sophistication that these algorithms have attained: on the one
hand, a large number of variables must mean that we may influence the behaviour in very many
ways, but on the other, it means that the truly significant variables are not known. The variables
are not divided arbitrarily between the files. Those that bear some loose relation to each other are

largely kept together.

1. ga.in Genetic algorithm variables: these control global algorithm behaviour i.e., genotypic

length and activation conditions for various convergence strategies.
2. equation.in equation variables such as the initial number of points in the x and y directions.

3. mutate.in variables that control the mutation operations via subroutine mutate and related

functions/subroutines.

4. combine.in variables that control the combination operations via subroutine combine and

related functions/subroutines.

5. transcr.in variables that control the transcription operations via subroutine trans and re-

lated functions/subroutines.

6. profile.in variables that control the weighting given to each individual in the population via

subroutine profile and related functions/subroutines.
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filename

row.(column letter) variable name: short description of use in program.

Figure B.1: Key to variable descriptions

7. control.in these variables are used in subroutine decide to decide what action the algorithm

should take after a certain number of iterations.

It is entirely likely that not all the variables are equally important. Some may be dropped in
later versions, as the program is not yet in a finalised ‘black box’ state. Brief descriptions of all

the user set variables are available in section B.1.

B.1 Description of input variables

Figure B.1 provides a key to reading the variable descriptions. The input files also come with a
short note of each variables’ use, which is expanded upon below.

ga.in

1. loadin: if = 1 then load in old parental stock from BZPARZN.QUT, else start with random

individuals.
2. rep: if = 1 then use repeatable random numbers, else nonrepeatable.
3. npar: number of breeding parents per generation.
4. nchild: number of children created per generation.
5. zpoinis: number of points including boundaries in the x direction.
6. ypoints: number of points including boundaries in the y direction.
7. ilermaz: maximum number of iterations (generations) to be performed.

8. gentol: minimum genetic diversity (see subroutine check) permitted in the breeding stock.

If the genetic diversity falls below this level, remedial action is taken.

©

(a) jig: jig x (highbdry — lowbdry) is the maximum value of the factor in subroutine jiggle.

(b) jignow: call subroutine jiggle every k x jignow’th iteration.

10. (a) wob: wob x (highbdry— lowbdry) is the maximum value of the factor used in subroutine

wobble.
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(b) wobnow: call subroutine wobble after wobnow iterations.

(c) wobif: call subroutine wobble if best weight is less than wobif.

11. (a) zoomy: maximum value of factor used in subroutine zoomer.

(b) worzp: call subroutine zoomer every worzp’th iteration.
12. twzpar: number of parents to keep unchanged when calling subroutine tweak.

13. dbl: method of interpolation used. If = 0, then call ranrep at all new points. If = 1, then

user linear interpolation to find values for the new points.
profile.in
1. peni: worst point weighting
2. pen2: summation of discretisation errors weighting
3. dierm: not used at present
4. factor: not used at present

. prod0: used in product of discretisation error measure. This penalises for continuity with the

(7]

boundary conditions.
equation.in

1. (a) zzstart: left hand side of rectangular region.

(b) zzend: right hand side of rectangular region.

2. (a) yzstart: lower boundary of rectangular region.

(b) yzend: upper boundary side of rectangular region.

3. (a) yzmin: minimum permissible gene value
(b) yzmaz: maximum permissible gene value

control.in

The data in this file is used exclusively in the subroutine decide. Each pair of rows contains
conditions and information on the desired program behaviour at differing point resolutions. The
first two rows specify the conditions for carrying on to the next point resolution level and also some
conditions for activating remedial action, should the calculation become bogged down in any way.

The design of the controlling mechanism is detailed in appendix A.

1. (a) limmaz: maximum number of iterations at this point resolution level

(b) tzwt: target best weight after limmaz iterations.
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(c) limitn: call decide every limitn’th iteration.

2. (a) steep: minimum evolutionary steepness for best weights ‘far’ from target weight tzwt.

(b) fact: fact x tzwt is a ‘large’ or ‘far’ weight; used to decide how far away the best weight

is from the target weight tzwt.

(c) steepl: minimum evolutionary steepness for best weights ‘close’ to the target weight

tzwt.

