
AN INVESTIGATION OF 
ACTINIDE INTERACTIONS 
WITH HUMIC SUBSTANCES

! by

| Margaret C. Graham, BSc. (Hons.)
t
I

A thesis submitted for the degree of Doctor of Philosophy 
at the University of Glasgow

Scottish Universities Research and Reactor Centre, May, 1995
East Kilbride,
Glasgow,
Scotland



ProQuest Number: 13815527

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 13815527

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106- 1346



1L,,
ioivi

)

XJHIVEkbU i
xxssp&L



Acknowledgements

I should like to thank my supervisors Professor Roger Scott and Dr. Francis 
Livens for their guidance during this study. I greatly appreciate the help given to 
me and have undoubtedly benefited from the opportunities presented. I should also 
like to thank Dr. Gus MacKenzie for reading this manuscript and for the expert 
advice offered throughout this study.

I should like to thank the Natural Environmental Research Council for their 
support in funding this project.

Thanks are due to Dr. Tracy Shimmield for her help in obtaining ICP-MS data for 
U and Th, and to BNF pic and the Jeffrey Schofield Laboratory for ETV-ICP-MS 
data for Np. Additionally, an appreciation is expressed of the facilities made 
available at the Institute of Terrestrial Ecology, Merlewood, Grange-over-Sands 
and particularly the Scottish Universities Research and Reactor Centre. Thanks 
are also extended to Dr. Dave Horrill and others at the Institute of Terrestrial 
Ecology for their help during the time I spent at Merlewood and to Dr. Andrew 
Hursthouse for the use of spectroscopic facilities at the University of Paisley.

Finally, I should like to thank my family for all their support throughout my 
University career.



DECLARATION

The material presented in this thesis is the result of independent research carried 
out between October 1990 and October 1993 at the Scottish Universities 
Research and Reactor Centre, East Kilbride and the Institute of Terrestrial 
Ecology, Merlewood, Grange-over-Sands. Any published or unpublished results 
of other workers have been given full acknowledgement in the text.



ABSTRACT

Saltmarsh and intertidal areas in SW Scotland and NW England receive inputs 

of natural and anthropogenic radionuclides from a number of sources. Discharges 

of low level liquid radioactive waste from the Sellafield nuclear fuel reprocessing 

plant, with maximum releases in the 1970s, have resulted in contamination of the 

offshore sediment in the proximity of the discharge point with the anthropogenic 

nuclides, 238Pu, 239Pu, 240Pu and 241 Am and 237Np. Dispersal and redeposition of 

the contaminated sediment has resulted in continuous input of these nuclides to 

soils and sediments in coastal areas over the past 40 years which will continue for 

the forseeable future. Natural decay series radionuclides are subject to similar 

deposition processes following their discharge from a phosphate refinery at 

Whitehaven. Additionally, natural decay series radionuclides occur at enhanced 

levels in saltmarsh sediments of the Solway Firth as a consequence of deposition 

from natural uranium mineralisations. Previous studies, involving sequential 

extraction of components of soils and sediments, have highlighted the importance 

of the organic fraction in binding significant proportions of actinides present in 

these environments.

This thesis presents a study of three locations - a saltmarsh in SW Scotland, a 

floodplain soil (R. Esk, W Cumbria) and a highly organic soil on the bank of the 

R. Esk, W Cumbria. The saltmarsh sediments and the Esk soils vary in the degree 

of marine inundation experienced and provide contrasting environmental 

conditions which in turn affect actinide geochemistry. Gel filtration 

chromatography, FTIR, UV and Fluorescence spectroscopy, alpha spectrometry 

and ICP-MS were used to investigate the influential role of the organic fraction, 

and in particular humic substances, in determining actinide behaviour. 

Specifically, these techniques were used to investigate humic properties including 

structural characteristics and actinide binding ability.

An important part of this work involved the evaluation of traditional extraction 

methodology and, following the observation that humic substances were 

irreversibly altered during the separation of humic and fulvic acids, both in terms 

of their actinide binding capacity and chemical characteristics, the application of



new m ethodology was developed to minimise these effects.

Conclusions from this study are as follows:

i) the sum o f  properties o f  humic acid and fiilvic acid is not equal to  those o f  

humic substances;

ii) humic substances from diverse locations are compositionally different 

reflecting the variations in the source o f the precursor material;

iii) humic substances comprise only a minor com ponent o f  the total soil mass but 

account disproportionately for a significant amount o f  the actinide binding 

capacity the soil or sediment;

iv) gel chromatographic separation o f  humic substances provides fractions which 

are less heterogeneous than the bulk m ate ria l;

v) gel fractionation is unsuitable for size determ ination o f  humic m aterials since 

certain humic com ponents are retarded by the gel resulting in their elution at 

greater volumes than proposed purely on the basis o f  size;

vi) characterisation o f  fractions o f  humic substances showed that they vary in 

chemical com position and in their actinide binding capacity. This provided 

evidence o f  discrete associations o f  actinide elements with fractions o f  humic 

substances indicating that a single param eter describing their interaction with the 

bulk humic material is inadequate;

vii) characterisation o f  fractions also shows that actinide associations with humic 

material are influenced by the com position and the degree o f  diagenetic alteration 

o f  the humic material.

In summary, this study has provided evidence o f  discrete associations o f  actinide 

elements with fractions o f  humic substances and that different com ponents o f  the 

humic fraction have widely varying actinide binding capacities. The chemical



characteristics of these molecules are vitally important i 

mobility of these species in the environment.

determining the
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CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

This thesis presents a comparative study of the actinides, Th, U, Np, Pu and Am, 

with soil humic substances from coastal and intertidal areas. Soils in intertidal and 

floodplain areas around the NE Irish Sea are contaminated with both 

anthropogenic radionuclides and natural decay series radionuclides originating 

from nuclear and non-nuclear industrial sources. These areas are of importance 

agriculturally, recreationally and as nature reserves and the behaviour of 

radionuclides in this environment following their onshore transport is of 

importance with respect to human radiation exposure (Pentreath et al., 1980). 

The presence of long-lived pollutant radionuclides in soils has given rise to 

concern about their long-term geochemical behaviour, mobility and bioavailability. 

In addition to their intrinsic importance as pollutants, the presence of relatively 

high concentrations of actinides facilitates studies of their behaviour in 

environmental systems, which can provide a better understanding of the processes 

of mobilisation, transport and retardation of these nuclides. Such studies are of 

wider importance and provide information which is vital in applications such as the 

assessment of the performance of planned radioactive waste repositories 

(Chapman and Smellie, 1986; Come and Chapman, 1986; Hooker, 1991; Kim 

1991; Berry and Bond, 1990; Miller et al., 1994).

Previous work investigating the relative importance of soil components with 

respect to actinide binding has strongly implicated the organic fraction in surface 

soils from SW Scotland and W Cumbria. It is well known that natural organic 

matter exerts a strong influence on the biogeochemistry of the actinides and other 

trace elements (Degens et al., 1977; Rashid, 1971; Halbach, 1980; Ephraim et al., 

1989; Berry and Bond 1991; Bermond and Bourgeois, 1992). Actinide 

associations with terrigenous and aquatic organic materials have been shown to 

be significant in intertidal and saltmarsh areas subject to inputs of natural and 

anthropogenic nuclides (McDonald, 1992; Allan et al., 1991). In particular, the



key interest is in humic substances which have been shown to be important in the 

binding and chemical behaviour of high proportions of metal species present in 

soils, sediments and waters (Breger and Deul, 1956; MacCarthy and Suffet, 1991; 

Boyle etal, 1977; Evans, 1989; Dissanayake, 1991; Williams, 1993). The nature 

of humic interactions with metal species is, however, poorly characterised due to 

the heterogeneity and chemical diversity of humic macromolecules and the 

potentially broad range of complexes formed with metal species.

The work presented here comprises the modification of traditional methodology, 

characterisation of the humic fraction from soils and a comparison of nuclide 

distributions within the humic fraction.

1.2 THE ACTINIDE ELEMENTS

1.2.1 Occurrence and Environmental Distribution of the Actinides

This study involved an investigation of the interactions of actinides, U, Th, Np, Pu 

and Am, with humic substances, so the discussion of the properties of the actinide 

elements will be restricted to these nuclides for the purposes of this study. Since 

the discovery of the transuranium elements, there has been much research devoted 

to studying the chemical properties of the early actinides, atomic numbers 90 to 

95, due to their distinct chemical behaviour and observed deviations from 

predicted behavioural trends arising from complexation reactions, both in 

laboratory experiments and in the environment. A full discussion of actinide 

chemistry is found in Katz et al (1986). Other reviews of the behaviour of Pu, Am 

and Np appear in Choppin and Stout (1991) and Kauffman (1990).

Of all the actinides, only certain isotopes of U and Th are sufficiently long-lived 

to be primordial (Table 1.1).
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Nuclide tl/2 Nuclide *1/2 Nuclide t i n

227 Ac * 21.773y 234-JJ * 2.45x105y 239Pu 2.41x10V

228Th * 1.913y 235JJ ** 7.037x10V 24°Pu 6.53x10V
230-pjj * 8.0xl04y 238JJ ** 4.47x109y 241Pu 14.4y

232Th ** 1.41xl010y 237Np 2.14x10V 242Pu 3.76xl05y

234Th * 24.10d 238Pu 87.74y 241Am 432.7y

231Pa * 3.28xl04v 243Am 7.38xl03v

Table 1.1 Half-Lives of Selected Isotopes of Actinides Found in the 
Environment. (* denotes naturally occurring nuclides ; ** denotes 
primordial nuclides) from Katz et al., 1986

U and Th are ubiquitous trace constituents of most minerals and their 

concentrations in crustal rocks are controlled by geological processes such as 

fractionation during igneous rock formation (Ivanovich and Harmon, 1992). U and 

Th become increasingly soluble at higher temperature and pressure and in igneous 

rocks, they are found predominantly in early-melting phases. Similarly, for 

metamorphic rocks, there is a dependence on the initial rock composition and 

effects of migration of nuclides (fluid loss) during metamorphism (Ivanovich and 

Harmon, 1992).

The transuranium elements are too unstable to have persisted as primordial 

elements although trace amounts of^Np, 239Np and 239Pu are found in U-rich ores 

due to neutron capture and p-decay processes by U where the neutrons originate 

from (a,n) and (y,n) reactions involving U and Th (Choppin et al., 1995). Possible 

formation reactions are shown below :

238U (n, y)239U -  239Np -  239Pu ;

238U (n,2n) 237U -  237Np; 235U (n,y )(n,y) 237U -  237Np

The probability of such reactions is however reduced by the neutrons being 

insufficiently energetic or their capture by elements in the ore with high neutron- 

capture cross-sections.

A further possible source of neutrons is from the spontaneous fission of 238U



Introduction 4

although the half life for fission is extremely long (approximately 8 x 1015 y) 

resulting in about 70 fissions per second in 1 kg of 238U compared with the 

simultaneous emission of 45 x 109 a-particles.

Although they have an extremely low natural abundance, transuranium elements 

are found in the environment from industrial and weapons testing origin (Table 

1.6). Global fallout originating from atmospheric testing of nuclear weapons 

during the period 1959-1963 has given rise to relatively uniform, low level 

contamination whereas more recent, localised industrial releases have resulted in 

restricted areas of higher levels of contamination.

1.2.2 Chemistry of the Actinides

Filling of the 5f orbitals for consecutive elements results in contraction of atomic 

radii along the actinide series which is most significant for elements with atomic 

number greater than 95. This results in a convergence of chemical properties for 

the elements following Am due to the high stability of the +3 state for subsequent 

members of the series. The ability of actinides to exhibit high valences (+3, +4, +5, 

+6, +7) is the result of the ease with which bonding electrons are lost to give the 

stable electronic configuration of radon. The most stable oxidation states for the 

early actinides (Th, Pa and U) are those involving the loss of all f  electrons. 

Known oxidation states for U, Th, Np, Pu and Am are shown in Table 1.3. The 

solution chemistry of the actinides is complicated by the co-existence of multiple 

oxidation states and hence several ionic species for each actinide under a given set 

of conditions. For example, Pu can exist simultaneously in the +3, +4, +5, and +6 

states, with the distribution between them being determined by solution Eh and pH 

conditions and the presence of ligands. Following the normal pattern for 

polyvalent cations, lower oxidation states of Pu are stabilised by more acidic 

conditions while higher oxidation states become more stable as the basicity 

increases (Choppin, 1983; Choppin et al., 1986).
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Element Oxidation
State

Electron Configuration 
of Most Stable State

Th (+3)+4 5f°

Pa (+3) +4 +5 5f°

U +3 +4 +5 +6 5f°

Np +3 +4 + 5+ 6+ 7 5?

Pu +3 +4 +5 +6 (+7) 5?

Am +3 +4 +5 +6 5 f

Table 1.2 Stable Oxidation States for Selected Actinide Elements (highest 
stability indicated in bold) from Katz et aL91986

Under pH and redox conditions commonly occurring in natural systems, the higher 

oxidation states for Np (+6, +7), Pu (+7), and Am (+6) are unstable. This trend 

of instability of higher oxidation states continues for the actinides following Am, 

due to greater shielding of the f  electrons. Actinide species display great versatility 

in their potential interactions with a range of ligands. Their ability to form a 

myriad of complexes is a result of the availability of not only 6d orbitals but also 

5f, 7s and 7p orbitals which are of comparable energy and overlap spatially. 

However, for any given oxidation state, the relative contribution of 6d, 5f, 7s, 7p 

orbitals is indeterminate. The nature (covalent or electrostatic) of interactions is 

also uncertain.

The actinide ions are highly electropositive and interact strongly with polar 

solvents such as water. Metal ions initially cause polarisation and then dissociation 

of hydrating water molecules. The relative acidity of a metal ion is a function of 

its charge and size, with smaller size and higher charge resulting in higher acidity. 

For the actinide elements, the variation in acidities of the metal ions in different 

oxidation states results in marked differences in their interactions with the hydrate 

water molecules. Actinide ions in the +3 and +4 states exist as simple cations; their 

high charge enables them to split a water molecule in spite of their large size and
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formM(OH)x species. Actinide ions in the +5 and +6 state are so strongly acidic, 

due to their smaller size and higher charge, that they can extricate the oxygen from 

the hydrate water molecules and so form the species, M 02+ and M 022+, 

respectively. Although the M-O distances vary to some extent due to valence 

changes and the nature of other ligands, measured values show that for the 

actinides U to Cf this bond is highly covalent (eg. Np-O distance measured to be 

1.85 or 1.96 A, Katz, etal., 1986)

The reaction stages involved in the hydrolysis of actinide +4 and +6 ions are 

shown in the equations below.

M A* * a x  H O -  M ( OH)  (4~a x  )+ + a x H *
2 x

M 6* * 2 H  O -  M O 2* * 4 H* ;  M O 2* + a x  H O -  MO {OH)  (2 ‘a x  )+ + a x H *
2 2 2 2 2 X

The stability of individual actinides with respect to hydrolysis is related to size and 

effective charge of the actinide ion. For example, the formal charge, +1 and +2 

respectively, indicated for the M 02+ and M 022+ ions is less positive than that on 

the central metal ion and this results in the order of stability :

MO*>M 3*x M 0 2*>M 4+

The M4+ ion is the most highly charged cation known to exist in solution and is the 

most prone to hydrolysis. The M 022+ ion has an effective charge of the order of 

that on the M3+ ion so both species are relatively acidic and prone to hydrolysis. 

The M 02+ ion is only mildly acidic and is hydrolysed to a lesser extent. In the 

absence of complexing ligands, all actinide species in solution are prone to 

hydrolysis and, under varying conditions, form polymeric hydroxy species.

As indicated in Table 1.3 there are chemical differences between the actinide 

elements in the +4 state. For appreciable concentrations of actinide +4 ions, Th4+ 

is unstable at pH>0.5 whereas U4+ is only fully hydrolysed at much higher pH 

(>2.9) and ionic strength.
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U4+ and Pu4+ are equally prone to hydrolysis whilst Np4+ is more stable than would 

be predicted on the basis of size and charge. However, most hydrolysed cations, 

where present in non-trace amounts, are highly insoluble and Np4+ ions are no 

exception.

m 4+ I = 0.5M 1= 1M I = 2M I = 3M

Th 4.23 5.0b

U 1.47 1.56 1.68

Np 2.30 2.00

Pu 1.60 1.51 1.73

Table 1.3 Hydrolysis of Actinide +4 Ions At Different Ionic Strength 
(Constants pp refers to the acid dissociation equilibrium M4+ + H20  «* 
M(OH)3+ + H+ at 25°C where the medium was (Na, H)C104 or b(Na, H)C1) 
from Katz et al 1986)

Actinide 5+ ions are particularly stable for Pa and Np. N p02+ and Pu02+ are 

predicted to dominate in solution phase interactions of these elements in 

environmental waters (Pentreath 1982; Choppin et al., 1986; Choppin et al., 1990; 

Choppin, 1991; Orlandini, 1986).

Hydrolysis of the actinyl ions follows the unexpected order:

UO£*>Np  0 22> P u 0 22+

and this trend is due to other, presently unknown, factors that influence the 

stability of the actinides with respect to hydrolysis in the absence of complexing 

ligands in aqueous solution.

Of the +6 ions, U6+ is most stable with respect to reduction, with Np6+ and Pu6+ 

being more readily reduced and Am6+ being extremely unstable with respect to 

reduction. This property makes Am6+ an exceptionally strong oxidising agent and 

its existence is only maintained in solution under extreme conditions. There is a



Introduction 8

related marked decrease in the strength of the metal-oxygen bond with increasing 

atomic number from U to Am The actinyl ions are stable entities; once formed the 

bound oxygen atoms can be removed only by reduction of the actinides to the +4 

state.

In any aquatic system, in the absence of high concentrations of organic 

complexants, the relative order of increasing solubility of actinide ions is inversely 

related to their particle reactivity which follows the sequence:

Th 4+, UA\  Am 3*«Pa 5+, Np 5+, Pu 5*«U6*

Complexation can, however, alter the relative stability of different oxidation states 

of the actinides. The stability of the oxidation states of Pu is expected to follow 

the normal patterns for actinide ions in aqueous solution but such general trends 

can be negated by the presence of other ligands in solution. For example, the 

presence of organic ligands can reverse the relative stabilities of the +3 and +4 

oxidation states (Foreman and Smith, 1957 : in Choppin, 1983).

From this limited discussion of actinide behaviour it is apparent tha t:

1. only certain oxidation states for each actinide are important in environmental 

systems

2. Pu, U and Np can exist in higher oxidation states whereas Am and Th are stable 

only in the +3 and +4 states respectively and this strongly influences their 

behaviour in the environment

3. complexants in natural systems can significantly alter the stability of actinide

species and their influence on the biogeochemical behaviour of the actinides is

discussed in section 1.4.5.
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1.3 OCCURRENCE, DISTRIBUTION AND ASSOCIATIONS OF 

ACTINIDES IN THE IRISH SEA AND SURROUNDING AREAS

In an environmental context, the presence of natural and anthropogenic 

radionuclides, in particular the actinides which are predominantly a-emitters, 

provides a potential hazard to man (Pentreath, 1980). A number of sources of 

actinides have contributed to their inventory in the Irish Sea, including British 

Nuclear Fuels plants at Springfields, Chapelcross and Sellafield and the Marchon 

Chemical Plant at Whitehaven, but it is well documented that Sellafield is by far 

the largest source of anthropogenic radionuclides to this environment.

1.3.1 Sellafield

Since 1952, the British Nuclear Fuel reprocessing plant at Sellafield in Cumbria 

has discharged low-level radioactive waste (Fig. 1.1), which includes the 

transuranics Np, Pu and Am, into the NE Irish Sea as exemplified in Table 1.4. 

Table 1.5 indicates the decay characteristics of these radionuclides.

Nuclide Annual
Discharge

(1974)(TBq)

Authorised
Limits
(TBq)

Annual
Discharge

(1992)(TBq)

Authorised
Limits
(TBq)*

U 10936kg - 633.0kg -

Np-237 - 0.18 -

Pu-a - 0.94 7.0

Pu-241 1700 - 25.3 170.0

Am-241 120 " 0.54 3.0

Total a 170 225 1.6 10.0

Table 1.4 Selected Annual Discharges from BNF Sellafield in W Cumbria 
(* Authorised Annual Discharges as of 1990)
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Nuclide Half Life 
(Years)

Decay Mode Exposure
Risk

238|j 4.47xl09 a Internal

237Np 2.14xl06 a Internal

238pu 87.74 a Internal

239Pu 2.41xl04 a Internal

240Pu 6.57xl03 a Internal

241Pu 14.7 Y External

241 Am 432.2 a Internal

Y External

Table 1.5 Decay Characteristics of Selected Radionuclides from Katz et al 

1986

Reprocessing involves a series of chemical separation processes in which spent U 

fuel rods are treated to separate residual U (>96% by mass), Pu (1% by mass) and 

highly-active waste (<3% by mass). The separation processes, following the 

removal of the fuel cladding, involve dissolution of the U fuel rods in nitric acid. 

Waste products are removed from solution and the U and Pu subsequently 

separated by further chemical procedures. The current reprocessing plant began 

operation in 1964, replacing the earlier plant, its main function being to reprocess 

fuel from Magnox reactors. Figure 1.1 shows temporal trends in the discharge of 

Pu, Am and and fission product, Cs over the time period 1952-1993. Figure 1.2 

shows the total alpha and total beta activity discharged annually, together with 

annual authorised discharge limits.
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Maximum discharges in the mid-1970s are indicative of the Magnox programme 

reaching full capacity. Subsequent improvements in waste treatment technology 

have resulted in the reduction by two orders of magnitude in the discharge of the 

actinides.

Low active liquid waste arises from the reprocessing plant and the fuel storage 

ponds and is discharged into the Irish Sea through a pipeline which extends one 

and a half miles from shore. The reprocessing plant liquid waste is contained in sea 

tanks prior to release and the effluent from these dominates the total discharge 

inventory for Pu. Pentreath et al. (1984) reported that about 99% of the Pu from 

this source appeared in the reduced, particle associated form, whilst approximately 

50% of the Np appeared in the oxidised form. The partitioning of Np and Pu 

between the solid and aqueous phases varied between the pond water and the 

reprocessing waste and this has been related to the observed differences in 

oxidation state for released Pu and Np. In particular, there was a higher 

proportion of dissolved Pu in the pond water relative to that of the sea tanks 

which is due to the prevalence of +5 and +6 oxidation states in the pond water 

filtrate (Pentreath et al., 1984). Np is strongly oxidised in the pond water filtrate 

but also to an extent in the sea tank filtrate prior to neutralisation and Fe floe 

formation. Overall, approximately 100% of the Am, and >90% of the Pu is 

immediately particle associated following release, with their subsequent dispersion 

being controlled by the redistribution of the particulate phase of the sediment. In 

particular, a bank of fine sediment close to the discharge point contains a large 

proportion of the released radionuclides (Smith et al., 1980; Pentreath et a l , 

1984). The long-lived nature of these nuclides has resulted in their continued 

presence at enhanced levels in Irish Sea sediments. Table 1.6 shows the 

environmental inventories of these nuclides in comparison with global fallout and 

Chernobyl inventories.
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BNF pic Waste 
Radionuclides 
(Total to 1990)

Atmospheric 
Nuclear Weapons 

Tests

Radionuclides 
Released During 

Chernobyl 
Reactor Accident 

in 1986

Nuclide Activity
(«q)

Mass
(kg)

Activity
(Bq)

Mass
(kg)

Activity
(Bq)

Mass
(kg)

137Cs 3.0xl016 9.4 1.3xl018 406 2xl016 6.2

239,240pu 6.8xl014 253 8.9xl015 3900

241 Am 8.9xl014 7 3.0xl015 * 24*

Table 1.6 Environmental Inventories of Anthropogenic Radionuclides 
(* Estimated inventory for 241 Am in 1990 produced by the decay of 241Pu 
released during atmospheric nuclear weapons tests)

The inventories for241 Am incorporate both documented discharges and ingrowth 

of this nuclide from decay of discharged24lPu, a short-lived p-emitter.

The dispersion of these radionuclides is influenced by the movement of water and 

sediment in the proximity of the discharge point (MacKenzie et al., 1987). The 

flow of water in the NE Irish Sea is northwards to the Solway Firth and the North 

Channel (Pentreath et al, 1984). There is a strong dependence on aqueous/solid 

phase partitioning which governs the mechanism of transport of different 

radionuclides. The dispersal of these nuclides has been confirmed by measurement 

of concentrations of up to 4.5xl03Bqkg'1 of 239,240Pu and 3.3xl03Bqkg_1 of 241Am 

in coastal sediments in W Cumbria (McDonald, 1993). It has been shown that the 

dominant mechanism of Pu and Am supply to intertidal areas of the Irish Sea 

involves redistribution of contaminated marine sediment originating from the 

deposit of fine marine sediment in the proximity of the discharge point (Hunt, 

1985; MacKenzie and Scott, 1993).

The point source nature of the Sellafield discharge, together with particle- 

associated transport of these nuclides, has resulted in the contamination of
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surrounding coastal and floodplain areas at levels much in excess of those arising 

from global fallout. Figure 1.3 shows sediment profiles for Pu, Am and Cs for a 

sediment core collected in 1990.
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Continuation for the foreseeable future of onshore transport, in conjunction with 

dilution of the contaminated sediment, will result in decreasing concentrations of 

radionuclides in the deposited material but increases in the total radionuclide 

inventories in accumulating floodplain deposits of the Irish Sea. Short-lived 

radionuclides that are unsupported by a parent nuclide or by further discharges 

provide a short term hazard. The long-lived nature of 237Np, 238Pu, 239,240Pu and 

241 Am (see Table 1.5) means that only small decreases in environmental inventories 

of these nuclides will be observed in the short term (decades). 241Pu with a half-life 

of only 14y decays to give241 Am and so increases the activity o f241 Am with time 

(Livingston and Bowen, 1975; Day and Cross, 1981). The ingrowth of 237Np from 

241Am provides an additional source of Np in the environment. 237Np has also been 

discharged from the Springfields fuel fabrication plant and the Sellafield 

reprocessing plant. The activity of 237Np that has been discharged from Sellafield 

is uncertain and is documented only as a component of total activity due to a- 

emitters in the total discharge. Moreover, little environmental data exist for the 

distribution and behaviour of Np due to its low concentrations in most soils and 

sediments (Pentreath and Harvey, 1981; Assinder, 1991). Np is less particle 

reactive than Pu and Am and empirical results suggest that transport of Np may 

follow a pattern more similar to Cs than other actinides (Hursthouse, 1990; 

Hursthouse, 1991; Assinder, 1991). The ratios of Pu and Am respectively to Np 

decrease with increasing distance from the discharge point and, in particular, Np 

concentrations in the marine sediment decrease with increasing distance 

northwards. These observations suggest that Np is more soluble than Pu and Am 

and this is consistent with measured values calculated from the partitioning 

between the solid and aqueous phase (Hursthouse, 1991; Assinder, 1991). With 

increasing time, the radiological importance of 237Np will increase due to 

significant levels of discharge from the Sellafield and Springfields plants and its 

longevity together with its ingrowth following the decay o f 241 Am. Figure 1.4 

shows the relative importance of nuclides, with increasing time, in terms of human 

exposure. Figure 1.5 shows the critical group internal and external exposure for 

the Sellafield discharge.
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Reductions in discharges are expected to give rise to lower exposure levels which 

are within present authorised limits. The exposure calculated on the basis of 

maximum discharge levels exceeds the present limits by a factor of four. 

Particulate transport and resuspension mechanisms mean that actinide supply to 

accumulating sediments and intertidal areas will continue on a long term basis. 

This indicates a continuing and potentially increasing potential radiation risk and 

highlights the importance of further work to elucidate environmental influences 

on actinide behaviour.

Following their deposition in a terrigenous system, mechanisms of interaction and 

processes governing movement of the actinides within the soil or sediment are of 

vital importance in determining their bioavailability.

Other factors influencing actinide distribution in coastal soils and sediments 

include variations in vegetation and topography which affect the deposition 

process and hence particle size composition at a given location. Diagenetic 

processes in sediments can result in changes in actinide association with increasing 

time after deposition. Importantly, actinide interactions with, and their distribution 

amongst, soil and sediment components will subsequently control their 

soil/sediment solution behaviour and hence toxicity.

1.3.2 Albright and Wilson Phosphate Refinery

Discharges of natural radionuclides into the Irish Sea are also significant. Natural 

radionuclides from anthropogenic sources include aquatic discharges from 

Sellafield, run-off from agricultural land, leakage from coal mines, but most 

significantly in the Irish Sea, waste releases from the Albright and Wilson Marchon 

chemical plant at Whitehaven. The plant, sited 2km north of St. Bees Head, 

manufactured phosphates from sedimentary rocks from 1954-1992. Phosphate 

ores often contain high levels of naturally occurring U and Th and their decay 

products. Refining of imported ore at the Albright and Wilson Plant at Whitehaven 

has led to the discharge of natural decay series radionuclides into the Irish Sea 

increasing their concentrations in the local environment and providing a second
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industrial source of actinides. Discharges via a pipeline on the north side of St. 

Bees Head and spillage of ore during unloading in Whitehaven harbour have 

resulted in enhanced levels of natural radionuclides, mainly U, in surface sediments 

and high levels of 226Ra in solution (McCartney et al., 1990). The annual discharges 

of U from the Marchon works are in vast excess of those from Sellafield. On 

average, 30 tonnes per year were discharged over the period 1954-1992 in 

comparison with maximum annual discharges of 4 tonnes from Sellafield. The 

Marchon discharges are estimated to have generated a total environmental 

inventory to 1992 of approximately 1.9xl013Bq of 238U and a similar activity of 

226Ra, assuming secular equilibrium and no differential retention of daughters 

during processing.

Since 1992, refined phosphate ore has been imported and discharges of natural 

radionuclides have ceased (Keating, 1993). However, the long-lived nature of 

certain nuclides including 238U and 230Th indicates their continued presence in the 

environment for the foreseeable future. Enhanced levels of natural radionuclides, 

and in particular 230Th, have been observed in sediments along the Solway Coast 

in SW Scotland (Ben Shaban, 1985). Past discharges from the phosphate refinery, 

therefore comprise a potential additional source of actinide elements to the Solway 

sediments chosen as a sampling location and are of relevance in the context of this 

study.

1.3.3 Natural Uranium Mineralisations

A further local, non-marine source of natural radionuclides to soils and sediments 

in coastal areas of SW Scotland is from a series of mineralised U veins occurring 

along the edge of the Criffel Phiton (Miller and Taylor, 1966). The largest of these 

is located close to a natural rock arch known as The Needle's Eye. The Criffel 

Pluton was intruded some 400 million years ago into Silurian metasedimentary 

rocks while the age of the U vein is estimated to he about 200 million years 

(Halliday et a l , 1980). The vein material consists of pitchblende, a form of 

uraninite, together with brittle bituminous hydrocarbons, pyrite, chalcopyrite, and
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native bismuth in a quartz, calcite, dolomite gangue. The U occurs mainly in the 

leachable pitchblende although some exists in secondary minerals due to 

redistribution following weathering of the rock (Hooker, 1991).

In front of the cliffs, forming the edge of the pluton, are post-glacial floodplains, 

known locally as Merse areas, and intertidal mudflats. These sediments are 

Quaternary deposits 1.5-2m thick, mainly of quartz-rich silts, with variable 

amounts of clay and humic debris. The Netherclifton Merse, a sampling site in this 

study, is cut by the tidal channel of the Southwick Water into which many small 

fresh water streams flow from the base of the cliff and from inland.

Groundwater flowing through fractures in the cliff in the vicinity of the U vein is 

quite strongly oxidising, causing preferential dissolution of soluble members of the 

U decay series from exposed minerals. The groundwater draining from the cliff is 

enriched in U and this is instrumental in the translocation of U into organic rich 

Quaternary sediments and the floodplain silts of the mudflats (Basham et a l , 1989, 

Roberts et a l , 1988, Milodowski et a l , 1990). The oxidising nature of this water 

means that U is predominantly in the oxidised form, U022+ with 15% of the U in 

solution being organic associated (MacKenzie et a l, 1991). Conditions 

immediately below the cliff are highly reducing and the high organic content of the 

soil contributes strongly to the removal of U from solution. There is a low organic 

association of U in the cliff groundwater but, not surprisingly, a marked increase 

in organic association in the coloured soil pore water. Run-off from streams to the 

sahmarsh area results in the transport of U from the cliff to the Merse where it is 

redeposited in association with humic materials or Fe/Mn oxyhydroxides 

(MacKenzie et a l, 1991).

The floodplain areas are also subject to periodic inundation from the sea with 

resultant deposition of sediment and the sampling site has been subject to fast 

accumulation of sediment over a period in excess of twenty years (Allan et a l , 

1991). The presence of enhanced levels of natural decay series (and 

anthropogenic) actinides in sediments at the marine edge of the Merse is 

predominantly attributed to deposition of contaminated Irish Sea sediments whilst 

acknowledging that the natural uranium veins become a more important source



Introduction 23

of naturally occurring radionuclides, particularly with increasing distance inland 

towards the vein.

1.3.4 Radionuclide Associations in Soils and Sediments

A discussion of the nature and characteristics of soil and sediment constituents can 

be found in Greenland and Hayes (1978). Compositional and structural variations 

of soils and sediments exert a major influence on their ability to retain 

radionuclides and the distribution within the solid phase as illustrated in Table 1.7.

Soil or Sediment U and Th Distribution

Clays/Sediments Th strongly associated with clays and 
heavy minerals

Mineral Soil U and Th strongly associated with Fe/Mn 
oxyhydroxides

Organic Soils/Peat U and Th strongly complexed by the 
humic fraction. Peat or humic substances 
may influence the formation of U 
minerals

Table 1.7 Associations of U and Th in Soils and Sediments

Sequential leaching techniques are often used to determine solid phase 

associations within soils and sediments and have consistently highlighted the 

importance of the organic fraction for many metals including the actinides (Cook 

et al., 1984; Livens, 1985; Livens et a l , 1987; MacKenzie et a l, 1991; McDonald 

et al., 1992). This method, which applies a series of reagents to remove notionally 

discrete components of the solid phase together with associated metals, provides 

information relating to actinide associations with components of soils and 

sediments (Ure, 1991). Criticism of sequential leaching methods has been made 

on the basis of laboratory experiments which indicated that results depended on
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the order of extraction of the various soil components (Wilkins et al., 1986; 

Kheboian and Bauer, 1987; Mudge et al., 1988). These studies involved the 

addition of metals to the soil sample prior to sequential extraction of components. 

Tessier et al (1979) showed, however, that the use of sequential leaching methods 

on samples which had not been subject to metal addition in the laboratory (ie. 

potentially unaltered environmental metal associations) produced reproducible 

results for a specific soil or sediment type and concluded that sequential leaching 

does provide a useful means of studying solid phase associations of radionuclides 

in the environment.

Sequential leaching is limited in its usefulness by the lack of mechanistic detail 

regarding actinide interactions with any operationally defined component and the 

non-identification of the proportions or nature of the extracted component 

involved in binding. The non-homogeneity of the organic fraction and vast 

differences in the binding capacity of molecules from which it is comprised are not 

apparent from the sequential leaching technique. It simply gives a broad indication 

of the importance of an undefined portion of the organic fraction. Further 

characterisation of the organic fraction has led to the knowledge that humic 

substances can account for a significant proportion of the total organic-actinide 

binding and indeed also actinide binding by the soil matrix. The importance of the 

humic fraction can be put in context when it is considered that it may comprise as 

little as 1-2% of the total soil mass but frequently accounts for >50% of Pu and 

Np binding (Hursthouse, 1990; McDonald et al., 1992) and up to 94% of U 

(MacKenzie et a l , 1991).

For both soils and sediments, a strong relationship between particle size and 

radionuclide content has been demonstrated. For example, Livens and Baxter 

(1987) showed that for a sand, a conifer soil, a gley and an intertidal sediment 

there was preferential concentration of radionuclides in the finer size fractions 

(<2pm). This is reflected in the non-uniform distribution of radionuclides in 

sediments in coastal areas of SW Scotland (Allan, 1993). Topography and 

vegetation influence the particle size distribution at a number of locations along 

this coastline.
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Differences in particle size distribution will therefore influence the behaviour of 

the radionuclides and this information is consequently important in the context of 

this study. The finer marine particulate material may contain organic material and 

radionuclide associations in this material prior to deposition would also be of great 

value. There is some information presently available regarding the radionuclide 

associations in offshore sediments which suggests a 20% association of Pu with 

organic matter (McDonald, 1992). However, there is less information regarding 

the radionuclide associations in suspended particulates in incoming tidal waters 

and the nature of the changing associations observed on and following deposition 

in saltmarsh sediments. A major objective of this study has therefore been to 

characterise radionuclide associations with the organic fraction and the changes 

occurring with increasing time from deposition of natural and anthropogenic 

radionuclides in these environments.

1.4 HUMIC SUBSTANCES

1.4.1 Introduction

Historical reviews of the study of humic substances by Stevenson (1982) and 

Schnitzer and Khan (1972) suggest that the earliest documented attempts to 

isolate these materials were made by Achard in 1786 who, using an alkaline 

solution, extracted an organic component from peat which resulted in a dark 

amorphous precipitate upon acidification. Schnitzer and Khan (1972) also note the 

observations made by Wallerius (18th Century) who proposed that a component 

of soil organic matter had the capacity to adsorb water and plant nutrients. Further 

study led to the knowledge that a stable component with these properties was 

derived from organic degradation products of plant and animal matter and, more 

recently, the organic macromolecules comprising this component were classified 

as humic substances (Kononova, 1966).

Present consensus suggests that humic substances are a highly complex, 

heterogeneous mixture of organic macromolecules with high proportions of
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functional groups distributed non-uniformly along an aliphatic and/or aromatic 

backbone. Humic substances comprise only part of the total organic fraction of 

soils, sediments and water, making up approximately 50% of the organic material 

in a well-formed soil (Rashid, 1985) and up to 80% of dissolved organic material 

in aquatic systems (Higgo et a l, 1992). Conventionally the humic portion of the 

organic fraction, which is extractable in alkali, can be subdivided into humic acid 

and fiilvic acid on the basis of acid/alkali solubility. Humic acid is only soluble 

under alkaline conditions and is precipitated on the addition of acid, whereas fiilvic 

acid is soluble under acidic and alkaline conditions (Mulder, 1862; Stevenson 

1982). Humic material which is insoluble in alkali is termed humin (Mulder, 1862; 

Stevenson, 1982). This fraction may simply contain humic material strongly linked 

to mineral matter causing it to be insoluble in alkali (Stevenson, 1982) or may be 

highly degraded humic material with low functionality ie. a coal precursor (Killops 

and Killops, 1993). The high functionality and polyelectrolyte behaviour of 

extractable humic material is responsible for its importance in metal binding in the 

environment. Its structure is, however, poorly characterised and its interactions 

with metals ill-defined, so the properties and behaviour of humic material in soils, 

sediments and water are topics of continued study.

The presence of organic matter in soil has a number of beneficial effects on its 

biological, physical and chemical properties and affects the activities of microflora 

and microfaunal organisms. The initial decomposition of organic material by soil 

microorganisms releases inorganic species (eg. N, P and S compounds) and small 

organic molecules (eg. amino acids) required for plant growth and so contributes 

to soil fertility. Following its formation, humic material, due to its porous texture, 

increases the proportion of pore spaces in clay soils by the formation of clay- 

humic aggregates (Stevenson, 1982). This leads to improved drainage and 

aeration of the soil by maintaining large pore spaces through which water can 

enter and percolate downwards. Humic material is also responsible for increased 

water retention in sandy soils where it binds the sand grains, thereby reducing pore 

spaces (Schnitzer and Khan, 1972). In addition, humus increases the ability of a 

soil to resist erosion through effects of surface aggregate stability, surface sealing
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and crusting and compaction (Gabriels and Michiels, 1993; Stevenson, 1982). The 

formation of aggregates promotes soil granulation and the resultant soil particles 

are less easily lost by the movement of water. Humic substances therefore play a 

dual role in improving the physical structure of a soil in that they facilitate the 

movement/retention of water and nutrients whilst promoting stability of the upper 

soil profile. Moreover, their ability to form soluble complexes with certain 

important trace metals, including Cu, Mn and Zn, potentially increases the mobility 

(Smith, 1991) and bioavailability of metals (Sholkovitz et a l, 1978; Sholkovitz, 

1976; Picard and Felbeck, Jr., 1978). The humic fraction is also known to reduce 

the toxicity to plants and indirectly animals, of metal species such as Al by the 

formation of insoluble complexes. As a consequence of its complexation 

characteristics, soil humic material has been extracted and marketed commercially 

as a soil conditioner, stabiliser and fertiliser and more recently to complement 

other plant feeds by promoting transport of added nutrients to the plant roots. 

Humic material plays an indirect role by affecting the uptake of added 

micronutrients by plants. Humic substances are also known to affect the 

performance of agricultural chemicals by altering their bioactivity, persistence and 

biodegradability (Stevenson, 1982) and may modify the required application rate 

of such chemicals.

In aquatic systems, certain ill-defined, high molecular-weight organic compounds, 

displaying properties similar to humic substances, have several important effects 

on the growth of phytoplankton. Although nutrient levels and solar energy govern 

primary productivity, humic-like compounds display growth regulatory effects 

complementary to these primary effects (Wershaw, 1991). Marine humic 

compounds are termed "biological conditioners" as a result of their role in 

influencing bioavailability by the formation of soluble metal chelates. In this 

respect, humic materials in soil and aquatic systems play a similar role. However, 

the composition of marine organic matter varies significantly from terrigenous 

derived organic material as discussed in section 1.4.4.

In this study, the characteristics of humic material of terrigenous origin are 

compared with humic material from sediments which are highly influenced by
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marine conditions and subject to inundation of organic and inorganic particulate 

material of marine origin. The composition of marine suspended particulate 

material is seasonally influenced both in terms of particle size distribution and 

variations in primary productivity and may therefore contain varying amounts of 

marine derived organic material.

1.4.2 The Composition of the Humic Fraction of Soils and Sediments

Investigation of the composition of humic substances with a view to understanding 

their chemical characteristics has been an important area of research since the mid- 

18th century (Berzelius, 1760; Mulder 1840; Kononova, 1966; Schnitzer and 

Khan, 1972; Stevenson, 1982; Aiken, 1985; Hayes, 1991). Whereas the chemical 

characteristics of many other natural organic molecules including biological 

macromolecules (eg. proteins) are well known, those of humic substances remain 

poorly understood due to their diversity and complexity (Hayes et a l , 1991; Aiken 

et a l , 1985; Stevenson et a l , 1982).

Humic substances consist of a heterogeneous mixture of organic macromolecules 

for which no single structural formula will suffice (Schnitzer and Khan, 1972; 

Stevenson and Butler, 1969). It is unlikely that any two molecules will have 

precisely the same structural configuration or array of reactive groups. 

Consequently, individual functional groups or combinations of functional groups 

in humic substances do not give rise to unique chemical properties (eg. acid, 

alcohol etc.) due to the diversity of chemical environments existing in these 

materials. The averaging of their chemical behaviour is the distinguishing feature 

between large humic macromolecules and small organic compounds or structured 

biomolecules (Sposito, 1989). Table 1.9 highlights the main components of a 

typical soil organic fraction. In general, the structure of non-humic compounds is 

characteristic for each class or homologous group (Killops and Killops, 1993). For 

example, proteins comprise amino acid sub-units which are linked via peptide 

bonds in a non-random manner and possess primary, secondary, tertiary and 

quaternary structure. The chemical characteristics of these large organic
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biomolecules arise from uniform and highly specific combinations of sub-units. 

Following the initial decomposition of organisms upon death, proteins are found 

in most marine sediments. The chemical environments of amino acids and, more 

specifically, elemental nitrogen do not differ markedly from their precursors in the 

living biomass. These functional groups are also present in humic compounds. 

Soluble amino adds present in soils are incorporated into humic substances but in 

a wide range of chemical environments and the resultant structures differ strongly 

from the organic structures from which they originated (Kemp and Mudrochova, 

1973). Although nitrogen in most organisms is predominantly found in the form 

of amino acids in protein structures, amino acid units account for only a 

proportion of the nitrogen content of humic substances. Significant amounts of 

nitrogen contained in humic macromolecules cannot be traced to known precursor 

compounds (Stevenson, 1982; Anderson, 1991). Humic substances are, therefore, 

complex conglomerates of a variety of known and unknown sub-units which do 

not constitute uniform macromolecules (Tegelaar et al., 1989; Killops and Killops,

1993).

