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A bstract

This thesis describes some new ideas and a practically orientated implementation 
for fault detection and diagnosis in dynamic engineering systems. The method is 
designed for use on-line, it is model based, and is capable of coping with modelling 
inaccuracies, noisy measurements from the system and unmeasurable system states. 
The fault detection system is robust to false alarms, and the fault diagnosis system 
allows for the possibility that multiple faults may occur simultaneously.

A number of system analysis algorithms are presented to extract various system 
equations from the model of the system. This means that the user need only enter 
one model of the whole system, and all of the analysis and equation solving is then 
handled by computer. The results of this analysis are then automatically encapsulated 
into a fault detection and diagnosis tool. This results in the automatic generation of 
a specific fault analysis tool for the system entered by the user.

A “hypothesis prover” is developed here for the domain of dynamic systems, which 
is used to test hypotheses. Some of the ideas about multiple faults as developed by 
de Kleer & Williams and Reiter have been used, but these have been adapted to 
make them applicable for real-time, recursive, imprecise, diagnosis. (Diagnoses are 
imprecise because, due to modelling errors and noisy measurement, it is never possible 
to be 100% certain about anything.)

When multiple faults are considered, the number of possible combinations becomes 
very large, 2^ — 1, where N  is the number of components. The computation required 
to prove a particular hypothesis, although not enormous, is not trivial either, making 
it impractical to prove a large number of hypotheses. To overcome this a method is 
proposed which involves just proving a subset of the possible hypotheses, and using the 
information obtained from these to reason about the other hypotheses. This requires 
much less computational power as the reasoning process is much less intensive than 
the proving process. This make the diagnosis of multiple faults possible in real-time.

The methods developed here are tested on a real, noisy system where approxima­
tions are made when producing the systems’ model. These tests show the potential 
of this approach to fault diagnosis.



Preface

Fault detection and diagnosis in dynamic engineering system has received much 

attention recently. New and original approaches to this area have been made possible 

by the advances in computing technology which allow fault analysis tools to exploit 

analytical and knowledge-based redundancies that were not possible before.

In particular the “ Theory of Diagnosis from First Principles” by Reiter [68] has 

laid the way for new developments in the diagnosis of multiple faults and competing 

fault hypotheses.

This thesis describes my attem pt to use some of these powerful ideas, together 

with some new extensions and apply them to the domain of dynamic engineering 

systems. A description of how they could be applied in a practical sense is given.
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C hapter 1

Introduction.

This thesis describes some new, practical, model-based fault detection and diagnosis 

methods. These methods are capable of detecting and diagnosing single and multiple 

faults in dynamic engineering systems, even when noise is present in the system’s 

measurements, and the model of the system is imprecise. In addition to this a method 

for automatically generating a portable and complete implementation of the fault 

analysis algorithms for a specific system is described.

1.1 M otivation

The need for improved performance in industrial situations has caused a need for 

improved fault detection and diagnosis methods. This, together with the advances in 

computing technology, has resulted in a whole new range of detection and diagnosis 

tools which are both possible and practicable.

Detecting a fault in a system does not just mean discovering that the system has 

failed, but also discovering a component of the system which no longer performs to i t’s 

specification. This could be a bearing that has worn, a pipe which is becoming clogged 

or some thermal insulation which has deteriorated. This degradation in a component’s

1



CH APTER1. INTRODUCTION. 2

performance needs to be detected and pin-pointed, as if it is left unattended, a gradual 

reduction in the system’s performance is inevitable.

The earlier a change in the system’s performance can be detected and diagnosed, 

the earlier preventive maintenance can be carried out, thus helping to ensure that the 

required performance of the system is maintained.

In the past, fault detection has been achieved with the use of many plant sensors 

measuring many different quantities and ensuring that all of them are between specific 

limits. Attaching many sensors to a plant is obviously expensive, and the more sensors 

there are, the larger the possibility of a sensor failure and therefore a false alarm. 

There are also certain quantities which may be difficult to measure. One result of 

this is that a fault may not normally be detected until the system’s performance 

substantially changes. The requirements for a fault detection system must therefore 

be to keep the number of sensors on the system to a minimum, and to be as quick and 

sensitive as possible in detecting faults whilst minimising the number of false alarms.

Fault diagnosis is often an imprecise science, depending upon an operator’s 

understanding of the plant to determine where the fault is. A fault diagnosis system 

should be capable of accurately determining which components of the system are 

misbehaving, and also by how much. Since it is never possible to be 100% sure 

which is the correct hypothesis (due to system noise and modelling inaccuracies), it is 

necessary to determine which are the most likely hypotheses, rather than producing 

one hypothesis as being correct.

In addition to this it may be possible that if some slight degradation in the plant 

occurs, it may not be necessary to shut the plant down and fix it, but it may be 

possible to compensate for the degradation and maintain the system’s performance. 

The operator should of course be made aware of the situation and give the go ahead 

for compensation to take place, making a note of the degradation for maintenance at
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some point in the future. To do this requires the quantification of the new behaviour 

of any component of the system which has altered.

Although many fault detection and diagnosis methods have emerged, many of 

these have been designed for the off-line analysis of data to determine when a fault 

occurred and where it was. The methods described here are designed to work on­

line. If a diagnosis algorithm is to be used on-line, it must also be practicable, i.e. 

it must be capable of being executed in real-time on a computer. Finally, many 

diagnosis methods produced require a significant amount of work to implement the 

methods for each new system that they are applied to; this can limit the usefulness of 

these methods to only substantial systems which are worth the large amount of effort 

required. Any reduction in the effort required to implement fault analysis methods 

on new systems is obviously beneficial. For this reason, the task of analysing the 

system model and producing the necessary computer code to perform fault detection 

and diagnosis on a particular system has been automated. To facilitate this, the user 

is required to represent the dynamic system using bond graphs.

The detection and diagnosis methods given here are primarily concerned with 

handling the degradation of a plant, but they will also work in the event of a sudden 

failure of a component. The methods are designed for use on-line, in real-time, and 

incorporate a substantial amount of automatic system analysis and code generation.

Many detection and diagnosis systems require a large amount of tailoring to 

individual systems. This is one area where the methods described herein are trying to 

get away from. Here algorithms are presented which will automatically analyse many 

dynamic systems and extract various aspects of the systems behaviour which is then 

incorporated into a universal fault detection and diagnosis scheme. The user must 

enter the model of the system and the constitutive relationships for the individual 

components. After that a fault analysis tool for the system, which consists of a C + +
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program specific to that system, is produced automatically. This program contains 

all of the detection and diagnosis algorithms and the system equations needed. Much 

of the analysis of the system is done during this process, resulting in a final code 

which needs to perform only a minimal amount system analysis. It is therefore much 

more practicable with regards to execution speed, when used for on-line, real time 

detection and diagnosis.

The areas of original contribution contained in this thesis are:-

1. The adaptation of multiple fault diagnosis methods to a recursive in time, on­

line situation for dynamic systems. That is, the conclusions of the diagnosis 

algorithms improve with time, the methods are practicable in real-time and it 

is not necessary that every state of the system is measurable.

2. Reasoning about sets and subsets of multiple fault hypotheses in situations 

where definite information about the correctness of a hypothesis is not available, 

(e.g. it is possible to say a hypothesis is likely to be correct or is unlikely to 

be correct, but one cannot say it is definitely correct or definitely incorrect. ) 

This makes it possible to reduce the number of computationally expensive calls 

to the “hypothesis prover” , and therefore increases the real-time practicability 

of the approach.

3. Using constraint propagation algorithms to analyse a dynamic system. These 

are unusual in that they may propagate signals through different periods of 

time (different sample times). The algorithms are also aware of algebraic 

loops and they will therefore always ensure (where possible) that there are 

enough equations to find the required unknown(s). That is the algorithms 

will propagate through different time periods to ensure that there is enough 

information to find the required unknown, but the propagation route will always 

be the shortest one possible.
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4. Automatically generating a specific implementation of the fault analysis algo­

rithms for a specific system. The implementation produced is self contained 

and is easily ported to a different platform from the one which produced it.

1.2 Overview

This thesis is in three main parts.

1. A discussion of survey material. (Chapters 2 and 3).

2. New developments and theories. (Chapters 4, 5 h  6).

3. Results of tests with simulated data and data from a real system. 

(Chapters 5, 6 h  7).

Chapter 2 contains a survey of work done in the fault detection and diagnosis 

area. This includes both fundamental work on the theory of faults, and specific 

implementations of some methods which have been developed. Methods for system 

modelling are also examined as is the background of the constraint propagation 

techniques.

Chapter 3 examines, in detail, the theory behind fault detection and how this has 

been done using constraint satisfaction. Fault diagnosis using constraint suspension 

is then discussed together with the circumstances when this is practicable. Examples 

of detecting and diagnosing faults are looked at for various types of system, and some 

of the problems associated with considering the possibility of multiple, simultaneous 

faults are described.

Chapter 4 looks in detail at the nature of dynamic systems and highlights aspects 

and features which one must be aware of to successfully develop a working system. 

A method is developed for examining dynamic systems when not all of the states
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are necessarily measurable. Problems are identified which must be overcome for the 

system to be both practicable and usable in real time. An algorithm to extract the 

dynamic systems’ equations in various forms is discussed. An overview of the software 

which has been developed is given, as is a description of the method used to pre-filter 

data before it is used.

Chapter 5 discusses the methods that I have developed to detect faults in noisy, 

imprecisely known, dynamic systems. A fault is defined, state estimation described, 

system model accuracy discussed and fault detection considered.

Chapter 6 examines the methods for diagnosing multiple simultaneous faults, 

including parameter estimation and how Reiter’s [68] and de Kleer’s h  Williams’ 

[10] [11] idea of conflict sets can be adapted to cope with the imprecise nature of 

hypotheses based on noisy, inaccurately known systems. Limitations due to the nature 

of all dynamic systems are then examined and finally a method of determining which 

hypotheses are the most likely ones is discussed.

Results of tests on a real dynamic system are given in chapter 7. It is shown 

how false alarms are avoided, faults are detected and single component faults are 

diagnosed. The method for diagnosing single and multiple faults in the situation 

when multiple faults are considered possible, is also discussed.

In chapter 8 conclusions are drawn and the results discussed. Implications, 

limitations and improvements which could be made when using this approach to 

detect and diagnose faults in real systems, on-line, in real-time are highlighted.
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Literature Survey.

This chapter is divided up into five sections; these relate roughly to the different areas 

which have been involved during the development of this project. These sections are 

Fault Detection, Fault Diagnosis, Modelling, Application Examples and 

Constraint Propagation.

2.1 Fault D etection

Fault Detection is the method by which the presence of a fault is detected; we are 

not trying to find the nature of a fault, but rather is there one or isn’t there one. As 

the demands for quality, reliability and safety have increased, so has the need for the 

improved detection of faults. The cost of a fault going undetected can be immense 

when consideration is given to the possible waste of the materials used by a process, 

the delay caused to production, possible damage to the process plant and of course 

danger to the operators and the environment. A great deal of work has been done 

over the years, looking at different approaches and methods to improve fault detection 

techniques. The most popular approach is based on using one or more models of the 

system [55], these can be either quantitative [21] [27] [41] [48] [76] or qualitative [4]

7
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[16] [17] [18]. Work has also been done using expert/knowledge based systems [15] 

[65], and the advantages of modelling the system with hierarchies has been looked 

into [80].

The major objectives of this work have been

1. making the detection of faults as accurate as possible, i.e. reducing false alarms 

to a minimum but at the same time trying to avoid ignoring any genuine faults;

2. reducing to a minimum the time between the actual occurrence of a fault in a 

system, and its detection by the system monitor;

3. investigating the significance of system noise and model uncertainty on the 

points 1 and 2 [13] [14].

Points 1 and 2 compete with each other in that, if the detection time is reduced 

to a minimum, then there is less information about the faulty system upon which to 

base a decision about the presence of a fault. This means the chances of producing 

a false alarm are increased, and also the possibilities of missing a genuine fault 

are heightened. The third point is encountered when a fault detection schema is 

implemented on a real system. It results in less accurate and delayed detection of 

faults which counters the objectives of points 1 and 2.

The area of fault detection/diagnosis overlaps with that of model validation in 

that fault detection assumes the plant is incorrect and model validation assumes the 

model is incorrect. Both of these areas use a system and a model of that system. 

They attem pt to find out if there are any significant differences (fault detection) and 

if so, what the differences (fault diagnosis) [29] are.

Details of the development of fault detection can be found in the survey papers 

by Wilsky [78] and Isermann [41].
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2.2 Fault Diagnosis

9

Fault Diagnosis is concerned with finding what the cause of a fault is, i.e. what has 

gone wrong and how it has gone wrong. The work in this area can be divided up into 

a number of sections and each of these is described below.

2.2.1 Fundam ental Fault D iagnosis

Important work on the generic diagnosis of faults has been carried out by de Kleer 

and Williams [10] [11], and, Peng and Reggia [66] and a general theory of diagnosis 

without reference to domain or nature of faults has been developed by Reiter [68]. 

The work by Davis [7] was also an important step in the development of this theory.

This theory is based on the systems ability take a number of observations 1. Using 

these observations of how the system is behaving, a comparison is then made with how 

the system should be behaving according to the model. Various hypotheses axe then 

tested by simulating faults in the model to find one or more hypotheses which match 

the observations. This part is dependent upon the domain in which the diagnosis is 

being undertaken2. A set of rules is then followed to find the most likely hypotheses.

Survey papers on the diagnosis of faults specifically in dynamic systems have been 

written by Frank [19] and Mironovski [59]. Some important practical aspects of fault 

diagnosis have still to be fully addressed. For example, how to cope with system 

noise, how to deal with inaccurate system models (a system model can never be 

100% accurate) and how to diagnose in real time without using a super computer 

for the analysis. Diagnosis methods are appearing [62] [1] which are based upon or

contain aspects closely related to Reiters’ theory of diagnosis. One of the arguments

XA measurement taken from all the sensors on the system at the same instant of time is termed 
as one observation.

2The implementation of this for simple logic and electrical circuits is relatively straight forward. 
For dynamic systems, however, it is much more difficult.
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he puts forward is that when additional observations are considered, it is possible to 

prune the set of possible hypotheses according to system observations which are not 

consistent with a particular hypothesis. This is true unless the inconsistencies are 

due to noise on the system measurement or modelling inaccuracies, in which case a 

correct diagnosis may just have been pruned.

2.2.2 Q uantitative m ethods based on Structure  

and Function

These methods are based on a mathematical model of the system. The model is in the 

form of a series of inter-connected subsystems, each one containing a mathematical 

description of its own behaviour. Each subsystem should, ideally, represent some part 

of the real system, e.g. a pipe, a tank, a resistor, an axle. The structure of the model 

is defined by how these components are connected, and the function of the system 

is the result of the individual component functions, combined with the structure of 

the system. Here analytical redundancy is used to provide the information needed to 

locate the fault.

The methods generally consist of either using a model and attem pting to determine 

which areas of the model no longer match the corresponding area of the real system 

(thereby locating the fault) [7] [8] [75] , or using a number of different models of 

the system, each one corresponding to a specific fault [37] [27] (in essence, a series 

of individual fault observers). The observer which matches the systems behaviour is 

deemed to be the one which describes the fault. There is quite a lot of overlap between 

these two methods as they are both working on the same underlying principle that 

most of the system is working, i.e. most of the model of the system is correct, 

and only part of it is malfunctioning. Model based methods can use some form of 

parameter estimation [25] to assist in finding which component is faulty and evaluating
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a parameter which will describe the new behaviour of the failed component [79] [30] 

[31].

A very useful summary and introduction to some different methods of fault 

diagnosis together with application examples and results can be found in [63].

2.2.3 Q ualitative m ethods based on Structure and Function

The models used in these are the same as the ones used in quantitative methods except 

the description of each subsystem is not described by a mathematical relationship but 

rather as a qualitative relationship. Real values measured from the system are put 

into ranges and each range is then given a qualitative value. These qualitative ranges 

of values are then used throughout the model. For example, if a valve is considered 

which had a positional sensor giving readings of 0 to 100%, it might be encoded thus 

as shown in table 2.1.

Range of measured value (%) Qualitative value
0 - 5 Closed
5 - 25 Just _Open
25-75 Halfway-Open
75 -100 Fully_Open

Table 2.1: Converting real values to ranges.

The behaviour of the valve may then be described by a set of qualitative rules 

such as :-

IF  (Valve = Closed) T H E N  Flow = No-flow

IF  (Valve = Fully.Open AND Pressure = High) T H E N  Flow = Large

IF  (Valve = FullyJOpen AND Pressure — Medium) T H E N  Flow = Medium

IF  (Valve = Hal f  way .open AND Pressure = High) T H E N  Flow = Medium

etc

These qualitative relations can also be applied to the system states and the rates 

of change of signals within the system.
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Such a system model can be in a number of qualitative states, and when in 

any one particular state, rules can be generated which determine which states the 

system might move to next. These rules are derived from the functions of time 

which describe the systems behaviour. These rules together with temporal qualitative 

system simulation[74] are making qualitative detection and diagnosis more and more 

usable in practical situations.

This approach has had success in cases where the speed of a diagnosis is not of 

great importance,3 or where the possibility of a multiple fault is significant, i.e. a 

number of faults occurring simultaneously, and when an accurate evaluation of the 

size of the fault is not required [12]. That is, the location of the fault is found, but its 

size cannot always be accurately determined. Qualitative methods may be helpful in 

the case of multiple faults because of the comparatively large amount of processing 

required by quantitative methods when considering the many possible combinations of 

multiple faults. This method, when compared to quantitative methods, is in general, 

less accurate, but is computationally less demanding and can generally cope with a 

larger range of systems.

One feature which seems to appear often in qualitative diagnosis systems is the 

relatively high number of sensors attached to the system being monitored[12] [62]. It 

would appear that qualitative models/simulations suffer quite badly when the number 

of components is large and the number of sensors is small, i.e. qualitative signals have 

to pass through a number of components.

There has also been work done on using both qualitative and quantitative methods 

to describe the system and model it’s behaviour [21].

3The diagnosis process can often not begin until significant transients are present.
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2.2.4 E xpert system s

An area which has recently received attention is the use of expert system/rule based 

method for diagnosis [18] [61] [65]. Here, a list of rules or facts are entered about 

how the system behaves when faults occur. When a fault occurs, facts which are 

proved to be true or false are used to prove or disprove other facts, and a chain 

effect occurs where the expert system starts deducing the state of the system and 

what faults are likely to have occurred. The problem with this method is that the 

rule base must be complete and, as with methods such as fault tree analysis, it can 

only diagnose a problem which has been specifically represented in the rule base. A 

further problem is the structuring of the information in the knowledge base; this is 

often haphazard and quickly becomes confusing and difficult to manage when the 

system being diagnosed starts to become complicated. These kind of methods can 

work well with small systems, but can only work with larger system after a great deal 

of careful work has been done to represent the systems’ behaviour in the rule base. 

Work has been done to incorporate how components and systems function as well as 

experiential information [15]; this is still heavily system dependent and still requires 

a large effort to correctly fill the rule base.

2.2.5 O ther Approaches

A number of other methods have also been applied to the fault diagnosis area; these 

include algorithmic approaches [72] [47], neural networks [77], hueristic learning [65] 

and hierarchical fault diagnosis [36].

2.2.6 M ultip le faults

Work has been done in this area at a fundamental level [11] [10] [68], but practical 

implementations and examples are few. Here, the principle is the same as for a single
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fault except that more use is made of redundant information, usually in the form of 

having more sensors on the system. In dynamic systems, more information can also 

be gained by considering the dynamic behaviour of components within the system.

2.3 M odelling

An important aspect of all fault detection and diagnosis implementations is how the 

system is to be represented/modelled. This is important for two reasons. Firstly, 

the model has to be produced either from already existing documentation or from 

someone who either knows the system well or has specifically studied the system for 

the purpose of fault diagnosis. Secondly, the modelling technique used should be 

capable of containing all the information necessary for fault detection and diagnosis. 

The appropriate method will depend, to some degree, on the domain in which the 

fault analysis is to be performed. The representation language used for a digital 

electronic system and a process plant must model substantially different types of 

information and behaviours, it would therefore be unlikely that the same language of 

representation would be used for both of these different domains.

Broadly speaking, there are three main approaches which are being used in fault

detection/diagnosis; these are expert systems, qualitative analysis and quantitative

analysis. Each of these have different merits which depend upon the size of the system,

its complexity (both physically and mathematically) and the sensitivity and accuracy

required for the detection and diagnosis of faults. There are four main aspects

of models which are commonly used for modelling, these are structure, behaviour,

causality and purpose [20]. Qualitative and quantitative analysis axe both based

upon models of system structure; its’ behaviour4 and often at least some aspects

of causality. Expert systems are based more upon behaviour, purpose and again

4Qualitative analysis uses a more lose description of behaviour than quantitative analysis.
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often some aspects of causality. The choice of which model description is best to use 

depends upon which diagnosis scheme is employed and also the domain of the system 

which is studied. Discussions on the issues raised here can be found in [1], [20], [46], 

[21] and [5].

Alternatively a model of the system may consist of all of the system equations 

lumped together. This may start off as individual component equations joined 

together according to the structure of the system, or it may be an equation which 

approximately matches the behaviour of the system. The latter requires that the 

parameters in the equation be identified which results in a lumped system description 

with lumped parameters. Such a model has been effectively used in [2] for diagnosing 

damage to offshore structures and rotating machines.

The approach adopted here is to use bond graphs as the base representation 

language. A thorough introduction to bond graphs can be found in [45], [44] and 

more recent developments in [28].

2.4 A pplication Exam ples

Failure detection and diagnosis methodologies have been implemented and tested 

in many real life situations. For instance, [40] [57] [56] use fault tree analysis to 

identify faults in machine tools, Leary [51] uses constraint suspension techniques in a 

laboratory simulation of liquid process equipment, a multiple model/observer method 

is used in [55] for identifying faults in a experimental heat exchanger, an example 

applied to the loading of liquid oxygen is given in [70], analytical redundancy applied 

to aerospace space systems is explored in [64].



CHAPTER 2. LITERATURE SURVEY.

2.5 Constraint propagation.
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Constraint propagation is one method which can be used for deducing the value 

of signals which are not measured. These deduced signals can then be used for 

further deduction. This has been a recently rapid growing area, originating from the 

artificial intelligence community. Using constraint propagation in this area is basically 

a formalism for passing signals around a component model of a system. Problems 

were encountered where loops such as feedback occurred in the model but, for many 

cases, this has been overcome using simultaneous constraint satisfaction facilities such 

as those used in the constraint programming language CLP(9£)5 [42] [43] [49] [50] [39]. 

Development and investigations of constraint propagation/satisfaction/suspension 

can be found in [38] [3] [54] [6]. Constraint propagation techniques have been applied 

in many domains where there is a problem to be solved [58] [50] [43]. These ideas 

have been applied in a theoretical sense to fault diagnosis [36] [8] [7] but it is not until 

recently that these ideas have been applied to dynamic systems [51] [52] [27].

5Constraint Logic Programming in Real Number



C hapter 3 

Background Theory and  

Principles.

In this chapter some of the theory and principles upon which this work is based will 

be discussed. The limitations and disadvantages in some of the current methods will 

also be shown, these will be addressed, later, together with possible solutions.

The fundamental principles involved in constraint propagation will be looked at 

in detail and the use of constraint satisfaction to assist in detecting the occurrence of 

a fault and the use of constraint suspension techniques to help locate the fault and 

determine its size (diagnose a fault) will be examined.

Noise on the measurements taken from the system will adversely affect the ability 

of any diagnosis system. The effects of noise will be looked at briefly here, and it will 

be noted that the presence of noise cannot be ignored. Finally a brief look will be 

taken at the implications of considering the possibility that more than one component 

has failed. This area will be discussed fully in chapter 6, but one should be aware of 

some of the implications from the outset.

17
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The fault detection and diagnosis method which is presented here is based on the 

structure of the system and the function of the components [7] [8]. That is, the 

parameters of the system are not lumped together to give a compact model of the 

systems characteristics. The structure (or topology) of the system is represented,

i.e. how the different components which make up the system are connected, and the 

function of each component is explicitly represented. The overall behaviour of the 

system is then obtained by considering how all the components interact. Use will also 

be made of the causal relationships between the diiferent components which make up 

the system.

If it were possible to measure every signal on the real system, then the detection 

of faults and their diagnosis would be relatively trivial. Since sensors are expensive to 

purchase, install and maintain, and often the signals of interest cannot be measured, it 

is necessary to use models of systems and analyse these using just a few measurements 

from the real system. These measurements are then extrapolated through the model 

of the system and used to try to determine the value of signals that cannot be 

measured. By looking at these extrapolated signals, and the expected values of the 

signals, given the system inputs, one can hopefully detect the presence of a fault and 

then find its location and size.

The way the system is modelled is very important. It is necessary to break the 

system down into components or subsystems (function), and also clearly define how 

these are connected together (structure). As an example, consider figure 3.1, which 

shows an electrical resistor and capacitor in series with a voltage source. Here, the 

way in which the wires connect the components is the structure, and the way in which 

the components behave is the function; together they represent the system. Table 3.1 

shows these separate parts which make up the system. It is possible to break up
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virtually all physical systems into component subsystems and to define a structure 

which represents the interconnection of the components. For example a fluid system 

could be broken up into tanks and valves connected by pipes, or a mechanical system 

into springs and masses connected by links.

Figure 3.1: A schematic of an R-C circuit.

Structure Function
IR  ~  I c  ~  I  source

V  +  VR + VC =  0 Vc  =  h > < P c d t

Table 3.1: The structure and function of the R-C circuit.

Many systems are some combination of mechanical, electrical, hydraulic or 

thermodynamic systems. To enable these multi-domain systems to be handled in 

a uniform way, bond graphs have been utilised to provide a method of modelling 

them [45] [32], This method is versatile, powerful and easy to use. It is certainly not 

possible to give full details of bond graphs here, but some of their features will be 

discussed later to help clarify the fault analysis procedures.

3.2 Bond Graphs

The bond graph for the R-C circuit in figure 3.1 is shown in figure 3.2. Note that the 

structural part has a different representation, but the components can still be seen. 

This is because a bond graph represents the flow of energy through the system, each 

bond carries energy from a component at one end to the component at the other end,
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in the direction of the half arrow — As a further example, a bond graph of a dc 

motor is shown in figure 3.3; this also gives an indication of the different parts of the 

system. A dc motor converts electrical energy into mechanical energy and it therefore 

covers two domains, but the bond graph technique allows these different domains to 

be modelled in the same fashion and therefore relieves us of the burden of having to 

interpret models from different domains in different ways.

C
N

_lz

Figure 3.2: A bond graph of an R-C circuit.

GY:m

This component gives 
the conversion from 
electrical energy to 
mechanical energy.