(d) factl: factl x tzwt is a ‘low’ or ‘close’ weight; used to decide how close away the best

weight is from the target weight tzwt.
The following 6 lines of data are paired off in a similar fashion. The last two variables are

3. level: implement lines 2 x level,2 x level 4 1 of control.in in decide as the data for the first

level of point resolution

4. levell: implement lines 2 x levell,2 x levell + 1 of control.in in decide as the data for the

last level of point resolution

The mutation, combination and transcription subroutines work in very similar ways. An integer
number between 1 and 100 is generated and should this number lie in the range ---lo to - - - up,
(where - - - represents a string of symbols; for example rz for the random replacement functiom)
then the corresponding operator is implemented. Also, in all cases, if rantype(n) = 1, then a
uniformly random distribution is used. Other random distributions are not yet fully implemented.

mutate.in
1. variables used in function ranrep

(a) rzlo: lower limit of range
(b) rzup: upper limit of range

(c) rantypel: type of random ditribution used.
2. variables used in function creep

(a) czlo: lower limit of range
(b) czup: upper limit of range
(c) rantype2: type of random ditribution used.

(d) czmaz: maximum arithmetic creep
3. variables used in function gereep

(a) geczlo: lower limit of range
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(b) gczup: upper limit of range
(c) rantype3: type of random ditribution used.

(d) gczmaz: maximum geometric creep
4. mutlevl: percentage of genes to be mutated. Total number of genes=npoint x (npar + nchild).
combine.in
1. variables used in function wav

(a) avezlo: lower limit of range
(b) avezup: upper limit of range
(c) avzwtl: weighting given to first gene

(d) avzwi2: weighting given to second gene
2. variables used in function wav

(a) gavzlo: lower limit of range
(b) gavzup: upper limit of range

(c) gzop: what to do in case of a -ve product of genes.
3. variables used in function ext

(a) eztzlo: lower limit of range
(b) eztzup: upper limit of range

4. comlevl: number of combination operations expressed as a percentage of the total number
of genes. Total number of genes=npoint x (npar + nchild). The percentage of genes affected

by these operations is 2 x comlevl.
5. mode: where to choose the genes from on differing candidates.
transcr.in
1. variables used in subroutine swap

(a) swazlo: lower limit of range
(b) swazup: upper limit of range

(c) swazsf: percentage of genotype (length npoint) to swap with neighbouring portion.

Nearest integer value chosen.

2. variables used in subroutine rev
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(a) revzlo: lower limit of range

(b) revzup: upper limit of range

(c) revzsf percentage of genotype (length npoint) to have its order reversed. Nearest integer

value chosen.
3. variables used in subroutine mix

(a) mizzlo: lower limit of range

(b) mizzup: upper limit of range

(c) mizzsf. percentage of genotype (length npoint) to have its order mixed up. Nearest

integer value chosen.
4. variables used in subroutine copy

(a) copzlo: lower limit of range

(b) copzup: upper limit of range

(c) copzsf. percentage of genotype (length npoint) to be copied.

chosen. Overwrites consecutive genetic information.
5. variables used in subroutine delete

(a) delzlo: lower limit of range

(b) delzup: upper limit of range

(c) delzsf. percentage of genotype (length npoint) to be deleted.

chosen.

B.2 Sample input files

Nearest integer value

Nearest integer value

To run POISGEN, one must supply seven separate files, correctly formatted with the relevant

information. Below are the input files used to generate the results of section 6.6.

1. Mutation data: MUTATE.IN

1 33 1

33 66 0 0.2
1 100 1 0.2
0.01

- -~ - -~

MUTATE.IN for laplacian/poisson program LAP1.FOR

167



Mutation Operator Data

[row]....[operator].......... [variables]...[description]
1........ random replacement..rzlo lower bound of
rzup upper bound of
rantypel random distrib
2.0, CreeP...covvevrneennn czlo lower bound of
czup upper bound of
rantype2 random distrib
czmax maximum effect
3., geometric creep..... geczlo lower bound of
gezup upper bound of
rantype3 random distrib
gczmax maximum effect
4. ... —— L mutzlevi % mutations of

type applied to

entire stock

. Combination data: COMBINE.IN

1 33 1.0 1.0
34 90 1

67 100

0.01

0

- -~ - -~

COMBINE.IN for laplacian/poisson program POISGEN

Combination Operator Data

- -~ - -

d.o.i
d.o.i
type

d.o.i

d.o.i

type

d.o.i

d.o.i

type

all

[row]..[operator].......... [variables]...[description]