1.4.3 Preservation of Soil and Sedimentary Organic Matter

The main contributors to non-living organic material in marine and terrigenous 

systems are listed in Table 1.8. Variations in the relative proportions of plant and 

animal matter exist between marine and terrigenous systems. Whereas in marine 

systems the ratio of plant to animal matter is approximately 50:50, in terrigenous 

systems the predominance of plant material is expressed in a ratio of 99:1. 

Bacteria and fungi are also of considerable importance not only as decomposers 

of organic material but also as contributors to the biomass. For example, in marine 

systems, although the biomass of bacteria is small, where primary productivity is 

high, the contribution of bacteria to deposited sedimentary organic material 

exceeds that of zooplankton. Fungi, although of low importance in marine systems 

play a greater role in terrigenous systems and this is discussed in greater detail in 

the following paragraphs.
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Marine Terrigenous

phytoplankton higher plants

bacteria soil animals

zooplankton bacteria

(higher plants) fungi

fungi

Table 1.8 Graded Contributors to Soil and Sedimentary Organic Material

In order to understand the importance of these differences in contributing species,

it is necessary to consider the chemical composition of organisms. All organisms

are similar in that they are made up of three main (geochemically important)

compound classes : carbohydrates, proteins and lipids and the remaining text in

this section deals with the initial results of degradation of these general groups.

The classes of compounds shown in Table 1.9 display varying solubilities and 

reactivities.
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Class of Organic 

Compound

Components Composition

debris plant and animal remains

partial

decomposition

products

the three main classes of 
compounds are carbohydrates, 
lipids and proteins; lignin

carbohydrates polysaccharides eg. starch, cellulose monosaccharides ie. simple 
sugars eg. glucose

lipids (substances 

produced by 

organisms that are 

insoluble in water)

phospholipids, polyesters, steroids, 
fats, oils, waxes, resins, 
photosynthetic pigments

hydroxy fatty acids and 
alcohols; steroids 
structurally different and 
contain four carbon rings 
interlocked

proteins fibrous proteins -supporting tissue 
globular proteins - enzymes, 
hormones, antibodies, storage and 
transport units (eg. haemoglobin)

amino acids

lignin found only in higher plants ; plays a 
similar role in plants to fibrous 
proteins

substituted phenols

Table 1.9 Non-humic components of Soil Organic Matter

The residence times of individual compounds in soils can vary from several weeks 

for easily decomposable tissues up to several thousand years for chemically stable 

organic matter (Bowen, 1979). The smallest, most highly soluble, total 

decomposition products have the shortest residence time in the solid phase, whilst 

other hydrophobic, partial decomposition products have longer residence times in 

the soil matrix. Macromolecular components of plants such as proteins and 

polysaccharides are broken down into their water-soluble, constituent amino acids
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(Stevenson, 1982) and monosaccharides (Killops et al., 1993) respectively. These 

smaller, soluble compounds can be assimilated by the living biomass. Alternatively, 

amino acids may be decomposed by microorganisms with the release of NH3 

which may also be assimilated by living organisms or react chemically with 

partially altered lignin components or humic macromolecules. Similarly, certain 

lipids are transformed into assimilable components. Natural polyesters are rapidly 

broken down by enzymes which show a specificity for primary alcohol esters 

prevailing in these structures. Lignin is a highly abundant natural polymer second 

only to cellulose and survives early diagenetic reactions (Michaelis et al., 1989; 

Benner et a l , 1990; Fustec et a l , 1988). Lignin and cellulose in higher plants play 

a similar role to fibrous proteins in organisms. Vascular plants have lignin 

structures in their cell walls which provide the rigidity of the plant stem during its 

lifetime. Lignin precursors (eg. coumaryl alcohol, coniferyl alcohol and sinapyl 

alcohol) are synthesised within plants from D-ghicose via a shikimic acid pathway. 

Condensation of varying amounts of these precursors (depending on the plant 

type) results in the formation of lignins. These lipids are commonly found in 

combination with carbohydrates or proteins eg. lignocelluloses and lipoproteins. 

Death of a plant followed by microbial degradation results in the release of lignin 

structures, constructed from phenolic and other aromatic units which may only be 

partially degradable chemically and microbially. Lignocelluloses and insoluble, 

non-hydrolysable aliphatic biopolymers (originating from waxes in protective leaf 

coatings in higher plants) are in general more resistant to chemical and microbial 

degradation. Lignin may be degraded by fungi to give polyphenolic compounds 

which are thought to comprise a significant proportion of the precursors of 

terrigenous humic substances (Fustec et al., 1988). In particular, white rot fungi 

use lignin as their preferred source of both carbon and energy. Microbes capable 

of degrading lignin do so by cleaving ether linkages between phenolic units 

(Michaelis et al., 1989). Various additional minor sources of phenolic compounds 

in soils have been identified and include uncombined phenols in plants, glycosides 

and tannins.

It is therefore proposed that derivatives of the lignin precursors, cinnamyl,
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coumaryl, coniferyl and sinapyl alcohols are probable precursors to terrigenous 

humic substances (Stevenson, 1982; Hedges et al., 1988).

Other major sources of phenolic compounds are known to be microorganisms 

(Kononova, 1966) and, in estuarine environments, macroalgae (Carlson and 

Mayer, 1983). Microorganisms can synthesise phenols and other small organic 

molecules which are subsequently excreted and form part of the soil organic pool. 

Macroalgae are important during the summer months in estuarine areas in the 

exudation of phenolic compounds (Carlson and Mayer, 1983). In marine 

environments, humic material contains predominantly methyl and dimethyl 

phenolic compounds which are not derived from lignin (Michaelis et a l , 1989) and 

it is suggested therefore that they are derived from the microorganisms or algal 

sources.

In conclusion, only a small portion of the total biomass is preserved in soils and 

sediments (< 0 .1%) but clearly the composition of the organic fraction of soils and 

sediments is a result of the selective preservation of certain components of the 

original material. The overall composition is influenced by

1. the input material,

2 . microbial populations and

3. environmental conditions.

1.4.3 Formation of Humic Substances

Humic substances comprise more than half the organic fraction of most soils and 

sediments and up to 80% of dissolved organic matter in aquatic systems but, 

despite their abundance, the processes involved in their formation are ill-defined. 

It is thought that humic substances are predominantly produced by abiogenic 

reactions that link together relatively low molecular weight aliphatic and aromatic, 

hydrophilic and hydrophobic compounds. In marine systems, the low molecular 

weight compounds are derived mainly from the degradation of the biopolymers, 

proteins and carbohydrates.

In terrigenous systems, low molecular weight compounds, including substituted
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phenolic compounds deriving from lignocelluloses (Goni and Hedges, 1992; Bailly 

and Raboanary, 1986; Fustec et al., 1988; Zech et al., 1989; Shindo and Huang, 

1982; Kogel- Knaber et al., 1991), and partially degraded lignin compounds are 

implicated as the main precursors of soil humic substances. The formation of soil 

humic substances from phenolic units as described by Flaig (1960) is outlined in 

Figure 1.6.

lignocellulose — lignin —desrad~ phenols

oxid.,

demethylation,

enzyme

quinones

polym with N compounds 

HUMUS (dark coloured polymers) 

Figure 1.6 Formation of Humic Substances (Flaig, 1960)

The importance of aliphatic and aromatic sub-units as contributors to humic 

substances depends on their inherent resistance to degradation but is also related 

to their continued presence in the extant biomass. The source of the organic 

material influences the degree of aromatidty and, in general, soil humic substances 

have higher proportions of aromatic precursors (Steurmer and Payne, 1976, 

Alberts and Filips, 1989) whereas floodplain and intertidal sediments, subject to 

marine inundation, have an additional source of more highly aliphatic organic 

material The principal source of natural organic matter in seawater is planktonic 

and bacterial excretion and degradation whereas the terrestrial biomass and hence 

natural soil organic matter is principally provided by higher plants (Buffle, 1988) 

(Table 1.10).
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Component Higher Plants 
(% dry weight)

Plankton 
(% dry weight)

Protein 5 25-50

Lipid (non-lignin) low 5-25

Lignin 15-25 -

Carbohydrate 30-50 
(mainly cellulose)

40

Table 1.10 Composition of Sources of Organic Matter in Marine 
and Terrigenous Environments (Killops and Killops, 1993)

The predominantly aliphatic nature of marine humic material has been associated 

with the importance of algae or microbial degradation in these systems (Hatcher 

et al., 1980; Hatcher et a l , 1981; Minai and Choppin, 1992) and is consistent with 

the lower proportions of lignin compounds in these environments (Minai and 

Choppin, 1992; Rashid, 1985). The resultant differences in composition are 

discussed further in section 1.4.4.

In terrigenous systems, however, the importance of aliphatic units in the formation 

of humic compounds has often been underestimated since they often comprise 

only a small fraction of the total biomass. Relative increases in concentration of 

two or three orders of magnitude for minor, stable aliphatic constituents may 

occur during early stages of diagenesis (Tegelaar et a l , 1989).

Although, as described above, a predominantly abiogenic synthetic route is 

proposed, the importance of microbial synthesis of humic materials has also been 

investigated. Microbial synthesis of specific phenolic compounds is well known 

and their incorporation into humic substances is indicated by the detection of 

resorcinol derivatives (3,5 dihydroxybenzoic acid) among phenolic units isolated 

from humic substances (see section 1.4.4). In addition, it is proposed that certain 

microorganisms can synthesise higher molecular weight polyphenolic compounds. 

Laboratory based syntheses of compounds with properties similar to those of 

natural humic compounds have been undertaken by a number of workers including
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Bailly et al. (1986). Studies using simple phenolic compounds to produce para- 

humic compounds concluded that the formation of humic macromolecules can 

result from the following routes :

i) a chemical reaction involving phenolic monomers or

ii) the use of phenolic compounds either energetically or as part of a secondary 

metabolism by microorganisms.

Other laboratory based studies suggested an alternative abiotic route in which the 

oxidative polymerisation of phenolic compounds by Mn02, an effective oxidising 

agent, is important in the formation of humic substances under oxygen depleted 

conditions (Shindo and Huang, 1982; Huang, 1989).

A single polymerisation reaction involving specific polyphenolic compounds is, 

however, too simplistic an approach to the synthesis of natural humic substances 

and cannot account for their inherent heterogeneity and stability. Other precursor 

molecules and, in particular, N-containing compounds are known to be involved 

in the final stages of humic synthesis and may partially account for the observed 

longevity of humic compounds in soils, sediments and waters. As discussed in 

section 1.4.2, a proportion of N occurring in humic compounds cannot be 

accounted for by any known precursor molecules (Anderson, 1991) and this, 

again, emphasises the complexity of the natural processes involved in the synthesis 

of humic materials. Non-nitrogen containing synthetic humic molecules have also 

been studied. For example, Almendros et al. (1989) studied the spectroscopic 

characteristics of synthetic carbohydrate derived humic-like polymers in order to 

elucidate structural features using a simpler system and therefore provide further 

information regarding formation processes. Complex polysaccharides not found 

in higher plants may represent products of microbial metabolism. In soils, their 

preservation may be enhanced by incorporation into humic substances via ester 

linkages. Flaig (1988) debated the importance of such compounds in terms of their 

contribution to the composition of the humic fraction in soils and sediments. 

Overall, humification is a non-uniform process and the rate, and potentially the 

mechanism, of the formation processes will be affected by temperature and 

availability of precursor units. Seasonality factors may also lead to differing
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concentrations of these precursor units over a period of time. The heterogeneity 

of the soil or sediment matrix, in terms of variable inputs and degree of 

degradation of the organic material may also influence the availability of precursor 

units in any micro-environment within these systems (Goni and Hedges, 1992). 

In conclusion, the relative importance of different processes, precursor molecules 

and the precise steps involved in the formation of humic substances in any 

environmental system remain uncertain (Stevenson, 1982; Bailly and Raboanary, 

1986).

1.4.4 Composition of Humic Substances

The existing information regarding humic substance formation processes has been 

surmised from structural determination of humic substances which has been 

approached using a number of techniques (Alberts et a l, 1992; Almendros et al 

1989; Grant, 1977; Posner, 1963; Hatcher and Spiker, 1988; Kim 1990; Falk and 

Smith, 1963; Schnitzer et al., 1958; Schulten and Schnitzer, 1993). These 

techniques fall into two main categories, namely degradative (thermal and 

chemical) and non-degradative (spectroscopic) which are discussed in turn below.

1.4.4.1 Elemental Analysis

Elemental analysis of bulk humic materials (ie. humic acids, fiilvic acids and 

humins) is achieved by the total breakdown of the humic molecules using 

microanalysis techniques which determine the relative proportions of carbon, 

nitrogen, hydrogen, oxygen and sulphur. Humic materials from different locations 

vary in their elemental composition, although all are composed principally of C 

and O with smaller amounts of H and N and trace levels of S (and P) (Rashid, 

1985). In accordance with previous sections (see table 1.9 and 1.10), the relative 

proportions of these elements are dependent on a number of factors including the 

source of the organic matter and environmental conditions (Rashid and King, 

1970; Malcolm and MacCarthy, 1991; Miodragovid et a l, 1992; Friind et al.,
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1989).

In general, the trends indicates that C/H and C/N ratios can facilitate partial 

characterisation of the humic fraction of a soil or sediment. For example, 

terrigenous humic acids have values of C/H greater than 10 whilst marine derived 

material has values less than 10. Table 1.11 gives the elemental composition (% 

mass) of humic acids from soils and sediments experiencing a range of 

environmental conditions.

Humic
Material

%c % H % N %o+s C / H C / N 6 13C E/E6 R e f .

Sediment

Marine
Basin

5 1 .8 4 6 .5 6 5 .1 7 4 0 .1 1 7 .9 1 0 .0 - 2 1 .8 5 .6 5 N is s e n b a u m  
a n d  K a p la n  
1 9 7 2

Estuary 5 4 .3 7 6 .0 4 9 .4 - 2 7 .3 N i s s e n b a u m  
a n d  K a p la n  
1 9 7 2

River 5 2 .6 4 6 .0 4 5 .0 0 4 1 .6 8 .7 1 0 .5 - 2 6 .5 N i s s e n b a u m  
a n d  K a p la n  
1 9 7 2

Soil

Chestnut 6 1 .7 4 3 .7 2 3 .9 2 3 0 .6 2 1 6 .6 1 5 .8 3 .8 K o n o n o v a
1 9 6 6

Chernozem 6 2 .5 5 2 .7 8 3 .3 2 3 1 .3 5 2 2 .5 1 8 .8 3 .5 K o n o n o v a
1 9 6 6

Table 1.11 Elemental Composition of Humic Acids from Soils and Sediments 
(adapted from Rashid, 1985)

Carbon

Comparison of humic acids from well-developed soils with those isolated from 

estuarine sediments shows that C content is generally considerably lower for 

marine humic compounds (Alberts and Filip, 1989). These differences are 

attributed both to the differences in the source organic material and to prevailing 

Eh, pH, O content and ionic strength in the marine environment.

Nitrogen

Higher N contents in marine humic acids are attributed to the source material



Introduction 39

dominantly being derived from phytoplankton which are rich in nitrogen due to 

their high protein content, although lower marine plants may also be rich in N. A 

high proportion of the N in estuarine sediments is derived from amino acids. In 

particular, aromatic amino acids in estuarine humic acids are more abundant than 

in soil derived counterparts, although total amino acid contents need not show 

similar trends (Alberts and Filip, 1989). C/N ratios are in general lower for marine 

than terrigenous humic acids.

Hydrogen

The hydrogen content in humic acids from surface sediments is again influenced 

by the initial source of organic matter. The inherent aliphatic nature and high 

protein content of marine debris under restricted aerobic conditions favour their 

preservation and promote their incorporation into humic structures and this is 

reflected in lower C/H ratios in the marine environment..

Oxygen

The oxygen content of marine humic acids is again relatively (to C) higher than for 

their terrigenous counterparts, reflecting not only the input material but also the 

indigenous conditions which favour to some extent the preservation of humic 

macromolecules with higher proportions of (particularly oxygen containing) 

functional groups.
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% C % H %N % o

Soil Humic Acid9 60.4 3.7 1.9 33.6

Lake Sediment 

Humic Acidb

53.7 5.8 5.4 35.1

Soil Fulvic Acid0 50.9 3.3 0.7 44.8 |

Water Fulvic 

Acidd

46.2 5.9 2.6 45.3

Table 1.12 Elemental Composition of Humic and Fulvic Acids (‘Riffaldi and 
Schnitzer, 1972;b Schnitzer and Gupta, 1964;c Schnitzer and Desjardins, 
1962;d Khan and Schnitzer, 1972; table modified from Schnitzer and Khan, 
1972)

In general, elemental ratios for fulvic acids also provide a similar trend in 

compositional differences relating to the predominant source of the organic 

material but also indicate characteristic differences between humic and fiilvic 

acids.

C/H ratios

C/H ratios for soil humic acids are in general higher than those for fiilvic acids and 

are consistent with the experimentally observed higher aromatic content of humic 

adds (Killops et al, 1993). The C/H ratios for both soil humic and fiilvic acids are 

substantially higher than those of the respective materials isolated from marine 

systems (Rashid, 1985) (Table 1.12).

C/N ratios

It has been observed that the C/N ratios for fiilvic acids are in general higher than 

those for humic acids. The C/N ratios of some marine fiilvic acids are however 

lower than would be expected on the basis only of source material and are similar 

to those of terrigenous humic acids. These interesting observations continue to 

lead to further research to define the composition and origin of this material



Introduction 41

(Alberts and Filip, 1989) and also the chemical environment and mechanism of 

incorporation of N into humic materials.

C/O ratios

Further differences between humic and fiilvic acids are also apparent from their 

respective elemental oxygen contents. Fulvic adds, in general, have higher oxygen 

contents than humic acids from similar origins and this has often been linked with 

the higher solubility of fiilvic adds (Stevenson, 1982; Rashid, 1985) (Table 1.12).

Many recent studies have investigated the transfer of terrigenous derived organic 

matter, including terrigenous humic material, to riverine, estuarine and marine 

systems (Hedges, 1984). It was proposed that inputs of terrigenous organic 

material into aquatic systems have resulted in the incorporation of specific 

aromatic compounds, derived from higher plants, into aquatic humic material 

(Ertel et a l , 1986; Jasper et a l , 1990). However, in terms of elemental 

composition, fiilvic and humic acids isolated from estuarine systems appear to 

resemble more closely marine humic matter than their terrigenous counterparts 

(Table 1.11). Elemental analysis per se provides inconclusive evidence of sources 

of organic material.

1.4.4.2 Chemical and Thermal Degradation

Chemical or thermal degradation of humic substances is often used in laboratory 

studies in an attempt to identify sub-units present in humic structures (Alberts et 

al, 1992). The two mam chemical degradative routes involve the use of oxidising 

or reducing agents although each has associated disadvantages. The Oxidative 

techniques involve cleavage of carbon-carbon bonds but conditions may be so 

severe that the resulting products cannot lead to the identification of the source 

of the material. Alternatively, reductive techniques are milder and more selective 

and so provide less structurally altered sub-units. However, milder reagents often 

lead to lower yields of degradation products for subsequent analysis and therefore,
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results are less representative of the composition of the total humic material 

(Stevenson, 1982).

Degradation techniques have been employed to identify specific compounds 

including amino acids, carbohydrates, acids, alcohols and hydrocarbons (Meyers- 

Schulte and Hedges, 1986; Cowie and Hedges, 1992; Cowie et al., 1992) and are 

used to determine the nature and importance of various precursor units and 

sources.

o h  o h

Fig. 1.7 Alkaline CuO Degradation Products of Lignin

For example, such techniques have been used to identify phenolic subunits which 

are derivatives of specific components of higher plants. Vanillic, syringia, p- 

hydroxy benzoic acid, gueniaryl and syringyl propionate subunits (Figure 1.7) have 

been identified in humic substances and are indicative of a contribution from lignin 

residues. In addition, these structures were not detected in humic substances 

formed in a lignin-free environment (Burges et al., 1963).

A further problem associated with degradative techniques is the possible formation 

of procedural artefacts (Stevenson, 1982). For example, the stability of aromatic 

components also results in their resistance to chemical degradation under 

laboratory conditions and, for example, CuO degradation often leads selectively 

to aromatic products (Tegelaar et al., 1989). All humic substances contain a 

significant proportion of aliphatic subunits (Hatcher et a l, 1981) and the use of
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such degradation techniques in the study of humic composition therefore tends to 

overestimate the aromatic nature of humic substances.

Thermal degradation by pyrolysis techniques yields subunits which can be analysed 

by GC-MS techniques and has resulted in the identification of higher proportions 

of aliphatic structures, with phenolic compounds being of lesser importance 

(Tegelaar et al ,1989). These results are incompatible with the commonly 

accepted polyphenol theories of humic formation (section 1.4.3) and more realistic 

formation theories must include stable aliphatic precursor molecules. Studies 

suggesting that lipids comprise up to 20% of humic substances (Stevenson, 1972) 

are not substantiated by analytical pyrolysis studies which suggest that lipids, 

proteins and polysaccharides are minor components of soil humic material. In 

addition, high proportions of these would not be expected from their low 

resistance to biodegradation and hence short residence time in the soil matrix. It 

has been proposed that insoluble, non-hydrolysable highly aliphatic biopolymers 

which occur in both higher plants and algal cell walls may be responsible for 

observed aliphatic structures in humic substances. This is substantiated by 

pyrolytic degradation studies in combination with 13C NMR (Tegelaar et a l ,

1989). Spectroscopic techniques can be used in such studies to complement the 

information obtained from elemental analyses by further characterising the sources 

of the organic material, for example, in the detection of the presence of 

terrigenous material in humic structures occurring in aquatic systems, but also to 

gain additional understanding of the processes which lead to the formation of 

humic substances (Norwood, 1988). However, thermal degradation by pyrolysis 

is limited to the detection of structures that can be volatilised intact (Hempfling 

and Schulten, 1989). Pyrolysis of carbohydrate units may result in the formation 

of furan derivatives (Wershaw and Bohner, 1969) and again give a misleading 

indication of the composition of the humic fraction.

In conclusion, degradative methods employed in structural studies are likely to 

produce biased quantitative and qualitative results (Frund et a l , 1989; Farmer and 

Pisaniello, 1985).

Non-destructive techniques used in structure determination comprise a range of
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spectroscopic methods including FTIR, UV/visible, fluorescence and solid state 

13C NMR spectroscopy (Baes and Bloom, 1989; Alberts, 1975; Chen, 1977; Frund 

and Ludemann, 1989; Gessa et al., 1983; Hopkins and Shiel, 1991; Ruggiero et 

al., 1977; Ruggiero etal., 1979; Stevenson and Goh, 1971; Stevenson and Goh, 

1972, Schnitzer, 1971). The aim in such studies is to determine the functionality 

of humic macromolecules in order to evaluate interpretations based on destructive 

degradation studies but also to further understanding of the chemical and physical 

properties displayed in the interactions of humic macromolecules with metals and 

organic pollutants.

1.4.4.3 FTIR Spectroscopy

Fourier Transform Infrared Spectroscopy (FTIR) is a structure determination 

technique commonly used in conjunction with other spectroscopic methods in the 

identification of simple organic compounds. It has been used extensively in the 

attempted characterisation of humic and fiilvic acids from diverse origins (eg. 

Schnitzer et al, 1959, Stevenson and Goh, 1972, Guggenberger, 1989) and is one 

of the main spectroscopic techniques used in the present study.

FTIR spectroscopy of simple organic compounds permits the identification of 

different chemical environments of hydrogen and carbon atoms as well as oxygen 

and nitrogen containing functional groups and, together with complementary 

spectroscopic information, leads to partial structural elucidation. FTIR spectra of 

humic and fiilvic acids are characteristically broad and give little definitive 

structural information (Figure 1.8). These complex multicomponent systems 

contain functional groups in numerous chemical environments and overlap of 

absorptions at similar wavenumbers gives rise to broad bands and little fine 

structure. As a result only qualitative and non-specific structural information is 

obtained from FTIR spectroscopy alone (Ibarra, 1989; Lynch and Smith-Palmer, 

1992).
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Figure 1.8 Typical FU R Spectra for Soil Humic and Fulvic Acids (Stevenson 

and Goh, 1971).

It has been suggested that folvic acids contain less aliphatic C-H groups and more 

oxygen containing groups than humic acids and this is confirmed by elemental 

analyses (Table 1.12).

The spectra are, however, not substantially different for humic and fulvic 

components from diverse origins. It has been suggested that this indicates the 

presence of structurally similar chemical units (Schnitzer and Khan, 1972) but it 

is probable that the complexity of the spectra masks the fine structure and further 

confirms that FTIR spectroscopy alone is insufficient to characterise humic 

materials (Malcolm and MacCarthy, 1991; MacCarthy and Rice, 1991). 

Characterisation of humic and fulvic acids using FTIR spectroscopy has also 

involved chemical treatment of the materials in order to form specific derivatives 

(Brooks et al, 1960; Schnitzer and Skinner, 1965; Stevenson and Goh, 1972). 

Methylation of the oxygen containing functional groups results in changes in the



Introduction 46

FTIR spectra of the material and selective methylation has been employed in order 

to identify the reactivity and proportions of specific oxygen containing groups in 

humic and fulvic acids (Brooks et al., 1960; Stevenson and Goh, 1972; Kim,

1990). Similar studies investigated the effect of chemical modifications (eg. 

methylation or acetylation) on metal retention capacity by observing changes in 

the strength of relevant absorptions in FTIR spectra of the humic material (Barton 

and Schnitzer, 1963).

1.4.4.4 UV/Visible Spectroscopy

Humic and fulvic acids also contain many chromophores which absorb in the 

UV/visible region but UV/visible spectra of humics are broad and featureless with 

maximum absorption occurring at 260 nm and absorption intensity decreasing 

monotonically as wavelength increases (Kim, 1990) (Figure 1.9). However, a 

slight shoulder in the region 260-300 nm is often observed although the overlap 

of many different absorptions allows little structural interpretation (Stevenson, 

1982, Aiken et a l , 1985). It has been proposed that some structural information 

can be obtained from the slope of the absorption curves, measured by the ratio of 

the absorbance at 465 and 665 nm, termed the E4/E6 ratio, which is related to the 

degree of the condensation of the material (Chen, 1977). Low ratios have been 

related to a higher degree of condensation and aromaticity and, more recently, 

higher molecular weight of the material. (Senesi et a l , 1989) Humic acids exhibit 

lower E4/E6 ratios than corresponding fulvic acids and this has been interpreted as 

confirmation of the greater molecular weight of humic acids and the presence of 

aromatic core structures (Table 1.13). An inverse relationship between the value 

of this ratio and the age of the humic material has also been proposed, suggesting 

that humic acids are in fact older than fuKdc acids (Campbell, 1958 in Stevenson, 

1982). However, the increasingly contradictory interpretations of changes in this 

ratio restrict its usefulness in definitive structural characterisation (Kim, 1990).
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Figure 1.9 UV/visible Spectra of Humic and Fulvic Acids

Acids E4/E6

Humic Acids

Serozem 4.0-4.5

Chernozem 3.0-3.5 !

Chestnut 3.8-4.0

Fulvic Acids 6 .0-8.5

Table 1.13 E4/E6 Ratios of Humic and Fulvic Acids (from Schnitzer and 

Khan, 1972)
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1.4.4.5 Fluorescence Spectroscopy

The presence of UV/visible active chromophores has prompted the use of 

fluorescence spectroscopy in the study of humic substances. The exact nature of 

the fluorescing groups is, however, far from being clarified and the broad nature 

of the absorptions is again attributed to the sum of the contribution of different 

subunits, particularly highly substituted aromatic structures or extended 

conjugated unsaturated systems capable of a high degree of resonance (Senesi et 

a l , 1989). Fluorescence spectroscopy is claimed to be a very sensitive technique 

for the study of certain humic characteristics (Provenzano et al., 1989) and 

variations in the composition of humic material are apparent in changes in 

positions and intensities of the various peaks (Provenzano et al., 1989).

In addition, fluorescence studies have been used to study metal complexation 

where, for example, Eu3+ and Am3+ have been added to give metal-humic and 

metal-fiilvic complexes at concentrations sufficient to exceed the detection limits 

of this technique (Bertha and Choppin, 1978; Kim, 1991; Buckau et a l , 1991; 

Maes et al, 1991). Buckau et al (1991) suggest that humic and fulvic acid interact 

in a mechanistically identical manner with these +3 ions and therefore conclude 

that a single interaction occurs between +3 ions and humic materials. This is 

important in the context of modelling the behaviour of actinide-humic complexes 

and will be discussed further in section 1.5.

1.4.4.6 NMR Spectroscopy

An example of an NMR spectrum of humic acid is illustrated in Figure 1.10. The 

resolution of 13C NMR spectra of heterogeneous mixtures such as humic 

substances is insufficient for direct identification of individual molecular subunits 

(Hemfling and Schulten, 1989). Its application is however valuable, in that it 

provides a chemical overview of the nature of the humic material. Quantitative 

results can be obtained by the application of advanced NMR techniques. In
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particular, CPMAS 13C NMR spectroscopic studies can provide quantification of 

aliphatic (Kogel-Knaber, 1989) and aromatic components of humic extracts 

(Frund, 1989). Non-degradative analysis by LH and 13C NMR spectroscopy 

certainly gives a more realistic estimate of the degree of aromaticity of humic 

substances than destructive chemical techniques. Comparative studies of humic 

substances from diverse origins show that the aromatic content of soil humic 

substances can be as high as 50% whereas that of peat humic substances is around 

15% and that for marine humic substances less than 15% (Hatcher et al., 1980).

100

5 , ppm

200

Figure 1.10 13C NMR Spectra of Humic Acid (Rao, 1994)

1.4.4.7 Gel Chromatography

Gel Filtration Chromatography is a size separation technique commonly used in 

areas of organic chemistry including protein purification (Barth and Boyes, 1990). 

Sephadex gels, produced by Pharmacia, have frequently been applied in the study 

of humic substances in attempts to determine their average molecular weight. The 

approximate molecular weight distribution of a humic acid was determined by 

sequential application of the excluded humic material to a range of gels of 

increasing pore size to produce a range of fractions containing humic acid 

molecules of more homogeneous molecular weight. The determination of absolute 

molecular weight using Sephadex gels was attempted by Canuron et al. (1958)
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using protein or dextran based calibrations. However, these molecules have 

definitive molecular properties and shapes and Stevenson (1982) suggests that 

they are poor analogues for humic or fulvic acids.

Sephadex gels have been used in the present study to provide fractions for further 

analysis. A discussion of the chemical and physical properties of these gels can be 

found in "Gel Filtration" (Pharmacia, 1993). Gel chromatographic techniques have 

been applied with varying success to fractionate humic and fulvic acids, in 

principle on the basis of molecular size (Davis and Gloor, 1981; Posner, 1963, 

Schnitzer and Skinner, 1968; Swift and Posner, 1971; Stevenson, 1982), and 

spectroscopic studies have been used to provide information on functionality of 

macromolecules of different size within the total humic fraction (Posner, 1963, 

Schnitzer and Skinner, 1968). Gel chromatography using porous polysaccharide 

gels has been applied to fractionate humic materials to obtain a reduction in the 

polydispersity of the sample by judicious collection of the effluent (Swift and 

Posner, 1971). However, two bands observed during gel filtration were both 

found to be polydisperse (Posner, 1963). Other fractionation techniques eg. 

ultracentrifugation and ultrafiltration also purport to achieve separation on the 

basis of molecular size and all three techniques aim to provide a measure of the 

size distribution within the organic fraction (MacFarlane, 1978; Smith, 1991). 

However, molecular size determination of humic materials is subject to subtle 

interferences in each method and reported molecular weights may or may not 

reflect the true size of the macromolecules (Chin and Gschwend, 1991). Reported 

molecular weights, using these and other techniques, range from 5,000 to 

1,500,000 for humic acids of similar origins (Stevenson, 1982) (Table 1.14). 

Contrarily, the application of HPLC to the fractionation of humic materials is 

reported to separate humics only on the basis of hydrophobic or hydrophilic 

character (Saleh et a l, 1989; Salzer, pers. comm). It has been shown that the 

most hydrophilic humic material is first eluted in a sharp band followed by a broad 

ill-defined band conatining more highly hydrophobic humic material. The 

fractionation method, per se, does not result in the determination of molecular size 

of the hydrophilic and hydrophobic components.
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Method Molecular Weight

Gel Fdtration (NaOH) 12,800-412,000

Ultracentrifugation 53,000-100,000

Small-angle X-ray Diffraction 200 ,000- 1,000,000

Light Scattering 65,000-66,000

Electron Microscopy <20,000

Table 1.14 Molecular Weights of Humic Acids Obtained Using Different 
Methods (from Stevenson 1982)

In certain gel chromatographic studies, UV/visible absorbance of fractions at the 

absorbance maximum was used to monitor the separation process occurring on the 

gel column and to estimate sample concentration in each fraction (Livens et al., 

1991; MacFarlane, 1978). Interpretation of UV/visible spectra is, as described 

above, impeded by the diversity of functional groups in different chemical 

environments present in humic fractions. However, it does allow the measurement 

of some spectroscopic differences between fractions of the humic material 

following separation on the gel column. Differences between fractions have also 

been observed using other spectroscopic techniques (Badly and Margulis, 1968; 

Schnitzer and Skinner, 1968; Guggenberger, 1989). Spectroscopic investigations 

of the gel fractionation of varying concentrations of humic substances using water 

as the eluent showed that the elution pattern varied with the concentration of the 

humic material (Swift and Posner, 1971). Charge interactions are maximised at 

low ionic strength so that increasing concentrations of humic substances resulted 

in greater exclusion of anionic species from the gel which also carries a negative 

charge (Pharmacia, 1993). Charge effects are found to be minimised by altering 

the composition of the eluent and can be effectively avoided by the addition of 

high ionic strength electrolyte to the eluent. Alkaline solutions, including sodium 

hydroxide (Dubin and Fil'kov, 1968) and sodium borate (Ferrari and DelTAgnola,
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1963), are regarded as being most effective eluents of humic substances, although 

there are potential problems due to the oxidation of the humic material 

(Stevenson, 1982; Schnitzer and Khan, 1972). Adsorption of humic material by 

the gel matrix has also been observed (Dubach et a l , 1964; DelTAgnola et a l, 

1964; Posner, 1963) although reports vary regarding the proportions of adsorbed 

material Many gel chromatographic studies have been concerned with adsorption 

effects and their possible suppression with reported values as a high as 50% loss 

of the humic material (Rashid and King, 1969). Reduction of this effect is not 

achieved by the addition of electrolyte to the eluent and often the reverse is 

observed. Attempts to define the nature of this interaction have involved the use 

of smaller, well-characterised organic molecules and reports suggest strong 

interactions of aromatic, heterocyclic and phenolic compounds with Sephadex gels 

(Gelotte, 1960; Demetriou et al., 1966; Brook and Housely, 1969; Somers, 1966). 

These arise from interactions with the ether bonds in crosslinking groups in the 

gel matrix and were observed by Determann and Walter (1968) who found that 

as the degree of crosslinking increased, so did the affinity of phenol for the gel. 

Similar effects were observed for higher molecular weight polyphenolic 

compounds (Somers, 1966 in Hayes, 1989). Hydrophobic molecules are also likely 

to be retarded by the gel matrix which offers a more favourable, lower energy 

environment than the aqueous phase (Eaker and Porath, 1967). Humic 

macromolecules contain varying amounts of hydrophobic and hydrophilic subunits 

and aliphatic and aromatic units (Tipping and Woof, 1991; Wershaw, 1989; 

Hedges, 1988), so fractionation is likely to be influenced strongly by the degree 

of hydrophobicity and aromaticity of individual macromolecules. Overall, 

fractionation using Sephadex gel is likely to be partly a chemical separation 

(Wershaw, 1989). Therefore, discrete elution peaks observed visually and 

spectroscopically are unlikely to reflect actual molecular weight distributions 

within, for example, humic acid (Bailly and Margulis, 1968; Schnitzer and Skinner, 

1968). For example, Rashid and King (1969) compared separation of marine and 

soil humic materials on a gel column with water as the eluent and suggested that 

the average molecular weight of marine humic acid was greater than that of soil
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humic acid. The low ionic strength of the eluent, however, suggests that 

interactions with the gel should be high and any differences between the marine 

and soil humic material would therefore be more likely to be related to 

compositional differences rather than purely size distribution. This is proposed on 

the basis of retardation of highly aromatic terrigenous material and potentially the 

exclusion of more highly anionic, aliphatic marine material from the knowledge of 

the differences in the chemical composition of these humic materials. Caution is 

required in interpretation so that artefacts are detected and eliminated in the 

determination and comparison of molecular weights of humic materials (Chin and 

Gschwend, 1991). Systems in which gel-solute interactions occur should, 

obviously, not be used for molecular weight determinations. Swift and Posner 

(1971) reported that, under conditions where adsorption effects were eliminated 

and production of artefact peaks (eg. from the use of an eluent of differing ionic 

strength from the sample medium) were avoided, the measurements of molecular 

weight were comparable with those obtained by other methods. However, the 

elimination of adsorption effects is rarely achieved for humic materials extracted 

from soils and sediments and so discrepancies in reported values of average 

molecular weight are found in the literature (Stevenson, 1982)(Table 1.14). Swift 

and Posner (1971) also suggested that the molecular weight distribution observed 

under these conditions was of the type expected from a continuous distribution of 

individual components grouped around a single mean value. However, this would 

appear to be contradictory to results presented by Bulman (1992) where elution 

patterns suggest a bimodal distribution of humic acid macromolecules (Figure

1.1 la). Similar patterns were obtained for fulvic and humic acids by Livens et al 

(1989) (Figure 1.11b).
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Figure 1.11a. Elution Patterns Obtained by the Gel Chromatographic 

Fractionation of a Humic Material (Bulman, 1991)
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Only a small number of studies have involved the fractionation of bulk humic 

substances (ie. where humic and fulvic acids have not been separated). The results 

of such studies (Figure 1.12) are notably different from those presented above 

(Figure 1.11a and b). Most significantly, the strongest UV absorbance is observed 

for later fractions and the absorbance for early fractions is markedly smaller than 

those obtained in the above studies of humic and fulvic acids. Importantly, the 

metal distribution between fractions of humic substances is dependent on the 

metal. In other words, different metals interact with different components of the 

humic material which additionally do not necessarily produce the greatest UV 

absorbance. This is again in strong contrast to the results presented by Livens 

(1989) and Bulman (1991).

o-

 Ag •
  Co ‘ ‘ r  7

  Organic malter

1 0

0 5

-3
0 25

L_
100 150 20050

E lu t io n  V o lu m e  m l

1.12 Elution Patterns Obtained by the Gel Chromatographic Fractionation 

of Bulk Humic Substances (Sequi et aL, 1971; Guidi et aL, 1972)
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1.4.4.8 Gel chromatography and FTIR Spectroscopy

The fractionation of humic and fulvic acids following separation using various 

gels, including Sephadex and Sephacryl, has been monitored by FTIR 

spectroscopy and produces a range of fractions with varying composition 

(Schnitzer and Skinner, 1968; Guggenberger, 1989). Schnitzer and Skinner 

(1968) showed that fractions of fulvic acid which eluted first from the gel column 

had stronger absorption bands in the region assigned to carboxyl groups compared 

with later fractions. They also contended, on the basis of these spectra, that later 

fractions contained aromatic functional groups although from the broad nature of 

the spectra and lack of strong absorptions in the fingerprint region (<1000cm'1), 

there is little evidence to sustain this conclusion. The spectra of later fractions do, 

however, differ from those of earlier fractions.

Guggenberger (1989) used Sephacryl gel to fractionate water-soluble organic 

matter and characterised the separated organic fractions using both FTIR and 

NMR techniques. This less chemically treated organic matter gave rise to spectra 

with characterisable differences. Identifiable low molecular weight components 

consisted predominantly of carbohydrates and amino acids whereas the larger size 

fractions contained higher proportions of humic material. The use of water as the 

eluent can enhance the separation of these components by allowing charge effects 

to dominate in the separation procedure and may therefore be an advantage in this 

context. A number of important conclusions were drawn from this study which 

included:

i) the observation of greater fine structure indicated a reduction in heterogeneity 

of the material in fractions

ii) by implication, fractions contained molecules with certain common 

spectroscopic features

iii) certain spectroscopic features which were weak or absent in the spectra of the 

bulk material, were observed more clearly in the fractions in which they 

predominated.
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1.4.4.9 HPLC Studies of Humic and Fulvic Acids

Fractionation of humic materials using reversed phase HPLC has been reported 

(Smith, 1991) to give results consistent with separation based on an ion 

repulsion/size exclusion mechanism It was, however, suggested that this 

technique was unsuitable for humic separations on the basis of poor inter-run 

reproducibility. An investigation of reverse phase HPLC methods for the 

fractionation of fulvic acid also resulted in the elution of two hydrophilic 

components before the exclusion volume as a result of poor interaction with the 

stationary phase. These variable interactions with the separation matrix also 

resulted in poor inter-run reproducibility (Smith, 1991). Smith noted that 

interactions with the separation media also occur for ion suppression, thin layer 

and ion pair chromatographic fractionation limiting the usefulness of these 

techniques for highly terrigenous materials due to their inherently stronger 

interactions with gel structures. HPLC studies, therefore, predominantly involve 

only aquatic humic materials with their higher aliphatic content (Rashid, 1985; 

Schnitzer and Khan, 1972; Stevenson, 1982).

Salzer (pers. comm, 1994) contends that HPLC separation of humic materials 

results in the appearance of an exclusion peak containing large, hydrophilic humic 

components, which would be consistent with the proposed charge repulsion 

separation mechanism. The combination of HPLC and FTIR techniques has been 

proposed as a useful method of partial characterisation of these complex organic 

mixtures (Salzer, 1994 pers. comm). In HPLC separations, characteristic polar 

groups can be identified in the eluting fractions of humic substances (Figure 1.13). 

Results suggest that the leading edge of the exclusion peak is dominated by 

stronger hydrophilic components such as polysaccharides and proteins, with the 

more hydrophobic structures of the humic adds being eluted subsequently (Salzer,

1994). These results were consistent with the findings of Smith (1991), which 

showed that a significant proportion of humic acid was excluded from the gel not 

on the basis of size from which it was concluded that, although this could have
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been due to aggregation prior to chromatographic separation, it was more 

probably due to hydrophobic/ionic repulsion effects.
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Figure 1.13 Spectroscopic Differences between Fractions of Humic Acid 

Obtained by HPLC Fractionation (Salzer, 1994)

The above studies show that gel chromatography (Guggenberger, 1989) or HPLC 

(Salzer, 1994), combined with FTIR spectroscopy can provide information on 

functionality of fractions of humic materials. These studies give indications of 

compositional differences between humic materials from terrigenous and aquatic 

system and allow tentative identification of differences in chemical properties of 

these complex biomolecules (MacCarthy and Suffet, 1991). The chemical 

structure of humic materials is, however, still a matter of controversy as it is 

claimed that the procedures used for extraction could lead to significant chemical 

alteration of the organic compounds (Frund et al., 1989).
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1.4.4.10 Gel Chromatographic Fractionation and Amino Acid Analyses

Soil fulvic acids have been fractionated on G25 Sephadex gels and the fractions 

analysed for their amino acid content. Results of such studies showed that the 

distribution of amino acids was fairly uniform Further studies showed that 

fractionation on a polyamide column prior to Sephadex G25 gel fractionation 

resulted in the observation of pronounced differences between fractions in terms 

of their amino acid content (Sequi et a l , 1975). The heterogeneity of humic 

substances which makes their analyses difficult can therefore be sufficiently 

reduced by the application of a set of fractionation procedures to obtain useful 

information regarding the structure of components of these materials.