This area represents the 
electrical part of the motor. 
I:la is the inductance.
R:ra is the resistance.
S:v is the voltage source. 
Isa indicates that all of the 

components have the 
same current.

Here we have 
a measurement 
of the speed of 
the motor.

This area shows the 
mechanical components.
I:jm is the moment of inertia. 
R:cm is the bearing friction. 
l:s indicates that the components 

are all subject to the same 
speed (rad/s).

Figure 3.3: A bond graph of a DC motor.

Another aspect of bond graphs is their easy extensibility. Consider a system of a 

dc motor driving a pulley which lifts a weight. All that is needed is to get a bond
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graph for a pulley and weight and simply connect it with a bond to the rotor part 

of the motor. This is in marked contrast to the block diagram way of doing things, 

which would need a completely new analysis of the system and re-drawing of the 

system model. There are a number of tools which have been developed to manipulate 

bond graphs [28]. These take a drawing of a bond graph as input and are then able 

to analyse the system in a number of different ways.

3.2.1 Signals

Each bond on the bond graph represents the flow of energy in the direction indicated 

by the half arrow. Each bond has two variables associated with it, one of type effort, 

and one of type flow. The nature of the effort and flow variables changes depending 

upon which domain they are in, but in all cases, the product of the effort and flow 

variables is power. In the electrical domain, the effort variable is voltage and the 

flow is current, their product being power. Below, table3.2 shows the effort and flow 

variables for some other domains.

Domain Effort Flow
Electrical
Mechanics
Hydraulics

Thermodynamics

Voltage
Force

Pressure
Temperature

Current 
Velocity 

Volumetric flow 
Entropy flow

Table 3.2: Some effort and flow variables for different domains.

These signals can be thought of as the inputs and outputs of components. For 

example with an electrical resistor, it will be connected to a bond and the bond will 

be associated with a voltage and a current. In this case the voltage is the voltage 

across the resistor and the current is the current flowing through it. The product of 

these two is the power which the resistor is dissipating. If I  is know then it is possible 

to say V  =  I .R ,  conversely if V  is known then I  = Y  Exactly which of these to use 

is decided by assigning causality to the systems components i.e. which components
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cause signals to change and which components are affected by this, causality is too 

complex an issue to go into here, but it is possible to assign causality automatically. 

Causality is represented on a bond graph by the short perpendicular strokes at the 

end of bonds.

3.2.2 Com ponents

There are four basic types'of components which are'used to construct bond graph 

models. These are Sources, Dissipators, Stores and Transfer components. Each of 

these will now be discussed in relation to fault analysis.

Sources. These components source either the effort or the flow variable on the bond 

that they are connected to. They also sink the co-variable which isn’t sourced. 

An example may be an ideal battery, a fixed voltage appears across the battery 

and it will provide a varying current depending on the load that it is connected 

to. These are used to represent system inputs, and are not strictly part of 

the system, but represent an interface with the outside world. For this reason, 

detecting faults that arise from these components will not be looked at. If it 

is necessary to detect and diagnose faults in the interfaces of the system, then 

these also have to be explicitly modelled as part of the system.

Dissipators. These components absorb energy from the system. In their simplest 

form the component consists of one parameter which is a constant of proportion­

ality between the effort and flow variables on the bond that it is connected to. 

An example of this is an electrical resistor, V = I .R  where R  is the constant. Of 

course, the relationship need not be linear; for instance the flow through a pipe,

Flow = Cpy/Pressure difference , can also be represented by a dissipator. A 

fault in this kind of component can be modelled as a change in the component’s 

parameter; e.g. if the resistor burns out, gets broken or gets shorted, the result
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is effectively a change in its resistance, as seen by the rest of the system. De­

tecting and diagnosing faults of this nature in these components will be looked 

at.

Stores. These components accumulate either the effort or flow variable. An example 

of a flow store is a capacitor, it stores current. An inductor on the other hand 

stores voltage and is an example of an effort store1. These represent the states of 

the system. They have a parameter associated with them which represents their 

physical coefficient, eg capacitance; inductance; for a water tank, cross sectional 

area; for a rotating mass, its moment of inertia. Faults in these components can 

be detected and diagnosed in a conceptually similar way to dissipators, except 

that the value of the state has also to be estimated. This will be discussed later.

Transfer components. These are usually used to convert energy from one domain 

into another. They are connected to two bonds, one from either domain. They 

do not store or dissipate energy, they just convert it into a different domain. 

They usually have one parameter associated with them which is a proportional 

constant, but they contain two relations. An example of this appeared in the 

diagram of a dc motor earlier. Here component GY converts the current into a 

torque (Torque =  M  x Current), and also converts the velocity of the rotor into 

a back emf (E m f  =  M  xVelocity), where M  is the parameter of the component. 

Again, faults in these components are found in a similar way to dissipators, 

except that there are two relations which depend on the same parameter. This 

will be discussed later.

These are the basic components needed to model a system, the actual relationship 

that any particular component contains is not constrained from a bond graph theory

1By convention an effort store is represented with an T  and a flow store is represented with a 
‘C’ on a bond graph.
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point of view, but the more complex the relation is, the harder it is to analyse. The 

condition that all component relations must be linear is not imposed. However, if the 

relationships are too complex then the system equations cannot be solved in the form 

that is required, and therefore it will not be possible to carry out as full a diagnosis 

as would have been preferred. It should be noted however that this situation can be 

helped by using additional sensors on the system, i.e. having more information about 

the,internal behaviour,of,the system., , , , .....................................................................

3.2.3 Structure

The structure of the system is represented by the bonds which join components 

together, and by the ‘O’ and ‘1’junctions. These junctions define whether components 

are connected in parallel or in series. Each junction contains two constraints.

For the ‘O’ junction, the constraints are:-

1. All of the effort variables on the bonds connected to it must be equal.

2. All of the flow variable on the bond connected to it must sum to zero.

For the ‘1’ junction, the constraints are:-

1. All of the flow variables on the bonds connected to it must be equal.

2. All of the effort variable on the bond connected to it must sum to zero.

Looking back to figure 3.2, a ‘1’ junction can be seen. In the electrical domain, 

the flow variable is current and the effort variable if voltage. This junction states that 

the current (flow) on each component is the same and the sum of the voltages is zero,

i.e. the components are in series. If a ‘O’ junction was used, then the result would be 

a voltage source in parallel with a resistor which was in parallel with a capacitor.
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3.3 Constraint Propagation and Suspension.

Constraint propagation techniques can be used with any system which can be 

represented as a number of inter-connected components, and has typically been used 

for the analysis of electrical circuits. The possible uses of constraint propagation are, 

however, much wider than this, it could also be used to look at mechanical systems, 

economic systems, qualitative system descriptions of industrial processes or models 

of social systems.

Firstly the basic concept of constraint propagation and suspension is introduced, 

two examples will then be used to demonstrate how these techniques can be used for 

simple simulation and fault analysis of non-noisy, non-dynamic systems.

3.4 Constraint Propagation and Fault D etection

3.4.1 Constraint Propagation

Constraint propagation is the term used to describe the method by which the values 

of signals in a model are found, which are not measured from the system. So, for 

example using a simple one input, one output system, one may wish to measure the 

input to the system and then propagate the effect of this value through a model of 

the system and predict what the output should be. Consider the simple system in 

figure 3.4.

A
IN

B C
x2 x3

D
-► OUT

Component i. Component ii.

Figure 3.4: A simple 1-input 1-output system.
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The system consists of two components i and ii which are both multiplying 

components, but they have different parameters, namely 2 and 3 respectively. The 

value of the input, A is multiplied by 2 giving B, which is then multiplied by 3 to give 

D, the output. This demonstrates in a simplistic way what constraint propagation 

is. The two components are constraints, and in addition, the input to component i is 

constrained to have the same value as the input to the system, the input to component 

ii is constrained to take the same value as the 'output from component * and finally, 

the output from the system is constrained to have the same value as the output from 

component ii.

Propagation is carried out as follows. Firstly the input to the system has been 

measured, suppose it has the value 4. Now look through the constraints to see what 

this tells us about the other values of signals in the system. All that can be done at 

this time is say that A is equal to 4. The process is then repeated using this new 

information leading to B is equal to 8, by using component i as the constraint, this 

leads to C also taking the value of 8, by the constraint iB  =  C \  Next, the component 

ii is used as the constraint to give D equal to 24, and finally the output takes the 

value 24.

This may seem a long winded description, but it is necessary to be fully aware 

of all the steps that are carried in propagating signals through the constraints of the 

system.

Other examples of similar system analysis can be found in [8], [36], [50] and [39].

3.4.2 Fault D etection

Suppose, in the example above, that the value of the output from the system was 

also measured. Comparing this measured value, with the value just obtained from 

propagating the measured value of the input through the model, gives us a way of
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determining whether or not the system is behaving correctly. (If the values are the 

same, the system is functioning correctly, otherwise something has gone wrong). This 

is one way in which a fault can be detected.

Alternatively, the measured value of the system output could be taken and 

propagated backwards through the model to arrive at a value of what the input 

should be, for the measured output to be correct. This could then be compared with 

the measured input., Again,, if,they are the same there,is no fault, if they are different, 

then there is a fault.

As a final alternative, the input and the output could be measured. The next 

step is then to propagate the input forwards through the model and at the same time 

propagate the output backwards through the model. This way there will be two ways 

of calculating one of the signals inside the system, for example, C  =  2 x input, but 

also C  =  output -f- 3. Again, if these are equal there is no fault otherwise there is a 

fault.

This is a simple method for simple systems of finding out whether the system is 

behaving correctly and can be summarised as follows.

1/ all of the constraints of the system can be satisfied, then the system is functioning 

correctly and there is no fault. This was demonstrated for simple, non-noisy systems 

by Gawthrop and Leary [52],[51] using constraint propagation techniques, others 

have also found this to be true, although without explicate reference to constraint 

propagation. These include Davis et al [8], Genesereth [36] and Yung and Clarke 

[80].
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3.5 Constraint Suspension and Fault Diagnosis

3.5.1 Constraint Suspension

Constraint suspension is a method of selectively relaxing constraints within a system. 

It is a useful method in fault diagnosis, used after a fault has been detected. This is 

now explained.

' If it isr possible to  determine all of thfe Signals within' a system with one or 

more components suspended, then it will be possible to deduce the behaviour of 

the suspended components without reference to their previously assumed behaviour.

This new behaviour is consistent with this observation of the system. If the 

deduced behaviour of the components are different from their defined behaviour, then 

one may say that the fault within the system can be explained by these components 

changing their behaviour.

An observation of a system is a set of measurements taken from the system at 

one instance of time. If the behaviour of the component has been deduced from 

just one observation, then further observations are needed which corroborates the 

deduced behaviour from the first observation. Then one can say with confidence that 

a fault in these components will explain the fault in the system, although it must be 

noted that this may not be the only explanation of the fault. Because of the nature 

of system structures and measurement locations on a particular system, it is often 

possible to arrive at more than one valid explanation of an observed fault, as will be 

shown shortly.

3.5.2 Fault D iagnosis

To diagnose faults, and in particular to deal with the possibility that more than one 

component has simultaneously failed, advantage will be taken of the work done by
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Reiter with his theory of diagnosis [68]. To do this it is necessary to ascertain whether 

one or more components, when considered to be faulty, would make the rest of the 

components appear to be behaving correctly. This will now be demonstrated for 

simple systems, and this topic will be returned to later with more ‘realistic’ systems.

Consider the example from the previous section, shown again in figure 3.5. If 

the input was measured as having the value 4, and the output was measured having 

value 32. then this does not agree with ,the expected behaviour of the system so one 

can say that there is a fault in the system. From the input, propagation can take 

place through the constraints to C. C can then be given the value of 8. Similarly 

propagation can take place from the output to D. D then equals 32. Looking now 

only at component ii, the situation is as shown in figure 3.6. It can be seen that the 

values of 8 and 32 can be made consistent by giving component ii, the relation x4.

A
IN  • ------ -

Component i. Component ii.

Figure 3.5: A simple 1-input 1-output system, Component ii is suspended.

B C D
x2 ( r •

D
OUT

?
Component ii.

Figure 3.6: Component ii.

This assumes of course that component ii is behaving as a multiplying component, 

that is, it is still behaving in the same manner as before, but the value of its parameter 

has changed from 3 to 4. In general, this will be the case for the type of systems that
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are concentrated upon here; the failure of a component will be assumed to result in 

only the components parameter changing. For example, if a resistor fails, it would be 

very surprising if it suddenly started behaving as a capacitor.

In figure 3.5 it would also be possible to suspend component i, propagate signals 

to either side of it and say that the fault can also be described by the parameter of 

component i changing from 2 to 2 |.  In this case, there are two solutions to the fault 

observed in the system; the parameter of either component i or ii has changed and in 

this case it is impossible to differentiate between these two possibilities and so both 

are valid diagnoses of the fault.

It is also possible for both of the components to be faulty, for example if the 

parameter of component i had the value 1, and that of component it had the value 8, 

the observed measurements would again be obtained. It is always possible to expand 

a fault hypothesis in this way but it does not help us in the quest for the true fault 

unless more information is available which can be used to verified this. If the value 

of either B or C could be measured, more information would be present and it would 

be possible to find out which component was the faulty one, or indeed if both were 

faulty.

The reasoning method for multiple fault combinations is described later, but the 

basic principle for how a fault is diagnosed should be clear. In summary, a component 

is suspended (i.e. do not use its constitutive relationship), and all the other signals in 

the system are found. This will give values on either side of the suspended component, 

and from these values it is possible to find a value for the components parameter which 

makes the signals consistent. If this is repeated with a different set of data, and the 

same value of the components’ parameter is produced, then it is safe to say that a 

fault in this component would explain the fault in the system.

This is a simplistic way of testing a diagnosis and leaves many questions
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unanswered. These will be addressed further on, but it is important to understand 

the basic methodology before moving on to discuss some of the more complex issues 

which arise.

In some applications, it is enough to simply show that when a component is 

suspended, and all of the remaining constraints are satisfied, then that component 

can be considered to be the cause of the fault in the system both in single fault analysis 

[8], [35], [36] and in multiple simultaneous fault conditions [11]. However, with noisy, 

dynamic systems, using quantitative analysis with a limited number of sensors on the 

system means that, not only is it necessary to show that rest of the constraints are 

consistent, but also that the estimated parameters for suspended component(s) are 

constant, before the cause of a fault can be attributed to any particular component. 

This will be apparent later, but first some of the issues which are common to all types 

of systems will be examined.

In the following sections, some of these issues will be introduced with examples 

which will demonstrate more about constraint propagation/suspension. Some of the 

problems which occur when considering more complex and more ‘realistic’ systems 

will be pointed out.

3.6 Binary system s.

This is an example using a circuit for a full adder which Reiter used to demonstrate 

his theory of diagnosis [68]. The inputs and outputs are allowed to adopt one of 

two values, either 0 or 1. It will be used here to demonstrate some of the logical 

considerations of fault diagnosis. The circuit is shown in figure 3.7.

A full adder is used for adding two single binary digits and a carry digit, the result 

is one digit for the result of the addition, plus a carry digit if the result was more 

than 1. XI and X2 are Exclusive-OR gates, A1 and A2 are AND gates, and 01 is
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1
0 X2

1 A2

A1

Figure 3.7: Example using a logical full adder.

an OR gate. A, B and C are the inputs to the adder (C is the carry), D and E axe 

the outputs (E is the output carry). The numbers in brackets are the values that the 

outputs from the gates should be if the circuit is working correctly and is subjected 

to the inputs shown. The values not in brackets are measured values. As can be seen, 

the circuit is at fault, but what is the fault?

Using the constraint propagation/suspension techniques described above, this 

circuit will be analysed to highlight some of the logical aspects of fault diagnosis 

and some short comings of constraint propagation/suspension as described so far.

Firstly, let us suspend a component and see what happens. Figure 3.8 shows the 

circuit with component 01 suspended. The arrow heads on the lines connecting the 

components shows the direction in which signals are propagated. It is assumed that 

signals do arrive on the inputs and outputs of the suspended component so these 

could be examined to see if a new behaviour for 01 can be determined which explains 

the observations. Before this is done though, all of the signals need to be checked 

for consistency. Looking at the output of XI, it can be seen that if the signals from 

its inputs are propagated to its output, the value 1 is obtained. Propagating the
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Note: These signals
are not consistent.

1
0

1 A2

01A1

Figure 3.8: A Full Adder with 01 suspended.

measurements from C and D going through X2, the value 0 is obtained for its other 

input. Clearly 1 does not equal 0, so the signals are not consistent. This means that 

a fault in 01 alone cannot explain the observations no-matter how it is behaving!

1
0

(1) D
X2

1 A2

(0) E
A1

Figure 3.9: A Full Adder with X2, A2 and A1 suspended.

Now let us look at another example, this time three components will be suspended 

simultaneously. X2, A2 and A1 will be suspended. This is called, at this stage, a



CHAPTER 3. BACKGROUND THEORY AND PRINCIPLES. 34

multiple fault hypothesis, if it can be shown that all these three components are 

faulty this will then be a multiple fault diagnosis. Hypotheses and diagnoses will be 

represented as a list of components in braces. In this case the hypothesis considered 

was {X2, A2, Al}.

This situation is shown in figure 3.9. Signals can be propagated all around the 

system without conflict and therefore this observation {X2, A2, Al} is a diagnosis. 

The question that arises though is “Is this going too far?” If all the components were 

suspended one would also get a correct diagnosis. As was pointed out earlier it is 

always possible to expand a correct diagnosis and obtain another correct diagnosis 

which is basically a superset of the first one. Is the diagnosis {X2, A2, Al} an 

expansion of a smaller diagnosis? Note also the two inputs to component 01, these 

are both zero because of the nature of the OR gate and its output is known to be 

zero. If the output was 1, it would not have been possible to know if the inputs were 

(1,1), (1,0) or (0,1). This does not affect making the diagnosis in this case but it 

could affect identifying the new behaviours of the components which were considered 

to be faulty.

Figure 3.10 shows the full adder with X2 and A2 suspended. The hypothesis 

is {X2, A2}. This can also be seen to be consistent. {X2, A2} is a subset of 

{X2, A2, Al}, therefore {X2, A2, Al} should be discarded and {X2, A2} used instead 

as a correct diagnosis.

Finally figure 3.11 shows the full adder with XI suspended, this is also a correct 

diagnosis but is not a subset of {X2, A2, Al}. There are now two equally correct 

diagnoses and there is no way to differentiate between them with the information 

obtained from this one observation. There is a third diagnosis which is also correct, 

{X2, 02}. There are in total three diagnoses which are all correct and are not 

supersets of any other diagnoses.
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1
0

XI

A l

Figure 3.10: A Full Adder with X2 and A2 suspended.

1
0

XI

1 A2

Al

Consistent signals 
meet here. '

Figure 3.11: A Full Adder with XI suspended.
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There are a number of points that should be noted from the above example.

1. A diagnosis is only minimal if no proper subset of it is also a diagnosis.

2. It is possible to get more than one diagnosis which is a correct diagnosis.

3. When the possibility of multiple faults is allowed, there are many hypotheses 

which need to be handled.

4. A haphazard approach to testing hypotheses is clearly not practicable when 

considering larger systems and real-time diagnosis.

Here, some of the fundamental aspects of fault diagnosis have been demonstrated. 

The four points highlighted above are common to systems in all domains, however it 

is rarely as straight forward as in a system which deals only with binary numbers. 

When dealing with real numbers it is not always simple or indeed possible to propagate 

signals backward through components. If the system contains feedback loops then the 

ability to solve constraints simultaneously is required, and if the signals contain noise 

then the signals will never be exactly consistent and other, more involved methods to 

check hypotheses will be needed. In the remainder of this chapter, the implications 

of using real numbers will be considered, a brief look at non-linear components will 

be taken and then the effects of noise and how to cope with it will be explored. An 

introduction to reasoning about multiple faults will also be given. Noise, non-linear 

components and dynamic components (components whose output is a function of 

past inputs) will be examined in more detail in the next chapter.

3.7 N on-D ynam ic system s.

Here, two examples will be given to demonstrate some aspects and problems when 

considering systems which use real numbers. Firstly it will be shown how more
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observations of a faulty system can be used to narrow the number of correct 

hypotheses, and how estimates of component parameters are used to do this. 

Secondly, it will be shown with a similar example how more observations can also 

confuse matters and how the introduction of some types of non-linear components 

can increase the number of hypotheses as well as increasing the complexity of 

computation. Similar examples of non-dynamic noise-free systems can be found in 

[10] [11] [8] [36],

From here onwards, components which do not have any parameters will be 

regarded as part of the structure of the system rather than as a component in which a 

fault could develop. This is because, if this component were to fail then its constitutive 

relationship would be fundamentally different, and the component could behave in a 

whole host of undetermined ways. This would leave us with the problem of trying to 

match relationships and parameters to the fault and this is equivalent to identifying 

a fault in the system structure which is much more difficult.

However, it is possible to identify limited failures in the system structure. This can 

be done by adding additional components to the system with parameters that prevent 

it from having any influence during normal running but allow for the possibility of 

a fault developing later. For example, if the system is an electrical circuit, and it is 

desired that the possibility of a short between two wires should be included, then it 

can be done by connecting a resistor component between the two wires and setting 

its resistance to a very high value. If a short then develops, it can be identified by 

representing it as a change in the value of the resistors parameter from very high to 

zero. Alternatively, if one wished to model the possibility of a hole developing in a 

pipe containing fluid, then this can be modelled as a Tee junction where the pipe 

coming off consists of an open ended pipe to the surroundings with a diameter of 

zero. If a leak does occur then this can be represented as a change in the parameter
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from zero to some positive value which reflects the size of the hole.

Components with parameters will be regarded as having fixed functions, so that a 

fault in the component will manifests itself as a change in the value of its parameter,

i.e. a component that multiplies by a constant will always multiply by a constant, 

but a fault in the component will cause the value of the constant to change. After a 

fault occurs it will be assumed that the nature of the fault remains constant, i.e. the 

new value of the parameters in any faulty components do not fluctuate during the 

diagnosis process. Components which have multiple parameters will be modelled as 

a subsystem which contains a number of single parameter components.

3.7.1 Exam ple 1. A System  w ith  Linear C om ponents

1

M1

M2

M1

(10)

M2

(b) H ypothesis 1. Fault in M1.

10

(3 )  Inconsistent observation.
M2

10

M1

(10)
10

(c) H ypothesis 1. Fault in M2.

Figure 3.12: A two component system, the first observation.

Here a system which contains two multiplication components, M l  and M 2, is 

considered. Each of these multiplies its input by the value of its parameters and 

puts the result on its output. Before a fault occurs, M l  has the parameter 2, and 

M2  has the parameter 3. In figure 3.12(a) the system with values for inputs and 

outputs which have been measured is shown. It can be seen that there is a fault in
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the system as the output predicted from the systems model is 8, and the measured 

value for the output is 10. There are two components, and in this system a fault 

in either of them would explain the fault. Either the parameter of M l could have 

changed from 2 to 4, (figure 3.12(b)) or the parameter of M2 could have changed 

from 3 to 4 (figure 3.12(c)). Both of these will explain the observed fault, and there 

is no way to determine which is the real fault without further information.

M1

1
M2

x2t
(5)

J
M1

x3 K (8)

M2

( b )  Hypothesis 1. Fault in M1.

8 x2 (4)

M\ + ^

M l

(a) Inconsistent observation.
x4
M2

(c) H ypothesis 1. Fault in M2.

Figure 3.13: A two component system, the second observation.

In figure 3.13(a), the same system is shown, but the inputs have been changed and 

the new value of the output is measured. This observation can again be explained 

by a fault in either of the components. Either the value of M l’s parameter has 

changed from 2 to 2 | (figure 3.13(b)) or M 2’s parameter has changed from 3 to 4 

(figure 3.13(c)). Again, there is no way to tell which one is really faulty. These two 

observations are shown in table 3.3 and when considered together they reveal more 

information. When both observations are considered, it can be seen that they are 

both explained by a change in the value of M 2’s parameter from 3 to 4. That is 

the behaviour from component M2 is the same for both observations. It is therefore 

reasonable to assume that M2 is faulty and has adopted a new value for its parameter.
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Observation Hypothesis 1 Hypothesis 2
Number Fault in M l Fault in M2

(new parameter value) (new parameter value)
1 4 4
2 2-2 4

Table 3.3: Comparing the two observations.

The following points should be noted.

1. Using more observations usually enables us to differentiate between different 

hypotheses.

2. It is necessary to calculate the value of a component’s parameter in order to 

check that the component’s behaviour remains constant.

3. A hypothesis is correct only if it is a valid diagnosis for every observation of the 

faulty system.

3.7.2 Exam ple 2. A  System  w ith  Non-Linear Com ponents.

3
M1

(49)
2

M2

(16) (65)
4

M3

Figure 3.14: An inconsistent observation of the system.
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Here the system in figure 3.14 will be examined. This is similar to the first 

example, except now there are three multiplying components and a square function 

in component 51, output = input2. As can be seen the measured values are not 

consistent, the measured output is 160 and the expected output is 65. In figure 3.15(a) 

one diagnosis is shown, M l = 2 |,  figure 3.15(b) shows another diagnosis, M l = -5 |. 

There are two correct diagnoses for this observation each of which involve the same 

component, but with different parameter values. This is due to propagating signals 

backwards through 51, as 122 = 144 and (—12)2 =  144. This kind of effect is 

very difficult to deal with in practice, especially when the interactions between the 

components becomes more complicated and the signals contain noise. A list of all 

the single fault diagnoses, which are correct from this one observation, is shown in 

table 3.4.

x2| 18)

M1

2 — ► x 2 ?
X

(144)

S1

x4 (16)
(160)

160
M3

M S)
3

M1

2
S1

(160)
(16)x4 160

M3

(a) Diagnosis 1. (b) Diagnosis 2.

Figure 3.15: Two possible diagnoses of the fault.

A second observation is shown in figure 3.16 and a table for all the diagnoses of 

this observation is shown in table 3.5. If these results are examined and compared 

with table 3.4, it is seen that no diagnosis remains the same. All of these diagnoses 

have been eliminated as being the cause of the fault. There are now two choices,
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Diagnosis Component New parameter value
1 M l 2i
2 M l -5§
3 M2 412
4 M2 -712
5 M3 27 f

Table 3.4: All the diagnoses from the first observation.

either give up with the assumption that the fault cannot be identified or take a closer 

look to see what is happening. It is not always possible to identify every fault in the 

system, so the first option is a valid one to make at some stage, but it is too early to 

take it in this case.

M1

(36)

M2

(44)

M3

Figure 3.16: A second inconsistent observation of the system.

Diagnosis Component New parameter value
1 M l 2.6368
2 M l -6.6368
3 M2 3.6368
4 M2 -5.6368
5 M3 29

Table 3.5: All the diagnoses from the second observation.

