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ABSTRACT

This thesis is concerned with the application of eigenstructure assignment methods to

helicopter flight control law design.

Helicopters are inherently multivariable dynamic systems and, in some cases, can be

unstable. Pilot workload is increased by the effects of the cross-coupled helicopter

dynamics. As well as providing stability and reducing pilot workload the controller has to

produce satisfactory handling qualities and ride quality over a range of flight conditions.

Eigenstructure assignment methods are reviewed and previous results from the use of these 

methods are discussed. The need to adopt a modified approach is established by

considering the complex nature of the helicopter control problem in that the controller

should decouple the helicopter’s dynamics, track pilot inputs and meet helicopter handling

requirements.

A multivariable control law design method which cancels zeros and zero directions and also 

creates a decoupled tracking system is presented. The effect of output selection on system

zero positions is tabulated. Control law design is performed on an 8th order linear model 

of the helicopter’s rigid body dynamics. An inner/outer loop structure is adopted. The inner 

loop contains a scheduled controller which provides stability and a decoupled response

across a range of flight conditions while the outer loop involves a proportional plus integral 

controller to augment performance. The resulting controlled system meets helicopter handling 

qualities requirements. Actuator and rotor dynamics that were not included at the design

stage are added to the model to test for robustness. The controller is then tested on 

helicopter models for flight conditions other than that at which the design was produced and 

it is shown to be robust to the changes. The linear helicopter model is then replaced by a 

non-linear representation. It is shown that the controller continues to give good performance 

with the non-linear model. The non-linear controlled system is then tested for disturbance

rejection by adding turbulence to the simulation. The ability of the system to filter out 

sensor noise is also investigated. The results show that the controller maintains stable



behaviour across the range of flight conditions for which the inner loop controller was 

scheduled, responses which are decoupled are achieved and handling quality requirements are 

met.
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CHAPTER 1 INTRODUCTION

A helicopter is a rotorcraft which, in its commonest form, derives lift from a 

power-driven main rotor rotating about an axis which is vertical, or nearly so when 

the helicopter is in horizontal flight, with an additional tail rotor to counteract the

effect of torque on the main rotor and to provide directional control. The main rotor 

must provide propulsion, lift and manoeuvrability and it is this aspect that particularly 

sets the helicopter apart from fixed wing aircraft.

In order to become air-borne, sufficient lift must be generated by the main rotor. 

When air strikes a blade it divides into flows over the upper and lower surfaces of 

the blade’s aerofoil section. Because of the angle of attack of the blade and the

differences in the amount of upper and lower surface camber, the velocity of the air

flow over the upper surface is greater than that over the lower surface. Since the air 

pressure decreases as the velocity increases, the pressure acting on both surfaces of the 

blade will be less than the surrounding atmosphere. However the camber of the upper 

surface will result in the upper surface having less pressure acting on it than the 

lower surface. It is the net difference in these two pressures which produces lift.

If we assume that a helicopter is hovering in a no-wind situation, the velocity of the

airflow at the blade tips is the same throughout the tip path plane and decreases at 

points closer to the rotor hub. When the helicopter moves into forward flight the 

airflow velocity becomes a combination of the rotor rotational velocity and the forward 

velocity of the helicopter. The resultant velocity of the advancing blade is the 

combination of these two velocities whereas the resultant velocity of the retreating 

blade is the difference of the two velocities. Hence during forward flight the lift over 

the advancing half of the rotor will be greater than that over the retreating half of the 

rotor. This is obviously not acceptable as it would cause the helicopter to roll. To

1



equalise the rotor blade lift the blades are allowed to flap about special hinges. Blade

pitch angles can therefore change cyclically relative to the air flowing over them.

The pilot has four inceptors with which to fly the helicopter: collective, longitudinal 

cyclic, lateral cyclic and yaw. The collective pitch lever changes the pitch on all the

blades collectively. By increasing the angle of attack of the blades, more air is drawn

through the rotor producing an increase in lift if the rotor is maintained at the same

speed. If the cyclic pitch stick is in a central position, the rotor tip path plane is

flat. This means that the total rotor thrust acts vertically as lift. By moving the

cyclic stick forward, the tip path plane is tilted forward which has the effect of

angling some of the rotor thmst backwards. With some of the rotor thrust acting

backwards, lift is reduced. To restore the lift, the blade angle of attack is increased

using collective.

The turning of the main rotor produces a torque which causes the fuselage to rotate in 

the opposite direction. The tail rotor produces a counteracting moment to prevent 

counter-rotation of the fuselage. The yaw pedals control the pitch of the tail rotor 

blades in a collective fashion and this also provides lateral directional control

capabilities.

Helicopters can present difficulties in terms of manual control due to effects such as

slow response to pilot demands, inherent instability of the uncontrolled vehicle, 

non-linearities and cross-coupling. These factors can result in a high pilot workload and 

can make it difficult to make full use of the capabilities of the vehicle in certain 

types of mission tasks.

Flight control systems aim to provide an improvement in the handling qualities of a 

helicopter. This, in turn, benefits the pilot by reducing the workload during flight and

2



allowing more account to be taken of other stimuli (thus improving safety and mission 

effectiveness). However, even with a flight control system in use, the flight envelope 

which is considered usable in present-day helicopters is still considerably smaller than 

that which is within the capabilities of many modem rotorcraft such as the Lynx 

helicopter. This margin is introduced in the interests of safety, but by constraining the 

usable flight envelope in this way the performance that can be demanded from the 

helicopter is limited and much of the helicopter’s potential is unused.

Ideally, what is required is a flight control system which incorporates control laws able 

to cope with the complex cross-couplings within helicopter dynamics and able to 

extend the boundaries of the usable flight envelope to exploit the full potential of the 

helicopter without compromising safety.

Handling qualities criteria are necessary to assist control system designers in producing 

controllers which give improved closed loop system performance. The opinion of the 

pilot as to which controllers give good or bad handling can often be translated into 

criteria to be met which will result in improved performance or at least interpreted 

in such a way as to give the designer guidelines to be used in subsequent designs of 

controllers. Over the years much information has been gathered covering different 

types of aircraft, different types of tasks and different operational environments. From 

this information it has been possible to define some measurable quantities which can 

give an indication of the quality of handling that can be expected from the controlled 

helicopter. However, the handling qualities criteria, as they exist at present, are not 

sufficient to guarantee that the controller will give high performance even if the 

criteria have been complied with.

The helicopter is a highly coupled, non-linear multivariable system and for the 

purposes of analysis and control system design we require a mathematical model. In
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general terms a model is a structure which has certain properties in common with the

system under investigation. By its very nature a model is not a perfect replica of the

real system as it is intended to simplify the problem in hand. What is important 

therefore is the degree of similarity between the model and the system. A diagram is 

shown (fig. 1.1) of a method of developing a control system for a helicopter by

varying the complexity of the model. The diagram begins with the real helicopter 

system. The helicopter is then described by a set of equations to give a full 

non-linear model. The non-linear model is then linearised around the point in the 

flight envelope about which the design is to be carried out. The non-linear model 

used here was Helisim and the linear model was obtained from Helistab. (Padfield, 

1981) Both the Helisim and Helistab models originated at the Royal Aerospace

Establishment (Bedford).

In the approach adopted in this work the linearised actuator and rotor dynamics are 

removed for the initial stages of the work to leave a linearised model of the rigid 

body dynamics which incorporates a quasi steady state description of the main and tail 

rotors. It is on this model that the control law design is performed. The reason for 

removing the actuator and rotor dynamics is that significant uncertainties exist in the 

rotor description in the version of the model used in this work. It was considered 

undesirable to make the control system design too dependent upon the rotor description 

since the imprecision could cause robustness problems. Only when a controller which 

gives a satisfactory closed loop performance in conjunction with the linear rigid body 

model and quasi-steady rotor description is achieved does the development move on. 

Because subsequent stages of development involve the reinstatement of rotor and 

actuator dynamics in the model, the control law design method has to be robust to the 

addition of unmodelled dynamics especially in the upper part of the frequency range of 

significance.(Ray & Stengel, 1992) The performance of the controller and model is 

then tested and if necessary the controller can be retuned. The controller is then
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implemented on the non-linear model and if it works sufficiently well at this stage, it 

can then be tested for insensitivity to noise and for disturbance rejection. The 

development process continues in this way, in an iterative fashion, the helicopter model 

becoming more complex as it approaches the original system.

There are many methods of developing control laws for multivariable systems such as 

the helicopter. Examples include proportional and integral, LQR/LQG (linear quadratic 

regulator/linear quadratic gaussian), singular perturbation methods, H°° and eigenstructure 

assignment methods.(Gribble et al., 1992 & Manness et al., 1990) Each of these has 

different properties which may or may not make them suitable for the helicopter 

application.

A multivariable proportional and integral controller has been used to improve the 

performance of an Apache YAH-64 helicopter (Enns, 1987). The inner loop provided 

stability augmentation, decoupled responses and gust attenuation. The resulting control 

laws were successfully flight-tested.

One particular form of singular perturbation method (Porter & Bradshaw, 1981) 

developed at the University of Salford can be used to design high gain error-actuated 

controllers for linear tracking systems. These controllers take the form of multivariable 

proportional and integral controllers. This method assumes that the dynamics of the 

system to be controlled can be separated into two distinct groups: one of low 

frequency and the other of high frequency. The lower frequency dynamics are 

considered quasi-static when compared with the higher frequency dynamics. In order 

to select an appropriate controller matrix, feedback from the fast states is required. In 

the case of the helicopter these fast states are associated with the rotor and actuator 

and with some rigid body modes. In order to apply the Salford Singular Perturbation 

Method information must be available concerning the blade angles of each of the
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actuators but this is not currently a routinely measured variable on helicopters. This 

means that it is necessary to make extra measurements either by using observers in 

the controller or to install sensors in the main rotor hub.

By using the H°° method (Francis, Helton & Zames, 1981), bounds on system 

performance can be guaranteed by information gathered from singular values. The H°° 

norm of a transfer matrix is defined as the maximum of its largest singular value over 

all frequencies and it can be used to place an upper bound on the uncertainty level in 

a system (e.g. from unmodelled dynamics, changes in flight condition and 

non-linearities). Controllers devised by this method can be of very high order and 

therefore require more computation time. Problems may be encountered due to a lack 

of processor speed. H°° methods have been used to develop helicopter flight 

controllers that provide decoupling and stability augmentation (Yue & Postlethwaite, 

1990). The frequency and time responses of the controlled helicopter were evaluated 

and stability robustness was assessed using singular value techniques. The controller 

had 39 states initially but these were reduced to 18 by using approximations that did 

not result in a significant deterioration of the controller’s performance.The controller 

was used in simulation tests and then in piloted trials. The performance was found to 

be generally good. Another approach to helicopter flight controller design (Walker & 

Postlethwaite, 1990) involves using a design structure consisting of an inner loop to 

provide stability and an outer loop containing a dynamic controller designed by H°° 

optimisation. By using this inner/outer loop technique the order of the H°° controller 

can be reduced.

LQR can be used to derive an optimal, stabilising feedback law which gives desirable 

closed loop system properties. However, the method involves choosing values for 

weighting functions. The relationship between these weightings and their effect on 

closed loop system performance is not always clear which tends to make selection of
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weightings a difficult task.

Eigenstructure assignment can offer a straightforward method of achieving static 

compensators that satisfy time response specifications but does not offer guaranteed 

stability margins like some LQR methods (Innocenti & Stanziola, 1990). The good 

stability margins achieved by LQR are, however, only achieved by trial and error in 

the selection of performance index weighting matrices. High gains are usually required 

to improve stability margins and this can result in closed loop poles moving toward 

transmission zeros. In order to prevent this occurring we can define upper bounds on 

gains. It has been shown that the eigenstructure of the plant is related to the 

selection of weighting matrices (Harvey & Stein, 1978) - the implication being that 

eigenstructure plays an important role where robustness issues are of concern. On this 

premise, Innocenti and Stanziola outlined a method applied to a rotorcraft problem 

which showed that eigenstructure assignment was a viable alternative in terms of 

robustness, performance and dimension of compensator dynamics (Innocenti & Stanziola, 

1990). There was also a reduction in gain associated with the method.

The objective of this research is to investigate eigenstructure methods. Eigenstructure 

assignment techniques have a significant advantage over other methods of synthesising 

control laws in that there is a level of visibility attached to the design process which 

facilitates the understanding of the relationship between the helicopter dynamics and the 

controller structure.

Given the following linear, time-invariant system with m inputs (m < n )

x = Ax + Bu 

y = Cx + Du
( 1.1)

(1.2)

where A is the nxn system matrix

B is the nxm input matrix

C is the mxn output matrix
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D is the mxm direct coupling matrix 

it has been shown that n eigenvalues and m elements of the n corresponding 

eigenvectors can be arbitrarily assigned using full state feedback. (Moore, 1976)

The behaviour of the system is governed by the eigenvalues of the A matrix.

Eigenvalues define the rate of decay (negative eigenvalues) or growth (positive

eigenvalues) of the response. Each eigenvalue has an eigenvector associated with it.

In order to tailor the dynamics of the system to meet given system specifications 

(such as those defined by handling qualities requirements) the position of these 

eigenvalues must be modified. There is both an eigenvalue and an an eigenvector 

associated with each mode. When one mode of the system is excited, the other 

modes of the system should not be excited due to cross-coupling effects.

In terms of eigenstructure, the cross-coupling can be seen by inspecting the

eigenvectors of the system. The eigenvectors are distributed over six modes (three

lateral modes and three longitudinal modes) or, if heading is included, over seven 

modes in such a way that each mode has associated with it an eigenvector or an 

eigenvector subspace. A linearised state space representation of a Lynx can be

generated by the Helistab package.(Smith, 1984) The eigenstructure of the system

matrix (A) at a flight condition of 80 knots is shown in Table 1



Table 1 Eigenstructure of a Lynx Helicopter at 80 knots

Mode F a s t  P i t c h Slow P i t c h Phugoi d

Ei g e n v a l u e - 3 . 1988 - 0 . 4055 0 . 1338  ± 0 . 3 7 6 6 i

E i g e n v e c t o r u 0 . 0398 - 0 . 7209 1 . 0000 ± 0 . 0 0 0 0 i
w 1.0000 1 .0000 0 . 3244  + 0 . 6 1 4 9  i
q - 0 . 0 5 7 6 0.0101 0 . 0134  + 0 . 0 1 1 4  i
0 0 . 0178 - 0 . 0238 - 0 . 0159  + 0 .0 4 0 5  i
V 0 . 2918 0 . 0878 0 . 1336  + 0 . 1887  i
p 0.0401 0 . 0227 - 0 . 00 1 0  + 0 . 0 0 8 4 i
<p - 0 . 0127 - 0 . 0554 - 0 . 0 2 0 9  + 0 . 0 0 4 3 i
r 0 . 0194 - 0 . 0125 - 0 . 00 7 6  + 0 . 0 0 1 1 i
¥ -0 .0031 0 .0 0 9 0 - 0 . 00 2 6  + 0 . 0 0 5 2 i

Mode Rol l Spi  r a l Dutch R o l 1 Headi ng

E i g e n v a l u e -10 . 5525 -0 . 0305 -0 . 6531  ± 2 . 2543 0

E i g e n v e c t o r u 0 . 0124 - 0 . 4314 - 0 . 0 0 0 2  +  0 . 0 0 4 6 i 0
w 0 . 2700 - 0 . 0064 - 0 . 01 1 0  +  0 . 0 1 6 8  i 0
q - 0 . 0 5 1 9 - 0 . 0036 0.0011 +  0 . 0 0 0 7  i 0
e 0 . 0043 0 .0001 - 0 . 00 1 2  +  0 . 0003  i 0
V 0 . 7965 1.0000 1.0000 ± O.OOOOi 0
p 1.0000 - 0 . 0164 - 0 . 01 6 2  ± 0 . 0 0 5 0 i 0
¥ - 0 . 0951 0 . 4623 0 . 0035  ± 0 . 0 0 6 1 i 0
r 0 . 1855 0 .1079 0 . 0127  +  0 . 05 3 9 i 0
¥ - 0 . 0 0 2 0 - 0 . 6213 -0.0011 +  0 . 0 0 0 2 i 1

From Table 1 we see that all the modes are fully coupled except heading. The 

decoupled situation with respect to heading arises because the dynamics of the 

helicopter are not dependent on the direction in which the helicopter is flying. The 

longitudinal modes consist of two stable pitching modes and an unstable phugoid 

mode. From the eigenvectors we see that the fast pitch and phugoid modes appear in 

the lateral velocity state, v, even though they are described as longitudinal modes. 

The lateral modes are roll, spiral, dutch roll and phugoid. There is more evidence of 

the high degree of coupling in that the roll mode eigenvector shows that it appears in 

the vertical velocity state, w. It is also worth noting that the dutch roll damping ratio 

is poor. This will result in lateral directional oscillations in long term responses.
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Heading will not be included in the initial design. The eigenvector components are

therefore as shown below:

u f or war d  v e l o c i  ty
w v e r t i c a l  v e l o c i t y
q p i t c h  r a t e
0 p i t c h  a t t i t u d e
V l a t e r a l  v e l o c i t y
p r o l l  r a t e
<P r o l l  a t t i t u d e
r yaw r a t e

To design a controller which will improve the helicopter’s performance, for each mode

we choose which of the above states are to be active and attempt to make all other

states in that eigenvector zero. When this mode is excited we should have

contributions from the chosen states only.

With regard to the positioning of assignable eigenvalues - we would obviously want 

them to be in the left half plane to ensure stability. There is a relationship between 

the position of the eigenvalue and the bandwidth: the more negative the eigenvalue

becomes, the larger the bandwidth. Some bandwidth requirements (e.g. from Handling 

Qualities Specification) will also give an indication as to how far into the left half

plane the eigenvalues must be and, together with damping requirements, time constants 

etc., areas of the left half plane can be determined within which each eigenvalue must 

lie.

However, as we would expect, the eigenvalues of the actuators of a helicopter and

those due to the rotor are at somewhat higher frequencies than those of the rigid body

dynamics of the fuselage. Therefore a trade-off exists between how far we move the

eigenvalues in order to create a higher bandwidth and how far left we can move them 

without involving these higher frequency dynamics.

The handling qualities requirements give a set of design criteria. These can be used
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in eigenstructure assignment methods to choose sets of eigenvalue/eigenvector pairs 

which give adequate performance. There are three categories of performance, a good

performance rating Level 1 and a poor performance Level 3. Further details of the 

definition of these performance levels are included in Chapter 3. Although we may

achieve a Level 1 performance with respect to handling qualities at the design 

condition, we must also evaluate the robustness of the controlled system.(Osder & 

Caldwell, 1992) It must be robust both to the addition of higher frequency dynamics 

and to changes in flight condition. Insensitivity to external disturbances and noise 

rejection must also be achieved and the overall system must not be oversensitive to 

sensor noise.

The eigenvalues and eigenvectors occurring naturally in the uncontrolled system can be 

altered to a more desirable condition by applying feedback laws to the system. For

instance, by applying u = r - Fy as shown in Figure 1.2

 [ I ] T M-r
 M -
 [ * ] -

Figure 1.2 Block diagram of system with output feedback

the closed loop system is represented by x = (A - BFC)x + Br

For each eigenvalue/eigenvector pair we have

(A - BFC)vj = V i  O-3)

Therefore Vi = (A - V ) " 1 BFCvi U-4)

A full state feedback matrix, F, of dimension (m x n) does not allow complete

freedom to assign eigenvectors. The assignable eigenvectors must lie in a subspace

spanned by the columns of T,

r = [ A.jl - A ]
-1

B ( 1 . 5 )
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where X[ is the desired eigenvalue for this mode.

The purpose of the feedback controller, F, is to produce the achievable set of closed 

loop eigenvalues and eigenvectors which is as near the desired set as possible. The 

desired eigenvalues and eigenvectors are chosen according to handling qualities 

requirements.

Once suitable eigenvalue/eigenvector pairs have been chosen, the desired eigenvector 

can be projected onto the subspace T in order to find the achievable eigenvector 

which is closest to the desired eigenvector.

From (A - BFC)V = VA

where V is a matrix of eigenvectors 

and A is a matrix of eigenvalues

we have (AV - VA) = BFCV

Therefore F = B+ (AV - VA) (CV)"1

where B+ is the pseudoinverse of B

By creating a closed loop system which incorporates this feedback matrix, F, the 

eigenstructure of the system will be derived from the matrix A - BFC rather than the 

A matrix (as in the open loop case). In this way the eigenstructure of the system can 

be altered.