1.4.5 Extraction of Humic Substances from Soils and Sediments

Ideally, extraction of humic substances from any environmental matrix should 

effect the complete removal of a pure, unaltered humic material (Stevenson, 1982; 

Aiken et a l, 1988). However, Williams et al (1993) expressed concern that 

techniques used to isolate natural organic complexants may be destructive and 

may alter the form and the nature of organic compounds which exist under 

environmental conditions. Characterisation of the extracted material would then 

be of limited value in identifying possible interactions with radionuclides or other 

trace elements under natural conditions. Many authors (Williams et a l, 1993; 

Hayes, 1991) conclude that methods have yet to be developed which minimise the 

alteration of the natural system

1.4.5.1 Alkaline Extraction of Humic Substances

Humic substances are most effectively separated from the bulk soil matrix using 

aqueous alkaline solvents (Parsons, 1988; Hayes, 1991). The most effective 

available solvent has been shown to be aqueous sodium hydroxide which isolates
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in excess of two thirds of organic material from soils and sediments (Stevenson, 

1982). Claims by Schnitzer (1958) that aqueous solutions of sodium hydroxide 

could extract approximately 96% of organic matter from certain soils have not 

been substantiated by other workers and complete extraction of the organic 

fractions from soils and sediments, in general, has not yet been achieved 

(Stevenson, 1982). However, repeated extraction of a sample with alkaline 

solutions has been shown to result in the maximum recovery of humic material 

(Stevenson, 1982).

Concern regarding the oxidation of the organic fraction under alkaline conditions 

was expressed by Dubach et al. (1964) and Swift and Posner (1972) and results 

suggest that this effect is greatest for high ionic strength, high pH solvents (Table 

1.14).

Reagent pH 0 2 Uptake (mm3/0.2g)

0.5M NaOH 13 896

0.5MNa2CO3 10.5 56

0.1M Na4P20 7 9 31

0.2M Na-citrate 7 39 |

Table 1.15 Effect of Increasing pH on Oxygen Uptake by Humic Acid : 
Reaction Time 7 hours (Bremner, 1950 in Stevenson, 1982)

Stevenson (1982) suggests that uptake of oxygen increases with increasing pH and 

clearly an order of magnitude reduction in oxygen uptake can be achieved by 

restricting the pH of the extractant to values <11 (Gascho and Stevenson, 1968; 

Bremner, 1950) (Table 1.14).

Many studies have reported the consumption of hydroxide during prolonged 

periods of extraction in sodium hydroxide (Swift and Posner, 1972; Bremner, 

1950; Breger, 1974; Stevenson, 1982). Initially, it was proposed that this effect 

could be eradicated by extracting under nitrogen in the absence of oxygen and
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carbon dioxide (Swift and Posner, 1972; Stevenson, 1982) but similar effects have 

since been observed under these more stringent conditions. Davis and Mott (in 

Stevenson, 1982) proposed that the stripping and subsequent degradation of 

weakly associated polysaccharide units could account for the loss of hydroxide, 

while Bowles et al suggested that hydrolysis of ester groups occurred at high pH 

values. From the results of recent studies, Antweiler (1991) contends that ester 

hydrolysis is the predominant mechanism leading to the consumption of hydroxide 

ions and a consequent decrease in pH. An increase in ionic strength of the 

extractant from 0.1M NaOH to 0.5M NaOH has also been linked to the 

promotion of the hydrolysis of the humic fraction as a result of the isolation of 

greater proportions of fulvic relative to humic acid. Conversely, an increase in 

temperature of 0.5M NaOH solution from 20° to 60°C resulted in the 

condensation of humic and fulvic add molecules and the observation of molecular 

weights of the residue in excess of 1,300,000.

Powell and Town (1992) proposed that a minimum pH of 8 was required to 

isolate a representative humic fraction and it is therefore most probable that a 

representative and chemically less altered humic fraction will be obtained where 

the pH of the extractant lies in the range 8 to 11.

Tipping and Ohnstad (1984) showed that measurable alteration of the humic 

fraction in solutions of sodium hydroxide occurred over a time period of several 

days and reinforced the viewpoint that humic materials should not be exposed to 

the extremes of pH for prolonged periods.

Additional undesirable effects of sodium hydroxide extraction include the 

dissolution of humic material together with mineral matter (Greenland, 1971). It 

has been indicated by some workers that, although 0.1M NaOH extracts more 

organic material than 0.5M solutions, considerably higher ash contents of the 

resultant humic material are associated with extraction using the lower molarity 

alkaline solutions. However, other workers have been unable to confirm these 

findings. It is however clear that alkaline solutions may mobilise a small proportion 

of fine clay particulates which may or may not have been associated with humic 

materials prior to extraction and this may be quantified by determining the ash
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content of the humic extract. An alternative extractant, tetra sodium 

pyrophosphate, has been used where solutions were adjusted to pH 7, 8 or 9. It 

was observed that the amount of organic matter associated with mineral structures 

increased with increasing pH of the solution.

Traditionally, any mineral component is removed during the purification 

procedures described in section 1.4.5.3.

1.4.5.2 Separation of Components of Humic Substances

Classical fractionation methodologies for humic materials, based on the differing 

solubilities of their constituent components under varying conditions of pH and 

electrolyte concentration, have been used in attempts to isolate more homologous 

fractions ofhumic substances (Schnitzer and Skinner, 1968; Kononova, 1966). In 

the 1830s, Berzelius denoted the fraction that was soluble in alkali as humic acids. 

Those fractions that were also soluble in water were termed crenic and apocrenic 

acids whilst the inert residue was known as humin. He also determined that crenic 

and apocrenic acids had the ability to interact with di- and tri-valent metal ions to 

form salts. In 1840, Mulder modified this classification on the basis of colour to 

give further subdivisions as illustrated in Table 1.16.

Chemical Classification Fraction

insoluble in alkali humin
nlmin

soluble in alkali humic acid - black
ulmic acid - brown

soluble in water crenic and apocrenic acids

Table 1.16 : Classification of Humic Fractions

At a later stage, Oden (1910-1920) described crenic and apocrenic acids 

collectively as fulvic acids.

This brief history highlights the use of simple chemical fractionation to
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characterise soil humic materials and modifications of these methods have 

continued to be used to the present day. By definition, humic substances 

collectively comprise the proportion of organic material that is soluble in alkali and 

are conventionally subdivided on the basis of solubility into three fractions: fulvic 

acids are soluble in both alkali and acid, humic acids are soluble only in alkali and 

the organic residue, which is insoluble in both alkali and acid, is known as humin. 

Further fractionation, resulting from partial precipitation of the humic acid 

fraction, is effected by the addition of electrolyte giving soluble "brown" humic 

acids and insoluble "grey" humic acids. Hymatomelanic acid is defined by some 

workers as the fraction ofhumic acid soluble in alcohol, although Stevenson and 

Butler (1969) contend that it is an artefact resulting from the chemical 

fractionation process. In simplest terms, classical fractionation on the basis of 

acid/alkali solubility results in the separation of operationally defined humic and 

fulvic acids which are less heterogeneous than the bulk humic material, and 

Schnitzer and Khan (1972) contend that humic and fulvic acids are more suitable 

starting materials for further characterisation than the unfractionated bulk humic 

substances.

Alternatively, XAD resins have been used in the isolation (and purification) of 

humic substances in natural waters. The organic material sorbed onto the column 

is eluted using dilute acid solutions (Malcolm and MacCarthy, 1991). Similarly, 

diethyl amino ethyl (DEAE) cellulose has been used to extract humic material 

from groundwaters (Smith et al, 1991; Stuart et al, 1989). These procedures also 

involve the separation ofhumic and fulvic acids by the elution of fulvic acid in 

acidic solutions and the subsequent elution ofhumic acid in alkaline solution.

1.4.5.3 Purification of Humic Substances

It has been suggested that the extraction of humic substances under aqueous 

alkaline conditions may also involve the extraction of small amounts of fine clay 

and loosely bound polysaccharide impurities (Stevenson, 1982) (Section 1.4.3.1). 

Ash contents of 10 to >30% are commonly observed for humic acids, whilst
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values of 2-10% are observed for fulvic acids, leading to potential 

misinterpretation of the importance of the organic material in metal complexation. 

To eradicate this uncertainty, traditional methodology often involves the 

purification of the humic and fulvic components using chemical reagents, including 

dilute HF, 0.1M NaF and 6M HCL The ash contents ofhumic and fulvic acids are 

ideally reduced to <1% in each case by the purification procedures. However, this 

is often accompanied by significant loss of the humic and fulvic acid and 

potentially the chemical alteration of the original humic material.

HC1-HF mixtures used by Khan (1971) are considered to be less harmful than HF 

solutions which contain no hydrochloric add (Dormaar et a l , 1970 ; Lowe, 1969) 

but it is well known that chemical modification can occur in the presence of dilute 

HF solutions during the removal of mineral matter from humic acids (Stevenson, 

1982). Likewise, hydrolysis using 6M HC1 to remove loosely bound 

polysaccharides may result in significant alteration of fulvic acids. FTIR studies 

showed that hydrolysis of fulvic acids using 6M HC1, resulted in the formation of 

a dark, acid-insoluble residue which displayed spectroscopic characteristics similar 

to humic adds (Stevenson and Goh, 1971). Goh and Reid (1975) also showed that 

prolonged standing of extracts in acid led to an acid-induced polymerisation and 

increased the amount of organic matter in the higher molecular weight ranges. The 

inference that acidic conditions lead to the alteration of the humic material is in 

agreement with other reports (Farmer and Morrison, 1960; Kosaka et a l, 1960). 

Other studies (eg. Wershaw and Pinckney, 1973) of the physical and chemical 

properties ofhumic acids involving the aggregation of humic acid molecules as a 

function of pH have shown that a fraction ofhumic acid is irreversibly aggregated 

at pH<3.5. It must be concluded from this result that the molecular weight 

distribution ofhumic acid macromolecules is irreversibly altered at low pH values. 

Contradictory conclusions, however, were drawn by Mehta et a l (1983), who 

suggested that the average molecular weight is unaltered after drying at 100°C and 

storage in 1M HC1 at room temperature for one month. It is well-known, 

however, that the effects of exposure to temperatures greater than 40 °C are 

detrimental in studies ofhumic substances since they irreversibly alter the structure
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of the material and therefore the effect of storing in acid for any period of time 

may be expected to have little further effect. The effects of temperature on humic 

structure have been observed spectroscopically following the heating of KBr discs 

containing humic material (Stevenson and Goh, 1974).

Recent reviews have concluded that different purification processes lead to humic 

materials with different compositions and properties (eg. Hayes, 1991) and this 

observation has resulted in attempts to implement standardised methodology for 

extraction of'pure' humic materials and commonplace use of a small number of 

reference humic materials. The International Humic Substance Society (IHSS) has 

produced a small number of highly purified reference humic substances which have 

been used in the study ofhumic acids by a number of workers (eg. Kim, 1990; 

Antweiler, 1991). In addition the commercially available humic acid from Aldrich 

Chemical Company is used in many studies for comparison with humic materials 

extracted from soils from chosen study locations (eg. Rao, 1994).

Several workers (Antweiler, 1991; Williams et a l , 1993; Aiken et a l , 1985) have 

concluded that the use of less destructive isolation techniques is required, 

particularly where there is a need to extrapolate from laboratory measurements to 

environmental behaviour. Most recent studies of humic substances, however, 

have involved the use of conventional alkali-acid solubility separation and 

purification methodology in order to achieve the extraction of a pure humic 

substance and to allow direct comparison of subsequent measurements. The value 

of these studies and those involving the use of reference humic acids (IHSS and 

Aldrich humic acids) is, however, questionable in the fight of the increasing 

evidence for the chemical alteration of humic and fulvic materials during their 

extraction.

1.4.5.5 Alternative Non-Aqueous Extraction Techniques

In a review of current extraction procedures, Hayes (1991) highlighted the need 

for a suitable non-alkaline solvent system as efficient as aqueous alkali in the 

dissolution of a representative humic fraction.
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A number of new extraction techniques have been proposed by various authors 

(Szabo et a l, 1991; Bulman, 1992) involving the use of non-aqueous extraction 

media. In comparative studies of different available methodologies it has been 

suggested that traditional sodium hydroxide extractions are significantly less 

effective in the extraction of soil humic substances and associated metals than non- 

aqueous extractants including silylating agents (trimethylchlorosilane and 

triethylchlorosilane) in the presence of dimethylformamide. Silylation of 

predominant functional groups is proposed as a mechanism for altering the 

solubility of the humic macromolecules without modifying their structure or 

interaction with metal species. These experiments involved the addition of 239Pu 

to environmental samples and the alternative methodology resulted in the Soxhlet 

extraction into dimethyl formamide (DMF) of approximately 70% of 239Pu in 

association with humic material from a saltmarsh soil following a reaction with 

triethylchlorosilane (TECS) (Szabo et a l, 1991). In comparison with alkaline 

extraction of the humic fraction, where 0.1M NaOH was added to the sediment 

and the stirred suspension heated to 60 °C, indicated that only 10% of the added 

239Pu was co-extracted. However, the effects of silylating agents and other non- 

aqueous extractants on the overall chemical composition of the humic fraction are 

unknown and perhaps a detailed study of the elemental and functional group 

composition which, to date, has not been published by the authors, would provide 

an improved measure of the effectiveness and validity of these methods.

1.4.6 Colloidal Behaviour of Humic Substances

During the period 1910-1920 two workers, Oden and Shmuck (in Kononova, 

1966), independently showed that humic substances exhibited characteristics that 

were typical of colloidal particles. In particular, they observed that the coagulation 

of humic materials by different electrolytes occurred according to colloidal 

principles. Qng and Bisque (1968) suggested that humic substances may be 

considered either as true solutions of macro-ions or as negatively charged 

hydrophilic colloids. The effect of variation of salt concentration on the alteration
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of the conformation and, where sufficiently high, the coagulation of humic 

molecules has also been studied by Qng and Bisque (1968) who explained this 

colloidal behaviour in terms of the Fuoss effect. The presence of salt ions can 

reduce the intra and inter molecular distances (by masking the charge and hence 

reducing the repulsive forces between polyelectrolytes such as humic substances) 

and results in the expulsion of hydrating water molecules, hence the alteration of 

conformational shape and ultimately coagulation. Alteration of conformation and 

coagulation ofhumic materials in a similar manner is also achieved by lowering the 

pH of the solution. Ultimately, the present view of the colloidal nature ofhumic 

substances is that their size and shape in solution is determined by pH and the 

presence of neutral salts (Stevenson, 1982).

In further support of the colloidal properties attributed to humic materials, Ong 

and Bisque noted that the order of coagulating ability of metal ions was: M3+ > 

M2+ > M+ in agreement with the Schultz-Hardy rule. Additional observations 

relating to the mean critical concentrations of metal ions of different valencies 

followed the predicted behavioural trends (inverse relationship to the sixth power 

of the valency).

The treatment of the interactions of metals with humic substances purely in terms 

of colloidal principles and therefore assuming that the metals are held in the diffuse 

double layer (ie. 'charge-only1 model described in Tipping et al., 1988) is 

insufficient to characterise completely the associations of metals with these 

complex biomolecules and this has led to much further study of the properties and 

complexation characteristics ofhumic substances.

The following sections describe the structural properties of humic substances 

which account for their observed behaviour in solution and in particular attempt 

to rationalise the available information relating to their interactions with metals.

1.4.6.1 Functionality of Humic Substances

Due to their structural heterogeneity, the behaviour ofhumic macromolecules in 

solution and in their interactions with metal species has been rationalised on the
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basis of simplified model structures with the consideration only of predominant 

functional groups.

Polar and ionisable functional groups in humic macromolecules are responsible for 

their solubility in aqueous solutions. Oxygen is the major heteroatom present, 

predominantly as carboxyl, phenolic and alcoholic hydroxyl, ketonic and quinoid 

C=0 (Rashid, 1971) and methoxyl groups. For example, experimental 

determinations of the proportions of functional groups for different humic 

materials have been compiled and are presented in Table 1.17 below.

Material Carboxyl Phenolic
Hydroxyl

Alcoholic
Hydroxyl

Carbonyl Methoxy Other

Humic
Acid

34-50% 7-14% 1-8% 15-30% 2-4% 5-29%

Fulvic
Acid

57-75% 1-10% 9-20% 11-17% 3-5% 0-10%

Table 1.17 Distribution of Oxygen-containing Functional Groups in Humic 
Materials (Stevenson, 1982)

The relative abundance of these functional groups contributes to the solubility, 

reactivity and overall chemical character of the molecule. The distribution of 

functional groups along the backbone of the humic macromolecule determines the 

position of areas of polar and non-polar nature, and hydrophilic or hydrophobic 

character. Due to the three dimensional flexibility of the backbone, the molecule 

is able to coil and the polarity/charge associated with the functional groups gives 

rise to numerous weak interactions and sometimes chemical bonds between 

strands of the same molecule.

1.4.6.2 Effects of Charge on Metal Interactions with Humic Substances at 

the Interface between Solid and Aqueous Phases

Solid phase surfaces in soil and sediment systems are often chemically highly 

reactive (Healy, 1980). Different surfaces may be positively or negatively charged
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or neutral and any charged surfaces attract oppositely charged counterions from 

solution to the interface. The relative proportions of ions attracted depends on the 

degree of acidity or alkalinity of the soil, on mineralogical composition and on the 

content of organic matter.

Many of the hydrophilic sites on humic macromolecules are dissociable acidic or 

basic sites and therefore possess a pH dependent charge which is often highly 

negative under environmental conditions (Tipping, 1988). Of the functional groups 

that are present in solid phase humic macromolecules, many will reside on the 

interface between the solid and aqueous phases (ie. partial dissolution of polar 

entities) and, in this manner, account for the reactivity of insoluble organic matter. 

In many respects, this behaviour is similar to that of macromolecules which make 

up cell walls in biological tissues which also bear a pH dependent negative charge 

due to the prevalence of acidic functional groups on their surfaces (Tipping, 1988; 

Tipping et al 1988a; Wershaw, 1989).

1.4.6.3 Effects of Functionality, Ligand Concentration and pH on Metal 

Interactions with Humic Substances in Natural Waters

Hydration in aqueous solution is achieved by the dissociation of ionic groups and 

the formation of hydrogen bonds between water molecules and hydrophilic sites 

on the humic macromolecule. The degree of hydration is related to the nature and 

number of hydrophilic sites on the macromolecule (Buffle, 1988). Up to 50% of 

the weight of a fully hydrated humic molecule can be attributed to bound water 

molecules. Dissolution in aqueous systems gives rise to the presence of internal 

water molecules bound directly to hydrophilic sites which subsequently influence 

the shape of the macromolecule by altering the attraction between strands. 

Dissolved organic matter is generally present in low concentrations (0. l-8ppm in 

surface waters ; 50ppm in swamp waters; Leenher, 1974) in natural waters and 

although up to 80% may be humic compounds, the remainder comprises low 

molecular weight compounds which are likely to be of a similar type to humic 

precursor compounds (ie. they contain many of the types of dominant functional
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groups that are incorporated into the humic molecules). In terms of metal 

attracting capacity, components of humic substances have the greatest capacity of 

all components of the dissolved organic fraction in natural waters. In theory, the 

differing behaviour of low molecular weight molecules containing a single 

functional group (eg. those specified in Table 1.16) when compared with overall 

similar numbers of functional groups attached to a single high molecular weight 

molecule can be explained by considering the distance in solution between the 

functional groups as affected by solution concentration. The functional groups on 

individual low molecular weight molecules become increasingly separated with 

decreasing solution concentrations of these molecules. Large macromolecules 

such as humic substances have 'surface' functional groups which remain separated 

by a more or less fixed distance independent of concentration, unless degradation 

results in the splitting of the macromolecule. Otherwise, the groups remain closely 

associated and can influence one another in nearly all circumstances (Sposito, 

1989).

1.4.6.4 Effect of Functionality on Metal Interactions with Different 

Components of Humic Substances in Soils, Sediments and Waters

Humic macromolecules potentially exhibit a range of solubilities relating to the 

inherent charge on the individual macromolecule and its degree of hydrophobicity. 

As mentioned in 1.4.6, solubility is also dependent on influences of charge- 

neutralising IT ions and of polyvalent cations which can render these polydisperse, 

polyelectrolytes insoluble in water (Hayes and Swift, 1978; Hayes, 1985). Binding 

of cations to humic molecules causes the release of solvation water molecules 

resulting in configurational changes which, in the extreme case, can cause 

precipitation of an aggregate. Components of humic substances with differing 

proportions of functional groups or hydrophobic/hydrophilic units will be affected 

to differing degrees by these influencing factors. In the simplest case, ftilvic acid 

as defined by the separation procedure is stable in solution over the entire pH 

range (assuming other conditions remain constant). In the environment,
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partitioning of humic components between solid and aqueous phases is infinitely 

more complex. Powell and Town (1992) reported that the solubility of humic 

substances is dependent on pH, ionic strength and the nature of the electrolyte 

ions in solution and suggested that a different molecular size fraction of humic 

substances will be present in solution at each observed combination of pH and 

ionic strength, with clear implications for metal complexation. Anthropogenic 

influences may also be important and provide an external variable. For example, 

variations in soil conditions due to pollution (eg. acid rain) will influence the 

partitioning of humic substances between the solid phase and soil solution 

(Tipping, 1988; Tipping and Hurley, 1988; Allard, 1986; Cronan et al., 1985; 

Davis and door, 1981; Oliver et al., 1983; Vance and David, 1989; desy  et al., 

1986). The magnitude of this effect at any locality will be controlled by factors 

affecting the deposition of such pollutants.

Additionally, as a consequence of the co-existence of hydrophobic and hydrophilic 

components in the same macromolecule, humic substances form micelle type 

structures in aqueous solution, with hydrophobic units oriented inwards to 

minimise contact with polar entities, and exposing a surface covered with 

hydrophilic complexing sites. The functional groups or ligands oriented outwards 

are therefore particularly accessible to metal ions. Alteration of the electric field 

exhibited by the macromolecule will result in conformational change on 

approach/attraction of a metal ion. The reduction in local charge allows the humic 

chains to exist more closely and the conformational changes will be influenced 

both by the flexibility of the surrounding chain and by the steric bulk of ligands. 

Chin and Gschwend (1991) also noted that the results of fractionation of humic 

substances using gel filtration chromatography at different ionic strengths 

illustrated the ability of humic colloids to contract and expand as a function of 

matrix ionic strength. Behaviour of this kind can affect the propensity of the humic 

macromolecules to bind particle reactive substances in different sedimentary 

environments.

Marine humic macromolecules are therefore, in general, more tightly coiled than 

their freshwater counterparts, so that the configuration of the humic colloid may
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influence the sedimentary geochemistry of associated radionuclides, other metals 

and hydrophobic anthropogenic organic compounds (Chin and Gschwend, 1991). 

The behaviour of metal-humic species in the marine and terrigenous environments 

is directly relevant to the present work. The sampling locations chosen in this 

study vary in their degree of marine influence. In particular, the sampling location 

on Southwick Merse on the coast of SW Scotland is exposed to water of 

alternately low and high salinity.

1.4.7 Metal Complexation by Natural Humic Compounds

The present study is primarily concerned with the interactions of radionuclides 

released into a marine system and subsequently deposited in coastal soils and 

sediments. Therefore it is necessary to consider the following:

i) general interactions of metals with humic compounds in solid and aqueous 

phases

ii) chemical behaviour of specific radionuclides which determines their distribution 

between solid and aqueous phases and subsequent behaviour

Interactions of metal ions with humic compounds have been described as ion- 

exchange, surface adsorption, chelation and coagulation. On a physical basis, the 

initial attraction may be accounted for in terms of colloidal properties of the 

macromolecule as a whole (Hayes et al., 1989; Healy, 1980) since soluble humic 

macromolecules are considered as being of colloidal proportions. Metal ions can 

be sorbed on to humic colloids by monodentate or multidentate complexation 

(Kim, 1991) and so increase the concentration of metal ions in groundwater. It is 

generally considered that the functional groups predominantly in the regions of 

hydrophilicity in humic macromolecules also provide the sites at which metal ions 

or other attracted species may subsequently be bound. However, complexation 

reactions involving polyfunctional humic substances and often numerous metal 

ions and therefore simultaneously present multi-metal, multi-ligand interactions 

which are poorly understood.
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Of the soil organic pool, humic macromolecules are known to have the highest 

complexation capacity for metals. Unlike simple inorganic anions they form stable 

complexes with a range of both hard and soft metal ions. Their complexation 

capacity arises from the large number of potential sites and also from the variety 

of functional groups present, which potentially allows them to provide 

simultaneously both hard and soft ligands. In other words, humic substances, 

because of their functional group diversity and distribution provide suitable sites 

for many trace metals by enabling different metal species to interact in different 

ways and with different functional groups in a variety of chemical environments. 

In contrast, many other natural biological complexants offer a single type of site 

which is capable of binding very specifically a particular metal species or group of 

metals (eg. desferrioxamine and M3+ ions, haemoglobin and Fe3+, proteins, 

enzymes, pigments etc.).

In the environment, a large number of pollutant and natural metal ions co-exist, 

displaying widely varying properties and present at concentrations differing by 

many orders of magnitude. Humic substances have the capacity for numerous and 

diverse interactions with many of these metal ions (Andreyev and Chumachenko, 

1964; Perdue, 1976; Choppin, 1988; Shanbhag and Choppin, 1981; Szalay, 1964; 

Tipping et a l , 1988a; Wolfram and Bunzl, 1986; Weber, 1988). For example, 

Uranium and other metals are accumulated by peat humic acids, with geochemical 

enrichment factors of 104 from the very low concentrations in natural waters 

(Szalay, 1969).

The selective uptake of certain trace metals, particularly those of high charge can 

be described theoretically by the formation of double layers (DLVO theory). 

Humic colloids, due to their ability to accumulate such metals with enrichment 

factors of up to 105, are therefore of considerable importance in the study of 

actinide behaviour with respect to the disposal of intermediate and high level 

radioactive waste (Kim, 1991) and low level liquid wastes as this study 

demonstrates.

For the purposes of this study of actinide behaviour, further reference is made to 

previous studies of metal mobility following complexation by humic substances
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under varying environmental conditions. The effect of changing conditions in 

natural water bodies has been observed where a significant proportion of humic 

material was flocculated over the salinity gradient experienced as material moved 

from freshwater to salt water in estuaries (Sholkovitz, 1976, 1978; Eckert and 

Sholkovitz, 1976; Tipping and Ohnstad, 1984; Backes and Tipping, 1987). 

Importantly, not all humic material was flocculated under any particular set of 

conditions due to the range of solubilities displayed by humic macromolecules. 

Tipping and Ohnstad (1984) also demonstrated that precipitation with Ca2+ and 

Mg2+ was dependent on the nature of the humic substances. In other words, the 

component of humic substances that remained in solution on the addition of these 

metal ions differed in chemical composition from that which was effectively 

removed to the solid phase.

Sholkovitz demonstrated that 3-11% of humic material was removed in river 

estuaries in SW Scotland and large scale removal of dissolved Fe together with 

humic material is also more widely observed in estuaries (Boyle et al., 1974, 1977; 

Sholkovitz, 1978; Murray and Gill, 1978; Mayer, 1991; Moore et al., 1979). The 

perturbation of the system in this manner has consequences for mobility and 

bioavailability not only of Fe but also of associated important trace elements, 

nutrients and trace organics such as pesticides sorbed onto humic macromolecules 

(Mayer, 1991; Gamble, 1986; Gamble and Schnitzer, 1973; Khan and Schnitzer, 

1972; Picard and Felbeck, 1978). Further apparently contradictory evidence of the 

importance of humic macromolecules as chelators was reported by Duursma and 

Sevenhysen (1966) who showed that the concentration of soluble Fe species in 

natural water bodies was in excess of that predicted on the basis of the solubility 

product of iron hydroxide. They concluded that certain iron humates are soluble 

under the conditions present in seawater and are resistant to hydrolysis to 

insoluble iron hydroxide. However, the flocculation of a large proportion of metal 

humates under estuarine conditions is proposed as an important mechanism for the 

scavenging of metal species from the water column to sediments.

Humic and fulvic acids are not only responsible for most of the metal immobility 

attributed to soil organic matter (Stevenson and Ardakani, 1972) but are also
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implicated in the formation of soluble complexes with metals, particularly in dilute 

solutions (Wildung and Garland, 1989). In the assessment of the long term 

behaviour of radionuclides in the terrigenous environment, the factors influencing 

their solubility and the formation of soluble species in the soil solution must be 

determined (Wildung and Garland, 1989). The major factors governing 

bioavailability of actinide elements are their solubility in the soil solution and the 

stability of soluble species in the soil solution. In particular, the formation of stable 

complexes with organic matter can potentially enhance the solubility of actinides 

and hence their mobility (Choppin, 1988; Saar and Weber, 1982). The formation 

of soluble complexes can result in a reduction in their toxicity to plants since it is 

considered that complexed forms of a metal are less bioavailable than the free 

metal ion (Saar and Weber, 1982). Alternatively, the formation of insoluble 

complexes reduces the mobility of the species and results in a reduction in toxicity 

by complete removal to the solid phase.

A further area of study has been the bioavailability of radionuclides following 

complexation by natural organic compounds. The uptake of non-essential and 

pollutant metals, for example Pu, by plants has been observed and was 

significantly enhanced by fixlvic acid complexation, relative to a citrate control 

(Livens, unpublished data, 1987) (Table 1.18).

Pu-fulvate Pu-citrate

Soil to shoot (Bq kg'1 
shoot/soil)

1.7 x 10'4 9.0 x 10'5

Root to shoot (Bq kg'1 
shoot/root)

1.9 x 10'2 1.7 x 10'3

Table 1.18 Plant Transfer Data for Pu Complexed with Fulvic and Citric 
Acids (Livens, unpublished data, 1987)

This complexation also resulted in increased root-to-shoot translocation of Pu 

within the plant (Livens, unpublished data, 1987). The mechanism of uptake by 

plants and, in particular, the nature of the radionuclide-organic complex within the
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plant is uncertain.

1.4.7.1 The Influence of Humic Substances on the Solution Speciation of 

Actinides

Before discussing the characteristics of actinide-humic complexes it is first 

necessary to restate some aspects of the inorganic chemical behaviour of metals 

and, in particular, the actinides. All metal cations are hydrated in aqueous solution 

and interactions with other species in solution involve exchange mechanisms in 

which preferred ligands displace the co-ordinated water molecules. Less 

commonly, other weaker ('outer sphere') complexes may be formed by the 

attachment of ligands via the water molecules of the hydration shell. Dissolved 

actinide ions, M3+, M4+, M 02+ and M 022+, are extensively hydrated and, in the 

absence of complexing ligands, their behaviour is governed by conditions of Eh, 

pH, ionic strength and actinide ion concentration which may effect their hydrolysis 

and subsequent precipitation as insoluble polymeric species. The solvation of 

actinide species is a special case of their more general interaction with other 

species in solution. In aqueous solution, ensuing reactions are exchange reactions 

where the effectual complexation of the actinide ion follows the exchange of 

hydration water for the preferred ligand. The affinity of the metal species for any 

ligand is governed by the same rules as hydrolysis. Tendency of actinide ions to 

form cationic, anionic or neutral species in solution influences their subsequent 

interactions with reactive species. For example, formation of anionic species is 

more favourable for U than for Np (Katz et al., 1986) and so carbonate species of 

U are more stable than those of Np. Again size/charge effects are the dominant 

factors in determining the reactivity of the metal and its affinity for ligands.

All actinide species in solution are prone to complexation. The actinyl ion is linear 

(to a first approximation) and ligands are arranged in the equatorial plane. Where 

water is the ligand, there is a pentagonal arrangement of water molecules in the 

equatorial plane. A necessary condition for the formation of any complex is that 

the ligand has an affinity for the central actinide ion strong enough to compete
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with that of co-ordinated water. The actinides are hard metal cations, as defined 

by their ratio of charge/radius, and as such form their strongest bonds with oxygen 

containing ligands via the oxygen atom Similarly a strong affinity for N is 

reflected by the formation and stability of certain complexes via N donors. Both 

O and N are hard ligands whereas S is a soft ligand and as such forms weak 

complexes with the actinide ions. As for hydrolysis the affinity of the metal for a 

given ligand increases in the order:

M02*<M3*“M022*<M4,

In aquatic systems there are a number of complexants with an affinity for actinide 

ions. The common inorganic anions, C032', S042', N 03', and P043' possess very 

different affinities for the actinide ions. The most stable complexes are formed 

with carbonate ligands and, due to its high concentration in sea water, and often 

in groundwater, the formation of such complexes is a key component in the 

solution behaviour of the actinides. Low concentrations induce hydrolysis 

followed by precipitation of polymeric species. At concentrations present in sea 

water, depolymerisation of actinide hydroxides occurs with the formation of 

stable, soluble carbonates. These species are by far the most readily formed with 

actinyl ions and under alkaline conditions in sea water M 02(C03)34' will 

predominate. At the oxidation potential normally prevailing in sea water, U is 

present exclusively in the +6 state and this is likely to be the most stable complex 

of U and a strong possibility also for Pu in the absence of high concentration of 

stronger organic complexing agents. Conversely, the existence of these species 

indicates high solubility and hence high concentrations of U in sea water and it is 

the inability of Th to form soluble Th(IV) carbonate species under the prevailing 

conditions together with its high particle affinity that differentiates between 

solubility of U and Th in sea water.

Laboratory studies also confirm that the presence of carbonate ions increases the 

solubility of uranium by approximately two orders of magnitude. In distilled water 

the maximum concentration of added uranyl species in solution is 50 ppb whereas 

solution concentrations in a synthetic groundwater containing carbonate are of the
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order of lppm (Forsyth et al., 1986). Organic substances are predicted to form 

strong complexes with Pu3+, Pu4+, Am3+ and Np4+ (Bondietti, 1982) and may also 

be able to reduce Pu6+ to Pu5+ or Pu4+ (Cleveland, 1979). Pu5+ and organically 

complexed Pu4+ are predicted to be the mobile species of Pu under aerobic 

conditions (Bondietti, 1982). It is suggested (Choppin, 1983; Choppin et al., 

1986) that complexation by organic matter significantly enhances the solubility of 

Pu, in particular by solubilising Pu4+. Organic complexants such as citrate and 

EDTA can, however, reverse the relative stabilities of the +3 and +4 oxidation 

states. The greater strength of complexation of Pu4+ relative to Pu3+ is illustrated 

by the partial oxidation of Pu3+ to Pu4+ in the presence of citrate or EDTA 

(Foreman and Smith, 1957 : in Choppin 1983). A strong correlation between Pu4+ 

in solution and natural organic matter content has been reported in marine 

systems, in which resulting complexes would be stabilised by high alkalinity due 

to increasing ionisation of functional groups (Shnitzer and Khan, 1972).

Soluble Np complexes with Aldrich humic acid have been observed under 

conditions predicted to be prevalent in proposed German high level radioactive 

waste repository systems (Bidoglio et al., 1988). On the basis of these studies, it 

was concluded that natural humic substances would be capable of transporting Np 

from the repository to the far field environment.

In natural systems, concentrations of the actinides in solution, in particular U (in 

the absence of suitable ligands) and Th, are often extremely low and, although the 

actinides are highly susceptible to hydrolysis, the concentration of the hydrolysed 

species is lower than their solubility in the water body.

The low concentration of Th in sea water also suggests that formation of 

polymerised species would be unlikely due to the low probability of a hydrolysed 

Th species encountering one or more other Th species. Subsequent adsorption, 

due to the high particle reactivity of Th species is responsible for the almost 

complete removal of Th from the water column (McKee et al., 1984). In a natural 

system, at pH>7, sorption of Th occurs almost completely on to clays and solid 

organic matter, resulting in significant depletion of Th relative to U in aquatic 

systems with adequate particulate loading. This is subject to seasonal effects (eg.
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variations in primary productivity) and is also enhanced close to coastlines due to 

increased resuspension of particulates. Anomalies to this general case have, 

however, also been reported including the measurement by Nozaki and Horibe 

(1983) of enhanced 232Th concentrations in solution towards the ocean floor. It 

is suggested by Chin and Gschwend that sediment bed-to-overlying water releases 

of colloidal organic material appear to occur and may play an important role in the 

cycling of particle reactive chemical species (metals and anthropogenic organic 

compounds). Other studies have shown that there is a seasonal phenomenon which 

leads to high concentrations of Th and Pb associated with organic "fluff" on the 

ocean floor which is easily resuspended (unpublished data, McKave, 1995). 

Langmuir and Hermann (1980) have predicted that the concentration of Th in 

solution is greatly increased by the formation of soluble organic complexes and 

suggest that Th4+ can therefore be compared with Pu4+ with respect to organic 

complexation. Ligand concentration and characteristics must be considered in the 

assessment of the stability and solubility of actinide species in aqueous systems. 

It is well known that organic substances are important in complexing U and in ore 

formation. In acidic environments, soluble organic compounds may be important 

in U6* migration, whereas at higher pH, carbonate species are likely to dominate. 

Thus, maximum sorption of U6+ on to most natural colloidal materials including 

humic substances occurs in the pH range 5.0-8.5. Th is believed to form stronger 

complexes with dissolved organics than U (Langmuir and Herman, 1980, Nash 

and Choppin, 1980). The high particle affinity of Th results in almost complete 

sorption of uncomplexed Th on to clays and solid organic matter at pH > 7. 

Marine organisms may also influence the geochemical behaviour of Th by the 

more efficient uptake of Th relative to U (Cherry and Shannon, 1974) and since 

they are potentially precursors of marine and estuarine sedimentary humic 

substances, they may therefore exert an influence on the relative amounts of U and 

Th associated with this component. Specifically, it would be expected that U/Th 

ratios in humic substances occurring in estuarine sediments may be lower than 

predicted from seawater ratios.
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1.4.7.2 Studies of Actinide-Humic Complexation

Chelating resin chromatography in combination with laser fluorescence has been 

used to estimate conditional stability constants for U 022+ binding by humic 

substances at environmentally relevant metal-ligand ratios and to determine the 

binding capacity of humic material for U 022+(Giesy et al., 1986). Conclusions 

from this study show that at environmental concentrations, a significant proportion 

of U is humic-associated (25%) and, more importantly, is bound to natural humic 

substances by a number of sites with different binding affinities. The attraction of 

metal species towards negatively charged humic macromolecules will result in 

concentrations in the condensed layer adjacent to the surface being orders of 

magnitude greater than in the bulk solution. The metal ions exhibit a range of 

reactivities and hence surface affinities that depend on the predominant form of the 

metal ion. This affects the residence time of a metal ion in solution and its 

potential interaction with humic substances (Pentreath et al., 1986; Honeyman and 

Santschi, 1988). The higher the reactivity, the more likely it is that the metal ion 

will become particle bound and the shorter will be its residence time in solution 

(Buflfie, 1988). In the presence of carbonate, the uranyl species is present as the 

carbonato complex [U02(C03)3]4' which is anionic and therefore electrostatically 

repelled by highly negatively charged humic macromolecules. Uranyl ion 

complexation responds to changing Eh and pH conditions. For example, it is 

known that a reduction of pH in coastal areas causes increased complexation of 

U by humic macromolecules (Choppin and Mathur, 1991). The mechanistic details 

of the interaction of the uranyl species with humic substances are however 

uncertain (Choppin and Mathur, 1991; Choppin and Stout, 1989). Andreyev and 

Chumachenko (1964) suggest that U will be reduced by organic matter if the 

system contains partially oxidised compounds (eg. alcohols, aldehydes and acids) 

and that reduction involves insoluble, large organic macromolecules and therefore 

takes place within the U-organic molecule (ie. with U withdrawn from the bulk 

solution). The reduction of U is shown to be thermodynamically feasible at 25 °C 

and 1 atm pressure whilst the degree of reduction depends on the precise nature
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1.4.7.3 Kinetic Studies of Actinide-Humic Interactions

A further dimension to the complexity of the binding properties of humic material 

is provided by the inclusion of kinetic factors. In decreasing order, the rates of 

reactions have been reported (Buffle, 1988) to be as follows:

i). exchange of hydrated water, exchange of protons, formation and dissociation 

of ion pairs.

ii). formation and dissociation of chelates.

iii). chemical reactions among several phases (solid formation, certain redox 

reactions, adsorption, organism assimilation)

iv). physical sedimentation and mixing processes.

Kinetic considerations have been invoked to provide insight into metal ion 

interaction with humic macromolecules in studies where Th4+ and U 022+ were 

added to solutions containing humic material and it was observed that complete 

binding of the nuclides was effected in less than one minute. Further studies 

showed that the kinetic expression for dissociation of these newly bound nuclides 

altered with time prior to their removal. Seven first order dissociation reactions 

were shown to contribute to the overall rate of dissociation (Choppin, 1988). With 

increasing time the importance of the slower processes also increased. It was 

proposed, therefore, that two stages are involved in binding; initially the metal ions 

are attracted to the charged surface and held in a condensed layer adjacent to the 

polyionic surface. Thereafter, some fraction migrates and becomes chemically 

bound to specific sites. It is proposed that this includes some sites within the 

molecular structure. This will also result in further modification of the overall 

humic structure. This discussion of kinetics brings together ideas regarding the 

colloidal nature of the material and the principles of site selectivity and 

coordination chemistry. A kinetic discussion of humic substances as a polydisperse 

ion-exchanger system (ion exchanger particles of different diameters) suggests that 

the rate of ion exchange of such a system is not simply predictable by comparison
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with a range of separate monodisperse systems (Bunzl, 1978; Bidoglio et a l, 

1991; Burgess, 1992). The overall rate of attainment of equilibrium is slower than 

for a monodisperse system containing only the large diameter particles. Results 

show that the smaller particles in the polydisperse system always react much more 

rapidly and initially sorb beyond their equilibrium value. Following this, 

counterions are released and sorbed by the more slowly reacting larger particles. 

This can result in underestimation of the time taken for the system to reach 

equilibrium where this is estimated from the change in solution concentration of 

the free counterions. In the later stages, little change in solution concentration 

masks the continuing exchange of counterions from smaller to larger molecules 

(Bunzl, 1978).

More recently (Rao et a l, 1994), cation exchange has been used to study the 

kinetics of the interactions between U and humic materials. The initial binding of 

the free metal added in a buffered dilute perchlorate solution was effectively 

complete within 1-2 minutes. Two subsequent cation exchange experiments 

showed that the ion exchange characteristics of the humic material altered with 

time and that the retention of metal by the cation exchange resin decreased with 

increasing time during the second stage of ion exchange. They concluded that a 

portion of the added U was only weakly bound to the humic material. The strongly 

bound U was redistributed within the humic material with increasing time and, due 

to the decreasing retention of U by the resin, it was suggested that redistribution 

of U resulted in conformational changes and the subsequent relocation of U within 

the humic molecules (ie. unavailable to further ion exchange). Attempts to relate 

this to potentially different stereochemical associations of U when compared with 

Eu3+ data could not be substantiated conclusively. Theoretically it was proposed 

that i) equatorial co-ordination of ligands around the linear U 022+ ion where the 

binding would be stronger due to the higher effective charge associated with U 

(+3.3) ii) chelation of a 'condensed U 022+' species would be less strong due to 

the lower effective charge (+2.2) (Rao et a l, 1994).

The influence of humic substances on the geochemical behaviour of actinide 

elements in this manner has important implications for the assessment of high
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activity waste storage proposals and therefore modelling of humic characteristics 

and prediction of long term mobility of humic-actinide species is an important area 

of study (eg. Higgo et al, 1992; Falck, 1989). Versions of modelling codes 

(PHREEQE) based on the effects of variations in Eh and pH on the inorganic 

speciation of metals have recently been modified in order to improve their 

predictive capacity where organic polyelectrolytes, humic substances, are present 

(Falck, 1989).

1.4.8 Modelling of Metal-Humic Complexes

A major problem in modelling metal interactions with humic substances is the need 

to describe adequately the heterogeneity in the distribution of binding sites. The 

conclusions drawn by Kim (1991) suggest that the interaction of metal ions with 

humic and fiilvic acids can be adequately treated by the use of a single binding 

constant. A single ligand approach is adopted by Higgo (1992) leading to the 

attainment of only a single intrinsic stability constant for metal complexation for 

incorporation into models of humic behaviour. Intrinsic stablitiy constants are 

obtained from conditional constants over a wide range of experimental conditions. 

Conditional rather than true stability constants are measured since the latter are 

not strictly applicable to variations in humic binding capacities under differing 

environmental conditions.

Where a more complex treatment of humic-metal interactions has been attempted, 

further modelling problems have arisen due to the difficulty in incorporating a 

multi-ligand approach or additionally, the competitive binding of a range of 

metals. A number of authors have concluded that U is first adsorbed by organic 

matter as uranyl complexes, and with increasing time, reduction occurs and 

uraninite is formed (Breger, 1974; Meunier, 1990) and is subsequently held in the 

solid phase. In order to model this interaction, thermodynamic data are required 

and in particular a single conditional stability constant for the formation of the 

organo-uranyl complex. This information cannot be obtained due to the number 

of different complexes that are potentially formed between humic substances and
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U6+, so present modelling codes are unable to cope satisfactorily with this 

mechanism of interaction (Jamet et a l, 1993). The direct reduction of uranyl 

complexes to form U4+ minerals is thought to be important in strongly reducing 

environments (Boyle, 1984) and can be more straightforwardly incorporated into 

present codes.