What these two observations tell us is that the fault cannot be explained by
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a parameter in one of the components changing value. Either the parameter of a 

component is fluctuating, some unmodeled part of the structure has failed or more 

than one component has failed. In this case the latter is true and the correct diagnosis 

is displayed in figure 3.17, both M l and M 3 have failed, the new parameter of M l is 2, 

and the new parameter of M3 is 15.

x2 (6)

M1

x15 (60)

x2 111

M1

2----►x2 J!L J01!2L ?
X

(100)
2— * x2 - £ M g ) 2 U 2

X
(64)

S1
F +

n un S1
1 r +

160 2'
M3

x15 (30)
94

M3

(a) Observation 1. (b) Observation 2.

Figure 3.17: The two observations and the correct multiple component diagnosis of 
the fault.

The points to note are:-

1. components that either give the same output for different inputs or vice versa 

can greatly increase the number of hypotheses and can be difficult to deal with 

in complex noisy systems;

2. as wide a range of faults as possible needs to be considered from the start of 

the diagnosis process. In the example just single fault hypotheses were initially 

considered, when all of these failed to explain the observations it was necessary 

to go back and consider multiple faults. It would be more efficient to be able 

to test the viability of multiple fault hypotheses from the outset;
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3. to test a multiple fault hypothesis it is necessary to identify all the parameters 

of the components in the hypothesis simultaneously. This means that a number 

of observations need to be considered simultaneously in order to have enough 

information to find the parameters simultaneously.

When dealing with some non-linear components, it can sometimes be useful to 

regard one physical component as more than one component in the model of the 

system. Each of these components will now also have a condition associated with 

them. This can be a great help in easing the complexity of the mathematics. In

addition to this one is also made aware from the outset that these components have

different behavioural properties e.g. the behaviour of the component, as well as its 

output, depend upon the value of its input. This arises, for example, if the static 

friction component on a moving object was being modelled, the value of the static 

frictional force depends upon the direction of the velocity of the object, not the size 

of the velocity, e.g.

1. Static Friction —Ci, if Velocity > 0.

2. Static Friction = £ 2, if Velocity < 0.

3. C2 < Static Friction < Ci, if Velocity =  0.

The component x 2 from the previous examples may be implemented as the two 

components

1. output = input2, where input > 0.

2. output — (—input)2, where input < 0.
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3.8 M easurem ent N oise

45

If signals are being measured from a real system, the measurements will always be 

subject to some level of error (due to the finite accuracy of the measuring device). Also 

the system that is being measured will have some degree of noise on the quantities 

that are are being measured (this may be ripples on the top of a water tank where 

the level is being measured, electrical noise in a circuit or some small vibrations in a 

mechanical system). If a fault detection and diagnosis method is to work in practice 

it is necessary to take account of noise. In the literature this area has received very 

little attention with regards to constraint propagation, e.g. how to propagate noisy 

signals.

To demonstrate why this is important for real systems, consider the simple system 

illustrated in section 3.7.1. You will recall that two observations of this system were 

taken, the first observation had input measurements of 1 and 2, and an output 

measurement of 10. The second observation was input measurements of 2 and 1, 

and an output measurement of 8. Now let us redo these two observations except with 

the addition of noise on the measurements. The results of this are shown in table 3.6.

Observation M l M2 Output Hypothesis 1 Hypothesis 2
Number Input Input Fault in M l Fault in M2

(parameter value) (parameter value)
1 1.013 1.987 10.082 3.987 4.013
2 2.016 1.006 8.003 2.471 3.944

Table 3.6: Results with noisy measurements.

If a comparison is made between this table and table 3.3, the results are seen to be 

very similar, the problem is that these new results are not exact. If the final column 

in the table is examined, the two values shown are both approximately equal to 4 and 

therefore the fault could be in M2 with the parameter changing from 3 to 4. But it 

is not possible to be as certain as before. This time we are using our own judgement
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and feelings to say that the results are ‘close enough’, the crucial question is ‘how 

close is close enough?’. If the noise levels on the signals were higher, then it would 

become more and more difficult to decide in which component the fault is or indeed 

whether the fault could be explained by a failure in just one of these components at 

all. The converse problem also exists; when noise is present it is always possible to 

say that the results are not consistent and they therefore do not explain the fault, as 

in the last column of table 3.6, ‘4.013 does not equal 3.944 so a fault in M2  does not 

explain the fault’. This is a major problem with constraint propagation/satisfaction 

in its basic form, it is built upon the principle of making signals consistent and noisy 

measurements and estimates cannot be made consistent! This problem is addressed 

fully in later chapters, but constraint propagation/satisfaction methods alone are 

inadequate for tackling the problems of noise.

The implications for the actual detection of a fault should be apparent. A fault is 

detected by measuring the inputs and outputs and then seeing if they are consistent 

with the model of the system. If the measurements contain noise then they will never 

be consistent. The ability to ignore small differences in the signals is required. To do 

this some sort of threshold has to be set, differences below the threshold axe due to 

noise and differences above it are due to a fault. This threshold may use the result 

of a complex algorithm to decide if a fault is present, but somewhere one has to 

decide what difference in signals is allowable and what difference is suspicious. This 

will mean that detecting a small fault will be difficult and there will be a delay in 

detecting faults because it is not clear whether the difference in the signals is due to 

noise or a fault. Also, with noise comes the possibility of having false alarms. If the 

threshold is set too low, then the noise in the signals may be viewed as suspect and a 

fault may be indicated. If the threshold is set too high, then genuine faults may have 

their detection delayed or missed altogether.
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In systems that contain dynamic components the situation where noise gets 

amplified as signals are propagated through the system can arise. If these signals 

are then used to estimate parameter values then the estimates may contain very 

large errors. Some method to reduce noise levels will be required. These noise 

reduction techniques have been used by many others but not in the area of constraint 

propagation and suspension. [19] [69] [31] [72] [26] [80] [79].

3.9 D ynam ic Com ponents

Dynamic components are components whose output is a function of its past inputs, 

for example a water tank. The level of water in the tank is a function of the past 

flows in and out of it. Level =  ^ r s 5 h a ~arS I n f l o w s )  dt?

These are usually the states of the system.

Unlike non-dynamic components, it is also necessary to consider the current state 

of the component as well as its input, output and parameter. Of the work that 

has been done using constraint propagation in dynamic systems, references [52] [51] 

assume that all states in the system are directly measurable, effectively transforming 

the problem into a static one. Doing this is possible in a number of situations, but 

there are many where all of the states will not be measurable. In these situations an 

estimate of the systems states must be made. It will be shown later that this task is 

complicated by the presence of noise on the signals.

The constitutive relationship of a typical dynamic component is output = 

p  f  input.dt, where P  is the component’s parameter. The model used here is a discrete 

time model of the system and so output = pEinput  x dt will be used, where dt is 

the time interval between samples of data taken from the real system, and input is

2 (Eflows)  means the sum of the flows in to and out of the tank through each of the pipes 
connected to it, at any instant of time.
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the value of the input to the component at each sample. Alternatively output =  

last output +  input.dt) or output =  ^p(state) where state = last state +  input.dt 

could be used. This requires the last value of the output from the component (the 

state from the previous sample time). This causes problems: to find the present 

output from the component, the present input and its previous state are required, 

but the previous state is a function of the previous input and an earlier state. This 

situation is illustrated in figure 3.18, here, to find the output, the present input and 

previous output are needed. Without the value of the previous output nothing can 

be done. If the input and the output were measured, the last value of the output 

measured and the current value of the input could be used to estimate the present 

output from the component. This could then be compared with the current value of 

the output that has just been measured in order to detect the presence of a fault.

■

Input Output

Earlier
Time
Intervals.

Input Output

Previous
Time
Interval.

Input Output

Present
Time
Interval.

Input Output

Figure 3.18: The present output depends on all the previous outputs.

It is possible to propagate signals in the opposite direction to that described above, 

that is use the current and previous measurements of the output and then propagate 

these through the component to find the input, and then compare this with the 

measured value for the input. Doing this in the presence of noise however results in
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very poor estimates of the input. This is illustrated in figure 3.19. 
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Figure 3.19: Propagating noise through dynamic components.

Figure 3.19(A), shows the measured input from the system of figure 3.18. Samples 

are taken every —jth of a second. The value of the input is 1 with a 1% white noise to 

signal ratio. Figure 3.19(B) shows the measured value of the output, it starts at zero 

and gradually rises with time, because the output is a summing function of the inputs. 

The components parameter P  is 4. Figure 3.19(C), shows the estimated value of the 

output, using the method described above i.e. using the current value of the input 

and the previous value of the output to calculate the current value of the output. 

It can be seen that it is very close to the measured output. Finally, figure 3.19(D) 

shows the estimated value for the input. This time the estimate is very bad, although 

the average estimate can be seen to be about 1, the actual estimates themselves are 

very noisy. This was due to the signal being differentiated. If a larger system was 

being dealt with, which had a second similar component. Then estimates could be
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propagated through that as well. The results of this would be very close to nonsense.

In summary.

• Dynamic components have the added problem of being a function of previous 

system inputs. This means it is necessary to keep a track of how the system was 

at the previous time interval, the ability to estimate the states of the system is 

also required. This can become difficult when the system may have developed 

one or more faults.

• Propagating noisy signals through dynamic components can amplify noise and 

make results meaningless, however, to perform diagnosis on real system there 

is no choice but to use noisy measurements and to propagate signals backward 

through dynamic components. Some form of noise reducing methods will be 

required.

3.10 Combinatorial Problem  o f M ultiple Fault 

Diagnosis.

In a system which contains many components, the number of possible combinations 

for components failing simultaneously (i.e. the number of possible hypotheses) is 

immense. Consider a system which has four components, named A, B, C and D. 

There are 15 different combinations of components which could fail simultaneously. 

These are listed below.

1. {A}. 4. {D}. 7. {A, D}. 10. {C, D}. 13. {A, C, D}.

2 . {B}. 5. {A, B}. 8. {B, C}. 11. {A, B, C}. 14. {B, C, D}.

3. {C}. 6 . {A, C}. 9. {B, D}. 12. {A, B, D}. 15. {A, B, C, D}.
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For a system with 5 components there are 31 different combinations of possible 

faults.

I f  there are N  components in a system then the number of combinations of 1 or 

more components failing simultaneously is 2N — 1 .

There is a relatively large amount of computation required to check whether one 

individual hypothesis accurately describes the behaviour of a faulty system or whether 

it does not. In a large system with many components it is clear that testing every 

possible hypothesis is not practicable in real time. This is one of a number of reasons 

which makes diagnosing multiple faults much more difficult than single component 

faults. Another aspect which makes multiple fault diagnosis difficult is the problem 

of how to test a hypothesis which assumes that a large number of components have 

become faulty. If it is assumed that a number of components are faulty then the 

amount known about the system is reduced, and it can quickly become difficult to 

reason about a system which is only partially known. This problem will be discussed 

in detail in chapter 6.

It is clear that testing every hypothesis in real time with a model based diagnosis 

method is not practicable; either some method other than model based must be found, 

or a way of adapting the model based diagnosis method, in such a way that there 

is no need to test every hypothesis, must be found. Because of the advantages of 

using a model based diagnosis method (see section 3.1) a method which reduces the 

number of hypothesis which are tested to N, but which also allows us to reason about 

the hypotheses which were not tested is presented. The overhead of this additional 

reasoning is very small when compared to the amount of computation required for 

testing a hypothesis and so it becomes possible to diagnosis multiple faults in real time 

using this method. In this method, sets and subsets of multiple faults are teated in a 

similar way to that of de Kleer Sz Williams [10] [11] and Reiter [68]. The algorithms
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which handle these fault sets are, however, original as they are required to deal with 

imprecise system models, noisy systems and recursive in time diagnosis.

This method of reasoning is based on some of the work of Reiter [68], but the 

same method of diagnosis is not used, as it is not suitable for this kind of real time 

application due to the the computational overheads which would be introduced using 

a recursive in time diagnosis method. However, his work is built upon and a similar 

approach of examining subsets of hypotheses to reason about other hypotheses is 

used.

Reiters method is based upon finding a subset of all of the system components 

which, when all of these components are considered to be behaving correctly, are 

consistent with observations taken from the system. All the system components 

which are not in the above subset can be regarded as being a diagnosis of the fault 

which has appeared in the system, i.e. all of these components can be regarded as 

being faulty.

A fault diagnosis is a set of components which when regarded as being faulty, 

will explain the observations. However, any superset of these components will also 

explain the observations. So the problem is to find all of the sets of components which 

when considered to be faulty will explain the observations, and which have no proper 

subsets which will also explain the observations. It is possible to arrive at more than 

one diagnosis which meets the above criteria.

To check a hypothesis one needs a fault hypothesis checking routine. This will 

vary drastically according to which domain the diagnosis is taking place in; routines 

which check a fault hypothesis for a digital electronic circuit and for a chemical 

manufacturing process will be very different. A number of observations of the system 

need to be taken, together with a set of components which are assumed to be working 

correctly. These are then passed to the routine which must then check that the
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observations and the set of working components are not inconsistent3. If they are 

not inconsistent then the other components (the ones regarded as being faulty) are 

a diagnosis, but not necessarily a minimal one, i.e. without subsets which are also 

diagnoses.

Reiter presented a method of deciding what was the best subset of components to 

check for next. Using a tree structure of nodes consisting of hypotheses, the method, 

depends upon its ability to check a hypothesis with a set of observations. This conflicts 

with the objectives of having a real time fault diagnosis algorithm, because to check 

a hypothesis many observations may be needed, as component parameters need to 

be estimated and identified. This would mean waiting until there are presumed to 

be enough observations and then starting to check hypothesis. If there were too few 

observations, poor results would be obtained and it will be necessary to wait longer. 

If there were enough, then maybe good results could have been obtained earlier. A 

recursive in time fault diagnosis algorithm is required. This algorithm can utilise 

Reiters ideas about manipulating sets of hypotheses, but cannot implement them in 

the same manner as he proposed because of the different requirements. In chapter 6, 

the problems of dealing with multiple faults are looked at in greater detail.

3This means that the routine is unable to prove that the observations are inconsistent, rather 
than it being able to prove that the observations are consistent.



C hapter 4 

C onstraint Propagation  in  

D ynam ic System s.

In this chapter the method used to propagate signals around a dynamic system 

and through time to enable the determination of values for signals, parameters and 

states inside the model will be looked at. This is in principle the same as that 

done by Leary [51], and Leary and Gawthrop [52], but this is extended to cover 

unmeasured states, multiple component failures, propagating signals through time, 

propagating constraints simultaneously and automatic system constraint generation. 

The problems caused by propagating noisy system measurements through a model 

which contains dynamic components will be examined, and details will be given of 

the pre-filtering introduced to reduce the effects of the noise. A method which will be 

used for estimating the systems states and estimating the parameters of components 

will be described. Finally the problems of using these techniques in real time with 

noisy measurements, and how these can be overcome, are discussed.

In chapter 3, it was demonstrated how to propagate measured signals through 

a model of the system, and thereby find the values of signals inside the system. 

This information is then used to find a value for a component’s parameter which

54



CHAPTER  4. CO NSTRAINT PROPAGATION IN DYNAM IC SYSTEMS. 55

make these measurements consistent. In this chapter dynamic systems are looked at 

in more detail and an automatic propagation algorithm used to analyse systems is 

introduced.

In figure 3.18 a brief view is given of how measurements from a number of 

consecutive observations are used to enable the evaluation of signals in the model 

of the system, when the system contains dynamic components. Now, considered in 

more detail, is an example of a dynamic system. A dc motor is examined and it is 

shown how it is possible to:-

1. find a component’s parameter,

2. find the parameter of more than one component simultaneously,

3. find the states of the system, and their rates of change,

4. use the model to find the expected values for the outputs of the system,

5. and how the number and location of sensors on the system affect the ability to 

find signals, states and parameters in the systems’ model.

The examples given here will be illustrated with reference to block diagram models 

of systems. It should be noted that this is for illustrative purposes only, all the 

software operates on bond graph models of systems. Block diagrams are a clear 

way to explain the features and principles involved, but bond graphs are easier to 

manipulate.

We begin by looking at constraint propagation, some of its common problems and 

some solutions to these. It is then shown how these constraint propagation techniques 

can be used to find the states of a dynamic system, the value of a component’s 

parameter and the rates of change of the system’s states. In addition it is shown how 

constraint propagation, together with the causality assigned to the bond graph model
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of system, are used to enable the prediction of what the outputs of the system should 

be.

Attempting to implement an algorithm to perform constraint propagation in real 

time is only possible if the system is small and simple, and even then considerable 

computing power would be needed to use the algorithm for real time fault detection 

and diagnosis. One method for overcoming this will be examined. This method 

results in a reduction of the computational load as a whole. The majority of what 

is left is shifted away from being done in real time, and is instead done before 

monitoring a system for faults begins. This requires analysis of the system by 

constraint propagation algorithms and then solving simultaneous equations to reduce 

the real time processing needed. A way of doing this automatically for a wide range of 

dynamic systems will be shown. Finally one technique for pre-filtering the measured 

signals is looked at, this is the first step in reducing the effects of measurement noise 

in the detection and diagnosis algorithms.

4.1 Propagating Signals through Tim e and the  

M odel.

One of the problems faced when looking at dynamic systems is the problem of finding 

what state the system is currently in, since the current state depends on the past 

history of the system inputs and its states. To solve this problem signals from past 

time intervals will be propagated into the current period of time. [27] This method 

appears similar to the “back propagation in time” method used in neural networks 

when training them on dynamic systems. Both methods are essentially attempting to 

do the same thing, which is to resolve the dynamics in the system by using information 

from previous time periods.
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Figure 4.1: A block diagram of a dc motor.

Figure 4.1 shows a block diagram of a dc motor where:-

• R  is the motors electrical resistance.

• L is the motors electrical inductance.

• J  is the motors inertia.

• C is the friction generated in the motors bearing.

• K is the constant between the current flowing through the motor and the 

mechanical torque generated, and the velocity of the shaft and the back emf.

• V  is the voltage applied to the motor.

• I  is the current going through the motor.

• UJ is the angular velocity of the motor’s shaft.

As discussed in section 3.9, it is not possible to propagate through dynamic 

components in either direction unless the value for the state of the dynamic 

components at the start of each observation (or time period) is known. From just
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one value of V and U) it is not possible to propagate throughout the whole model of 

the system. Figure 4.2 show the result when an attem pt is made to propagate from 

only V and LO. The signals (arrows) which are shaded indicates where propagation 

was possible.

VI 4 /^ A J T ir r

R

K

K

CO

Figure 4.2: The extent of propagation from V and oj.

If propagation and suspension techniques are to be used for dynamic systems then 

more information about the previous values of the states must be used. Signals must 

be propagated from previous observations of the system to provide the initial values 

of the states. These are needed for propagating using the current observation. This 

is done as follows :-

In figure 4.3 three block diagram models of a dc motor are shown. Vi is the 

voltage being applied during the current period of time. V2 is the voltage at 

T =  -1, the previous time period, and V3 is the voltage at T =  -2. Similarly 

for UJ. The relationships for the states are in their discrete time form of state = 

last state +  ^(rate.dt). Here, these models represent the dc motor during three 

consecutive periods of time. The models are connected to each other via the states, 

the current value of each state from one model is connected to the previous value of
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Current at T = -3.

Time period T= -2

The previous 
time period. T = -1

The current 
time period. T = 0

Figure 4.3: A dc motor model for three consecutive time periods.
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the state for the model at the next time interval. If one takes the model of the system 

as a series of models connected together to represent different periods of time, then 

it is possible to propagate signals through time as well as the model and the dynamic 

behaviour of the system can be captured.

If the case was that V, U) and I were measured, then it would become possible 

to propagate signals throughout the system without using multiple time step models. 

However, if any component was suspended so that its parameter could be estimated, 

then it would not be possible to propagate completely and a value for the parameter 

would not be found. One would then be forced again to use multiple time step models. 

In general, the more sensors that are measuring a systems behaviours, the fewer the 

number of consecutive time step models which have to be used. This also depends 

upon the location of sensors and the topology of the system.

4.2 Constraint Propagation.

In figure 4.2 it was shown that it was not possible to propagate signals from V and

LJ throughout the model of the system, using just a single observation. Figure 4.4

shows the same situation, except this time two observations of the system are used.

The arrows show the way signals were propagated from Vi,V2,Cc>i and Cc?2- The basic

path is as follows. Firstly COi and UO2 are used to generate signal e and hence /. c

and /  produce #, h and then i. Now j, a 1 and i are used to produce k and then I  At

this point all of the signals for the current observation are known, and if that was all

that was required, propagation could stop at this point. Alternatively propagation

could proceed to find all of the signals in in the model from the previous observation.

To do this I and h are used to get m, then n is found and x is used to find o, p and

then q with the use of d. Also, from m r is found and then using t, s and r the values

1The signal from input Vi
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CO at T = -2.Current at T = -2.

(n) +

T =

( m )

Velocity
Current

T = 0

Figure 4.4: Propagating signals from V and ca throughout the model.
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of u, v and finally w are obtained. Now all of the signals in the model of this and the 

previous observation are known.

(m )

Velocity
Current

T = 0

Figure 4.5: Propagating from the input and the states to the output.

The propagation of signals described above was straight forward. A signal was 

simply passed through a component to find another signal, and this was repeated until 

all the signals were known. Only one constraint (component) was considered at a time 

and the situation where there were no signals that could be used for propagation never 

arose. Now consider figure 4.5, here the input V is known, as are the values of the 

states at the start of this time period I2 and (j0 2- If ls desired to find the output Cl^. 

This should be straight forward but it is found that it is not possible to propagate 

any of the signals. Since j  and i are not known, neither k nor I can be found. Since / 

is unknown h can’t be found and since e is unknown b cannot be found. W hat must 

be done here is to consider more than one constraint simultaneously. Conventional 

propagation algorithms are unable to cope with simultaneous propagation, but now 

CLP(3^) [42] and other programming languages [53] can deal with this, at least 

when the resulting equations are linear. Using these techniques and a mathematical 

solving package, it is possible to deal with a limited range of non-linear simultaneous
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equations.

The equations of the individual components are shown in table 4.1 and are the 

constraints of the system. There are three known signals, a, m and d and there are 

ten unknown signals, 6, c, e, /, g, h, i, j , A; and I.

1. a — j  — i = k 6. g - c  = f
2. IIX 7. IIX

3. / -f m = h 8. e +  d =  b
4. h x R  =  i 9. b x C = c
5. h x K  =  g 10. b x I< = j

Table 4.1: The constraints of the system.

As can be seen there are ten equations which describe the system, and ten unknown 

signals. These equations can therefore be solved simultaneously and b can be found, 

which is equal to Ct^. Although this does not seem the same as propagating signals 

through the components, it is essentially the same, the only difference is that more 

than one constraint is considered at a time. In this case all of the system constraints 

needed to be considered because of the feed back loops, but in another case it may 

be possible to propagate signals individually through components, then consider a 

number of constraints simultaneously and then propagate further signals individually. 

In all cases the results are the same. If there are more unknowns than equations then 

it is not possible propagate completely and one may wish to reconsider the number 

and location of sensors. If, however, there are more equations than unknowns, then 

propagating completely will be possible, but some information will be leftover. This 

extra information can be used to help to identify a components’ parameter2.

Using these techniques any signal in the system can be identified, provided that 

the equations can be solved where necessary. If the system has more states, then

more observations of the system are needed 3. An algorithm will be introduced later

identifying a components’ parameter means its’ current value is regarded as unknown, i.e. 
another unknown has been introduced. To solve this more information is required .

A lternatively it could be said that more consecutive in time models of the system connected
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which will work out how many observations are necessary to evaluate the values of 

any combination of unknown signals or parameters.

There are a number of functions which will be required by the fault detection 

and the fault diagnosis algorithms. These functions yield internal signals from the 

system’s model, based on known values for some of the other signals. For example, 

the system outputs as a function of the system inputs and the initial value of the 

states. The reasons why each of these functions is required will be given in chapters 

5 and 6, but the way these functions generate their results will be given here.

4.2.1 Finding the States of th e System .

Finding the system states is a relatively straight forward process. A route is simply 

found along which signals can be propagated from the states to the signals which are 

measured. So, looking back to figure 4.4, the states are the current h and the velocity 

b. Firstly 6 is known because the speed of the motor is being measured. To find h 

the values of CO\ and C 02 are propagated forward along d, 6, e, /, c and g  to give h, 

the current.

In the fault diagnosis algorithm described in chapter 6, it will also be required 

to find the states at the start of the current observation, these would be m and d in 

figure 4.4. These can be found in a similar way as described above except propagation 

would take place from CO 1? C02 and V1# This could be described by saying ‘what were 

the values of the states at the start of the current period as a function of the current 

observation and as many previous observations as necessary’. In this case only the 

current observation and 1 previous observation is needed. In a system where there are 

more unmeasured states the information from further previous observations would be 

needed.

together are needed.
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Also required by the diagnosis algorithm will be the current values of the states 

as a function of the rates of change of the states and the current observation4.

Velocity
Current

T = 0

signalsPropagated signals. Known si{

Figure 4.6: States as a function of the current observation and the rate of change of 
the states.

This situation is shown in figure 4.6. Here, Vi (a), LJi (6), / and e are known, 

and the two states h and b are to be found. It should be noted that / and e are not 

the actual rates of change of the states but are in fact the change in the output of 

the state component, these signals are known because, as described later, they are 

estimated and filtered and then used in finding the value of the states. Finding b is 

easy as it is equal to UJi which is measured. To find h propagation take place from I 

to k, and from b to j , and then a, k and j  are used to gives i, which is then used to 

find h, the state. The current states as a function of the change in the states and the 

current observation has now been found. These propagation routes are worked out

automatically by an algorithm which will be described later in this chapter.

4 Previous observations may also be used as well if it is necessary
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4.2.2 Param eter Evaluation and 

Constraint Suspension.

There are two functions which will be used to estimate parameters. Firstly, a function 

which will yield the parameter values of one or more components which make a 

number of observations consistent. That is a function that will take a number of 

observations of a system and will then find the parameter values of one or more 

specified components which will make these observations consistent. As an example, 

suppose the value of the resistor R is unknown in the dc motor. Three observations of 

the system would be needed and a model of the motor which consisted of a dc motor 

in three consecutive periods of time would be used. These observed measurements 

would then be propagated throughout the model and a value for R which would make 

all of these observations consistent would be found. Three observations are needed 

because there are two states in the system and an unknown parameter. This is shown 

in figure 4.7.

This is based on the principle that when component R is suspended and then 

signals propagated throughout the model until a signal arrives on either side of the 

component, then these signals can be used to find a value for R ’s parameter which 

makes these signals, and hence the observations, consistent.[52] [51] If the values for 

both L and R were sought, four observations and a four time periods model of the 

system would be required. To find the value for C’s parameter would essentially 

mean doing the same thing, but a number of constraints would have to be solved 

simultaneously. This does not pose a problem as long as these equations can be 

solved, this will be described in detail in section 4.4.