In the subsequent chapters three different eigenstructure assignment methods will be

used to design controllers for a helicopter.

( 1.6)

(1.7)

( 1.8)
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Figure 1.1 A Method of Developing a Controller for a Helicopter



CHAPTER 2 HELICOPTER MODELS

A mathematical model of a helicopter provides opportunities for design investigations, eg.

control system design, handling qualities studies and rotor load investigations, without the

risks involved with using the helicopter itself. For the conclusions drawn from these

investigations to be valid, the model must be a reliable representation in terms of the 

aspects of the system under investigation. The model is not an exact replica of the

helicopter’s dynamics, instead certain properties are selected for inclusion in the model while 

others are approximated or neglected completely. This is done in such a way that the

characteristics which are judged important for the intended application are retained. The 

model can be validated by comparing the helicopter responses to those of the model for 

cases which relate directly to the type of application intended. A high degree of similarity 

between the helicopter and the model behaviour means that the model can be used to 

predict flight behaviour. A trade-off also exists between model accuracy and computational 

speed.

Fundamentals of Flight Mechanics

A helicopter in flight is assumed to be a rigid body. The distance between any two points 

in the body is fixed and forces acting between mass elements are ignored. This means 

that the motion of the helicopter body can be described by a translation and rotation about 

the centre of mass. Using earth-fixed axes, equations for the forces and moments acting on 

the helicopter can be obtained. However because these axes are non-rotating, the moments 

and products of inertia will vary as the helicopter rotates. This can be avoided by fixing 

the frame of reference with respect to the helicopter to provide a body-fixed set of axes. 

One result of having body-fixed axes is that they move with the helicopter and so the 

moments and products of inertia become constants. The derivatives of vectors with respect 

to a rotating frame of reference now need to be found but this is simpler than dealing with 

variable inertia coefficients. The force and moment equations referred to the body-fixed
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axes can be shown to be (Prouty)

F = m Svc + mo) x vc

8 t
G = 8h + to x h

(2 .1 )

( 2 . 2 )
8 t

where F r e s u l t a n t  f o r c e  

G r e s u l t a n t  moment

m mass o f  h e l i c o p t e r

v c v e l o c i t y  o f  c e n t r e  o f  mass

to a n g u l a r  v e l o c i t y

h a n g u l a r  momentum

The s c a l a r  component s  o f  t h e s e  e q u a t i o n s  a r e  as f o l l o w s :

X = Fx = m(u + qw - rv)  ( 2 . 3 )

y = F y = m ( v + r u - p w )  ( 2 . 4 )

Z = F z = m(w + pv - qu)  ( 2 . 5 )

L = Gx = hx + q h z - rhy ( 2 . 6 )

M = Gy = hy + r h x - phz ( 2 . 7 )

N = Gz = h z + phy - qhx ( 2 . 8 )

where  X,Y,Z a r e  component s  o f  r e s u l t a n t  ae rodynami c  f o r c e  

( d r a g ,  s i d e f o r c e ,  l i f t )

L,M,N a r e  r o l l i n g ,  p i t c h i n g ,  yawing moments

u , v , w  a r e  component s  o f  v e l o c i t y  a t  c e n t r e  o f  mass

p , q , r  a r e  r o l l i n g ,  p i t c h i n g ,  yawing v e l o c i t y

Since the origin is the centre of mass all the products of inertia are zero (IXy = IyZ = Ixz

= 0). The equations reduce to

L = I XP + ( I z - Iy )  r q ( 2 . 9 )

M = i y q + ( I x - I z ) P r ( 2 . 1 0 )

N = I z r + ( I y - I x ) pq ( 2 . 1 1 )
18



Equations 2.3, 2.4, 2.5, 2.9, 2.10 & 2.11 are known as Euler’s equations of motion. They 

relate the forces and moments acting in body-fixed axes to those in earth-fixed axes.

Figure 2.1 shows the relationship between earth-fixed and body-fixed axes. We begin with 

axes in positions C xl y l z l. Three rotations are then applied. The first rotation, \\f,

about C z l takes the axes to C x2 y2 z2. The second rotation, 0, about C y2 takes axes

to C x3 y3 z3 and the final rotation, cp, about C x3 takes the axes to C x y z. 0, cp &

\j/ are known as euler angles.

The Euler transformation matrix allows transformation between earth and body axes. It is 

shown below

a l l  
a 21 

. a 31

a 12 a 13 
a 22 a23 
a 32 a 33 .

a l l  = COS0 c o s y

a 12 = COS0 s i ny

a 13 = - s in0

a 21 = s incp s in0 c o s y  - coscp s in y

a 22 = s incp s in0 s i ny  + coscp cos y

a 23 = s incp cos0

a 31 = coscp s in0 s i n y  + s incp s i ny

a 32 = coscp s in0 s in y  - s incp c os y

a 33 = coscp COS0

cp = p + q sincp t a n0  + r coscp t an0  ( 2 . 1 3 )

0 = q coscp - r sincp ( 2 . 1 4 )

y  = q sincp s e c0  + r coscp s ec0  ( 2 . 1 5 )

It can be assumed that all the variables consist of a steady state (trimmed) component and 

a perturbation component.
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Xp = Xe + X (2.16)

where Xp is the perturbed state 

Xe is the trimmed state 

X is the perturbation

The equations can be linearised by subtracting the trimmed state from the perturbed state to 

leave only the perturbation component.

All products of perturbations are assumed to be small and are therefore ignored. Small 

angle assumptions are also made. This gives

u = - (we q - v e r )  - g0 c o s 0 e + X/M ( 2 . 1 7 )

v = - ( u e r - we p)  + g((p c o s 0 e sin(pe - 0 s i n 0 e sincpe ) + Y/M

w = - ( v ep - u e q)  - g ( 0  s i n 0 e cos(pe + (p sincpe c o s 0 e ) + Z/M

^xxP =  ̂x z r + L ( 2 . 2 0 )

I y y q  = M ( 2 . 2 1 )

^ z z r =  ̂xzP + ^  ( 2 . 2 2 )

0 = q cos<pe - r sintpe ( 2 . 2 3 )

(p = p + q sintpe t a n 0 e + r costpe t a n 0 e ( 2 . 2 4 )

\p = r costpe s e c 0 e + q sincpe s e c 0 e ( 2 . 2 5 )

Using an expansion based on the Taylor series,

X = Xe + 8X/8u u + 8X/8v v + 8X/8w w + . . .  + 8X/80o t r  0o t r

The equations of motion can now be substituted in. In the case of the first translational

equation this gives

Mu = -M(weq - v e r )  - Mg0 c o s 0 e + 8X/8u u + SX/8v v +

8X/8w w + 8X/8p p + 8X/8q q + 8X/8r  r + 8X/80 0 +

8X/8<p (p + 8X /80O 0O + 8X/80J s 0 l s  + 8 X/ 8 0 lc  0 lc  +

8X/80o t r  0o t r  ( 2 . 2 6 )

where 0O c o l l e c t i v e

0 i s l o n g i t u d i n a l  c y c l i c
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0 ] c l a t e r a l  c y c l i c  

0o t r  c o l l e c t i v e  o f  t a i l  r o t o r

By applying the same process to each of the equations of motion, a model is produced in

state space form

x = Ax + Bu 

where  x = [ u ,  v,  w, p ,  q r ,  0,  (p]1

u = t ^ o ’ ®ls» ®lc» ^ o t r l *

In this research the components of the state vector are given in a different order

x = [u , w, q , 0 , v , p , cp, r ]  ( 2 . 2 8 )

This gives an A matrix which is partitioned in terms of longitudinal and lateral dynamics.

l o n g i t u d i n a l  
dynarai cs

c r o s s - c o u p l i n g  
l a t e r a l  to 

l ongi  t u d i n a l
c r o s s - c o u p l i n g  
l o n g i t u d i n a l  to 

l a t e r a l

l a t e r a l  
dynami cs

This eight state model describes the rigid body motion of the helicopter. The rotor coning

angle and the longitudinal and lateral flapping angles are determined through algebraic

relationships. If the coning angle, longitudinal and lateral flapping angles are added as state 

variables the model becomes eleventh order. The model becomes fourteenth order when the 

rates of change of these three angles are added as states.

The linearised equations are valid for small perturbations about a trim condition. A change

in angle of 15 degrees or a change in velocity of 5 ms"l is considered to be the limit for 

a linear model. This is a generalisation and in fact the limits should be assessed according 

to the flight condition and type of manoeuvre.
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Helicopter Model System Analysis and Simulation

Using a VAX-VMS computing environment, MATLAB and TSIM (Anon., 1988)were used 

for analysis and simulation.(Murray-Smith et al., 1991) These packages were used because 

they were standard at RAE. As stated in the introductory chapter, experiments were 

performed on both linear & non-linear models of a helicopter. The linear model was 

represented in state space form within MATLAB (Moler et al., 1987). MATLAB is a 

collection of functions for linear algebra, matrix computation and numerical analysis. A 

collection of algorithms in the MATLAB Control System Toolbox (Moler et al., 1987) 

allows implementation of common control system design, analysis and modelling techniques.

The HELISTAB software package provides a choice of system order for the linear 

helicopter model. The eighth order model provides rigid body states only, whereas the 

eleventh order model includes coning angle, Pq, longitudinal flapping angle, P j c, and lateral 

flapping angle, P j s, to model main rotor dynamics. The fourteenth order model also 

includes P is & Pic-

The state space matrices for each flight condition were obtained from the HELISTAB 

program. Another software package called HELISIM was used to obtain a non-linear 

model. Both the Helistab and Helisim programs are based upon the work of Padfield. 

(Padfield, 1981)

The linear model (including only rigid body dynamics) will be used to design a flight 

control system and then actuator and rotor dynamics will be added to the linear model. The 

non-linear model is used to investigate noise and disturbance rejection as well as robustness 

to changes in flight condition and response during large maneouvres. The performance 

obtained in each experiment is compared with the handling qualities specification outlined in 

Mil-spec 8501. (Anon, 1961)
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Helistab

Helistab was created within RAE (Bedford).(Smith, 1984) The Helistab package provides a 

theoretical model of the flight mechanics of a helicopter. It contains a non-linear model 

and can be used to derive reduced order linear models. Helistab can be used to compute 

time responses and to plot these responses.

The user can choose a model of a Lynx or a Puma. In this research the Lynx 

configuration was used. The user must also define the flight condition.

When an aircraft is put in a state of equilibrium by the action of the pilot adjusting the 

controls, it is said to be trimmed. The body attitudes and control angles which are 

necessary to achieve and maintain equilibrium are computed by a trim algorithm in Helistab. 

The forces and moments acting on the trimmed helicopter are then calculated. The 

equations used are outlined in Appendix 1.

In order to calculate stability and control derivatives of the helicopter model states are 

perturbed in a positive sense and in a negative sense. Force and moment calculations are 

performed for each of these two perturbed states. The states are then returned to their 

equilibrium values. The derivatives are computed by assuming a linear force/state 

relationship.

The user can define the control input by selecting the input type (step, ramp, doublet,etc.),

its size and duration. This information is used to produce the time response.

The Helistab model has been validated through comparison with flight data.(Padfield &

Duval, 1991) It is thought that, within the normal flight envelope, characteristics can in

some cases be predicted to within 20% of flight values.(Smith, 1984) An approximation 

which is relevant to this research is that the blade dynamics modelling is taken to be 

quasi-steady flapping motion (i.e. the rotor disc takes up a new position as an instantaneous

23



function of the fuselage state). In a multi-blade coordinate system the lowest frequency 

rotor mode is the regressing flap mode which responds below 1 Hertz. This should be 

noted as it can couple into control system modes and produce misleading results.(Hanson, 

1982)

Helisim

Helisim is a TSIM implementation of Helistab. It is used for a non-linear simulation of the 

helicopter and controller and provides a route to piloted simulation. Helisim uses the same

equations as Helistab to calculate forces and moments. One difference between Helisim and

Helistab is that the centre of gravity position along the x axis is of opposite sign. Helisim 

uses the convention of positive aft of the rotor centre whereas Helistab uses positive 

forward of rotor centre.

A block diagram of the Helisim software structure is shown in Figure 2.2.

The file SESAME calls CONTROLS, TOTF and TOTM.

CONTROLS calls all the control subroutines which perform the control functions such as

actuators. It also gathers the information needed by the model, e.g. blade angles and rotor 

speeds.

CIN picks up the pilot or VDU inputs and applies a shaping function to each input. Thus

control inputs can be dead-banded, non-linear and bounded by variables.

FCS provides the model with a basic autostab.

ENG calculates engine torque, engine power and tail rotorspeed.

CMX collects pilot inputs and applies control mixing (usually done mechanically in the

helicopter). It is not called when active controls are on.

ATR equates active control outputs to the actuator outputs.

The file TOTF calls the model subroutines and sums the forces generated to produce
j
| information required by SESAME.
i

[ TOTM sums the moments generated in the model subroutines and passes the information to



iI
I

SESAME.

PAR calculates the reference forces and moments for the model.

RTR calculates the main rotor forces and moments.

TRT calculates the tail rotor forces and moments.

FSG calculates the fuselage forces and moments.

FIN calculates the fin forces and moments.

TLP calculates the tailplane forces and moments.

UCR calculates the undercarriage forces and moments.

TWIND controls the generation of turbulence.

USERCMI sets up the user input to the model, e.g. autostab setting, active controls and 

TSIM switches. It also initialises forward speed and height.

USERCMO communicates any user information back from the model to TSIM, e.g. engine

power, and it also contains all the externals.

ACTLAW contains the active control law defined by the user. The control law simulated by

this file is discussed in Chapter 5.

More information on the software functions is contained in Appendix 5.
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CHAPTER 3 HELICOPTER HANDLING QUALITIES

The purpose of designing a flight control system for a helicopter is to provide improved

safety, to improve the performance of the vehicle in terms of agility and manoeuvrability

and to reduce the pilot’s workload. In order to assess the improvement in performance 

created by the addition of a controller, a set of design objectives is required. In the past 

these design criteria were provided by MIL-H-8501A. (Anon, 1961) The current standards

are contained within an updated draft version of MIL-H-8501A.(Hoh, 1988) This handling

qualities document contains specifications relating to system bandwidth, damping and levels 

of coupling for many different types of flight condition and types of manoeuvre. These 

parameters have been identified as those to which a pilot is sensitive and acceptable 

parameter ranges have been subsequently defined by monitoring pilot reactions to changes in 

helicopter transfer functions within a piloted flight simulation. It also defines handling

qualities specifications in terms of response types and operational environment. The 

response types can be defined as follows:

Attitude Rate - Attitude diverges away from trim for at least 4 seconds following a step

change applied at the inceptor.

Attitude Command (AC) - Constant cockpit control force input must produce proportional 

angular displacement in terms of vehicle attitude. A separate trim control must be supplied. 

Attitude Hold (AH) - Attitude must return to within 10% of peak within 20 seconds

following a pulse cockpit controller input, or input directly into the control surface actuator. 

This is illustrated in figure 3.3. (Hoh, 1988)

Translational Rate Command with Position Hold (TRCPH) - Constant controller force input 

must result in constant translational rate. The rotorcraft must hold position if the force on 

the cockpit controller is zero.

The response type is a classification based upon the operational requirements of the

helicopter. If the Bode plot of a response type is considered it can be seen that the
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positions of the dominant poles and zeros are restricted.(Hoh, 1988) This means, therefore, 

that the required response type affects the design of the flight control system.

It should also be noted that since different response types may be suited to different 

forward velocities, the required response type may change with flight condition. The 

character of the controller may have to change as a consequence of the different 

requirements.

During initial testing stage of flight control system development in terms of the flow chart

of figure 1.1, only the handling qualities requirements for small amplitude responses may be

used due to the limits imposed on model validity by the linear model.

Many of the handling quality requirements refer to the response of the helicopter to pilot

inputs. A representative set of tasks is defined within the handling qualities documentation. 

These are known as mission task elements (MTE) and are defined because different tasks 

require different handling qualities. The dynamic response requirements are divided into two 

categories: low speed/hover (< 45 knots) and forward flight. In this study the initial tests 

have been performed on a model of a Lynx at 80 knots. This means that the Low Speed/ 

Hover requirements for dynamic response are not needed. Of the forward flight requirements

(Section 3.4), the most stringent requirements are those for Air Combat. It is assumed that

these are to be used to assess performance. The performance of the controller can be

assigned to one of three categories:

Level 1 - Flying qualities are completely adequate for the MTE being considered.

Level 2 - Flying qualities are adequate for the MTE being considered but there is a loss of

effectiveness of the mission or an increase in workload is imposed on the pilot to achieve 

the mission.

Level 3 - Flying qualities are such that the helicopter can be controlled but either mission 

effectiveness is severly impaired or the pilot workload is so great that it approaches the



limit of the pilot’s capacity.

It is desirable that all Mission Task Elements should have Level 1 handling qualities. 

Bandwidth criteria will be used to assess the performance of the controller initially. The

bandwidth is a measure of the maximum closed loop frequency that a pilot can achieve

without threatening stability. Bandwidth is a function of the gain or phase margin of the

open loop frequency response of the attitude response to cockpit inputs and is defined in 

figure 3.1.(Hoh, 1988) Actual bandwidth criteria are given in figure 3.2.(Hoh, 1988)

Phase delay is a measure of how quickly the phase lag increases at frequencies beyond that

which has a phase shift of 180 degrees. The phase delay parameter is sensitive to lags and

delays in the flight control system. It can be seen from figure 3.2 that as the phase delay,

Tp, increases the required bandwidth increases. This is because it is thought that an aircraft 

with rapid rate of change of phase will be more sensitive in terms of closed loop

performance than one with a smaller rate of change of phase. A good system will have a

bandwidth that is higher than the maximum input frequency that it is designed to track.

Systems can be PIO prone (pilot induced oscillation - approximately 1 Hz) if the gain

margin bandwidth is low. This is because small changes in pilot gain cause a large

reduction in phase margin. The higher bandwidth is therefore required to provide a larger 

margin. Analysis of the frequency response of the pitch, roll and yaw channels will provide 

measurements of band widths and phase delays.

As shown in Figure 1.1 piloted simulation using a flight simulator would be the final step

in assessing the control system prior to implementation in the real vehicle and subsequent 

flight test. At this stage the controller can be tested by large scale manoeuvres with a 

non-linear model. The pilot rates the handling qualities of the controlled helicopter

according to the Cooper-Harper scale.(Harper, 1986) These ratings relate to the handling

qualities ratings outlined above as follows:
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Cooper-Harper Handling Qualities 

1 - 3 . 5  => Level 1

3.5 - 6.5 => Level 2

6 . 5 - 1 0  => Level 3

A decision can then be made as to whether to continue testing the controller by an inflight 

demonstration. From the inflight demonstration pilots return handling qualities ratings for 

various tasks. These ratings give an indication of whether the controller is performing

satisfactorily.

Software for Handling Qualities Analysis

The Helicopter Handling Qualities Toolbox (Howitt) was written for the PRO-MATLAB

package. This allows the designer to utilitise not only the handling qualities toolbox but

also the other toolboxes available in MATLAB.

The handling qualities toolbox performs analysis relating to the criteria from the Mil. Spec. 

MIL-H-8501A update. It contains three types of functions: analysis, plotting and data 

functions. Analysis functions define the handling qualities parameters from the responses of 

the system, the plotting functions plot the parameters which are calculated by the analysis

functions and the data functions contain data pertaining to handling qualities boundaries and 

text.

Frequency responses can be generated for each of the axes (pitch, roll & yaw) from linear 

simulation in MATLAB. These are used as the basis for analysis.

The analysis function DEF-SHORT-TERM  is used to define the effective bandwidth and 

phase delay from the small amplitude, short term frequency response. 

PLOT—SHORT—TERM then plots the parameters calculated for each body axis, pitch, roll & 

yaw. The plots displayed allow the designer to relate the performance of the controlled 

system to the handling qualities boundaries. The designer can use this information to

produce a satisfactory design.
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Other functions deal with mid-term response. The handling qualities toolbox can also be 

used in conjunction with a non-linear model.

This toolbox will be used to present results in subsequent chapters.