1...... weighted average....avezlo lower bound of d.o.i
avezup upper bound of d.o.i
avzutl weight to first gene
avzwt2 weight to second gene

2...... geometric average...gavzlo lower bound of d.o.i
gavzup upper bound of d.o.i
gzop what to do with

+ve,-ve genes
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3. extension........... extzlo lower bound of d.o.i

extzup upper bound of d.o.i

4. .. e L comzlevi %combinations of all
types acting on

entire stock

.. e mode where to choose the
genes from
==0 same place on
diff’t cands
==1 diff’t places on
diff’t cands
==2 mix of the

above two

3. Transcription data: TRANSCR.IN

1 20 0.06
21 40 0.05
41 60 0.05
61 80 0.05
81 100 0.05
0.01

TRANSCR.IN for laplacian/poisson program LAP1.FOR

Transcription Operator Data

[row] [operator] [variables] [description]

1 swap swazlo lower bound of d.o.i
swazup upper bound of d.o.i
swazsf % genetic code to swap

2 reverse revzlo lower bound of d.o.i
revzup upper bound of d.o.i
revzsf % genetic code to reverse

3 mixing mixzlo lower bound of d.o.i
mixzup upper bound of d.o.1i

B mixzsf % genetic code to mix

4 copying copzlo lower bound of d.o.i

copzup upper bound of d.o.i
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copzst % genetic code to copy

5 deletion delzlo lower bound of d.o.i
delzup upper bound of d.o.i
delzsf % genetic code to delete

6 trazlevl %transcriptions of all

types applied to entire

stock
4. Algorithm main vaiables: GA.IN

0

0

20

100

6

6

5

0.0000001

0.0066667 10
0.0066667 100 200.0
0.05 2
1

1

-~ -~

GA.IN for laplacian/poisson programs

-~ -~

[Row] [Variable(s)] [Description]
1 loadin if ==1 then load in old parental stock

from bzparzn.out

2 rep if ==1 then repeatable ran nos

3 npar no.of parents to breed

4 nchild no.of children to create

5 xpoint no.of points including endpoints
in the x dirn

6 ypoint no.of points including endpoints
in the y dirn

7 itermax maximum number of iteratioms

8 gentol minimum total genetic diversity
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permitted in the breeding stock
9 jig,jignow (jig)*(highbdry-lowbdry)
- maximum multiplicative jiggle
for entire candidates only
acts like a gene gcreep except
applied over entire candidate
every k*jignow’th iteration
10 wob,wobnow, (wob)*(highbdry-lowbdry)
wobif - maximum multiplicative wobble
for genes only. acts like
a gene gcreep except applied
to all non-bdry genes in
candidate. Activated when
after wobnow iterations or when the
best weight is less than wobif
11 Zoomy ,wWorzp zoom operator: max in gcreep and do a
zoom eQvery worzp’th times
12 twzpar tweak operator: activated by level of
genetic diversity gentol. twzpar
parent(s) to tweak
13 dbl Interpolation command
==0, random replacement at new points

==1, linear interpolation of y points

5. Equation variables 4+ miscellany: EQUATION.IN

-2.0 2.0
-2.0 2.0
-5.0 5.0

-~ ~ -~

EQUATION.IN for laplacian/poisson equations

- -~ -~

[Row] [Variable(s)] [Description]

i xzstart,xzend start and endpoint of equation in x-dirn
2 yzstart,yzend start and endpoint of equation in y-dirn
3 yzmin, yzmax max and min y values

6. Program control: CONTROL.IN
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1000.0
0.001

2000.0
0.0001
1800.0
0.0001
1504.0
0.0001

100.0
10.0
100.0
10.0
600.0
13.0
200.0
14.0

15.0
0.01 2.0
15.0
0.0001 2.0
19.0
0.0003 4.0
96.0
0.0001 5.0

CONTROL.IN for laplacian/poisson programs

-~

[Row] [Variable(s
1 limmax,tzwt
limitn
2 steep,fact,

steepl,fact

)]

| SN R WHEE R S B |

1

[Description]

Level 1 resolution data

limmax:: max iterations at this level

tzwt:: target weight after limmax

limitn:: subgoal test limit

steep:: steepness for distant weight

fact:: multiplication factor for tzwt
to judge how far distant but
desirable weight is

steepl:: steepness for closer weight

factl:: multiplication factor for tzwt
to judge how far closer but

desirable weight is

Each following pair of rows describes the same data

but for the next resolution level. The data is stored

in a real array cont(5,10) and any required integer values

are calculated as needed.