The second function needed is similar to the above except only one component 

at a time is suspended, and only the current observation and the current changes 

in the states are used (as described earlier in section 4.2.1). W hat is of interest are
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Current at T = -3. © a tT  * -3.

Time period T= -2

The previous

The current 
time period. T = 0

Propagated signals. Known signals.

Figure 4.7: The system model for three observations.
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the two signals which arrive on either side of the suspended component. The use 

of these will be fully described in chapter 6 , but in summary these signals will be 

used to estimate the component’s parameter. If the component is linear then these 

signals are simply used in a least squares type algorithm to estimate the parameter. 

If the component is non-linear then two values whose ratio equals the components 

parameter are required. For example, if the input to a component is X  and its output 

is Y , and its constitutive relation is given by Y  =  P  x y fX  where P  is a parameter, 

then Y  and y fX  would be used in the least square estimation, rather than Y  and X .

4.2.3 Finding th e R ates o f Change o f th e  S tates.

Another function that will be required is a function which will give the change in a 

state from the previous to the current observation. There is a condition here that the 

change in a state must be generated by first finding the current and previous values 

of the state. Referring to figure 4.4, it can be seen that there are two ways in which 

the change in current (/) could be calculated. Firstly propagating from LO\ and U 2 

to g, h and then i, propagating from to j, and then using a, j  and i to propagate 

to I. This method did not involve finding m, the previous value of the state, and so 

does not meet with the condition stated above. The second method for finding the 

change in current (/) is to use (j0\ and CJ2 to find h and use U 2 and CcJ3 to find m and 

then taking the difference between h and m.

It was found that if the first method for calculating a change in the state was used, 

large errors were obtained due to the effects of summing signals of very different 

magnitudes. Although calculating changes in the state by finding the difference 

between the current state and the previous state also produced errors, it was found 

that the nature of the errors over time was equivalent to noise, whereas the error 

produced by the first method was found to be an offset with the addition of noise.
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The offset was due to the summing of different size signals. For example, looking again 

at figure 4.4, there are two summing components (not counting the summing effect of 

the state relations). In using the first method, the first summing component arrived 

at is associated with the torque on the rotor, / i s  the rate of change of the momentum 

derived from U i  and U 2, this is added to c, the frictional torque, giving <7, the total 

torque coming from the motor windings. If the speed is high and changing slowly, 

then c will be large and /  will be small, resulting in g being approximately equal to c. 

Part of this is caused by the limited floating point resolution of computers, but even 

if the floating point resolution is high, /  can still be made insignificant by even low 

levels of noise on c. When g is then used via h and i in the next summing component, 

the result, k, will be missing at least some of the effects of the slow change in speed 

of the motor. The rate of change of the inductor will always be slightly biased in one 

direction when the motor is speeding up, or biased in the other when it is slowing 

down.

4.2.4 Finding th e O utputs o f th e System .

This function has to be capable of calculating what an output from the system should 

be using measured data from one observation, and the initial value of the states at the 

start of the observation5. There is one of these functions for each and every output 

from the system. For each system output the following is carried out. Firstly a model 

of the system is used for just one observation. Estimates of the initial value of all 

the states at the start of the observation are used together with all of the inputs and 

outputs from the system, that have been measured for the current observation, except 

the output which is being calculated. Propagation then takes place forward from these

known values, following causality, until the output in question has been reached. This

5 An output is any measurement from the system where the value of the measurement is affected 
by the behaviour of one or more of the system’s components.
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produces an estimate of what the output should be based on the measured signals 

from the system, the state estimates, and the parameters of the components used in 

this calculation. This is repeated for each output of the system.

As will be shown in more detail later, these output estimates can be compared to 

the measured outputs to check for the presence of a fault or to check the accuracy of 

a hypothesis during diagnosis.

An alternative way of doing this would be to use the states and all of the input 

measurements and then, from these, calculate all of the outputs at once. This was 

found to be unsatisfactory for a number of reasons.

1. Calculating all of the outputs from the states and inputs can be complex 

and require a significant amount of processing time, just for performing the 

arithmetic. Using all of the available measurements except one output to 

calculate a predicted value for the output results in smaller calculations while 

still ensuring that any fault will appear in at least one of the system’s outputs.

2. The propagation from the input to the output can be complex, requiring a 

number of simultaneous equations to be solved, if these equations happen to be 

non-linear, then often unique solutions are not possible. Propagating backwards 

from one unknown output until any of the measurements taken from the system 

are reached is quicker, often not involving simultaneous equation solving and 

keeping non-linear components in relatively smaller systems of equations.

3. If there is a slight modelling error, or a fault just after one of the inputs, then its 

effects can be amplified when propagating signals from it, throughout the rest 

of the model. This results in the system being sensitive to faults and modelling 

errors near the inputs but less sensitive further away. Although the system 

should correctly detect faults, it should not be over sensitive and therefore create 

false alarms. The system should also be robust with respect to modelling errors.
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That is, an even and controllable sensitivity would be more desirable than being 

very sensitive to some of the system components and less sensitive to others. 

Using the method outlined above, the need for long propagations from the 

furthest input to the furthest output is reduced and this keeps the amplifying 

effects to a minimum, making the sensitivity to particular components more 

even.

4.3 R eal T im e Propagation.

The functions described above involved using known signals and passing these through 

components to find other signals and then repeating this until the required values have 

been found. The actual method for doing this requires keeping a list of the known 

signals and components which have not yet been used for propagating signals, these 

components must be searched to find which ones can be used next and which signals 

would be produced by doing so, the new value of a signal needs to be worked out, 

component must be removed from the list and then all of this must be repeated with 

the new component list.[38] [36] [8] [51] [52]. Complications can also arise when trying 

to satisfy constraints simultaneously, either by too many unknowns or by constraints 

which are too complex and are unable to be solved. Obviously, trying to do all of this 

in real time while monitoring a system will often not be practicable with the current 

computing technology6.

If, for example, a system was being monitored, and measurements were taken say

20 times per second, and these measurements were then propagated around various

different models, filtering data and estimating parameters, then it is clear that the

processing capability necessary is enormous and indeed much of it, like deciding which

way to propagate, would be needlessly repeated for every observation. To use these

6That is not to say that it is impossible, merely prohibitively expensive.
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methods in real time, it is necessary to shift as much processing as possible away 

from real time, while still ensuring the system can detect and diagnose faults in 

real time, as they occur. This is done here by doing some off-line pre-processing. 

That is, analyse the system, work out the best routes for propagating signals, solve 

simultaneous constraints and identify which faults are diagnosable and which axe not. 

To diagnose a fault7 the faulty component parameters need to be estimated, if there 

are too many unknowns to solve these equations, or the equations are too complex 

to solve uniquely, then diagnosing faults occurring in these components will not be 

possible. This will be discussed later, but it is im portant to note that there is no 

point spending ‘real tim e’ trying to solve equations which cannot be solved.

As an example to clarify this and to show the advantages, consider again figure 4.6. 

Here h is found by propagating a, I and b along the shaded arrows. To do this a model 

of the system is needed which contains the relationships of each component and the 

structure of the system, i.e. how the components are connected. Also required is an 

algorithm to perform the propagation, work out the values of signals, decide which 

signal to use next, until the objective is reached. Alternatively, this could all be done 

before hand, equations could be solved and one line of code in a program could be 

used which simply gives the value of h as a function of the parameters and the known 

values, in this case

R

and the line in the program would be

h  = ( a  -  1  * ( L  /  d t )  -  K * b )  /  R ;

This one line of code can replace the whole model and the propagation algorithm

in the on-line detection and diagnosis software. Whenever this state is required as a

7A  fault may consist of more than one component failing simultaneously.
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function of the measurements and the change in states, this line of code is used. To 

make it easier to combine with the rest of the software, the line of code is encapsulated 

in a function, and when it is needed the function is simply called. This is done with 

all of the propagation schemes described in the previous section, the result can be 

a large number of functions if the system is large, but the result is also a massive 

increase in execution speed of the on-line software.

In order to do this off-line analysis which can create many functions, it is necessary 

to have some software which will do all of the analysis automatically, as doing it by 

hand will be time consuming, tedious and prone to error. In the next section an 

overview of the off-line software which has been developed will be given, together 

with some details of the propagation algorithm and how it functions.

4.4 A utom atic Constraint G eneration.

An algorithm has been developed which will automatically generate specified func­

tions from a system model as described in the previous section. This has been imple­

mented in conjunction with Model Transformation Tools (M T T ), which is a bond 

graph manipulation and analysis toolbox[28] [24] [22] [34] [32]. A graphical picture 

of a bond graph is taken as input, together with a short definition file, and after a 

number of transformations a complete C + +  code program is automatically produced 

which can be compiled and which is able to detect and diagnose faults in a particular 

dynamic system described by the original bond graph. An outline of this process is 

given below.

1. The algorithm begins by taking a bond graph model of the system, it is informed 

which signals to find and which signals are known. For example, ‘I wish to find 

OutputA. InputA, InputB, OutputB and StateA are known.’ This is equivalent
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of saying ‘Find Output A as a function of Input A, InputB, OutputB and StateA.’ 

The unknown does not have to be a signal, it may be a component’s parameter.

2. The algorithm will now find the shortest route from OutputA to the signals 

which are known. If the route involves going through a state component, then 

its previous state must also be found and so the model of the system from the 

previous time step is used as well.

If more than one parameter is being found at once, it is necessary to make 

sure that propagation does not inadvertently take place through a component 

whose parameter is not known. Doing this means that one too few equations 

will result at the end of the propagation to solve all of the constraints since an 

additional unknown will have been introduced. If this must be done, then a 

further time period must be used and the additional information used to find 

another propagation route to the component with the unknown parameter. This 

will yield a second way to find this parameter. These two ways of calculating 

the parameter can now be solved simultaneously. If two or more parameters are

being found, then this is repeated, descending to an earlier time period each

time these circumstances occur. (This is explained in greater depth in appendix 

A.)

3. Having found a route from the known signals to the desired signals, the next 

step is to go along this route and list all of the constraints which signals must 

pass through. Considering the example in section 4.3, these constraints would 

be as show in table 4.2.

1. j  = b x K  3. i = a — k — j
2 . k = x I 4. h = ^  x  i

Table 4.2: The individual constraints passed through.
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4. These constraints are then sent, in symbolic form, to a symbolic equation 

solving package. The package used here is called REDUCE. This package can 

handle a large number of equations and manipulate them symbolically, solving 

simultaneous equations to find a variable in terms of any other variables. In 

the example above the equations did not have to be solved simultaneously, but 

if they did, REDUCE would have done this for us automatically. The output 

of REDUCE is a text file which contains the symbolic relationship between 

the unknown signal and the known signals in the form unknown signal =  

/(know n signals).

5. This symbolic solution can be easily converted into a line of C + +  code, or any 

other programming language, and then encapsulated in a function for inclusion 

into a larger program.

The above steps, 1 - 5 ,  are used for every function which is required by the fault 

detection and diagnosis algorithms.

When attempting to find the parameter of more than one component at once, 

it may be that there are too many unknowns and it is not possible to find enough 

equations to solve these due to the nature of the system and the location and number 

of sensors. In this case the equations cannot be solved, and faults in those components 

cannot be diagnosed. Alternatively, there may be enough equations, but the solution 

is either not unique, or too complex for REDUCE  to solve, particularly if the 

constraints need to be solved simultaneously. In this case again one cannot diagnose 

faults in these components without resorting to other methods. This situation usually 

only affects the diagnosis of multiple simultaneous faults, and it can be resolved by 

having more sensors on the system being monitored.
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4.4.1 Finding the ‘B est’ R oute for Propagation.

Here the method of operation of the algorithm is described. It is used for choosing the 

most appropriate route for propagating from known signals to any unknown signals 

or parameters which are of interest.

The propagation route is the path from signals which are known, to the signals 

which must be evaluated. That is, following this route from the known signals, 

and using every constraint that is passed through, the value of the signals which 

are of interest can be calculated. By the ‘best’ route, what is meant is the route 

which passes through the fewest number of components and which meets a number 

of specified criteria.

This will be illustrated with an example.

Velocity
Current

T = 0

Figure 4.8: Automatic Propagation Path Generation Example.

1. The algorithm starts by locating one of the signals or parameters of interest. 

Suppose in figure 4.8 the value of h is to be found, given that all the parameters 

are known, and a, 6, m and d are also known.

2. Next, one of the components that this signal is connected to is found. Lets take
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this to be component R  from figure 4.8.

3. Then all of the other signals which are connected to this component are found. 

The idea is that if all of these signals were known, then it would be possible 

to pass them through the constraint and find the signal of interest. In this 

example, ‘all the other signals’ consists of just i, as that is the only other signal 

connected to R.

4. After these signals have been found, a check is made to see which of these are 

already known, and which are not. The ones that are unknown are added to 

the list of signals which need to be found, and the signal of interest at the 

beginning is marked as being known. This is from the point of view that if the 

value of the other signals were known, then it would also essentially be known. 

It is only possible to go through a component once, but this can be done in 

either direction8. In this example there is only one other signal i and its value 

is unknown, the objective is now to find a value for *, since when this is done h 

will be found by propagating through R.

5. If, at this stage, all of these other signals are known, then a complete route has 

been found and this route will be used as the ‘best’ route.

At this stage a route has been found which consists of one step which will give the 

signal of interest provided that a second set of signals are known. Before the values 

for this second set of signals are found, it is first necessary to find if there are any 

other ways in which the signal could have been found, i.e. is the signal connected 

to any other components which could be used to derive its value. In the example,

the other components which are also connected to h are K and the 0  summing part

8This is not always the case, sometimes it is desired to only propagate through components in a 
backwards direction with respect to causality. This will give information about which components 
caused the signal of interest to take the value it currently has.



CHAPTER 4. CONSTRAINT PROPAGATION IN D YNAM IC SYSTEMS. 78

of the inductors state relationship. If g was known, propagation could take place 

through K to find h, or if / and m were known 0  could be used and hence h. These 

are two alternative ways of finding h.

6. If the signal from step 1 is connected to another component then repeat steps 

2 - 5  for this one, and then repeat this step for any other components that it is 

connected to. eg K and 0 .

After this step is complete all the possible ways of finding the signal using just 

one step will have been found. The next stage is to find all the possible ways of 

finding the values of the signals from stage 3 above, for each of the single step routes 

described in step 5. But before this is done, the presence of repetitions in the routes 

must be checked. For example, if two routes go around a loop, one of which stated 

solving constraints A, B  and then C, and the other stated solving B, C and then A , 

then obviously since A, B  and C must all be satisfied, then the order in which they 

are satisfied is unimportant, and usually they must all be satisfied simultaneously so 

order is irrelevant. In this case one of these possible paths can be safely removed from 

the set of possible paths which are being investigated.

7. All of the above steps must now be repeated for each of the possible paths that 

are being investigated. In the example the above must be repeated for i, which 

is the unknown signal needed to propagate through R , and the above must 

be repeated for g which is the signal needed to propagate through K  and the 

above must be repeated with /, which is the unknown signal needed to propagate 

through 0 , (remember m was mentioned at the beginning as a signal which is 

already known).

Just before step 7 begins, all the possible ways of propagating through one 

component to find the signals of interest will have been found. For each of these there
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is a set of signals associated with it which must be known in order to to calculate the 

desired signal. If all of the associated signals are known for any of these 1 component 

propagation paths then the algorithm is stopped here and this path is used as the 

‘best’ way of finding the signal. If, on the other hand, not all of the associated signals 

are known for any of the paths, the algorithm proceeds to find all the possible ways 

of finding the desired signal by propagating through two components, and then three 

and four and so on until the first complete path from known signals to the signals of 

interest is found.

The possibility for the number of paths under consideration in the above algorithm 

to explode is great unless some precautions are taken, and even then it is still quite 

possible for the number of paths under consideration to be very large, although from 

a practical point of view, this is unlikely to become overwhelming as will be explained.

The first condition is that all paths which descend a level of time should be ignored 

unless there is no alternative route. This prevents the algorithm from traveling down 

a path which just runs backwards in time adinfinitum. Also, it means propagation 

stays in the current period of time and uses as many of the current measurements as 

possible.

The second condition is to always remove similar paths, i.e. those paths which 

contain the same constraints but are in a different order.

An optional condition, that is used for finding the outputs of the system by 

following the causal chain of components as described in section 4.2.4, is that only 

paths which travel backwards through causality can be followed. This will find which 

signals caused the values of the system outputs.

The only way in which the number of possibilities could become overwhelming is 

if a large system is being considered, which has many components which have more 

than two connections (ie number of inputs -f number of outputs > 2), the system has
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a large number of states and there are few sensors on the system. If this was the case 

then it would probably be fair to say the system has too few sensors to be able to do 

very much at all, and attaching more sensors would not be unreasonable.

In summary, this algorithm can be used with

1. a bond graph model of the system,

2 . a specification of signals or parameters which are unknown and are of interest,

3. a number of signals which are known,

4. the parameter values (except for those that are of interest).

The algorithm will then find the shortest route from the known to the unknown 

values, once it has done this it will output a list of the constraints which are on the 

path, all of which must be satisfied. This can then be put into a symbolic equation 

solver to produce an equation which gives each of the unknowns as a function of the 

known signals and the known parameters.

4.5 Software

In this section an outline of the software which has been developed will be given. 

This will look at the overall way in which various software modules are used to break 

down the problem of automatically generating a specific fault detection and diagnosis 

application for a particular system. The flow of information between these will also 

be examined.

The software is divided into two areas. There is some software which is used 

off-line. This is used to analyse the system to be monitored and generate the actual 

fault detection and diagnosis software for the system. This automatically generated 

software then forms the on-line software which can be copied to the computer which



CHAPTER 4. CONSTRAINT PROPAGATION IN D YNAM IC SYSTEM S . 81

is to perform the actual detection and diagnosis, and is then compiled ready for use. 

These are now examined in a little more detail.

4.5.1 Off Line Software

Figure 4.9 gives an overview of the off-line software.
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DIAGNOSIS 
ALGORITHMS

.SPECIFIC SYSTEM 
FUNCTIONS

UNIVERSAL FAULT 
DETECTION AND 
DIAGNOSIS 
ALGORITHMS

FAULT 
DIAGNOSIS TOOL

Figure 4.9: Overview of the off line software.

This begins with a bond graph model of the system, which is the representation 

of the system as given by the system modeller/user. The constraint propagation 

algorithms, described earlier, are then used to find which component relations and 

sensor measurements are needed to identify various system signals and component 

parameters. This information is then passed to a symbolic equation manipulator 

which repeatedly takes each set of relations, solves them (if this is possible) and stores 

the result. These system equations are then incorporated into C + +  syntax functions 

which are combined with the universal fault detection and diagnosis algorithms to
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yield a complete fault analysis tool specific to the system.

4.5.2 On Line Software

The overview of the on-line software is shown in figure 4.10. From the system that is 

being monitored, measurements are taken at regular intervals from different sensors 

attached to the system. This data is then passed to the fault analysis tool.
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Figure 4.10: Overview of the on line software.

The on-line software firstly waits for a fault to be detected and then fault 

hypotheses are tested to see which best fit the new behaviour of the system. The 

results of these individual hypothesis tests are then used, to look at sets and subsets 

of multiple fault hypotheses to determine which are mostly likely to be correct. The 

results are then presented to the operator.

Sum m ary

The software is divided into two sections, off-line software and on-line software. The 

off-line software automatically generates the code for the on-line software. In the 

on-line situation, the system is monitored, waiting for a fault to be detected. After
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this, hypotheses are tested to find how well they fit the new behaviour of the system. 

The results of this are then extrapolated to the other hypotheses and presented to 

the user.

4.6 Prefiltering M easured Signals

The effects of noise (see figure 3.19.D) on the measurements from the system which 

is being monitored can severely degrade the accuracy of both the fault detection and 

diagnosis algorithms. There are a number of steps which will be taken to reduce these 

effects, most of which will be discussed in chapters 5 and 6 . Here an initial step in 

reducing the effects of noise will be discussed, this works by attem pting to reduce the 

noise which is present in measured values received from the sensors attached to the 

system. Alternatively, a separate prefilter could be used.

Firstly what are the requirements? If multiple time period models of a system are 

being employed, then to use it there must be data from more than one time period 

available. There must be the current value from the sensor, and a number of previous 

values. This is required for each sensor on the system. So suppose an n time period 

model were being used, the last n values from each sensor would be needed, and it is 

desired to reduce the presence of noise in these values.

This is done in two steps, first of all a note is made of the fact that it is not 

actually necessary to use the current measurements. To explain, suppose samples 

are taken every ^ th of a second. These measurements could be stored in a first in 

first out buffer of, for example, ten samples long. It is possible to then regard the 

‘current’ value from the sensor as the value coming out of the buffer. This will mean 

that the model is in fact |  a second behind the real situation of the system. The 

advantage of this is that there is a value from the sensor which can be regarded as the 

current value, and there are also ten readings from the sensor which can be regarded
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as the future values which will come from the sensor. It is now possible to look at 

the past values from the sensor, look at the future values from the sensor and look at 

its current value, decide how the values are behaving in general and adjust the values 

of sampled data so tha t it conforms to this general behaviour, and thus reduce the 

noise in the measured signals.
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Figure 4.11: Fitting a parabola to a set of data.

To do this, the current value from the sensor is taken along with a number of 

future readings and the same number of past readings, then a ‘best fit1 parabola is 

made to this series of data points[73], and instead of using the actual values of the 

data, the corresponding values from the parabola are used. A typical situation is 

shown in figure 4.11. The dashed line represents the value measured by a sensor, the 

‘x ’s are the actual sample values. The full line is a best fit parabola to the data. The 

‘o’s are the corresponding values on the best fit parabola. The sum of the square of 

the error between each measurement and each corresponding value on the parabola
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has been minimised. This parabola is the least squares best fit parabola. It can be 

clearly seen that in this case the quality of the data  will be increased by using the 

points from this parabola rather than the actual data points.

If a three tim e period model of the system is being used, then the data from the 

parabola (marked ‘o’) from the times labelled 0 , - 1  and —2 would be used. That is 

the current data value and the two previous ones to it.‘
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Figure 4.12: A poorly fitting parabola.

Figure 4.12 shows another situation where again the actual data is the dashed line 

and the best fit parabola is the full line. Here there appears to be little noise on the 

actual data, but the parabola fit is poor, especially around the centre of graph which 

is the area of most interest. The error between the points at T  = 0 is approximately 

6 units. There are number of possible ways in which this can be improved. Firstly, if 

it is expected tha t a measured signal will have quite a few sudden changes in value, 

then it may be more appropriate to use a smaller set of data  to fit the parabola to. In
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figure 4.13 same data is shown, but this tim e the parabola is only fitted to ±5  units 

of T  = 0. The error at T  =  0 is now approximately 4 units. This has reduced the 

error but the parabola is still a poor fit.
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A second option is to put a limit around the parabola, and any measured data 

points which are outside this limit are assumed to be more correct than the parabola. 

This is shown in figures 4.14 and 4.15. Figure 4.14 shows the same situation but 

with a 5% band placed around the parabola (shown by the two dotted lines). If the 

measured data point is inside this limit then the point from the parabola is taken, 

otherwise the actual measured point will be taken. The result is shown in figure 4.15, 

the dotted line is the actual data and the full line shows the values tha t would be 

used in the analysis algorithms. This full line is simply made up from parabola points 

( — 10 to —4,3 and 7) and actual data points (—3 to 2,4 to 6 and 8 to 10). The error 

at T  = 0 is of course zero, but it is likely tha t there will be more noise present now
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Figure 4.13: Using a smaller data set for fitting.
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tha t the actual measured data values are being used.
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Figure 4.14: A 5% accuracy limit around the parabola.

The number of data points used for fitting should depend on the expect character­

istics of the signal to be measured, i.e. for high noise, no sudden changes situations, 

use many data points to fit the parabola. For low noise and sudden changes in mea­

surements, if possible use the unfiltered data or if some noise is present use just a 

small number of data points to fit the parabola. High noise and sudden changes in 

signal levels is the hardest case to deal with. If the m easurements from a sensor have 

these characteristics, then it may be better not to use th a t sensor at all, but instead 

find another nearby location and take a measurement from there.

There should always be a limit put on the accuracy of the parabola. If the expected 

noise content of signal is 2%, then a similar limit should be put on the parabola, if 

the actual data is outside this limit then it is probable th a t the actual data  is more 

correct than the parabola and this value should be used in preference. This will
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Figure 4.15: The resulting data for use in the analysis algorithms.

prevent sudden, possibly unexpected changes in the characteristics of a measured 

signal from going unnoticed by being filtered out.



C hapter 5 

Fault D etection  in D ynam ic  

System s.

The objective of fault detection1 is quite simply to be able to tell the difference 

between a system which is working correctly, and one which is misbehaving. By 

misbehaving it is meant that it is not performing to its specifications, within some 

predefined tolerance. “A fault is to be understood as a nonpermitted deviation of a 

characteristic property which leads to the inability to fulfill the intended purpose. ” [41]

INPUTS OUTPUTS

Input
Measurements

Output
Measurements

Fault Detected?

Fault
Detector

The
System

Yes/No

Figure 5.1: The method for detecting faults.

The general appearance of fault detection methods is shown in figure 5.1. [12]

1The separate issue of fault diagnosis is treated in chapter 6.

89
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[10] [8] [11] [36] [68] [19] [41] [63] [64]. The inputs to the system and its outputs 

are measured, and from these checks are made as to whether the system is behaving 

correctly. There are a number of different ways for performing the fault detection, 

depending on the type of system, and the required sensitivity of the fault detector [1] 

[46] [36] [8] [21] [71] [52],

The detection method is a model based approach using structure, function[8] [71] 

and causality [45], and so in the box titled ‘Fault Detector’ a comparison will be made 

between these measured signals and the corresponding signals from a model of how 

the system should be behaving. Discrepancies between the expected behaviour and 

the actual behaviour which indicate the presence of a fault will be identified.

Although the concept of fault detection is straight forward, there are a number 

of issues which must be considered and catered for to produce a usable method for 

detecting faults in dynamic systems. The objectives for the fault detection algorithm 

are:-

1. The fault detection algorithm should be made as general as possible. It is 

desirable that the fault detection algorithm is usable on as wide a range of 

systems as possible with the minimum amount of modification, and preferably 

none.

2. The fault detection system should be robust with respect to false alarms. In 

general there will be noise in the measurements taken from the system which 

is being monitored, also the parameters in the model of the system will not 

be exactly the same as the real systems parameters, but will be just estimates 

of them. In the face of this uncertainty the potential for false alarms is great. 

Noisy measurements and model uncertainty need to be catered for. [13] [14] 

[19] [63]

3. The fault detection system should be as sensitive as possible and detect small
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changes in the system. This is in opposition to 2, above. It is desirable 

for the fault detection algorithm to detect small faults, but obviously this is 

limited by the amount of uncertainty in the model parameters and the system 

measurements. The system must therefore not be so resistant to false alarms 

that genuine faults of a significant size are ignored.