Choice of Outputs for Handling Qualities

It has been shown that some combinations of outputs for control purposes are more 

compatible with handling qualities specifications than others.(Buckingham & Padfield, 1986) 

The choice of outputs available were as follows:

o u t p u t  1: h h e i g h t  r a t e
7 f l i g h t  p a t h  a ng l e
wb v e r t i c a l  v e l o c i t y

o u t p u t  2: e p i t c h  a t t i t u d e
q p i t c h  r a t e
vt t o t a l  v e l o c i t y
ub l o n g i t u d i n a l  v e l o c i t y

o u t p u t 3: Q t u r n  r a t e
9 bank a n g l e
P r o l l  r a t e
vb l a t e r a l  v e l o c i t y

o u t p u t  4: p s i des  1 ip
r yaw r a t e
vb l a t e r a l  v e l o c i t y

The four outputs to be controlled were chosen by selecting one variable from each of the 

above sections. Obviously, there are 144 combinations. However, 12 of these can be

eliminated because they have vb in both the third and fourth outputs. Also some other 

combinations would not be desirable from a handling qualities point of view.(Buckingham & 

Padfield, 1986) In Chapter 5 the remaining 132 combinations are inspected. The outcomes 

of the investigations are tabulated in Appendix 2.
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CHAPTER 4 CONTROLLERS DESIGNED BY TWO DIFFERENT EIGENSTRUCTURE 

ASSIGNMENT TECHNIQUES

4.1 Ei gen structure Assignment Method with Eigenvector Specification

There are many methods of assigning eigenstructure. One method (Andry, Shapiro & 

Chung, 1983) allows the desired eigenvalue positions to be achieved and also permits 

some control over the eigenvectors. This method is outlined below.

We consider the linear, time-invariant system described by

x = Ax + Bu (4.1)

y = Cx (4.2)

where x is state vector, u is input vector & y is output vector.

Given a self-conjugate set of scalars, {A,jd} i=l..n, and a corresponding self-conjugate set 

of n vectors, {vj^} i=l..n, find a real (mxn) matrix F such that the eigenvalues of (A + 

BF) are precisely those of the self-conjugate set of scalars {A,jd} with corresponding 

eigenvectors the self-conjugate set {vjd}.

If we define

S = [ AT - A ! B ] ( 4 . 3 )

and a compatibly partitioned matrix

=
N?l ( 4 . 4 )

where the columns of R^ form a basis for the null space of S^.

For rank(B)=m, columns of N ^ are linearly dependent and N^* = N^*. If we let (Xj} 

i=l..n  be a self-conjugate set of distinct complex numbers, there exists a real (mxn) 

matrix F such that

(A + BF)vj = TcjVj i=l..n (4.5)

if and only if

(i) {vj} i=l..n are a linearly independent set in <Cn, the space of complex n vectors.

(ii) vj = vj* when A,j = Aj*
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(iii)vi = span {N^}

(X[ I - A ) v j  = BFvj

[A,j I - A B] v i
-Fv = 0

( 4 . 6 )

( 4 . 7 )

Since the columns of R^j form a basis for the null space of S^j, it follows that 

Vj e s p a n { N ^ j } ( 4 . 8 )

If we assume the set {vj} i=l..n satisfies (i), (ii) & (iii) then there exists a vector z\  

(real or complex) such that

v j = N^ i z j  ( 4 . 9 )

( X l  - A)N^j + BM^i = 0 ( 4 . 1 0 )

( XI  - A)N^iZi  + BM^izj  = 0 ( 4 . 1 1 )

(>.1 - A)vj  + BM^iZi = 0 ( 4 . 1 2 )

If an F can be chosen so that

■M^i z j  = Fv j ( 4 . 1 3 )

then

[ XI  - (A + BF ) ] Vj = 0 ( 4 . 1 4 )

If such an F exists it satisfies

F I V1 ................. v n l  = . - MXnz n l  ( 4 ' 1 5 )

If each is real and the matrix of eigenvectors is non-singular,

F =  [ -MX.1 Z ]  -MXnzn] I v l .  . v , ,] * 1

If desired eigenvalues are complex, a slight alteration of the above equation is required 

Assume that X\  =  X2 *

From (ii) vj = ^2 which implies z \  -  Z2  . Thus assuming all other eigenvalues are 

real, F must satisfy

F [ V 1R +  J V 11 V 1R - J V 11 v 3 • • • v n l  =  t w 1R + j w n  w 1R - j w n  w3 . . . w n ] 

where Wj = -M ^zj (4.16)

Multiplication on both sides of the equation by non-singular matrix

1 / 2  - j / 2  
1 / 2  j / 2  

0 1
(4 .1 7 )
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r e s u l t s  in

[ i (W! R+jw1I ) + i ( w i R - j w 1 I ) - { ) ( w 1R + j w 1 I ) + i j (WIR-Wjj) W3 . . .  W„]

= U ( wl R+jwl I + wl R - j wl l )  U - j w i R + w n + j w j R + w n )  w3 . . . wn ]

= [ w i r  w n  w3 . . .  wn ] ( 4 . 1 8 )

T h e r e f o r e

F t v lR V11 v 3 - • •  v n] = [ W1R W11 w3 - • -  wnl

Since the set {vj} is independent, the matrix [ v j r  v j j  v 3 ... vn] is non-singular and F

can be calculated.

It has been shown that (Andry et al., 1983)

(1) n eigenvalues and a maximum of nxm eigenvector entries can be arbitrarily specified.

(2) no more than m entries of any one eigenvector can be chosen arbitrarily.

Given the controllable and observable system and assuming B & C are full rank, then 

max(m,r) closed loop eigenvalues can be assigned and max(m,r) eigenvectors can be 

partially assigned with min(m,r) entries in each eigenvector arbitrarily chosen using gain 

output feedback.

1. Total Specification Of v ^

Consider the closed loop system

x ( t ) = (A + B F ) x ( t )  ( 4 . 1 9 )

Assume we are given {Aq} i= l..r as the desired closed loop eigenvalues where vj is the 

closed loop eigenvector corresponding to So for the eigenvalue/eigenvector pair we

have

(A + BFC) v j = A, j v j ( 4 . 2 0 )

Vj = ( V  - A) - lBFCvj  ( 4 . 2 l )

It is assumed that none of Ap match the existing eigenvalues of A so that (XI - A)"l

exists.

mi = FCvj ( 4 . 2 2 )

vi  = ( ^ i l  " A) _1Bmi ( 4 . 2 3 )

This implies the eigenvector Vj must be in the subspace spanned by the columns of (Atjl 

- A)"1b  of dimension m (equal to rank(B) or the number of independent variables).
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Therefore the dimension of the subspace is determined by A, B &

Therefore, if we choose an eigenvector which lies in this subspace, it will be achieved 

exactly.

2. Best Possible Vjd

In general the chosen eigenvector will not lie within the subspace and therefore cannot 

be exactly achieved. We must develop a method to achieve the "best possible" choice 

of eigenvector which will lie in the subspace.

Define

Li = (A,jI - A H B  ( 4 . 2 4 )

vjA = LjZj  zeR ( 4 . 2 5 )

where vjA is the achievable eigenvector (the projection of vjd onto the subspace).

In order to find this projection, we choose to minimise

J = nv j d  - v j An2 = u v j d - L j zj

dJ = 2LjT ( L j z j  - v j d ) 
dz j

dJ = 0 i m p l i e s  
dz j

Zi = ( L i ^ L j ) " ^Lj^Vj

ViA = L i ( L iTLi ) - l L iTVid

( 4 . 2 6 )

( 4 . 2 7 )

( 4 . 2 8 )

( 4 . 2 9 )

( 4 . 3 0 )

3. Partial Specification Of Vjd 

Assume has the following structure

d _ v i l
v i j
v in

( 4 . 3 1 )

where Vjj are components specified by the designer and other components are 

unspecified.

Reordering,
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{vjd} = ( 4 . 3 2 )

lj vector of specified components 

dj vector of unspecified components of v ^

(A,I - A )" *B = D!
( 4 . 3 3 )
( 4 . 3 4 )

Zi = ( L iTL i ) - l L i T l i 

ViA = L i ( L i TL i ) - l L i T i i

4. Feedback Gain Computation

Hereafter eigenvector refers to assignable eigenvector. 

Transform the B matrix to form

( 4 . 3 5 )

( 4 . 3 6 )

B -> [ q"1 ] ( 4 . 3 7 )

T -> [B P] ( 4 . 3 8 )

where P is any matrix such that rank(T) = n

A = T - U T  ( 4 . 3 9 )

B = T - ! b = [ ] ( 4 . 4 0 )

C = CT ( 4 . 4 1 )

x ( t ) = Ax ( t )  + B u ( t ) ( 4 . 4 2 )

y(t) = Cx(t) (4.43)

Under this transformation the eigenvalues of the system are unaffected and the 

eigenvectors are related by

T ' l v i = v i ( 4 . 4 4 )

The closed loop eigenvalue/eigenvector equation is
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(AI - A)vj  = BFCvj ( 4 . 4 5 )

We partition this conformally

r Alm- A n  "A12 1 [ z i 1 = [ 1 FC [ z i 1
I -A2 i ^In-m"A22 -l L wi J L 0 J L wj J

( 4 . 4 6 )where

Vi =  [ % ]  ( 4 . 4 7 )

U i ( 4 -48)

[Xi lm-An  -A12] [ ^ | ] = P C  [ * |  ] ( 4 . 4 9 )

Multiplying out
( ^ I m - An ) z i  - A 12wj = FCvj (4.50)

^ I mzj - (Aj jZj + A j 2Wj) = FCvj (4.51)

AjZj - Ajvj  = FCvj where A \  = [Aj j  A j 2]

(Aj + FC)vj = Ajzj (4.52)

(Aj + FC)V = Z (4.53)

F = (Z - A 1V)(CV)-1 (4.54)

where V = [ vj v2 ... vr ]

Z = [ Ajzj A2z2 ... V r  ]

Results From The Above Method

The above method was applied to the helicopter control problem. Using the Helistab 

model of the helicopter’s rigid body dynamics at 80 knots and in forward level flight, 8 

eigenvalues were assigned (and 8 eigenvectors partially assigned) to create a feedback 

controller which would give better performance. Although this method was found to 

give accurate eigenvalue placement and a best fit to the desired eigenvector structure at 

the design condition, at flight conditions away from the design flight condition the 

eigenstructure of the controlled system changed to such an extent (fig. 4.4) that it 

produced a significant deterioration in performance.

4.2 Eigenstructure Assignment Method with Condition Number

During flight the helicopter will stray from the design condition and the natural 

eigenstructure of the helicopter will change. The ability of a controller to cope with

such a change is referred to as robustness. It would be useful if some parameter could
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be calculated from the controlled system which would reflect to what extent the assigned 

eigenstructure of the system would change from that at the design condition. The 

following method (Kautsky, Nichols & Van Dooren, 1975) does this. It allows 

eigenvalues to be assigned and also gives a condition number to indicate how robust the 

solution is. (When perfectly conditioned, the condition number is 1.) This method is 

outlined below.

Consider the time—invariant, linear, multivariable system

x ( t )  = Ax ( t )  + B u ( t )  ( 4 . 5 5 )

Given the real matrix pair (A, B) and eigenvalue set CE, our objective is to choose 

eigenvectors, given by X, satisfying

(A + BF)X = X A where A = d i a g t ^  . . .  Xn } 

and such that the conditioning of the eigenproblem is minimised.

If X is non-singular, there exists F, a solution to

(A + BF)X = XA ( 4 . 5 6 )

i f and o n l y  i f

Uj T (AX - XA)=0 ( 4 . 5 7 )

where

B = [ Uq Uj ] [ o ] by QR d e c o mp o s i t i o n

T h e r e f o r e  F i s  g i v e n  by

F = Z - 1U0T (XAX-1 - A) ( 4 . 5 8 )

P r o o f

(A + BF)X = XA ( 4 . 5 9 )

BF = XAX'1 - A ( 4 . 6 0 )

premultiplying by gives

ZF = U0t (XAX"1 - A ) ( 4 . 6 1 )

0 = U1t (XAX"1 - A) ( 4 . 6 2 )

(4.58) implies that F exists if and only if
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R{XAX~1 - A } c  R{B} = R{U0 } (4 .63 )

R  denotes range and N  denotes null space.

Therefore R{XAX"1 - A} is orthogonal to N { B }  = /?{U j}

The feedback matrix is calculated in three steps:

Step 1

The QR decomposition of B gives Uq, U j & Z.

A

This allows us to construct orthonormal bases sj and sj for the space yjj in which each 

eigenvector lies

The objective is to choose vectors xj e T)j j = 1 .. n such that each vector is as

orthogonal as possible to the space spanned by the remaining vectors, i.e. the angle

between xj and the space Xj = < X j  b£j> is maximised for all j. Or we choose xj to

minimise the angle between xj and the normalised vector yj orthogonal to the space xj

Each vector xj is taken in turn and replaced by a new vector with maximum angle to 

the current space Xj.

We obtain yj by QR decomposition of

Dj = N{U!T (A - X j l ) }

(UiT (A - X j i ) ) T = [§j  S j ]  [ qJ ]

( 4 . 6 4 )

( 4 . 6 5 )

Step 2

V j.

Xj = [ XI X2 . . .  Xj _!  Xj+1 . . .  xn ] ( 4 . 6 6 )

The projection of yj into T]j is given by

(4 .6 7 )
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which gives the vector xj which has minimum angle to yj.

Step 3

M = A + BF 

M = XAX~1

( 4 . 6 8 )

( 4 . 6 9 )

M is calculated by solving for in

Xt Mt  = (XA)t  

F = Z - 1U0T (M-A)

( 4 . 7 0 )

( 4 . 7 1 )

The condition number of the eigenvector matrix X gives an indication of how robust we

can expect the solution to be. K2(X) = 1 is perfectly conditioned.

Results From The Above Method

Using a flight condition of 80 knots forward flight and a rigid body model, this second 

method was used to design feedback controllers for 3 different eigenvalue sets. Higher 

order dynamics were then added to the rigid body model and the flight condition was 

changed from 80 knots to between 60 and 100 knots in steps of 5 knots.

This was to test for robustness to changes in the coefficients of the system matrices 

with changes in flight condition and also to the addition of high frequency dynamics 

unmodelled at the design condition. The migration of the eigenvalues at each flight 

condition was plotted. From the graphs we see that the condition number does indeed 

give an indication of the extent to which the eigenvalues move. The system with the 

condition number of 30 (fig. 4.2) has shown very little eigenvalue movement compared 

with the system with condition number 185 (fig. 4.1). We can conclude that k2 (X) gives 

a reliable indication of robustness in terms of the unwillingness of the eigenvalues of the 

closed loop system to move when higher frequency dynamics aic added to the model 

and the flight condition is changed.

Taking the middle case with condition number 66 (fig. 4.3), the same eigenvalue set was 

used with the first eigenstructure assignment (Andry) method to obtain a feedback
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controller. In order to obtain a comparison of the two methods, the same changes were 

made to the model dynamics and flight condition. Fig. 4.4 shows the results from the 

Andry method. The moderate and low frequency eigenvalues show greater movement in 

the Kautsky method than in the Andry method but the higher frequency eigenvalues 

move more in the Andry method than in the Kautsky approach.

It is generally true to say that the controller developed by the first method gives a more

robust performance in terms of the lack of movement of the eigenvalues and may

therefore be better suited to the helicopter application where there is a large range of

dynamic change than the other method.
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CHAPTER 5 EIGENSTRUCTURE ASSIGNMENT METHOD FOR DECOUPLED

TRACKING

5.1 Method for Eigenstructure Assignment

The third eigenstructure assignment method is based upon a control system structure of the 

type shown in the Figure 5.1a

A - - - -  

fb - - -

Figure 5.1a Block diagram of controller configuration

Two of the objectives in designing a control law are to create a well-decoupled tracking 

system (each input being tracked by one output) and to decrease the pilot workload. It 

was felt that one approach to decreasing pilot workload could involve simplifying the 

transfer function of the closed loop system so that, from the pilot’s point of view, more

predictable characteristics could be obtained and so make flying the helicopter an easier 

task.

To simplify the system from the pilot’s point of view, the effective system order should be

decreased over the frequency range of relevance. This can be achieved by using an

extension of pole-zero cancellation in SISO systems to the multivariable case. (Hughes et

al„ 1990)

It is well known that poles can be identified in relation to linear dynamic systems,

however, it is less well known that such systems also have zeros associated with them.

The poles occur at characteristic frequencies of the system. The zeros give information

about how the dynamics of the system are coupled to the external environment. Zeros of
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Gt(s) are called transmission zeros (MacFarlane & Karcanias, 1976) and zeros of P(s) are 

cailled invariant zeros. The invariant zeros of a multivariable system are those frequencies 

at. vhich transmission through the system is blocked. The invariant zeros of a state space 

representation are those values of s for which the matrix P(s) is singular (i.e. det(P(s))=0).

Tlhe matrix P(s) is considered rather than the transfer function matrix, G(s), because G(s) 

represents only the controllable and observable parts of the system defined by the state 

sp>ace equations, and so more information is available from P(s). If the system is completely 

controllable and observable then the zeros obtained from G(s) and P(s) will be the same.

P ( s )  =
s i  - A 

C
-B
D ( 5 . 1 )

There are also system zeros and decoupling zeros. The definition for each type is as 

folllows:

(i) Transmission zeros are defined by the Smith-Macmillan form of the transmittance 

matrix G(s). They are associated with the transmission-blocking properties of the system.

(ii) Invariant zeros are defined by the system matrix P(s) and are associated with the 

zero output behaviour of the system.

(iii) Decoupling zeros are defined by the Smith form of

[ s I - A -B ] and
s I -A 

C

and are associated with the existence of uncoupled modes for systems which are not 

completely observable or completely controllable.

(iv) System zeros contain both transmission and decoupling zeros.

The transfer function matrix is a representation of how information is transmitted through 

the system and can be divided into two parts:

1. the coupling into and out of the internal energetic processes of the system

( r e p r e s e n t e d  by t he  z e r o s )

2. the action of these internal energetic processes (represented by the poles)

Therefore, zero positions can be altered by changing the way in which power is coupled

into the system or by altering the way in which information is extracted from it. In the
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case of the helicopter, we are limited to four pilot inputs but can choose different 

combinations of outputs to create different output spaces. Each output space will contain 

different zero positions as mentioned in chapter 3.

Invariant zeros also have associated with them invariant zero directions.

In the multivariable system, available assignable modes can be used to cancel invariant 

zeros of the system (effectively reducing the order of the system). Not only must some of 

the assignable eigenvalues be used to cancel the zeros exactly but also the corresponding 

eigenvectors must match the zero directions. The remaining assignable modes can then be 

placed to give optimum performance. Once this has been done, the controlled system at 

the design condition will respond to pilot inputs in a similar fashion as a system which has 

only the remaining assigned modes (and no zeros). It is possible that the controller will 

not be robust and as the eigenstructure of the helicopter changes with flight condition, the 

assigned eigenstructure due to the controller may no longer cancel zeros and zero directions. 

Consequently, we may find that the eigenvalues and eigenvectors which cancelled zeros and 

zero directions initially, now add undesirable components into the response characteristics of 

the controlled system and also that we now have the effects of the cancelled zeros too. 

On the other hand, the controller may prove to be robust and so, as the eigenstructure of 

the helicopter moves with changes in flight condition, the assigned eigenstructure moves in 

such a way that the zeros and directions remain cancelled and adequate performance is 

maintained.

Obviously, we wish only to assign modes to the left half plane in order to retain stability. 

Also, even if we could avoid assigning eigenvalues to cancel zeros in the right half plane 

zeros which lie in the right half plane can cause problems when gain is increased and 

poles migrate towards them. Therefore the invariant zero structure for each set of outputs 

chosen must be inspected to ensure that only left half plane zeros are present. Also this 

method cannot, for reasons which will be explained later, deal with those cases which have 

a zero at the origin.