Additional consideration of the behaviour of actinides in their interaction with 

humic substances shows that the concentration of added ions associated with 

humic material varies with time and also that the nature of associations change 

with time. The necessary time for equilibration of actinide speciation must be 

determined and incorporated into laboratory experiments used in the 

determination of modelling parameters.

1.5 Humic Substances and Their Role in Soils, Sediments and Waters

Considering the soil system as a whole, the particle-water interface will play a 

major role in regulating the concentration of most reactive metal ions in natural 

waters (Chin and Schwend, 1991; Ure, 1991, Baskaran and Santschi, 1992; 

Allard, 1986; Choppin, 1983; Tipping and Hurley, 1988; Tipping and Woof, 

1991). It is suggested that humic substances can regulate the free ion 

concentration in solution and in turn determine the physiological conditions for the 

growth of algae and other microorganisms. Their effect on the free ion 

concentration in solution is also of importance for plant uptake of essential trace 

elements and nutrients (Dissanyake, 1989). Additionally, the mobilisation of 

otherwise unavailable metal ions is of the utmost importance in the study of 

anthropogenic nuclides and other trace organic compounds (including 

anthropogenic organic compounds eg. pesticides, industrial organics) in the 

environment (Livingston and Bowen, 1982; Cherry and Shannon, 1974; Fisher, 

1986; Gamble, 1986, Khan and Schnitzer, 1972; Wershaw, 1989).
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1.5.1 Alternative Complexants in the Organic Fraction

A further potential interaction, considered by Pickering and Batts (1992), follows 

the partial degradation of the humic fraction. They contend that the alteration of 

the organic fraction releases small (Cj-C5) highly soluble carboxylic acid groups 

with a capacity to chelate metals in the soil solution and so enhance the movement 

and consequently the toxicity of pollutants (Pickering and Batts, 1992; Kieber et 

al, 1990). In areas of industrial activity where processing of waste may induce the 

degradation of humic material the solution phase transport of discharged metals 

is forseen via such organic acids. Berry and Bond (1990) indicate the importance 

of the degradation of cellulosic materials and other organic waste products arising 

from the alkaline chemistry of concrete pore water and microbial action. Such 

degradation products can have a marked effect on the sorption of Pu and U onto 

geological materials and results suggest that complexation of Pu and U by such 

degradation products enhances their solubility under these conditions. In the 

absence of such complexants the reactivity of Pu leads to hydrolysis and the 

formation of possibly polymeric Pu(OH)x species which are insoluble as a 

consequence of high particle reactivity.

1.5.2 Importance of Humic Substances

Overall, it must be considered that humic substances are not the only potential 

organic complexants of metals in the environment. However, i) they are the most 

widely distributed natural organic complexant, ii) they comprise a major portion 

of the organic fraction in most soils, sediments and waters, iii) they make up the 

most resistant portion of the organic fraction with respect to degradation and as 

such provide a long term potential for influencing the mobility of actinides in the 

environment. Therefore, their characterisation, both structurally and in terms of 

actinide complexation, is the focus of this study.
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CHAPTER 2 

METHODOLOGY

2.1 INTRODUCTION

The objective of this study was to investigate the associations of Th, U, Pu, Np 

and Am with natural humic substances extracted from soil and sediment samples. 

An integral part of the study was the characterisation of humic material from soils 

with contrasting environmental conditions. In particular, three study sites were 

selected which experienced varying degrees of marine influence. Samples from 

different depths at these locations were also collected to allow comparison of the 

characteristics of humic material present at surface and depth in soils and 

sediments. Importantly, humic materials from different depths in soils and 

sediments are of varying ages with those present at depth having been subject 

greater diagenetic alteration.

The study only involved the characterisation of humic material extracted from 

environmental soil and sediment samples from these study areas. Commercially 

prepared humic material (eg. Aldrich Humic Acid) was not used for the 

characterisation of actinide interactions with humic substances since an 

extrapolation back to environmental interactions is impossible on the basis of the 

results of such a study.

2.2 Sample Collection and Preparation

Soil and sediment samples were collected from several locations around the Irish 

Sea. A limiting factor was the large number of subsamples which had to be 

analysed in order to characterise the humic material present, both with respect to 

chemical composition and interactions with the actinides. In order to provide
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sufficient material and to allow examination of variations in the composition of 

humic substances and their interactions with actinides as a function of depth, 

samples of approximately 5kg were collected from two or three depths at each 

site. All of the sampling sites were known from previous studies (MacKenzie et 

al., 1987; Scott et al., 1991; Livens, 1985; Hursthouse, 1990, Allan, 1993) to 

receive inputs of Sellafield waste radionuclides via deposition of contaminated 

marine particulate material. The various sampling sites, and the sampling 

procedures used, are described below.

2.2.1 River Esk

A set of samples was collected from the River Esk in W Cumbria from the 

positions shown in Figure 2.1. The sampling sites are illustrated in Plate 2.

.S e l la f ie ld

IR IS H  S E A

Figure 2.1 Map of W. Cumbria showing the River Esk Sampling Sites

Bulk soil samples were collected from Site 1, situated near the bank of the River 

Esk at a position close to, but below, the upper tidal limit. The location is exposed 

to marine conditions and deposition of marine sediments only during very high
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tides. A spade was used to cut a section of the soil and a portion representing the 

depth interval 0-5cm was carefully removed. The 5- 10cm depth interval was then 

removed and discarded, and after cleaning the spade, the 10-15cm depth interval 

was sampled.

Bulk soil samples were also collected from Site 2 which was situated on the 

floodplain region between the River Esk and Muncaster Castle. This location is 

inundated with marine material only infrequently on occasions of spring tides etc. 

but is prone to waterlogging and the soil is therefore subject to predominantly 

reducing conditions. A small pit (30cm depth) was dug, one face was selected and 

carefully cleaned before the samples were removed. Again 0-5 cm and 10-15 cm 

samples were carefully cut and removed.

2.2.2 Southwick Merse

J s l e e d l e ’s  Ey<
S o i t h w i c k -

S o lw a y  F ir th

Figure 2.2 Map of SW Scotland showing Southwick Water and Needle's Eye

Bulk sediment samples were collected from the edge of the Merse (the local term 

for sakmarsh areas) forming the bank of the Southwick Water at a location known 

to be subject to marine inundation and accumulation. Sedimentation rates of 3- 

5cm per year have been estimated (MacKenzie et al., 1993) which are 

considerably in excess of the accumulation rates at either of the two locations
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studied in W Cumbria (Livens, 1990; estimation on basis of radionuclide depth 

profiles; 3mm per year). The samples were collected as before, but at the depths

0-5cm, 40-45cm and 65-70cm These depth intervals were chosen in order to 

provide suitable time intervals for the investigation of diagenetic changes affecting 

Sellafield waste radionuclides. This location was also selected on the basis of 

previous studies to allow comparison with existing data (Ben Shaban, 1989; Scott 

et al. 1991; Allan, 1991).

All samples were collected during May 1991. The individual samples were placed 

in marked polythene bags and sealed following their removal from the sampling 

location. The samples were frozen until use. Each soil or sediment sample was 

dried at 40°-50°C, the dried grass removed, and the dry weight recorded. Finally, 

each sample was sieved (2mm) and homogenised before storage in labelled 

polythene bottles.

2.3 Extraction of Humic Substances from Soils and Sediments

2.3.1 Alkaline Extraction

The objective of this part of the study was to extract samples of the bulk humic 

substances from each soil or sediment. As discussed earlier (section 1.4.5), an 

ideal extraction of humic substances should allow the isolation of organic matter 

which is representative of the entire molecular weight range of the humic material. 

Ideally, the solvent used should effect complete dissolution of the humic fraction 

of soils and sediments by disrupting existing hydrogen bonds and providing 

alternative groups to form humic-solvent hydrogen bonds. In aqueous solvents, 

the dissociation of functional groups including carboxyl and phenolic hydroxyl 

results in the partial dissolution of humic macromolecules. The solvation of less 

hydrophilic macromolecules requires the formation of hydrogen bonds with 

solvent molecules.

As discussed in section 1.4.5.1, aqueous solutions of NaOH have predominantly 

been used as the solvent for this purpose since they extract the greatest amount
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of humic material from soils (in total, about two-thirds of the total soil organic 

matter (Stevenson, 1982)). Alkaline solutions, however, do extract some non- 

humic organic material and it is estimated that this comprises about 5% of the 

total extract from some surface soils (Stevenson, 1982). 0.1M NaOH has been 

suggested by some workers (Levesque and Schnitzer, 1966) to extract the highest 

amounts of carbon and nitrogen although they claim that humic and fiilvic acids 

prepared following 0.5M NaOH extraction have a lower ash content. It has, 

however, been shown that alkaline extraction results in the oxidation and possibly 

the breakdown of the humic macromolecules in the presence of oxygen (Swift and 

Posner, 1972) and this effect is greater when the extractant is 0.5M NaOH. This 

effect is lessened by approximately one order of magnitude by the use of 0.5M 

Na2C 03 instead of 0.5M NaOH (Bremner, 1950) indicating that the uptake of 

oxygen is elevated at higher pH (Table 1.15). 0.5M Na2C 03 is markedly less 

efficient at extracting humic material from soils. Table 2 also suggests that uptake 

of oxygen may be increased at higher ionic strength. Prolonged exposure of humic 

materials to alkaline solutions, on the timescale of days, has also been shown to 

alter the composition of the humic fraction (Tipping, 1984). It is therefore 

essential that extraction can be completed over a short time period. (Further 

discussion of other extractants can be found in section 1.5.3).

To achieve the most efficient but least harmful extraction of humic substances, 0.1 

M NaOH was used as the extractant in the initial phases of this study. Later 0.5 

M NH4OH, (pH 11.5) was found to be a preferable extractant due to:

i) the lower pH of extraction,

ii) efficient dissolution of humic material and associated actinides and

iii) reduced potential matrix interference in subsequent analyses

but was used only in the later stages of the study. [Its use as an extractant or 

eluent is indicated at appropriate stages in Chapter 3], Extraction was achieved by 

the respective addition of200ml or 2000ml aliquots of dilute alkali to 50g soil or 

500g sediment (ie.l:4 g/ml) . These experiments were not carried out in a N2 

atmosphere since it has been shown that the uptake of alkali from solution in the 

presence of oxygen is not eliminated by its use and instead the use of lower ionic
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strength and lower pH values has been implemented to minimise uptake of oxygen 

by the humic material The most important factor, given present knowledge, is the 

reduction of the time of exposure to the alkaline solution. The sample was 

dispersed in alkali by continuous mixing using a magnetic stirrer. At half hour 

intervals the aqueous phase was removed and a further aliquot of alkali was 

added. The solution containing the humic material was centrifuged for 40min. 

(4500rpm; 3637g) and the supernatant transferred to a second set of centrifuge 

bottles and centrifuged for a further 40min. in order to maximise the removal of 

suspended inorganic particulate material. The supernatant was then retained for 

dialysis. This procedure was repeated until the alkaline aliquots were colourless 

and exhaustive extraction of the humic fraction had, therefore, been achieved. The 

number of aliquots required to achieve complete extraction varied between 

samples and was, as would be expected, dependent on the organic content of the 

soil or sediment. All extractions were completed within an eight hour period and, 

following mixing of all extracts, the pH lowered to 7 by dialysis (tubing : M.Wt. 

cut off = 1000 daltons) against distilled water. Where possible the dialysis water 

was changed at half hour intervals (with the exception of the overnight period) and 

the total procedure, therefore, was completed in a period of 30 hours. Exposure 

to the highest pH values, however, need only extend over about ten hours.

2.3.2 Acid Precipitation of Humic Acid

As described in section 1.4.5.2, humic materials from soils and sediments are 

traditionally fractionated on the basis of their solubility in acid and alkali. Humin 

is the portion of the high molecular weight organic material which is totally 

insoluble in both acid and alkali. The humin fraction is less commonly analysed 

due to its intractability. Humic acid is designated the portion soluble only in alkali 

whilst fulvic acid is soluble in both acid and alkali.

Initially in this study, humic acid and fulvic acid were prepared from the alkaline 

extract (0.1M NaOH) by addition of 12M HC1 until the pH dropped from 13 to 

1, causing the precipitation of humic acid and leaving fulvic acid in solution.
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Humic and fulvic acids were then separated by centrifugation (40 minutes, 

4500rpm; 3637g) and the solid humic acid washed with 100ml distilled water and 

centrifuged for a second time. The supernatant water was discarded and the humic 

acid resuspended in distilled water prior to freeze drying.

At a later stage in the project, as discussed in detail below (section 3.5), it was 

concluded that the acid precipitation described above caused unacceptable 

alteration of the humic substances. It was therefore decided to discontinue acid 

precipitation and later work was carried out using humic substances. These were 

isolated by alkali extraction and centrifugation to remove suspended mineral 

matter (as described above) and then dialysed to lower the pH to approximately 

7.

2.3.3 Dialysis of Fulvic Acid and Humic Substances

The combined extracts were transferred to dialysis tubing (Medicell size 10 

dialysis tubing) and dialysed against distilled water until the pH of the solution 

inside the dialysis bag attained a value of 7. This ensures the loss of small, soluble, 

non-humic components which were co-extracted, the reduction in salt content and 

the removal of excess alkali required prior to freeze-drying, actinide analyses and 

spectroscopic investigations. Little colour was transferred to the dialysis water 

indicating minimal loss of humic material.

Whilst a humic/fiilvic separation was being used, the fulvic acid remaining in 

solution after acidification was transferred to dialysis tubing and dialysed against 

distilled water (in order to reduce the Cl' ion content of the solution) until the pH 

of the solution inside the dialysis tubing reached approximately 5 [pH of available 

distilled water was approximately 5]. Under the same conditions as above (ie. 

same frequency of water changes), more colouration of the dialysis water was 

observed. Previous studies (Livens, 1989) included the analyses of the most 

coloured dialysis water and calculations show that a small proportion of the 

actinide species may be lost.
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2.3.4 Freeze Drying of Humic and Fulvic Acids and Humic Substances

Freeze drying has several advantages over other preconcentration methods. [The 

use of ammonium hydroxide as the solvent is most effective in providing a final 

humic product with little inorganic residue and is therefore preferred both for 

extraction purposes and at later stages in the analysis.] However, freeze-drying 

results in the concentration of all non-volatile solutes so that dialysis of fulvic 

acids and humic substances is essential in order to avoid exposure to concentrated 

alkali. In addition, freeze drying of humic acid under acidic conditions is known 

to result in charring of the humic acid and to lead to chemically induced artefacts 

in subsequent analytical studies.

2.3.5 Ash Content of Humic Substances

The method for extraction of humic substances involving only alkaline dissolution 

followed by dialysis and freeze drying provides a potentially less altered humic 

material (see section 1.4.5). An indication of the contaminant content was 

obtained by determining the ash content of the bulk humic material. A weighed 

amount of humic material was ashed at 550°C overnight and the residue weighed. 

FUR spectroscopy of the bulk hunric material (see KBr disc preparation) was also 

used to detect the presence of silica associated with the humic sample.

2.4 Determination of Humic Content of Soils, Total Organic Content and 

Percentage Humic Association of Radionuclides

2.4.1 Organic Content of Soils and Sediments

Total organic content of the soil sample was estimated from mass loss on ignition.

l-5g soil was placed in a preweighed platinum crucible, and heated overnight at 

550°C and then reweighed. This process was repeated until the sample was of 

constant weight.
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Total humic content was measured by exhaustive extraction of humic substances 

from lg of soil, using the extraction methodology discussed earlier (section 2.3.1). 

This was achieved by repeated extraction using consecutive 20 ml aliquots of 

alkali until the supernatant after centrifugation was colourless. The residue was 

washed with distilled water, centrifugation repeated, the supernatant removed and 

the residue then air-dried and reweighed. The loss in mass was taken to represent 

the amount of humic substances present in the soil.

2.5 Gel Chromatographic Fractionation of Humic Substances

The objectives of this part of the study were initially to optimise the procedures 

used for gel chromatographic fractionation of humic materials and to provide 

fractions of humic substances which were more easily analysed and characterised 

than bulk humic substances. A single interaction of actinides with humic 

substances is an assumption implicit in many models which incorporate organic 

species. Therefore the aims were also to investigate actinide distribution within the 

humic fraction following the analysis of individual fractions and to chemically 

characterise analogous fractions using a range of spectroscopic techniques in order 

to ascertain the validity of the above assumption.

2.5.1 Theory of Gel Column Chromatography

Size exclusion chromatography can be subdivided into gel filtration and gel 

permeation chromatography where the former uses aqueous solvents and 

hydrophilic packings whilst the latter is based upon non-polar organic solvents and 

hydrophobic packings. Gel filtration is commonly applied to the separation of high 

molecular weight, natural product molecules from lower molecular weight species 

and from salts (group separations) but also for the fractionation of different high 

molecular weight species where size differs by greater than 10%. Separation of
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different solutes is achieved using a porous polysaccharide gel (eg. Sephadex G 

type from Pharmacia) packed in a chromatographic column. The chromatographic 

system is heterogeneous, with a porous solid phase (the gel) and a continuous 

liquid phase (the solvent) which fills the gel pores. Solute molecules passing 

through the column are, in principle, separated according to differences in size. In 

the simplest case, small molecules diffuse into the pores from the surrounding 

solution whereas larger molecules are unable to enter the pores. With the addition 

of eluent, the solute molecules move down through the column and large 

molecules move continuously down and elute first, whilst smaller molecules are 

delayed and elute later (Pharmacia, 1993, 1995). Molecules are thus eluted in a 

predictable way in order of decreasing molecular size.

2.5.2 Column Preparation

Sephadex G gels from Pharmacia were used in this study and a full description of 

their structure and physical and chemical properties is found in 'Gel Filtration' 

(Pharmacia, 1993,1995). The gel matrix is chosen primarily for its inertness and, 

in particular, lack of adsorptive interactions between the solute and the gel is an 

important factor. The Sephadex gel structure is produced by cross-linking of sugar 

chains to form a three dimensional network giving gel pores with a carefully 

controlled range of sizes and individual gel types have pore size ranges regulated 

by the degree of cross-linking of the gel. For example, gels with a high matrix 

content ie. highly cross-linked such as G25 Sephadex have smaller pore sizes. 

Sephadex gels are bead-formed gels consisting of dextran chains crosslinked with 

epichlorohydrin molecules. The choice of gel is determined by the size of the 

solute molecules but also by the chemical characteristics of the solute where 

interactions with the gel are likely. The more highly crosslinked Sephadex gels, 

G10, G15, G25 and G50 are most frequently used to separate peptides and other 

small biomolecules, whereas the less stable, less crosslinked gels, G75, G100, 

G150 and G200, are more commonly applied to the fractionation of proteins and 

other macromolecules. Where more than one gel type offers a suitable pore size
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range, an influencing factor is the time taken for elution of the solute. Less 

crosslinked gels have lower maximum flow rates and consequently elution of the 

solute is much slower. Contrarily, gels with a higher matrix content are less 

suitable for solutes where strong solute-gel interactions are expected. However, 

this apparent disadvantage may be favourable in the separation of chemically 

different species of similar molecular size. The retardation of aromatic species by 

G10, G15 and G25 gels allows the separation of aromatic peptides from other 

non-aromatic substances.

Optimisation of gel fractionation is therefore frequently hindered by conflicting 

factors. Criteria such as maximum recovery, minimum sample dilution and short 

elution time have to be balanced with maximum run-to-run reproducibility for 

analytical purposes. Band separation can be improved by lengthening the column 

but this results in longer elution times and greater diffusion. The effect of the latter 

can be reduced by using a smaller initial sample volume.

The Sephadex material is commercially available in powdered form and swells to 

form a gel in aqueous solution (Sephadex LH20 is specifically for use with organic 

solvents eg. DMF) (Pharmacia, 1993, 1995). These gels display good chemical 

stability and can withstand exposure to 1M NaOH or 0.1M HC1. A summary of 

some important gel characteristics is provided in Table 2.1 below.

GEL
medium

PH
Stability
( s h o r t  te r m )

Bed Volume
( m l /g  d iy  g e l )

MW fractionation range Approximate max. 
flow rate ( m l /m in .)  
( 2 .6  x  3 0 c m  c o lu m n  
w it h  d is t i l le d  w a te r  at 
r o o m  te m p e r a tu r e )

D e x tr a n s G lo b u la r
P r o te in s

G 2 5 2 - 1 3 4 - 6 1 0 0 - 5 0 0 0 1 0 0 0 - 5 0 0 0 -

G 5 0 2 - 1 3 9 -1 1 5 0 0 - 1 0 ,0 0 0 1 5 0 0 - 3 0 ,0 0 0 -

G 1 0 0 2 - 1 3 1 5 - 2 0 1 0 0 0 - 1 0 0 ,0 0 0 4 0 0 0 - 1 5 0 , 0 0 0 4 .2

G 2 0 0 2 - 1 3 3 0 - 4 0 1 0 0 0 - 2 0 0 ,0 0 0 5 0 0 0 - 6 0 0 , 0 0 0 1

Table 2.1 Technical Information (Pharmacia 1995)

The eluent chosen for the experiment is frequently used to prepare the gel column 

and hence to reduce equilibration time prior to fractionation of the sample.
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Maximum flow rate is determined by the grade of the gel with medium and coarse 

grades being essential for preparative purposes where high flow rates and low 

operating pressures are required.

A 3.5cm diameter x 50cm length glass gel column fitted with a fine sintered glass 

bed support was used in this study. A coarse bed support is more easily 

contaminated and consequently is a source of experimental artifacts. The column 

and tap were constructed to ensure a small dead volume at the outlet. This is 

essential to prevent remixing of the separated fractions.

The gel was prepared according to the manufacturers recommendations. A slurry 

of the gel was prepared using the chosen eluent, 0.1M NaOH or 0.5M NH4OH, 

and allowed to swell for 6-24h, dependent on the gel type (with the more cross- 

linked gels requiring the shorter time periods), ensuring that the slurry was not so 

thick that air bubbles were retained. When settled, the gel comprised 

approximately 75% of the total volume of gel and solvent together. Where the gel 

suspension is too thin, uneven packing of the gel column may result, leading to 

band broadening and a loss in resolution. The gel must not be excessively stirred 

as this may result in breaking of the beads (eg. use of magnetic or mechanical 

stirrers).

The gel column was manually packed by tilting the column and pouring the well- 

mixed gel suspension in a single operation down the inside wall. The column was 

immediately adjusted to the vertical position and the flow through the column 

commenced soon after filling for the best packing effect. Where the eluent has 

been used to prepare the gel, the column should be already equilibrated and the 

passage of 2-3 column volumes of eluent is undertaken only to stabilise the gel 

bed. It is essential, particularly for the less mechanically stable gels (G100, G150, 

G200), that a slow flow rate is maintained since exceeding the maximum rate 

readily leads to compression of the gel bed and can result in the cessation of flow 

through the column. The packing of the column was checked both visually for 

heterogeneities and air bubbles and by measurement of the void volume using 2mg 

ml'1 Dextran 2000, which is characteristic of the gel type and column 

length/diameter. Assuming no mixing or diffusion, the void volume, V0 represents
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the theoretical volume of solvent required to transport through the column organic 

molecules which are too large to enter the gel. However, due to mixing and 

diffusion, non-retained components appear in a Gaussian shaped band with 

concentration maximum at V0. For components small enough to enter into all the 

pores, a band maximum will appear at the permeation volume of the gel, V,. The 

total column volume is defined as the sum of the volume outside and inside the 

pores together with the volume of the gel, Vg ie. total volume Vt = Vs+v0+v, 
Gel filtration is theoretically a non-interactive technique and so all solute 

molecules which are not excluded due to size, should elute between the void 

volume and the permeation volume ie. within well-defined limits.

In order to achieve maximum run-to run reproducibility constant column 

conditions must be maintained with respect to column length, gel type, volume, 

eluent composition, and flow rate. Following this procedure rigorously enables the 

collection of reproducible fractions and the maximum recovery of sample. To 

summarise, gel filtration optimally offers :

i) short and well-defined separation times

ii) narrow bands leading to good sensitivity

iii) no sample loss ie. no interactions with stationary phase

iv) no column contamination due to interactions of the solute with the packing. 

However, a few limitations are :

i) relatively short elution times (in comparison with HPLC, GC) mean that the 

number of bands which can be separated is small

ii) inapplicability to the separation of solutes of similar size eg. isomers.

2.5.3 Eluent and Sample Preparation

In many gel chromatographic experiments there are no limitations on the choice 

of eluent and the most suitable eluent for the overall experiment may be selected. 

Restrictions on the eluent composition are however required under certain 

conditions. Theoretically, eluent composition is unimportant for the separation 

mechanism where the solute molecules are separated on the basis of size. For
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example, uncharged molecules may be eluted using distilled water, with the 

limiting factor being solubility in this solvent. However, the properties of the 

solute molecules and to some extent also the gel matrix do result in interactions 

between the solute and the gel matrix. Highly acidic or basic solutes, highly 

charged molecules and aromatic groups interact to varying degrees with the gel 

at low ionic strength. Unwanted ionic interactions can be eliminated by the use of 

an eluent of high ionic strength (0.1M) but interactions between aromatic units 

and ether linkages of the gel are less easily eradicated. Again, solubility is a further 

limiting factor since precipitation of the solute, which can occur on the top of the 

gel bed or during elution, is unacceptable.

The sample volume and concentration also influence the required column length 

and the separation achievable. Deviations from ideal separation are also inevitable 

where the macromolecular shape of the solute is significantly different from the 

spherical structures used to calibrate the column commercially. [Further discussion 

of the use of gel chromatography as a technique to determine molecular weight 

is found in section 1.4.4.7]

In this study, lOOmg of humic material was dissolved in 10ml of 0.1M NaOH or 

0.5M NH^OH prior to being placed on the gel. 0.5M NH4OH was preferable for 

the total experiment due to the reduced residual content of fractions prepared for 

mass spectrometric analysis. The humic material was also more readily soluble in 

this eluent and no sample precipitation on the top of the gel column was evident. 

Considerable care was taken to avoid disturbing the surface of the gel when 

placing the sample on the gel bed. An uneven surface results in uneven separated 

bands and hence a loss of resolution. The eluent was then allowed to drain through 

the column until the sample moved onto the top of the gel. A small amount of 

eluent was then passed down the sides of the glass column above the top of the 

gel bed to wash any remaining solute onto the gel. The eluent was again allowed 

to drain before the addition of a larger amount of eluent.
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2.6.1 Theory

Molecular vibrational spectra are obtained following the absorption of IR 

radiation. Fundamental vibrational transitions (IR absorption) relating to major 

functional groups occur in far to mid-IR regions (10-4000cm1).

Assuming anharmonicity of vibrations, absorption of energy from an IR source 

produces an increase in the amplitude of vibrations occurring within bonds at 

ambient temperature. The amplitude rapidly decreases as molecules collide with 

their less active neighbours. A system is never saturated with energy. There are 

many more inactive than active molecules. This places limitations on the technique 

where the sample being analysed is highly heterogeneous. The increase (and re­

equilibration) is dependent on the nature of the bond and its surroundings. 

However, bonds of similar strength and containing similar elements can result in 

broadly similar spectra which are indistinguishable without additional structural 

information. This places bounds on the usefulness of vibrational spectroscopy. 

Limitations are also imposed by the mechanism by which absorption occurs. A 

molecule or functional grouping must have a momentarily induced or permanent 

dipole for absorption. Such molecules or functional units satisfy the conditions for 

absorption of quanta of electromagnetic radiation.

There are two types of vibration which can occur within a bond 

i) stretching and ii) bending (deforming). Bending requires less energy therefore 

bending modes occur at lower frequencies than corresponding stretching modes. 

Polyatomic molecules contain many bonds and so numerous vibrational 

opportunities exist.

When the vibrational energies of two adjacent bands are very similar they may 

interact mechanically and couple. If coupling is strong enough, the original 

fundamental bands may be lost and new bands produced. Occasionally, overtones 

at 2v and 3v appear as additional bands in the spectrum Coupling can also occur 

between overtones and suitable fundamental vibrations. This phenomenon is
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described as Fermi resonance.

FTIR spectroscopy is an appropriate tool in the structural characterisation of both 

pure organic chemicals and mixtures of natural or synthetic organic compounds 

since it requires little sample preparation and offers non-destruction of the sample 

prior to analysis, short analysis time and high sensitivity. Modem high-power 

infrared spectrometers use a single broad beam source. The output contains all the 

frequencies of interest. Previously, several monochromatic sources were used to 

scan over a range of frequencies giving the output at any one time related only to 

the specific scanning frequency. The most recent FTIR spectrometers incorporate 

an advanced scanning principle which allows the collection of double-sided 

interferograms in both the forward and backward scanning directions. This results 

in a high efficiency of data collection. A water cooled silicon carbide glowbar 

source and high optical throughput design produce large signal levels and 

therefore high sensitivity. The detector which contains a low noise amplifier allows 

good signal to noise ratios to be achieved.

The detected signal is digitised by an analogue to digital converter. The 

information in the single beam is processed using an interference effect. It is 

known that interference alters the amplitude of the total radiation reaching the 

detector as a function of time. Absorption components can be distinguished on this 

basis. Data acquisition and Fourier Transform is performed using an Acquisition 

Processor (AQP) card within the PC (connected to the spectrometer). Fourier 

Transform is the mathematical manipulation which converts the record of 

amplitudes into desired spectra. Fourier Transform is sometimes referred to as 

Fourier Inversion, the reason for this being the inverse relationship between time 

and frequency.

The technique of FTIR spectroscopy is advantageous over traditional IR 

techniques in that high speed multiple scans of the spectrum are made 

electronically. Data obtained from many individual runs are accumulated within 

the computer. The background can also be subtracted before the spectrum is 

printed. A high degree of sample throughput can be achieved since the 

multiprocessing capability of the PC enables the processing of previously acquired
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spectra whilst the AQP is collecting and processing new data. FT-IR spectroscopy 

is a relatively expensive technique but it can produce high definition spectra 

quickly and typically requires less than lmg samples. It is particularly usefiil for 

the analysis of compounds being eluted in rapid succession from chromatographic 

columns. On-line use of FTIR spectrometers in association with chromatographic 

systems may minimise the potential for the creation of artifacts and has been used 

in studies of humic substances involving HPLC fractionation. In this study, off-line 

FTIR spectrometry was used in combination with gel chromatography which is 

more time consuming since the procedure requires the preparation of KBr discs 

following solvent removal prior to spectroscopic analysis. Additionally, these 

provided more structural information than solution phase spectra, where fine 

structure was obscured by the presence of broad water peaks.

In addition to FTIR spectroscopy, samples were also characterised using FTIR 

microscopy in reflection mode. The external coupling of a microscope to the main 

spectrometer promotes the analysis of extremely small samples. A spectrum can 

now be attained from sample sizes down to the diffraction limit of the probing 

radiation. The IR measurement is performed in the same manner as conventional 

optical microscopy. The optic mode was used for visual inspection of the sample. 

The sample was placed on a gold coated glass microscope slide and was observed 

as a bright image through the binocular objectives. Focusing is achieved in the 

optic mode using the coarse and fine adjustment of the microscope stage. The 

sample can be moved in the x and y directions using appropriate adjusters. The IR 

beam from the spectrometer optics follows the identical path to the fight and the 

microscope was manually switched between optic and IR measurement mode. In 

the IR mode the beam passes through a small area (<100 micron) of the sample 

and is then directed onto a high sensitivity liquid nitrogen cooled detector. 

Conventional objectives display limited transparency to IR radiation, so all- 

reflecting optical devices are used in the IR microscope. One specific application 

of FTIR microscopy is the examination of small areas in larger samples. This is 

suitable for the determination of impurities on sample surfaces but is also 

applicable to the investigation of heterogeneous solids such as humic substances.
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2.6.2 KBr Disc Preparation

For this study, carefully dried spectroscopic grade KBr was used for disc 

preparation. The preparation of KBr pellets is frequently used for FTIR 

spectroscopic studies of solid samples and KBr in pressed disc form offers a wide 

spectral range (4,000-385cm'1) but is hygroscopic and requires careful storage. 

The discs are also brittle, although they display higher resistance to mechanical 

shock than other matrices used in disc preparation. Disc preparation is, however, 

time consuming and it is essential to exclude moisture at every stage from the KBr 

due to interference at important frequencies.

Spectroscopic grade KBr was initially ground to form a uniform powder and 

stored in a drying oven (60°C). The sample of humic material (bulk or fraction) 

was freeze dried and stored in a dessicator prior to use. A weighed amount of the 

sample (approximately 0.7mg) was ground to form a fine powder and was 

uniformly dispersed in approximately 200mg powdered, dried KBr using an agate 

pestle and mortar. The mixture was placed inside an evacuable die and was 

pressed between a highly polished anvil and plunger to produce pellets of highly 

uniform quality. The die was placed in a manual hydraulic press (10 ton) and a 

vacuum hose is attached to the die. The chamber is evacuated while the die is in 

the press and a 13mm clear disc is formed after approximately 2-3min. 

(Evacuation of the chamber is not essential but it is reported that this results in the 

formation of higher quality, longer lasting discs.)

2.6.3 Au Slide Preparation

A 0.5M NH4OH solution of humic substances (bulk or fractions) was used to 

provide a dry sample with minimal non-humic residue. 0.1M NaOH is an 

unsuitable solvent due to the formation on drying of residual salts, in particular 

carbonates. A capillaiy tube containing the solution was used to place a small drop 

of the sample on the Au plated slide. The droplet was air dried. A sample can be
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built up in layers by the careful addition of further droplets if a greater sample 

mass is required. The method is at present non-quantitative since the mass of 

sample in a droplet is unknown.

2.6.4 Operating Conditions

A Bio-Rad 2000 FTIR Spectrometer was used under clean room conditions. The 

sample chamber was flushed with a scrubbed air supply until the spectrum 

stabilised prior to switching the spectrometer to scan mode. 16 scans of the 

sample were combined and a background subtracted to give the final stored 

spectrum. The FTIR microscope is also flushed with a scrubbed air supply, 

although the sample is not held internally. Clean room conditions are therefore 

essential for the operation of the microscope.

2.7 UV/Visible Spectroscopy

2.7.1 Theory

The visible and UV spectra of organic compounds result from transitions between 

electronic energy levels induced by the absorption of UV or visible light of the 

appropriate energy. Transitions generally occur between bonding or lone pair 

orbitals and an unfilled or anti-bonding orbital and the wavelength of absorption 

therefore is a measure of the separation of the energy levels of these orbitals. 

Absorptions at >200nm are the result of excitation of electrons from p and d 

orbitals and ti-orbitals and particularly ti-conjugated systems. These transitions 

are most readily measured and most informative with respect to structural 

elucidation and comprise the dominant absorptions resulting from the irradiation 

of humic substances with a UV/visible source.

The spectrometer contains two sources : one of white visible fight and the other 

of white UV fight. During the scan, a change over from the white fight source to



Methodology 105

the white UV source occurs in order to give the complete absorption spectrum 

over the range 900-200nrrL An absorption line is not observed; the spectrum is 

generally broad as a result of vibrational and rotational fine structure and is further 

smoothed due to interactions of the solute with solvent molecules.

The cells used in UV spectroscopy are constructed so that the beam of light passes 

through a 1cm thickness of solution. Beer's Law states that absorption is directly 

proportional to the number of absorbing molecules.

Absorption = log10(Io/I) = eel

and where path length, 1 = 1cm

Absorption = ec

This is important with respect to the comparison of humic substances, humic acids 

and fiilvic adds since the absorptions of the component humic acid and fulvic acid 

would be expected to be additive to give the absorption spectrum of humic 

substances. The relationship between absorption and concentration for UV 

absorption is not a property of IR absorption and therefore UV measurements 

within the context of this study are particularly valuable in providing information 

complementary to that obtained from FTIR spectra of the same materials.

2.7.2 Sample Preparation

It is essential that all samples are prepared using identical solvent conditions since 

the position of the absorption maximum UV/visible spectrum varies with pH and 

ionic strength. Suitable solvents contain no chromophores absorbing in the region 

important for humic macromolecules, 400-700nm 0.5M NH4OH was used 

throughout since it satisfies the above criterion and was already the sample 

medium following gel chromatographic fractionation. The fractions were prepared
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directly following elution from the gel column. The undiluted samples were 

placed in UV cells and the absorption intensity at 465nm and 665nm measured. 

A matched cell containing pure solvent is also placed in the appropriate place 

within the sample chamber adjacent to the sample cell. The simultaneous 

measurement of the absorption spectra from each is followed by the subtraction 

of the solvent spectrum from that of the sample. It is essential that the sample is 

not exposed to the UV source for prolonged time periods since the energy 

associated with the UV source is sufficient to induce chemical reactions within the 

sample (E(kJ/mol) = 1.19xl05/A(nm); A, = 297nm =*■ 400kJ). Samples exposed to 

UV/visible radiation in this manner were not used for further analyses.

2.8 Fluorescence Spectroscopy

2.8.1 Theory

The presence of certain chromophores in organic molecules enable these 

compounds to fluoresce. The functional groups which are responsible for the 

fluorescence properties of the molecules also absorb UV radiation. Where 

uncertainty arises in the interpretation of the UV spectrum of humic substances, 

complementary information can be obtained from their fluorescence spectra. The 

incident light is first passed through a monochromator before entering the sample. 

Excitation of the sample molecules at the chosen wavelength is followed by re­

emission at longer wavelengths in all directions. The measurement of the emitted 

light is made at an angle, generally 90°, not in line with the source-sample axis. 

Fluorescence emission intensities may increase linearly with concentration up to 

a factor of approximately 105. However, self absorption at higher concentrations 

is a problem for certain samples and is related to the structure of the molecules. 

This results in the emission of less light at higher concentrations than expected by 

extrapolation of results from lower concentrations but can be overcome by 

dilution of the sample. In the context of this study, the more highly condensed
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the humic macromolecular structure, the more highly quenched the emitted signal 

and therefore this technique can be used to validate interpretations based on E4/E6 

ratios. In other words a low E4/E6 should be accompanied by a highly quenched 

fluorescence spectrum. This can be investigated by decreasing the concentration 

of humic substances in the solution prepared for fluorescence. Similarly, aromatic 

subunits result in the increase of the fluorescence intensity and this information is 

extremely valuable in combination with other spectroscopic techniques.

2.8.2 Sample Preparation

A tenfold dilution of the humic substance fractions was carried out prior to 

measurement of their fluorescence spectrum. For humic acids a hundred fold 

dilution was required in order to reduce the extensive quenching observed after 

only a tenfold dilution. The humic fractions were placed in cells identical to those 

used in UV/visible spectrometry and oriented correctly inside the sample chamber.

2.8.3 Operating Conditions

The excitation of the macromolecules was carried out at 230nm and an emission 

spectrum obtained. A filter at 700nm were used to eliminate emission from the 

solvent.

2.9 CHN Analysis

2.9.1 Theory

The total %C, H and N contents of freeze-dried humic fractions were determined 

by CHN analysis (Perkin Elmer 2400 CHN Elemental Analyser) using the facility 

at the University of Manchester. The technique involves the complete combustion 

of typically 1-2 mg quantities of sample in the presence of an excess of oxygen and 

combusting agents. The combustion products, C02, H20  and N2 gases (and S02),
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are homogensised in the gas control zone before being fractionated using frontal 

chromatography and their stepwise detection using a thermal conductivity 

detector. Oxygen content was determined by difference.

2.9.2 Sample Preparation

Humic fractions obtained using gel chromatography were dialysed and freeze 

dried. 2 mg samples were placed in polythene vials and sent for CHN analysis.

2.10 Amino Acid Analysis

2.10.1 Theory

Amino acids and their derivatives can be separated and identified using GC/MS 

which has been calibrated using available standards. A DB™-5ms column 

(0.25mm i.d.; 0.25 pm film thickness; 30m length) was used in this study. This is 

a capillary column which is composed of three parts : i) fused silica tubing ii) 

external polyimide coating iii) internal chemically bonded stationary phase. The 

stationary phase in this column type is a silicone polymer where the siloxane 

backbone has phenyl groups bonded to 2.5%, by number, of the silicon atoms; the 

remaining 97.5% of the silicon atoms have methyl groups bonded to them This 

is a widely used column type and is applicable to the separation of a wide range 

of samples including amino acids.

2.10.2 Sample Preparation

Humic fractions obtained using gel chromatography were freeze dried prior to 

amino acid analysis. 0.5M NH4OH is a suitable solvent for samples being prepared 

for amino acid analysis due to its volatility and consequently little non-humic 

residue remains on freeze-drying. The method of preparation of humic substances 

for amino acid analysis is outlined below.
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Following the removal of alkaline solution the samples are hydrolysed using 6M 

HC1 and the residues of amino acids separated from the remainder of the sample 

by solvent extraction. The amino acids were converted to tert.-butyldimethylsilyl 

derivatives before analysis.

2.11 Radioanalytical Procedures

2.11.1 a-Spectrometry

Silicon surface barrier detectors were used in the a-spectrometric determination 

of U, Th, Am and Pu in samples of bulk soils and humic extracts. The appropriate 

alpha energies are listed in Table 2.2.

Nuclide a-Particle Energy (MeV) Nuclide a-Particle Energy (MeV)

Th-228 5.424 (237Np 4.872)

Th-230 4.684 238Pu 5.499

TTi-232 3.994 239Pu 5.157

U-232 5.32 240Pu 5.168

U-234 4.773 242Pu 4.903

U-235 4.597 241Am 5.545

U-238 4.195 243Am 5.35

Table 2.2 Alpha Particle Energies of Selected Actinide Elements

Each detector consists of a thin wafer of Si containing junctions of n and p-type 

material across which a reverse electrical potential is applied. A thin layer of gold 

is evaporated onto one side and provides the positive electrical contact whilst 

aluminium deposited on the reverse side provides the negative contact. 

Radiochemical separations followed by electrodeposition onto metal planchettes 

provided suitable thin sources for a-spectrometry. The planchettes were placed 

close to the detector and the chamber pressure reduced to < 100 mbar before
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collection of the a-spectrum. Background spectra were obtained in a similar 

manner by placing a blank planchette in front of the detector. A standard source 

(^Cm, 241Am and 239Pu) was used to produce a three point energy calibration for 

each detector. The resolution of the detectors was approximately 20keV (FWHM) 

but peak widths are generally greater than this depending upon the source 

thickness.

2.11.2 ICP-MS and ETV-ICP-MS

A VGPlasmaquad PQ1 instrument was used to determine the masses of 238U and 

232Th in humic extracts from soils.

The attachment of a quadrupole mass spectrometer to an inductively coupled 

plasma source is a relatively new analytical technique for quantitative and 

semiquantitative trace and ultra-trace multielement analysis. Plasma sources are 

commonly used in emission spectroscopic techniques with the plasma being 

formed when argon gas is ionised to give argon ions and free electrons in the 

gaseous phase. The excitation and acceleration of the free electrons results in the 

production of heat following the increased probability and rate of collisions. 

Temperatures in the hottest part of the plasma are calculated to be as high as 

10,000K. The energy input is from a radiofrequency source at the base of the 

plasma plume and, since not directly connected, the plasma is described as 

inductively coupled. The plasma is suspended away from the silica glass walls of 

the torch chamber through a combination of the coolant gas flow and the shape 

of the radiofrequency electromagnetic field. Figure 2.3 is a diagrammatic 

representation of the instrumentation. The plasma itself is hollow and the analyte 

is sprayed into this hollow region in the form of an aerosol. The introduction of 

a sample into the plasma results in the formation of predominantly singly charged 

ions in the gas phase. The analyte ions are sampled using a skimmer cone and 

focussed using a lens stack before entering the quadrupole magnetic field. The 

ions reaching the spectrometer are predominantly detected at their mass number. 