Compromise is required between all three of the above. If a fault detection method 

for one specific system was being designing, then 2 and 3 could be tailored for that 

system. Objectives 2 and 3, the balance between sensitivity and false alarms, are 

clearly in conflict. These areas will now be looked at in more detail and some solutions 

for problems which arise will be presented.

Firstly, a fault is defined, and the causes of false alarms are identified. How to 

monitor a system will be looked at, that is, how the model is made to follow the 

current state of the system, so that the model is a reflection of the real system. This 

will involve estimating states, and will require some filtering to reduce the effects of 

noise. Our model will never be 100% accurate, and so it is necessary to take into 

account the effects of modelling errors in the monitoring system. Finally, one method 

for comparing the outputs from the real system with the outputs from the model is 

looked at, and this comparison is used to determine whether a fault is present.

5.1 D efinition o f a Fault.

The definitions of a fault that is used here is given in the following two statements. 

The first one identifies three different types of fault, and the second one indicates the 

difference between a fault in a system and a fault in a component.

1. A fault is defined as being the change in the parameter o f a component, or a 

change in the structure of the system or a fundamental change in the behavioural
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characteristics of a component.

2. I f  more than one component has failed then this is a multiple fault i.e. one fault 

in the system which is made up of the failure of more than one component.

It should be noted that there is a great difference between detecting a fault and 

diagnosing it. Detecting means realising that something is wrong and diagnosing 

involves finding what has gone wrong.

Statement 1 defines what types of faults are to be d e te c ted . Unfortunately all 

of these types of faults cannot be d iagnosed  with the methods used here, as will 

be discussed fully in chapter 6 . Whenever a fault occurs, it is required to detect a 

fault as being present in the system, although sometimes it will not be possible to 

say exactly what is wrong.

Multiple faults can be caused by a chain reaction effect i.e. one component fails, 

which quickly causes another one to fail and so, or they may be coincidental, two or 

more components just happen to fail at round about the same time. In either case, 

the ability to detect these faults and if possible diagnose them is required.

When a fault occurs in the system which is being monitored, it will no longer 

behave in the same way that the model of the system does. This fact is used to detect 

the occurrence of faults. There are, however, some other ways in which behavioural 

differences can arise.

The actual cause of discrepancies between the real system and the model of the 

system could be due to any one of the following.

1. An unmodelled structural part of the system which has failed.

2. Unmodelled characteristics of the system which were thought not to be 

significant turn out to be significant.

3. Poor estimates of the parameters in the system model.
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4. Excessive noise in the system or the measurements taken from the system.

5. Estimates of the system’s states are poor.

6 . The parameter of one or more components has changed.

7. The fundamental characteristics of a component have changed.

Only the occurrence of 1, 6 and 7 above are to be detected, as these axe the only 

ones which are caused by a failure within the system. Although in the case of 1 and 

7 diagnosing the cause of the fault will not be possible, as changes in the structure of 

the system or fundamental characteristics are very difficult to diagnose2 and are not 

catered for here. It is desired that 2, 3, 4 or 5 do not cause a fault to be detected as 

these are not caused by a fault in the system, and are thus false alaxms.

In the case of 2 & 3, it may be possible to go back and remodel part of the 

system or improve the parameter estimates to prevent these from causing a fault 

to be indicated, which will obviously take some effort. Alternatively, the detection 

algorithm could be informed that the system is not well known, this will decrease 

the sensitivity of the detection algorithm but will help prevent false alaxms due to 

modelling errors.

In the case of 4, if the measurements contain noise then the detection algorithm 

should be able to reduce its effects and prevent discrepancies between the systems 

outputs and the model’s outputs due to noise from causing a fault to be indicated. 

To do this without excessively reducing the sensitivity of the detection algorithm, the 

detection algorithm needs to be informed of the expected noise content of measured 

signals.

When monitoring a system first starts, the estimates of the system’s states are 

likely to be poor, but these estimates should improve with time. It is necessary to be

2unless prior knowledge about the physical structure of the plant is used.
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aware of how accurate the state estimates are likely to be when a fault is about to 

be indicated. If the discrepancy between the actual system and the system’s model 

is within a limit imposed by the current accuracy of the state estimates, then the 

discrepancy can be accounted for as being due to poor state estimates, rather than 

the presence of a fault. Doing this will reduce the chances of 5 from above causing a 

false alarm.

5.2 M onitoring a System .

The first thing that must be done before a fault in a system can be detected is to 

find out what state the system is in, and track the systems behaviour using its model 

[41] [19]. This involves using the measurements of its inputs and outputs to find the 

value of the states in the system.

The fact that the model’s parameters (and possibly its structure) will not be 100% 

accurate must be taken into account, and that the measured signals will contain noise. 

This means that the state of the model will only approximately reflect the true state 

of the system.

The idea is that using the model and the signals measured from the system over a 

period of time, it is possible to predict how the system should be behaving, providing 

that the system is not faulty. The measured outputs are assumed to be correct given 

the measured inputs. The model and the measured inputs are then used to generate 

expected values for the outputs. The expected outputs and the actual systems outputs 

can then be compared. If there are significant discrepancies then the conclusion that 

the system is faulty is made. While this is being done the outputs must continue to 

be measured to correct any errors in the model’s states which may arise due to the 

approximate nature of the model. To correctly monitor the system, the states of the 

system need to be estimated, and it is important to be aware that the parameters
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are inaccurate and the measurements contain noise [63]. These areas will now be 

examined in turn.

5.3 Initial E stim ate o f States

Here a state estimation method will be presented based upon propagating signals from 

the system’s inputs and outputs to its states and hence finding their value. For the 

purposes of clarity, it is assumed that the model parameters axe completely accurate 

although the measurements do contain noise. The way in which states are estimated 

will be illustrated with an example.

Figure 5.2. A show a simple electrical circuit. Vj is the voltage input to the system 

which is being measured and which varies with time. V r  is the voltage across the 

resistor (and inductor) which is also being measured. From these two measured 

voltage signals it is required to estimate the two states in the circuit. Figure 5.2.B 

shows a bond graph representation of the system and figure 5.2.C shows the equivalent 

block diagram. The states are the charge on the capacitor and the flux of the inductor, 

these can be thought of as being the signals V c  and 1 l on figure 5.2.C respectively.

Figure 5.3 shows measurements of the applied voltage and the resulting voltage 

across the resistor, these measurement have approximately a 10% noise to signal ratio. 

The components had the parameters shown in table 5.1 and samples were taken 40 

times per second. These measurements are firstly used directly without the prefilter 

described at the end of chapter 4, and one method of estimating the states from these 

measured signals will be looked at.

Component Parameter
R 20 n
C 50 mF
L 5 H

Table 5.1: The component’s parameters.
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Figure 5.2: Estimating the states in a simple electrical circuit.
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A) The measured value of the applied voltage
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Figure 5.3: The applied voltage and the voltage across the resistor.

Firstly, just a two step model of the system will be used, together with two 

observations at a time to find values of the two states. The results of this are shown 

in figure 5.4. 5.4.A shows the estimate of the state of the capacitor (Vc in figure 5.2.C). 

The full line is the true value of the state, and the dotted line is the estimate obtained 

from using the measured signals. The estimate does contain noise, but the estimate 

always remains ‘close’ to correct value.

Figure 5.4.B shows the estimate of the state of the inductor, (ljr, in figure 5.2.C). 

This estimate is very poor because of the need to differentiate the capacitors state in 

order to calculate it (as its initial state is not known). The estimated value now only 

vaguely appears similar to the true value. Clearly, using this kind of estimate for a 

state will produce vary large errors if it were used in further calculations. To improve 

the situation a Kalman filter like approach is taken to strike a balance between the 

noisy but essentially correct value for a state produced by propagating backwards
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A) The estimate of the capacitors output
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Figure 5.4: State estimates without any form filtering.

from the outputs, and a relatively noise free but not quite correct value for a state 

produced by propagating forwards from the inputs and using the previous values of 

state estimates [79] [63] [67].

Figure 5.5. A and B show a second set of results but this time a filtering technique 

is employed. At the beginning the estimates are still poor, but they quickly improve 

and become very close to the true values of the states. The estimate of the inductors 

state takes a longer period of time to closely approximate the true value than for the 

capacitor, but it can be seen that the effects of the noise are drastically reduced.

The filtering was done in the following way. There are two ways to calculate 

values for the states, one is to use a number of observations and the same number 

of system models joined together, and then essentially propagate the signals from 

the observations throughout these models and so find values of the states for the 

current time period. This is what was done for figure 5.4. The problem with this
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Figure 5.5: State estimates with filtering.

is that noise is amplified when signals are propagated backwards through a dynamic 

component, although the value for the state will be correct, but with the addition 

of a large amount of noise. The second method is to use a 1 time period model of 

the system and use only the system inputs and the previous value of the states, but 

not the system outputs. The inputs and previous state values are then propagated 

throughout this 1 time period model and the value of the states and the outputs for 

the current time period are found. The values for the outputs calculated here will 

be used later, these values are estimates for the outputs based on the inputs and 

state estimates. The problem with this is that the initial value of the states need 

to be known, also if the initial states are known but are not accurately known, then 

the current values for the states will also be inaccurate, however noise will not be 

amplified.

The filter method used, combines both of these, and it is based on the following
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line of reasoning. At the start of the monitoring process it is not known what the 

value of the states may be, so a multi-time period model of the system is used to 

find values for the states. These values will contain high levels of noise, but at least 

now we have some idea, although it may be poor, of what the states are. For the 

next time period the same thing can be done, but the state calculated at the previous 

time step and a one step model of the system can be used to calculate another set 

of values for the states during the current time period. This second set of values will 

not suffer from amplified noise, but will be inaccurate because the initial values for 

the state were inaccurate.

Set A. The states from the multi time period model.
100%0%

S>

Tim e

100% o%
T

Set B. The state from the single period model.

Figure 5.6: The ratio between the 2 set of values for the states.

For each time period there are now two sets of the values for the states, one 

from a multi-time period model, and one from a single time period model using the 

calculated states from the previous time step. What is done now is to combine these 

two sets of values for the states to produce a ‘best guess’ of what the states are for the 

current period. These states are combined in the following way. The value for state 

A from the first set of values and the value for state A from the second set are taken, 

and basically a value which is between these is chosen, but the way in which this
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value is chosen is very important. At the start of the monitoring process values which 

are close to the set of values obtained from the multi-time period model are chosen. 

As time progresses values which are closer to the values from the single time period 

model are taken. This third set of values for the states will be used in the single time 

period model as the initial value of the states in the following time interval.

Figure 5.6 shows the method which is used for calculating the ‘best guess’ for 

the state values. The value of the state for the current time period is given by 

state =  P a  x  A +  P b  x  B ,  where A is the value of a state from a multi time period 

model, B is the value of the same state from the single time period model, and Pa 

and Pb are given by the graph in figure 5.6. Note Pa +  Pb =  100%. A diagram 

of the scheme of all of this is shown in figure 5.7. The ‘current state estimates’ are 

saved and used during the next time period as the ‘state estimates from the pervious 

time period’. The function shown in figure 5.6 which was used for this example was, 

Pa =  1 t  > where T is the number of time periods that have passed since monitoringl+io N

began, and N is the expected noise content of the measured signal, in this case 0.10 

as the noise to signal ratio is approximately 10%. P b  =  1 — P a -

The estimated output (mentioned earlier) in the R-L-C circuit example is shown 

in figure 5.8. Comparing this with figure 5.3.B The measured output and estimated 

output are seen to be essentially the same, the only difference is caused by noise.

5.3.1 In itial Param eter Accuracy.

In any model of any system there will always be some approximations made when it 

is produced. This may take the form of unmodeled dynamics and components which 

are considered insignificant when compared to the rest of the system [45] [33] [23]. 

There will also be some error in the parameters of the components that are modelled. 

Obviously the task of the modeller is to reduce these approximations to a minimum,
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Figure 5.7: The scheme used for estimating the states.
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Figure 5.8: The estimate of the systems output based on the inputs and state 
estimates.
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but they will always be present. If a system is to be monitored over a long period of 

time it is necessary to realise that the model is not perfect. This is so that a false 

alarm is not caused simply by a small modelling error being amplified over a long 

period of time thus appearing to be a large discrepancy with the real system.

In the R-C-L circuit considered earlier, lets suppose the system has the parameters 

shown in table 5.1, but the model is incorrect, the inductor in the model has L =  6 

rather than 5. This represents a discrepancy between the system and the model, but 

this should not cause a fault to be detected as it is assumed that this is a modelling 

error and not a fault.

Figure 5.9 shows the results if it is assumed that the model is 100% correct. 

The full lines are the actual values (without noise), and the dotted lines are the 

estimates. As time progresses the noise in the state estimates reduces, but there is 

an offset compared to the actual value of the states, also the estimated output is 

offset from the measured output. This can be enough to detect a fault because the 

difference between the actual and estimated outputs cannot be accounted for by just 

the presence of noise: something else must also be present i.e. a fault.

This is coped with by informing the state estimating algorithm from the previous

section that the model is not perfect and it is given an accuracy index n of between

1 and 0 . 1 meaning the model is 100% correct, and 0 meaning the model is completely

wrong. Then, rather than as before (see figure 5.6) where the values for the state

estimates eventually become 100% of the single model states, a limit is put on this

of n x 100%. e.g. if the model is assumed to be 95% correct, then n =  0.95 and

the state estimates will eventually consist of 95% of the values from the single time

period model and 5% from the multi time period model. Now P^ = n x •■■■ T -y- and1+10^

P b  =  1 — P a - N o w  some fraction of the states derived from the outputs will always 

be present in the estimates of the states. If the states start to drift away from their
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A) The estimate of the capacitors output
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Figure 5.9: The effects of not taking into account modelling errors.



CHAPTER  5. FAULT DETECTION IN DYNAM IC SYSTEMS. 105

correct values because of a modelling error, this will help to move them back to their 

correct values. This does mean however that slightly more noise will appear on the 

state estimates.

Figure 5.10 is the result when the accuracy index n is set to 0.93 for the R-L-C 

circuit. This means an assumption that the model is about 93% accurate has been 

made. These graphs can be compared directly with those in figure 5.9, it can be 

seen that the noise content of both the state estimates and the output estimate has 

increased (although figure 5.10.B is still vastly better than the unfiltered version in 

figure 5.4.B), the offset effect has been removed and the discrepancies in the estimated 

and measured output can be accounted to noise alone.

It should be noted that in general the offset may not necessarily be removed 

from the state estimates, this depends upon which parameters in the model have 

the largest error. However it will always be possible to remove the offset from the 

estimate of the output. This is because the states are a function of the inputs, 

outputs and parameters, and the outputs are a function of the inputs, the states and 

the parameters. This means that any modelling errors or errors in the parameter 

estimates will cause state estimates to be incorrect. However, when the values for the 

states are propagated to the outputs the same modelling errors will be passed through, 

but in the opposite direction. This will cause modelling errors to be cancelled out 

when the output estimates are made. This is important because if output errors due 

to known model inaccuracies can be reduced, then false alarms due to this are also 

reduced.

5.4 D etecting the Occurrence of a Fault.

In this section a decision is made as to whether or not there is a fault present in 

the system. As described in the previous sections the values for the states can be
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Figure 5.10: Taking modelling errors into account reduces false alarms.
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estimated and these can be used to produce an estimate for the outputs from the 

system. Modelling errors can also be inhibited from producing significant errors in 

the output estimates. What is done here is to look at these estimates of the system’s 

outputs and look at the actual measurements from the real system and compare them. 

If they are significantly different, then a fault is indicated as having been detected.

Before this can be done, significant differences need to be defined and a decision 

about how to cope with very small signals or very large signals needs to be made, as 

these can present problems.

Firstly it is desirable to be able to use this for a wide range of system, where a 

system’s outputs may typically be of the order of 10-3 and another system’s outputs 

may be around 106 for example. The detection method should work equally well 

when handling either of these sizes of numbers. An error index is calculated which 

indicates how well the measured and estimated outputs match each other. The error 

index will have a value of zero if the actual and estimated outputs are identical, a 

value of 1 or greater indicates a complete mismatch between the outputs and their 

estimates. For a system which has noise/signal ratio of 0.1 (i.e. 10% noise), then 

typically this error index is expected to fluctuate between about 0.08 and 0 .12.

To calculate such an error index first of all the measured outputs and actual 

outputs are compared by finding the absolute percentage error between these values. 

This will allow the use of a standard range of numbers from 0% to 100% or there 

abouts. The results of doing this for the R-C-L circuit are shown in figure 5.11. The 

measured output can be seen in figure 5.3.B and the estimated output in figure 5.10.C. 

Figure 5.11 is given by x 100.
°  °  J M easu red , o u tp u t

The first thing that is noticeable about the results in figure 5.11 is the five peaks 

which indicate a very large percentage error. The position of these corresponds to 

the times when the measured output crosses zero. At these positions the true value
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Figure 5.11: The difference between the measured and estimated output.

for the output is small, but the noise levels are high in comparison i.e. the true signal 

is being swamped by the noise. What must be realised here is that values for the 

estimated output and the measured output are virtually meaningless as they consist 

mainly of noise. To get around this problem a limit is introduced on the magnitude 

of each output, when the value of the output is below this limit then it is omitted 

from the error index calculation. Also, when the value for an output is above the 

limit but is still close to it, its significance in the error index calculation is reduced. 

The error index for each output at any one period of time is given by the following 

equation. It is based on the same lines as the recursive least squares algorithm used 

in parameter estimation, except here the ‘parameter’ is the output error ratio [73].

... +  E 3 .F2 .F1 .F0 .W3 +  E 2 .E1 .F0 .W 2 T E\.Fq.W\ +  Eq.Wq 
... +  O3.F2-F1.F0.W3 d- O2.F1.F0.W2 +  0\.Fq.W \ +  Oo-Wo

Where

n the subscript for each variable is the number of time periods backwards from the 

current time, i.e. n = 0 is the current time, n =  1 is the previous time step etc.

En is the absolute size of the error between the measured and estimated value of the 

output. This corresponds to figure 5.11.

Absolute Percentage Error"" r..........T“ 1---  - ■ 1 ---- 1---------1— --1— ...

A/*
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On the absolute value of the measured output.

Wn is the weight associated with the magnitude of the output.

Fn is a forgetting factor calculated for each time period n.

If the output is below the limit described above, then Wn is zero. If the output is 

less than 4 x lim it, then Wn = 1 — *‘e’ ^  ou^Pu  ̂ 1S Jus  ̂ above the

limit then Wn is slightly larger than zero. As the output moves away from the limit, 

Wn increase to 1. If output > 4 x lim it then Wn = 1.

A value of 0.98 is used for F  when On is greater than 4 x lim it , F  = 1 when On is 

less than lim it , and F = 1 — 0.02 x Wn when On is greater than lim it but less than 

4 x lim it. This means that when the measurement of the output is small none of the 

previous results are forgotten (since Fn =  1), and the current result is not included 

in the error index (since Wn =  0). If the measurement is a good high signal then 

Fn = 0.98 and Wn = 1, i.e. a little is forgotten about the previous results and the 

current results are used fully.

The error index can be thought of as the percentage error between the measured 

and estimated output based on the current and previous time periods, and ignoring 

small measurements from the output when noise levels can be very high in proportion 

to the signal.

If the system has more than one output then the error indices for each output 

are simply added together and divided by the number of outputs. This is then an 

approximate measure of the average percentage error of the outputs.

Figure 5.12 shows the error index (the full line) for the R-L-C example. Here 

the limit below which measurements are ignored is 1.5 volts. This figure shows the 

contrast to the actual percentage error for each time period shown in figure 5.11. The 

peaks have disappeared and the value of the index remains fairly constant at between 

about 10 and 18 %. The dotted line is the limit within which the error index must
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Figure 5.12: The error index and the error index limit.

stay if there is no fault in the system. If a fault develops the error index will increase 

and go above this dotted line, and a fault is then detected. The error index is allowed 

to go above this limit briefly. This is because step changes at the inputs can produce 

changes in the expected output at slightly different times to the actual outputs due 

to exactly when samples from the system are taken. This produces step increases in 

the error index, but is not caused by the presence of a fault. Therefore a fault is not 

detected if the error index is larger than the error index limit, and the error index is 

decreasing. This prevents false alarms due to step changes at the system inputs.

The error index limit starts at 100% at the start of the monitoring process and as 

time increases it reduces to l | x  the expected noise/signal ratio on the measurements 

(expected noise for the R-L-C circuit was 10%). This is because at the start of the 

monitoring process the states are not accurate so the estimated output will not be 

accurate and large errors can be produced, but as time continues the state estimates 

improve as do the estimated outputs and therefore the error index reduces unless 

a fault is present. Assuming that there is some measurement noise, then even if a 

perfect estimate of the outputs without any noise is obtained, the measured outputs 

will still have noise present and a percentage error equivalent to the noise/signal ratio 

will always be obtained.

A similar graph to this is shown in figure 5.13, but here at T =  2.5 secs, a fault
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Figure 5.13: A fault appearing in the R-L-C circuit.

develops, C changes from 50mF to 67mF. The top graph shows the measured output 

(the full line) and the estimated output (the dashed line). The graph of the error 

index is shown below this. The results are that the error index can be seen to be 

higher than before at T=3 seconds (figure 5.12, with no fault present). Because the 

output level is fairly low from about T=3 to T=5, there is little change in the error 

index, after T =  5 the output error is approximately 20%, and at T=6.7 this becomes 

larger than the error limit and a fault is detected.

Figure 5.14 shows another example. Here C changes from 50mF to 333mF. A 

much larger discrepancy is seen in the estimated and measured output, and a larger 

increase in the error index is also obtained. The fault will be detected at T=5.5 

seconds.

In both of these examples the detection of the fault was delayed for two reasons. 

Firstly, soon after the fault occurs the measurements from the system are quite small,



CHAPTER 5. FAULT DETECTION IN DYNAM IC SYSTEMS. 1 1 2

The measured and estimated outputs

I I I I J^'-

CO

O>

-10

5 90 2 3 4 6 7 81
Time

The error index and its limit■r   .. —,----------------1 I100

8
b

Oh

Time

Figure 5.14: A fault appearing in the R-L-C circuit.

the noise content of these measurements is therefore higher (in proportion to the signal 

level), and so less attention is paid to errors as they are assumed to be from excessive 

noise. Secondly, when the fault occurs the assumption that the state estimates are 

not very good is still being made, and so an error in the outputs can be expected to be 

caused by this. As time progresses the certainty about the state estimates increases 

and the output error can no longer be explained by errors in these estimates. There 

must therefore be a fault in the system as modelling errors (see earlier) are inhibited 

from causing a fault to be detected, large measurement noise in the signals is inhibited 

from causing a fault to be detected and the state estimates should now be good.

If the system had been monitored for some time before the fault occurred, 

then the error index limit would already be at a low level and a fault would be 

detected much quicker. Obviously the key to this is deciding what the limit is for 

‘small’ measurements. This should be round about (2)x (the typical value for the
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measurement) x (the expected noise/signal ratio). Any measurements below this can 

be expected to contain a relatively large amount of noise.

An area which has not been specifically covered is that of components which have 

slowly changing parameters. With the methods described above, these would at first 

not be detected, as the slight change in the system behaviour which they would cause 

could be accounted for by modelling errors and measurement noise. However, as the 

parameter value moves further from its original value, the change in the system’s 

behaviour will increase and the error index measurement will gradually increase. 

When the error index exceeds its limit a fault will be indicated.

Assuming that it is possible to identify this component and find a new value for its 

parameter, then this new value can be used to modify a controller for example and it 

can also be inserted into the model of the system, so that the model is correct again. 

Monitoring the system can then restart. If the parameter is still slowly moving, then 

at some point in the future it will cause another fault to be detected. Of course, the 

operator should be informed about the situation and he should make the decision 

about what action to take.

Finally, it was stated at the beginning of this chapter that the measurements used 

had not first been passed through the prefilter described at the end of chapter 4. This 

was to demonstrate the abilities of the filtering described in this chapter without the 

influences of any other filters. For completeness the results discussed earlier with 

those obtained when prefiltering is used will be compared.

Figure 5.15. A shows two error indexes. The dotted one is the one seen in figure 5.12 

and is the error index without prefiltering when no fault is present. The full line is 

the error index when prefiltering is used. It can be seen the prefiltered error index is 

lower than unfiltered one and it is more ‘even’. This means that the possibility of a 

false alarm due to noise is further reduced. Figure 5.15.B shows the same two error
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indexes but this time for the fault at T=2.5 secs when C changes from 50mF to 333mF 

discussed earlier (figure 5.14). Here the prefiltered error index remains at a lower level 

until the size of the output signal increases (and its proportional noise contents drops), 

then the error index rises sharply. The detection time is slightly increased, but this 

is due to the lower level of the error index before it became apparent that a fault 

was present. By using the prefilter the certainty about detecting a fault is increased, 

since the error index is less likely to increase above the error limit because of the 

measurement noise.
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Figure 5.15: Comparing error indexes when using a prefilter on the measurements.

5.5 Summary.

Using the methods described above the occurrence of false alarms due to noisy 

measurements, modelling errors and poor state estimates can be prevented. This



CHAPTER 5. FA ULT DETECTION IN D YNAM IC SYSTEM S . 115

involves calculating the states in two ways, one way based on the inputs and another 

way based on the outputs. These can then be combined in different proportions to 

find an estimate of the states. The proportion of each that is used determines the 

size of modelling errors that can be coped with.

Obviously, if modelling errors are large, then it will not be possible to detect small 

faults i.e. small changes in the parameter of one component. This is also true if noise 

levels are high. However, if a noisy system which is not well known develops small 

faults, then there is no way that detection by any means would be possible. In any 

case parameter changes of this size would be likely to have an insignificant effect on 

the behaviour of the system. If it was desired to detect small faults in these kinds of 

system then there would be a price to pay in that many false alarms could arise.



Chapter 6

Fault D iagnosis.

In this chapter the diagnosis of faults will be looked at, after first ascertaining that 

a fault is present. This will be approached from a similar angle to that of Reiter 

[68], except that it is not possible to implement his theory of diagnosis directly for 

dynamic systems. One of the main reasons for this is that his theory requires the 

use of a “theorem proved for the particular domain in which the diagnosis is to be 

performed. A theorem prover is essentially an algorithm which can check a multiple 

fault hypothesis1 against observations from the system and then report back saying 

whether or not the hypothesis was consistent with the observations.

In addition to finding the location of a fault, the size of a fault is also to be 

calculated. For example, not only should the diagnosis algorithm report that “pipe B  

is faulty” but also that “its effective diameter has changed from 0 . 1  metres to 0.062 

metres”. In this case possibly reflecting the fact that pipe B has become partially 

blocked.