In Chapter 3 it was mentioned that some combinations of outputs are more compatible with

handling qualities specifications than others. Of the 144 possible combinations, some were
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eliminated to leave 132. The zero structures of the remaining 132 combinations were 

inspected (the flight condition chosen was 80 knots forward, level flight). The 43 cases 

with a zero at the origin were also unsuitable because the design method adopted cannot 

include such systems. (If the zero at the origin were to be cancelled, this would introduce 

a pole at the origin making the state space A matrix impossible to invert. If the zero at 

the origin was not cancelled, as the feedback increased there would be the possibility of a 

pole migrating toward it and perhaps finally crossing into the right half plane creating 

instability in the system.) Some configurations gave left half plane zeros at very high

frequencies and these had also to be discounted because a controller which had poles 

positioned at such high frequencies would not be realisable. Those combinations of outputs 

which resulted in right half plane zeros had to be discounted as the following method 

would assign eigenvalues to positions in the right half plane in order to cancel the right 

half plane zeros. This left only 29 different output sets which involved satisfactory zero 

positions. The outcomes of all of the zero investigations are tabulated in Appendix 2.

5.2 Description of Method for Decoupled Tracking

The eigenstructure assignment method outlined below attempts to cancel the effects of the 

zeros by using some of the assignable modes. This also effectively reduces the order of the 

system.

The first task is to find the positions of the zeros in the left half plane and their

associated directions. We then assign modes to cancel these zeros and their directions.

The zero and cancelling eigenvalue must be in the same position within the s-plane. 

Therefore, we have the desired position of the cancelling eigenvalue, X. Together with the 

A and B matrices (from the state space description of the helicopter model) we can define 

the subspace, spanned by the columns of T, in which each eigenvector must lie. (Wilkinson, 

1965)

T = ( A - X I r 1 B (5.2)

We also know that the desired eigenvector must match the zero direction. The desired

eigenvector will be known as Q l. The next step is to attain the achievable eigenvector
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which is as close as possible to the desired eigenvector given the subspace in which it 

must lie, T. This is done as follows:

Firstly, a set of orthogonal vectors is formed from T.

Q2 = o r t h ( D  ( 5 . 3 )

M = Q 2 ’ * Q l  ( 5 . 4 )

where Q j contains the zero directions

Then a singular value decomposition is performed on M to find the principal angles 

[U, S , V] = SVD(M) ( 5 . 5 )

Therefore the assigned eigenvalue, Xq, is in the same place as the zero being cancelled and 

the assigned eigenvector is given by

[ v0 h0] = Q2 * u ( 5 . 6 )

Having assigned available modes to cancel zeros and directions, the remaining modes must 

then be assigned to decouple the control channels. If the number of remaining assignable 

modes, number of inputs and number of outputs are all equal, then each input should excite 

only one mode which should be present on only one output. (In cases where there are 

more remaining modes than outputs, then more than one mode may be assigned to an 

output channel.)

By considering the null space of the output matrix, C, we can achieve this. If a mode 

(A,j,vj) is to be present on the first control channel, then the output space description of the 

mode, jLLj, is given by

Fi = C vj (5.7)

and should have the form

H i = [ 1 0 ... 0 ] T  (5.8)

Therefore the eigenvector must lie in the null space of the matrix Cn j where

C2 1
Cnl “

Cm
( 5 . 9 )

where Cj are the ith rows of the matrix C.

Once the positions of the eigenvalues and eigenvectors have been determined, we can

calculate the feedback matrix, fb, as follows:

fb = B+ ( A V - V A ) V '1 (5.10)

58



where B+ is the pseudo-inverse of B

V is the matrix of eigenvectors

A is the matrix of eigenvalues

5 .3  B r o u s s a r d  Command G e n e r a t o r  T r a c k i n g

The block diagram shown in Figure 5.1 has not only a feedback matrix but also a matrix 

in the forward path. This provides Broussard Command Generator Tracking. The Broussard 

Command Generator is a linear feedforward controller which maps the transfer function of 

the controlled system onto a reference model which in this case is an identity matrix. This 

produces a system whose inputs are tracked by its outputs.

The method by which this feedforward matrix is derived is outlined below. (O’Brien & 

Broussard, 1978).

Assume the helicopter is represented by

x = A x + B u  ( 5 . 1 1 )

y = Cx ( 5 . 1 2 )

If we want a subset of the helicopter’s outputs to track the pilot’s inputs, then we have

y t = Hx ( 5 . 1 3 )

where yt contains the tracking outputs.

It is assumed that the number of inceptors available match the number of control actuators. 

The objective is to create a feedforward controller which has effect in such a way as to 

make the helicopter behave in the same way as a model defined as

xM = Amxm + BMuM ( 5 . 1 4 )

YM = CMXM + dMuM ( 5 . 1 5 )

If we assume that the tracking outputs, yt, are identical to the model outputs, yjyj, 

at time tg, and we let the input which maintains this condition be u , then

y t uM* = y t*  = yM for ‘ > ‘ o ( 5. 16)
The equations describing the helicopter model are now
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* a * n  *x = Ax + Bu

* r' *y = Cx

* yt *y t = Hx

( 5 . 1 7 )

( 5 . 1 8 )

( 5 . 1 9 )

Expressions for the ideal helicopter state, x*, and the ideal helicopter input, u*, can be

given in terms of the helicopter states and inputs of the reference model. (Sobel & Shapiro,

1985 )

x* = S i j x m + S ] 2uM + HOD(um) ( 5 . 2 0 )

u* = S2 ixm + S22uM + H0D(um) ( 5 . 2 1 )

where HOD indicates higher order derivatives.

When the model inputs, ujyj, are restricted to step functions applied at t=tQ, we have

S 11 s 12 
S21 s 22

Equation (5.22) related the ideal states ahd

XM
UM

"inputs'

( 5 . 2 2 )

to the model states and inputs by means

of a transformation matrix. The elements of the transformation matrix are as follows

S 11 = q 11s 11a M + q 12c M 

s 12 = q 11s 11bM + Q12dM 

S21 = a 2 1s 11a M + a 22c M 

s 22 = fl21s l l BM + fl22DM

( 5 . 2 3 )

where

Ql l a \ 2 A B
q 21 q 22 H 0

-1
( 5 . 2 4 )

From e q u a t i o n s  5 . 1 4  & 5 . 15  we ge t

a M bm XM
yM cm dm UM

( 5 . 2 5 )

And from e q u a t i o n s  ( 5 . 1 7 ) ,  ( 5 . 1 8 )  & ( 5 . 1 9 )  we ge t

. *x
y t :

( 5 . 2 6 )

By d i f f e r e n t i a t i n g  e q u a t i o n  ( 5 . 2 0 )  and u s i n g  e q u a t i o n  ( 5 . 1 6 )  we g e t
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. * 
X S u  0 XM♦
y t 0 I yM

From e q u a t i o n s  ( 5 . 2 2 ) ,  ( 5 . 2 6 )

S 11 s 12 XM A B
- 1 r • *

X *
S 21 s 22 UM H 0 y t

Then u s i n g  e q u a t i o n s  ( 5 . 2 5 )  & ( 5 . 2 7 )

S 11 s 12 XM A B
-1

S u  0 am b m XM
S 21 s 22 UM H 0 0 I c m °M UM

If the model input, uj^» is tracked by the model output, yjy[, then

yM = uM ( 5 . 2 9 )

The r e f e r e n c e  model m a t r i c e s  w i l l  be

AM = 0 ( 5 . 3 0 )

BM = °

c M = °

dm = 1

Th i s  a l l o w s  us t o  s i m p l i f y  e q u a t i o n s  ( 5 . 2 7 )

S j j = 0  ( 5 . 3 1 )

s 12 =  q 12 

S21 =  0 

s 22 =  q22

T h e r e f o r e  from e q u a t i o n  ( 5 . 2 2 )  t he  i d e a l  s t a t e  and i n p u t  a r e  g i v e n  by

u* = « 2 2 “ M <5 ' 3 2 )

X *  =  Q1 2 UM ( 5 . 3 3 )

Computation of O j2 & 0 22 depends upon A, B & H being composed of elements which

are constant. As this cannot be relied upon, we can introduce some feedback to protect

the performance should changes in the elements occur.

If we have a regulating feedback law

u r = Fy ( 5 . 3 4 )
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then any non-zero output, y, will cause the control law to act until the output is zeroed. 

Because we are concerned with a tracking system, we expect the output to vary with the 

input, and so we wish the difference between the output, y, and the output demanded by 

the pilot, y*, to be zero rather than the output itself. The feedback law is therefore 

u f=  F [ y - y* ] ( 5 . 3 5 )

By taking into account the need for command following (by using the ideal input) and

protection from changes in the coefficients of the system matrices (by using feedback), the 

necessary control law has to be

u = u f+  u* ( 5 . 3 6 )

By using equations (5.18), (5.32), (5.33) & (5.35)

u = F [ y - y* ] + 022UM ( 5 - 37 )

u = F [ y - Cx*] + Q22uM ( 5 . 3 8 )

u = F [ y - CQ12um] + ^22UM ( 5 . 3 9 )

which r e s u l t s  in

u = [ 0 22 " FCQj 2 ] um + Fy ( 5 . 4 0 )

Another method of creating a compensator which causes the outputs to exactly track the

inputs has been developed (O’Brien & Broussard, 1979). A constraint of this method was 

that only systems which had no transmission zeros at the origin were considered because it 

was necessary to ensure that the matrix Q  existed.

The method outlined above forms the third eigenstructure assignment method which will be 

used to form a controller design to improve the performance of the helicopter.

5.4 Design Example

The state space matrices A, B, C and D were generated from Helistab to give an 8th order 

rigid body model of a Lynx helicopter flying at 80 knots in straight and level flight. 

Heading, \|/, was not included as a state in the model used at the design condition. This is 

often the case because heading is not fully coupled with the other states and introduces an 

eigenvalue at the origin (making the A matrix singular). There may be effects on the 

stability of the controlled system if a controller is developed without heading and also
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handling qualities define heading hold functions, therefore heading will be included in 

subsequent stages of development.

The pilot has four inceptors and we have chosen four output variables to be controlled. The 

outputs to be controlled were chosen as height rate, pitch attitude, roll attitude and yaw rate 

(h 0 cp r). This combination may be seen from Appendix 2 to be one of the 29 

acceptable sets. Due to the choice of output variables the system will be of an ACAH 

type. For the purpose of creating a decoupled tracking system each output is assigned to 

track one input (h to the first inceptor, 0 to the second, cp to the third and r to the fourth) 

so that, for example, some input applied to the first inceptor will be tracked by h but there 

will be no coupling into the other three outputs 0, cp and r.

It was discovered that this choice of outputs gives two left half plane zeros at very low 

frequencies. Therefore of the eight assignable modes, two were assigned to cancel these 

zeros leaving six to be distributed over the four outputs.

The auto—eig subroutine listed in appendix 3 was used to calculate two control matrices, fb

& ff, for different distributions of the modes across the outputs. Refer to figure 5.1a.

Using classical methods it was found that the best distribution (with respect to bandwidth

and phase delay of closed loop system) was as follows:

o u t p u t  o u t p u t  number o f  p o l e
number con t  r o l l e d  modes pos i t i ons

- 4 . 0

- 2 . 5  - 4 . 5  

- 5 . 5  - 7 . 0  

- 5 . 0

5.5 Results at Design Condition

The gains of the controller matrices, fb & ff (fig. 5.2), are small and the specified
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eigenstructure (fig. 5.3) has been achieved (with the eigenvalues at -0.0237 & -0.1080 and 

their eigenvectors cancelling the zeros & their directions).

A unit step function was applied to each input (fig. 5.4). Obviously, to apply a step 

demand of 1 radian is not realistic but as we are working with a linear model, the 

responses could easily be scaled down to a realistic value.

In each case the input is well tracked by the corresponding output and there is very little 

cross coupling into the other outputs. Any activity in other inputs (although in all cases the 

behaviour is stable, returning to steady state value) can be thought of as negligible as it is 

so small.

Tests involving step inputs applied to the controlled system (fig. 5.4) have shown that the 

outputs track the inputs well and there is very little coupling into other channels.

Input and Output Coupling

By normalising the columns of C*v and the rows of inv(v)*B, we have a numerical 

indication of the amount of coupling we can expect in the system fig. 5.5. (Smith, 1990).

From the first row of rownorml we see that the first mode, corresponding to eigenvalue of 

-0.0237, is predominantly coupled to the 2nd input. From the second row we see that the 

second mode, corresponding to eigenvalue of -0.1080, is coupled mainly to the 4th input 

but there is also a significant amount of coupling to the 3rd input. The other six modes 

have been assigned to the specified channels and perfectly decoupled from the others.

Similarly, by looking at the first column of colnorml we see that the first mode is mainly 

coupled to the 1st output but has a significant amount of coupling into the 4th output and 

some into the 3rd. The second mode, however, is coupled into the 1st output and fairly 

well decoupled from the others. Again, the other six modes have been assigned to the 

specified channels.

The information contained within colnorml & rownorml indicates that any cross-coupling
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between inputs and outputs will be due to the first two modes, i.e. those assigned to cancel 

the zeros. For example, we would expect an input to the 2nd input to excite the modes

with eigenvalues -0.0237, -2.5 & -4.5. These modes would result in responses in output2,

but also, due to the coupling, in output 1 and maybe a little in output3.

5.6 Additional Dynamics

The actuators of the main & tail rotors can be modelled as first order lags with time

constants of 80 ms for the three main rotor actuators and 40 ms for the tail rotor actuator.

These actuators can prevent us achieving a desired bandwidth because of the introduction of

the lag which becomes an effective delay. Also, controller gains must be kept small in

order to avoid exceeding actuator limits as this would decrease the degrees of freedom in

the pilot’s control inputs. Actuators were not included at the initial design stage because

the actuator states are unobservable and full state feedback would therefore be impossible to 

implement.

5.7 Results including Actuator Dynamics and Heading.\|/

Using the same controller matrices, fb & ff, but having added heading and actuator

dynamics to the model, inputs were applied in the same way as at the design condition.

Table 5.1 Bandwidth & Phase Delay Measurements

Including Actuator Dynamics and Heading

Pitch Roll Yaw

Bandwidth 5.5 7.3 4.17 rad/s

Phase Delay 0.041 0.028 0.025 seconds

Bandwidth and phase delay measurements were made by using a software toolbox from

RAE (Howitt, 1991). The results are shown in Table 5.1. By comparing these bandwidth

and phase delay measurements with handling qualities (fig. A4. l l )  we see that Level 1

performance would be obtained.
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It is easily seen from the eigenstructure of this system that the addition of these dynamics

has caused the position of the eigenvalues to move (fig. 5.6) and has also increased the

coupling between the eigenvectors.

The time responses (fig. 5.7) now show that there is an increased level of coupling within 

the controlled system. The level of coupling has increased but the responses due to the 

coupling into the outputs still return to a steady state value. Although the step input on the

third inceptor causes the third output to overshoot slightly, the inputs are still generally well

tracked by the outputs.

Numerical Indication of Coupling

Even from a superficial look at rownorm2 & colnorm2 (fig. 5.8) it is clear that the

coupling in the system has increased significantly. For instance, an input applied to the

fourth input would excite the first, second and last modes (eigenvalues 0, -20.4 & -0.150). 

The mode at the origin is not coupled to any output. The mode at -20.4 is coupled to

the fourth output with very little into each of the others. However, it can be seen from the 

last column of colnorm2 that the mode at -0.150 couples mainly into output 1 but also has 

a significant amount of coupling into output 4 and some into both 3 and 2. All of this 

information together would indicate that the cross-coupling in the controlled system has 

increased with the addition of heading and actuators to the model in such a way that an 

input to the 4th inceptor would cause some response, in varying degrees, to all of the

outputs. Other inputs applied to other inceptors would be similarly affected by the increased 

level of coupling.

5.8 Results Including Actuator Dynamics. Heading & Rotor Dynamics

Six additional rotor states can be incorporated into the model to allow for second order 

rotor flapping dynamics. The addition of rotor dynamics causes an increase in coupling and 

can further restrict the bandwidth achieved.

Again, inputs were applied in the same manner as at the design condition but to the
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system with heading, actuator and rotor dynamics added.

Table 5.2 Bandwidth & Phase Delay Measurements

Including Actuator Dynamics. Heading & Rotor Dynamics

Pitch Roll Yaw

Bandwidth 3 2 2 rad/s

Phase Delay 0.11 0.09 0.17 seconds

By comparing the bandwidth and phase delay measurements shown in Table 5.2 with

handling qualities specifications (figs. 3.6 & 3.7) we see that Level 1 performance has been

obtained.

The time responses (fig. 5.9) show another increase in the level of coupling between 

channels.

The effect of the additional dynamics can be seen in the extent of change of the

eigenvalue positions of the system (fig. 5.10). With regard to changes in time responses, the 

character of the responses to step inputs is similar to the previous case. However, the

transients due to cross coupling are slightly larger when inputs are applied to the first and 

second inceptors, but inputs are still well tracked by the corresponding output.

Numerical Indication of Coupling

By comparing rownorm3 and colnorm3 (fig. 5.11) to rownorm2 and colnorm2 (fig. 5.8), the

changes in coupling due to the addition of rotors can be seen.

5.9 Additional Control Loop

In order to augment the performance of the inner loop containing the matrices fb and ff 

which were determined by this method, an outer loop was added which contained a

proportional and integral controller as shown below.
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Proportional and integral controllers can be useful in reducing steady state error and 

improving transient responses. They can also provide robust performance over a wide range 

of operating conditions such as we find in the helicopter. Figure 5.1b shows the structure 

of the control system modified to include an outer loop which incorporates proportional and 

integral control. This configuration introduces an extra control state, cont—x.

kp

k i J+
f f — ±c B

fb

F i g u r e  5 . 1 b  Bl ock  d i ag r am showing t he  i n c o r p o r a t i o n  o f  

p r o p o r t i o n a l  & i n t e g r a l  c o n t r o l

The equations corresponding to Figure 5.1b are as follows:

c o n t —x = k i ( r - y )
= k i ( r  - Cx)
= k i r - k i C x  ( 5 . 4 1 )

x = Ax + B( f f t  - fbx)

= Ax + Bf f t  - Bfbx 

= Ax - Bfbx + Bf f ( k p PI I NP  + c o n t - x )

= (A - B f b ) x  + B f f c o n t - x  + B f f k p ( r  - Cx)

= (A - Bfb - Bf fkpC) x  + B f f c o n t —x + B f f k p r  ( 5 . 4 2 )

X A-Bfb-Bf  fkpC B f f X J_
Bf f kp

c o n t —x -kiC 0 c o n t —x T ki

The diagonal coefficients in the kp and ki matrices were generated by classical methods.

1 .8 0 0 0 kp = r 0 .2 0 0 0
0 0 .8 0 0 0 0 .2 0 0
0 0 1 .5 0 0 0 0 .1 0

. 0 0 0 2 .8  . 0 0 0 0 .3  .
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5.10 Results Including Heading. Actuator & Rotor Dynamics With P+I Control

The usual inputs were applied to the model with heading, actuator and rotor dynamics 

added to the system. In this case there were four controller matrices, fb, ff, kp & ki, as 

shown in Figure 5.1b.

T a b l e  5 . 3  Bandwidt h  & Phase  De l ay  Measurements

I n c l u d i n g  Head i ng .  A c t u a t o r  & Ro t o r  Dynamics Wi t h P + I C o n t r o l

Pi  t ch  R o l 1 Yaw

Bandwidt h  3 2 2 r a d / s

Pha s e  De l ay  0 . 1  0 . 0 9  0 . 18  seconds

By comparing bandwidth and phase delay results shown in Table 5.3 with handling

qualities specifications we see that Level 1 performance has been maintained.

Numerical Indication Of Coupling

The new positions of the eigenvalues can be seen in fig. 5.12.

By comparing colnorm6 & rownorm6 with colnorm3 & rownorm3 we see the changes in

the coupling between inputs and outputs.

It can be seen from the time responses (fig. 5.14) that many of the transients caused by 

cross coupling have been reduced. However, although the addition of P+I control has

reduced it from around 11 degrees per sec, a step input applied to cp still gives a yawrate

(r) of about 5 degrees per sec. In an attempt to reduce this transient, the off diagonal

elements were used. kp(4,3) was set to 0.13. This resulted in the reduction of that

transient. It is easily seen however that the addition of the proportional and integral

controller has made the response more sluggish.