9 level

10 levelm

Which level of point resolution
to start with
Which level of point resolution

to end with

7. Profile/Weighting data:PROFILE.IN
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PROFILE.IN in laplacian/poisson programs

peni worst point weighting

pen2 sum of discretisation error weighting
dterm not used

factor not used

prodo product of discretisation error

weighting for boundary

173



Bibliography

[1] C.K. Birdsall and A.B. Langdon. Plasma Physics via Computer Simulation. Adam Hilger,
1991.

[2] J. Wesley D. Boucher. Modelling of ITER Operation. In 21st EPS Conference on Controlled
Fusion and Plasma Physics (one page abstracts), 1994.

[3] L.J. Lanzerotti C.F. Kennel and E.N. Parker, editors. Solar System Plasma Physics, volume 2.
North-Holland Publishing Company, 1979.

[4] Graeme Stewart. Wave Propagation in Equal Mass Plasmas. PhD thesis, University of Glas-
gow, Department of Physics and Astronomy, 1992.

[5] R.O. Dendy, editor. Plasma Physics: an introductory course, chapter 13. Cambridge Uni-
versity Press, 1993.

[6] C.T. Shaw. Using Computational Fluid Dynamics. Prentice Hall International (UK) Ltd.,
1992.

[7] A.R. Mitchell and D.F. Griffiths. The Finite Difference Method in Partial Differential Equa-
tions, chapter 4. John Wiley and Sons, 1987.

(8] Jeffrey R. Sampson. Adaptive Information Processing: An Introductory Survey. Springer-
Verlag, 1976.

[9] R.J. Groebner D.R. Baker and K.H. Burrell. A neural network for the analysis of DIII-D
charge exchange recombination data. Plasma Physics and Controlled Fusion, 36(1):109-121,
January 1994.

[10] K. MacPherson. Neural network computation techniques applied to solar activity prediction.

Advanced Space Research, 13(9):447-450, 1993.

[11] T. Toffoli and N. Margolus. Cellular Automata machines a new environment for modeling.

MIT Press, 1987.

174



[12] Shiyi Chen Daniel O. Martii and William H. Matthaeus. Lattice boltzmann magnetohydro-
dynamics. Physics of Plasmas, 1(6):1850-1867, June 1994.

[13] Jorg Heitkotter and David Beasley, editors. The Hitch-hikers guide to evolutionary com-
putation (FAQ in comp.ai.genetic). obtained by ftp from newsgroup comp.ai.genetic, 20th
June,1994.

[14] David R. Bull David Beasley and Ralph R. Martin. An Overview of Genetic Algorithms: part
2, Fundamentals. University Computing, 15(2):58-69, 1993.

[15] F.F. Chen. Iniroduction to Plasma Physics and controlled fusion, volume 1. Plenum Press,

2nd edition, 1984.

[16] P.C. Clemmow and J.P. Dougherty. FElectrodynamics of Particles and Plasmas. Addison-
Wesley Publishing Company, Inc., 1990.

[17] N.A. Krall and A.-W. Trivelpiece. Principles of Plasma Physics. McGraw-Hill Book Company,
1973.

[18] W.J. Duffin. FElectricity and Magnetism. McGraw-Hill Book Company (UK) Limited, 3rd
edition, 1980.

[19] D.P. Corson P. Lorrain and F. Lorrain. Electromagnetic fields and waves. W.H. Freeman and

Company, 3rd edition, 1988.
[20] E.W. Laing. Plasma Physics. Sussex University Press, 1976.
[21] T.J.M. Boyd and J.J. Sanderson. Plasma Dynamics. Thomas Nelson and Sons Ltd., 1969.
[22] Wilmot N. Hess. The Radiation Belt and Magnetosphere. Blaisdell Publishing Company, 1968.

[23] B.M. McCormac, editor. Magnetospheric physics, volume 44. R.Deidel Publishing Company,
1974.