The instrument is constructed of the inductively coupled plasma and a mass
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spectrometer, the latter operating at 3.7xl0‘6 mbar whilst the ICP operates at 

atmospheric pressure. The pressure is reduced across the ion sampling interface 

which consists of a sharp angled skimmer cone located behind a shallow, water- 

cooled sampling cone. The skimmer cone has an aperture of 0.75mm whilst the 

sampling cone has a 1mm aperture and both are made from highly durable titanium 

nitride-coated nickeL The sampling cone is located at a distance of 10mm from the 

plasma. The pressure behind the sampling cone (2.7mbar) is maintained by a 

rotary vacuum pump and the intermediate pressure behind the skimmer cone is 

further reduced by a vapour pump (10'4mbar). The rotary pump removes most of 

the gas associated with the sample and only 10'4% passes through the skimmer 

cone. The expansion of the gas in the zone between the sampling cone and the 

skimmer ensures that no reactions occur between the plasma species due to their 

increased mean path, therefore maintaining the composition of the sampled gas.

COMPUTER

CAAaT) m cs  QUADRUPOLEr
ION LENSES

(TO VACUUM)

DATA
ACQUISITION 
AND HANDLING

SAMPLE
INTRODUCTIONION FILTRATION

Figure 2.3 Schematic Diagram of an ICP-MS Instrument (Ross, 1993)



2.11.3 U and Th Analysis

Methodology 112

2.11.3.1 Preparation of Soils

5g soil samples were accurately weighed and placed in a muffle furnace at 550°C 

overnight. The soil was then transferred to a platinum crucible containing sodium 

carbonate and sodium peroxide and heated constantly for 10 minutes to form a 

flux which was allowed to cool before immersion of the crucible together with the 

sample in a 250ml beaker containing 50ml of distilled water to which 50ml of 12M 

HC1 was added. 232U/228Th spike was added to the solution which was then 

refluxed for 2-3 hrs and subsequently allowed to cool before removal of the 

platinum crucible. The crucible was washed with 9M of HC1 and the washings 

added to the solution which was then filtered using GF/C filters. The residue on 

the filter paper was washed with 12M HC1 and the washings and solution 

collected in a 500ml flask. The solution was transferred to a 250ml beaker, 

reduced to near dryness and redissolved in a minimum volume of distilled water. 

100ml of 12M HC1 was added and the solution allowed to stand for 2-3 hours 

before refiltering using Whatman 541 ashless filter paper to remove precipitated 

salts. The filtrate was washed with 12M HC1 and the combined solutions 

transferred to a clean 250ml beaker and reduced to near dryness. The sample was 

redissolved in 9M HC1. A DIPE extraction of Fe (40ml aliquots of acid 

conditioned di-isopropyl ether) was repeated until the remaining solution was 

pale. The solution was initially gently heated and 2ml of H20 2 added before 

heating to near dryness and redissolution in 9M HC1.

2.11.3.2 Preparation of Fractions of Humic Substances

Fractions of humic substances obtained by gel chromatographic separation were 

placed in 100ml beakers and appropriate spike solutions added. 10ml of 16M 

HN03 was added and the solutions taken carefully to dryness. This process was 

repeated until a small white precipitate remained. The sample was then redissolved
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in 9M HC1 for radioanalytical separations and a-spectrometry or dissolved in 

0.3M HN03 with the addition of 236U for analysis by ICP-MS.

2.11.3.3 U and Th analysis

2ml of H20 2 was added to the 9M HC1 solution which was heated gently before 

being applied to a conditioned anion exchange column and a further 40ml of 9M 

HC1 passed through the column. The combined effluent comprises the Th fraction 

and was retained for further chemical treatment. U was eluted with 75ml of 1M 

HC1 and the solution evaporated almost to dryness. The sample was redissolved 

in 50ml of 9M HC1 and passed through a second anion exchange column. U was 

again eluted with 75ml of 1M HC1 and, following the addition of 2ml 5% m/v 

NaHS04, the solution was evaporated to dryness. 2ml of 12M HN03 was added 

and the sample taken to dryness. This was repeated with 2ml of 12M HC1. The 

sample was then prepared for electrodeposition (see section 2.11.7).

2.11.4 Pu and Am Analysis

2ml of 16M HN03 was added to the prepared 9M HC1 solution prior to 

application to a conditioned anion exchange column (described in Table 2.3) and 

a further 40ml of 9M HC1 passed through the column. The combined effluent 

comprises the Am fraction and was retained for further treatment. The anion 

exchange column was then washed with 100ml of 8M HN03 and 50ml of 12 M 

HCL Pu was eluted with 50ml of 0.1M HI/11.8M HC1. 2ml of 5% m/v NaHS04 

was added before the solution was reduced carefully to dryness. 2ml of 16M 

HN03 was added and the solution again taken to dryness. This was repeated with 

alternately 2ml 12M HC1 and 2ml 16M HN03 until a small white precipitate 

remained. The sample was then prepared for electroplating (see section 2.11.7). 

The retained Am solution volume was reduced to approximately 5ml and diluted 

to 50ml with distilled water and applied to a conditioned cation exchange column
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(described in Table 2.3). The column was washed with 80ml of 0.5M HC1 and 

80ml of 2M HC1 before Am was eluted with 200ml of 12M HC1. The Am solution 

volume was reduced to 5ml and diluted to 40ml with distilled water. 1ml of lmg 

ml’1 iron chloride solution was added and the pH adjusted to 7 by the addition of 

ammonia solution. The precipitate was retained following centrifugation and 

washed with water. After centrifuging for a second time the precipitate was 

redissolved in 20ml of 93% CH3OH/lM HN03 and applied to a conditioned anion 

exchange column (see Table 2.3). A further 80ml of 93% CH3OH was passed 

through the column followed by 80ml of 0.1M HC1/0.5M NH4SCN/80% CH3OH. 

Am was eluted with 80ml of 0.5M HCL The solution volume was reduced to 20ml 

and four 5ml aliquots of 16M HN03 were added. The first aliquot was added 

dropwise. The solution volume was reduced to near dryness and the sample 

redissolved in 20ml of 8M HN03 before being passed through a second anion 

exchange column. A further 40ml of 8M HN03 was passed through the column 

and the combined effluent retained. 2ml of 5% (m/v) NaHS04 was added to the 

solution which was evaporated slowly to dryness and excess ammonia added 

before redrying and the addition of 2ml of 12M HC1. The solution was then taken 

to dryness and prepared for electrodeposition.

Column Element Solution

Anion (AGlx8) 100-200mesh 
Chloride Form (10cm x 1cm diam)

Uranium 60ml of 1.2M HC1 
followed by 60ml of 9M HC1

Anion (AGlx8) 100-200mesh 
Chloride Form (10cm x 1cm diam)

Thorium 80ml of 8M HN03

Anion (AGlx8) 100-200mesh 
Chloride Form (8cm x 1cm diam)

Plutonium 60ml of 9M HC1

Cation ( 50W) Hydrogen Ion Form 
(8cm x 1cm diam)

Americium 80ml of 0.5M HC1

Anion 1 (AGlx8) 100-200 mesh 
Chloride Form (8cm x 1cm diam)

Americium 80ml of 93% Methanol/IM
h n o 3

Anion 2 (AGlx8) 100-200 mesh 
Chloride Form 16cm x 1cm diam)

Americium 60ml of 8M HN03
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Table 2.3 Conditioning of Anion and Cation Exchange Columns

2.11.5 Np Analysis

2.11.5.1 Preparation of “’Np Spike for the Determination of Chemical Yield

An 8M solution containing approximately 800Bq o f243Am provided a suitable 

activity of 239Np for the determination of chemical yield. The ingrowth of 239Np 

from 243Am (t1/2 = 7380 y) in accordance with the 2.3 5d half-life of the daughter 

enabled the repeated removal of approximately 1 Bq of 239Np after 7 days. 

Hydroxylamine hydrochloride to adjust the oxidation state of Np was added to the 

Am/Np solution before 10ml of TTA (1M TTA in toluene). The solution is shaken 

continuously for 15 minutes resulting in the extraction of >99% of Np into the 

organic layer. Back extraction of Np using 10ml 8M HN03 was achieved by 

continuous agitation of the layers for l-2minutes. The activity of the 239Np in 10ml 

8M HN03 was determined using a Ge-Li detector. The gamma spectrum of 239Np 

contains 6 main peaks. Interferences present at 106 keV mean that the peaks at 

228 keV and 277 keV are the most suitable for calculating the activity of 239Np. 

The solution was divided into two weighed fractions before addition to humic 

samples.

2.11.5.2 Isolation of Np from Fractions of Humic Substances

Digestion of the samples was carried out as described in section 2.11.3. The 

digested sample was redissolved in 9M HC1 and the oxidation state adjusted using 

2ml 16M HN03 before application to a conditioned anion exchange column 

(conditioned as described in section 2.11.4). The column was washed with 9M 

HC1 and the combined effluent may be retained for the subsequent measurement 

of Am The column is washed using 200ml of 8M HN03 in order to elute U prior 

to the addition of 50ml 12M HC1 and in each case the washings were discarded.
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Np is eluted using 50- 100ml of 5M HC1 (experiments showed that virtually all of 

Np is eluted with 50ml of 5M HC1). The use of 5M HC1 results in minimal co­

elution of the remaining U. The solution was carefully reduced to dryness and 

redissolved in 10ml of 8M HN03 before gamma counting in standard counting 

vials. The sample was then carefully redried before redissolution in 1ml of 0.32M 

HN03 as required for aspiration into the ICP-MS via an ETV inlet. The samples 

were analysed using the VG PQ2 ETV-ICP-MS facility at the Jeffrey Schofield 

Laboratory at Westlakes, W Cumbria. A standard solution of 23?Np was analysed 

after every sample and used to ensure the stability of the mass spectrometer and 

ensuring the accuracy of the determination of 237Np in the samples.

2.11.6 Measurement of Mass Balance for Gel Chromatography followed by 

Analysis by ICP-MS

The 238U and 232Th content of duplicate 2mg samples of bulk humic extracts were 

analysed by ICP-MS to calculate the total mass of 238U and 232Th in lOOmg humic 

samples prior to gel chromatographic fractionation. The total mass of 238U and 

232Th in the fractions was then calculated and compared with the respective totals 

for the bulk to give a measure of the retention of humic associated 238U and 232Th 

on the gel column.

2.11.7 Electrodeposition

The electroplating equipment consisted of a plastic tube mounted on a copper base 

(detachable) which supported the polished steel planchette. The seal between the 

plastic tube and the base was maintained by a rubber O-ring. Samples were 

dissolved in 10ml of 1M NH4C1 and placed in the electroplating chamber. The 

sample container was washed with a further 20ml of the plating solution which 

was then added to the chamber. A platinum electrode mounted to a plastic lid was
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then lowered into the chamber. Electrodes attached to the power supply were 

connected negative terminal to the copper base and positive terminal to the 

platinum electrode. The plating current was maintained at 3A whilst the voltage 

was approximately 15 V for the period of electrodeposition. Electroplating times 

for each element are listed in Table 2.4.

Element Time

Uranium 2 hours

Thorium 3 hours

Plutonium 2 hours

Americium 3 hours

Table 2.4 Length of Time Required for Electrodeposition 

of Actinide Elements

2.12 Measurement of U and Th associated With Humic and Fulvic Acids 

with Variation in pH

10ml solutions (pH 10) of bulk humic substances were placed in glass beakers and 

the pH adjusted using 12M HC1 to specific values over the range 0.4 to 3.2. The 

humic and fulvic fractions were separated after centrifugation and analysed 

separately for238U and 232Th by ICP-MS. 236U was added as an internal standard.

2.13 Reference Materials

There are no widely accepted reference materials for determining the accuracy of 

actinide measurements in a humic matrix. In order to minimise the potential for 

obtaining inaccurate results with respect to the elution patterns, certain elution 

patterns were duplicated using separate portions of humic material and a 

comparison was made between results obtained using ICP-MS and a- 

spectrometric techniques. Additionally, ICP-MS samples were run in a non-
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consecutive order (relative to gel chromatographic elution).

The precision of the ICP-MS data was carefully monitored. Three measurements 

from each sample were made and the standard deviation on these results used to 

define the precision. Any data sets with standard deviations of greater than 3% 

were discarded ie. a total elution pattern was discarded if even one sample had a 

standard deviation of greater than 3%.
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CHAPTER 3 

RESULTS AND DISCUSSION

3.1 Introduction

As described in section 1.4.1, humic material from soils and sediments was 

traditionally separated on the basis of its solubility in acid/alkali to give two 

fractions, humic and fiilvic acids. The higher average molecular weight of humic 

acid relative to fiilvic acid (Stevenson, 1982) led, in many studies, to the 

supposition that humic and fiilvic acids were representative of the solid and 

aqueous phase humic material respectively. Studies of associations of metals with 

these fractions were assumed to give an indication of the solubility and hence 

mobility of such metal-humic complexes in a natural terrigenous system.

In the early part of this study humic and fiilvic acid, prepared as described in 

section 2.1, were fractionated using Sephadex gels, and the fractions obtained was 

analysed for their radionuclide content. A similarly prepared set of fractions were 

characterised using FTIR spectroscopy. Following an evaluation of traditional 

methodology, and the observation of significant chemical alteration of the humic 

fraction as a result of the acid precipitation of humic acid, alternative isolation 

procedures were implemented for the remainder of the study. Spectroscopic 

characterisation of fractions of humic substances involved the use of FTIR, UV 

and fluorescence spectroscopy. This chapter will take the form of a discussion of

i) the use of gel chromatography in the fractionation of humic and fiilvic acids,

ii) the alteration of humic material following the use of traditional isolation 

procedures

and

iii) the characterisation of humic substances isolated using modified methodology.



Results and Discussion 120

3.2 Characterisation of Humic and Fulvic Acids Extracted from Soils and 

Sediments in W Cumbria and SW Scotland

Humic acid was extracted using traditional methodology (ie. precipitation 

following the lowering of solution pH to a value of 1) from the following samples:

i) Esk 0-5cm

ii) Southwick 0-5cm

iii) Southwick 40-45cm

iv) Southwick 65-70cnx

Humic acid was also isolated from a highly organic soil at Needle's Eye, SW 

Scotland and for comparison Aldrich humic acid was included in the early part of 

this study.

Fulvic acid was extracted from Esk 0-5cm, Souwthwick 0-5cm and Southwick 

40-45cm.

FTIR spectra of humic and fiilvic acids from these soils and sediments and Aldrich 

humic acid are illustrated in Spectra 3.1 and 3.2.

The spectra are broad and the main absorption bands occur at 3400, 2950, 1720, 

1650, 1590, 1400, 1250, 1050cm'1 and are assigned to functional groups as 

described below:

3400cm'1 band - broad absorption assigned to hydrogen bonded hydroxyl groups 

of carboxylic acids or aliphatic or aromatic alcohols.

2950-2850cm~1 band - sharp but often weak band or bands assigned to aliphatic 

CH2 or CH3 groups.

1720cm'1 band - strong absorption assigned to the C=0 unit of undissociated 

carboxylic acids.

1650cm'1 band - strong absorption assigned to the C=0 unit of other carbonyl 

compounds including aldehydes, ketones, ethers, esters, amino acids. Other



Spectrum 3.1 Aldrich Humic Acid (Na-humate) and Humic and Fulvic Acids
Isolated from Soils and Sediments
i) Aldrich Humic Acid ii) Esk Humic Acid
iii) Needle's Eye Humic Acid iv) Esk Fulvic Acid
v) Southwick Humic Acid vi) Southwick Fulvic Acid
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Spectrum 3.2 Comparison of Humic Acids from Southwick Merse Isolated 
from 0-5cm, 40-45cm and 65-/Ocm Sediment Samples
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interpretations include the contribution of aromatic C=C units to this hand.

1590cm'1 band - strong absorption assigned to the C=0 unit of dissociated 

carboxylic acids ie. carboxylates

1400cm'1 band - assigned to the C=0 unit of undissociated carboxylic acids

1250cm'1 band - assigned to the C=0 unit of undissociated carboxylic acids

1050cm'1 band - assigned to the C=0 unit of dissociated carboxylic acids

These spectral features are characteristic of humic and fiilvic acids and are 

consistent with the spectra obtained by Stevenson and Goh (1971), Schnitzer 

(1972), Kim (1990) and Choppin (1991) (section 1.4.4.3; Figure 1.8). Criticism 

of the use of FTIR spectroscopy to characterise humic and fiilvic acids arises from 

the lack of structural information presented in spectra due to the overlap of 

absorptions occurring at similar wavenumbers. This study does not find significant 

differences between humic materials from diverse origins which is also consistent 

with observations of Stevenson (1982). However, a comparison of humic acids 

isolated from three sediment samples from increasing depths at the same location 

on Southwick Merse reveals that there is a progressive loss of oxygen containing 

functional groups (Spectrum 3.2). CHN data for 0-5cm and 40-45cm humic 

acids, presented in Table 3.1, confirms that there is a significant reduction in the 

percentage oxygen incorporated into 40-45cm humic acid. This is accompanied 

by a change in association of Pu from the organic to Fe/Mn oxyhydroxide phase 

with increasing depth in a similar sediment core (Allan, 1993) (Figure 3.1). 

Additional information is also obtained from C/H and C/N ratios (Table 3.1) 

which indicate that 0-5cm humic acid has a strong marine signature whereas 40- 

45 cm humic acid has higher ratio values and therefore relatively less hydrogen and 

nitrogen. (Typical ratios for marine and terrigenous humic acids appeared in Table

1.1 l.)This is interpreted to be representative of the loss of the marine component
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Figure 3.1 Plutonium Associations in Saltmarsh Sediments (Allan, 1993)



Sample (Humic Acid) %C %H %N %0 C/H C/N

0-5cm Southwick Merse 43.35 5.57 4.18 46.90 7.78 10.37

40-45cm Southwick Merse 55.32 4.52 3.40 36.76 12.23 16.25

Table 3.1 CHN Data for Humic Acid Samples from 0-5cm and 40-45cm 
Southwick Merse

Sephadex 
G Type

15cm 20cm 25cm 30cm 35cm 40cm 50cm

G15 NS NS

G25 NS NS NS

G50 NS NS poor

G75 NS NS poor medium medium

G100 NS poor poor good medium medium poor

G150 poor medium medium

G200 medium

Table 3.2 Optimisation of the Separation of Humic Acids (Esk 0-5cm and 
Aldrich Humic Acids) [NS : no band separation]
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due to preferential preservation of more stable terrigenous material and hence the 

increasing dominance of terrigenous material at depth. Moreover, this provides 

evidence of early diagenetic alterations of the humic fraction in such sediments.

A development of the spectroscopic part of this work involved the comparison of 

spectra collected under atmospheric and moisture -free conditions. Spectrum 3.3 

illustrates the improved resolution which can be obtained by the exclusion of 

moisture from the sample chamber of the FTIR spectrometer.

3.2.1 Characterisation of Humic Acid Isolated Following the Use of Various 

Extractants.

The potential alteration of the humic extract resulting from exposure to strong 

alkaline conditions was investigated by the comparison of four different 

extractants of varying alkalinity. These were water, 0.1M sodim chloride (pH7), 

0.1M sodium hydrogen carbonate (pH 10) and 0.1M sodium hydroxide (pH13). 

The resulting humic acids were compared spectroscopically (Spectrum 3.4) and 

no chemical alteration was detectable in the FTIR spectra. Stronger absorptions 

at 1720, 1250 and 1050cm'1 were observed for the water and 0.1M sodium 

chloride extracts and this is consistent with the extraction of a more highly 

hydrophilic portion of the humic acids in the soil as would be expected under these 

conditions. Most importantly an increase in these bands is not observed for the 

0.1M NaOH extract demonstrating that significant oxidation of the humic acid has 

not occurred. Therefore, the use of 0.1M NaOH to extract all humic materials 

from the soils and sediments in this study without chemical observable alteration 

can be justified. This is important in the identification and elimination of other 

procedural artefacts as will be discussed in section 3.5.



CL

Ooo

Ooo
CO

Spectrum 3.3 Improvements in the Resolution of the FTIR Spectrum of a 
Humic Acid from an Esk Soil Resulting from the Purging of the Sample 
Chamber with a Scrubbed Air Supply
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Spectrum 3.4 Comparison of the Effect of Different Aqueous Extractants on 
the Composition of Humic Acid Isolated from an Organic Soil
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3.3 Chromatographic Fractionation of Humic and Fulvic Acids

Humic adds from the following samples were fractionated using G100 Sephadex 

gel:

i) Esk 0-5cm

ii) Southwick 0-5cm

iii) Southwick 40-45cm.

iv) Needle's Eye 0-5cm

Fulvic acids from Southwick Merse 0-5cm and 40-45cm were also fractionated 

using G100 Sephadex gel.

3.3.1 Optimisation of the Gel Chromatographic Fractionation of Humic and 

Fulvic Acids

The optimum gel chromatographic fractionation of humic add and, likewise, fiilvic 

acid was evaluated by :

i) the observation of two bands during the passage of the humic material down the 

gel column. This is consistent with the work of Posner (1963), who monitored the 

fractionation of HA spectroscopically, and identified two maxima in the 260nm 

absorption in the UV/visible spectrum which coincided with the two bands 

observed on the gel column.

ii) the measurement of the maximum separation of the two bands without 

excessive smearing of the second band.

G15, G25, G50, G75, G100, G150 and G200 Sephadex gels were compared for 

0-5cm humic acid from the Esk soil and Aldrich Humic Acid (Table 3.2). The 

optimum separation of the two bands was achieved using 30cm x 3cm diameter





Spectrum 3.5 Gel Chromatographic Fractions of Aldrich Humic Acid 
i) Aldrich Humic Acid ii) Band 1 iii) Band 2
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Spectrum 3.6 Gel Chromatographic Fractions of Esk 0-5cm Humic Acid 
i) - ii) Band 1 iii) - iv) Intermediate v) - vi) Band 2
vii) End Fraction
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Spectrum 3.7 Comparison of Gel Chromatographic Fractions of Esk 0-5cm
Humic Acid using Sephadex G100 Gel
i) Band 1 ii) Intermediate iii) Band 2
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Spectrum 3.9 Gel Chromatographic Fractions of Esk 0-5cm Fulvic Acid
using Sephadex G50 Gel
i) Band 1 ii) Intermediate iii) Band 2



Spectrum 3.10 Gel Chromatographic Fractions of Esk 0-5cm Fulvic Acid 
using Sephadex G100 Gel
i) Band 1 ii) Intermediate iii) Band 2 iv) End Fraction



Spectrum 3.11a Gel Chromatographic Fractions of Esk 0-5cm Humic Acid
using Sephadex G100 Gel and a 5% Methanol Eluent
i) Band 1 ii) Intermediate iii) Band 2
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Spectrum 3.11b Gel Chromatographic Fractions of Esk 0-5cm Humic Acid
using Sephadex G100 Gel and a 10% Methanol Eluent
i) Band 1 ii) Intermediate iii) Band 2
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Spectrum 3.11c Gel Chromatographic Fractions of Esk 0-5cm Humic Acid
using Sephadex G100 Gel and a 10% Decan-l-ol Eluent
i) - ii) Band 1 iii) Intermediate iv) Band 2
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Spectrum 3.11d Gel Chromatographic Fractions of Esk 0-5cm Humic Acid
using Sephadex G100 Gel and a 5% i-Amyl Alcohol Eluent
i) Band 1 ii) - iii) Intermediate iv) Band 2
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Spectrum 3.12a b c Comparison of the Region 1700-lOOOcm'1 of the Spectra 
of Gel Chromatographic Fractions of Esk 0-5cm Humic Acid Obtained using 
G100 Sephadex Gel and a Range of Eluents 
a 0.1M NaOH b 5% Methanol c 10% Methanol
i) Band 1 ii) Intermediate iii) Band 2
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Spectrum 3.12d e Comparison of the Region 1700-lOOOcm'1 of the Spectra 
of Gel Chromatographic Fractions of Esk O-Scm Humic Acid Obtained using 
G100 Sephadex Gel and a Range of Eluents 
d 10% Decan-l-ol e 5% t-Amyl Alcohol 
i) Band 1 ii) Intermediate iii) Band 2
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column containing G100 Sephadex gel and this is illustrated for 0-5 cm humic acid 

from the Esk soil (Plate 3. lb).

Whereas G25 and G50 Sephadex gels, due to their smaller pore size, resulted in 

no significant separation, fractionation of humic and fiilvic acids on Sephadex 

G100 gel is characterised by separation in to two distinct bands on the gel column. 

Fractions containing humic material from the first band are intensely coloured and 

cloudy (Plate 3.1c) whereas fractions containing material from the second band 

are somewhat less intensely coloured and clear. Intermediate fractions are paler 

and clear, indicating that good separation of the two bands has been effectively 

achieved. This is consistent with the results obtained by Livens et al. (1990) who 

also used Sephadex gels to fractionate humic materials of similar origins to those 

used in this study.

G150 and G200 gels using columns of greater than 20cm to effect band separation 

resulted in excessive smearing of the bands due to the longer elution times 

required.

The separation procedure was also monitored using FTIR spectroscopy and the 

results are shown in Spectra 3.5-3.12. These results will be discussed in terms of 

the optimisation of the gel chromatographic fractionation of humic and fulvic acid. 

The following section will further consider the use of FTIR spectroscopy in the 

characterisation of humic and fulvic acids.

Spectrum 3.5 illustrates the results of fractionation of Aldrich humic acid and 

highlights compositional differences between humic acid macromolecules 

contained in the two bands. A comparison with the spectrum of bulk Aldrich 

humic acid indicates that the spectroscopic features of the fractions are consistent 

with those in the unfractionated material. Spectra 3.7-3.8 show compositional 

differences between fractions of 0-5cm humic acid from the Esk soil. Band 1 

macromolecules contain more carboxylate functional groups (1590, 1400 and 

1050cm'1) than band 2 macromolecules which contain more undissociated 

carboxyl groups (1720 and 1250cm'1). This is consistent with the high proportion 

of trace metals associated with humic macromolecules in band 1 (Livens, 1989).
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Macromolecules in intermediate fractions give rise to weaker absorptions than 

either band 1 or 2 humic material and since FTIR samples all contained identical 

amounts of humic material, this may indicate that these macromolecules have 

fewer functional groups (spectrum 3.8). Overall, the spectra of eluted fractions 

indicate that good separation has occurred and there are significant compositional 

differences between macromolecules from the different bands.

The spectroscopic data resulting from the gel chromatographic fractionation of 

humic acid isolated from the highly organic soil at Needle's Eye (Spectrum 3.8) 

can be compared with those obtained for the Esk humic acid. A trend of 

decreasing carboxylate and increasing carboxyl functionality with increasing 

fraction number is observed for these humic acids of diverse origin. The overall 

compositional differences are less marked for the Needle's Eye humic acid and 

may result from poorer degradation of humic precursors under the highly reducing 

conditions prevailing at this location.

Fulvic acid from the Esk soil was fractionated on both G50 and G100 Sephadex 

gels (Spectra 3.9 and 3.10). As discussed above poor separation was observed 

using G50 Sephadex gel and this is reflected in the uniform composition of the 

spectra of fractions of fulvic acid. Separation on G100 Sephadex did result in 

fractions with differing composition with the 1720 and 1400cm1 bands arising 

from carboxyl groups being most prominent in fractions corresponding to band 2 . 

These results are similar to those of Schnitzer and Skinner (1968) and the trend 

is again identical to that identified for the fractionation of humic acid.

3.3.2 The Optimisation of Gel Chromatographic Fractionation of Humic 

Acids using Sephadex G100 with Different Eluents

Gel chromatography studies outlined by Shaw (pers. comm, 1993) suggested that 

the use of 5-10% (v/v) methanol/ 0.1M sodium hydroxide solutions as eluents 

could improve further the separation of the two bands prior to elution from the 

gel column. In this study methanol, decan- l-ol and t-amyl-alcohol were added to 

0.1M sodium hydroxide solution to give the following eluents :
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i) 5% (v/v) methanol

ii) 10% (v/v) methanol

iii) 10% (v/v) decan- l-ol

iv) 5% (v/v) t-amyl alcohol.

The results were again monitored spectroscopically and are shown in Spectra 3.11 

and 3.12. However, no apparent improvement in the separation of the two bands 

is achieved since the same trend of changing functionality (1750-1500cm'1 region) 

with increasing elution time is again observed and is also independent of the nature 

of the alcohol.

An additional feature of the spectra relating to the use of 10% methanol and 10% 

decan-l-ol is the appearance of a sharp band at 1390cm'1. This suggests either that 

there has been some alteration of the humic material due to exposure to these 

solvents or, more probably, that a specific interaction has occurred between the 

alcohol and the humic material. The latter would be consistent with

i) the effect for methanol is increasingly apparent with the increasing proportion 

of methanol in the solvent

ii) the effect is more prominent in certain fractions than others for decan-l-ol 

indicating that the larger size of this alcohol results in a more specific interaction

iii) the effect is not observed for the sterically hindered t-amyl alcohol.

From these experiments, it can be concluded that there is no apparent 

improvement in the separation of components of humic acid resulting from the use 

of eluents containing proportions of these alcohols. Additionally, interactions of 

the alcohol with components of humic acids cannot be discounted and from this 

it is clear that the use of such eluents is, at best, inadvisable.

3.4 Characterisation of Gel Chromatographic Fractions of Humic and Fulvic 

Acids

3.4.1 Spectroscopic Characterisation of Gel Chromatographic Fractions of 

Humic and Fulvic Acids
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In addition to monitoring the separation process occurring on the gel column it is 

also apparent that the spectra of fractions have greater resolution than those of 

bulk humic and fulvic acids and the well-characterisd trend of changing 

functionality with increasing elution time establishes FTIR spectroscopy as an 

extremely useful technique in the characterisation of humic and fulvic acids. In 

addition, an important observation is that the fractionation of humic and fulvic 

acids not only from the same soil but also from diverse origins produces the same 

pattern of compositional differences. This topic is discussed further in section 3.5.

3.4.2 Characterisation of Actinide Interactions with Gel Chromatographic 

Fractions of Humic and Fulvic Acids

In the early part of this study U and Th analyses, using a-spectrometry and ICP- 

MS, were carried out for individual gel chromatographic fractions of humic acid 

from 0-5cm Esk soil and humic and fulvic acids from 0-5cm and 40-45cm 

Southwick Merse sediment. The elution patterns obtained are illustrated in Figures 

3.2-3.4 and Tables 3.3-3.5.

75% of the 232Ih  and 45% of the 238U are associated with fractions 1-5 of the Esk 

humic acid (Figure 3.2). Moreover, the total number of atoms of 232Th is in excess 

of that of 238U and this is discussed in section 3.5. FTIR spectroscopy showed 

that early fractions contained higher proportions of carboxylate groups and it is 

known that early fractions generally have a high trace metal content (Livens, 

1989), so it can tentatively be suggested that U and Th may be bound by 

carboxylate groups, although this could not be directly concluded from the 

spectroscopic evidence alone.

A similar pattern is evident for the 0-5cm Southwick humic acid and fulvic acid. 

100% is found in fractions 3-7 (Fig. 3.3). This again suggests a similarity in 

the behaviour of humic materials of diverse origin.

A different pattern is observed for the 40-45cm Southwick humic and fulvic acid 

(Fig. 3.4). Greater than 90% of 232Th and 238U is found in fractions 10-20. The
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Region Classification % % %

1 very high 36.06 54.68 67.09

2 medium 18.62

3 medium 12.41 21.24

4 low 8.83 32.85

5 medium 10.52 24.02

6 medium 13.5

Activity 2 = 0.09 ± O.OlBq (per 
1 OOme)

Table 3.3a Esk 0-5cm Humic Acid Uranium G100

Region Classification % % %

1 very high 63.1 79.61 89.29

2 medium 16.51

3 low 9.68 14.11

4 very low 4.43 10.68

5 very low 3.17 6.25

6 very low 3.08

Activity 0.027 Ba (oer 100me7

Table 3.3b Esk 0-5cm Humic Acid Thorium G100



Region Classification % % %

1 very high 55 100 100

2 very high 45

3 - -

4 -

5 - -

6 -

Activity 2 = 0.19Bq (per 
100ms7

Table 3.4a Southwick Merse 0-5cm Humic Acid Uranium G100

Region Classification % % %

1 very high 67 100 100

2 high 33

3 - - -

4 - -

5 - - -

6 - -

Activity 2 = 0.03Ba (t>er 100mg)

Table 3.4b Southwick Merse 0-5cm Fulvic Acid Uranium G100



Region Classification % % %

1 very low 0.3 1.07 4.38

2 very low 1.04

3 very low 3.31 44.81

4 very high 41.50 93.6

5 very high 51.40 52.1

6 very low 0.7

Activity 2 = 0.169Ba foer lOOme^

Table 3.5a Southwick Merse 40-45cm Humic Acid Uranium G100

Region Classification % % %

1 very low 0.08 0.91 6.32

2 very low 0.83

3 low 5.41 45.3

4 high 39.90 91.0

5 high 50.60 51.1

6 very low 0.5

Activitv 2 = 0.1 OBa (oer lOOmg)

Table 3.5b Southwick Merse 40-45cm Humic Acid Thorium G100



Region Classification % % %

1 very high 100 100 100

2 - -

3 - - -

4 - -

5 - - -

6 - -

Activity 2 = 0.08Ba (oer lOOme)

Table 3.5c Southwick Merse 40-45cm Fulvic Acid Uranium G100

Region Classification % % %

1 very high 100 100 100

2 - -

3 - - -

4 - -

5 - - -

6 - -

Activity 2 = 0.009Ba (r>er lOOmg)

Table 3.5d Southwick Merse 40-45cm Fulvic Acid Thorium G100
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broader radionuclide distribution is partially due to the longer time spent by these 

fractions on the gel prior to elution. The average molecular weight of these 

macromolecules could again be assumed to be lower than actinide-organic species 

from either of the 0-5 cm samples.

Comparison of the actinide distribution patterns for 0-5cm and 40-45cm humic 

add indicates that the distribution changes with depth and this is again consistent 

with the spectroscopic changes observed in this study (Spectrum 3.2) and the 

information obtained from sequential leaching studies by Allan (1993).

In every case, a simple distribution pattern is observed for U and Th. Elution 

patterns obtained by Livens (1989) showed that Pu and Am are also associated 

with humic and fulvic macromolecules eluting from the first band but additionally 

that there is a further association of both Pu and Am with macromolecules from 

the second band. Bulman (1990) also observed a bimodal distribution for Pu 

similar to that described by Livens (1989). From the experimental data obtained 

in this study:

i) it is apparent that the predominant interaction of U and Th in surface soils and 

sediments occurs with humic and fulvic molecules that elute in specific fractions 

at the exclusion volume.

ii) although U and Th in the remaining fractions may comprise a significant 

fraction of the total U and Th, comparison of the activity of these radionuclides 

relative to the concentration of humic material in each fraction suggests that the 

material in later fractions has a significantly lower binding capacity. This is the 

consistent with the FTIR spectra which indicate predominantly carboxyl as 

opposed to carboxylate groups and also with the observations of Rashid (1971) 

that not all acidic functional groups participate in metal binding.

iii) in comparison with literature data for Pu and Am (Bulman, 1990; Livens, 

1989), the behaviour of U, Th, Pu and Am is characteristic of the individual 

element and can be generalised as :
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Th > U, Pu > Am in band 1 and U > Th, Am > Pu in band 2.

3.5 Evaluation of Traditional Methodology Used in the Isolation of Humic 

and Fulvic Acids

A major concern noted by various authors (Stevenson, 1982; Schnitzer and Khan, 

1972) has been the potential alteration of humic material following exposure to 

strong alkaline conditions. Stevenson (1972) and Farmer and Morrison (1960) 

concluded from FTIR spectroscopic observations that alteration of fiilvic acid 

occurred following prolonged exposure to strongly acidic conditions (Section 

1.4.5.3). In particular, the formation of a humic acid-like material upon exposure 

of fulvic acid to mineral acids was indicated by Stevenson (1972). The present 

study incorporated the investigation of both the effects of both strong alkali 

(section 3.2.1) and strong acid on the composition of the humic fraction of soils 

and sediments.

3.5.1 Characterisation of Humic Substances Extracted from Soils and 

Sediments in W Cumbria and SW Scotland

For the remainder of this study, only humic substances, as defined by the 

extraction procedure in section 2.3.1, have been characterised, due to the concerns 

expressed in the previous section but also following the results of this study for 

humic and fiilvic adds. The characteristics of humic and fiilvic acids from diverse 

origins are very similar (spectroscopically in terms of fractionated and 

unfractionated materials; also in terms of metal interactions)

If humic and fiilvic acids are genuinely constituents of humic substances then the 

latter should exhibit properties that are a sum of those of the humic and fiilvic 

acids. Although it could be argued that humic substances are so heterogeneous 

that such a comparison would be impossible, this hypothesis can be tested using 

gel chromatography to fractionate humic substances in a similar manner to that 

described above for humic and fiilvic acids. This allows comparison of the
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spectroscopic properties of and actinide interactions with fractions of these 

materials. At each stage in the following section (where appropriate) the 

hypothesis that the properties of humic substances are not the sum of the 

properties of humic and fiilvic acids will be tested and the final conclusions 

summarised in section 3.5.1 and 3.5.2.

Humic substances were extracted from the following samples :

i) Esk 0-5cm and 10-15cm

ii) Muncaster 0-5cm and 10-15cm

iii) Southwick 0-5, 40-45 and 65-70cm.

Typically humic substances had <2% mineral content following the incorporation 

of a second centrifiigation (40min.; 3637g) of the alkaline extract (which did result 

in a visible residue although the dark humic extract had not previously appeared 

to be cloudy) so no purification steps were required. This is in strong contrast to 

the high mineral contents reported for humic acids which are of the order of 10 to 

>30% (Schnitzer, 1972; Stevenson, 1982). Fulvic acids have typically low ash 

contents and values quoted are often around 2% (eg. Schnitzer, 1972). A possible 

explanation of this is that mineral matter becomes associated with humic acid 

during the precipitation of humic acid under strongly acidic conditions. The 

presence of a measurable amount of fine non-organic particulate material 

suspended in solution has been observed by a second centrifiigation of the alkaline 

extract. This is not commonly incorporated in to humic acid extraction techniques 

(with the exception possibly of Rao, 1994; Choppin, 1988 etc. who use 

redissohition, centrifiigation and reprecipitation as a purification procedure) since 

the humic extract does not appear cloudy. Co-precipitation of the mineral material 

together with humic acid (ie. aggregate formation) can account for the 

significantly higher mineral content of humic acid relative to fiilvic acid and does 

not necessarily indicate an association of humic acid with similar proportions of 

mineral material or with the same fraction of mineral material in the environment. 

The humic content of the samples studied detailed in Table 3.7 shows the



Sample Loss on Ignition

Esk 0-5cm 12.0%

Esk 10-15cm 6 .6%

Muncaster 0-5cm 8 .0%

Muncaster 10-15 cm 4.9%

Southwick Merse 0-5cm 5.1%

Southwick Merse 40-45cm 3.9%

Southwick Merse 65-70cm 4.0%

Offshore Sediment 0-5cm 0.5%

Table 3.6 Percentage Loss on Ignition for Soils and Sediments

Sample % Humic 
Substances

% of Total 
Organic Fraction

Esk 0-5cm 8 .0% 67%

Esk 10-15cm 4.7% 71.2%

Muncaster 0-5cm 5.5% 54.5%

Muncaster 10-15 cm 3.4% 69.4%

Southwick Merse 0-5cm 1.8% 35.3%

Southwick Merse 40-45cm 2.7% 69.2%

Southwick Merse 65-70cm 2.9% 72.5%

Table 3.7 Percentage Humic Substances in Soils and Sediments
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Spectrum 3.13 Humic Substances Isolated from Esk 0-5cm Soil



Spectrum 3.14 Humic Substances Isolated from Southwick Merse 40-45cm 
Sediment
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Spectrum 3.15 Humic Acid Isolated from Southwick Merse
40-45cm Sediment
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Spectrum 3.16 Comparison of Humic Substances from Esk and Muncaster 
Isolated from 0-5 and 10-15cm Soil Samples 
i) Esk 0-5cm ii) Esk 10-15cm
iii) Muncaster 0-5cm iv) Muncaster 10-15cm



Spectrum 3.17 Comparison of Humic Substances from Southwick Merse 
Isolated from 0-5cm, 40-45cm and 65-70cm Sediment Samples
i) 0-5cm ii) 40-45cm iii) 65-70cm
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following trend of decreasing content (Table 3.6 shows loss on ignition):

Esk 0-5 cm > Muncaster 0-5cm > Southwick 0-5 cm 

A small decrease from 6% to 4% in the total organic carbon content of the 

Southwick Merse sediment was observed with increasing depth. Humic substances 

typically make up about 50-60% of the organic fraction in surface sediments. 

However, humic material comprised a lower proportion of the organic fraction in 

surface sediments than would be expected at this location but the proportion of 

the organic fraction comprising humic material increased with increasing depth 

(Table 3.6). This may have been due to the higher amount of halophytic grass 

material (including roots) present in the surface sediments (living biomass). In 

sample preparation, the removal of all vegetation was not achievable. A further 

observation from these results is that total amount of humic substances present at 

depth in comparison with the surface sediment did not vary greatly.

The extracted humic substances were characterised using a range of techniques 

including FTIR, UV and Fluorescence spectroscopy. FTIR spectra of humic 

substances from these soils and sediments are illustrated in Spectra 3.13-3.17. 

Broad bands are observed in all spectra of humic substances and the main 

absorptions are in the regions 3400-3000cm'1, 1700-1400cm'1 and 1200-1000cm' 1 

and this general picture is similar to that of humic and fulvic acids. However, an 

additional absorption band at 865cm'1 is apparent in the spectra of humic 

substances and can be related to the presence of substituted aromatic structures 

(Spectrum 3.13). No absorptions in the region <1000cm' 1 were observed for any 

humic or fiilvic acid or any gel chromatographic fraction of these materials. This 

is particularly important because humic acid and fiilvic acid are the only two 

constituents of humic substances and so this band should appear and potentially 

be stronger in humic and/or fiilvic acid. This clearly indicates the loss or alteration 

of the structural features which account for this absorption in humic substances. 

The mechanism and justification proposed for this alteration is as follows :

i) the addition of hydrogen ions (pH 1; 0.1M) results in the reduction of inter and 

intra molecular repulsive forces enabling reactive units to approach more closely
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ii) all humic substances contain a proportion of aromatic units (minimum 15% for 

marine humic materials) which are highly substituted. These types of compounds 

readily undergo coupling via O or C atoms and it is proposed that acid induced 

condensation is the chemical route to such products.

iii) the proximity of strands of the same molecule mean that this coupling may 

occur within and/or between humic molecules. The outcome is therefore likely to 

include a high proportion of molecules which are highly condensed (crosslinking) 

with a predominantly aromatic core and may have longer aliphatic side chains 

(with associated functional groups) predominantly on the exterior.

iv) since two bands are also observed for fulvic acid this process also occurs but 

to a lesser extent which can be explained in terms of the higher functionality of 

molecules which remain in the fiilvic acid fraction (the inter and intra molecular 

distances will be larger). This would be consistent with the observation of the 

lower aromaticity of fulvic acid.

v) the effect on fiilvic acid of prolonged exposure of acid is less readily explained 

in terms of colloidal principles although the precipitation of a humic acid like 

residue is supportive of a condensation type mechanism. Kinetic considerations 

might lead to the assumption that the replacement of cations with IT ions results, 

over prolonged periods, in a rearrangement of metal or FT ions within the humic 

material resulting in conformational change and subsequently condensation of the 

molecules in the fiilvic acid fraction.

vi) it has been suggested that the first band eluted at the exclusion volume for 

humic acid contains molecules with a highly aromatic core in agreement with the 

results ofPosner (1963). In order to account for this observation, Posner (1963) 

suggested that the presence of two bands on the gel column was indicative of two 

starting materials in the formation of humic substances : a high molecular weight, 

dark brown component derived from only partially degraded lignin and a low
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molecular weight, lighter brown component comprising easily decomposed plant 

material and degraded components of the high molecular weight molecules. This 

study suggests that the two bands are the result of a procedural artefact and this 

is discussed further in section 3.5.2.

Moreover, a comparison of humic acid and humic substances from Southwick 

Merse shows that absorptions occur at significantly different wavenumbers. This 

is partially due to the form of the humic material since the humic substances, 

although dialysed, are not in "acidified" form and so little absorption would be 

expected at 1720cm'1. The remaining differences cannot be accounted for without 

invoking a chemical alteration of the humic material arising from the extraction 

procedure.