5.11 Performance of Controller With Change in Flight Condition

Having investigated the robustness of the controller to the addition of higher order dynamics 

we must now look at its robustness to changes in flight condition. Initially time responses

were taken for the system with state space matrices at 50 knots (fig. 5.15) and then at 120



knots fig. 5.16 (heading, actuators and rotors were included) but the controller matrices (kp, 

ki, fb & ff) remained those designed for the 80 knots case. The character of the responses 

was shown to have changed quite considerably, particularly h. The inner loop matrices, fb 

& ff, were then scheduled at sixteen points across the range 50-120 knots forward level 

flight. The number of points at which the design must be performed across a range depends 

on the robustness of the design method. The resulting time responses (figs. 5.17 & 5.18) 

show a marked improvement and a return to the general character of those responses 

obtained at 80 knots.

A more thorough investigation of the changes within the system to change in flight 

condition was undertaken. Using the controller matrices fb & ff only, designed at the 80 

knots flight condition,and replacing the 8th order, 80 knots helicopter model by 8th order

models for forward flight conditions between hover and 160 knots at intervals of 5 knots, 

the position of the closed loop eigenvalues were plotted across the range (fig. 5.19).

This was repeated for the case where not only ff & fb were used but also ki & kp in the 

outer loop (fig. 5.20). The invariant zero positions of each model were found and were 

also plotted across the range (fig. 5.21). The movement of the eigenvalues which were

designed to cancel these zeros was also plotted (figs. 5.22 & 5.23).

It can be seen from these results (figs. 5.21,22,23) that in the case with the outer loop

containing the P+I controller, the poles assigned to cancel the zeros follow the movement of 

the zeros much more closely than in the case with only the inner loop containing ff & fb.

It can also be seen by inspecting the numerical eigenstructure that the eigenvectors are

closer to the zero directions when the outer loop is present.

In order to establish whether the addition of an outer control loop improved performance,

another set of outputs was chosen to give a different zero configuration. This set was 

selected to give faster zeros and also states within the zero direction which were more 

evenly spread. This output set was [h 0 £2 p] giving zeros at -0.0237 and -3.4295 ±

8.0075i.
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Fig. 5.26 shows the movement of zeros associated with this set of outputs. Figs. 5.24 &

5.25 show the movement of the eigenvalues across the same range of flight conditions. In

both cases (in keeping with the zeros shown in fig. 5.26) we see movement of eigenvalues

into the right half plane. However, where the system has been augmented by the outer

loop, the system remains stable across a larger range of flight conditions before crosssing 

into the right half plane and does not penetrate as far right as the system without the P+I 

control loop.

Also, by close inspection of the eigenstructure of the cancelling eigenvalues, it can be seen

that again in the case of the two loop structure, the eigenstructure cancels the zerostructure

much more effectively.

These results (figs. 5.24,25,26) also indicate that the system remains stable for longer and 

that the zeros are cancelled more effectively.

In case this property was specific to matrices designed at the flight condition of 80 knots, 

exactly the same procedure was followed for controller matrices designed at flight conditions 

of 40 knots forward, level flight and at hover for the output set [h 0 cp r]. These 

demonstrated the same properties.

5.12 Investigations with the Non-linear Model

Having obtained a satisfactory reponse from the controlled linear system, the same scheduled

controller was used with a non-linear helicopter model, Helisim. The model was trimmed at 

80 knots. For small inputs the results were found to be similar to those obtained from the 

linear model.

A doublet (of amplitude 7.5 degrees) was applied to 0 so that the speed, VTKT, would 

vary across the range of the scheduled controller (50-120 knots). The results are in fig. 

5.27.

The shape of the height rate response is in keeping with that of the linear model (fig.
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5.14) but the transient is far greater (reaching 3.5 ft/sec). The effect of the doublet 

switching between different states is clearly seen in the height rate response. The cp 

response is trimmed at 1.1 degrees and has maximum transient of 3 degrees. The r 

response has maximum transient of 2.3 degrees/sec. All responses are stable and return to 

a steady state condition.

It can be concluded from these results that the controller which gave good performance 

with the linear helicopter model, has also performed well with the non-linear model and 

that it has done so over the full range for which the inner loop controller was scheduled.
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R e s u l t s  Of D es ig n

F ee d ba c k  M a t r i x . f b

fb  -

0 . 0 0 0 6
0 . 0 0 0 7
0 . 0 0 0 3
0 . 0 0 1 3

- 0 . 0 3 0 7
0 . 0 1 4 1

-0 .0101
-0 .C134

- 0 . 0 4 5 3  
0 . 1 8 0 4  

- 0 . 0 2 5 5  
- 0 . 0  313

1 .4 6 3 2
- 0 . 2 5 7 2

0 .3 4 2 0
0. 7 0 6 7

0.0012
0.0000
0 . 0 0 1 4
0 . 0 0 6 7

0. 00 06
0. 0 1 0 9

- 0 . 0 1 5 5
0 .1 1 9 1

0.0120
- 0 . 0 5 5 8
- 0 . 2 4 3 0

3 . 3 3 3 2

-0 .0002
0 . 0 0 2 8
0.0021

- 0 . 2 0 6 3

F e e d f o r w a r d  m a t r i x ,  f f  

f f  -

0 . 0 3 8 2
- 0 . 0 1 6 7

0 . 0 1 0 6
0 . 0 1 9 3

F i g u r e  5 . 2

-0 .1100
*0.4297
- 0 . 0 9 2 5
- 0 . 0 8 9 3

0 . 0 1 3 1
- 0 . 0 5 6 3
- 0 . 2 4 2 7

0 . 3 8 8 8

0.0020
- 0 . 0 0 5 8

0 .0 0 4 5
- 0 . 2 7 9 9

Components  o f  G a in  i n  C o n t r o l l e r  M a t r i c e s

EIMnv » l u .s  O f  qopi ro lled System A, Th. p e s l .n r . n r t l . . . .

- 0 . 0 2 3 7
- 0 . 1 0 8 0
- 4 . 0 0 0 0
- 7 . 0 0 0 0
- 5 . 0 0 0 0
- 2 . 5 0 0 0
- 5 . 5 0 0 0
- 4 . 5 0 0 0

EU«nvW pr- o f Th; rom ro | lM  ? v m n At T h .  p. . i m  ..............

9998  
0214  
0000 
0000 
0043  

0.0000 
0 . 0000 
0 .0000

•0 .0017  
■0 .0329  
0.0000 
0.0000 

■0.9995 
0.0000 
0.0000 
0.0000

0 . 0 7 5 9  
- 0 . 9 9 6 9  

0.0000 
0 .0000 
0 . 0 1 9 9  
0.0000 
0.0000 
0.0000

0. 00 03
- 0 . 0 1 0 6

0.0000
0.0000

- 0 . 1 9 9 7
- 0 . 9 7 0 0

0 .1 3 8 6
0.0000

0 . 0 0 0 7  
0 . 0 3 2 6  

- 0 . 0 0 4 1  
0 .0000 
0 . 9 9 1 8  

- 0 . 0 0 2 7  
0.0000 
0 . 1 2 3 5

F i g u r e  5 . 3

0 . 0 9 5 9
0 .9 9 3 1

■0.0601
0. 02 40
0. 01 76
0.0000
0.0000
0.0000

0 . 0 0 0 3
- 0 . 0 1 4 3

.0000

.0000
- 0 . 2 8 1 3
- 0 . 9 4 4 0

1716
0000

0 .0 6 8 1
0 . 9 9 1 4

- 0 . 1 0 8 1
0 . 0 2 4 0
0 . 0 1 3 1

-0 .0001
0.0000
0.0000

E i g e n s t r u c t u r e  o f  C o n t r o l l e d  S y s t e m  At
Hoc i rrn r r m r i  i t i n n
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Input Arvi Output C oupling

rownorml =
- 0 . 0 0 1 0  1 . 0 0 0 0  0 . 0 0 1 5  - 0 . 0 1 0 0
- 0 . 0 0 0 8  0 . 0 3 9 2  - 0 . 2 3 9 2  1 . 0 0 0 0

1 . 0 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0
0 . 0 0 0 0  0 . 0 0 0 0  1 . 0 0 0 0  0 . 0 0 0 0
0 . 0 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0  1 . 0 0 0 0
0 . 0 0 0 0  1 . 0 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0
0 . 0 0 0 0  0 . 0 0 0 0  1 . 0 0 0 0  0 . 0 0 0 0
0 . 0 0 0 0  I . 0 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0

colnorml =*

1 . 0 0 0 0  1 . 0 0 0 0
-0 .0 0 8 1  0 .0283

0.1255 -0 .011 9
-0  . 2404 0■. 0038

1 . 0 0 0 0  0 . 0 0 0 0
0 . 0 0 0 0  0 . 0 0 0 0
0 . 0 0 0 0  1 . 0 0 0 0
0 . 0C0G 0 . 0 0 0 2

0 . 0 0 0 0  
0 . 0 0 0 0  
0 . 0 0 0 0  
1 . 0 0 0 0

0 . 0 0 0 0  
1 . 0 0 0 0  
0 . 0 0 0 0  
0 . 0 0 0 0

0 . 0 0 0 0
0 . 0 0 0 0
1 . 0 0 0 0
0 . c o c o

0 . 0 0 0 0
1 . 0 0 0 0
0 . 0 0 0 0
0 . 0 0 0 0

F i g u r e  5 .5 I n p u t  & O u tp u t  C o u p lin g  o f  C o n t r o l l e d  System  
a t  t h e  D e s ig n  C o n d i t io n

78



Ei g e n v a l u e s  Of S y s t em C on tro l led  Bv Ff & FV>

( h e a d in g  & a c t u a t o r  dynamics in c lu ded

0
- 2 0 . 3 8 3 4
- 1 3 . 2 7 9 1

- 6 . 3 4 0 5 + 3 . 8 3 9 U
- 6 . 3 4 0 5 — 3 . 8 3 9 U
- 4 . 1 6 2 2 4 . 0 2 6 2 i
- 4 . 1 6 2 2 — 4 . 0 2 6 2 i
- 6 . 7 0 7 9 + 1 . 6 8 7 9 i
- 6 . 7 0 7 9 - 1 . 6 8 7 9 1
- 7 . 1 4 4 3
- 0 . 0 2 3 6
- 2 . 6 0 5 4
- 0 . 1 0 5 0

F ig u r e  5 .6
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R e s p o n s e  Of Sys tem ( I n c l u d i n g  h ea d in g  & a c t u a t o r  dynamics)When  

C o n t r o l l e d  Bv f f  & fb

Time R e s p o n s e s  To A S t e p  Input On Each I n c e p t o r

S t e p  A p p l i e d  To F i r s t  I n c e p t o r

oq>»
£

X

x!0~*

TJC3U

-10

t i me ( s )

t i me ( s )

xio-s
u <u
(A \T>ctj
^  -5 !

-10L

- 3
1010 50

t im e( s )

10

t  i m e ( s )

S t e p  A p p l i e d  To Second I n c e p t o r

ua>
CA 0.5

X

-0 .5
0 5 10 0 5 10

t i me( s )

t i me ( s )

F i g u r e  5 . 7

t im e(s )

0 .03 0.05

•O 0.02
rcu
^  0.01

o
4)
(A
■P
C3U

U-0.01
0 5 10 0 5 10

t i m e ( s )

80



Step  Applied To Third I n ceptor
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ut And Output Coupling

wnorm2 =

0 . 0 0 0 0 — 0 . 0 0 0 0 i 0 . 0 0 0 0 - O.OOOOi 0 . 0 0 0 0 — O.OOOOi 1 . 0 0 0 0
0 . 0 7 0 2 — O. OOOOi 0 . 3 5 4 2 + O. OOOOi - 0 . 0 4 6 5 + O.OOOOi 1 . 0 0 0 0
0 . 0 1 4 5 — O. OOOOi 0 . 1 7 5 8 — O.OOOOi 1 . 0 0 0 0 - 0 . 0 7 9 3 + O. OOOOi
0 . 0 1 6 8 + 0 . 0 0 5 2 i 1 . 0 0 0 0 0 . 4 8 4 1 - 0 . 0 9 0 0 i - 0 . 0 2 0 6 — 0 . 0 0 6 1 i
0 . 0 1 6 8 — 0 . 0 0 5 2 i 1 . 0 0 0 0 0 . 4 8 4 1 + 0 . 0 9 0 0 i - 0 . 0 2 0 6 + 0 . 0 0 6 1 i
0 . 0 0 6 1 — 0 . 0 0 4 5 i 0 . 0 5 7 9 — 0 . 4 3 1 9 i 1 . 0 0 0 0 0 . 0 0 4 6 — 0 . 0 1 8 8 i
0 . 0 0 6 1 + 0 . 0 0 4 5 i 0 . 0 5 7 9 + 0 . 4 3 1 9 i 1 . 0 0 0 0 0 . 0 0 4 6 + 0 . 0 1 8 8 i
0 . 0 6 3 9 — 0 . 0 1 1 7 1 1 . 0 0 0 0 0 . 5 1 7 9 - 0 . 0 9 7 8 i - 0 . 0 3 0 1 — 0 . 0 2 0 7 i
0 . 0 6 3 9 + 0 . 0 1 1 7 i 1 . 0 0 0 0 0 . 5 1 7 9 + 0 . 0 9 7 8 i - 0 . 0 3 0 1 + 0 . 0 2 0 7 i
0 . 0 7 7 7 — O. OOOOi 1 . 0 0 0 0 0 . 9 2 5 1 - O.OOOOi - 0 . 1 7 3 6 + O. OOOOi
0 . 0 0 1 0 — O. OOOOi 1 . 0 0 0 0 0 . 0 0 1 3 - O.OOOOi - 0 . 0 0 9 0 + O. OOOOi
C . 0 0 1 2 -T- O. OOCOi 1 . 0 0 G C 0 . 0 4 2 7 j - O.OOCOi - 5 . 0 0 6 1 - O. OOOOi

■ 0 . 0 0 0 7 — O. OOOOi 0 . 0 3 9 1 — O.OOOOi - 0 . 2 3 9 2 - O.OOOOi 1 . 0 0 0 0

norm2 =

0 - 0 . 0 3 1 2  0 . 4 8 9 8  1 . 0 0 0 0
0 - 0 . 0 0 0 7  - 0 . 0 2 4 0  0 . 0 3 5 0  -  0 . 0 1 0 3 i
0 - 0 . 0 1 5 4  0 . 2 2 1 4  - 0 . 0 2 7 7  + 0 . 0 0 4 9 i
0 1 . 0 0 0 0  1 . 0 0 0 0  0 . 0 6 8 1  + 0 . 0 1 6 6 i

1 . 0 0 0 0  1 . 0 0 0 0  1 . 0 0 0 0  1 . 0 0 0 0
0 . 0 3 5 0  + 0 . 0 1 0 3 i  0 . 0 5 2 4  + 0 . 0 6 1 4 i  0 . 0 5 2 4  -  0 . 0 6 1 4 i  - 0 . 0 0 9 9  + 0 . 0 0 3 9 i

- 0 . 0 2 7 7  -  0 . 0 0 4 9 i  - 0 . 3 0 8 4  + 0 . 3 4 1 7 i  - 0 . 3 0 8 4  -  0 . 3 4 1 7 i  0 . 0 2 4 6  -  0 . 0 1 2 5 i
0 . 0 6 8 1  -  0 . 0 1 6 6 i  - 0 . 0 5 3 4  + 0 . 6 2 7 2 i  - 0 . 0 5 3 4  -  0 . 6 2 7 2 i  0 . 1 2 2 3  -  0 . 2 0 2 7 i

1 - 0 0 0 0  0 . 6 8 3 5
■0 . 0 0 9 9  -  0 . 0 0 3 9 i  - 0 . 0 1 8 3
0 . 0 2 4 6  + 0 . 0 1 2 5 i  0 . 0 7 1 5
0 . 1 2 2 3  + 0 . 2 0 2 7 i  1 . 0 0 0 0

1 . 0 0 0 0
0 . 3 7 6 6

■ 0 . 1 2 4 6
■ 0 . 5 2 1 7

1 . 0 0 0 0
- 0 . 2 5 8 0

0 . 0 5 0 5
0 . 0 3 7 1

1 . 0 0 0 0
0 . 1 1 3 7

- 0 . 4 0 9 8
0 . 7 2 6 9

F i g u r e  5 .8  I n p u t  & O u tp u t  C o u p lin g  o f  C o n t r o l l e d  S y s tem
w i t h  H ead ing  & A c tu a to r s
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JLigenva j y e s  pp System Contro l l e r !  Bv f f  fh

(heading,actuator & 2nd order rotor dynamics included)

0
- 1 5 . 5 9 7 6 + 6 9 . 6 5 2 5 i
- 1 5 . 5 9 7 6 - 6 9 . 6 5 2 5 i
- 1 5 . 8 4 8 7 + 3 5 . 3 6 5 H
- 1 5 . 8 4 8 7 - 3 5 . 3 6 5 H
- 1 9 . 6 8 1 3 + 0 . 1 3 2 8 i
- 1 9 . 6 8 1 3 -  0 . 1 3 2 8 i
- 1 1 . 2 6 4 8

- 5 . 5 1 0 7 + 7 . 6 3 2 0 i
- 5 . 5 1 0 7 -  7 . 6 3 2 0 i
- 3 . 2 2 1 7 + 6 . 2 6 5 2 i
- 3 . 2 2 1 7 -  6 . 2 6 5 2 i
- 7 . 0 5 9 2 + 3 . 0 6 1 8 i
- 7 . 0 5 9 2 -  3 . 0 6 1 8 i
- 6 . 5 2 5 1 + 1 . 3 6 5 4 1
- 6 . 5 2 5 1 -  1 . 3 6 5 4 1
- 0 . 0 2 3 6
- 2 . 3 2 5 1
- 0 . 1 0 5 1

F ig u r e  5 .1 0
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Figure 5.11 Input & Output Coupling of Controlled System
with Heading, Actuators & Rotors
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E i g e n v a l u e s  Of Sy*teni Con t r o l l e d  ? v  f  f . fb .  kD-.&-fei 

( h e a d i n g ,  a c t u a t o r  & r o t o r  dynam ics  i n c l u d e d )

0
- 1 5 . 5 9 6 6 + 6 9 . 6 5 2 8 i
- 1 5 . 5 9 6 6 - 6 9 . 6 5 2 8 i
- 1 5 . 8 4 8 5 + 3 5 . 3 6 5 2 i
- 1 5 . 8 4 8 5 —3 5 . 3 6 5 2 i
- 1 9 . 7 0 1 4
- 1 7 . 7 7 7 8
- 1 2 . 2 2 5 2

- 6 . 6 7 6 9 + 7 . 1 1 2 1 t
- 6 . 6 7 5 9 — 7 . 1 7 2 7 i
- 3 . 0 2 0 6 + 6 . 0 0 6 7 i
- 3 . 0 2 0 6 — 6 . 0 0 6 7 i
- 3 . 7 7 6 4 + 2 . 9 9 5 4 i
- 3 . 7 7 6 4 — 2 . 9 9 5 4 i
- 4 . 6 0 1 3 + 1 . 8 4 4 6 i
- 4 . 6 0 1 3 — 1 . 8 4 4 6 i
- 3 . 2 8 6 2
- 2 . 8 8 6 8 + 1 . 1 6 4 7 i
- 2 . 8 8 6 8 — 1 . 1 6 4 7 i
- 1 . 3 3 6 3 + 0 . 5 0 2 9 i
- 1 . 3 3 6 3 — 0 . 5 0 2 9 i
- 0 . 0 2 3 7
- 0 . 1 0 8 1

Figure 5.12
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0 . 2 3 ? -  n -  - - ~

- 0 . 4 3 3 9  + 0 . 4 8 6 0 i

1 . 0 0 0 0
0 . 8 5 9 5
0 . 1 1 4 1

- 0 . 1 2 2 2

0 . 0 1 6 2  -  0 . 0 4 8 9 i  
0 . 0 1 3 4  -  0 . 0 0 1 4 i  

■ 0 . 0 0 7 3  -  0 . 0 7 9 0 i  
1 . 0 0 0 0

- 0 . 0 0 0 3  
- 0 . 0 0 3 7  
0 . 0 0 9 9  
1 . 0 0 0 0

1 . 0 0 0 0
0 . 1 7 0 2  + 0 . 0 2 3 8 i  
0 . 1 5 2 7  -  0 . 0 9 0 0 i  
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1 . 0 0 0 0
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R e s p o n s e  Of Svs tem ( ' i n c l u d i n g  h e a d in g ,  a c t u a t o r  & r o t o r  dynam ics )  

When C o n t r o l l e d  Bv f f .  f b .  kp & kl  

Time R e s p o n s e s  To A S tep  Input On Each I n c e p to r

S tep  A p p l i e d  To F i r s t  I n c e p t o r
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Figure 5.14 
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R e s p o n s e  Of 50 k n o t s  System f i n c l u d i n g  h e a d in g ,  a c t u a t o r  & r o t o r  

d y n a m ic s )  When C o n t r o l l e d  by f f . f b . k p  & ki  D e s ig n ed  At 80 k n o t s  

F I i  ght  Condi  t i on

Time R e s p o n s e s  To A S tep  Input On Each I n c e p t o r

S t e p  A p p l i e d  To F i r s t  I n c e p t o r
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R e sp o n s e—Of 120 k n o t s  System (" inc luding  h ea d in g ,  a c t u a t o r  & r o t o r  

d y n a m ic s )  When Co n t r o l l e d  Bv f f . f b . k p  & ki D e s ig n ed  At 80 k n o t s  

FI i g h t  Condi t io n

Time R e s p o n s e s  To A S tep  Input On Each I n c e p t o r

S t e p  A p p l i e d  To F i r s t  I n c e p t o r
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Figure 5.16
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R e sp o n s e  Of 50 k n o t s  Sys te m  ( i n c l u d i n g  h ea d in g ,  a c t u a t o r  & 

d y n a m ic s )  U s i n g  A S c h e d u l e d  C o n t r o l l e r  In The Inne r Loop 
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CHAPTER 6 EFFECTS OF TURBULENCE & NOISE ON CONTROLLER
PERFORMANCE

6.1 Insensitivity to Atmospheric Disturbances

The controller must be capable of overcoming the effects of atmospheric

disturbances and give an acceptable level of ride quality. In this case the

actuators are expected to compensate for the disturbances because the disturbances

are active in the same frequency range as the pilot’s inputs. (The amount of 

control effort required is also of interest.) Turbulence was added to the Helisim

model to determine the level of disturbance rejection achieved by the controller.