For any particular fault which develops in a system, it is often possible to come 

up with more than one possible diagnosis, all of which are equally likely based on 

the observations from the system [8] [36]. The number of diagnosis can sometimes be

1A multiple fault hypothesis consists of 1 or more components which are considered to be faulty.

116
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reduced by making further observations, or it may be necessary to have more sensors 

on a system in order to differentiate between different competing diagnoses [11] [10] 

[68]. If it is not possible to obtain further information from either more observations 

or more sensors, then a number of valid diagnoses must be checked manually on the 

system itself. Even in this case, fault diagnosis can still be of great use. Narrowing 

down all of the possible faults on a complex plant to just a handful which need to be 

checked manually could be of great help in getting the plant operational again.

A further point to note is that since noisy systems are being dealt with, and 

the model of the system is not 100% accurate, it is never possible to say with 

complete certainty that a hypothesis matches the observations or that it definitely 

doesn’t match them. A generalised likelihood approach will therefore be adopted for 

determining how well a hypothesis matches the observations. A value of close to 1 

indicates a high likelihood that a hypothesis does match the observations and a value 

of about zero indicates a low likelihood of a correct hypothesis.

We will begin by looking at how to create a “theorem proved , as defined by 

Reiter, for the domain of dynamic systems, initially without the addition of noise or 

modelling errors. It is noted that the assumption that components which are behaving 

abnormally are consistent in their abnormality2 is useful, and doing this enables one to 

greatly increase the depth to which a faulty system can be investigated and increases 

the number of simultaneous faults which can be considered.

Following this it will be shown how noisy measurements affect this and the 

implications of modelling errors will be discussed. It is found that Reiter’s theory 

of diagnosis is not practicable, because of the real time, on-line, recursive nature of 

the fault diagnosis undertaken here. However, some of his work is utilised: subsets of 

multiple fault hypotheses are examined as are “conflict sets” to reason about whether

other hypotheses can be regarded as correct.

2i.e. the nature of the fault is constant and does not fluctuate
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How to find the most likely diagnoses will then be looked at, and some of the 

problems with implementing such a system, in real time will be examined. Some 

solutions to these problems will be proposed, most significant of which is a method 

of reducing the number of conflict sets to be tested, whilst maintaining the ability to 

diagnose the same number of faults. This significantly reduces the computing power 

needed, whilst not greatly degrading the diagnosis process for any real system.

6.1 Theorem  Prover for D ynam ic System s.

A theorem prover as described by Reiter [68], must be able take a system description, 

observations of that system, and a subset of those system components which are 

assumed to be behaving correctly. The theorem prover must then decide whether 

the observations of the system are consistent with the set of components behaving 

correctly. If the set of components is not consistent then this set is termed a ‘conflict 

set’ [9], that is, this set of components when considered to be behaving correctly is 

in conflict with the observations of the system.

Reiter summarised this as

SD  U  O B S  U  { - A B (Cl) , - A B (ck)} (6.1)

is inconsistent.

Where SD  is the system, O B S  are observations of the system, {c!,...,Cfc} C 

C O M P O N E N T S  and C O M P O N E N T S  are the components of the system. ->AB(cn) 

means component cn is not abnormal.

A correct diagnosis is then a minimal hitting set for all of the conflict sets. A 

hitting set, H , on a set of conflict sets, F , is a set whose intersection with each 

member of F  (i.e. with each conflict set) is not the empty set. A minimal hitting set 

on F  has no proper subset which is also a hitting set on F.
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A point which should be noted is that a conflict set is determined by considering 

a subset of components which are assumed to be behaving correctly, and which are 

in conflict with the observations. This does not make any assumptions about the 

components of the system which are not in this subset, i.e some of the components 

not in the subset may be behaving normally or abnormally, but this is not of concern 

at the moment.

This theory of diagnosis was derived with reference to ideal non-dynamic systems. 

Although it is valid for all domains of systems, there are a number of aspects of 

this theory which, when applied to dynamic systems, are not as straight forward as 

it would first seem. There are also a number of practical issues which need to be 

considered.

Equation 6.1 implies that it is only necessary to consider a subset of components, 

which is true if there are many sensors on the system being monitored. However, if the 

number of sensors is limited, as is true in many cases, then only considering a subset 

of components and ignoring the rest of them will lead to the situation where there 

is very little that can be determined about the system. For example in figure 6.1.a 

a simple system and two observations of the system are shown. Both of which are 

in conflict with the system’s description. If equation 6.1 is used directly as implied, 

then when the subset of components considered is {A, B, C}, it can be seen to be 

a conflict set. If set {A, B }  is considered, then the result is that it is not a conflict 

set. i.e. if A and B  are considered to be functioning correctly, and the behaviour of 

C is irrelevant, then the observations can be considered as being consistent (figure 

6.1.b and 6.1.c). This can be repeated with the sets {A, C}, {B, C}, {A}, {B} and 

{C}, and then there is only one conflict set {A, B, C}. This set has three minimal 

hitting sets {A}, {B} and {C}, and there are therefore three correct diagnoses of this 

system for these observations. So all that is known is that a fault in any one of the
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components A, B  or C would explain the observed fault.

A B

V:

Observation 1: Vj = 4, \(, -  34.

Observation 2: Vj = 3, V> = 27.

(a). The system  and two observations.

B

+2 x5
30  +

3 4

(b). Testing {A,B} for conflict with Observation 1,

B

+2 x5
2 5  +

2 7

/A  J " "

(c). Testing {A,B} for conflict with Observation 2.

Figure 6.1: A simple system consisting of components with parameters.

6.1.1 D iagnosing Faults in Param eterised C om ponents.

Doing this did not take advantage of all that could be deduced about the system. 

When Reiter[68], de Kleer and Williams [10] [11] were working towards this theory 

of diagnosis, they did so using paxameter-less components, they worked with binary 

gates and systems of adders and multipliers, i.e. each component had a function
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but no parameter. Here real, dynamic systems are being dealt with, and so some of 

their properties can be taken advantage of. Firstly, the actual way a real component 

operates is based on physical laws which do not change, so even if a component is 

behaving abnormally, it is unlikely to be behaving in a completely unrelated manner 

to i t ’s original behaviour. A fault in a component will therefore be assumed to be 

comparable with just a change in the value of its parameters. To further back this up, 

it is noted that if the behaviour of the component had fundamentally changed, then it 

is very difficult to try to find out its new fundamental behaviour. To summarise, the 

only diagnosis attem pted is in components, when the fault manifests itself as a change 

in the parameter of a component, and the new value of the components parameter 

can be regarded as being constant during the diagnosis process.

Reiters theory of diagnosis did not specify the need for evaluating a faulty 

component’s new behaviour. It will be seen later however that this is not only 

desirable from the point of view of knowing more about a fault, but it is also essential 

if the system is noisy and the model of the system is inaccurate. It is necessary to 

find out how faulty components are behaving (and therefore the new behaviour of the 

system as whole) in order to be able to say if a diagnosis is likely to be correct (i.e. 

to locate the fault). Assuming this new behaviour is constant, further observations 

from the system can then be used to see how well they match the diagnosis.

In order to locate a fault, the new behaviour of a suspect component must be 

evaluated. This in turn means that the new value for its’ parameter must be evaluated. 

Now re-examine figure 6.1.a. Wherever a set of components would normally be tested, 

it is instead assumed that the components in the set are behaving correctly, and 

the other components have unknown parameters which must now be identified. In 

table 6.1 the result for these two observations are shown. For the set {A, J9, C}, it is 

assumed that all of the components are working correctly, and therefore there are no
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component’s parameters which need to be identified3. For the set {A, B }  it is assumed 

that A  and B  are working correctly and a parameter for C  is then evaluated to make 

the model of the system consistent with the observations. Firstly using observation 

1, the value for component (7’s parameter must be 1.0 as indicated in the table. 

Secondly, for observation 2, the value of (7’s parameter is 0.667. This is repeated for 

in a similar fashion for {A, (7} and {J9, C}. Remember, using Reiters method directly 

revealed that there was a fault in either A or B  or (7, but looking at table 6.1 it is 

seen that when the parameters of components have been evaluated, there is only one 

which remains the same for both observations. That is when considering component 

{B }  to be faulty, with a value of 3 for i t’s parameter.

Observation 1 
Param eters

Observation 2 
Param eters

Subset A B C A B C
{ A, B, C} - - - - - -

{A, B} - - 1.0 - - 0.66
{A,C} - 3.0 - - 3.0 -

{ B, C} -0.4 - - 0.0 - -

{A} - 5.667 -  0.667C c - 5.4 -  0.6(7 C
{ B } 2 .8 -0 .8 (7 - c 2.4 -  0.6(7 - c
{ c } _  4 B * B -

15 Q 
B 6 B -

Table 6.1: Two observations of a system which has parameters.

For the sets {A}, {B }  and {(7} in table 6.1, it is not possible to evaluate the 

parameters of two components using just one observations, as this only gives enough 

information to find a relationship between the two suspected faulty component’s 

parameters. These correspond to multiple faults. Using two observations however 

makes it possible to solve these relationships and find the value of the parameters 

which will make the model consistent for two observations. In order to be able to

compare these a third observation is obviously needed, and then the parameters must

3Since a fault will have already been detected by this stage, this set would not actually be tested
since it is known that it must be inconsistent for any fault to present.
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be re-evaluated using the second and third observation. If a third observation was 

Vi = 1 and V0 — 13, then the results would be as shown in table 6.2. This is analogous 

to propagating signals through time, as discussed in chapter 4.

O bservations 1 &: 2 
P a ra m e te rs

O bservations 2 &; 3 
P a ra m e te rs

S ubset A B C A B C
{A} - 3 4 - 3 4
W 1.2 - 2 1.2 - 2
{C } 2 3 - 2 3 -

Table 6.2: Using three observations to solve the parameter values.

V0 = Vi(B + C) + (A.B) (6.2)

6.1.2 Practical L im itations on H ypotheses and Conflict 

Sets.

In the table above the value of the parameters remain the same. This is because the 

behaviour of the system can be described by equation 6.2, so as long as (B + C) =  7 

and A x B = 6 then if one parameter is defined, all the others are known. The same 

situation arises in dynamic systems, where the behaviour of the system is described by 

a transfer function, where the ratio between the parameters of the transfer function 

are important, but the actual value of the parameters are not. For example, with a 

DC motor where just the voltage and angular velocity are measured, the system has 

the following transfer function which describes the dynamics of the system.

K
“ (JL)si + (JR + LC)s + RC + K * 'Vin ^

From the systems dynamics it is only possible to identify the lumped parameters 

LL , JR+L? and RĈ K2. So there are three equations in the five parameters of the



CHAPTER 6. FAULT DIAGNOSIS. 124

system.

For a fault hypothesis which contains one component e.g. either J,L,R,C or K, it 

is possible to find whether or not it describes the fault and if so, what the value of 

its parameter must be.

For a hypothesis which contains two components, e.g. (R,L) or (J,K) it is still 

possible to find out whether the hypothesis can describe the fault but with the 

difference that there may be two possible answers for the hypothesis because the 

solution may be quadratic, e.g. if (R,L) were faulty, one and only one value for R 

and L can be found which would describe the fault, but if (J,K) was the fault then 

a set of two solutions for the parameters J and K can be found, each of which would 

correctly describe the new dynamic behaviour of the system. So, although the fault 

may have been located, it cannot be uniquely identified without further information.

For a hypothesis which contains three components e.g. (R,L,J) or (R,K,C), there is 

a further problem. The problem that some hypotheses will have multiple solutions still 

exists, but also a new problem arises in that every combination of three components 

will explain the fault correctly. For example if there was a fault in R, L and J  in 

the dc motor, new values for R, L and J could be found which would explain the 

fault correctly, however new values for R, K and C or any other combination of three 

components could also be found which would also explain the fault correctly. This 

is because the dynamics of the system are described by the three parameters in the 

transfer function but an attem pt is being made to find three of the five physical 

parameters assuming the other two of the physical parameters are unchanged. Any 

three of the physical parameters can therefore be taken and values found for them 

which do correctly describe the systems dynamics, and there is no way of telling if 

these are actually the faulty components or not. There is then no point in testing 

a fault hypothesis containing three faults for this type of dynamic system since the
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result will always be true. This is also true for hypotheses containing four or five 

components.

If access to a larger number of measurements is possible, for example the supply 

current in the dc motor example, then it is possible to find more about what is going 

on in the system. More measurements from the system means that the problem can 

be broken down into smaller sections and more information can be gained about 

what is happening in the system as a whole. An example of system identification on 

a DC motor can be found in [60], here measurements of the input voltage, the supply 

current and the rotational velocity of the motor are used to identify the system’s 

parameters. If, however, only the voltage and rotational velocity were available, then 

identifying all of the systems parameters is not possible.

So far only an outline of how it is possible to calculate the values of the parameters 

of those components not listed in a particular conflict set has been given, i.e. the 

components assumed to be behaving incorrectly. As already stated, if the parameters 

remain constant throughout each observation of the system, this indicates that a fault 

in those components not contained in the conflict set will explain the observations 

from the system. Alternatively, a set of components is only a conflict set when the 

parameters of the components excluded from it cannot be evaluated to be the same 

value for each observation.

Looking back to table 6.1, it is seen that constant parameters for the components 

excluded from {A, J9,(7}, {A, I?} and {B ,C }  could not be calculated i.e. when it is 

assumed that the components in each one of these sets are not abnormal, then this 

means it should be possible to calculate the parameters of the remaining components 

and they should be constant throughout each observation. Since this cannot be done, 

the components in each of the three above sets cannot all be behaving correctly, and 

each of these sets must therefore be a conflict set. For all of the other sets in table 6.1
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it was possible to calculate constant parameters for the components not included in 

the sets, so they are not conflict sets. The minimal hitting set for {A, B , C}, {A, B} 

and {B ,C }  is just {5}, and so there is only one diagnosis for the fault and that is 

that B  is faulty. The new value for the parameters for a diagnosis are obtained from 

that conflict set which had the components in the diagnosis excluded. In this case it 

would be the set {A, C] from table 6.1, since this set does not contain i?, but does 

contain all the other components of the system. The new value for B ’s parameters is 

3.0.

As a suspected conflict set becomes smaller, then the number of components 

which are suspect increases, and the procedure for finding values for their parameters 

becomes more and more complex. If it is not possible to calculate the parameters 

then the assumption must be made that the set of components is not a conflict set, 

since it was not possible to prove that it is. This therefore puts a limit on the number 

of components that can be diagnosed to be simultaneously failing. In the DC motor 

mentioned earlier, only a maximum of two components failing simultaneously could 

be diagnosed, since when 3 components are faulty, the values of any three component 

parameters can be chosen to fit any new system behaviour, and if 4 or 5 components 

are faulty, then the equations cannot be solved.

This has shown the basic principle for a Hypothesis Evaluator for dynamic systems, 

or indeed any system which is comprised of components which contain parameters. 

Noise was not considered nor modelling errors. These two factors force a change 

in the way in which a set of components is determined to be a conflict set or not. 

This is simply because when noise is present, the calculated value for parameters will 

never be exactly correct. Using the test outlined above, (i.e. that the calculated 

parameters have different values for each observation), will always be true and every 

set of components will always be a conflict set. This is the topic of the next section.
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6.2 Finding Conflict Sets for D ynam ic System s.

In the previous section an outline was given of one method for determining conflict 

sets for dynamic systems, without the presence of modelling errors or noise in the 

measurements from the system. How these affect the theorem prover from the 

previous section, and how they must be adapted will be investigated. It will also 

become clear why the new behaviours of faulty components need to be evaluated.

As stated before, when noise or modelling errors are present, the value of a 

parameter needed to make one or more observations consistent will never be exactly 

the same for each observation, therefore a test for equality is irrelevant. As an 

alternative, a test for how approximately equal the parameters are could be used. 

When considering parameters for different components which could have values which 

are completely different orders of magnitudes, then making comparisons between how 

approximately constant they are becomes difficult. Instead of doing this, a method 

will be used which will recursively in time try and make an estimate for one or more 

component’s parameters, given that the other components are behaving correctly, 

e.g. to test if {A, B}  was a conflict set, then the value of C ’s parameter needs to be 

recursively estimated. If it were required to test if {A} was a conflict set, then the 

value of both B  and C ’s parameter would need to be recursively estimated.

Once an estimate has been made of any unknown parameters, they can be used 

in a model of the system which uses the known parameters for the components which 

are assumed to be correct, the estimated parameters for the components which are 

assumed to be faulty, and the system’s inputs as measured. Using this information 

it is possible to predict what the system’s output should be given this information4. 

If the predicted output is not significantly different from the actual output, then 

the components which were assumed to be faulty do correspond with the systems

4This is a slightly simplified description in that for dynamic systems an estimate of states is also 
needed. This is dealt with later.
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new behaviour, and the component set being considered is not a conflict set. If the 

predicted and actual outputs are significantly different, then the component set being 

considered is a conflict set. We will shortly describe how to determine significant 

difference between the outputs, but for now, an insignificance difference returns a 

value of close to zero, while significant difference gives a larger value. A value of 1 or 

more means the outputs are completely different. The overall outline for all of this is 

shown in figure 6.2.

T h e  sy s te m ’s  
ou tpu ts .

T h e ____
sy s te m ’s
inputs.

O utpu tsInputs

P a ram e te r
e s tim a te s .

O utpu ts

Inputs O u tpu t
error.

P red ic ted
ou tpu ts . +

Conflict s e t?

T h e  S ystem .

Model of system 
used to predict 
the system's 
outputs.

Model of system 
used to find 
unknown
parameter values.

C om parison  of 
sy s tem  an d  
m odel ou tpu ts .

(no) 0 —► 1.(yes)

Figure 6.2: The basic arrangement of the Hypothesis Evaluator.

An example using a dc motor will now be discussed. Measurements of the applied 

voltage V  and the angular velocity of the motor LO will be used. Two sets of 

components will be examined. One will be a conflict set, and one will not be. The 

objective will be to determine which is which. This will firstly be done with no noise 

and no modelling errors, then the case when noise is present is looked at, and finally 

the case when both noise and modelling errors are present is shown.
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6.2 .1  F in d in g  C onflict S ets  in N o ise  Free S y ste m s .

Figure 6.3 show the applied voltage (the dashed line) and the measured angular 

velocity (the full line), samples are taken every ^ th of a second.
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Figure 6.3: A simulation of a DC motor.

The two sets which will be looked at are {R, A', J, C)  and { L ,/ \ ,  J, C}. Here, it 

is assumed that the presence of a fault has just be detected, and diagnosis is about 

to start. The model of the system is the same as that discussed in chapter 4. The 

values of the parameters in the model of the system are shown in table 6.3.

Component Parameter
R 3
C 0.4
L 2.5
I< 2
J 1.5

Table 6.3: The component’s parameter values.

Firstly the case when there is no noise is examined. When the component set
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{L, K, J ,C }  is considered, it is assumed that these four components are behaving 

correctly and that component R  is faulty. The first step is then to find a value for i?’s 

parameter. Figure 6.4 shows the value that component i?’s parameter must adopt 

in order for the observations to be consistent. At the moment R  is not recursively 

estimated, a value for R  for is merely calculated for each time interval. This is based 

on the current observation and 2 earlier ones using the propagating signals through 

time method as discussed in chapter 4. It is seen, from looking at the graph of R , 

that the calculated value for it remain essentially constant. This means that the 

assumption that {L, K, J ,C }  could be functioning correctly was correct and that R  

is faulty, since the value of R's parameters has changed and is constant. {L, K , J, C} 

is therefore not a conflict set.

1.5

o
SI
13>

0.5

Time

Figure 6.4: The values of R  needed to make the observations consistent.

Figure 6.5 shows the result when looking at the set {i?, K , J, C}, and the value that 

component V s parameter must adopt in order for the observations to be consistent 

is calculated. Clearly L’s parameter is not constant, it must change value as the 

measured inputs and outputs change in order to keep the observations consistent. 

This means that the assumption that {R, K, J, C] are all functioning correctly was 

incorrect and that {R , K , J, C} is therefore a conflict set.

This was just an example to demonstrate how to identify a conflict set, in its 

simplest form. When dealing with noisy measurements it is necessary to do a lot
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Figure 6.5: The values of L needed to make the observations consistent.

more work. Simply using the propagation through time model results in very noisy 

parameter values needed to make the observations consistent. To get around this an 

attem pt is made to reduce the noise by firstly pre-filtering the measured signals, as 

described in section 4.6. The states of the system are then estimated, and these are 

used to help estimate the values of the parameters. Having obtained some estimates 

of parameter values, these will be used to help improve the state estimates. The 

value for a components parameters will no longer be just the value needed to make 

the current observation consistent, but it will be a least-squares estimate based on all 

of the observations so far obtained. This has two implications.

6.2.2 Finding Conflict Sets in N oisy System s.

Firstly, when diagnosis begins, the parameter estimates for any of the components 

are likely to be poor, and they will be noisy. At the start of the diagnosis all of the 

parameter estimates for each suspected conflict set will not be constant, and therefore 

determining which are conflict sets will be difficult.

Secondly, as time continues, the parameter estimates should get better as they are 

in some sense an “average” of all the previous estimates. Because the estimates are 

now averages of previous observations, they are no longer able to quickly change their 

value when the observations change. So the type of result seen in figure 6.5 will no
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longer be possible, instead the result would be an average of this. This means that as 

time progresses all of parameter estimates become essentially constant so using the 

method as described for the no-noise system would yield the result that there were 

no conflict sets and therefore no fault!

Instead of checking to see if parameter estimates are constant, the method outlined 

in figure 6.2 will be used. The parameter estimates will be used to predict what the 

value for the system’s outputs should be and if the predictions are accurate then the 

set of components under examination is not a conflict set, however, if the predictions 

for the system’s outputs are poor, then it is likely that the set under consideration is 

a conflict set. To do this, estimates of the states in the prediction models must also 

be kept.

This is essentially the same algorithm as used in chapter 5 for detecting a fault. 

That algorithm essentially determined how accurately a model of the system matched 

the measured behaviour of actual system, which is essentially being done in the area 

of figure 6.2 contained in the dashed area. This dashed region can be compared with 

figure 5.1 which shows the basic method for detecting faults. This dashed region is 

the same as figure 5.1 except that parameter estimates for some of the components 

are used instead of the original parameter values.

The dc motor example is now looked at again, but now with approximately a 2% 

noise to signal ratio. The noisy measurements of the applied voltage and the velocity 

is shown in figure 6.6. As before an attem pt is made to find an estimate for the value 

of the parameters for the components suspected to be faulty in each hypothesis, and 

only the possible conflict sets {L , K , J, C} and {R , K , J, C} are considered. Figure 6.7 

shows the estimate for R  when considering the possible conflict set {L, K , J, C} 

and Figure 6.8 shows the estimate for L when considering the possible conflict set 

{i?, A", J, C}. Both of these start off fluctuating and gradually become smoother
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Figure 6.6: Simulated measurements of V and a> with 2% noise.

and settle out towards one value. From these alone, it is not possible to determine 

which component could be faulty and which isn’t. (Compare these two graphs with 

figures 6.4 and 6.5.) These parameter estimates are those indicated on figure 6.2.

The next step in determining which subset of components is a conflict set is to 

take the parameter estimates for each hypothesis together with the measured inputs 

to the system, and produce an estimate of the systems outputs. This is part of the 

algorithm is the dashed region on figure 6.2.

The output estimate for {L, A", J, C]  is shown in figure 6.9. The dashed line is 

the actual output, and the full line is the estimate of the output using the value for 

R  obtained at the same time period, shown in figure 6.7. The equivalent output 

estimate for the possible conflict set {i?, A', J, C}  is shown in figure 6.10.

Finally, for each hypothesis, the estimated output is compared with the actual 

output. An error index is then produced in the same manner as for detecting a fault.
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Figure 6.7: The estimate for the parameter of R.
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Figure 6.8: The estim ate for the param eter of L.
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Figure 6.9: Comparing the estimated & actual output for {L, K,  J, C}.
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Figure 6.10: Comparing the estim ated k, actual output for {/?, / \ ,  J, C}.
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A value of zero for the error index indicates a close match with actual output, and 

a value of 1 or greater indicates a complete mismatch. If there is a 2% noise to 

signal ratio, then for the best fit possible the error index would be expected to be 

approximately 0.02. Bearing in mind that the parameter estimates will not be 100% 

accurate, when a subset of components is tested that is not a conflict set, the error 

index would be expected to be at least 0.02, but probably a little higher.

The error index for the set {L, K , J, C} is shown in figure 6.11, (This is when R  

is considered to be faulty). After the parameter has settled down (after around 2 

seconds), the error index fluctuates at between 0.02 and 0.08. The error index for 

the set {jR, AT, J, C}, (a fault is A), is shown in figure 6.12. At around t = 2 seconds, 

the error index is small, but shortly after this it rises 0.15, and then 0.4. The error 

index then fluctuates between 0.2 and 0.75, indicating at best a poor fit (0.2) and at 

worst an exceedingly bad fit (0.75), remember an index value 1.0 indicates a complete 

mismatch.

Using this method a measure may be produced of how “likely” it is that a set of 

components may be a conflict set. A high value for the error index indicates that 

assuming this set of components to be correct conflicts with the observations and 

therefore the set is probably a conflict set. An error index which is not very much 

greater than the noise/signal ratio indicates that the set of components is not in 

conflict with the observations.

In the case where there are modelling errors as well as noisy measurements, both 

figures 6.7 and 6.8, the parameter estimates, will look similar, although the value the 

parameter estimates settles to may well be slightly different. Figure 6.9,the output 

estimate when R  is considered to be faulty, will not follow the actual output as closely, 

as other parameters in the system will not be accurate. The error index in figure 6.11 

will therefore be similar, but it will generally have a larger value. Figure 6.10 will
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Figure 6.11: The error index for { L , K ,  J, C}.
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Figure 6.12: The error index for { R , /F, J, C}.
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still not closely follow the actual output; whether the error index is larger or smaller 

than before will depend in whether the fault in R  has a larger effect on the output 

than the modelling errors. If a substantial modelling error was made in estimating 

Ts’ parameter, and the fault which has developed in R  is small, then a new value 

for jLs’ parameter may well more closely fit the current dynamics of the system, than 

using the original value for Ts’ parameter and a new value of R s \  In this case it may 

be that the diagnosis process returns that a fault in both L and R  would explain the 

fault. That is if the value of both L and Rs’ parameter is changed in the model of 

the system, the model would fit the actual system more closely.

If modelling errors are small, then the net effect will just be a small increase in the 

error index for the actual faulty components, and a small change in the error index 

for all of the others. In the R  L example, the error index for R  in figure 6.11 will be 

slightly larger, and the error index for T, figure 6.12 will be either slightly higher or 

lower (depending upon the effect of the modelling errors). The error index for R  will 

still be substantially less than that for L.