A comparison of humic material extracted from soils and sediments from different 

depths at the same location shows that there is a consistent loss of oxygen- 

containing functional groups with increasing depth and again indicates that the 

humic fraction is subject to degradation with increasing time after its formation 

(Spectra 3.16 and 3.17). A comparison of humic substances from the three 

locations also shows that there are characteristic differences between these humic 

materials . Although, it is not possible to directly relate these differences to 

specific chemical differences, it would appear that the main features occur at 

different wavenumbers, are present in differing amounts and in general represent 

more aliphatic structures for the marine influenced Merse humic material when 

compared with the more highly terrigenous Esk humic materials. Further 

differences are apparent when surface and depth humic materials are compared 

indicating loss of import ant oxygen containing functional groups and comparison 

between sampling locations shows that these differences are characteristic of the 

prevailing conditions. Therefore this study shows not only that humic materials 

from different origins are compositionally different but also that prevailing 

conditions give rise to highly characteristic degradation of the humic fraction with 

increasing time (Spectra 3.16 and 3.17). In summary of the results presented in 

this section :
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i) humic substances do not exhibit FTIR spectral characteristics that are a sum of 

humic and fidvic acids.

ii) humic substances from different environments exhibit different characteristics 

as would be expected from the diverse range of source materials (this will become 

more apparent in following sections). This contrasts with humic and fidvic acids 

which exhibit similar characteristics suggesting that the chemical diversity is lost 

by chemical alteration of humic materials.

iii) the results provide direct evidence of the alteration as a result of the chemical 

separation of humic and fidvic acids.

3.5.2 Charactacterisation of Gel Chromatographic Fractions of Humic 

Substances using FTIR Spectroscopy

Fractionation of humic substances from a given location, on a G100 Sephadex gel 

column generates an elution pattern that is visibly different from that observed for 

either humic acid or fidvic acid (Plate 3.1a). The characteristic two band pattern 

of the latter materials is not observed for humic substances but, instead, a 

continuum of macromolecules is observed with a gradation in colour. In the 

separation of fractions of humic substances, initially paler fractions are eluted 

followed by gradually darker fractions (Plate 3.2a). The intense colour of the 

upper end of the sample band observed early in the fractionation procedure 

decreases slightly as the molecules move down through the gel indicating that a 

degree of band smearing is occurring but later fractions are darker and this is 

reflected in their UV absorbance (Plate 3.2b)(Spectrum 3.32). It is important to 

note that the intense dark band observed in humic or fidvic acid fractionation at 

the leading edge of the sample band is completely absent and, consequently, no 

dark coloured fractions are eluted at the exclusion volume (Plate 3.1c). The dark 

colour of humic materials is reported to be associated with condensed, lignin type 

structures and on the basis of these observations it is proposed that the source of 

the intense colour in humic and fidvic acids is an artefact, arising from chemical





Spectrum 3.18 Gel Chromatographic Fractions of Esk 0-5cm Humic
Substances using Sephadex G100 Gel
i) - ii) Early Fractions iii) - v ) Later Fractions
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Spectrum 3.20a Gel Chromatographic Fractions of Esk 0-5cm Humic Acid 
using Sephadex G25 Gel Where Humic Acid and Fulvic Acid were 
Chemically Separated After Elution of Humic Substances from the 
Gel Column
i) Fraction 1 ii) Fraction 2 iii) Fraction 3
iv) Fraction 4 v) Fraction 6 vi) Fraction 8
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Spectrum 3.20b Gel Chromatographic Fractions of Esk 0-5cm Humic and 
Fulvic Acids using Sephadex G25 Gel Where Humic and Fulvic Acids were 
Chemically Separated After Elution of Humic Substances from the 
Gel Column
i) - iv) Fulvic Acid Fractions 2, 4, 6 and 8
v) - viii) Humic and Fulvic Acid Fractions 10 ,12,14 and 16



Spectrum 3.20c The Effect of pH on the Composition of Humic Acid 
Precipitated from a 0.1M NaOH Solution
i) pH 7 ii) pH 6 iii) pH S iv) pH 4
v) pH 3 vi) pH 2 vii) pH 1
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procedures during isolation.

Spectroscopic studies of gel chromatographic fractions of humic substances using 

Sephadex G100 gel under identical conditions to those used for humic and fulvic 

adds show that there are compositional differences between fractions (Spectrum 

3.18). Moreover, these differences are not related to those observed for humic and 

fulvic adds. The increased resolution of humic spectra as a result of fractionation 

has allowed the observation of fine structure in absorptions in the regions 1660- 

1500cm'1 and 1400-1300cm'1. The shapes of these peaks are characteristic of 

aromatic ring structures and these are clearly only present in later fractions. This 

information together with the presence of a sharp absorption in the region 

<1000cm'1 confirm that these fractions contain substituted aromatic units. Their 

presence only in later fractions immediately suggests that the fractionation 

procedure occurring on the gel column may not be simply due to a size separation 

since it is well-known that simple aromatic compounds are strongly retarded on 

Sephadex gels (Hayes, 1985). Additional information relating to the presence of 

aromatic units was obtained from the intensity of fluorescence displayed by 

macromolecules from these fractions. Figure 3.5 shows that there is a marked 

increase in the fluorescence intensity for humic macromolecules in later fractions 

and this correlates well with the presence of the aromatic structures identified by 

FTIR spectroscopy.

In order to investigate the separation procedures, Sephadex G25 was used to 

fractionate humic substances from the 0-5cm Esk soil. The smaller pore size of 

this gel results in the exclusion of a high proportion of the humic material and as 

a result the spectra of early fractions are relatively broad (Spectrum 3.19a). The 

humic macromolecules which are not excluded from the gel pores and are eluted 

at larger volumes are increasingly aromatic in character. This is discussed further 

in section 3.5.3.

A corresponding experiment involving the separation of humic and fulvic acids 

following gel fractionation using G25 Sephadex gel showed that the features 

relating to the aromatic units in spectra of humic substances were again absent in 

those of humic and fulvic acid (Spectrum 3.20a and b). Half of each fraction was
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acidifed resulting in the precipitation of humic acid leaving fulvic acid in solution. 

However, humic and fulvic acid could only be separated from the early fractions 

due to the small amount of humic material present in later fractions. From the 

spectra ofhumic add it is apparent that the result of humic acid precipitation is a 

material of fairly uniform composition. Overall, only three significantly different 

compositions are observed for all spectra in strong contrast to those ofhumic 

substances from the same fractions. These compositional differences are identical 

to those identified for the two bands and intermediate material of fractionated 

humic and fulvic acids which resulted from the chemical treatment of humic 

substances prior to gel fractionation. However, the change from carboxyl in early 

fractions to carboxylate in later fractions was not observed. Spectra of later 

fractions which contained small amounts ofhumic and fulvic acid gave rise to 

some extent to spectra similar to those of band 1. The features of the spectra were 

simply consistent with those of humic or fulvic acids but not with humic 

substances.

A number of conclusions can be drawn (or substantiated; see previous sections) 

from the results of this experiment:

i) the FTIR spectroscopic characteristics ofhumic substances are not the sum of 

humic and fulvic acids;

ii) the results provide indisputable evidence of the alteration ofhumic and fulvic 

acids;

iii) the mechanism proposed above for the condensation ofhumic molecules would 

require to be further tested by the measurement of the average molecular weight 

of molecules in the fractions containing humic substances and those containing 

acid treated molecules; however, careful validation of a selected technique to 

determine accurately molecular weights ofhumic materials would be required and 

was beyond the scope of this project;
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iv) from the results of this study it is suggested that the two bands observed during 

the fractionation of both humic and fulvic acids are simply artefacts of the 

procedures involved in the chemical separation ofhumic and fulvic acids. More 

precisely, the observation of only three different spectra for any humic or fulvic 

add fraction leads to the explanation of the presence of the two bands. All humic 

add molecules giving rise to a spectrum of type I co-elute during gel fractionation 

ofhumic acid and lead to the observation of band 1 on the gel column. A similar 

argument holds for band 2 and also for fulvic acid.

Additional evidence of the alteration of the humic material was obtained using 

UV/visible spectroscopy. The E4/E6 ratio (the ratio of the absorbances at 465 and 

665nm) for humic acid, fulvic acid and humic substances and their respective gel 

fractions are shown in Table 3.8. The lowest ratios are observed for humic acids 

indicating a more highly condensed structure. The highly quenched nature of 

fluorescence spectra of fractions ofhumic add confirm this observation (Spectrum 

3.27 a and b). Additionally, the lowest values of the ratio coincide with the 

position of the two main bands on the gel column and this, together with the 

information presented in the preceding paragraphs, indicates that a condensation 

reaction involving substituted aromatic units occurs during the acid precipitation 

of humic acids. By comparison, humic substances have a substantially less 

condensed structure than either humic or fulvic acids (Table 3.8 and Spectra 3.27 

and 3.28).

The higher E4/E6 ratios observed for intermediate fractions between bands 1 and 

2 of fractionated humic acid are consistent with the decreased functionality 

observed in their FTIR spectra.

CHN data for fractions from band 1 of a humic acid also show that significantly 

higher proportions of oxygen are present in the fractions corresponding to band 

1 when compared with the fractions which elute immediately afterwards (Figure 

3.6).

Further conclusions from this additional information are :



Sample E4/E6 Ratio

Humic Acid 4.1

Humic Acid (Gel Fractions) 3.25-5.75

Fulvic Acid 6.9

Fulvic Acid (Gel Fractions) 6 .0-8 .5

Humic Substances 9.95

Humic Substances (Gel Fractions) 4.13-16.1 fav. = 10.15)

Table 3.8 E4/E6 Ratios For Humic and Fulvic Acids and Humic Substances



Spectrum 3.27 Comparison of Fluorescence Spectra of the Gel Chromatographic Fractions 
of Humic Acid and Humic Substances
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Figure 3.6 Elemental Data (CHN) for Gel Chromatographic Fractions of

Southwick Merse Humic Acid 0-5cm



Results and Discussion 185

i) the molecules ofhumic acid in bands 1 and 2 have significantly more condensed 

structures than any fractions ofhumic substances supporting the mechanism of 

alteration;

ii) the characteristics of humic substances are clearly not the sum of those of 

humic and fulvic acids;

iii) the humic acid molecules in fractions between bands 1 and 2 have less 

condensed structures and this may be related to their lower oxygen content 

identified using CHN analysis. In particular, these molecules have fewer of the 

functional groups suitable for condensation reactions and therefore they elute 

potentially according to their original properties. This would be consistent with 

the conclusions drawn by Powell and Town (1990) who suggest that some humic 

molecules undergo irreversible aggregation, others undergo reversible aggregation 

whilst a proportion are unable to interact in this manner.

3.5.3 Molecular Weight Determination of Humic Substances using Sephadex 

Gels

Studies of the molecular weight distribution of humic and fulvic acids have 

included the use of gel chromatography. This involves the calibration of the gel 

column using protein or dextran standards as described in section 1.4.4.7. A 

number of problems were discussed including the inapplicability of the available 

standards whose molecular shapes are unsuitable for comparison with humic 

substances. Additional problems arise where there are interactions of the solute 

with the gel. The results of the gel chromatographic fractionation of humic 

substances have clearly shown that in part a chemical separation of components 

has occurred. The degree of chemical interaction with the gel is affected by the 

aliphatic/aromatic nature of the humic material and also by the gel type as is 

illustrated below.

The retardation ofhumic macromolecules containing aromatic units which was 

apparent for fractionation on G100 Sephadex gel is greatly enhanced by the use
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of G25 Sephadex geL This can be explained in terms of the structure and pore size 

of the G25 gel since the more rigid gel structure and significantly smaller pore size 

result in the increased probability of humic interactions with the gel and, in 

particular, the ether linkages of the gel structure. From this information, it is clear 

that the Sephadex gels are unsuitable for the determination of the average 

molecular weight or molecular weight distributions ofhumic substances which 

have a significant proportion of aromatic units (eg. terrigenous humic materials).

The effect ofhumic composition on the resultant separation is discussed further 

in section 3.7

3.5.4 The Effect of pH on Actinide Distribution between Humic and Fulvic 

Acids

The effect of pH on U and Th distribution between humic and fulvic acids was 

investigated fo r:

i) Esk 0-5cm

ii) Needle's Eye 0-5cm

The precipitation of a representative humic acid is generally accepted to occur at 

pH<2, so this study involved the analysis ofhumic acids precipitated at pH values 

from 3 down to 0.4 (Figures 3.7 and 3.8). The ratios under consideration here are 

mass ratios. A trend of increasing U/Th ratio for FA and decreasing U/Th ratio for 

HA with decreasing pH is observed for both samples. The larger ratios for 

Needle's Eye humic acids are consistent with the enhanced levels of U associated 

with the humic fraction due to the binding of leached U from nearby 

mineralisations at this location. This is consistent with the observation of Th 

values in excess of U for early gel fractions ofhumic acid whilst the total U value 

remains in excess of Th. This is important since it is the first indication that the 

alteration of the distribution of actinide elements occurs during the chemical 

separation ofhumic and fulvic acids. Further evidence of such alterations is 

presented in the sections which follow.
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This observation may also be related to the behaviour of U observed by Rao 

(1994) who proposed that two types of U binding exist: weak and strong binding. 

He also concludes that weak binding is more prevalent at lower pH values and, 

although this experiment (Rao et al., 1994) involved the addition of metal ions to 

humic acid, perhaps it could be concluded that this is reflected in the observed 

associations of U with humic acid in the present study. From the results obtained 

in this study, the effect of decreasing pH is therefore to release the more weakly 

bound U which is immediately complexed by fulvic acid in solution. The effect of 

redistribution with increasing time was not established during the present study 

since actinide species were not added to the humic materials.

3.6 Characterisation of Actinide Interactions with Humic Substances

The total radionuclide content ofhumic substances was obtained for a selection 

of samples and a range of actinides, with the results being presented in Table 3.9. 

A comparison with sequential leaching data for U, Pu and Np (Table 3.10) shows 

that, for a given soil type, there is good agreement between sequential leaching 

and alkaline extraction techniques. The data show that the organic fraction is 

important in binding significant proportions of these actinides. For the Muncaster 

0-5cm sample, sequential leaching shows that 56% Pu and 54% Np are associated 

with the organic fraction (Hursthouse, 1990) and this study, using alkaline 

extraction, obtained a 54% and 50% association, of Pu and Np respectively, with 

the humic fraction from a similar floodplain soil. There is also a strong positive 

correlation between organic/humic content and the proportion of actinide elements 

associated with the organic fraction. The following order with respect to organic 

content is observed for samples from the locality of the Irish Sea :

offshore sediment (0.5%) < saltmarsh sediment (5%) < floodplain soil (8%) < 

organic soil (12%) < organic bog (90%).

The percentage of Pu associated with these sample types from sequential leaching



Humic Substance 238u

(Bqkg1)
239,240pu

(Bqkg'1)
237Np
(Bqkg1)

241Am
(Bqkg'1)

Esk 0-5cm 1500 3750 2.59 3058

Esk 10-15cm 920 - - -

Muncaster 0-5 cm 2050 5740 0.032 5146

Muncaster 10-15 cm 695 - - -

Southwick Merse 0-5cm 2120 - - -

Southwick Merse 40-45cm 940 - - -

Southwick Merse 65-70cm - - - -

Table 3.9 Actinide Associations with Humic Substances in Soils and 
Sediments (Bqkg1 humic substances)

Method Organic Soil Floodplain Soil Sediment

% Assoc, 
of 238U

% Assoc. 
o f239240Pu

%Assoc. 
of 237Np

% Assoc. 
o f239’240Pu

% Assoc, 
of 237Np

% Assoc, 
of 239'240Pu

Sequential 
Extraction 
(0 .1M 
Na4P 2O7)

94 56 54 40

Alkaline
Extraction
(0.1M
NaOm

90 84 84 54 50 38

Table 3.10 Comparison of the Percentage Actinide-Organic Association for 
Soils and Sediments Determined by Sequential and Alkaline Extraction 
Techniques



data is as follows :
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offshore sediment (20%) < saltmarsh sediment (40%) < floodplain soil (54%) < 

organic soil (84%)

and alkaline extraction data for Pu and Np gives similar percentage associations 

for the samples used in this study :

Muncaster 0-5cm [floodplain soil] (54 % Pu, 50% Np)

< Esk 0-5cm [organic soil] (84% Pu, 87% Np)

Criticism of sequential leaching techniques focussed on the method dependence 

of the order of importance of the different phases and that reagents used in initial 

leaching solutions caused the alteration of the associations of the actinides with 

the remaining soil components. It was proposed that these observed differences 

were the result of the co-extraction of material from different phases or that the 

reagents used to extract one phase did so incompletely. In particular, it was 

suggested that the order of extraction of secondary Fe/Mn minerals and the 

organic phases resulted in differences in the perceived importance of these phases. 

In this study, it has been shown that the actinide-organic associations for the 

extraction ofhumic substances using sodium hydroxide solution were comparable 

with those for the organic fraction extracted as part of a sequential leaching 

scheme.

3.6.1 Characterisation of Actinide Interactions with Gel Chromatographic 

Fractions of Humic Substances

The three locations will be discussed in the following order :

Esk; Muncaster; Merse

U and Th data for all sampling locations will be discussed in terms of

i) varying distributions with depth at individual locations
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ii) differing distributions relating to the origins and subsequent prevailing 

conditions following formation of the humic material.

Pu, Np and Am data will be discussed for specific locations. In addition, 

spectroscopic information will be used to further the interpretation of the data. 

Figures 3.9 and 3.10 show U and Ih  data for surface and depth samples from each 

location. The elution patterns were subdivided into six regions relating to groups 

of three or four fractions (dependent on total number of fractions collected; 

different gel types result in different elution volumes as described in section 2.5). 

Peaks in these regions were classified on the basis of percentage association as 

very low (<5%), low (5-10%), medium (10-20%), high (20-40%) or very high 

(>40%) and the assignments for each elution pattern can be found in Tables 3.11- 

3.40) together with the percentage association of each actinide in this region. 

Columns 4 and 5 in these tables represent grouped data in order to show 

percentage associations with early, middle and late fractions or with the first half 

and second half of fractions. These groupings are also used in the interpretation 

of actinide-humic interactions together with spectroscopic data.

3.6.1.1 U Distribution : Esk 0-5cm

The U distribution pattern resulting from gel fractionation of 0-5cm Esk humic 

substances (Figure 3.11) is clearly complex with a number of discrete associations 

occurring throughout the elution pattern. The six main associations of U are 

classified a s :

medium : low : medium: medium: medium : high 

There is a significant association of U with humic material in later fractions. 34% 

of U is associated with fractions comprising region 6 . Moreover, 51% of U is 

eluted in fractions comprising regions 5 and 6 . The broad nature of the later U 

peaks is a result of the longer time spent by the respective macromolecules on the 

gel column. This distribution pattern which was obtained from analysis by ICP-MS 

was reproduced from a replicate fractionation of the humic material by a- 

spectrometry and there is indeed good agreement between the two data sets



Figure 3.10 Humic Substances : 232Th Percentage Distribution i) Esk 0-5cm

ii) Muncaster 0-5cm iii) Southwick Merse 0-5cm iv) Esk 10-15cm v) 

Muncaster 10-15cm vi) Southwick Merse 40-45cm



(Eluent NH4OH except for 3.12 Uranium Determination by Alpha Spectrometry) 

(All errors on individual data points were <3%)

Region Classification % % %

1 medium 16 24 35

2 low 8

3 medium 11 24.5

4 medium 13.5 64.5

5 medium 17 51

6 high 34

Activity = 0.15Ba ner 100ms Eluted = 0.14Ba = 93%

Table 3.11 Esk 0-5cm Humic Substances Uranium G100

Region Classification % % %

1 high 22.5 50 65

2 high 27.5

3 medium 16 24.5

4 low 8.5 34

5 low 6.2 25.5

6 medium 19.3

Activity fElutedl 0.15 5Ba

Table 3.12 Esk 0-5cm Humic Substances Uranium G100 (Determination by 
Alpha Spectrometry)
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(Figure 3.1 la). The peaks obtained for the replicate fractionation matched those 

from the first elution pattern in terms of relative position, shape and concentration 

(Table 3.11 and 3.12) demonstrating the reproducible fractionation of humic 

substances using gel chromatography can be achieved on a run-to-run basis and 

also the accuracy of the analyses of actinide elements in the absence of suitable 

reference materials.

On the basis of the humic acid elution pattern, a relatively simple association for 

U would be predicted. In particular a stronger association of U with humic 

material in early fractions and very little with those in later fractions would have 

been expected. An additional elution pattern for acidified humic substances (humic 

+ fidvic adds) which were dialysed but not separated also resulted in a distribution 

pattern similar to that obtained for humic acid (Figure 3.11b). The pattern of 

discrete associations of U with humic substances in comparison with the elution 

patterns obtained for humic and fidvic acids show that the distribution of U 

observed for humic substances can not be accounted for in terms of combination 

of humic and fidvic acid. This is, again, strong evidence of alterations in the 

associations of U with humic substances where humic and fidvic acid have been 

separated in the analysis.

3.6.1.2 U Distribution : Muncaster 0-5cm

The pattern of U distribution obtained from the analyses of gel chromatographic 

fractions by ICP-MS is again complex (Figure 3.12 and Table 3.13). The observed 

peaks were classified as follows :

medium : low : high : very low : medium : high 

The general pattern observed for Esk 0-5cm humic substances was observed also 

for Muncaster 0-5cm humic substances in that there was a significant association 

of U with humic material in later fractions. For this location, 43% of the U was 

associated with humic molecules in fractions comprising region 5 and 6 . However, 

some differences were also apparent in that 22%, as compared with 11% for 0- 

5 cm Esk humic substances, of the U was found in fractions comprising region 3.



Region Classification % % %

1 medium 10 18 40

2 low 8

3 high 22 25

4 very low 3 48

5 medium 15 43

6 high 28

Activity = 0.21Ba oer lOOme Eluted = 0.195Ba = 93%

Table 3.13 Muncaster 0-5cm Uranium G100

Region Classification % % %

1 high 23 50 70

2 high 27

3 high 20 25

4 low 5 24

5 low 8 19

6 medium 11

Activity = 0.21Ba oer lOOme Eluted = 0.2Ba = 95.1%

Table 3.14 Merse 0-5cm Uranium G100
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These similarities and differences will be discussed further in section 3.6.1.7.

3.6.1.3 U Distribution : Merse 0-5cm

The U distribution pattern for the Merse 0-5cm humic substances was significantly 

different from those observed for either the Esk 0-5cm or the Muncaster 0-5cm 

humic substances (Figure 3.13 and Table 3.14). In particular, the predominant 

association of U was with humic material eluted in the first half of fractions 

(column 5, Table 3.14). 70% of U was associated with these humic molecules as 

compared with 35% for Esk 0-5cm or 40% for Muncaster 0-5cm 

The elution pattern was again strongly contrasting to the simple elution patterns 

observed for either humic or fidvic acid from the same location. For humic 

substances, a number of discrete assocations were observed. The classification on 

the same basis of those above were as follows :

high : high : high : low : medium: medium 

These distributions will be referred to again in the sections 3.6.1.6 and 3.6.1.7.

3.6.1.4 U distribution : Esk 10-15cm

Fewer major peaks were observed in the distribution pattern of U (Figure 3.14 and 

Table 3.15) with the overall classification being as follows :

very low : very low : medium : high : very low : very high 

Again, as was observed for 0-5cm Esk and 0-5cm Muncaster humic substances, 

a significant proportion of U was associated with humic molecules in fractions 

comprising region 6 .

In comparison with Esk 0-5cm humic material, a number of differences were 

observed. Fractions comprising regions 1 and 2 contained humic molecules with 

significantly less associated U for 10-15cm compared with 0-5cm humic 

substances (8% as compared with 24%). Similarly, only 2% of U was associated 

with humic material in 10-15cm humic fractions comprising region 5 as compared 

with 17% for 0-5cm humic substances. Increased associations were therefore



Region 1 Classification % % %

1 very low 3 8 27

2 low 5

3 medium 19 33

4 high 24 72

5 very low 2 48

6 very high 46

Activity = 0.09Ba oer 100ms Eluted = 0.07Ba

Table 3.15 Esk 10-15cm Uranium G100

Region Classification % % %

1 very low 4 13 35

2 low 9

3 high 22 23

4 very low 1 63

5 low 6 62

6 very high 56

Activity = 0.07Ba Eluted = 0.055Ba

Table 3.16 Muncaster 10-15cm Uranium G100



Region Classification % % %

1 low 7 18 88

2 medium 11

3 very strong 70 74

4 very low 4 6

5 very low 1 2

6 very low 1

Activity = 0.094Ba Eluted = 0 09Ba

Table 3.17 Merse 40-45cm Uranium G100
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observed for material in fractions comprising regions 3 (19% as compared with 

11%), 4 (24% as compared with 14%) and region 6 (46% as compared with 

34%). The differences between these elution patterns, in particular the perceived 

loss of binding capacity of components of the humic fraction (a proportion of 

molecules in fractions comprising regions 1, 2 and 5), is consistent with the 

degradation ie. loss of functionality undergone by the organic fractions during 

early diagenetic alterations.

3.6.1.5 U Distribution : Muncaster 10-15cm

The U distribution amongst fractions of 10-15cm Muncaster humic substances 

(Figure 3.15 and Table 3.16) led to the classifications of peaks as follows : 

very low : low : high : very low : very low : high 

The pattern observed for 10-15cm Muncaster humic substances (ie. the 

predominance of U association with humic molecules in fractions comprising 

regions 3 and 6) is slightly more accentuated but in general similar to that of 0- 

5cm humic compounds. This is consistent with the highly reducing conditions 

prevailing at this location which lead to a relatively slower degradation of the 

organic fraction. In comparison with the alterations with depth observed for Esk 

humic substances, the degree of change to the U distribution pattern is much 

smaller although a number of similarities are apparent. A slight decrease in 

percentage associations is observed for regions 1 and 2 (18% to 15%) but the 

major change is observed in region 5 with only 6% as opposed to 18% U being 

associated with molecules in the 10- 15 cm humic fractions.

3.6.1.6 U Distribution : Merse 40-45cm

The U distribution pattern observed for Merse 40-45cm humic substances (Figure 

3.16 and Table 3.17) is distinctly different from those observed for Esk 10- 15cm
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or Muncaster 10-15cm humic materials. These materials are comparable on the 

basis of the accumulation rates at the respective locations. In addition, the 

differences observed are explicable in terms of the differences described above for 

the distribution patterns of U associated with 0-5cm humic substances from these 

locations.

The observed peaks were classified as follows :

low : medium: high : very low : very low : very low 

As observed for 0-5cm Merse humic substances, the predominant association of 

U was with humic molecules eluting in the first half fractions (88%). The 

diagenetic alteration of the humic material is observed in that only one of the three 

regions identified for 0-5cm humic substances is of major importance for the 40- 

45cm humic substances. These results are discussed further in section 3.6.1.7.

It is also apparent that the U distributions for humic substances from 40-45cm 

Southwick Merse sediments are again different from those observed for humic and 

fulvic acids and in particular combination of humic acid and fulvic acid elution 

patterns does not result in the pattern observed for humic substances (Figure 

3.16a). The alteration of the distribution of actinide elements has been discussed 

in section 3.6.1.1 and 3.6.1.3. It is, however, evident from the distribution patterns 

observed for the 0-5cm Esk humic substances, 0-5cm and 40-45cm Sothwick 

Merse humic substances that the composition of the humic fraction is an important 

factor in determining the nature of these alterations.

3.6.1.7 U Associations with Humic Substances

The distribution of U within the humic fraction changes with depth and is 

consistent with compositional changes identified in section 3.5.1. The changing 

distribution with depth is characteristic of the humic material from each location 

and can be related to the origin of the humic material and prevailing conditions. 

0-5cmEsk humic material has a characteristic U distribution pattern as described 

above with a strong association with later fractions. These discrete associations 

can tentatively be related to the changing position of the emission maximum in
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Fraction Number (emission) Intensity

Region 1 Fr 1 (a) 446nm 18.7

Fr. 2 (b) 446nm 21.5

Fr. 3 (c) 446nm 29.0

Region 2 Fr. 5 (d) 420-440nm (broad) 30.0

Fr. 7 (e) 420-440nm (broad) 39.0

Fr. 8 (f) 420-440nm (broad) 47.0

Region 3 Fr. 9 (g) 436-446nm 52.0

Fr. 10 (h) 436-446nm 55.0

Fr. 11 (i) 436-446nm 56.5

Region 4 Fr. 12 0 420-446nm 69.5

Fr. 13 (k) 420-446nm 101.0

Fr 15 446nm 106.5

Region 5 Fr. 16 (1) 420-440nm 135.0

Fr. 17 (m) 420-442nm 156.0

Fr. 18 (n) 420-442nm 189.4

Region 6 Fr. 19 (o) 420-45Onm 184.1

Fr. 20 (p) 420-43Onm 154.0

Fr.21 420nm 97.5

Fr.22 415-425nm 54.0

Table 3.41 Position of Emission Maximum in Fluorescence Spectra of Gel 
Chromatographic Fractions of Humic Substances (letters in brackets correspond to spectra 
labels in Spectrum 3.26a)



Spectrum 3.266 Fluorescence Spectra of Gel Chromatographic Fractions of Humic 
Substances

LU
U



Figure 3.26a Fractions d, e and f : Fluorescence Spectra of Gel Chromatographic Fractions

nm
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Figure 3.26a Fractions g, h and i : Fluorescence Spectra of Gel Chromatographic Fractions

nm



Figure 3.26a fractions j and k : Fluorescence Spectra of Gel Chromatographic fractions

nm



Figure 3.26a Fractions 1, m and n : Fluorescence Spectra of Gel Chromatographic
Fractions

U
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Figure 3.26a Fractions o and p : Fluorescence Spectra of Gel Chromatographic Fractions

nm
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fluorescence spectra of fractions (where effects of concentration have been taken 

into account) which suggests that each discrete association is related to an 

interaction of U with composition ally different humic macromolecules (Table 

3.41). At depth for both Muncaster and Esk locations, later fractions are 

substantially more important in binding U than early fractions and this suggests 

that the humic material in these fractions is highly stable since the associations of 

radionuclides have remained intact over the time period of burial ie. no loss of 

functionality (particularly oxygen-containing functional groups) from the humic 

molecules in these fractions. This is consistent with the following observations:

i) aromatic nature identified in FTIR spectra (Spectrum 3.13) which is consistent 

with a predominantly non-marine origin of this component,

ii) a high E4/E6 ratio resulting from a strong absorbance at 465nm which is 

indicative of the presence of quinones (Spectrum 3.34).

iii) a significant increase in the intensity of fluorescence in later fractions 

confirming the presence of aromatic units which give rise to strong emissions in 

fluorescence spectra.

It is not implied that these features relate to the specific associations of the U 

binding to humic macromolecules but only to the inherent stability of the 

macromolecules in these fractions. In other words it is not implied that U is 

directly bound to the aromatic rings since the related absorptions in the IR region 

are not the only feature indicated in the spectrum A range of oxygen-containing 

functional groups are also indicated to occur from the spectra of these fractions.

Fractions 14-17 (region 5) which contained U for 0-5cm humic substances contain 

very little U for 10- 15cm humic substances and spectra show that there is a loss 

of oxygen containing functional groups from humic substances extracted from 

increasing depths. This is in agreement with the proposal that the degradation of
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Spectrum 3.34 E4/£ ( Ratio : Muncaster 10- 15cm
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the humic fraction involves the loss of oxygen containing functional groups which 

are of known importance in actinide binding (Katz, Seaborg and Morss, 1986). 

The U distribution pattern for fractionated 0-5cm humic substances from the 

highly reducing, periodically marine- inundated Muncaster soil bears some 

significant similarities to that of the 0-5 cm Esk humic material. U displays a 

number of discrete associations and again a particularly strong association with 

later fractions. Stronger associations with early fractions indicate an increased 

important of more aliphatic components due to a lower contribution of organic 

debris from wooded plants. Less significant changes are observed with depth as 

a result of the highly reduced nature of this soil (Livens, 1985).

A strikingly different U distribution pattern is observed for 0-5cm humic 

substances from Southwick Merse which is highly marine influenced. A 

comparison of 0-5cm and 40-45cm U distribution patterns show a marked 

redistribution of U with increasing depth consistent with the degradation of the 

humic fraction. FTIR spectroscopic studies further suggest that the degradable 

humic material is predominantly of marine origin and the remaining association of 

U at 40-45cm occurs with humic material of terrigenous origin (Spectra 3.21 and 

3.22)

Comparison of the distribution of U amongst gel chromatographic fractions of 

humic substances from different locations therefore highlights a relationship 

between

i) the degree of marine influence at a particular location following the order :

Esk < Muncaster < Southwick Merse,

ii) the prevailing vegetation cover (biomass inputs)

and the U distribution pattern although the prevailing conditions (oxidising or 

reducing) are also influential.

The Esk sample contains the most highly terrigenous humic material and the 

Southwick Merse 0-5cm humic material has two main components, one of which
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Spectrum 3.21b Gel Chromatographic Fractions of Southwick 0-5cm Humic 
Substances using Superdex 75 Gel 
i) Fraction 9 ii) Fraction 12
iii) Fraction 15 iv) Fraction 18



Spectrum 3.22 A Typical Gel Chromatographic Fraction of Humic
Substances Isolated from an Irish Sea Offshore Sediment using Superdex 75



Region Classification % % %

1 high 20 36 46

2 medium 16

3 medium 10 25

4 medium 15 50

5 very low 3 35

6 high 32

Table 3.18 Esk 0-5cm Thorium G100

Region Classification % % %

1 very low 4 19 29

2 medium 15

3 high 20 23

4 very low 3 61

5 high 33 58

6 high 25

Table 3.19 Muncaster 0-5cm Thorium G100



Region Classification % % %

1 high 31 58 80

2 high 27

3 high 22 25

4 very low 3 17

5 low 6 14

6 low 8

Table 3.20 Merse 0-5cm Thorium G100

Region Classification % % %

1 medium 10 16 36

2 low 6

3 high 20 58

4 high 38 50

5 very low 2 22

6 high 20

Table 3.21 Esk 10-15cm Thorium G100



Region Classification % % %

1 very low 3 21 38

2 medium 18

3 medium 17 20

4 very low 3 54

5 very low 4 51

6 verv high 47

Table 3.22 Muncaster 10-15cm Thorium G100

Region Classification % % %

1 high 38 69 75.5

2 high 31

3 low 6.5 16

4 low 9.5 18.5

5 very low 4 9

6 low 5

Table 3.23 Merse 40-45cm Thorium G100
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is marine derived.
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3.6.1.8 Th Distribution : Esk 0-5cm

As for U, discrete associations of Th are observed in the distribution between 

components of humic substances (Figure 3.17 and Table 3.18). The six main peaks 

were classified as follows:

, high : medium: medium : medium : very low : high 

Although the overall distributions of U and Th initially appear very similar, with 

a significant proportion of Th being associated with the humic material in fractions 

comprising region 6 (32%), a number of significant differences are observed. In 

particular, the ratio of percentage associations of U and Th in the six main regions 

is not constant. Th is found to have a preferential association with the humic 

molecules in fractions comprising regions 1 and particularly region 2 . 

Contrastingly, U has a strong preferential association with the humic molecules 

in fractions comprising region 5. In all other regions, U and Th have a very similar 

distribution. This is quantified below in terms of the %U / %Th ratio for each 

region:

0.8: 0.5: 1.1: 0.9: 5.7: 1.1

3.6.1.9 Th Distribution : Muncaster 0-5cm

As was observed for the comparison of U distributions amongst fractions of 0- 

5cm Esk and Muncaster humic substances (Figure 3.18 and Table 3.19), certain 

similarities are observed in the distribution pattern of Th when these two humic 

materials are compared. The underlying trend indicates a strong association of U 

and Th with the molecules in later fractions as exemplified by the classifications 

below:

very low : medium: high : very low : high : high 

However, there are again differences between the distributions of U and Th which 

are quantified in terms of the %U / %Th ratio for each of the defined regions:
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2.5 : 0.53: 1.1 : 1.0:0.45: 1.16 

U is preferentially associated with humic molecules eluting in region 1 whereas Th 

is preferentially associated with humic molecules eluting in regions 2 and 5.

3.6.1.10 Th Distribution : Merse 0-5cm

The distribution of Th amongst fractions of humic substances from the Merse 0- 

5cm sample (Figure 3.19 and Table 3.20) shows some similarities to that of U for 

the same material in that the predominant association (80%) is with molecules 

eluting in fractions comprising regions 1-3 :

high : high : high : very low : low : low 

This is again significantly different from the distribution patterns observed for both 

Esk and Muncaster humic materials.

Differences between U and Th distributions are reflected in the value of the %U 

/ %Th ratio for the first region only in that Th is preferentially associated with 

humic molecules eluting in region 1:

0.74 : 1.0 : 0.91

3.6.1.11 Th Distribution : Esk 10-15cm

The distribution pattern for Th for 10-15cm humic material (Figure 3.20 and Table 

3.21) shows a strong association of Th with molecules eluting in region 6 hut a 

predominant association with molecules eluting in region 4. The classifications 

indicate that, in comparison with the distribution observed for Th in 0-5 cm humic 

substances, the Th distribution has become more localised involving predominantly 

molecules in regions 3, 4 and 6 :

medium : low : high : high : very low : high 

The distribution of Th amongst fractions of humic substances from the Esk 10- 

15cm sample again indicates a relatively strong association with molecules in later 

fractions although not as pronounced as for U. This differs from the observations 

made for the comparison of U and Th distributions for the 0-5cm Esk humic
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material where the % association of U and Th with later fractions was similar. 

The %U / %Th ratio highlights the disimilarities between the distributions of U 

and Th. In particular, Th is preferentially associated with molecules in region 4 

whereas U is preferentially associated with molecules in region 6 :

0.3 : 0.83 : 0.95 : 0.39 : 1.0 : 2.3

3.6.1.12 Th Distribution : Muncaster 10-15cm

The most striking difference between the Th distribution for Muncaster 0-5 cm and 

10-15cm humic material (Figure 3.21 and Table 3.22) is the loss of the association 

of Th with molecules eluting in region 5 and the reultant increase in the 

association with molecules eluting in region 6. In constrast to the 10- 15cm Esk Th 

distribution the predominant association of Th is with humic molecules eluting in 

these late fraction. As was observed for U, less marked associative differences are 

observed between 0-5 and 10-15cm Muncaster humic substances when compared 

with the alterations with depth observed in U and Th associations with Esk humic 

substances. The main similarities observed between all four distribution patterns 

for the 10-15cm humic materials from these locations is the loss of the association 

of U andTh with molecules eluting in region 5 as exemplified by the classification 

below:

very low : medium : medium: very low : very low : very high 

Some differences between U and Th distributions for Muncaster 10-15cm humic 

material are also indicated by the %U / %Th ratio which indicated a greater 

association of Th with molecules eluting in region 2 whilst U showed a greater 

association with moleucles eluting in region 3 :

1 : 0.5 : 1.29 : 1 : 1 : 1.19

3.6.1.13 Th Distribution : Merse 40-45cm

The distribution of Th amonst fractions of 40-45cm Merse humic substances 

(Figure 3.22 and Table 3.23) again reveals a predominant association of Th with
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early fractions (76%) and in particular an increased % association with the 

fractions comprising regions 1 and 2 :

high : high : low : low : very low : low 

The main difference between the Th distributions for 0-5cm and 40-45cm Merse 

humic material occur in region 3 with in excess of a three fold loss of binding 

capacity with respect to Th. %Th present in all later regions is in excess of %U. 

The differences between U and Th distributions on alteration with depth are most 

marked for the comparison of 0-5cm and 40-45cm humic material in relation to 

the respective materials from Esk and Muncaster locations and this is reflected in 

the variations in the %U / %Th ratio for each of the classified regions for the 40- 

45cm Merse humic material:

0.18 : 0.35 : 10.77 : 0.4 : 0.25 : 0.2 

In particular, Th is preferentially associated with molecules in early fractions 

whereas U is predominantly associated with molecules eluting in region 3 which 

have a low Th association at this depth. This strongly contrasts with the surface 

distribution patterns where three strong associations were observed for both U 

and Th.

3.6.1.14 Th Associations with Humic Substances

Discrete associations are observed for Th with humic fractions for all locations. 

The Th distribution patterns for each location are highly specific to each location 

but again, as for the trends observed for U, a clear difference between the 

Esk/Muncaster locations and the Merse location is the absence of strong 

associations of Th with molecules eluting in region 6 for the Merse material, both 

for 0-5cm and 40-45cm samples. For each location, the Th distribution alters with 

depth (Figure 3.23) although the alterations of associations observed differ in 

some ways from those observed for U and are again highly specific to each 

location. However, the main trend in differences between the U and Th 

distributions for certain associations at each location indicate that Th is present in 

excess of U for regions 1-2 in the Esk and Merse 0-5cm and Esk 10-15cm,
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Region Classification % % %

1 high 24.89 33.46 48.95

2 low 8.57

3 medium 15.49 16.0

4 very low 0.51 51.05

5 medium 12.57 50.54

6 high 37.97

Activity = 0.38Ba Eluted = 0.35Ba

Table 3.24 Esk 0-5cm Plutonium G100



Muncaster 2 3 « p u / 2 3 9 ,2 4 0 p u

Soil
2 3 8 p u / 2 3 9 ,2 4 0 p u

Soil
(Hursthouse,
1990)

238Pu/239,240Pu
Humic
Substances

2 3 8 p u / 2 3 9 .2 4 0 p u

Fraction 2

2 3 . p u / 2 3 9 .2 4 0 p u

Fraction 19

0-5cm 0.2115 0.209 ± 0.06 0.207 0.199 0.201

10-15cm 0.069 0.093 ± 
0.028

0.071 - -

Table 3.42 238Pu/239,240Pu Activity Ratios for Soil, Humic Substances and Gel 
Chromatographic Fractions of Humic Substances (all standard errors on activities were 
less than 0.05)
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Muncaster 10-15cm and Merse 40-45cm humic substances.

3.6.2 Plutonium Associations with 0-5cm Esk Humic Substances

The activity ratio of 238Pu / 239,240Pu for 0-5cm humic substances is the same as 

that for the 0-5cm soil sample within error. The ratio was obtained for only certain 

of the gel fractions due to the low levels of Pu in remaining fractions. The values 

of the activity ratio can be found in Table 3.42.

The 239’240Pu distribution pattern for fractions of 0-5cm Esk humic substances is 

shown in Figure 3.24 and Table 3.24. There are some similarities between the 

distributions of this anthropogenic radionuclide and the distribution of U. 

However, there are several differences which would be expected due to the highly 

characteristic behaviour of individual actinides and and should reflect differences 

in chemical speciation prior to complexation, which in turn relate to most stable 

oxidation states and prevailing chemical form in the environment. Using a similar 

classification system as for U and Th, percentage associations give rise to the 

following pattern:

high : low : medium : very low : medium : high 

and the ratios of percentage distribution for each of these regions (U/Pu and 

Th/Pu) are :

U/Pu : 0.64 : 0.93 : 0.71 : 26.4 : 1.35 : 0.90 

Th/Pu : 0.80 : 1.87 : 0.65 : 29.4 : 0.24 : 0.84

On the basis of % associations and the Pu / U and Pu / Th ratios highlight the 

following it can be concluded that Pu is distributed non-uniformly between 

fractions of humic substances and again shows a marked association with humic 

molecules eluting in late fractions (region 6). The relative importance of the 

discrete associations observed, however, varies from that for U and particularly 

Th indicating that we have preferential associations of individual actinides with 

different components of the humic material.



Region Classification % % %

1 very low 2 18 58

2 medium 16

3 very high 40 62

4 high 22 44

5 high 20 20

6 - -

Table 3.25 Esk 0-5cm Neptunium G100

Region Classification % % %

1 55 55

2 very high 55

3

4 31

5 high 31 31

6 -

Table 3.26 Muncaster 0-5cm Neptunium GlOO
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3.6.3.1 Np Associations with 0-5cm Esk Humic Substances

The activity ratio of ^ ^ p /239,240̂  was 0.001 for both soil and humic substances 

which is the same, within error, as that obtained in previous studies (Assinder, 

1991; Hursthouse, 1991). Hence, there would not appear to be any preference of 

humic substances for Pu or Np in the initial interaction of these actinides with 

humic molecules. However, the distribution of Pu and Np amongst fractions of 

humic substances (Figure 3.25 and Table 3.25) would appear to indicate that their 

prevailing associations are highly characteristic of the individual element. The 

distribution of Np amongst fractions of humic substances is classified as follows

low : medium : very high : high : high : low 

Np is distributed between a smaller number of fractions when compared with Pu, 

U and Th. In particular, only small associations of Np are observed with fractions 

comprising regions 1 and 6 . The remaining associations occur in two groups 

separated by a number of fractions for which the concentration of Np was below 

the detection limit (although chemical yields for the analyses of these samples were 

high).