Results From Experiments With Turbulence

In the case of the controlled non-linear model without turbulence, a satisfactory

trim was obtained (fig.6.1). The fluctuations in \|/, p, q, r & h are negligible and 

the residuals appearing in the plots can be attributed to numerical error. Also,

because the trim is good, the activity of the actuators negligible.

When turbulence was added (in the form of states uturb, vturb & wturb which

were calculated in body axes) to this model in the trimmed condition (fig.6.8) 

there was an increase in the activity of the actuator states for collective,

longitudinal cyclic, lateral cyclic and tail rotor (THOD, THSAD,THCAD &

THOTRD) because the control system is acting as a regulator and the actuators are 

moving to counter the effects of the disturbances. The effect of these external 

disturbances can be seen in the change in the responses of the states UB,VB &

WB (forward, lateral & vertical velocity) which are no longer in a steady

trimmed condition following the introduction of the turbulence. The variables 

which have been chosen to be controlled are SH, THETR, PHIR & R (height rate, 

pitch attitude, roll and yaw rate). With turbulence added to the system, these 4 

variables deviate from the trim values but are centred around the original trim

values from fig 6.1.
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A step input of amplitude -1.0 is applied to the first inceptor at tim e=l sec (fig. 

6.9). By comparing with the same turbulence but without input (fig. 6.8), the 

effect of the step input can be seen in the response of SH. Except for a slight

increase in the response of R, there appears to be very little cross coupling into 

other variables. This is in keeping with the results of the same input condition

without turbulence (fig. 6.2).

A step input of amplitude -0.1 was applied to the second inceptor at time=l sec

(fig. 6.11). The effect of this input is clearly seen in the THETR response,

indicating good tracking properties have been preserved from the similar case 

without turbulence (fig. 6.3). In fig. 6.3 it can be seen that at the time of the

input being applied, SH and, to a lesser extent, PHIR show a rapid decrease in 

value. This same reaction can be seen in these two states by comparing this input 

condition including turbulence (fig. 6.11) with the no input condition with the same 

turbulence (fig. 6.8). The character of the response of VB has changed with the

addition of turbulence, but the character of the responses of the other variables has 

been retained.

A step input of amplitude -0.1 was applied to the third inceptor (fig. 6.12). The

response of PHIR shows that the input has been well tracked. The SH & R 

responses are almost identical to those from the case with no input and same

turbulence (fig. 6.8) indicating a low level of coupling between these states and 

inputs to the third inceptor. Looking at the graphs from the experiment with the

same input but no turbulence (fig. 6.4), we see that for P there is a sudden 

excursion away from and back to trim value when the input is applied. This can

also be seen by comparing P in fig. 6.12 (input and turbulence) with P in fig. 6.8

(no input and turbulence). Also in fig. 6.4 can be seen a large increase in PSIR

and a large decrease in VB, both of which can be seen in fig. 6.12. However, by 

far the worst response in fig. 6.12 is VB although it does recover slightly from its



largest excursion from the trim value. By comparing fig. 6.12 (input & turbulence) 

with fig. 6.8 (turbulence but no input) we see that the SH response is almost 

identical. This indicates that there is very little coupling between SH and the third 

inceptor. There is some indication of coupling into THETR & R however not a 

large amount.

A step input of amplitude +0.1 was applied to the fourth inceptor at time=l sec 

(fig. 6.14). When a similar experiment was performed without turbulence (fig. 6.5)

it was noted that R initially overshot the amplitude of the step input but returned

to a steady state value which was close to 0.1. This behaviour can also be seen

when turbulence is added (fig. 6.14). In both figs. 6.5 & 6.14 there is very little

coupling into SH and the general character of the initial responses of the variables 

in fig. 6.5 can also be seen in the same variables in fig. 6.14. In the latter part 

of some responses in fig. 6.14 there is some oscillatory behaviour which was not 

present when there was no turbulence. This is, once again, attributable to the 

sensitivity of PSIR to inputs to the fourth inceptor. Because of the large PSIR 

response, the experiment was repeated with a smaller step amplitude of +0.06 (fig. 

6.15) and then smaller again with an amplitude of +0.03 (fig. 6.13). Fig. 6.15

shows that the reduction in step size to 0.06 does not cause the oscillatory

behaviour of fig. 6.14 and returns most of the responses to conditions which are

comparable to those obtained for the same input without the turbulence (fig. 6.6).

The reduction in input size also significantly decreased the range of activity of the

actuator states THSAD & THCAD.

6.2 Noise Rejection

Signals generated by the sensors and airframe vibrations may contain components at

frequencies higher than that of the closed loop bandwidth of the controlled

helicopter. Noise rejection is the ability of the controller to attenuate such high

frequency components by low pass transmittances in the controller design or
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actuators and so cause little or no additional activity in actuator states. (High 

frequency activity in the actuators will not be more effective in controlling the 

helicopter and will cause wear.) In order to test the performance of the controller 

for noise rejection, the non-linear Helisim model was used together with inner and 

outer loop controller matrices and noise was added to each of the feedback states.

Results Of Experiments With Noise

Fig. 6.16 shows the responses of the controlled system with noise but no input

applied. In comparison with no noise and no input (fig. 6.1), the responses of the 

variables are much more noisy but all values remain close to trim. The actuator 

states show some increase in activity due to the addition of the noise but much of 

the noise has been attenuated. With no inputs applied the system has remained

stable.

A step input of amplitude -1.0 was applied to the first inceptor at time=l sec (fig.

6.18). It can be seen that the input step is well tracked by SH. Comparing fig. 

6.18 with the no noise response for the same step (fig. 6.2) although most of the

responses are noisier the general shapes and sizes of most of the responses are

very similar. The only exceptions to this are PSIR and VB. This is again

attributable to the sensitivity of these states to changes in R.

A step input of amplitude -0.1 was applied to the second inceptor at time=lsec

(fig. 6.21). The response of THETR shows good tracking of the input. The effects 

of the addition of noise can be seen by comparing with the no noise responses for 

the same input (fig. 6.3). The SH & THETR responses are very alike but the 

PHIR & R responses have deteriorated. The states PSIR and VB, sensitive to 

changes in R, have changed accordingly and the responses of the actuator states 

THSAD & THOTRD have also been altered.

A step input of amplitude -0.1 was applied to the third inceptor at time=l sec
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(fig. 6.22)(noise with a step input applied to the third inceptor). When this is 

compared with fig. 6.4 (no noise, step input applied to the third inceptor), it can

be seen that there is a deterioration in tracking properties. The PSIR response has

changed and the VB response is poorer. However, the system remains stable.

A step input of amplitude +0.06 was applied to the fourth inceptor at time=l sec

(fig. 6.25). As in the case without noise (fig. 6.6), R overshoots the amplitude of 

the input step but returns to a similar value. With the addition of noise far more 

coupling into SH and PHIR is evident which has resulted mainly in an increase in 

WB.

6.3 Effect on Controlled Non-linear System when both Turbulence and Noise are 

added

Results From Experiments With Both Turbulence & Noise

Both turbulence and noise were added to the controlled system but no input was 

applied. The results can be seen in fig. 6.17. Comparing these results with those 

from the case with turbulence but no noise and no input (fig. 6.8) it was found 

that the responses were generally more noisy but were of same general shape and 

size of response. The exception to this being the slight increase in R which 

causes a greater response in VB. This is as expected from the results of fig. 6.16 

which indicated that by adding noise alone to the system, the responses became 

noisy but, other than a deterioration in R, were not greatly affected when no input 

was applied.

A step input of amplitude -1.0 was applied to the first inceptor at time=l sec (fig.

6.19). By comparison with the no input case with noise & turbulence (fig. 6.17)

the effect of the tracking of the input can be seen in the SH response. There

appears to be little additional coupling into the other three variables to be

109



controlled (PHIR , THETR & R). Compared with the case with the same input 

but with turbulence and without noise (fig. 6.9), the response of R is slightly 

larger which causes to become larger but otherwise responses are similar.

A step input of amplitude -0.1 was applied to the second inceptor at time=l sec. 

(fig. 6.20).The PHIR & R responses (and consequently PSIR,VB & WB) of fig.

6.20 ,although noisy, are much closer in nature to those of fig. 6.21 (same input 

with noise but no turbulence) than those of fig. 6.11 (same input no noise but

turbulence) suggesting that for response to inputs applied to the second inceptor, 

noise has a greater effect on PHIR & R performances than turbulence.

A step input of amplitude -0.1 was applied to the third inceptor at time=l sec 

(fig. 6.23). Comparing this with fig. 6.12 (same input with turbulence but no

noise) we see that tracking is not quite so good but generally the character of the 

respones, though showing some turbulence, is retained. By comparing fig. 6.23 

with fig. 6.22 (same input with noise but no turbulence) we see again that the

tracking properties are not as good and the VB response of fig. 6.23 is better than

in fig. 6.22 and again stability is retained.

A step input of amplitude +0.06 was applied to the fourth inceptor at time=lsec.

(fig. 6.24). By comparing fig. 6.24 with fig. 6.15 (the same input with turbulence

but without noise) it can be seen that the most of the responses are similar with

the exception of PHIR (which will also affect WB response). The PHIR response

is similar to that in fig. 6.25 (same input without turbulence with noise) suggesting

that the PHIR response to inputs applied to the fourth inceptor is affected more by

noise than turbulence. R (& PSIR & VB) have also been affected in this way.

It can be concluded from these results that the controller is able to withstand the

effects of turbulence and noise in the sense that stability is maintained. Actuator

rate and authority limits are at no point exceeded. There is some deterioration in
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the ability of the controller to track inputs in some cases, but performance is 

generally good.
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CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

Eigenstructure assignment techniques are useful because of the degree of visibility associated 

with them. Results from eigenstructure assignment methods can be easily interpretted in 

terms of stability and speed of response. In chapter 4 it was shown that eigenstructure 

assignment techniques do not always produce a well-conditioned solution. The difficulty 

that is often associated with placing closed loop poles in areas of the complex plane to 

give the required transient performance was also demonstrated. In the case of the Lynx 

helicopter the handling qualities documentation gives information that restricts the areas in 

which poles can be placed but due to the complex nature of the system it is possible that 

all poles may lie in appropriate areas but the desired transient response is not achieved.

It was shown in chapter 5 that by using eigenstructure assignment techniques the problems 

associated with helicopter’s dynamics could be addressed. The method adopted in that 

chapter allowed zeros and their directions to be cancelled. This was useful on two 

accounts: it effectively reduced the order of the system and eliminated the effects of the 

system’s zeros. This method also decreased the level of coupling present in the helicopter. 

There was a fixed number of assignable modes some of which were used to cancel the 

zeros associated with the system. The remaining assignable modes were to be distributed 

across the four output channels. For the case of the Lynx at 80 knots forward flight it 

was found that the best results were obtained by assigning one mode each to the first and 

fourth outputs and two modes each to the second and third outputs. The next task was to 

decide on the best position for each of the assignable modes. This was achieved partly 

through the requirements of stability, eigenstructure assignment restrictions and handling 

qualities criteria.

The controlled helicopter system was shown to meet helicopter handling qualities 

requirements in terms of bandwidth and phase delay measurements. The controller was 

robust to the addition of dynamics which were not included in the model at the design 

condition. - The controller (which was designed at 80 knots forward- flight condition)
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maintained stability when used at flight conditions of 50 & 120 knots. However, by

scheduling the controller, the performance at all flight conditions between 50 & 120 knots

was found to be much closer to that of the original design at 80 knots. The feedback and

feedforward controllers formed an inner loop while an outer loop was added which

contained a P+I controller. It was noted that the position of the assigned eigenvalues in the 

inner/outer loop structure followed the movement of the zeros much more closely as flight 

condition was changed than those with only the inner loop control. This suggested that 

there may be benefits in adopting an inner/outer loop structure where the inner loop 

provides stability and decouples the dynamics and the outer loop augments the performance 

of the inner loop.

When implemented on a non-linear helicopter model the controller maintained stability across 

the range of forward flight conditions 50 - 120 knots. The responses of the non-linear 

controlled system for small inputs were similar in character to those of the linear controlled 

system.

In chapter 6  noise and turbulence were added to the controlled helicopter simulation. Again, 

stability was maintained. There was an increase in the activity of the actuators but at no 

point were actuator rate or authority limits exceeded.

It can be concluded from the results that the eigenstructure assignment method for 

decoupled tracking has proved to be effective in providing a controller which improves the 

handling qualities of a helicopter. The method has produced a controller which was designed 

on an 8 th order linear helicopter model but still gave good performance on higher order 

linear helicopter models and a non-linear helicopter model. The improvement in the

controlled helicopter system was also maintained across a wide range of operating conditions 

(even when sensor noise and atmospheric turbulence were added).

The eigenstructure assignment method used here has therefore been shown to produce a 

robust controller which improves handling qualities, decreasing the pilot’s workload and thus 

potentially increasing safety and mission effectiveness.
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One area which could provide future work is in the scheduling of the controller. In this

case the controller was scheduled at 16 points equally spaced (about every 4 knots) between

50 and 120 knots. It may prove to be the case that fewer points could provide as good a 

performance. It may also be the case that an optimium performance could be achieved 

from the minimum number of scheduling points by not having the scheduled controllers 

evenly spaced across the range (by finding the areas within the range where more or fewer 

points would be required).

Another area for further study is concerned with the inner and outer loop control structure. 

More work requires to be done on this to establish why the two loop structure gives a 

better performance generally and why, according to the findings of this research, cancelling 

eigenvalues continue to cancel the zeros as the zeros move with changes in flight condition.

Limited authority actuators usually interface the mechanical flight controls of the helicopter 

with the automatic flight control system (AFCS). By replacing the mechanical controls by

computers a fly-by-wire system can be created that will permit the use of active control 

technology.

The use of active control technology (ACT) may result in an improvement in handling

qualities because it allows greater use of the usable flight envelope. In the case of fixed-

wing aircraft ACT has included safety boundaries in the flight control computer. This has 

meant that pilots need not worry about losing control by crossing limits and this has 

introduced carefree manoeuvring. Helicopters require much more complex control laws than 

fixed wing aircraft due to their complex cross-coupled dynamics. Because of this the 

advantages in weight and cost are less to helicopters than fixed-wing aircraft. Nevertheless it 

is still hoped that the introduction of ACT will reduce pilot workload and allow the 

helicopter pilot to use the agility of the helicopter to its best advantage without exceeding

safety limits. In order to achieve this it will be necessary to develop a design procedure

that is able to handle all conditions that could be encountered during operation. This task
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would be far from trivial given the non-linearities, instability and cross-coupled dynamics 

that are inherent to the helicopter’s dynamics. The availability of helicopter states (sensed 

or estimated), actuation dynamics and the changing nature of the helicopter with flight 

condition would also have to be taken into account. Other implementation issues are sensor 

redundancy, level of on-board vibration and computing delays. With a view to creating a 

successful ACT system perhaps the most useful area for future work would be in the 

development of a model of a high specification on which control law design could be more 

accurately performed.



APPENDIX 1 EQUATIONS OF MOTION

Fundamentals of Helicopter Flight Mechanics

During steady flight there are 4 forces acting on an aircraft: lift, drag, gravity & thrust.

Gravity is counteracted by lift and drag by thrust.

In forward flight advancing blades will experience faster air flow than retreating blades,

causing the advancing blades to generate greater lift than the retreating blades. The

variation in lift is reduced through changes in the angle of attack of the blades - advancing 

blade angle reaching a maximum at the front of the helicopter and a minimum at the back. 

This is called flapping.

Feathering can also be used. This is where the pitch of the blades is altered sinusoidally

in keeping with the sinusoidal airflow changes.

Two sets of axes can be defined: earth-fixed and body-fixed. Earth-fixed axes are fixed

relative to the earth (which is assumed to be flat and non-rotating). The origin of 

body-fixed axes is located at the aircraft’s centre of gravity, with the x-axis pointing to the 

front of the aircraft, the y-axis starboard and the z-axis downwards.

The body-fixed axes system can be related to the earth-fixed axes system by a series of

rotations through angles known as Euler angles. The axes system from earth-fixed is

rotated around the z-axis by angle \p, then around y-axis by angle 0  and finally around

x-axis by angle (p. The resultant axis system is coincident with the body-fixed system, see 

fig-2. 1

By considering these rotations separately, a transformation matrix can be derived which can 

transform components from body to earth axes.

There is the disadvantage with the body-fixed axes that equations for translational 

accelerations (e.g. u, v, w) contain angular velocity components. For this reason, earth-fixed 

axes are often used to solve translational equations of motion but body-fixed axes are 

generally used for solving rotational equations of motion because they have constant 

moments of inertia in body-fixed axes.

Other axes systems are also employed to facilitate main rotor analysis: hub/wind system, 

blade system and hub system. The hub/wind system has the hub’s x-axis aligned with the
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resultant aircraft velocity in the hub x-y plane, the blade system is fixed in the flapping

blade and the hub system is aligned along the shaft and centred at the rotor hub.

The model outlined in this chapter has rigid blades of constant chord and a centre spring

model representing flap. Blade pitch can be altered once per revolution. Lag is not 

included in the model. Forces and moments are referred to a body-fixed axes system.

These forces and moments are shown in Table 1 (system of axes). Flapping angles are

assumed to be small, fuselage acceleration and blade weight effects are neglected and yaw 

rate and sideslip rates are also assumed to be small compared to the angular rate £ 1  

Dynamical equations for a free turbine engine controlled by a rotorspeed governor are based

on a simple model consisting of a first order lag giving the relationship between rotorspeed

error and fuel flow rate and another first order lag, supplemented by a lead term, relating

fuel flow to engine torque.

Mathematical Model 

(Padfield, 1981)

F o rc e  

Moment

Angle  Of Rot  a t  ion 

Ve l o c i  ty 

Ra t e  o f  Turn

Forces & Moments

The external forces and moments are considered to be the sum of contributions from all 

dynamic and aerodynamic sources.

Using the notation of table 1 equations of external forces can be expressed in component 

form. The following equations express the external forces in terms of five components.