For every time step it is desired to check every subset of all of the components 

in the system, and produce an error index for each one of these subsets, then it is 

necessary to, in some way, find hitting sets for the likely conflict sets. This can be 

done either by setting a threshold of, for example, any error index which is above 

5x the noise/signal ratio is a conflict set. Alternatively each hitting set can be given 

a value of between 0 and 1 again to indicate how well it hits those sets which are 

likely to be conflict sets. This could be done in a straight forward algorithmic fashion, 

looking at potential conflict sets and at their error indices, and it would be fast and 

efficient when processing a large number of subsets of components. After every time 

step, the error index for each potential conflict set will be more accurate, and so as 

time continues the analysis of these error indices will become more and more accurate.
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W hat has been shown here is that, provided the parameter values of a set of 

component assumed faulty can be estimated, then it is possible to determine whether 

or not the other components of the system (i.e. those excluded from the set of assumed 

faulty components) can be considered as being a conflict set.

Reiters method for fault diagnosis assumed it was possible to decide which conflict 

sets to test for, depending upon the result of tests of other conflict sets. This is 

because he said that determining whether or not a set is a conflict set is expensive 

computationally, which it is. However he assumed that it was possible at any instant 

of time to determine whether or not a set was a conflict set. (He said conflict sets 

would be implicitly available, i.e. the theorem prover would try  to find a conflict set 

which meet some given criteria when requested.) Unfortunately, with a dynamic noisy 

system, if the diagnosis accuracy is to be improved with time, all of the observations 

so far obtained must be stored, and the theorem prover must then go back looking at 

all of this data each time it wishes to determine if a set of components is a conflict set. 

Doing this may mean that less accesses are made to the theorem prover (as Reiter 

suggests), but the amount of processing needed for each access will become, larger 

and larger. This is all right if in the case of off-line fault diagnosis based on a set 

of observations, but to perform real time, on line diagnosis doing this is clearly not 

possible. Instead, an error index must therefore be recursively calculated for all of 

the potential conflict sets which may be tested. This leads to the problem of having 

many error indices to keep up-to-date when the number of components in a system 

is large (this will be looked at shortly), but the amount of computation needed for 

every time step will remain constant.

We have so far just looked at an example of where there was only a single 

component failing. Now, the area of multiple faults is looked at more generally, 

before coming back to look at multiple faults in dynamic, noisy systems.
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6.3 M ultiple Faults

In this section some of the problem areas of diagnosing multiple faults will be 

discussed, which do not occur when considering only one at a time component failures. 

In this discussion, diagnosing multiple faults in general will be discussed, as opposed 

to multiple faults in dynamic systems. This will provide the basic mechanism for 

handling multiple component failures which will be developed and applied directly 

to dynamic systems. A single fault, i.e. the failure of only one component, is just a 

special case of multiple faults, so when the phrase ’multiple fault’ is used, it means 

a fault consisting of one or more components which have simultaneously developed 

faults.

A Multiple fault occurs when two or more components develop faults at approx­

imately the same time. Faults may be produced by a chain reaction effect, i.e. one 

component fails which very quickly leads to the failure of another component and so 

on. Alternatively the faults may be independent and it is just coincidental that they 

occurred at the same time. What ever the origins of the multiple fault are, the ability 

to identify which components have failed is needed, and if possible, the manner in 

which each component is behaving after failure is also most useful. For instance a 

pipe starting to become blocked up, will have a new effective diameter, or if a resistor 

which has become damaged, will have a new value (e.g. burnt out, infinity; shorted, 

zero; or slight damage, resistance increased by 10 %). Remember, a fault is defined 

as a change in a components parameter.

In particular, the problem of how to cope with finding exactly which components 

have failed will be discussed when the number of components is large and therefore 

the number of combinations of two or more components is extremely large. A method 

will then be introduced which greatly reduces the number of hypothesis which have 

to be tested, from 2N to just N. This is important since the testing of a hypothesis is
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very computer intensive. It is then shown how the method finds, in a computationally 

efficient way, which of the many possible fault combinations are likely to be correct.

6.4 Lim iting the N um ber of H ypotheses.

As discussed above, it is important to reduce the number of conflict sets that need 

to be tested. It will be shown how this can be done in an ideal situation and how 

information about different hypotheses can be deduced.

6.4.1 D efinition o f a H ypothesis.

A multiple fault hypothesis is now defined.

Let F be the set of all the components in the system which may develop a fault. 

For example in a four component system. F  =  {(71,(72,(73,04). For a particular 

multiple fault hypothesis, let W  be a set o f all the components in the system which are 

assumed to be working correctly. A correct multiple fault hypothesis is then given by 

F  — W , provided that the new behaviour of the system can be explained when all the 

components in W  are working correctly.

That is, if a model of the system is being used that has all of the components 

which are listed in W behaving correctly, and the new system behaviour cannot be 

explained, then F  — W  is not a correct diagnosis as at least one of the components 

in W must be faulty to explain the behaviour. If W behaving correctly is consistent 

with the observations then F  — W  is a correct diagnosis, although it may not be a 

minimal diagnosis. If F  — W  is a minimal diagnosis, then no proper subset of F  — W  

is also a diagnosis.

To explain this more clearly, examine figure 6.13 below. This is a simple example 

which demonstrates the definition above. The figure represents a system where 

the inputs and outputs of the system have just been measured. Components A,



CHAPTER 6. FAULT DIAGNOSIS. 142

B and D all perform an addition of their two inputs and put the result on their 

output. Components C and E perform multiplication in a similar fashion. Here, 

F  = { A ,B ,C ,D ,E } .

in1

S2 out1

in2

S3
in3

out2

in4

► 11

144

Figure 6.13: A faulty system.

As an example, suppose W, as given above, is {A, B, C, E}, that is the fault 

hypothesis is F  — W , is { D }. This means that if the components A, B, C and E 

are working correctly, the system behaviour can be explained. This would give the 

following values for the signals.

ini 2 in4 4 SI 6

in2 3 outl ? S2 5

in3 2 out2 180 S3 30

The value of the output cannot be found because it is assumed that D is faulty. 

The question mark means the output may have any value depending upon the manner 

of the fault, but looking at E the predicted output and the actual output do not match 

and therefore in this case the hypothesis {D} is not true, that is a fault in D and D 

alone does not explain the fault.
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Now lets take W as {A, B, E}, which gives the fault hypothesis {C, D}, i.e. a 

fault in both C and D would explain the fault. The signals would be

in i 2 in4 4 Si 6

in2 3 outl ? S2 5

in3 2 out2 ? S3 ?

This does explain the new system behaviour in that the question marks can take 

any value and could therefore take the values that were measured at the output.

As a final example lets take W as {A, B, D, E}, which gives the fault hypothesis 

{C}, i.e. a fault in C alone. The signals in the system would be:-

in i 2 in4 4 SI 6

in2 3 outl 11 S2 5

in3 2 out2 ? S3 30

This is also a correct hypothesis.

This shows that there is a valid fault hypothesis which is {C, D} and another one 

which is {C}. From this it is seen that although a fault hypothesis is correct, it does 

not mean that every component in the hypothesis must be faulty, but rather that 

if  every component in the hypothesis was faulty then the system behaviour which is 

observed could occur. One hypothesis which is always true is that every component 

in the system has failed. If this was so then any output could be obtained and hence, 

any outputs could be explained by this hypothesis, it is of course not a very useful 

hypothesis.

The important point to note here is that a multiple fault hypothesis which does 

explain the new behaviour of the system does not necessarily mean that every member 

of the hypothesis is at fault.
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6.4.2 T esting th e M inim um  N um ber o f H ypotheses.

We will now examine how, with a four component system just four hypotheses can 

be tested to find out which of fourteen hypotheses could be correct. This will also be 

examined in relation to conflict sets and hitting sets as described earlier.

Let the four components be named A, B, C, and D. Lets also suppose that it is 

possible to take any hypothesis and find out whether or not it explains the system 

behaviour. Lets take four hypothesis, namely:- {A, B, C} , {A, B, D} , {A, C, D} and 

{B, C, D}. Each one of these hypothesis assumes that three of the four components 

are faulty. If the hypothesis that {A, B, C} are faulty is tested, it is equivalent to 

testing whether the members of the set {D}, working correctly, is in conflict with 

the observations, i.e. the components of the system which axe not included in the 

fault hypothesis. This set of components is termed a conflict set if the assumption 

that all of its members are working correctly can be shown to be in conflict with the 

observations. This means that the assumption is false, and therefore one or more of 

its’ components must be faulty. Testing each hypothesis would give the results in 

table 6.4.

Hypothesis Conflict Set Explains behaviour Conflict Set
{A, B, C} {D} yes no
{A, B, D} {0} no yes
{A, C, D} {B} no yes
{B, C, D} {A} yes no

Table 6.4: Example of a multiple fault diagnosis.

Looking at this there are two hypothesis which explain the behaviour, {A, B, C} 

and {B, C, D}. From this it can also be deduced that {B, C} would also explain the 

systems behaviour as {B, C} is a common subset of both {A, B, C} and {B, C, D}. 

W hat is being said is that ’ if components B and C had become faulty, then a test of
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hypothesis {A, B, C} would be true and a test of {B, C, D} would also be true’. It is

conceivable, that there could be a system where both {A, B, C} and {B, C, D} could 

both explain a systems faulty behaviour and {B, C} if tested, would not. Bearing this 

in mind it is not appropriate to say that the fault is {B, C}, but rather that the fault 

is likely to be either {B, C}, {A, B, C} or {B, C, D}. W ith out further information 

about whether smaller subsets of components being faulty would explain the fault, it 

is not possible to discriminate further.

Alternatively, from the point of view of looking at conflict sets, [9] [10] [68], {C} 

and {B} are both conflict sets. The minimal hitting sets of all of the conflict sets 

for a system are diagnoses, and the minimal hitting sets for {C} and {B} is simply 

{B,C}. Since only conflict sets that contain 1 component are being looked at, and 

not all of the conflict sets of the system, it is difficult to say with total confidence 

that {B,C} is the only diagnosis. The super sets of {B,C} could also be diagnoses i.e. 

the diagnoses for the system are {B, C}, {A, B, C} or {B, C, D} as before. Looking 

at table 6.4 the diagnosis that {A, B, C} are faulty could explain the behaviour. If 

the table showed that this super set of {B, C} could not explain the behaviour then 

it could have been eliminated from the possible diagnoses.

Because every conflict set cannot be evaluated, Reiters Hitting-Set Tree cannot 

be fully used, with its associated pruning rules. However the following rule can be

applied, when all of the hitting sets from the limited number of conflicts sets have

been gathered.

Once all of the hitting sets for this limited number of conflict sets have been 

gathered, then for any hitting set H i, it must not have a proper subset, S , which 

has been shown not to be a conflict set, unless there is another hitting set H2, such 

that H2 n S  = { } .  I f  there is no other hitting set H2, then the subset o f components 

S  can be removed from H \, and the new Hi will still be a diagnosis. To clarify, if
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Hi is a hitting set on the set of minimal conflict sets, then it is a diagnosis[68], i.e. 

if all of the components in the hitting set are assumed to be faulty, then this would 

explain the observations. However, if S  is a subet of components assumed to be 

behaving correctly, and this can be shown to be consistent with the observations, 

then this situation can only occur if the remaining members of Hi can explain the 

observations alone, or there is another set of components in another hitting set which 

when considered to be faulty are consistent with the observations and the assumption 

that the components in S  are functioning correctly.

In summary, in the ideal situation, if a system has N components, N hypotheses 

must be tested. Each hypothesis is of the form { All the systems components except 

one} or from the conflict set point of view, one component is tested to see if when it is 

considered that to be behaving normally, it is in conflict with the observations. When 

these N hypotheses have been tested, any common subsets of any of the hypothesis 

which do explain the systems behaviour are found. These subsets could also explain 

the fault in the system. All of these hypothesis are then put forward as likely to be 

possible. Alternatively, using conflict sets a number of hitting sets on the conflict 

sets are generated. These are then checked as described above and then put forward 

as diagnoses. If there is more than one diagnosis, then the smaller ones should be 

checked first. It should be noted that it is by no means always possible to find just one 

likely diagnosis, more often than not there will be a number of diagnoses which are 

all correct, given that they are derived from just some of the systems measurements. 

In general, the larger the number of measurement points on the system, the fewer the 

number of likely diagnoses that will be generated, since more will be known about 

the system and it will be easier to discriminate between different hypotheses.
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6.5 Lim itations for R eal System s.

The method described above will only work in the ideal situation with real systems 

if there are enough measurement points on the system. In general, it is not possible 

to use hypothesis which say “All the components except one is at fault” nor to test 

a conflict set consisting of just one component. If this could be done, then it would 

mean the ability to test each component independently from all the others. If there 

are enough measurement locations on the system then this can be done but in general 

this will not be possible. As an example, consider a DC motor. A bond graph for 

this system is shown below.

S:v

I:

l:a

k
R:ra

GY:m

I:jm

7T

l:s

1/
R:cm

M:w

Figure 6.14: A bond graph of a DC motor.

This system has five components:

• L, the inductance.

• R, the resistance.

• J, the inertia.

• D, the friction coefficient.
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• Km, the conversion of electrical energy to mechanical energy and vice versa. 

The transfer function of the speed of the motor, a;, in terms of the voltage, v is

  -Kni t t //> j\
" “  ( K l  +  R.D) +  (L.D + J.R)s +  L.J.s2' 1 ' ’

which can be written as

"  -  n )  +  ( a i .  +  ( C ) . - -v  ( 6 ' 5 >
where:-

A = KA - (6.6)
xx m

B =  L.D + J.R (g 7)
-* *■ m

( 6 8 )x 1 m

As was stated before, the DC motor has five physical parameters. Looking 

at equation 6.5, the dynamics of the system can be characterised by just three 

parameters, A, B and C. If the speed and the voltage of a DC motor were being 

measured, and a fault developed, then the fault will manifest itself as a change in 

one or more of the physical parameters. This will in turn change the values of the 

parameters in equation 6.5. If the dynamics of the system has changed, but not the 

structure of the system, then three suitable parameters for equation 6.5 can be found 

which will describe the new dynamics. Looking at equations 6.6 to 6.8, if A, B and 

C are known, any two of the physical parameter can be arbitrarily given any value, 

and the values of the remaining three physical parameters can be fixed. This results 

in the position that if faults occur in three or more of the physical components then 

there will be no way to differentiate between the possibilities.

If a hypothesis which has three or more components is tested, a positive answer 

will always be obtained because the transfer function has three components but the
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system model has five physical components. So, testing for faults in three or more 

components simultaneously is pointless as a positive result will always be obtained. 

Therefore only hypotheses with one or two components can be tested on this system. 

This also means that with this system a conflict set can only be tested which has 

three or four components and no less. All the hypotheses that can be tested are 

listed in table 6.5, the potential conflict sets which may be usefully tested are shown 

in table 6.6.

1. {R} 6. {R, L} 11. {L, Km}
2. {L} 7. {R, D} 12. {L, J}
3. {D} 8. {R, Km} 13. {D, Km}
4. {Km} 9. {R, J} 14. {D, J}
5. {J} 10.{L, D} 15. {Km, J}

Table 6.5: All the hypotheses that are testable.

1. {L,D,Km,J} 6. {D,Km,J} 11. {R,D,J}
2. {R,D,Km,J} 7. {L,Km,J} 12. {R,D,Km}
3. {R,L,Km,J} 8. {L,D,J} 13. {R,L,J}
4. {R,L,D,J} 9. {L,D,Km} 14. {R,L,Km}
5. {R,L,D,Km} 10.{R,Km,J} 15. {R,L,D}

Table 6.6: All potential conflict sets that are testable.

There are fifteen potential conflict sets which can be differentiated between. Using 

the method of examining subsets as described in the previous sections, this can be 

reduced to ten, i.e. sets 6 to 15 in table 6.6, which is equivalent to the potential 

conflict sets 6 to 15 in table 6.6. This is obviously not as good as reducing the 

number down to five which is the ideal minimum, but this is the minimum number 

of hypotheses which need to be tested as the result of any hypothesis with more than 

two components is meaningless.
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Although this is not a significant improvement in reducing the number of 

hypotheses (reduced from 15 to 10), using only 1 or 2 component failures, consider 

the implications of measuring the current as well as the speed and voltage. If this 

was done, then all five physical parameters could be identified uniquely for any new 

behaviour of the motor, i.e. there is only one solution if it were assumed that all the 

physical parameters are unknown. It is now possible to differentiate between 1, 2, 3, 4 

or even five components failing. Using the method described in the previous sections 

of this chapter, one can reduce the number of potential conflict needed to test to just 

five and one can find which of the 30 hypotheses are most likely to be correct.

In summary, the limitations of this method depend heavily on the system being 

monitored and the number and location of the measurements which are made on each 

observation of the system. Even with these limitations, it is still possible to reduce 

the number of hypotheses which need to be tested.

Doing this in the non-ideal situation may mean that some of the diagnoses which 

arise are not minimal diagnoses, however all diagnoses will be valid. Reducing the 

number of conflict sets which need to be tested means that it becomes possible to 

produce real time diagnosis for systems with a large number of components: the price 

to pay is that some of the diagnoses will not be minimal. The number of non-minimal 

diagnoses will be reduced as the number of sensor on a system is increased. Also, 

due to the limitations on identifiability of real systems described above, any multiple 

fault hypothesis larger than the biggest identifiable one can be discarded. The result 

is that in many real situations, reducing the number of conflict sets to test can mean a 

diagnostic system which will work in real time and one which does produce meaningful 

and useful results.
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6.6 Finding the M ost Likely Cause o f a Fault

This section discusses how to find the most likely hypotheses, out of all of the multiple 

and single fault combinations. In general, it is not possible to find a single hypothesis 

with which it can be said with confidence, that it is the cause of the fault. Instead, 

a list is produced of all the hypotheses which do explain the fault and then this is 

ordered according to some ranking scheme, to give some indication of how well each 

one does actually matches the systems’ behaviour.

According to Reiter [68], a correct diagnosis is a hitting set on the conflict sets. 

Since it cannot be said with absolute certainty which sets are conflict sets (due to 

noise and model uncertainty), this definition of a correct hypothesis must be adapted. 

As discussed earlier a conflict set is given an error index which indicates how much 

it is in error with the systems’ behaviour. If the error index is low (close to the 

noise/signal ratio), then the set is not in conflict with the systems’ behaviour. If the 

error index is high (a value of 1 is very high), then the set is in conflict and it is 

a “conflict set” . A correct hypothesis is now, therefore, a set which hits all of the 

potential conflict sets which have a high error index, and doesn’t hit those with a 

small error index. Determining what is a high error index and a low error index is 

not difficult, but when an error index is in between high and low then things become 

unclear as to whether it is a conflict set or not. This depends upon the noise content of 

measurements and how accurate the original model is. A simple threshold approach 

would be unsatisfactory in these situations.

To solve this problem another index is calculated which indicates how well a hitting 

set hits those conflict sets with high error indices, and how well it misses those with 

low error indices. This will be called the “hitting index”.

Firstly it is noted that if an error index has a value of 1, then it indicates that 

the estimates of the outputs are approximately 100% in error when compared to the
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actual outputs. Such a set would clearly be a conflict set. Also, it is possible for the 

error index to be above 1. If the error index is 0.5, this indicates a 50% error. This is 

also clearly an indication of a conflict set as a 50% error is substantial. As the error 

index decreases to zero it becomes less clear whether a set is a conflict set, until the 

error index approaches the noise/signal ratio on the system measurements. The first 

step in calculating the hitting index will be to limit the maximum value for an error 

index to be 0.5, i.e. if it is calculated to be greater than 0.5 then it is set to 0.5. The 

hitting index is now defined to be Y (0.5 - the error indices for the conflict sets it 

hits) +  Y  (the error index for each of the conflict set it doesn’t hit).

The first summation, Y (0.5 - the error indices for the conflict sets it hits) will be 

smallest when the sets that the diagnosis hits have large values for their error indices, 

and it will be largest when the sets the diagnosis hits have small values for their error 

indices. The second summation, Y  (the error index for each of the conflict set it 

doesn’t hit), will be smallest when the sets the diagnosis doesn’t hit have small error 

indices. It will be largest when the error indices of the sets the diagnosis doesn’t hit 

are large (remember the largest value for an error index is 0.5).

So, if the diagnosis hits all the conflict sets which have large error indices and 

misses those with small indices, it will have a small hitting index. If it hits all the 

ones with small indices, and misses those with large indices, it will have a high hitting 

index. If it hits and misses a mixture of high and low error indices then it will have 

a value in between these two extremes.

The most likely diagnosis will therefore be the one with the lowest hitting index. 

As an example, in table 6.7 below the results for a typical diagnosis on a system 

is shown. Here only the top eight results are shown from another example system 

which has seven components, labeled A to G. The hypotheses are listed in the middle 

column, and they are ordered according to their hitting index which appears in column
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three. It should be noted that it is not possible to just take the top result or the top n 

results and expect the actual fault to always be there; as can be seen from the table, 

the first four results are all reasonable representations of the fault, the 5th and 6th 

results are also not out of the question. The list represents those hypotheses which 

should be checked first.

Ranking Hypothesis Closeness of Behaviour Match
1 {A, C} 3.96
2 {A, G} 3.98
3 {A, B, C} 4.12
4 {A, F, G} 4.18
5 {A, C, E} 4.59
6 {A, F, G} 4.65
7 {D, E} 5.45
8 {A, B, E, F} 5.82

Table 6.7: Typical Results during diagnosis.

An outline will now be given of the algorithm which is used to generate the hitting 

indices for each hypotheses when only testing a limited number of potential conflict 

sets.

This begins with all of the conflict sets which have been tested, and for each of 

these this is a value which indicates how well it fits the systems’ faulty behaviour. 

These conflict sets will consist of as few components as possible, but not less than 1 

component, (this is the ideal situation, often it would not be possible to test conflict 

sets of just 1 component). So for example, in the previous section a DC motor 

was discussed with measurements of v and w, in this case, the starting point is 10 

conflict sets which had been tested and each one of them would be made up of three 

components which are assumed not to be faulty. If v, i (the current) and u  were being 

measured, then there would be five conflicts sets and each one of them would be made 

up of one component which is assumed to be not faulty. If all the conflict sets which 

have 1 component are actually tested, then this is the best situation as the minimum
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number of conflict sets N are being tested, and the hitting indices for all the possible 

hypotheses can be calculated. If, as in the DC motor example with measurements 

of v and u> only conflict sets with more than 1 component can be tested, then it is 

necessary to test more than just the minimum N conflict sets, but the number tested 

will still be less than 2^ — 1, which is the maximum number of conflict sets which 

would normally need to be tested as discussed in section 3.10.

Difficulties can arise when it is not possible to test all of the conflict sets of a 

given size, because of either the structure of the model and/or the equations needed 

to test a conflict set with that number of components cannot be solved uniquely. For 

example, suppose a system which has five components is being considered, and one 

starts by looking at those conflict sets which contain 1 component. This requires the 

ability to estimate the parameters of all of the other components in the system and 

then see which of these have a unique solution, as these are the ones which need to 

be tested. If all of them can be tested, then there is no problem and the procedure 

described above is followed. If it is not possible to test any of them, then there is also 

no problem yet, the number of components, in each conflict set is increased to 2 and 

then these are checked for unique solutions. The problem arises when some of the 1 

component conflict sets can be tested and some cannot.

To explain further, if all of the conflict sets with 1 component can be tested, then 

these can be used to calculate hitting indices for all of the possible hypotheses, and 

these will result in a set of minimal diagnoses. If none of the equations can be solved 

for the 1 component conflict sets then the 2 component conflict sets must be checked, 

then 3 components etc. If its not possible to solve any equations when looking at 

N-l components, but it is possible to solve some, although not all of the equations 

at N components, then it may well be the situation that there is no information 

available for some of the hitting sets, it will certainly be the situation that there is
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more information about certain hypotheses than others. In this position the error 

indices for the N + l components should also be calculated and checked to ensure that 

all of the equations needed to calculate the parameters of the components, excluded 

from each conflict set, can be solved.

The number checked will still be less than the total 2^ — 1 possible conflict sets 

but it will be necessary to check more than the minimum N conflict sets.

6.7 Summary

In this chapter it has been shown that when the number of sensors on a system 

are limited, then it is possible to deduce more about the system if it is considered 

that the fault has a constant behaviour during the diagnosis process. A conflict set 

is therefore not just a subset of components which, when assumed to be behaving 

normally, are consistent with the observations. But it is a subset of all of the systems 

components which, when assumed to be behaving normally, are consistent with the 

observations, AND  those components which are not in the subset are exhibiting a 

consistent behaviour for every observation.

When noise is present checks must be made to ensure that the behaviour of 

components which are suspected to be faulty are constant by using their new 

behaviour in the model of the system and estimating what the outputs of the system 

should be, given these new behaviours. By comparing the estimated and actual 

outputs one can determine whether faults in these components are consistent with 

the observations, and hence whether the other components (those assumed to be 

behaving normally) can be considered to be a conflict set.

The number of subsets of components for a large system is very large indeed. If 

every subset was checked to see if it was a conflict set, the amount of computation 

required would be enormous, and on-line, real time diagnosis would not be possible
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except with small systems. To overcome this practical implementational problem, 

only a small number of sets are checked. These will be those potential conflict sets 

which have as few members as possible, (but at least one member), and which allow 

the identification all of the other component parameters of the system which are not 

members of the conflict set.

When noise is present, nothing is certain, so an index is assigned to each subset of 

components tested which represents, in some sense, how likely it is that the set is a 

conflict set. This index is then used to find out how well a diagnosis (hitting set), hits 

those subsets which are likely to be conflict sets, and misses those subsets which are 

not likely to be conflict sets. A “hitting index” for each diagnosis is calculated. All 

of the hypotheses are listed, together with their hitting indices in order of the hitting 

indices. Thus the diagnosis at the top of the list is considered to be the most likely, 

and any others with similar values for their hitting index are also quite possible.

For every sample of data taken from the system, the parameters of components 

considered to be faulty will be re-estimated. Then the system outputs are re-estimated 

for each conflict set, the error indices are re-evaluated for each conflict set, and finally 

the hitting indices are re-calculated for each diagnosis. The results of this will be 

updated for each time interval. At the start of diagnosis, it is likely that the list 

for the most likely diagnoses will change rapidly, but as parameter estimates become 

more stable, so will the systems’ output estimates, the error indices and the hitting 

indices. The longer that is spent diagnosing the system, the more stable that the 

list of the most likely hypothesis will become. After sufficient time those diagnoses 

reported as being the most likely can be checked.
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E xperim ental R esults.

In this chapter, the techniques described earlier will be applied to a real system. It 

will be shown that these methods can successfully detect a fault occurring, identify 

the component which is faulty, and quantify the size of the fault even in the face 

of modelling errors and noisy measurements. The actual physical size of the system 

under test adds confidence that there are many real situations in which this approach 

to fault diagnosis will work in practice.