3.6.3.2 Np Association with 0-5cm Muncaster Humic Substances

The ratio of 237Np/239,240Pu was 1 x 10'5 for both soil and humic substances 

indicating again that no preferential association of Pu or Np was being observed.. 

Although the activity of Np present in this soil is significantly lower than that of 

0-5 cm Esk sample, it was still possible to do the analyses of fractions of humic 

substances for Np which gave the following distribution pattern.

very low : very high : very low : very low : very high : very low 

Two main associations were observed which were separated by a number of 

fractions which contained Np at levels below the detection limit.

The Np distribution pattern for fractions of 0-5cm Muncaster humic substances 

(Figure 3.26 and Table 3.26) provides further information to suggest that the
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interaction of Np is both highly specific and characteristic of the behaviour of this 

individual actinide.

3.7 An Investigation of the Nature of the Separation Processes Occurring 

During Gel Chromatographic Fractionation of Humic Substances

In the later part of this study, the observed compositional differences (namely 

aromatic or aliphatic character) between humic materials from Esk and Merse 

locations were exploited in the investigation of the separation processes occurring 

during gel fractionation.

Humic substances from Southwick Merse sediments were observed visually to 

adsorb less irreversibly to Sephadex G100 gel when compared with humic 

substances from the Esk soil (the degree of sorption is significantly smaller 

[approximately 3%] than that observed for any humic acid studied [up to 30%]) 

and this can again be related to the composition of the two humic materials. It is 

proposed that the humic material from the 0-5cm at the Merse location is highly 

marine-influenced which is confirmed by CHN data (C/H = 7.78; C/N = 10.37) 

and therefore is predominantly aliphatic in composition whereas that from the Esk 

location is predominantly terrigenous material (low amino acid content) and more 

aromatic. Interactions of aromatic compounds with Sephadex gels are most 

pronounced for gels with higher matrix contents and therefore smaller pore sizes. 

The interaction of these humic materials was therefore studied using various 

different Sephadex gels and the results of fractionation characterised 

spectroscopically and radioanalytically. The difference between the two materials 

was most evident from the distribution patterns obtained for each humic material 

following fractionation using G25 gel. In both cases, a proportion of the humic 

material was eluted close to the exclusion volume. However, a marked difference 

in the distribution of both U and Th for the two materials is apparent (Figure 

3.27).

3.7.1 U Distribution : G25 Sephadex Gel and 0-5cm Esk Humic Substances



Figure 3.27 Esk 0-5cm and Southwick Merse 0-5cm Humic Substances 

Percentage Distribution of 23*U and 232Th (G25 Sephadex)
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Region Classification % % %

1 _ 0 5

2 _ _

3 low 5 27

4 low 22 95

5 high 36 73

6 high 37

Activity = 0.15Ba ner 100ms Eluted = 0.13Ba

Table 3.27 Esk 0-5cm Uranium G25

Region Classification % % %

1 very high 64 66 88

2 very low 2

3 high 22 32

4 medium 10 11

5 very low 1 1

6 - -

Table 3.28 Merse 0-5cm Uranium G25
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The distribution pattern (Figure 3.28 and Table 3.27) can be classified as follows: 

very low : very low : low : high : very high : very high 

The Esk distribution pattern shows that 95% of 238U is associated with the 

molecules which are retarded by the gel and eluting in regions 4,5 and 6 . This 

would not be expected on the basis of the U distribution pattern obtained using 

G100 Sephadex gels which showed that the molecules eluting in regions 1,2 and 

3 contained 35% of the U associated with humic substances. Separation on the 

basis of size would result in the coelution of at least a proportion of the material 

in these early fractions at the exclusion volume. The increasing actinide content 

with increasing fraction number is shown spectroscopically to correlate with the 

predominance of aromatic units in later fractions (Spectrum 3.19) and so it is 

concluded that a chemical separation is involved in the processes occurring on the 

gel column during the elution of humic substances. This process is dominant for 

the G25 gel and occurs to a lesser extent for the G100 gel (Figure 3.11 and Table 

3.11).

3.7.2 U Distribution : G25 Sephadex Gel and 0-5cm Merse Humic 

Substances

The distribution pattern (Figure 3.29 and Table 3.28) can be classified as follows: 

very high :very low : high : medium : very low : very low 

The distribution pattern for fractions of Southwick Merse humic substances 

indicates that 86% of 238U is associated with molecules eluting close to the 

exclusion volume in fractions comprising regions 1,2 and 3. The elution of high 

proportions of humic close to the exclusion volume would be expected on the 

basis of the high molecular weight attributed to humic substances. The sum of the 

% associations for regions 1 and 2 gives 66% U for G25 compared with 50% for 

G100.
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Region Classification % % %

1 0 5

2

3 medium 10 27

4 medium 17 93

5 high 32 71

6 high 39

Table 3.29 Esk 0-5cm Thorium G25

Region Classification % % %

1 very high 58 60 81

2 very low 2

3 high 21 37

4 medium 16 17

5 very low 1 1

6 - -

Table 3.30 Merse 0-5cm Thorium G25
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3.7.3 Th Distribution : G25 Sephadex Gel and 0-5cm Esk Humic Substances

The Th distribution pattern (Figure 3.30 and Table 3.29) again indicates that the 

predominant associations are with later fractions. In particular, 88% of Th was 

eluted in fractions comprising regions 4, 5 and 6 . The pattern of distribution was 

classified as follows:

very low : very low : medium : medium : very high : very high

The Th distribution pattern is similar to that of the U pattern indicating that 

virtually all humic species from this location have a sufficient aromatic nature to 

be retarded by the gel and so very little difference between U and Th distribution 

can be observed. The ratio of %U / %Th indicates that Th is preferentially 

associated with humic molecules from region 3 whilst region 4 contained fractions 

of humic moleucles which had slightly greater preference for U as indicated below:

-: -: 0.5 : 1.29 : 1.13:0.95

3.7.4 Th Distribution : G25 Sephadex Gel and 0-5cm Merse Humic 

Substances

The Th distribution (Figure 3.31 and Table 3.30) shows that 81% of Th was 

eluted in the fractions comprising regions 1, 2 and 3 and the pattern was classified 

as follows:

very high : very low : high : medium: very low : very low 

Again, the pattern was similar to that of U with only a slight difference being 

observed in later fractions which showed a preference for Th :

1.1 : - :  1.05 : 0.63 : - :  -

The comparison of these elution patterns confirms that the two materials differ 

significantly in their composition and in particular, the marine-influenced
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Region Classification % % %

1 low 6 23 57

2 medium 17

3 high 34 42

4 low 8 41

5 medium 18 33

6 medium 15

Table 3.31 Esk 0-5cm Uranium G200

Region Classification % % %

1 low 6 79 83

2 very strong 73

3 low 5 10

4 low 5 8

5 low 3 3

6 - -

Table 3.32 Esk 0-5cm Thorium G200
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Southwick Merse humic material is more predominantly aliphatic in nature. The 

retardation of the aromatic portion of Esk humic substances is indicated from 

FTIR spectra of fractions obtained using G100 gel but to a lesser extent than on 

G25 gel (section 3.5.2.)

In order to reduce this retardation effect, the Esk humic material was fractionated 

using G200 Sephadex geL The use of G200 gel involves the use of longer elution 

times and hence potential loss of resolution which is of importance both 

spectroscopically and radioanalytically. However, by the selection of a shorter 

column length (25cm instead of 35cm), good resolution was obtained. The U and 

Th distribution patterns are presented in Figure 3.32 and 3.33 and corresponding 

spectroscopic data in Spectrum 3.23.

3.7.5 U Distribution using Sephadex G200 and 0-5cm Esk Humic Substances

The U distribution pattern (Figure 3.32 and Table 3.31) was classified as follows: 

low : medium : very high : low : medium : medium 

The % distribution in regions 1,2 and 3 combined shows that 57% U is associated 

with these early fractions. Clearly this is different from both the G25 (5%) and 

G100 (35%) distribution patterns. This is in agreement with the proposed 

separation process and suggests that G200 Sephadex provides a separation 

process which is less strongly dominated by the aromatic character of the humic 

molecule. The observed distribution of U then indicates that U is not uniformly 

distributed throughout the humic fractions and in particular, the predominant 

association of U is with fractions comprising region 3. A further comparison can 

now be made between sampling locations following the suppression of the 

aromatic retardation process. A comparison is drawn between 40-45cm Merse 

humic material which is terrigenous in nature due to the observed degradation of 

the marine component (verified by CHN analysis - loss of H and N) and the0-5cm 

Esk humic material. The distributions of U in both cases indicate that the 

predominant association is with fractions comprising region 3. The more complex 

pattern observed for the Esk humic material can be attributed to the diversity of
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the input terrigenous material compared to the specific grass input at the Merse 

location. It would however appear that a similar and predominant interaction 

characteristic of U is observed with these humic materials.

3.7.6 Th Distribution : G200 Sephadex Gel and 0-5cm Esk Humic 

Substances

The distribution of Th (Figure 3.33 and Table 3.32) can be classified as follows: 

low : very high : very low : low : low : very low 

and highlights a predominant association of Th with fractions eluting in region 2. 

79% of Th is eluted in fractions comprising regions 1 and 2. This distribution 

differs markedly from that observed for U. In particular, regions 3, 4, 5 and 6 

show that only 13% of Th as compared with 75% U is eluted in these fractions. 

The ratio of %U / %Th reflects these differences in distribution :

1 : 0.23 : 6.8  : 1.6 : 6.0 : -10 

Comparison with the Th distribution pattern for 40-45cm Merse humic material 

shows that there are marked similarities in the distribution of Th within these two 

materials as was observed for U. In particular, 79% and 69% respectively of Th 

eluted in fractions comprising regions 1 and 2 , indicating a strong and 

characteristic association of Th with humic molecules eluting in these fractions.

The G200 distribution pattern can again be related to certain spectroscopic 

differences between fractions. The spectra show that the shape of the absorptions 

in the region 1700- 1400cm'1 is related to the radionuclide distribution patterns of 

U and Th. Later fractions which contain almost no Th but small discrete 

associations of U also have slightly enhanced absorption relating to aromatic units 

although this effect is less than that observed for either G100 or G25 gel 

fractionation. Additionally, the pattern of UV/visible absorbance for the fractions 

(Spectrum 3.33) is similar to that obtained by Sequi (1971) and Guidi (1972) for 

bulk humic substances fractionated using G200 Sephadex gel. Specifically, small 

absorbances for early fractions are followed by much stronger absorbances for



Spectrum 3.23a b c Gel Chromatographic Fractions of Esk 0-5cm Humic 
Substances using Sephadex G200
a i) Fraction 4 ii) Fraction 8 iii) Fraction 12
b i) Fraction 15 ii) Fraction 18

iii) Fraction 25 iv) Fraction 27
c i) Fraction 30 ii) Fraction 33 iii) Fraction 36
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Spectrum 3.24a b A Gel Chromatographic Fraction of Muncaster 10-15cm 
Humic Substances : Spectra Obtained using FTIR Microscopy 
a A Spectrum of the Most Common Absorption Pattern 

Obtained for this Fraction 
b Individual Spectra Obtained for this Fraction
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Spectrum 3.32 Absorbance at 665nm : Muncaster 10-15cm
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To summarise, the use of different gel types to fractionate humic materials which 

vary in their degree of aromatic or aliphatic character can provide additional 

information relating to the processes occurring during separation of components 

of humic materials:

i) humic substances with a high aromatic content interact strongly with gels which 

have a high matrix content eg. G25;

ii) the G100 gel theoretically separates on the basis of size but this study has 

shown that a chemical separation occurs to a certain extent during the 

fractionation of humic substances;

iii) the G200 gel can be used to minimise interactions between highly aromatic 

humic substances and the gel matrix during the separation procedure. Hence, it is 

possible to compare the actinide distributions for humic materials which have 

varying aromatic character.

3.8 Amino Acid Analyses : G25 Sephadex Gel and Esk 0-5cm Humic 

Substances

Gel chromatographic fractions were also analysed for their amino acid content 

(Figure 3.34). The total amount of amino acids (nmole/fraction) was typical of a 

terrigenous humic material and was therefore significantly lower than that 

expected for a marine humic material. The relative amounts of different amino 

acids differs significantly from that observed in previous studies of humic acids 

(Stevenson, 1982). Additionally, the distribution of amino acids between fractions 

was not uniform, in that early fractions contained significantly more amino acids 

than later fractions. The small number of samples analysed, however, made further 

interpretation of the data difficult although it is possible that the relative amounts
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of different amino acids in the fractions may also vary.

3.9 Advances in FU R Spectroscopic Studies of Humic Substances by the use 

of FTIR Microscopy

FTIR microscopy requires only a minute amount of sample to be placed on a 

reflective gold surface and a single drop of humic substances in dilute ammonia 

solution is sufficient to give excellent spectra following the evaporation of the 

solvent. The air-drying of the sample spot results in a progressive fractionation of 

the humic material based on solubility of the macromolecules. Therefore, scanning 

of the slide results in the observation of groups of macromolecules with differing 

composition. Within a specific gel chromatographic fraction, although the 

spectroscopic features (including the shapes of absorptions) observed are 

characteristic of the bulk fraction, macromolecules with varying amounts of these 

functional groups can be observed (Spectrum 3.24). In addition, minor 

components of bulk humic substances can be observed and resulting spectra are 

of higher resolution than previously observed (Spectrum 3.25). An example of a 

spectrum of a simple organic compound (Spectrum 3.26) is included for 

comparison and highlights the advances made in the spectroscopic studies of 

humic substances by the use of FTIR microscopy on its own and also the 

combination of gel chromatography and FTIR microscopy.

Furthermore, these spectroscopic studies indicate that:

i) humic fractions obtained using G100 Sephadex gel fractionation do not contain 

macromolecules of uniform composition although they do display certain common 

characteristics

ii) it is possible that U, Th, Pu and Np may interact highly specifically with 

macromolecules with different proportions of functional groups and which co­

elute due to certain common characteristics of the macromolecules.

The observed differing solubilities displayed by molecules within these fractions 

would therefore be of relevance in determining the environmental behaviour of 

these actinides once bound to humic substances.



Spectrum 3.25 Spectra Obtained using FTIR Microscopy for 
Southwick 65-70cm Humic Substances
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Spectrum 3.26 FTIR Spectrum of a Simple Organic Compound containing Amino and 
Carboxyl Functional Groups
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CHAPTER 4 

CONCLUSIONS

4.1 Introduction

This study has attempted to characterise the environmental behaviour of natural 

and anthropogenic actinides in their interactions with humic substances from soils 

and sediments. A number of conclusions can now be drawn relating to :

i) the isolation of humic materials from soils and sediments;

ii) the use of chromatographic and spectroscopic techniques in the characterisation 

of humic substances;

iii) the use of radioanalytical techniques in conjunction with i) and ii) to 

characterise actinide interactions with humic substances.

These will be discussed in turn in the following sections.

4.2 Traditional Methodology for the Separation of Humic and Fulvic Acids

At an early stage in this study, it was concluded that humic and fulvic acids were 

not representative of natural humic material either with respect to composition or 

their interactions with actinides. This conclusion resulted from the following:

i) the molecular size distribution of the humic fraction must be altered due to the 

condensation reactions occurring during precipitation of humic acid (the lowest 

E4/E6 ratios coincided with the position of the two main bands observed during 

fractionation of humic acid);

ii) the two bands observed on the gel column are experimental artefacts resulting 

from the chemical separation of humic and fulvic acids and this was shown in
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FTIR spectra of humic and fulvic acids separated after elution of humic substances 

from the gel column.

iii) the actinide distribution patterns obtained for humic substances could not be 

accounted for by the summation of corresponding humic and fulvic acid patterns 

for the same material.

iv) the strong mineral associations identified for humic acids in other studies (up 

to 30%) again result from the separation procedure by the co-precipitation and 

subsequent chemical reaction of fine clay and humic components.

The results of this study have shown altered size distribution and actinide 

distributions within the humic fraction which occur during the acid precipitation 

step in the isolation of humic and fulvic acids. Therefore an important conclusion 

is that interpretations of actinide mobility in the environmnent following 

complexation by humic compounds based on interactions with humic or fulvic 

acids would not be valid.

4.3 Alternative Methodology for the Isolation of Humic Substances

The investigation of factors resulting in the alteration of the humic fractions of 

soils and sediments led to the following criteria for the isolation of humic 

substances:

i) the minimal treatment required for isolation of a humic substance involves an 

extraction using a dilute aqueous alkaline solution;

ii) the use of dilute alkali and control of pH are essential in the extraction of a 

representative and unaltered humic fraction;

iii) the exhaustive extraction of humic substances can be achieved using aliquots



Conclusions 279

of alkali and short extraction times followed by immediate dialysis and freeze 

drying.

For the remainder of the study, humic substances, prepared as defined in section 

2.3.1, were characterised using radioanalytical and spectroscopic techniques. 

The general characteristics of humic substances are, however, similar to those 

attributed to humic and fulvic acids in that they :

i) are high molecular weight natural organic molecules;

ii) display a broad range of molecular weights;

iii) are highly heterogenous;

iv) have a high capacity for binding metals, and in particular actinides, due to their 

charge and size characteristics.

4.4 Gel Chromatography in the Study of Humic Substances

Traditionally, humic substances were separated into humic and fulvic acids which 

were reported to be less heterogeneous than the unfractionated humic material and 

therefore better starting materials for subsequent studies of humic characteristics. 

However, the chemical separation was considered too severe and so in this study, 

in order to characterise humic substances, gel chromatography was used as an 

alternative fractionation technique to provide fractions which contained humic 

macromolecules which had one or more features in common.

Gel chromatographic fractionation of humic substances does not occur purely on 

the basis of size and is influenced by a number of factors :

i) the high proportion of functional groups incorporated into humic 

macromolecules
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ii) the presence of aromatic groups incorporated into humic macromolecules

A number of further conclusions can be drawn from this study :

i) the composition and hence the origin of the humic material influences its 

separation on the gel column;

ii) where interactions between the gel and the humic material occur, this technique 

is of little use in the determination of average molecular weight or molecular 

weight distribution of such a humic material;

iii) gel chromatography is a useful fractionation technique where there is an 

understanding of the processes occurring during the passage of the humic material 

through the gel.

4.5 Spectroscopic Studies of Humic Substances

Although spectroscopic studies have often been discounted for the structural 

characterisation of humic substances due to the simplicity and broad nature of 

spectra, this study has shown that FTIR, UV and fluorescence spectroscopic 

information is of great importance in identifying alterations in humic materials 

resulting from chemical treatments during isolation. The use of the modified 

methodology employed in this study primarily identified that humic materials from 

diverse origins were composition ally different. In addition, fractionation of humic 

substances using gel chromatography prior to spectroscopic characterisation 

produced fractions which gave spectra with greater fine structure highlighting the 

application of such techniques to the characterisation of complex mixtures of 

biological molecules. The improved interpretation on the basis of the greater fine 

structure achieved for fractions of humic substances using particularly FTIR



Conclusions 281

spectroscopy and FTIR microscopy have been invaluable in :

i) elucidating the processes occurring on different gel columns (ie. G25, G100 and 

G200 Sephadex and Superdex 75) using FTIR spectroscopy;

ii) identifying functional groupings and associations between functional groupings 

which are common to macromolecules in particular fractions using both FTIR 

spectroscopy and microscopy;

iii) identifying spectral differences between fractions which correlate with changes 

in actinide distribution.

Additional and complementary information is provided in the UV/visible spectra 

of humic fractions. These spectra provide not only confirmation of interpretations 

made on the basis of FTIR spectra (eg. the aromatic character of a humic material) 

but the visible part of the spectrum also provides a measure of the concentration 

of humic material in fractions and is therefore used as a monitor of the separation 

procedure. The intensity of the absorptions at 465 and 665nm also provides useful 

information relating to the predominance of specific but unidentified components 

in humic fractions and this is tentatively related to the actinide binding capacity of 

macromolecules in a particular fraction.

Similar conclusions can be drawn from the preliminary fluorescence studies 

presented in section 3.5.2. Again, this technique has a capacity for determining the 

validity of interpretations made on the basis of FTIR spectroscopic data. Although 

the fluorescence spectra of humic fractions are broad, the changes in the position 

of the fluorescence maximum correlate well with the actinide pattern obtained for 

the particular humic material and tentatively indicate that each discrete association 

represents an association of the actinides with different components of humic 

substances. Clearly certain of these discrete bands are more important for 

individual actinides. Further, quantitative information from this type of study 

would be of great value in modelling humic-actinide interactions.



Conclusions 282

4.6 Actinide Interactions with Humic Substances

A comparison with sequential leaching data showed that an alkaline extract 

comprising humic substances did indeed account for a high proportion of the 

binding capacity of the organic fraction of soils and sediments. More importantly, 

the humic fraction which may comprise as little as 1-2% of the total soil mass 

accounts for >60% of the actinide binding capacity of the soil.

From this study it is apparent that actinide interactions with humic substances 

differ markedly from those observed for humic and fulvic acids. Whereas 

interactions with the latter presented a simple picture of actinide behaviour, the 

studies of humic substances show that these interactions are extremely complex. 

Certain difficulties have been encountered in studying actinide associations with 

humic substances, namely that gel fractionation is influenced by the composition 

of humic substances and therefore comparable fractions of humic materials from 

diverse origins may vary compositionally. These differences are, however, vitally 

important in characterising the behaviour of individual actinides in their 

associations with humic substances. It can be concluded th a t:

i) actinide interactions are highly specific;

ii) a number of discrete associations for each actinide have been observed;

iii) it is highly probable that there is a correlation between the nature of the oxygen 

containing functional groups prevailing in a humic fraction and the binding 

capacity for a particular actinide element;

iv) a further correlation is observed for highly terrigenous humic materials 

between the presence of aromatic units and U and Th distributions;

v) definitive information regarding differences in assocations between actinides 

can only be obtained where interactions between the gel and the humic material
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are minimised.

4.7 Overview

To summarise the conclusions of this study, it has been shown that the complexity 

of humic substances and indeed actinide interactions with these large biomolecules 

requires an approach involving wide-ranging techniques and extensive analyses 

with the requirement that the technique doesn't influence the result. Following the 

implementation of the methodology developed during this study it has been 

possible to :

i) elucidate the separation processes occurring during gel fractionation of humic 

material;

ii) advance the structural characterisation of humic substances;

iii) further the understanding of actinide interactions with humic substances.

4.8 Further Work

In the context of determining the mobility of actinides following complexation by 

humic substances, further work is required to quantify the solubility of the 

macromolecules in fractions which contain high proportions of actinides. In 

addition, further refinement of fractionation procedures would be of value in 

determining the similarities or differences in binding characteristics where fractions 

are important for more than one actinide element. An additional spectroscopic 

technique, NMR spectroscopy, could provide valuable quantitative information 

relating to the proportions of certain functional groups. In combination with 

advanced mass spectrometric measurements and the determination of 

concentration of humic material this could lead to information required to model 

actinide-humic complexes and hence the prediction of their long-term mobility.



References

Achard, F.K. (1786) , Crell's Chem. Ann., 2, 391 In : Stevenson, F.J. (1982). 
Humus Chemistry : Genesis, Composition, Reactions. Wiley.

Aiken, G.R., McKnight, D.M., Wershaw, RL. and McCarthy, P.(1985). Humic 
Substances in Soil, Sediment and Water : Geochemistry, Isolation and 
Characterisation. Wiley

Aiken, G.R et al (1988). Isolation of Soil and Aquatic Humic Substances. Humic 
Substances and Their Role in the Environment.

Alberts, J.J., Filip, Z. (1989). Sources and Characteristics of Fulvic and Humic 
Acids from a Salt Marsh Estuary. Sci. Tot. Env., 81/82, 353-361.

Alberts, J.J., Filip, Z., Price, N.B., Hedges, J.I., Jacobsen,T.R. (1992). CuO- 
Oxidation Products, Acid Hydrolysable Monosaccharides and Amino Acids of 
Humic Substances Occurring in a Salt Marsh Estuary. Organic Geochemistry, 18, 
2, 171-180.

Alberts, J.J., Schindler, F., Nutter, D.E. Jr., and Davis, E. (1976). Elemental, IR 
Spectrophotometric and Electron Spin Resonance Investigations of Non- 
chemically Isolated Humic Material. Geochim. Cosmochim Acta, 40, 369-372.

Allan, RL., Cook, G.T., MacKenzie, A.B., Pulford, I.D. (1991). Vertical 
Distribution and Geochemical Associations of Radionuclides in Solway Firth 
Sahmarsh Sediments. CEP Consultants, Edinburgh, 445-448. Proc. 8th Int. Conf. 
Heavy Metals in the Environment.

Allard, B., Hakansson, K., Karlsson, S. (1986). Importance of Sorption 
Phenomena in Relation to Trace Element Speciation and Mobility. Lecture Notes 
in Earth Sciences. Speciation of Metals in Water, Sediment and Soil Systems. 
Springer-Verlag (Lars Lander Ed.).

Allen, J.RL. (1991). Saltmarsh Accretion and Sea Level Movement in the Inner 
Severn Estuary, Southwest Britain : The Archaeological and Historical 
Contribution. J. Geol. Soc., 148, 485-494.

Allen, J.R. (1989). Evolution of Saltmarsh Cliffs in Muddy and Sandy Systems : 
A Qualitative Comparison of British West-Coast Estuaries. Earth Surface 
Processes and Landforms, 14, 85-92.

Almendros, G., Sanz, J., and Sobrados, I. (1989). Characterisation of Synthetic 
Carbohydrate-Derived Humic-Like Polymers. Sci. Tot. Env., 81/82, 91-98.

Anderson, HA., Russell, J.D., (1976). Possible Relationship Between Soil Fulvic 
Acid and Polymaleic Acid. Nature, 260, p597.

Anderson, H A , Stewart, M., Miller, J.D., Hepbum, A. (1991). Organic Nitrogen



References

in Soils and Associated Surface Waters. In : Advances in Soil Organic Matter 
Research : The Impact on Agriculture and the Environment, pp71-77. Ed. W.S. 
Wilson. Proceedings of a Joint Symposium by the Agriculture and Environment 
Groups of the RSC; British Soc. of Soil Scl ; Intl. Humic Subst. Soc.. Royal Soc. 
of Chem Spec. Publication. No. 90.

Andreyev, P.F., Chumachenko, A.P., (1964). Reduction of Uranium by Natural 
Organic Substances. Geochemica, 1, 3-7.

Assinder, D.J., Yamamota, M., Kim, C.K., Seki, R., Takaku, Y., Yamauchi, Y., 
Komura, K , Ueno, K., Bourne, G.S. (1991). Neptunium in Intertidal Coastal and 
Estuarine Sediments in the Irish Sea. J. Environ. Radioactivity, 14, 135-145.

Backes, C.A. and Tipping, E., (1987). Aluminium Complexation by an Aquatic 
Humic Fraction Under Acidic Conditions. Water Research, 21, 2, 211-216.

Baes, AU. and Bloom, P R. (1989). Diffuse Reflectance and Transmission FTIR 
(DRIFT) Spectroscopy of Humic and Fulvic Acids. Soil Sci. Soc. Am J., 53, 695- 
700.

Bailly, J.R and Margulis, H. (1968). Etudes de quelques acides humiques sur gel 
de dextrane. Plant and soil, 29, 343-61.

Bailly, J.R and Raboanary, M. (1986). Formation ofParahumic Substances from 
Simple Phenolic Acids. Agrochimica, 1-2, 58-74.

Barth, H.G. and Boyes, B.E. (1990). Size Exclusion Chromatography. Anal. 
Chem, 62, 381R-394R.

Barton, D.H.R., Schnitzer, M., (1963). A New Experimental Approach to the 
Humic Acid Problem. Nature, 198, 217-218.

Basham, I.R, Milodowski, A.E., Hyslop, E.K, Pearce, J.M. (1989). The Location 
of Uranium in Source Rocks and Sites of Secondary Deposition at the Needle's 
Eye Natural Analogue Site, Dumfries and Galloway. British Geological Survey 
Technical Report WE/89/56 and DOE Report DOE/RW/89.091 (1989).

Baskaran, M., Santschi, P.H., Benoit, G., Honeyman, B.D., (1992). Scavenging 
of Thorium Isotopes by Colloids in Seawater of the Gulf of Mexico. Geochim 
Cosmochim Acta, 56, 3375-3388.

Ben Shaban, Y.A. (1985) Thesis, University of Glasgow.

Benner, RA., Hatcher, S.A. and Hedges, J.I. (1990). Early Diagenesis of 
Mangrove Leaves in a Tropical Estuary : Bulk Chemical Characterisation using 
Solid-State 13C NMR and Elemental Analyses. Geochim. Cosmochim. Acta, 54, 
2003-2013.



References

Bermond, A., Bourgeois, S. (1992). Influence of Soluble Organic Matter on 
Cadmium Mobility in Model Compounds and In Soils. Analyst, 117, 685-687.

Berry, J.A., Bond, K A , Ferguson, D.R., Pilkington, N.J. (1991). Experimental 
Studies of the Effects of Organic Materials on the Sorption of Uranium and 
Plutonium Radiochim. Acta, 52/53, 201-209.

Berry, J.A, Bond, K.A (1990). Effect of Degradation Products on Radionuclide 
Sorption in the Geosphere. Anal. Proceedings, 27, 340-341.

Bertha, E.L. and Choppin, G.R (1978). Interactions of Humic and Fulvic Acids 
with Eu(H[) and Am(IH). J. Inorg. Nucl. Chem, 40, 655-658.

Berzelius, J.J. (1839). Lehrbuch der Chemie, Wohler, Dresden and Leipzig.

Bidoglio, G., Avogador, A., de Plano, A , Lazani, G.P. (1988) Reaction Pathways 
of Pu and Np in Natural Water Environments. Radiochimica Acta, 44/45, 29-32.

Bondietti, E.A. (1982). Mobile Species of Pu, Am, Cm, Np and Tc in the 
Environment. Proc. Int. Symp. Environ. Migration of Long-lived Radionuclides, 
91-96.

Boomer, D.W., Powell, M.J. (1987). Determination of U in Environmental 
Samples using ICP-MS. Anal. Chem., 59, 2810-2813.

Borovec, Z., Kffbek, B., Tolar, V. (1979). Sorption ofUranylby Humic Acids. 
Chem Geol., 27, 39-46.

Bowen, J.M., Compton, S.V., Stirling Blanche, M. (1989). Comparison of Sample 
Preparation Methods for FTIR Analysis of an Organo-Clay Mineral Sorption 
Mechanism Analytical Chemistry, 61, 2047-2050.

Boyle, E.A, Edmond, J.M., Sholkovitz, E.R (1977). Mechanism of Fe Removal 
in Estuaries. Geochim Cosmochim. Acta, 41,1313-1324.

Breger, I. A. and Deul, M. (1956). The Organic Geochemistry of Uranium US 
Geological Survey Prof. Paper, 300, 505-510.

Breger, I.A (1974). The Role of Organic Matter in the Accumulation of Uranium 
Proc. Symp. IAEA, 99-124.

Bremner, J.M. (1950) J.Soil Sci., 1, 198 In : Stevenson, F.J. (1982). Humus 
Chemistry : Genesis, Composition, Reactions. Wiley.

Brook, AJ.W. and Housely, S. (1969). The Interaction of Phenols with Sephadex 
Gels. J. Chromatography, 41, 200-204.



References

Brooks, J.D., Durie, RA., Lynch, B.M. and Stemhell, S. (1960). Infrared Spectral 
Changes Accompanying Methylation of Brown Coals. J. Am Chem Soc., 179- 
183.

Buckau, G., Kim, J.I., Klenze, R., Rhee, D.S., Wimmer, H. (1992). A 
Comparative Spectroscopic Study of the Fulvate Complexation of Trivalent 
Transuranium Ions, radiochimica Acta, 57, 105-111.

Buffle, J. (1988). Complexation Reactions in Aquatic Systems. An Analytical 
Approach. Ellis Horwood Ltd., Chichester., 692pp.

Bufo, S.A, Pizzigallo, M.D.R, Matteucci, F. and Scrano, L. (1989). Preliminary 
Characterisation of Soil Organic Matter Extracted by Electro-ultrafiltration. Sci. 
Tot. Env., 81/82, 111-120.

Bulman, R.A., Wedgewood, A.J., Szabo, G. (1992). Investigations into the 
Chemical Forms of 239Pu in a West Cumbrian Saltmarsh Soil Radiolabelled by an 
Environmental Process. Sci. Tot. Env., 114,215-226.

Bunzl, K., Kracke, W., Schimmack, W. (1992). Vertical Migration of 239,240Pu, 
241Am and 137Cs Fallout in a Forest Soil Under Spruce. Analyst, 117, 469-474.

Bunzl, K. (1978). Kinetics of Ion Exchange in Polydisperse Systems. Anal. 
Chemistry, 50, 2, 258-267.

Burges, A., Hurst, H.M., Walkden, S.B., Dean, F.M., Hirst, M., (1963). Nature 
of Humic Acids. Nature, 103, 696-697.

Burgess, J. (1992). Kinetic Aspects of Chemical Speciation. Analyst, 117, 605- 
611.

Cabaniss, S.E., Shuman, M.S. (1986). Combined Ion Selective Electrode and 
Fluorescence Quenching Detection for Cu-dissolved Organic Matter Titrations. 
Anal.Chem, 58, 398-401.

Cameron, RS., Thornton, B.K., Swift, KS., Posner, AM. (1972). J.Soil Sci.,23, 
394. In : Stevenson, F.J. (1982). Humus Chemistry : Genesis, Composition, 
Reactions. Wiley.

Campbell, C.A, Paul, E.A., Remie, D.A., McCallum, KJ. (1958). Soil Sci., 104, 
152. In : Stevenson, F.J. (1982). Humus Chemistry : Genesis, Composition, 
Reactions. Wiley.

Carlson and Mayer (1983). In : Humic Substances and Their Role in the 
Environment (1988).



References

Chapman, N.A., Smellie, J.A.T. (1986) Guest Editors. Natural Analogues to the 
Conditions Around a Final Repository for High-Level Radioactive Wastes. Chem 
Geol. Special Issue, 55.

Chen, Y., Senesi, N., Schnitzer, M. (1977). Information Provided on Humic 
Substances by E4/E6 Ratios. Soil Sci. Am J. 41,352-353.

Cherry, R.D., Shannon, L.V., (1974). The Alpha Radioactivity of Marine 
Organisms. Atomic Energy Review, Vol. 12, No.l, IAEA, Vienna.

Chin, Y., Gschwend, P.M., (1991). The Abundance, Distribution and 
Configuration of Porewater Organic Colloids in Recent Sediments. Geochim 
Cosmochim, Acta, 55, 1309-1317.

Choppin, G.R, Mathur, J.N. (1991). Hydrolysis of Actinyl(VI) Cations. 
Radiochimica Acta, 52/53, 25-28.

Choppin, G.R (1991). Redox Speciation of Plutonium in Natural Waters. 
J.Radioanal. Nucl.Chem, 147, 109-116.

Choppin, G.R (1983). Aspects of Plutonium Solution Chemistry. In : Plutonium 
Chemistry, Camall, W.T., Choppin, G.R (Eds.), Acs. Symp. Series 216, Ch. 14, 
pp213-230.

Choppin, G.R, Roberts, RA., Morse, J.W. (1986). Effects of Humic Substances 
on Plutonium Speciation in Marine Systems. Amer. Chem Soc. Symp. Ser., 305, 
382-388.

Choppin, G.R, Kobashi, A. (1990). Distribution of Pu(V) and Pu(VI) in 
Seawater. Marine Chemistry, 241-247.

Choppin, G.R, Stout, B.E. (1989). Actinide Behaviour in Natural Waters. Sci. 
Tot. Env., 83, 203-216.

Choppin, G.R (1988). Humics and Radionuclide Migration. Radiochim Acta, 
44/45, 23-28

Choppin, G.R, Stout, B. (1991). Plutonium - The Element of Surprise. Chemistry 
in Britain.

Cleveland, J.M. (1979). Critical Review of Pu Equilibria of Environmental 
Concern. In : E.A Jennes (editor). Actinides in the Environment. Am. Chem Soc. 
Symp., 35: 47-80.

Come, B. and Chapman, N.A. (Eds.) (1986). "Natural Analogues in Radioactive 
Waste Disposal. Graham and Trottman Limited, London."



References

Cook, G.T., Baxter, M.S., Duncan, H.J., Toole, J., Malcolmson, R  (1984). 
Geochemical Association of Pu in the Caithness Environment. Nucl. Inst. Meth. 
Phys. Res., 223, 517-522.

Cowie, G.L., and Hedges, J.I., (1992). Sources and Reactivities of Amino Acids 
in a Coastal and Marine Environment. Limnol. Oceanogr., 37, 703-724.

Cowie, G.L.,Hedges, J.I., Calvert, S.E., (1992). Sources and Relative Reactivities 
of Amino Acids, Neutral Sugars and Lignin in an Intermittently Anoxic Marine 
Environment. Geochim. Cosmochim. Acta, 56, 1963-1978.

Cronan, C.S. and Aiken, G.R (1985). Chemistry and Transport of Soluble Humic 
Substances in Forested Watersheds of the Adirondack Park, New York. Geochim 
Cosmochim Acta, 49, 1697-1705.

Das, N., MacKenzie, AB., (1991). Distribution and Geochemistry of Uranium in 
the Orcadian Rocks from Northeast Scotland : A Fission Track Study. J.Geol. 
Soc. of India, 38,599-604.

Davis, JA , Gloor, R , (1981). Adsorption of Dissolved Organics in Lake Water 
by Aluminium Oxide. Effect of Molecular Weight. American Chemical Society, 
15, 10, 1224-1229.

Day, J.P., Cross, J.E. (1981). 241 Am from the Decay of 241Pu in the Irish Sea. 
Natur, 292, 43-45.

Day, J.P., Ackrill, P. (1993). The Chemistry of Desferrioxamine Chelation for 
Aluminium Overload in Renal Dialysis Patients. Therapeutic Drug Monitoring, 15, 
598-601.

Degens, E.T., Khoo, F., Michaelis, W. (1977).Uranium Anomaly in Black Sea 
Sediments. American Chemical Society. Nature, 269, 566-568.

Dell'Agnola, G., Ferrari, G., Maggiori, A. (1964). Gel Filtrazione delThumus : II 
Ricerca Scientifica, 34, 347-57.

Demetriou, J.A., Macias, R.F.M., McArthur, M.J., Beattie, J.M. (1966). Gel 
Filtration Chromatography of Fluorescent Phenolic and Heterocyclic Compounds. 
J.Chromatography, 34, 342-50.

Determann and Walter (1968) In : Hayes, M.HB., MacCarthy, P., Malcolm, RL., 
Swift, RS. (1989). Humic Substances II : In Search of Structure, Wiley, 
Chichester.

Dissanayake, C.B. (1991). Humic Substances and Chemical Speciation. 
Implications on Environmental Geochemistry and Health. International J. Environ. 
Studies, 37, 247-258.



References

Dissanayake, C.B. (1983). Metal-organic Interactions in Environmental Pollution. 
Int. J. Environ. Studies, 22, 25-42.

Dormaar, J.F., Metche, M., Jacquin, J. (1970). Soil Biol. Biochem, 2, 285.

Dubach, P., Mehta, N.C., Morton, F., Roulet, N. (1964). Chemical Investigations 
of Soil Humic Substances. Geochim. Cosmochim. Acta, 28, 1567-1578.

Dubach, P. and Mehta, N.C. (1963). The Chemistry of Soil Humic Substances. 
Soils Fert., 26, 293-300.

Dubin and Fil'kov (1968). In : Hayes, M.H.B., MacCarthy, P., Malcolm, RL., 
Swift, RS. (1989). Humic Substances II : In Search of Structure, Wiley, 
Chichester.

Duursma, E.K., Sevenhuysen, W. (1966). Note on Chelation and Solubility of 
Certain Metals in Seawater at Different pH Values. Neth. J.Sea Re., 3, 95-106.

Eaker, D. and Porath, J. (1967). Sorption of Effects in Gel Filtration Separation. 
Science, 2, 507-550.

Enders, C., Tschapek, M., Glane, R. (1948). Kolloid, 110, 240.

Eckert, J.M., Sholkovitz, E.R (1976). Flocculation of Fe, A1 and Humates from 
River Water by Electrolytes. Geochim,. Cosmochim Acta, 40, 847-848.

Edgington, D.N., Wahlgren, M.A, Marshall, J.S. (1975). The Behaviour of 
Plutonium in Aquatic Ecosystems : A Summary of Studies on the Great Lakes. 
Environmental Toxicity of Aquatic Radionuclides. Models and Mechanisms. Ed. 
M.W. Miller and J. Newell Stannard. Ann Arbor Science Publishers Inc., Ann 
Arbor, USA.

Ephraim, J.H, Marinsky, J.A., Cramer, S.J. (1989). Complex-forming Properties 
of Natural Organic Acids : Fulvic Acid Complexes with Cobalt, Zinc and 
Europium Talanta, 36, 437-443.

Ertel, J.R, Hedges, J.I., Devol, A.H., Rickey, J.E., Ribeiro, M.deN.G., (1986). 
Dissolved Humic Substances of the Amazon River System Limnol. Oceanogr., 
31(4), 739-754.

Evans (1989). Chemistry of Metal Retention by Soils. Env. Sci. and Tech., 23, 9, 
1046-1056.

Falck, M., Smith, D.G., (1963). Structure of Carboxyl Groups in Humic Acids. 
Nature, 200, p569.

Farmer, V.C., Pisaniello, D.L. (1985). Against an Aromatic Structure for Soil



References

Fulvic Acid. Nature, 313, 474-475.

Fanner, V.C., Morrison, RJ. (1960). Sci. Proc. Roy. Dublin Soc., Ser. A., 1, 85.

Ferrari, G. and DelTAgnola, G. (1963) Fractionation of the Organic Matter in Soil 
by Gel Filtration Through Sephadex. Soil Sci., 96, 418-421.

Fisher, N.S. (1986). On the Reactivity of Metals for Marine Phytoplankton. 
Limnol. Oceanogr., 31(2), 169-176.

Flaig, W., (1988). Generation of Model Chemical Precursors. Humic Substances 
and Their Role in the Environment. Eds. F.H. Frimmel and RF. Christman, J. 
Wiley and Sons Limited, pp 75-92.

Flaig, W. (1960). Chemie der Humusstoffe. Suomen Kemistilehti, A33, 229-251.

Foreman and Smith (1957) in : Choppin, G.R. (1983). Aspects of Plutonium 
Solution Chemistry. In : Plutonium Chemistry, Camall, W.T., Choppin, G.R. 
(Eds.), Acs. Symp. Series 216, Ch. 14, pp213-230.

Friind, R , Liidemann, H.-D, (1989). Quantitative Analysis of Solution and 
CPMAS 13C NMR Spectra of Humic Material. Sci. Tot. Env., 81/82, 157-168.

Friind, R  Liidemann, H.-D., Gonzalez-Vila, F.J., Almendros, G., del Rio, J.C., 
Martin, F. (1989). Structural Differences Between Humic Fractions from Different 
Soil Types as Determined by FTIR and 13C-NMR Studies. Sci. Tot.Env., 81/82, 
187-194.

Fustec, E., Chauvet, E., Gas, G., Lacaze, D., Escautier, M. (1988). Degradation 
of Softwood (14C lignin) Lignocelluloses and Its Relation to the Formation of 
Humic Substances in River and Pond Environments. Hydrobiologia, 159, 169-176.

Gabriels, D., Michiels, P. (1991). Soil Organic Matter and Water Erosion 
Processes. In: Advances in Soil Organic Matter Research: The Impact on 
Agriculture and the Environment. Ed. W. S.Wilson.

Gamble, D.S., Schnitzer, M. (1973). The Chemistry of Fulvic Acid and its 
Reactions with Metal Ions. In : Trace Metals and Metal-Organic Interactions in 
Natural Waters (P.C. Singer, Ed.) Ann Arbor., pp265-302.