167

TABLE 1

System Of Axes and A s s o c i a t e d  N o t a t i o n

l o n g i t u d i n a l  l a t e r a l  normal

X Y Z

L M N

( r o l l i n g )  ( p i t c h i n g )  (yawing)

(p 0  \|i

u v w

P q r



X = Xp + Xt  + Xyp + Xp^ + Xp

Y = Yr + Yp + Y jp + Yp^ + Yp

Z = Zr + Zy + Zyp + Zpjyj + Zp

where  s u b s c r i p t s  a r e  R main r o t o r  FN f i n

T t a i l  r o t o r  F f u s e l a g e

TP t a i l  p l a n e

These components must now be considered individually. In order to work out rotor forces 

and moments some assumptions are made. These are that a constant, two-dimensional lift 

curve slope is assumed, compressibility effects are ignored, unsteady aerodynamic effects are 

ignored, as are stall and reverse flow effects. It is also assumed that the induced velocity 

distribution, normal to the rotor disc, includes linear longitudinal and lateral variations, the 

value at the centre satisfying simple momentum considerations.

Other assumptions are that the flapping behaviour of hingeless rotors and of small offset 

articulated rotors is adequately represented by the centre spring model.An implication of this 

is that the effect on stability and control of the higher blade flapping modes is negligible. 

Couplings from blade pitch and lag dynamics into flapping motion are ignored.

It is possible to show that

Xr cos y s 0  - s i n y s XH
Yr = 0  1 0 Yh
Zr s i n y s 0  c o s y s ZH

where X r , Y r  and Zr  are rotor hub forces in body reference axes and the rotor hub 

forces in the shaft axes are denoted by X jp Yjj and Zjp while ys is the forward 

inclination of the shaft relative to the fuselage z axis.

The tail rotor produces a relatively small thrust compared with the main rotor. The 

assumption is therefore made that the tail rotor drag and sideforce can be neglected.

Flapping is ignored when equations are derived for tail rotor thrust. A mechanical link is 

incorporated between tail rotor blade coning and pitch angle. Also, a fin blockage factor 

reduces the achieved thrust.
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The tail rotor contribution is limited to Yq\ Therefore X t  = Z j 1 = 0. The resulting 

equation for the tail rotor has the form

Yp = p(QpRp ) 2  spaoT (TtRp) 2  ( C/ pp / ( a opsp ) ) Fp 

where  p a i r  d e n s i t y

Yp l a t e r a l  t a i l  r o t o r  t h r u s t

Qp t a i l  r o t o r  speed

Rp r a d i u s  o f  t a i l  r o t o r

sp t a i l  r o t o r  s o l i d i t y

a0T l i f t  c u r v e  s l o p e  o f  t a i l  r o t o r  b l a d e s

Cpp t a i l  r o t o r  t h r u s t  c o e f f i c i e n t

^T f i n  b l o c k a g e  f a c t o r

Another assumption is that the tailplane and fin contribute normal forces along the body Z

and Y axes respectively.

The tailplane contribution is limited to Zpp. Therefore X pp = Y pp = 0. The tailplane 

force is described by the equation

Zpp = £p(QR) 2  Yp 2  Spp Czjp(otTp) 

where  Vp t a i l p l a n e  t o t a l  v e l o c i t y

H r o t o r  speed

^TP t a i l p l a n e  a r e a

QZTP t a i l p l a n e  f o r c e  c o e f f i c i e n t

a TP t a i l p l a n e  i n c i d e n c e  a n g l e

The fin contribution is limited to Yp^j. Therefore Xpjq = Zpjq = 0.

The fin sideforce, Ypjyf, can be written as

yFN = i P(QR ) 2  VFN2  SFN CYFN(PFN) 

where  Vp^ f j n t o t a l  v e l o c i t y

CypN s i d e f o r c e  f u n c t i o n

PFN f i n  s i d e s l i p  a n g l e

Within the Helistab model the force and moment contributions from the fuselage were

synthesised from wind tunnel data. Wind tunnel results were used to produce piece-wise

linear variations with body incidence angles of force and moments contributions from
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fuselage and empennage. The reason for adopting this rather than an analytical derivation is 

that the main rotor wake interacts with the fuselage, fin and tailplane in forward flight 

creating difficulties in the mathematical formulation. The effect of rotor down wash on the 

fuselage is accounted for approximately. The equations for the fuselage forces take the 

following form

Xp = ±P(QR) 2  Sp Vp2  C xF(ap)

Yp = i p ( QR ) 2  Vp2  S s Cys(vA/Vp)

Zp = ^p(QR) 2  Sp Vp2  C zp (ap )

S s f u s e l  age s ide a r e a

Sp f u s e l a g e p l a n a r e a

VF f u s e l  age t o t a l v e l o c i  ty

VA l a t e r a l  ;aerodynamic v e l o c i t y  a t  c e n t r e  o f  g r a v i t y

CXF f u s e l a g e f o r c e func t ion

CYS f u s e  1 age s i d e f o r c e f u n c t  ion

CZF f u s e l a g e f o r c e func t ion

a F f u s e l a g e i n c i d e n c e a n g l e

Moments can also be expressed in component form as follows:

L = Lp + Ly + Lyp + LpN + Lp

M = Mp + Mt  + Myp + MpN + Mp

N = Np + Ny + N'pp + NpN + Np

The components of the moment equations are examined in more detail below.The rotor 

moments can be written as follows:

l R = l H + hR yR

M r  = MH - hp Xp + xCG Zp

nR = nH " XCG yR

where  hp n e g a t i v e  z c o o r d i n a t e  o f  r o t o r  hub

xGq c e n t r e  o f  g r a v i t y  l o c a t i o n  f o rwar d  o f  f u s e l a g e  r e f .  p o i n t

The r o t o r  hub p i t c h i n g  and r o l l i n g  moments a r e  a p p r o x i m a t e l y  p r o p o r t i o n a l  to 

q u a s i - s t e a d y  b l a d e  f l a p p i n g  and can be w r i t t e n  in terms o f  t he  s p r i n g
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s t i f f n e s s ,  Kp. The e q u a t i o n s  a r e  as f o l l ows

LH = - b / 2  Kp p l s  

MH = - b / 2  Kp P l c

NH 2C q

i p  (QR) 2  tcR^ sag  aQS
+ 2

l R 

- b lp

1
-  Q’ 
Y

where  Q’ = Q/Q^
y (Lock number)  , y  =  p c a Q R ^ ^ p
s r o t o r  s o l i d i t y  , s = bc/ftR
ag ( l i f t  c u r v e  s l o p e )
Cq main r o t o r  torque  c o e f f i c i e n t
b number o f  main r o t o r  b l a d e s
Ip  b l a d e  moment o f  i n e r t i a
c ( c h o r d )
P i s , P i c  ha r mon i cs  o f  f l a p p i n g

I r i s  t he  moment o f  i n e r t i a  o f  t he  r o t o r  b l a d e s  about  t he  s h a f t  a x i s  

p l u s  t he  a p p r o p r i a t e  moment o f  i n e r t i a  o f  any o t h e r  d i r e c t l y  c o u p l e d  

r o t a t i n g  p a r t  such as t he  t r a n s m i s s i o n .

Moments o f  o t h e r  e l e m e n t s  a r e  g i v e n  by t he  p r o d u c t  o f  t he  moment arm w i t h  

t he  f o r c e  on t h a t  e l e m e n t .  Hence we o b t a i n  t he  e q u a t i o n s  

L j  = h^ Yt 

Mj  = 0

NT = - ( / T + x c g )Yt  

where  h^ n e g a t i v e  z c o o r d i n a t e  o f  hub

l j  t a i l  r o t o r  l o c a t i o n  a f t  o f  f u s e l a g e  r e f .  p o i n t

S i m i l a r l y ,

L jp  = N tp  =  0  

MTp = ( / Tp + x c g ) Zqp 

where  l j p l o c a t i o n  a f t  o f  f u s e l a g e  r e f e r e n c e  p o i n t

l FN = hFN yFN 

Mrn = 0

nFN = - (*FN + XCG> yFN 

where  Ipj^ l o c a t i o n  a f t  o f  f u s e l a g e  r e f e r e n c e  p o i n t

hp^  n e g a t i v e  z component  o f  f i n  c e n t r e  o f  p r e s s u r e

The fuselage rolling moment, Lp, is assumed to be zero. The remaining fuselage
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components are

Mp = i p ( Q R ) 2 Sp I p Vp2  C \|p (ap)

Np = ^p(QR) 2  Vp2  S s / p  CNp(pp)

where Sp f u s e l a g e  p l a n  a r e a

S s f u s e l a g e  s i d e  a r e a

/ p  r e f e r e n c e  l e n g t h

C^p f u s e l a g e  p i t c h i n g  moment f u n c t i o n

C^p f u s e l a g e  yawing moment f u n c t i o n

Equations Of Motion

Let IXXj jyy and Izz be the moments of inertia about the x, y and z axes respectively and 

Ixz the product of inertia about the x and z axes. Assuming a choice of axes such that 

IXy and IyZ are negligible, the equations of motion can be written as follows :

^xxP = ( l y y  “ I z z ) ^  + I x z ( r + + ^

I y y q  = ( I z z  " I x x ) rP + ̂ X z ( r ^ " P^) + ^

I z z r = ( I x x  “ l y y ) ? ^  + I xz ( P  " £l r ) + ^

Let u, v, w and p, q, r be the vehicle translational and rotational components about the x, 

y, z axes respectively. In the transformation from earth to body axes, let \|f, 0, cp be the 

Euler angles, m the vehicle mass and g the gravitational constant, 

u = - (wq - v r )  + x/m - gs inG

v = - ( u r  - wp) + y/m + gcosGsinB

w = - (vp - uq)  + z/m + gcosGcosG

Wind and turbulence components, uWg, vWg, wWg, can be added to u, v, w to produce

aerodynamic velocities at the centre of gravity. 

uA = u + uwg

VA = v + vwg

wA = w + wwg

Euler angles can be determined from the equations which relate them to body angular 

components.
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cp = p + q s i n 0  t a n 0  + r cos(p ta n 0

0  = q cos(p - r sincp

\)/ = q sinq) s e c 0  + r coscp s e c 0

Ro t o r  Hub F o r c e s  In S h a f t  Axes (Xg,Yg,Zg)

The r e l a t i o n s h i p  be tween v e c t o r  component s  in an axes  sys t em (Xg,Yg,Zg)  

aligned along the shaft and centred at the hub of the rotor sytem and an axes system 

(X g,Y g,Z g) fixed in a centrally hinged rigid blade, free to flap, is one which requires two 

transformations. The first, angle \j/, is due to the rotation of the shaft with angular velocity, 

Q, and the second is due to the flapping angle, p.

For an anti-clockwise rotating rotor, with \|/=0 at the back of the disc and P positive up, 

the transformation can be written in terms of unit vectors in the above two systems.

- cos  - s i n  \p 0

JH = s i n  \|/ - cos  V|/ 0

kH 0  0  1

i becomes

»H - cos  \|/ cos  P - s i n  y

J h = s i n  v  cos  P - cos  \ji
kH - s in P 0

*B
JB
kB

>B
JB
kB

cos P 0 s i n P  
0  1 0

- s i n  P 0  cos  P

-cos  \|/ s i n  P 
s i n  \|/ s i n  P 

cos  p

The hub x axis can be aligned with the resultant aircraft velocity in the hub xy plane. 

This means that there will be no y velocity component in this system and the angular 

velocity will have an additional contribution produced by the rate of change of sideslip. 

This axes system is referred to as the hub/wind system and is denoted by the subscript 

Hw.

Ro t o r  B l a d e  F l a p p i n g

Equations of flapping motion are derived here for a centrally sprung hinged, rigid blade 

model with spring stiffness Kp.

The rotor moments Lj^, Mjq, Njq were described above by the harmonics of flapping ( P j s,

P lc). Here the individual blade flapping angles are transformed into multi-blade coordinates

which include a differential coning variable for a four blade rotor.
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For a b-bladed rotor, 

con i ng

Po = j- pj

d i f f e r e n t i a l  c o n i n g  ( e v e n - b l a d e d  r o t o r s ,  b>2)

Pd = 1 / b  £  P i ( ~1 ) 1

c y c l i c  f l a p p i n g

P i c  = 2 / b  r  Pi c o s  JVi
i=l

Pjs = 2/b r  cos j\|/i 
1=1

With four blades the transformation can be written,

Pi = Lp Pm

where Pi  = [ P i , P2 > P3 > P4^T

Pm = [ Po> P d > Pl c» P i s ] T

1 - 1 COS\J/ s in\j/
1 1 s i n\p - c o s y
1 - 1 -COS\|/ - s in\j/
1 1 - s i  n\p c os y

I nduced  Flow t h r ough  t he  Ro t o r

The normal induced flow field of the rotor is approximated by a simple, uniform 

distribution with a longitudinal variations produced by the rotor wake.

Downwash distribution can be written,

Vj/QR = = A,0 + rg/R(A, icwcos\)/ + A i swsin\| /)

The uniform component, normal to the rotor disc, can be derived from momentum theory, 

CT
^ 0  = ---------------------------------

2 (p 2  + (p z - ?l0 ) 2 )*

where  p i n - p l a n e  v e l o c i t y  component  

p z normal  v e l o c i t y  component  

A-o downwash a t  t he  r o t o r  c e n t r e  

Op main r o t o r  t h r u s t  c o e f f i c i e i j ^



p n o r m a l i s e d  r o t o r  v e l o c i t y  in xy p l a n e  

p z n o r m a l i s e d  r o t o r  v e l o c i t y  component

^lcw — ^0 tan(%/2) x ^

^Tcw = ^ 0  c o t ( x / 2 ) X ^  tc/2

X = t a n " 1 ^ / ^  - M-z) )

^ l s w  = 0

where Xsw, Xcw harmoni c  downwash component s  in hub wind axes  

X wake a n g l e

S i m p l i f i e d  F r e e  T u r b i n e  Engi ne

The dynamic equation of the rotating rotor and transmission system can be written as

follows,

Q = (Qe  - Qr - Gt r Qtr  - Qa cc ) + r

l R

where Qg e n g i n e  t o r q u e

Qr main r o t o r  t o r q u e

Qj r  t a i l  r o t o r  t o r q u e

QACC a c c e s s o r i e s  t o r q u e s

Gj r  t a i l  r o t o r  g e a r  r a t i o

Q main r o t o r  speed  r e l a t i v e  to t he  f u s e l a g e

A governor system which senses a change in rotor speed and demands a fuel flow ( ( O f )

change automatically controls the engine torque. This governor is represented by a first

order lag of the form

A(of Ke i

AH 1 + x e i s

where x e ] , x e 2 , x e 3  e n g i n e  t ime l ags

The engine response to change in fuel flow can be represented by

175



aQe r l + Te2s i
Ke2

Acof 1 + xe 3 S

where cof i s  t he  f ue l  f low r a t e

Qe  =  1 / ( Te l Te 3 )  ( ' ( Te l  + x e3)QE ' Qe  + K3 ( ^  " f l i + Te 2 Q ) 

w he re  x e 2  = x2 q + x 2 jQg

Te3 = T30 + T3lQE 

Qg e n g i n e  t o r q u e

^3 = ^el^e2 = “ ^Emax/Qi( l  " ^mi)

where = Om/Qj

Qm r o t o r  speed a t  maximum c o n t i n g e n c y

Qj r o t o r  speed a t  f l i g h t  i d l e

K3  o v e r a l l  e n g i n e  t o r q u e

F l i g h t  C o n t r o l  Sys tem

A contribution to cyclic pitch from the autostabiliser, 0 j sa & 0 jca , is passed through 

limited authority series actuators and are given by

where kg,  k^ ,  kp,  kq f ee d b a c k  g a i n s  

k l c> ^ l s  f e e d f o r w a r d  g a i n s

^ l s O ’ ^ l c O c o n s t a n t s ,  a d j u s t a b l e  by t he  p i l o t  

P i c ,  T| is l a t e r a l  and l o n g i t u d i n a l  c y c l i c  s t i c k  v a r i a b l e s  

The basic longitudinal stick gearing is a function of collective lever setting. Assuming 

straight line approximation, the pitch contribution to cyclic pitch, 0 j Sp for longitudinal and 

®1cp* for lateral,

®l sa  -  ^ 0 0  + kqCJ + k l s ( t |i  s - iq j s 0 ) 

®lca  = kq>9 + kpp + k 1 c ( r | j c - xiicO)

®lcp _ SlcO + S l c l ^ l c

®lsp = Sl sO + S l s l ^ l s  + (§scO + S s c l Tl l s ) Tlc

where  q c 0  ^  q c ^  1 

0 * i l l s  * 1
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SIsO = e lsO

SI s i  = 0 l s l  " 0 lsO

SscO = e l s2  " e lsO

Ssc l  = ( 0 l s3  - e l s2 )  - ( 0 l s l  - e lsO)

0 l sO p i t c h  a t  z e r o  c y c l i c  s t i c k  and c o l l e c t i v e  l e v e r

0 j s l p i t c h  a t  maximum c y c l i c  s t i c k  and z e r o  c o l l e c t i v e  l e v e r

0 l s 2  p i t c h  a t  z e r o  c y c l i c  s t i c k  andn maximum c o l l e c t i v e  l e v e r  

0 Xs 3  p i t c h  a t  maximum c y c l i c  s t i c k  and maximum c o l l e c t i v e  l e v e r  

At control extremities there may be non-linearities which may not make these the best 

points to measure.

Before phasing, dressed signals, ©is* & 0 jc*, are produced from the servo driven by the 

pilot and autostabiliser inputs.

0 1 sp + 0 1 sa  
0 l s  = ------- -----------------

1 + Tc l s

0 lcp + 0 l s a

0 lc*  = ------------------------

1 + Tc 2 s

where 0 j s , 0 j c b l a d e  c y c l i c  p i t c h  components  b e f o r e  p h a s i n g

Tc \ t ime c o n s t a n t

t c 2  t ime c o n s t a n t
The bar denotes the Laplace transform of a variable.

Cyclic mixing is as follows,

©Is = 0 1S* cos VF + 0 lc* s n̂ VF 

0 1C = 0 lc* cos VF " 0 l s*  s n̂ VF
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APPENDIX 2 Ze r o  S t r u c t u r e  f o r  Combi na t i ons  o f  O u t p u t s

For  each  c o m b i n a t i o n  o f  o u t p u t s  t he  z e r o  s t r u c t u r e  i s  d i f f e r e n t .

T h i s  t a b l e  shows p o s s i b l e  o u t p u t  s e t s  and g i v e s  an i n d i c a t i o n  o f  the  

z e r o  s t r u c t u r e  o f  each s e t .