[24] W K. Peterson T.E. Eastman, L.A. Frank and W. Lennartson. The plasma sheet boundary
layer. Journal of Geophysical Research A, 89:1553-1572, 1984.

[25] A. Nishida. Geomagnetic Diagnosis of the Magnetosphere. Springer-Verlag, 1987.

[26] L.A. Frank T.E. Eastman and C.Y. Huang. The boundary layers as the primary transport
regions in the earth’s magnetotail. Journal of Geophysical Research A, 90:9541-9560, 1985.

[27] R.J. DeCoster and L.A. Frank. Observations pertaining to the dynamics of the plasma sheet.
Journal of Geophysical Research A, 84:5099-5121, 1979.

175



[28] U. Gebhardt and M. Kiessling. The structure of ideal magnetohydrodynamics with incom-
pressible flow. Physics of Fluids B, 4(7):1689-1701, July 1992.

[29] K. Schindler and J. Birn. On the generation of field-aligned plasma flow at the boundary of
the plasma sheet. Journal of Geophysical Research, 92(A1):95-107, November 1987.

[30] J. Birn. Stretched three-dimensional plasma equilibria with field-aligned flow. Physics of
Fluids B, 3(2):479-484, February 1991.

[31] J. Birn. Magnetotail equilibrium theory: The general three-dimensional solution. Journal of

Geophysical Research, 92(A10):11,101-11,108, October 1987.

[32] R. Young and E. Hameiri. Approximate magnetotail equilibria with parallel flow. Journal of

Geophysical Research, 97(A11):16,789-16,802, November 1992.

(33] L.C. Lee and M. Yan. Structure of field-aligned plasma jets associated with magnetic recon-

nection. Physics of Fluids B, 4(11):3808-3810, November 1992.
[34] J.A. Shercliff. A Texztbook of Magnetohydrodynamics. Pergamon Press, 1965.

[35] D.L. Book. NRL Plasma Formulary. published by The Office of Naval Research, 1978. aka

‘the wee plasma book’.

[36] Grant R. Fowles. Analytical Mechanics. Saunders College Publishing, CBS College Publishing,
4th edition edition, 1986.

[37] I.A. Abramowitz M., Stegun, editor. Hendbook of Mathematical Functions. Dover Publica-
tions, Inc., New York., 1965.

[38] D.A. Diver. Applications of genetic algorithms to the solution of ordinary differential equa-
tions. Journal of Physics A, 26:3503-3513, 1993.

[39] Lawrence Davis, editor. Genetic Algorithms and Simulaied Annealing: research notes in
artificial inielligence. Morgan Kaufmann Publishers, inc. by Pitman,London, 1987. chapter 4
by J.J. Grefenstette.

[40] Trwin H. Herskowitz. Principles of Genetics. Collier MacMillan Publisher (London), 2nd
edition, 1977.

[41] Edward O. Wilson. The Diversity of Life. Penguin Books, 1993.

[42] David R. Bull David Beasley and Ralph R. Martin. An Overview of Genetic Algorithms: part
1, Research topics. Universily Computing, 15(4):170-181, 1993.

176



[43] C.Z. Janikow and Z. Michalewicz. An experimental comparison of binary and floating point
representations in genetic algorithms. In Proceedings of the Fourth International Conference
on Genetic Algorithms, pages 31-36. Morgan Kaufmann, 1991. Edited by R.K. Belew and
L.B. Booker.

[44] Numerical Algorithms Group. NAG fortran library manual (mark 13). Numerical Algorithms
Group ltd, 1988.

[45] David E. Goldberg, editor. Genetic Algorithms in search, optimization and machine learning.

Addison-Wesley Publishing Company, Inc., 1989.
[46] G.F.D Duff. Partial Differential Equations. Oxford University Press, 1956.

[47] E. Zauderer. Partial Differential Equations of Applied Mathematics. John Wiley and Sons,
2nd edition, 1989.

[48] Yuval Davidor. Genetic Algorithms and Robotics: a heuristic strategy for optimization. World
Scientific Publishing Company, 1991.

177



To study, to finish, to publish.

Benjamin Franklin.

The day is done,
And I'm having fun,
I think I’'m dumb,

Magybe just happy.

Kurt Cobain (1993), from ‘In Utero’.