Gamble, D.S., Haniff, M.I., Zienius, RH. (1986). Solution Phase Complexing of 
Atrazine by Fulvic Acid : A Batch Filtration Technique. Anal. Chem, 58, 727- 
731.

Gelotte, B. (1960). Studies on Gel Filtration. J. Chromatography, 3, 303-342. 

Gessa, C., Cabras, M.A., Micera, G., Polemio, M., Testini, C. (1983).



References

Spectroscopic Characterisation of Extracts from Humic and Fulvic Fractions : LR 
and ^ N M R  Spectra. Plant and Soil, 75, 169-177.

Giesy, J.P., Gieger, RA., Kevem, N.R, Alberts, J.J. (1986). U 022+-Humate 
Interactions in Salt, Acid, Humate-Rich Waters. J. Environ. Radioactivity, 4, 39- 
64.

Goni, M.A., Hedges, J.I., (1992). Lignin Dimers : Structures, Distribution and 
Potential Geochemical Applications. Geochim. Cosmochim. Acta, 56, 4025-4043.

Grant, D.(1977). Chemical Structure of Humic Substances. Nature, 270, 22-29.

Greenland, D.J. (1971) Interactions between humic and fulvic acids and clays. Soil 
Sci., I l l ,  34-41.

Greenland, D.J. and Hayes, M.H.B. (1978). Chemistry of Soil Constituents, 
Wiley, Chichester.

Guidi, G. (1971) In : Flayes, M.H.B., MacCarthy, P., Malcolm, R.L., Swift, RS. 
(1989). Humic Substances I I : In Search of Structure, Wiley, Chichester.

Halbach, P. VonBorstel, D. Gundermann, K. (1980). The Uptake of Uranium by 
Organic Substances in a Peat Bog Environment on a Granitic Bedrock. Chemical 
Geology, 29, 117-138.

Halliday, AN., Stephen, W.E.., Haimon, RS. (1980). Rb-Sr and Oxygen Isotopic 
Relationships in Three Zoned Caledonian Granitic Plutons, Southern Uplands, 
Scotland : Evidence for Varied Sources and Hybridisation of Magmas. J. Geol. 
Soc. London, 137, 329-348.

Hatcher, P.G., Rowan, R , Mattingly, M.A. (1980) !H and 13C NMR of Marine 
Humic Acids. Organic Geochemistry, 11, 245-250.

Hatcher, P.G., and Spiker, E.C., (1988). Selective Degradation of Plant 
Biomolecules. Humic Substances and Their Role in the Environment pp59-79. 
Eds. F.H. Frimmel and R.F. Christman, J. Wiley and Sons Ltd.

Hatcher, P.G., Schnitzer, M., Dennis, L.W., Maciel, G.E. (1981). Aromaticity of 
Humic Substances in Soils. Soil Sci. Soc. Am. J., 45, 1089-1094.

Haugen, J.-E., Lichtentaler, R. (1991). Amino Acid Diagenesis, Organic Carbon 
and Nitrogen Mineralisation in Surface Sediments from the Inner Oslofjord, 
Norway. Geochim. Cosmochim. Acta, 55, 1649-1661.

Hayes, M.H.B. (1991) Concepts of the Origins, Composition and Structures of 
Humic Substances. Advances in Soil Organic Matter Research : The Impact on 
Agriculture and the Environment, Ed. W.S. Wilson. Proceedings of a Joint



References

Symposium by the Agriculture and Environment Groups of the RSC ; British Soc. 
of Soil Sci ;IntL Humic Subst. Soc.. Royal Soc. of Chem. Spec. Publication. No. 
90.

Hayes, M.H.B., MacCarthy, P., Malcolm, RL., Swift, RS. (1989). Humic 
Substances I I : In Search of Structure, Wiley, Chichester.

Healy, T.W., (1980), Colloidal Behaviour of Materials with Ionisable Surfaces. 
Pure and Applied Chemistry, 52, 1207-1219.

Hedges, J.I. (1988). Polymerisation of Humic Substances in Natural 
Environments. Humic Substances and Their Role in the Environment.

Hedges, J.I., Turin, H.J., Ertel, J.R. (1984). Sources and Distributions of 
Sedimentary Organic Matter in the Columbia River Drainage Basin, Washington 
and Oregon. Limnol. Oceanogr., 29, 35-46.

Hemfling, R  and Schulten, H-R. (1989). Selective Preservation of Biomolecules 
During Humification of Forest Litter Studied by Pyrolysis-Field Ionisation Mass 
Spectrometry. Sci. Tot. Env., 81/82, 31-40.

Higgo, J.J.W., Davis, J., Smith, B., Din, S., Crawford, M.B., Tipping, E., Falck, 
W.E., Wilkinson, AE., Jones , M.N., Kinniburgh, D. (1992). Comparative Study 
of Humic and Fulvic Substances in Groundwaters. 3. Metal Complexation with 
Humic Substances.

Honeyman, B.D. and Santschi, P.H. (1988). Metals in Aquatic Systems. Env. Sci. 
Technol., 22, 862-872.

Hooker, P.J. (1991). The Geology, Hydrogeology, and Geochemistry of the 
Needles's Eye Natural Analogue Site. CEC Report EUR 13434 EN, CEC 
Luxembourg.

Hopkins, D.W., Shiel, RS., (1991). Spectroscopic Characterisation of Organic 
Matter from Soil with Mor and Mull Humus Forms. Advances in Soil Organic 
Matter Research : The Impact on Agriculture and the Environment, pp71-77. Ed. 
W.S. Wilson. Proceedings of a Joint Symposium by the Agriculture and 
Environment Groups of the RSC; British Soc. of Soil Sci. ; Intl. Humic Subst. 
Soc.. Royal Soc. of Chem. Spec. Publication. No. 90.

Houk, RS. (1986) Mass Spectrometry of Inductively Coupled Plasmas. Anal. 
ChenL, 58, 1, 97-105.

Huang, P.M., (1989). Catalytic Role of Metal Oxides and Oxyhydroxides and 
Short Range Ordered Minerals in the Formation of Humic Substances. Clay 
Research, 8, Nos. 1-2, 91-98.



References

Hunt, GJ. (1985). Timescales for Dilution and Dispersion of Transuranics in the 
Irish Sea Near Sellafield. Sci. Tot. Environ., 46, 261-278.

Hursthouse, A. S. (1990). Thesis, University of Glasgow.

Hursthouse, A.S., Baxter, M.S., Livens, F.R., Duncan, H.R. (1991). Transfer of 
Sellafield-derived 237Np to and Within the Terrestrial Environment. J.Environ. 
Radioactivity, 14, 147-174.

Hursthouse, A.S., Baxter, M.S., McKay, K, Livens, F.R (1991). Evaluation of 
Methods for Assay of Np and Other Long-lived Actinide in Environmental 
Matrices. J.Environ. Radioactivity.

Ibarra, V. (1989). FTIR Studies of Coal Humic Acids. Sci. Tot. Env., 81/82, 121- 
128.

Idiz, E.F., Carlisle, D., Kaplan, I.R. (1986). Interaction Between Organic Matter 
and Trace Metals in a Uranium Rich Bog, Kern County, Califronia, USA. Applied 
Geochem, 1, 573-590.

Igarashi, Kim, Takaku, Shiraishi, Yamamoto, Ikeda. (1990). Application of 
Inductively Couple Plasma Mass Spectrometry to the Measurement of Long-lived 
Radionuclides in Environmental Samples. A Review. Anal. Sciences, 6.

Ivanovich, M., and Harmon, RS., (Eds.) (1992). Uranium-Series Disequlilbrium 
Applications to Earth, Marine and Environmental Sciences. Oxford Science 
Publishers.

Jamet, P., Hooker, P.J., Schmitt, J.M., Ledoux, E., Escalier Des Orres, P. (1993). 
Hydrogeochemical Modelling of an Active System of Uranium Fixation by 
Organic Soils and Sediments (Needle's Eye, Scotland). Mineral. Deposita, 28, 66- 
76.

Jasper, J.P., Gagosian, R.B., (1990). Sources and Deposition of Organic Matter 
in the Late Quaternary Pigmy Basin, Gulf of Mexico. Geochim Cosmochim. Acta, 
54, 1117-1132.

Jennings, J.K., Leventhal, J.S., (1977). New Structural Model for Humic Material 
which shows Sites for Attachment of Oxidised Uranium Species. US Geol. Surv. 
Circ. 753, 10-11.

Katz, J.J., Seaborg, G.T., Morss, L.R (1986). The Chemistry of the Actinide 
Elements. Second Edition (Katz, J.J., Morss, L.R, Seaborg, G.T. Eds.). Chapman 
and Hall, London.

Kauffinan, G.B., (1990). Beyond Uranium. Chemical Engineering News, Nov. 19.



References

Keating, G.E., McCartney, M., Davidson, C.M., McDonald, P. (1993). 
Radionuclide Discharges to the Marine Environment from a Phosphate Ore 
Processing Plant. Heavy Metals in the Environment, 411-414.

Kemp, A.L.W., Mudrochova, A., (1973). The Distribution and Nature of Amino 
Acids and Other Nitrogen Containing Compounds in Lake Ontario Surface 
Sediments. Geochim. Cosmochim. Acta, 37, 2191-2206.

Khan, S.U., Schnitzer, M. (1972). The Retention of Hydrophobic Organic 
Compounds by Humic Acid. Geochim. Cosmochim. Acta, 36, 745-754.

Khan, S.U., Sowden, F.J. (1971). Thermal Stabilities of Amino Acid Components 
of Humic Acids under Oxidative Conditions. Geochim Cosmochim Acta, 35, 
854-858.

Khanna, S.S., Stevenson, F.J. (1961). Metallo-organic Complexes in Soils. I. 
Potentiometric Titration of Some Soil Organic Matter Isolates in the Presence of 
Transition Metals. Soil Sci., 93,298-305.

Kheboian, C., Bauer, C.F. (1987). Accuracy of Sequential Extraction Procedures 
for Metal Speciation in Model Aquatic Sediments. Anal. Chem, 59, 1417-1423.

Kieber, RJ., Zhou, X., Mopper, K. (1990). Formation of Carbonyl Compounds 
from UV Induced Photodegradation of Humic Substances in Natural Waters : 
Fate of Riverine Carbon in the Sea. Limnol. Oceanogr., 35(7), 1503-1515.

Killops, S.D., Killops, K.J. (1993). An Introduction to Organic Geochemistry. 
Adv. Ed. Dr. R.C.O. Gill, Longman Scientific and Technical, J. Wiley and Sons 
Inc., New York.

Kim, J.I., Buckau, G. (1990), Characterisation of Reference and Site Specific 
Humic Acids. Report Part 1. Report No. RCM 01090 Institute for Radiochem, 
Tech. Univ. of Munich 112pp.

Kim, J.I., Rhee, D., Buckau, G. (1991). Complexation of Am(H[) with Humic 
Acids of Different Origins. Radiochimica Acta, 52/53, 49-55.
Kim, J.I., (1991). Actinide Colloid Generation in Groundwater. Radiochim Acta, 
52/53, 71-81.

Kim, J.I., Buckau, G., Rhee, D.S., Wimmer, H., Klenze, R  Complexation of 
Americium and Curium with Humic Acid. Report Part 2. Report No. RCM 01090 
Institute for Radiochem., Tech. Univ. of Munich 112pp.

Kogel-Knaber, I., Zech, W., Hatcher, P.G., de Leeuw, J.W. (1991). Fate of Plant 
Components During Biodegradation and Humification in Forest Soils : Evidence 
From Structural Characterisation of Individual Biomacromolecules. Advances in 
Soil Organic Matter Research : The Impact on Agriculture and the Environment.



References

Proceedings of a Joint Symposium by the Agriculture and Environment Groups 
oftheRSC;Brit. Soc. of Soil Sci.; Intl. Humic Subst. Soc.. Royal Soc. of Chem. 
Spec. Publications. No. 90.

Kogel-Knabner, I. and Hatcher, P.G. (1989). Characterisation of Alkyl Carbon in 
Forest Soils by CPMAS 13C NMR Spectroscopy and Dipolar Dephasing. Sci. Tot. 
Env., 81/82, 169-177.

Kononova, M.M. (1966). Soil Organic Matter. 2nd ed. Pergamon Press.

Kosaka, J., Honda, C., Izeki, A. (1960). Deformation of Humic Acid by Acid 
Treatment. Soil Sci. Plant Nutr., 7, 90-93.

Lai, D., (1977). Science, 198, 997-1009.

Langmuir, D. and Herman, J.S. (1980). The Mobility of Th in Natural Waters at 
Low Temperature. Geochim. Cosmochim. Acta, 44, 1753-1766.

Leenher, J.A, Malcolm, R.C., McKinley, P.W., Eccles, L.A. (1974). J. Res. US 
GeoL Survey, 2, 361. In : Choppin, G.R., Stout, B.E. (1989). Actinide Behaviour 
in Natural Waters. Sci. Tot. Env., 83, 203-216.

Leventhal, J.S., Daws, T.A., Frye, J.S. (1986). Organic Geochemical Analysis of 
Sedimentary Organic Matter Associated with Uranium. Applied Geochemistry, 1, 
241-247.

Levesque, M. and Schnitzer, M. (1966). Can. J. Soil Sci., 46, 7.

Livens, F.R (1987). Unpublished Data.

Livens, F.R. and Singleton, D.L. (1991). Plutonium and Americium in Soil 
Organic Matter. J.Environ. Radioactivity, 13, 323-339.

Livens, F.R., Baxter, M.S. (1988). Chemical Associations of Artificial 
Radionuclides in Cumbrian Soils. J.Environ. Radioactivity, 7, 75-68.

Livens, F.R. and Baxter, M.S. (1988). Particle Size and Radionuclide Levels in 
Some West Cumbrian Soils. Sci. Tot. Environ., 70, 1-17.

Livens, F.R (1985) Geochemistry of Plutonium and other Artificial Radionuclides 
in Cumbrian Soils. PhD Thesis, University of Glasgow.

Livens, F.R, Baxter, M.S., Allen, S.E. (1987). Association of Plutonium with Soil 
Organic Matter. Soil Sci., 144, 24-28.

Livens, F.R and Hursthouse, A. S. (1993). Soil and Sediment Chemistry of the 
Transuranic Elements. Analytical Proceedings, 30, 196-198.



References

Livens, F.R, Singleton, D.L., (1989). Evaluation of Methods for the Radiometric 
Measurement o f241 Am in Environmental Samples. Analyst, 114.

Livingston, H.D., Bowen, V.T. (1975). Americium in the Marine Environment - 
Relationships to Plutonium. Environmental Toxicity of Aquatic Radionuclides. 
Models and Mechanisms. Ed. M.W. Miller and J. Newell Stannard. Ann Arbor 
Science Publishers Inc., Ann Arbor, USA.

Lowe, L.E., Klinke, K  (1981). Forest Humus in the Coastal Western Hemlock 
Biogeoclimatic Zone of British Columbia in Relation to Forest Productivity and 
Pedogenesis. Ministry of Forests, Province of British Columbia.

Lynch, B.M., Smith-Palmer, T. (1992). Interpretation ofFTIR Spectral Features 
in the 1000-1200cm'1 Region in Humic Acids - Contributions from Particulate 
Silica in Different Sampling Media. Canadian Journal of Applied Spectroscopy, 
37,5, 126-131.

MacCarthy, P., Rice, J.A. (1991) In : Advances in Soil Organic Matter Research 
: The Impact on Agriculture and the Environment. Proceedings of a Joint 
Symposium by the Agriculture and Environment Groups of the RSC; Brit. Soc. 
of Soil Sci.; Intl. Humic Subst. Soc.. Royal Soc. of Chem. Spec. Publications 
No.90.

MacCarthy, P., Suffet, I.H. (1991) In : Advances in Soil Organic Matter Research 
: The Impact on Agriculture and the Environment. Proceedings of a Joint 
Symposium by the Agriculture and Environment Groups of the RSC; Brit. Soc. 
of Soil Sci.; Intl. Humic Subst. Soc.. Royal Soc. of Chem. Spec. Publications 
No.90.

MacFarlane, R.B., (1978). Molecular Weight Distribution of Humic and Fulvic 
Acids of Sediments from a North Florida Estuary. Geochim. Cosmochim. Acta, 
42, 1579-1582.

MacKenzie, AB., Whitton, A.M., Shimmield, T.M., Jemielita, RA., Scott, RD., 
Hooker, P.J. (1991). Natural Decay Series Radionuclide Studies at the Needle's 
Eye Natural Analogue Site II, 1989-1991. British Geological Survey Technical 
Report WE/91/37

Maes, A., De Brabandere, J., Cremers, A., (1991). Complexation of Eu3+ and 
Am3+ with Humic Substances. Radiochimica Acta, 52/53, 41-47.

MacKenzie, A.B., Scott, R.D., Williams, T.M. (1987). Mechanisms for the 
Northwards Dispersal of Sellafield Waste. Nature, 329, 42-45.

MacKenzie, A.B., Scott, R.D., Allan, RL., Ben Shaban, Y.A., Cook, G.T., 
Pulford, I.D. (1994). Sediment Radionuclide Profiles : Implications for 
Mechanisms of Sellafield Waste Dispersal in the Irish Sea. J. Environ.



References

Radioactivity, 23,39-69.

MacKenzie, A.B., Scott, RD. (1993). Sellafield Waste Radionuclides in Irish Sea 
Intertidal and Salt Marsh Sediments. Environmental Geochemistry and Health, 15, 
2/3, 173-184.

MacKenzie, A.B., Scott, R.D., Houston, C.M., Hooker, P.J. (1991). Natural 
Decay Series Radionuclide Studies at the Needle's Eye Natural Analogue Site. 
Nuclear Science and Technology. Commission of the European Communities. 
Report EUR13126 EN.

Maillard, L.C. (1912). C.R, Acad. Sci., Paris, 154, 66.

Malcolm, RL. and MacCarthy, P. (1991). The Individuality of Humic Substances 
in Diverse Environments. In : Advances in Soil Organic Matter Research : The 
Impact on Agriculture and the Environment. Proceedings of a Joint Symposium 
by the Agriculture and Environment Groups of the RSC; Brit. Soc. of Soil Sci.; 
Intl. Humic Subst. Soc.. Royal Soc. of Chem. Spec. Publications No.90.

Manskaya, S.M. and Drozdova, T.V. (1968). Geochemistry of Organic 
Substances. International Series of Monographs in Earth Sciences, 28, Pergamon, 
New York.

McDonald, P., Cook, G.T., MacKenzie, A.B. (1993). The Dispersal of 
Radionuclides in the North East Irish Sea. Heavy Metals in the Environment.

McDonald, P., Allan, R.L., MacKenzie, A.B., Cook, G.T., Pulford, I.D. (1992). 
Radionuclides in the Coastal Region of South West Scotland : Dispersion, 
Distribution and Geochemistiy. Analyt. Proceedings.

McKave, (1995) Unpublished Data, BOFS Project.

McKee, B.A., DeMaster, D.J., Nittrouer, C.A. (1984).The Use of ^T h /23̂  
Disequilibrium to Examine the Fate of Particle-Reactive Species on the Yangtze 
Continental Shelf Earth Planet. Sci. Lett., 68, 431-442.

Mehta, N.C. (1983). In : Parsons, J.W. (1988). Isolation of Humic Substances 
from Soils and Sediments. Humic Substances and Their Role in the Environment.

Meunier, J.D., Landais, P, Pagel, M. (1990). Experimental Evidence of Uraninite 
Formation from Diagenesis of Uranium-rich Organic Matter. Geochim. 
Cosmochim. Acta, 54, 809-817.

Meyers-Schulte, K.J., Hedges, J.I., (1986). Molecular Evidence for a Terrestrial 
Component of Organic Matter Dissolved in Ocean Water. Nature, 321, 61-63.

Michaelis, W., Richnow, H.H. and Jenisch, A. (1989). Structural Studies of



References

Marine and Riverine Humic Matter by Chemical Degradation. Sci. Tot. 
Env.,81/82, 41-50.

Miekeley, N. and Kiickler, I.L. (1987). Interactions Between Th and Humic 
Compounds in Surface Waters. Inorg. Chim. Acta, 140, 315-319.

Miller, J.M. and Taylor, K. (1966). Uranium Mineralisation Near Dalbeattie, 
Kirkudbrightshire. Bull. Geol. Surv. Great Britain, 25, 1-18.

Miller, W., Alexander, R., Chapman, N.A., McKinley, I., Smellie, J.T. (1994). 
Natural Analogue Studies in the Geological Disposal of Radioactive Wastes. 
Studies in Environmental Science 57. Elsevier Science.

Minai, Y. and Choppin, G.R, Sisson, D.H. (1992). Humic Material in Well Water 
from the Nevada Test Site. Radiochimica Acta, 56, 195-199.

Miodragovic, Z.M., Jokic, A, Pfendt, P.A. (1992). Fulvic Acid Characterisation 
in an Alluvial Sequence : Differences Between Clay and Sand Environments. Org. 
Geochem, 18, 4, 481-487.

Moulin, V., Robouch, P., Vitorge,P., Allard,B., (1987). Spectrophotometric 
Study of the Interactions Between Am(III) and Humic Materials. Inorganica 
Chimica Acta, 140, 303-306.

Mudge, S., Hamilton-Taylor, J., Kelly, M., Bradshaw, K. (1988). Laboratory 
Studies of the Chemical Behaviour of Plutonium Associated with Contaminated 
Estuarine Sediments. J. Environ. Rad., 8, 217-237.

Mulder, G.J. (1862). Die Chemie der Ackerkrume, Muller, Berlin.

Murray, K., Linder, P.W., (1984). Fulvic Acids : Structure and Metal Binding. II. 
Predominant Metal Binding Sites. J. Soil Sci., 35, 217-222.

Murray, K., Linder, P.W., (1983). Fulvic Acids : Structure and Metal Binding. I. 
A Random Molecular Model. J. Soil Sci., 34, 511-523.

Nachtrieb, N.H, Conway, J.G. (1948). Extraction of Ferric Chloride by Isopropyl 
Ether., J. Am Chem. Soc., 3547-3552.

Negishi, M., Matsunaga, K. (1983). Organically-Bound Copper in Lakes and 
River Waters. Water Research, 17, 91-95.

Nelson, D.M. and Lovett, M.B. (1978). Oxidation State of Plutonium in the Irish 
Sea. Nature, 276, 599-601.

Nordstrom, C.G. (1967). Separation of Polyphenolic Glucosides by Gel 
Chromatography. Ibid., 2885-2912.



References

Norwood, D.L. (1988). Critical Comparison of Structural Implications from 
Degradative and Non-Degradative Approaches. Humic Substances and Their Role 
in the Environment, pp 133-148 Eds. F.H. Frimmel and RF. Christman. J. Wiley 
and Sons Ltd.

Nozaki, Y. and Horibe, Y. (1983). Alpha-Emitting Th Isotopes in North West 
Pacific Deep Waters. Earth Planet. Sci. Lett., 32, 313-321.

Oden, S. (1910) In : Schnitzel, M., Khan, S.U. (1972). Humic Substances in the 
Environment. Marcel Dekker Inc., New York.

Oliver, B.G., Thurman, E.M., Malcolm, RM. (1983). The Contribution of Humic 
Substances to the Acidity of Coloured Natural Waters. Geochim. Cosmochim 
Acta, 47, 2031-2035.

Qng, HL. and Bisque, RE. (1968). Soil Sci, 106, 220. In : Schnitzer, M., Khan, 
S.U. (1972). Humic Substances in the Environment. Marcel Dekker Inc., New 
York.

Orlandini, K.A., Penrose, W.R (1986). Pu(V) as the Stable Form of Oxidised 
Plutonium Marine Chemistry, 18, 49-57.

Oughton, D.H., Salbu, B., Riise, G., Lien, H., Ostby, G., Noren, A. (1992). 
Radionuclide Mobility and Availability in Norwegian and Soviet Soils. Analyst, 
117, pp481-486.

Pardo, R , Barrado, E., Perez, L., Vega, M. (1990). Determination and Speciation 
of Heavy Metals in Sediments of the Pisuerga River. Wat. Res., 24, 3, 373-379.

Parsons, J.W. (1988). Isolation of Humic Substances from Soils and Sediments. 
Humic Substances and Their Role in the Environment.

Paxeus, N., Allard, B., Olofsson, U., Bengtsson, M. (1985). Humic Substances 
in Groundwater. Mat. Res. Sec. Symp. Proc., Vol.50, pp525-532. Materials 
Research Society.

Pentreath, RJ. (1980). Nuclear Power, Man and the Environment. Taylor and 
Francis Limited. London.

Pentreath, RJ., Harvey, B.R. (1981). Mar. Ecol. Prog. Ser., 6, 243.

Pentreath, RJ., Lovett, M.B., Jefferies, D.F., Woodhead, D.S., Talbot, J.W., 
Mitchell, N.T. (1984). Impact on Public Radiation Exposure of Transuranium 
Nuclides Discharged in Liquid Wastes from Fuel Element Reprocessing at 
Sellafield, United Kingdom IAEA-CN-43/32. In Rad. Waste Management Vol.5, 
IAEA Vienna.



References

Pentreath, RJ., Harvey, B.R. and Lovett, M.B. (1986). Chemical Speciation of 
Transuranium Nuclides Discharged to the Marine Environment. In : Speciation of 
fission and Activation Products in the Environment, Eds. R.A. Bulman and J.R. 
Cooper, Elsevier, pp 312-325.

Perdue, E.M. (1989). Effects of Humic Substances on Metal Speciation. Adv. 
Chem. Ser. American Chemical Society, 219, 281-295..

Perdue, E.M., (1976). Organic Complexes of Fe and A1 in Natural Water. Nature, 
260, 418-420.

Pharmacia (1994). Gel Filtration : in The World of Pharmacia Biotech '95 '96. 
Pharmacia Biotech, Uppsala, Sweden.
Picard, G.L., Felbeck, Jr., G.T. (1978). The Complexation of Iron by Marine 
Humic Acid. Geochim Cosmochim. Acta, 40, 1347-1350.

Pharmacia (1993). Gel Filtration - Principles and Methods. 6th Edition ISBN 91- 
97-0490-2-6. 103pp.

Pickering, S.A., Batts, B.D. (1992). Patterns of Mono and Difimctional 
Carboxylic Acids in Hydrothermal Leachates of Humified Soil Organic Matter and 
Peat : Geological and Environmental Implications. Org. Geochem, 18, 5, 683- 
693.

Posner, AS. (1963). Importance of Electrolyte in the Determination of Molecular 
Weights by "Sephadex" Gel Filtration, With Especial Reference to Humic Acid. 
Nature, 198, 1161-1163.

Powell, HKJ., Town, RM. (1992). Solubility and Fractionation of Humic Acid; 
Effect of pH and Ionic Medium. Analytica Chimica Acta, 267, 47-54.

Provenzano, M.R, Miano, T.M., Senesi, N. (1989). Concentration and pH Effects 
on Fluorescence Spectra of Humic Acid-like Soil Fungal Polymers. Sci. Tot. Env., 
81/82, 129-136.

Rao, L. Choppin, G.R, Clark, S B. (1994). A Study of Metal-Humate Interactions 
Using Cation Exhange. Radiochimica Acta 66/67, 141-147.
Bremner (1950). In : Stevenson, F.J. (1982). Humus Chemistry : Genesis, 
Composition, Reactions. Wiley.

Rashid, M.A. and King, L.H. (1970). Major Oxygen Containing Functional 
Groups Present in Humic and Fulvic Acid Fractions Isolated from Contrasting 
Marine Environments. Geochim. Cosmochim. Acta, 34, 192-201.

Rashid, M.A, King, L.H., (1969). Molecular Weight Distribution Measurements 
on Humic and Fulvic Acid Fractions from Marine Clays on the Scotian Shelf. 
Geochim Cosmochim Acta, 33, 147-151.



References

Rashid, M.A (1971). Role of Humic Acids of Marine Origin and Their Different 
Molecular Weight Fractions in Complexing Di- and Tri-valent Metals. Soil Sci., 
I l l ,  298-306

Rashid, M.A (1985). Geochemistry of Humic Substances, New York, Springer- 
Verlag.

Rashid, M.A. (1972). Role of Quinone Groups in Solubility and Complexing of 
Metals in Sediments and Soils. Chem. Geol., 9, 241-247.

Riffaldi, R  and Schnitzer, M. (1972). Soil Sci. Soc. Amer. Proc., 36, 301. In : 
Schnitzer, M. and Khan, S.U. (1972) Humic Substances in the Environment. 
Marcel Dekker Inc., New York.

Roberts, P.D., Ball, T.K., Hooker, P.J., Milodowski, A.E. (1989). A Uranium 
Geochemical Study at the Natural Analogue Site of Needle's Eye, SW Scotland. 
Mat. Res. Soc. Symp. Proc., 127, 933-940.

Ruggiero, P., Interesse, F.S., Sciacovelli, O. (1979). ]H and 13C NMR Studies on 
Importance of Aromatic Structures in Fulvic and Humic Acids. Geochim. 
Cosmochim. Acta, 43, 1771-1775.

Ruggiero, P., Sciacovelli, O., Testini, C., Interesse, F.S.(1978). Spectroscopic 
Studies on Soil Organic Fractions - II. IR and 'H-NMR Spectra of Methylated and 
Unmethylated Fulvic Acids. Geochim. Cosmochim. Acta, 42, 411-416.

Saar, R.A., and Weber, J.H., (1982). Fulvic Acid : Modifier of Metal-Ion 
Chemistry. Env. Sci. Technol., 16, 9, 510A-517A.

Saito, T. (1984). Selected Data on Ion Exchange Separations in Radioanalytical 
Chemistry. Pure Appl. Chem., 56, 4, 523-539.

Saleh, F.R, Ong, W.A. and Chang, D.W. (1989). Structural Features of Aquatic 
Fulvic Acids. Analytical and Preparative Reversed- Phase High-Performance 
Liquid Chromatography Separations with Photodiode Array Detection. Anal. 
Chem, 61, 2792-2800.

Salzer, R , (1994). HPLC/FTIR Identification of Complex Organic Mixtures. Pers. 
Comm

Santschi, P., Honeyman, B., (1991). Radioisotopes asTracers for the Interactions 
Between Trace Elements, Colloids and Particles in Natural Waters. Heavy Metals 
in the Environment, p229.

Schnitzer, M., Khan, S.U. (1972) Humic Substances in the Environment. Marcel 
Dekker Inc., New York.



References

Schnitzer, M., Desjardins, J.G. (1962). Molecular and Equivalent Weights of the 
Organic Matter of a Podzol. Soil Sci. Soc. Amer. Proc., 26, 362-365.

Schnitzer, M., Skinner, S.J.M. (1965). Organo-Metallic Interactions in Soils : 4. 
Carboxyl and Hydroxyl Groups in Organic Matter and Metal Retention. Soil Sci., 
99, 4, 278-283.

Schnitzer, M., Skinner, S.J.M. (1968). Gel Filtration of Fulvic Acid, a Soil Humic 
Compound. The Use of Isotopes and Radioactivity in Soil Organic Matter Studies. 
IAEA Vienna, 41-55.

Schnitzer, M. (1971). Characterisation of Humic Substances by Spectroscopy in 
A.D. McLaren, Eds., Soil Biochemistry, Vol.2, Marcel Dekker, New York.

Schnitzer, M., Shearer, D.A., and Wright, J.R. (1959). A Study in the Infrared of 
High-Molecular Weight Organic Matter Extracted by Various Reagents from a 
Podzolic B Horizon, Soil Sci., 87, 252.

Schnitzer, M., Wright, J.R, Desjardins, J.G. (1958). A comparison of the 
Effectiveness of Various Extractants for Organic Matter from Two Horizons of 
a Podzol. Can. J. Soil Sci., 38, 49-53.

Schulten, H.R, Schnitzer, M. (1993). A State of the Art Structural Concept for 
Humic Substances. Naturwissenschaften, 80, 29-30.

Scott, RD., MacKenzie, A.B., Ben Shaban, Y.A., Hooker, P.J., Houston, C.M. 
(1991). Uranium Retardation at the Needle's Eye Natural Analogue Site, South 
West Scotland. Radiochimica Acta, 52/53, 357-365.

Scott, RD., Baxter, M.S., Hursthouse, A S., MacKay, K., Sampson, RE., Toole, 
J., (1991). Geological and Nuclear Applications of ICP-MS. Analytical 
Proceedings, 28, 382-384.

Senesi, N., Miano, T.M., Provenzano, M.R and Brunetti, G. (1989). 
Spectroscopic Compositional Comparative Characterisation of IHSS Reference 
and Standard Fulvic and Humic Acids of Various Origins. Sci. Tot. Env., 81/82, 
143-156.

Sequi, P. (1972) In : Hayes, M.H.B., MacCarthy, P., Malcolm, R.L., Swift, RS.
(1989). Humic Substances I I : In Search of Structure, Wiley, Chichester.

Sequi, P., Guidi, G., Petruzelli. G. (1975). Distribution of Amino Acid and 
Carbohydrate Components in Fulvic Acid Fractionated on Polyamide. Can. J.Soil 
Sci., 55, 439-445.

Shanbhag, P.M.. Choppin, G.R. ( i 981). Binding of Uranyl by Humic Acid. Inorg. 
Nucl. Chem., 43, 3369.



Shaw, G. (1993). Pers. Comm.

References

Shindo, H , Huang, P.M., (1982). Role ofMn(TV) Oxide in the Abiotic Formation 
of Humic Substances in the Environment. Nature, 298, 363-365.

Sholkovitz, E. (1983). The Geochemistry of Plutonium in Fresh and Marine Water 
Environments. Earth Science Reviews, 19, 95-161.

Sholkovitz, E.R, (1976). Flocculation ofDissolved Organic and Inorganic Matter 
During the Mixing of River Water and Seawater. Geochim. Cosmochim Acta, 40, 
831-845.

Sholkovitz, E.R., Boyle,E.A., Price, N.B. (1978). The Removal ofDissolved 
HumicAcids and Iron During Estuarine Mixing. Earth Planet. Sci. Lett., 40, 130- 
136.

Shum, S.C.K, Neddersen, R , Houk, RS. (1992). Elemental Speciation by Liquid 
Chromatography-ICP-MS with Direct Injection Nebulisation. Analyst, 117, 577- 
582.

Simon, N.S., Hatcher, S.A., Demas. C. (1992). Comparison of Methods for the 
Removal of Organic Carbon and Extraction of Chromium, Iron and Manganese 
from an Estuarine Sediment Standard and Sediment from the Calcasiou River 
Estuary, Louisiana, USA. Chemical Geology, 100, 175-189.

Smith, B., Moody, P. (1991). Use of DEAE Cellulose to Extract Anionic Organic 
Material from Groundwaters. British Geological Survey Technical Report 
WE/91/9.

Smith, T.J., Parker, W.R, Kirkby. R. (1980). Sedimentation Studies Relevant to 
A Low-level Radioactive Effluent Dispersal in the Irish Sea. Part 1. Radionuclides 
in Marine Sediments. IOS Report No. 110, pp87. Institute of Oceanographic 
Sciences, Godalming, Surrey.

Smith, B. Stuart, M.E., Vickers, B.P., Peachey, D. (1990). The Characterisation 
ofOrganics from the Natural Analogue Site at Broubster, Caitheness, Scotland. 
BGS Technical Report WE/89/33.

Smith, D.G., Lorimer, J.W. (1964). Canad. J. Soil Sci.

Smith, B., Higgo, J.J.W., Moody, P., Davis, J R., Williams, G.M., Warwick, P.
(1990). Comparative Study of Humic Substances in Groundwater : 1. The
Extraction of Humic Material from Drigg Groundwater and a Study of its Ability 
to Form Complexes with Cobalt and Nickel. BGS Fluid Processes Group, 
Technical Report. WE/89/41 DOE Report No. DOE/RW/90/087.



References

Smith, B. (1991). HPLC Studies of Aquatic Humic Compounds and Complexes 
from Drigg Research Site, Cumbria. British Geological Survey Technical Report 
WE/91/7.

Somers, T.C. (1966). Wine Tannins - Isolation of Condensed Flavonoid Pigments 
by Gel Filtration. Nature (Lond.), 209, 368-370.

Sposito, G., (1989). Surface Reactions in Natural Water Systems. Chimia, 43, 6, 
169-176.

Steurmer, D.H., Payne, J.R (1976). Investigation of Seawater and Terrestrial 
Humic Substances with 13C and Proton Nuclear Magnetic Resonance. Geochim 
Cosmochim. Acta, 40, 1109-11 14.

Stevenson, F.J., Goh, KM., (1974). Infrared Spectra of Humic Acids : 
Elimination of Interference due to Hygroscopic Moisture and Structural Changes 
Accompanying Heating with KBr. Soil Sci., 117, 417-424.

Stevenson, F.J. (1977). Nature of Divalent Transition Metal Complexes of Humic 
Acids as Revealed by a Modified Potentiometric Titration Method. Soil Sci., 
123,10-17.

Stevenson, F.J. (1982). Humus Chemistry : Genesis, Composition, Reactions. 
Wiley.

Stevenson, F.J. and Goh, KM., (1971). Infrared Spectra of Humic Acids and 
Related Substances. Geochim. Cosmochim. Acta, 35, 471-483.

Stevenson, F.J., Butler, J.H.A. (1969). Chemistry of Humic Acids and Related 
Pigments. In : Organic Geochemistry, G. Eglinton and M.J. Murphy, Eds., New 
York : Springer-Verlag, pp543-557.

Stevenson, F.J., Goh, KM., (1972). Infrared Spectra of Humic and Fulvic Acids 
and Their Methylated Derivatives : Evidence for Non-Specificity of Analytical 
Methods for Oxygen-Containing Functional Groups. Soil Sci., 113, 5.

Stuart, M.E., Bradley, AD., Smith, B., Peachey, D. (1989). Isolation, Purification 
and Characterisation of Natural Organics from a Glacial Sand Aquifer. British 
Geological Survey Technical Report WE/89/45.

Swaine, D.J. (1992). Organic Assocations of Elements in Coals. Org. Geochem,, 
18, 3, 259-261.

Swift, RS. (1991) Effects of Humic Substances and Polysaccharides on Soil 
Aggregation. Advances in Soil Organic Matter Research : The Impact on 
Agriculture and the Environment. Proceedings of a Joint Symposium by the 
Agriculture and Environment Groups of the RSC; Brit. Soc. of Soil Sci.; Intl.



References

Humic Subst. Soc.. Royal Soc. of Chem. Spec. Publications No.90.

Swift, RS., Posner, A.M. (1972). Autooxidation of Humic Acid under Alkaline 
Conditions. J. Soil Sci., 23, 299-3 11.

Swift, R.S., Posner, A.M. (1971). Gel Chromatography of Humic Acid. J. Soil 
Sci., 22, 237-249.

Szabo, G., Wedgewood, A.J., Bulman, RA. (1991). Comparison and 
Development of New Extraction Procedures for 239Pu, Ca, Fe and Cu Organic 
Complexes in Soil. J. Environ. Rad., 13, 181-189.

Szalay, A. (1964). Cation Exchange Properties of Humic Acids and Their 
Importance in the Geochemical Enrichment of Uranyl and Other Cations. 
Geochim Cosmochim Acta, 28, 1605-1614

Szalay, A. (1969). Arkiv. Mineral Geol., 5, 23.

Tegelaar, E.W., de Leeuw, J.W.. Saiz-Jimenez, C. (1989). Possible Origin of 
Aliphatic Moities in Humic Substances. Sci. Tot. Environ.,81/82, 1-17.

Tessier, A., Campbell, P.G.C . Bisson, M. (1979). Sequential Extraction 
Procedure for the Speciation of particulate Trace Metals. Anal. Chem, 51, 844- 
851.

Tipping, E. (1981). Adsorption by Goethite (a-FeOOH) of Humic Substances 
from Three Different Lakes. Chem. Geol., 33, 81-89.

Tipping, E., Woo£ C.(1991). The Distribution of Humic Substances Between the 
Solid and Aqueous Phases of Acid Organic Soils; A Description Based on Humic 
Heterogeneity and Charge-Dependent Sorption Equilibria. J. Soil Sci., 42, 437- 
448.

Tipping, E., Backes, C.A., Hurley, M.A., (1988a). Complexation of Protons, 
Aluminium and Calcium by Aquatic Humic Substances : A Model Incorporating 
Binding-Site Heterogeneity and Macroionic Effects. Water Research, 22, 5, 597- 
611.

Tipping, E. (1981). The Adsorption of Aquatic Humic Substances by Iron Oxides. 
Geochim Cosmochim Acta, 45, 191-199.

Tipping, E., Ohnstad, M. (1984). Aggregation of Aquatic Humic Substances. 
Chem Geol., 44, 349-357.

Tipping, E., Hurley (1992). A Unifying Model of Cation Binding by Humic 
Substances. Geochim. Cosmochim. Acta, 56, 3627-3641.



References

Tipping, E., Woof, C. (1990). Humic Substances in Acid Organic Soils : 
Modelling Their Release to the Soil Solution in Terms of Humic Charge. Journal 
of Soil Sci., 41, 573-586.

Tipping, E., (1988) Colloids in the Aquatic Environment. Chemistry and Industry.

Tipping, E., Hurley, M.A, (1988). A Model of Solid-Solution Interactions in Acid 
Organic Soils, Based on Complexation Properties of Humic Substances. J. Soil 
Sci., 39, 505-519.

Tipping, E. Higgo, J.J.W. (1991). The Role of Colloids in the Release and 
Transport of Radionuclides in the Near and Far Field. Part 1 :
Part 3 : Comparison of DOE and NIREX Work with other Published Work. 
British Geological Survey Technical Report WE/91/16.

Ure, AM., (1991). Trace Element Speciation in Soils, Soil Extracts and Solutions. 
Mikrochim Acta [Wien], II, 49-57.

Van Loon, J.C., Barefoot, R.R. (1992). Overview of Analytical Methods for 
Elemental Speciation. Analyst, 1 17, 563-569.

Vance, G.F., and David, M.B. (1989). Effect of Acid Treatment on Dissolved 
Organic Carbon Retention by a Spodic Horizon. Soil Sci. Soc. Am J., 53, 1242- 
1247.

Weber, J.H., (1988). Binding and Transport of Metals by Humic Substances. 
Humic Substances and Their Role in the Environment, pp 165-178.

Welte, D. (1973). Advances in Organic Geochemistry of Humic Substances and 
Kerogen. A Review. (D2 SI AL OB24-E(l)). In : Advances in Organic 
Geochemistry.

Wershaw, RL., Pinckney, D.J., (1973). Determination of Associations and 
Dissociations of Humic Acid Fractions by Small Angle X-ray Scattering. US Geol. 
Surv. J. Res., 1: 701-707.

Wershaw, RL. (1986). J. Contain. Hydrol., 1, 29-45.

Wershaw, RL. (1989). Application of a Membrane Model to the Sorptive 
Interactions of Humic Substances. Environmental Health Perspectives, 83, 191- 
203.

Wershaw, RL., Pinckney, D.J (1973). Fractionation of Humic Acids from 
Natural Water Systems. US Geol. Surv. J. Res., 1: 361-366.

Wershaw, R.L., Bonner, Jr., G.L., (1969). Pyrolysis of Humic and Fulvic Acids. 
Geochim. Cosmochim Acta, 33.757-762.



References

Wildung, RE. and Garland, T.R. (1989) Science of the Total Environment, 81/82.

Wilkins, B.T., Green, N., Stewart, S.P., Major, RO. (1986). Factors Affecting the 
Association of Radionuclides with Soil Phases. In: Speciation of Fission and 
Activation Products in the Environment. Eds. R.A. Bulman and J.R Cooper. 
Elsevier Applied Science Publishers.

Williams, G.M., Smith, B. Warwick, P. (1993). Complexation of Radionuclides 
with Naturally Occurring Organic Compounds in Groundwater : Project 
Summary. British Geological Survey Technical Report WE/93/7.

Wolfram, C. and Bunzl, K  (1986). Sorption and Desorption of Technetium by 
Humic Substances Under Oxic and Anoxic Conditions. J. Radio analytical and 
Nuclear Chemistry Articles, 99, 2, 315-323.

Yariv, S. and Cross, H. (1979). Geochemistry of Colloid Systems. Springer- 
Verlag, Berlin.

Zech, W., Haumaier, L., Kogel-Knaber, I. (1989). Changes in Aromaticity and 
Carbon Distribution of Soil Organic Matter due to Pedogenesis. Sci. Tot. Env., 
81/82, 179-186.

FMIVERS’t , ,