KEY

* - s a t i s f a c t o r y  z e r o  p o s i t i o n s

h - h i g h  f r e q u e n c y  i n v a r i a n t  z e r o s  in l e f t  h a l f  p l a n e  

+ - i n v a r i a n t  z e r o s  in t he  r i g h t  h a l f  p l a n e  

0  - z e r o  a t  t he  o r i g i n

Chosen s e t  o f  o u t p u t s  Outcome o f  z e r o  s t r u c t u r e

h 0 a P *

h 0 Q r +

h 0 0 vb *

h 0 9 P h

h 0 9 r *

h 0 9 vb h

h 0 P P + h

h 0 P r 0

h 0 P vb + h

h 0 vb P h

h 0 vb r *

h 0 vb vb + h

h q Q P 0

h q Q r 0

h q fi vb 0

h q 9 P h

h q 9 r 0 h

h q 9 vb h

h q P P + 0

h q P r 0 h

h q P vb 0 h
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h q vb P h

h q vb r 0

h q vb vb +

h vt Q P *

h vt Q r 0

h vt Q vb *

h vt 9 P h

h vt 9 r *

h vt 9 vb h

h vt P P h

h vt P r 0

h vt P vb h

h vt vb P h

h vt vb r *

h vt vb vb +

h ub Q P *

h ub Q r 0

h ub Q vb *

h ub 9 P h

h ub 9 r *

h ub 9 vb h

h ub P P h

h ub P r 0

h ub P vb h

h ub vb P h

h ub vb r *

h ub vb vb +

Y e £2 P *

Y e Q r +

Y 0 a vb *

Y e 9 P h

Y e 9 r *

Y e 9 vb h

Y 0 P P h

Y 0 P r 0

Y 0 P vb h

Y 0 vb P h

Y 0 vb r *

Y 0 vb vb h
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Y q a p 0

Y q Q r 0

Y q Q vb 0

Y q 9 p h

Y q 9 r 0

Y q 9 vb h

Y q P p 0  h

Y q P r 0

Y q P vb 0  +

Y q vb p 0  h

Y q vb r 0

Y q vb vb *

Y vt Q p *

Y vt n r 0

Y vt Q vb *

Y vt 9 p h

Y vt 9 r *

Y vt 9 vb h

Y vt P p h

Y vt P r 0

Y vt P vb + h

Y vt vb p + h

Y vt vb r *

Y vt vb vb +

Y ub Q p *

Y ub Q r + 0

Y ub Q vb *

Y ub 9 p h

Y ub 9 r *

Y ub 9 vb h

Y ub P p h+

Y ub P r 0

Y ub P vb h+

Y ub vb p h

Y ub vb r *

Y ub vb vb +

wb e Q p *

wb e Q r +

wb e Q vb *



i-
}

i-
wb 0 9 p h

wb 6 9 r *

wb e 9 vb h

wb 0 P p h +

wb 0 P r 0

wb 0 P vb h +

wb 0 vb p 0 h

wb 0 vb r *

wb 0 vb vb + h

wb q ft p 0

wb q ft r + 0

wb q ft vb 0

wb q 9 p h

wb q 9 r 0

wb q 9 vb h

wb q P p h 0

wb q P r + 0

wb q P vb h 0

wb q vb p 0 h

wb q vb r + 0

wb q vb vb +
wb vt ft p +
wb v t ft r h 0

wb v t ft vb +
wb v t 9 p + h

wb v t 9 r +

wb v t 9 vb + h

wb vt P p + h

wb vt P r + 0

wb vt P vb + h

wb vt vb p + h

wb v t vb r +

wb v t vb vb +

wb ub ft p +

wb ub ft r h 0

wb ub ft vb +

wb ub 9 p + h

wb ub 9 r +

wb ub 9 vb + h
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wb ub P p + h

wb ub P r + 0

wb ub P vb h +

wb ub vb p + h

wb ub vb r +

wb ub vb vb +
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APPENDIX 3 Eigenstructure Assignment Method Software
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APPENDIX 4 Helicopter Handling Qualities

The purpose of designing a flight control system for a helicopter is to provide 

improved safety, to improve the performance of the vehicle in terms of agility and 

manoeuvrability and to reduce pilot workload. To achieve these aims we are

required to design control laws to produce a controlled helicopter which has good

handling qualities in terms of response to pilot input and thus provides the required 

agility and manoeuvrability for its intended role. The designer of a control law

must take into account not only the dynamics of the helicopter but also the pilot 

since it is the helicopter-plus-pilot system which must perform well.Pilots can 

assign a rating of how well a controlled helicopter handles according to the

Cooper-Harper scale (fig. 18)(Cooper & Harper, 1969).

Handling qualities specifications can be used to facilitate decisions involved in 

producing control laws. They can help to provide design criteria which aim to 

define dynamics requirements which give good handling qualities. In this way they 

can influence choices of eigenvalues and eigenvectors during the design process. 

Handling qualities specifications are deficient in the sense that compliance does not 

guarantee that the helicopter will achieve the desired performance. Other factors 

must be taken into account.

In recent years handling qualities information has been well documented. 

(MIL—STD—1797 USAF & Hoh, Mitchell & Aponso) The following is a summary 

of that information.

Since different tasks will require different handling qualities, a representative set of 

tasks is defined, known as mission task elements (MTE). The dynamic response of 

the helicopter can be categorised by 3 regions: hover (< 15 knots), low speed (15 

- 45 knots) and forward flight (> 45 knots). MTEs for these flight regions are 

shown in fig. 1 & 2.
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The quality of handling of the same helicopter will vary with environmental 

conditions. Because environmental conditions have an effect on handling, 

atmospheric conditions and the useable cue environment are taken into

consideration. The useable cue environment (UCE) is a parameter which alters the 

stringency of the requirement to be met according to the visual cues available to 

the pilot (e.g. view through the window, visual aids, poor weather & night vision). 

(Hoh, Mitchell & Aponso, 1988). UCE is defined by three levels (fig. 3). Level 

1 is the best and allows aggressive manoeuvring whereas level 3 is the worst and 

permits only gentle manoeuvres.

Another factor which affects handling qualities performance is pilot attention. 

Clearly, the pilot’s ability to respond to changes occurring during flight will be

reduced due to increased workload if flying without a copilot. As an indication of 

this, two states are defined: fully attended and partially attended. It would be

reasonable to expect that during a partialiy attended manoeuvre, the handling 

qualities rating would be lower than for the same task when fully attended. To 

accommodate this difference, specifications for partially attended flight can be

lowered (fig. 4).

In fig. 1 & 2 a number of different response types are referred to. These are rate, 

attitude command (AC), attitude hold (AH), translational rate command (TRC), 

position hold (PH), turn coordination (TC) and height hold (HH). (Hoh, 1988). 

They are defined as follows:

Ra t e :  A t t i t u d e  d i v e r g e s  from t r i m f o r  a t  l e a s t  4 s e c s  f o l l o w i n g

a s t e p  change a p p l i e d  to t he  c o c k p i t  c o n t r o l l e r .

AH & HH: P i t c h  a t t i t u d e  s h a l l  r e t u r n  t o  w i t h i n  10% o f  peak

e x c u r s i o n  in <20 s ecs  f o l l o w i n g  a p u l s e  c o c k p i t

c o n t r o l l e r  i npu t  when UCE=1 and in  <10 s e c s  when UCE>1.
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Rol l  a t t i t u d e  and h e a d i n g  r e t u r n  t o  w i t h i n  10% in 

<10 s e c s .

A t t i t u d e  or  h e a d i n g  w i l l  remain w i t h i n  10% f o r  a t  

l e a s t  30 s e c s .

AC: Co n s t a n t  c o c k p i t  c o n t r o l l e r  f o r c e  i npu t  s h a l l  p r o d u c e

p r o p o r t i o n a l  a n g u l a r  d i s p l a c e m e n t .  A s e p a r a t e  t r i m  

c o n t r o l  must  be s u p p l i e d .

TR: Co n s t a n t  p i t c h  & r o l l  c o n t r o l l e r  f o r c e  and d e f l e c t i o n

i n p u t s  s h a l l  p r oduce  a p r o p o r t i o n a l  s t e a d y  t r a n s l a t i o n a l  

r a t e  in a p p r o p r i a t e  d i r e c t i o n .

PH: Must h o l d  p o s i t i o n  i f  t he  f o r c e  on t he  c o c k p i t  c o n t r o l l e r

i s  z e r o .

TC: For  low speed f l i g h t ,  d u r i n g  banked t u r n s  w i t h  any

a v a i l a b l e  h e a d i n g  h o l d  modes d i s e n g a g e d ,  t he  h e a d i n g  

r e s p o n s e  to l a t e r a l  c o n t r o l l e r  i n p u t s  s h a l l  r emain  

s u f f i c i e n t l y  a l i g n e d  w i t h  t he  d i r e c t i o n  o f  f l i g h t  

so as no t  to be o b j e c t i o n a b l e  to t he  p i l o t .

Dynamic requirements can be divided into 3 categories: small, moderate and large

amplitude responses. Controllers used in conjunction with linear models can be

tested with small amplitude inputs only because the linear model is valid for small

excursions. Criteria for small amplitude manoeuvring can be given in terms of

bandwidth. Bandwidth is measured from a frequency response plot of angular

attitude response to cockpit controller force (fig. 5). Two bandwidths are measured:

one for 6dB of gain margin, (OBWgain’ and the other for 45 degrees of phase

margin, which describe the margin above the vehicle’s response in

which the pilot can double his gain or add a time delay or phase lag without

causing an instability. cog\yphase ls fretluency at which the phase margin is 45

degrees. However, pilots are also sensitive to the shape of the phase curve at
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frequencies beyond the bandwidth frequency. Phase delay, Tp, gives an indication of 

the shape of the curve beyond the bandwidth frequency. It is a measure of how 

rapidly the phase curve drops after -180 degrees and therefore gives an indication 

of how the helicopter behaves as the pilot increases his crossover frequency. Large 

phase delay indicates that the helicopter could be PIO (pilot induced oscillation) 

prone because of the short frequency range between normal tracking at 45 degrees 

and instability. Low gain margin can also be an indication of a PIO prone system. 

This is because small changes in gain can result in a rapid reduction in phase 

margin. A system is said to be gain limited when (OBWgain < ®BWphase-

Hover and Low Speed Flight

Small amplitude responses are assumed to be concerned with the accuracy of 

closed loop tracking tasks and can be characterised by bandwidth frequency. Inputs 

should be large enough to produce attitude changes of 5 degrees in pitch and 10 

degrees in roll. In the case of small amplitude responses, bandwidth and phase 

delay measurements are made from the frequency response according to fig. 5. 

These can then be plotted on two parameter graphs (fig. 6 & 7) which give an

indication of the level of handling qualities we can expect from the helicopter.

For moderate amplitude responses (concerned with rapid but less accurate

responses), the peak angular rate to change in angular attitude (qp^/AOpk or

Pp^/Atppk) shall exceed limits given in fig. 8 & 9.

For large amplitude responses, the minimum achievable angular rate (for rate 

response types) or attitude change from trim (for attitude response types) shall be

no less than the values in fig. 10.

Forward Flight

The small amplitude response criteria are divided into two categories: high
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frequency and mid-low frequency. The short term (high frequency) criteria are

specified in terms of bandwidth parameters. The mid-term response is specified in

terms of frequency and damping of oscillations.

Short Term Response

The pitch attitude response to the longitudinal cockpit control force shall meet the 

limits in fig. 11. The size of the inputs shall be large enough to produce change

in pitch attitude of up to 5 degrees or to produce normal load factors that

represent the limits of the OFE, whichever is less.

Mid Term Response

In steady turning flight and in pullups and pushovers at constant speed, for levels

1 & 2 there shall be no tendency for the helicopter pitch attitude or angle of

attack to diverge aperiodically with controls fixed of controls free. The variations

in longitudinal cockpit control force with steady state normal acceleration shall have

no objectionable non-linearities throughout the OFE.

Flight Path Control

Vertical rate response following a step collective input shall have a qualitative first 

order appearance (fig. 12).

Collective to Attitude Coupling

For small collective inputs (< 20% of full control), the peak change in pitch

attitude occurring within the first 3 seconds following an abrupt change in 

collective shall be such that lOpk/nzpk1 *s no greater than 0.1 deg/ft/sec^, where 

nZpk is peak normal acceleration.

For large collective inputs (^ 20% of full control), the peak change in pitch

attitude occurring within the first 3 seconds following a step change in collective

shall be such that lO pk^zpk1 no greater than 0.5 deg/ft/sec^ in the up direction
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and is no greater than 0.25 deg/ft/sec^ in the down direction.

Pitch-to-Roll & Roll-to-Pitch Coupling During Aggressive Manoeuvres 

Hpk^P and Ppk/q for rate response types or Op^/tp and cpp /̂O for attitude response 

types following an abrupt cyclic step input shall not exceed the limits given in fig. 

13 for at least 5 seconds after the input is initiated.

Roll Attitude Response to Lateral Controller

Small Amplitude Roll Attitude Response to Control Inputs

The roll attitude response to lateral cockpit control force shall meet with fig. 14. 

Inputs shall be large enough to produce roll attitude changes of 10 degrees.

Moderate Amplitude Attitude Changes

ppk/Atppk shall exceed the limits given in fig. 14. The required attitude changes 

shall be made as rapidly as possible starting from zero angular rate.

Large Amplitude Roll Attitude Changes

The minimum achievable roll rate or bank angle from a trimmed zero roll rate 

condition shall meet or exceed the values given in fig. 15.

Turn Coordination

I A(3/cpj | (where cpj is initial peak magnitude of roll response) for an abrupt lateral 

control pulse command for rate response types or step command for attitude 

response types shall not exceed limits of fig. 16. In addition, i A(3/cpj | x i (p/|31 j  

shall not exceed limits given in fig. 16.

Yaw Response to Yaw Controller

Small Amplitude Yaw Response for Air Combat
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The heading response to cockpit yaw control force or position inputs shall meet fig

17. The size of the inputs shall be large enough to produce heading changes of 10

degrees.

Large Amplitude Heading Changes

Folowing an abrupt step displacement of the yaw control with all other cockpit 

controls fixed,the change in heading shall be not less than:

Level 1: the lesser of 16 degrees or Pl

Level 2: the lesser of 8 degrees or 1/2 Pl

Level 3: the lesser of 4 degrees or 1/4 Pl

where Pl  is the sideslip limit of the OFE in degrees.

The above specifications are a subset of those available for helicopters. As well as 

defining quantities and qualities for different MTEs on all axes and taking the 

UCE and pilot workload into account, handling qualities specifications can perform 

another role - since handling qualities provide a measure of how well a controlled 

helicopter can be expected to perform, these measures can be used to provide a 

comparison between different control law design methods and between different 

designs created by use of one design method. The same approach allows the 

designer to monitor the effect on handling qualities when dynamics, unmodelled at 

the design condition, are added to the controlled helicopter or when the flight 

condition of the helicopter is changed. The obvious benefit of this is that 

development time will be greatly reduced because deficiencies occurring at any 

stage will be highlighted by poor handling qualities performance and can be dealt 

with at that point rather than continuing the design and development process only 

to find a deficient controller at the end.

During the design process in chapter 5, handling qualities information will be 

referred to in order to decide whether the controller in question is good enough to 

pass to the next stage of development.
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Rai t s
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a v a i l a b l e  R e a p o n s e -T y p e  t o r  t h e  e l a l o a  HIE I n  th e  
Low Spaed ( l i g h t  r a n g e  a a  d e f i n e d  I n  P a r a g r a p h
1 . 4 . 6 . 2 .  H owever ,  TC l a  n o t  r e q u i r e d  a t  a i r a p e e d a  
l e s a  t h a n  13 k n o t s .

3. 4 s p e c i f i e d  R es p o n ee -T y p e  nay  be  r e p l a c e d  w i th  a 
h i g h e r  l e v e l  of  a t a h l l l z a c l o n  p r o v i d i n g  t h a c  t h e  
s o d e r a t e  a n d  l a r g e  a a p l l t u d e  n a n e u v e r l n g  r e q u i r e 
m en ts  nay s t i l l  be n e t .

The r a n k - o r d e r i n g  of  C o a b l a a t i o n a  o f  Reapoose -T ypee  
f r o a  l e a a c  co  n o s c  s t a b i l i s a t i o n  l a  d e f i n e d  a s : .

R a t a  •> R a ta  o r  l a t a  C o aa an d  A t t i t u d e  Hold  
(RCAH) Raaponaa-Typa  ( P a r a g r a p h s  
3 . 2 . 3 ,  and 3 . 2 . 6 ) .

TC ->  TUrn C o o r d i n a t i o n  ( P a r a g r a p h  3 . 2 . 1 0 ) .

ACAH •> A t t i t u d e  Coaaand A t t i t u d e  Hold X esponse -  
Typa ( P a r a g r a p h s  3 . 2 . 6  a n d  3 . 2 . 7 ) .

1CXH ->  V e r t i c a l  R a t e  C o aa an d  w i t h  A l t i t u d e  
( H e i g h t )  Hold R e s p o n s e - T y p e  
( P a r a g r a p h  3 . 2 . 9 . 1 ) .

PH ->  P o s i t i o n  Hold R a a p o n a a - T y p a  
( P a r a g r a p h  3 . 3 . 1 1 ) .

IRC ■> T r a n s l a t i o n a l  R a t e  Co aao n d
te s p o n a e - T y p e  ( P a r a g r a p h  3 . 2 . 3 ) .

1. R a t e
2. ACAH •f ROH
3. ACAH ♦ RCDH ♦ RCHH
4. R ace * RCOH RCHH PH
5. ACAH ♦ RCOH •f RCHH + PH
6. TRC +■ RCDH + RCHH +• PH

Figure A4.1 Required Response Type for Hover and Low Speed 
Near Earth

194



P i t c h  and R o l l  A t t i t u d e

RATE PITCH - RATE OR ATTITUDE, ATTITUDE HOLD REQUIRED
(RCAH OR ACAH)

« ROLL - RATE WITH ATTITUDE HOLD (RCAH)

ground a t t a c k IMC c r u i s e / c l i m b / d e s c e n t .
s l a l o m  ( 4 . 2 . 5 ) IMC departure
d o l p h i n  ( 4 . 2 . 4 ) IMC a u t o r o t a t i o n
a s s a u l t  l a n d i n g IMC approach ( c o n s t a n t  sp e e d )
mine s w e e p i n g IMC d e c e l e r a t i n g  approach - 3 -Cue
sonobuoy  d e p l o y f l i g h t  d i r e c t o r  r e q u i r e d  ( 4 . 3 )
VMC c r u i s e / c l i m b / a i r - t o - a i r  r e f u e l

d e s c e n t mid a i r  r e t r i e v a l
a i r - t o - a i r  combat weapons d e l i v e r y  r e q u i r i n g  a s t a b l e  p l a t f o r m -

Miss  Lon-Task-
Elem en ts
( 4 . 2 . 6 ,  4 . 2 . 7 )

Heading  - -  A l l  R e q u i r e  Turn Co ordinat i on  (P ar agraph  3 . 4 . 6 . 2 )

H e i g h t  - -  No S p e c i f i c  Response-Type ( s e e  Paragraph  3 . 4 . 3 )

Figure A4.2 Required Response Types in Forward Flight
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Figure A4.3 Definition o f Usable Cue Environments
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UCE
LEVEL FOR 

RESPONSE-TYPE 
(TABLE 1 ( 3 . 2 ) )

LEVEL FOR 
DYNAMICS 

(SECTION 3 . 3 )

OVERALL
LEVEL

2 1 2 2
2 2 1 2
T 2 2 3

3 1 2 3
3 2 1 2
T
J 2 1 2

\
3

Figure A4.4 Levels for Combinations o f Degraded Response Type Dynamics
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Figure A4.5 Definitions o f Bandwidth and Phase Delay
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Figure A 4.10 Requirements for Large Amplitude Attitude Changes
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Figure A 4.12 Maximum Values for Height Response to Collective Controller
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Figure A4.13 Limiting Values for Pitch-to-|Roll and Roll-to-Pitch Coupling
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Figure A 4.14 Roll Response Limits for Moderate Amplitude Roll
Attitude Changes, Forward Flight

206



MISSION-TASK-ELEMENT 
( MTE) «

RATE RESPONSE-TYPES ATTITUDE RESPONSE-TYPES

MINIMUM ACHIEVABLE 
ROLL RATE 
( d e g / s e c )

MINIMUM ACHIEVABLE 
BANK ANGLE 

(deg )

LEVEL 1 LEVEL 2 LEVEL 1 LEVEL 2

L i m i t e d  M aneu ver in g

A l l  MTEs n o t  
o t h e r w i s e  s p e c i f i e d

IMC MTEs

30 15 25 15

15 12 25 15

A g g r e s s i v e  M aneuver ing

50 21

I

90 30

Ground A t t a c k  
D o l p h i n  
Sl al ora  

A s s a u l t  Landing

A ir  Combat 90 50 j U n l i m i t e d 60

Figure A 4.15 Requirements for Large Amplitude Roll Attitude Changes
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Figure A 4.16 Sideslip Excursion Limitations
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Figure A4.17 Requirements for Small Amplitude Heading Changes, 
Forward Flight
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APPENDIX 5 HELISIM Software Functions

SESSIMB2 sets up tsim body axes equations and calls the active control laws (ACTLAW), 

turbulence (TWIND), user input (USERCMI) and user output (USERCMO) routines.

USERCMI sets up user input to the model.

USERCMO communicates information back from the model to the user.

ACTLAW contains a user-defined active control law. This subroutine is listed in Appendix 

3.

SESAME is a System of Equations for the Simulation of Aircraft in a Modular 

Environment. It calls CONTROLS, TOTF and TOTM.

TOTF calls other subroutines which calculate forces and moments for the model generally, 

main rotor, tail rotor, fuselage, fin, tailplane and undercarriage.

TOTM sums the moments generated in these subroutine calls.

CONTROLS calls subroutines which perform control functions.

CIN takes pilot inputs, scales controls to ±1 and applies a shaping function to each input 

in turn.

FCS provides a basic autostab

ENG calculates engine torque and power.

CMX applies control mixing (usually done mechanically in the helicopter) to the pilot 

inputs. It converts the ±1 values into blade angles and sums them with autostab outputs. 

These final outputs are then fed to the actuator model. This subroutine is not called if 

active control is being used.

ATR equates active control inputs with actuator outputs bypassing blade limits and actuators. 

SHP shapes raw pilot inputs.
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