7.1 M odelling the System .

The system that is used here consists of a water tank,a pump, and an arrangement of 

pipes, valves and sensors. A sketch of this system is shown in figure 7.1. The actual 

physical size of the system is approximately 3.5 metres in height and 2 metres by 2 

metres in length and breadth.

As can be seen in the sketch, water is pumped from the sump, through a flow meter 

and the input valve into the tank. Water in the tank flows through the output valve 

back to the sump. The depth of the water in the tank is measured by a sensor which 

measures the pressure at the bottom of the tank. The input flow sensor measures the

157
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Figure 7.1: A sketch of the system to be tested.

pressure drop across an orifice. These two signals can be read by a computer at any 

time. The input valve and output valve are controlled using compressed air and can 

be adjusted via a computer. The valve openings are measured in percent, 100% is 

fully open and 0% is fully closed. The pump is running continuously, directly from 

the mains power supply.

In these tests, a computer is used to control the position of the input and output 

valve openings, according to the level of the water in the tank, as if it were following 

some process recipe. An example recipe is shown in table 7.1.

This is obviously a fairly straight forward control strategy, but the complexity 

of the systems’ control is unimportant as far as detecting and diagnosing faults in 

the system itself are concerned. As long as the system is being stimulated then 

measurements can be used from the system to determine whether it is behaving 

correctly.
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Step Action
1 Close output Valve
2 Open input Valve
3 Wait for level to reach 1.2 metres
4 Move input valve to 30% open
5 Move output valve to 75% open
6 Wait for level to drop to 0.3 metres
. etc

Table 7.1: An example recipe.

The first computer controls the system and changes its’ inputs, this causes the 

systems’ outputs to change. The inputs, as set by the first computer and the 

measurements from the systems’ outputs are sent to a second computer which contains 

the on-line fault detection and diagnosis software. An overview of this set up is shown 

in figure 7.2.

The Detection and 
Diagnosis ComputerThe system control

Position Control 
Signals to the 
ValvesHeight & Flow 

Measurements

Figure 7.2: The set up of the system.

A block diagram and a bond graph for the system are shown in figure 7.3. This 

model for the system was arrived at by carrying out a number of different tests on
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the system, and a brief description of the models’ parameters is given below.

• K i represents the constant of proportionality between the square of the flow 

into the tank and the pressure loss due to friction through the pipes.

• K 2 represents the constant of proportionality between the pressure drop 

measured by the flow meter and the square of the flow in m 3/s . e.g. Qtn =  

where K 2 =  (Area of orifice x Coefficient of discharge for orifice)-2.

• K 3 represents the constant of proportionality between the volume of water in 

the tank and the pressure at the bottom of the tank. K 3 =

• K 4 & I< 6 are used to parameterise the flow of water out of the tank. This 

was found be very nearly linearly related to the output valve’s opening. 

Qout & K4 x Output valve position + Kg. This can be seen in figure 7.4. 

Here it is seen how the level of water in the tank drops when the input valve is 

closed and the output valve is in different openings. (100% means fully open.) 

The rate of change of level remains essentially constant as the level drops. These 

results are shown in figure 7.5 where it can be seen that when the output valve 

is between 10% and 65% the flow out is approximately a linear function of the 

valve position.

• K 7 is used as a parameter to the input valve. The actual constitutive 

relationship for the pressure drop across the valve for any particular flow and 

valve position was not available, however an approximation to it was found using 

the results of a number of test. Pressure drop «  (K 7 x (100 — Input Valve)2 x

• Kg is used to represent the pressure from the pump. For the system, this can be 

regarded as being virtually constant. The specifications for the pump indicated 

that at flow rates lower than 16 //sec, the pressure was constant.
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Figure 7.3: The model of the system.

Output Valves

(Input Valve -100)



O
ut

pu
t 

Ro
w 

in 
lit

re
s/s

ec
 

W
at

er
 

De
pt

h 
(M

et
re

s)

CHAPTER 7. EXPERIMENTAL RESULTS.

Depth against Time for different output valve settings.
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Figure 7.4: Testing the output valves’ characteristics.
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Figure 7.5: The output valve characteristics.
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The values obtained for the parameters are shown below in table 7.2. Pressure 

is measured in Pascals, and the flow is measured in m 3/sec. This is the model of 

the system. The major relevant physical components of the system are modelled 

and have a parameter associated with them. Our model does involve a number of 

approximations, both in parameter values and the constitutive relationships of the 

components, but one of the objects for the detection and diagnosis system was that 

it should be able to cope with model inaccuracies, as they will always be present in 

any system model.

Parameter Value
I<i 2.41 x 1011
I<2 5.08 x 10n
K 3 1.30 x 10s
I<4 2.35 x 10”6
I<6 1.04 x 10"5
I<7 255
I<8 64650

Table 7.2: The parameter values.

7.2 D etecting Faults.

In this section the performance of the fault detection part of the algorithm in three 

different circumstances will be examined. Firstly in the case when no fault occurs, 

the objective here is to ensure that no fault is detected bearing in mind that the 

model of the system is not perfect and there is noise in the measurements taken from 

the system. Secondly in the case when a restriction is imposed in the pipe between 

the pump and the tank. Thirdly the performance of the detection process will be 

examined when a leak occurs in the tank.

Here only the detection of fault is looked at, not with the diagnosis of the fault. 

This will be looked at in the next section.
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7.2.1 M onitoring th e System  w ithout a Fault.

Figures 7.6.A and 7.6.B show the signals sent to the input and output valves by 

the control computer. Figures 7.6.C and 7.6.D show the signals returned by the 

flow and height sensors. Samples are taken once every second and are passed to the 

detection/diagnosis computer.

The algorithm was told that a 2% noise/signal ratio was expected and that the 

model was 95% accurate. The signals from the input and output valves were not 

filtered at all. The signals from the flow and depth sensors were filtered using a 

sixteen point best fit parabola as described in chapter 4, section 6.

As described earlier, the fault detection algorithm works by finding out what it 

expects the outputs of the system to be and then comparing these to the actual 

outputs of the system. An error index is then calculated based upon how different 

the expected and actual outputs are. (See chapter 5, section 4.)

Figure 7.7 shows the signal returned from the flow meter (the dashed line) and 

the expected value for the flow reading based upon the system model and the inputs. 

Also shown (labelled “Actual error”) is the difference between these outputs. The 

expected flow signal and actual flow signal are very similar. The largest error occurs 

near the beginning when the input and output valves openings are gradually changing 

(see figure 7.6). The error here is larger because, as stated earlier, the constitutive 

relationship for the input valve was not known and an approximation was used to 

describe its’ behaviour.

Figure 7.8 shows the signal returned from the depth meter. The difference between 

the actual signal and the expected signal is very small. These two figures show that 

the model of the system is fairly close to the real systems’ behaviour.

Finally, in figure 7.9, the value for the error index is seen, this was calculated as 

the data was read from the system. The error index is large around the 5 minute mark
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Figure 7.6: Measurement taken from the system.
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Figure 7.7: Comparing the expected and actual flow.
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Figure 7.8: Comparing the expected and actual depth.
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Figure 7.9: The error index and its’ limit.
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because of the error in the flow signal seen in figure 7.7. The spikes at 27 minutes, 

44 minutes and 62 minutes are caused by the step changes in the valve openings, 

although these do not exceed the error index limit, they would not cause a fault to 

be detected even if they did, as was explained in chapter 5, section 4, page 110.

If it were found that the error index did exceed the error index limit because of the 

error in the flow signals, then it would be necessary to decrease the model accuracy 

value given to the algorithm. In this case the model was stated to be 95% accurate, 

decreasing this value would have the effect of reducing the size of the flow error and 

therefore the error index, but it would also mean that smaller faults would not be 

detected.

It has just been just shown that when the monitoring process on the system is run 

where no fault is present, no fault was detected. This is in spite of modelling errors 

and noisy measurements.

7.2.2 D etectin g  a Fault Occurring.

Having shown that when there is no fault in the system, no fault is detected, the 

next step is to show that when a fault is present, it is detected. To show that the 

detection method described does work on real systems, it will be demonstrated with 

two examples. The first one is a blockage occurring in the pipe, and the second one 

is a leak appearing in the tank.

E x am p le  1. B lockage in p ipe.

The blockage was induced by slightly closing a manually operated valve on the pipe 

between the pump and the tank. This can be thought of as a slight blockage occurring 

in the pipe. The result of this is that the parameter associated with the friction in 

the pipes (i^i) effectively increases. This change in the systems behaviour will cause
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a larger error when compared to the expected systems behaviour, and hence a fault 

will be indicated.

Figure 7.10 shows the input and output valve signals, and figure 7.11 shows the 

measured flow and depth signals. The “fault” occurred at time 41 minutes. A small 

spike can be seen on the flow signal at this time.

The output valve positionThe input valve position100

6
&<D
OX)

&<3eu

Time (minutes)
50

Time (minutes)

Figure 7.10: The input and output valve signals.

<D
*3

Time (minutes)

Figure 7.11: The flow and depth measurements.
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Figure 7.12 shows the actual signal from the flow sensor and the expected value.
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After time «  41 minutes the difference between the two signals is substantial. 

Figure 7.13 shows the expected and actual signals from the depth sensor. Here the 

difference is small. This is because the ac tu a l value for the flow is used in calculating 

the expected depth, and doing this does not involve using the pipe friction component, 

so the expected depth is essentially correct. The calculation for the flow does however 

need to use the pipe friction component1 and it will therefore not be the same as the 

actual flow since the parameter for this component has changed in the system.

xlO4
4F

.Actual Flow

O

£ Actual error

Time (minutes)

Figure 7.12: The actual and expected flow.

Expected and Actual depth

Actual error

70 8050 6010 20 30 40
Time (minutes)

Figure 7.13: The actual and expected depth.

Figure 7.14 show the error index and its’ limit. At first this is quite similar to

figure 7.9, that is up until the fault occurs. Immediately after the fault has occurred,

1 Because the outputs are calculated causally, the signal obtained by differentiating the depth 
cannot be used to help calculate the flow, so the pipe friction component has to be involved in the 
flow calculation. (See section 4.2.4)
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the error index does not change greatly, as the actual and expected flow do not differ 

greatly. However, when the flow starts to increase, the difference between the actual 

and expected flow increases quickly, as does the error index. At time ~  44 minutes 30 

seconds, a fault is detect. The error index is larger than the error index limit, and it is 

not decreasing. Normally, the fault detection process ends here and diagnosis begins, 

but in figure 7.14 the detection algorithm has been continued so that the behaviour 

of the error index can be observed.

0.5

8 04 
0.3 Error index: limit

0.2
Error iiutex

0.1

Time (minutes)

Figure 7.14: The error index.

E x am p le  2. A leak in th e  tan k .

The leak was induced by slightly opening a manually operated valve on the side of 

the tank. This allowed water to flow directly back to the sump. The result of this 

is that the flow out of the tank will be larger than that expected according to the 

output valve opening. As before, the change in the systems’ behaviour will cause a 

larger error when compared to the expected systems’ behaviour, and again a fault 

will be indicated.

Figure 7.15 shows the input and output valve signals, and figure 7.16 shows the 

measured flow and depth signals. The “fault” occurred at time 10 minutes.

Figure 7.17 shows the actual signals from the flow sensor and the expected value. 

After time ^ 1 0  minutes the difference between the two signals is still very small.
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Figure 7.15: The input and output valve signals.
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Figure 7.16: The flow and depth measurements.
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Figure 7.18 shows the expected and actual signals from the depth sensor. Here the 

difference is significant after 10 seconds. As before there is an error in one of the 

predicted outputs, but not in the other one. This is because the predicted value for 

the flow uses the measured value for the depth of water in the tank (rather than a 

predicted value) and the characteristics of the output valve for the tank occur, in a 

causal sense, after the flow meter. (The fault is in the output valve from the tank.) 

Therefore the predicted value for the flow will not be affected by this fault.

4

0*
^  2 

£
0

0 5 10 15 20 25
Time (minutes)

Figure 7.17: The actual and expected flow.
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Figure 7.18: The actual and expected depth.

Figure 7.19 show the error index and its’ limit. At first the error index is lower than 

its’ limit. At time «  10 minutes the error index can be seen to gradually increase 

until it exceeds the error index limit at time ~  12 | minutes. As before, the fault 

detection process would normally begin at this time but the detection algorithm has
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been continued again so that the behaviour of this error index can be observed. It is 

seen to remain high at about the same level as the error index limit. Obviously, if 

the leak had been larger, then the error index would have risen more rapidly, and it 

would have settled at a higher level.

0.5

0.48i-H
0.3

Error index limit

^  0.1 Error index

Time (minutes)

Figure 7.19: The error index.

Sum m ary of detection results.

It has been shown that when no fault was present, no fault was detected. The 

error index remained small except for some sharp rises due to step changes on the 

inputs. This occurs when there is a step change in the inputs to the system which 

occurred between measurements. For example, if measurements were being made 

once every minute, and the inputs to the system changed five seconds after one set 

of measurements, then the system will have been changing for 55 seconds before the 

diagnosis system realises that the input have changed. This means the states in the 

model will have been calculated assuming the wrong set of input values for the last 

55 seconds. In the examples this did not cause the error index to exceed its’ limit, 

but even if it had it would not have triggered a fault as having been detected. This 

is because immediately after the sharp rise in the error index, its’ subsequent values 

quickly dropped to levels significantly less than the error index limit. A fault is only 

detected if the error index limit is exceeded, and the error index is not decreasing.
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This prevents false alarms due to step input changes.

The error index limit is based upon the expected noise content of the measured 

signals. The higher the noise, the higher limit.

The value given for the accuracy of the model of the system affects how quickly 

the algorithm can modify the models states so that the models’ output reflects the 

measured output of the system. If the accuracy is 100% then the models’ outputs will 

be based solely on the system inputs and the previous states of the model. Any small 

error in the system model will result in an increasing error between the systems’ and 

the models’ outputs, and in this case false alarms would occur very frequently as the 

model can never be perfect.

If the accuracy is 0%, then the outputs of the model will be based solely on the 

measured outputs of the system, i.e. the predicted and actual outputs will always 

be exactly the same, no m atter how inaccurate the model is, also faults will never be 

detected as this is effectively saying that we have no idea about the systems’ correct 

behaviour, therefore it is never possible to detect any deviation from it.

An accuracy of 95% was used, this means that small differences in the systems’ and 

models’ behaviour can be corrected by slightly modifying the models’ states. If there 

is a larger difference in their behaviour then the models’ states cannot be changed 

quickly enough to compensate, and the difference in the outputs will increase, causing 

the error index to increase and a fault will be detected.

This is what happened in the two examples where faults were detected. Small 

model inaccuracies were corrected by modifying the models’ states but when a fault 

occurred it was no longer possible to modify the states by a large enough amount and 

hence a fault was detected.

The detection scheme does work when there is noise present and the model is not 

totally accurate. The balance between false alarms and sensitivity can be made by
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choosing appropriate values for the accuracy of the model and the expected noise 

content of measurements.

7.3 D iagnosing Single Faults.

In this section two examples will be examined which demonstrate the performance of 

the diagnostic algorithms. Here only single faults will be looked at. The two examples 

looked at in the previous section will be taken, a restriction in a pipe and a leak in the 

tank. The diagnosis process will start at the point where a fault has been detected.

Single faults can be diagnosed by assuming that all of the components except one 

are functioning correctly and then trying to find a new value for the suspected faulty 

components’ parameter. When a new value of the parameter has been found, a model 

of the system with this one parameter changed can be compared to the behaviour of 

the real system. If their behaviours are similar, then the fault (the change in the real 

systems’ behaviour) could be explained by a change in the value of this components’ 

parameter and therefore by a fault in this component. The new value of the parameter 

would indicate the nature of fault.

7.3.1 D iagnosing a restriction in th e input pipe.

Here the same data as in section 7.2.2, example 1 will be used. The valve positions 

and flow and depth measurements are shown in figures 7.10 and 7.11. In figure 7.14, 

as was discussed earlier, the fault is not detected until time «  44 minutes 30 seconds. 

This will therefore be the time when the diagnosis begins. Therefore, the data from 

time «  44 minutes 30 seconds to time «  82 minutes will be used.

The first part of the diagnostic process is, for each of the components, assume 

that it is faulty and all the other components are not faulty. A least squares estimate 

is then calculated for the parameter of the component. The results of this are shown
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in figure 7.20. Here for the parameter for K l, it is assumed that all of the other 

components (except K l) are working correctly and a value is calculated for K ls’ 

parameter. For the parameter for K7, it is assumed that all of the other components 

(except K7) are working correctly and a value is calculated for K7s’ parameter, and 

so on for every component.

After this, again for each component, an error index is calculated based on a model 

of the system which had the new estimated value for the components parameter rather 

than its’ original value. The error index for each component is shown in figure 7.21. 

The error index which is lowest will therefore correspond to the component, which 

when given its’ new estimated parameter value will most closely match the systems’ 

new behaviour. Remember that this is all recursive in time and that for every sample 

of data a new estimate for each parameter is made, and a new value for the error 

index is calculated.

Looking at figure 7.21 there are two which appear to approximately equally low, 

namely K l and K8. In section 6.6 it was discussed how to calculate a hitting index. 

This is done using the error index for each hypothesis (in this case each hypothesis 

is for only one component). The lower the hitting index is, the better the hypothesis 

matches the actual system behaviour. The hitting indices calculated from the error 

indices in figure 7.21 are shown in figure 7.22. Here K l and K8 are observed to indeed 

be the lowest of the seven hitting indices. From time «  44 minutes 30 seconds until 

time «  61 minutes, the hitting indices for Kl and K8 are virtually the same and are 

indistinguishable on the figure. From 61 to 66 minutes K l is the lowest, from 66 to 

77 minutes I<8 is slightly lower than K l, and from 77 to 82 minutes K l is again the 

lowest. From this it can be interpreted that a fault in either K l or K8 would explain 

the new behaviour of the system reasonably well. Possibly K l would be a better fit 

as the hitting index for K l is substantially lower thank K8s’ between 61 & 66, and
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Figure 7.20: The parameter estimates for each component.
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Figure 7.21: The error indices for each component.



CHAPTER 7. EXPERIMENTAL RESULTS.  179

77 &; 82 minutes, whereas the hitting index for K8 is only marginly less than K ls’ 

between 66 Sz 77.

2.9

2.85

2.8

2.75

2.7
K8

2.65
Kl &K8

2.6

2.55

2.5
Kl

2.45

2.4

Figure 7.22: The hitting indices for each component.

So far it has been ascertained that the fault would most likely be explained by 

K l being faulty, but a fault in K8 is also quite possible. Looking at figure 7.20 which 

shows the parameter estimates for each fault, the final estimate for K l is 4.45 x 1011 

(at time «  81 minutes), and the final estimate for K8 is 5.5 x 104. Therefore, the 

most likely fault is a fault in K l, the pipe friction component, and the value of the 

parameter has increased from 2.41 x 1011 to 4.45 x 1011, this means an increase in the 

pressure drop due to friction in the pipe and is analogous with a restriction in the 

pipe. Also possible is a fault in K8, the pressure being supplied from the pump, and 

the value of its’ parameter has dropped from 64650 to 55000 i.e. the supply pressure 

has dropped causing a reduction in the flow into the tank.

To check if these are reasonable results, the same input/output data from time 41
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minutes to 82 minutes is used, together with a model of the system for each of these 

diagnoses, with the appropriate parameter changed to the value obtained above.

xlO4
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3
Actual Flo

2.5

2
Predicted Flow

1.5

1

0.5

Actual and predicted depth
0

75 8055 7045 50 60 65

Time (minutes)

Figure 7.23: Comparing the systems behaviour with Kl faulty.

Doing this for Kl first, results in figures 7.23 and 7.24. Figure 7.23 shows how well 

a change in I \ l s ’ parameter to 4.45 x 1011 fits the new systems behaviour. In general 

it gives a similar response, the depth is almost exactly the same as the real value, and 

the flow is very nearly the same as the actual flow. Looking at the parameter estimate 

for K l in figure 7.20, it was still changing (decreasing) at time ~  82 minutes. If the 

diagnosis process had been left running longer, a smaller value for K ls ’ parameter 

would have been obtained and a better fit with the actual flow in 7.23 would have 

been attained. If figure 7.23 is now used to calculate an error index, the one shown 

in figure 7.24 is obtained. The error index fluctuates around 0.02, i.e. the predicted 

outputs are approximately 2% in error, and remember that there is noise present 

which is also contributing to the value for the error index. This means that a change



Pr
es

su
re

 
(P

a)
 

In
de

x 
va

lu
e

CHAPTER 7. EXPERIMENTAL RESULTS.  181

in K ls ’ parameter from 2.41 x 1011 to 4.45 x 1011, is a reasonable explanation the 

systems’ new behaviour.

0.15

0.1

0.05

0
7565 8045 50 55 7060

Time (minutes)

Figure 7.24: The error index for a fault in Kl.
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Figure 7.25: Comparing the systems behaviour with I\8 faulty.

Figure 7.25 shows how well the fault hypothesis for K8, a change in the pump 

supply pressure, fits the actual systems’ behaviour. The depth is again a very good 

fit, the flow is a good fit when the size of the flow is low, but at higher flows the
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Figure 7.26: The error index for a fault in K8.

predicted flow is not as good as that given by the hypothesis K l. This is also reflected 

in figure 7.26 where the corresponding error index rises significantly when the flow is 

at a higher level.

These then confirm the results of the diagnosis that a fault in K l (an increase 

in the friction coefficient) fits the behaviour of the system well, and a fault in K8 (a

drop in the pump supply pressure) mostly fits but not as well as K l does. Faults in

the other components are poor fits as indicated in figure 7.21.

7.3.2 D iagnosing a leak in the tank.

In the following section the data which appeared in section 7.2.2, example 2 will be 

used. The input and output signals are shown in figures 7.15 and 7.16. In figure 7.19, 

the fault was detected at time 12 minutes and 30 seconds, so the data used here will 

all be from this time onwards.

In this case there is not a component which explicitly represents a leak in the tank. 

This could be done by inserting into the model a component with the constitutive 

relationship of a hole in the tank and with a parameter which corresponds to the size 

of the hole. Initially the value for the parameter would zero, i.e. no hole. A hole 

could then be indicated by an increase in this parameter. It will be noted how the 

diagnosis processes handles this situation.
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The components’ parameters are calculated in the same way as for the previous 

diagnosis, and they are shown in figure 7.27. The corresponding error indices are 

shown in figure 7.28. The lowest index is for K6, although the error index for K4 is 

also very low, and most of the other error indices are also low. This is because the 

leak from tank is quite small and although the systems’ behaviour has changed, it 

has not changed by a great deal.

The hitting indices appear in figure 7.29. The lowest one, after time «  16 minutes, 

is the index for K6, and the index just above that is the index for K4. The top index 

is for K2.

From this the conclusion can be drawn that the most likely explanation for 

the fault is that K6 has changed from 1.04 x 10~5 to 8.7 x 10~5. This parameter 

represents part of the output valves behaviour, and looking back to system model, 

figure 7.3,page 161, this represents a constant flow out of the tank. K6 has increased 

from 1.04 x 10~5m 3/s  to 8.7 x 10-5m3/s , this is equivalent to an additional 0.0766 

litres per second flowing out of the tank, and this is therefore the size of the leak.

K4 is a constant of proportionality between the output valve position and flow 

out of the tank. If this hypothesis is considered, then from figure 7.28, K4 has 

increased from 2.35 x 10-6 to 3.65 x 10“6, i.e. for the same valve position the flow has 

increased. The hitting index indicates however that K6 gives a better representation 

of the systems’ new behaviour than K4.

To check these results, figure 7.30 show how the model with the new value for 

K6s’ parameter compares to the real system, the error index is shown in figure 7.31. 

The predicted behaviour is very close to the real behaviour and the error index is low. 

This shows that the change in K6s’ parameter is a good representation of fault.

Figure 7.32 shows the comparison between the real system and a model with K4s’ 

parameter changed. Again the fit is good, but slight differences between the depths
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Figure 7.27: The parameter estimates for each component.
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Figure 7.28: The error indices for each component.
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Figure 7.29: The hitting indices for each component.

can be seen after 18 minutes. The error index is shown in figure 7.33.

As stated at the beginning of this section, the model does not have a component 

which corresponds to a leak in the tank but, because the leak was fairly constant, 

the diagnostic process was able to attribute the new behaviour in an increase in K6. 

However, if a system was being monitored in which it was desired to accurately detect 

leaks, then it would be more appropriate to incorporate a suitable component into 

the model.

Sum m ary

Here two examples have been shown of diagnosis with data taken from a real 

system. The induced faults were not very large, and there was noise present in 

the measurements, this meant that there were other hypotheses that also produced 

low hitting indices, however the lowest one in both cases did correspond to the actual
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Figure 7.30: Comparing the systems behaviour with K6 faulty.
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Figure 7.31: The error index for a fault in I\6.
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Figure 7.32: Comparing the systems behaviour with I<4 faulty.
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Figure 7.33: The error index for a fault in K4.
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fault with the system.

The parameter estimates were shown to be reasonable by using them in a model 

of the system, and seeing how this model with revised parameter estimates compared 

to the system faulty behaviour. In each case the model behaviour was found to be 

close to the systems behaviour, given the approximations in the other components’ 

constitutive relationships and parameters, and the noise in the output measurements.

7.4 Considering M ultiple Faults.

In this section details of an example diagnosis are given when the diagnosis algorithm 

is set up to look for faults in two components simultaneously. The same data that was 

used earlier (when the fault was a restriction in the in-flow pipe) will be used. Here 

all of the hypotheses which have two components will be tested using parameter 

estimation and then comparing the predicted outputs and actual outputs of the 

system as before. However, this will not be done for single component hypotheses, 

but as was explained in section 6.6, the results of the two component hypotheses will 

be used to reason about the single component hypotheses.

In total there are 21 combinations for two component faults, there are also 7 single 

component faults possible. As explained earlier when trying to deal with multiple 

faults the number of combinations possible becomes very large, and testing each one 

of these is computationally intensive, so these tests should be kept to a minimum. 

Twenty one hypotheses will be tested here, but reasoning about 28 hypotheses will 

take place i.e. a saving of 7 additional tests has been made. The saving in the number 

of tests required, depends upon how many components are in the system, and the 

maximum number of simultaneous component faults that are being examined.

Figures 7.10 and 7.11 show the systems’ inputs and outputs. Because of the 

large amount of information produced by testing 21 hypotheses, it is not practicable
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to present it all here. Instead the information relevant to the hypothesis that K1 

is faulty will be examined, as this was the actual fault, and it will be shown that 

the diagnosis process produces this as the most probable cause of the systems’ new 

behaviour.

Error indices for all 21 two component hypothesis
0.5

0.45

0.4

0.35 H

0.3

0.25

0-2 ;

0.15

0.1

0.05

0
7570 8045 50 55 6560

Time (minutes)

Figure 7.34: The two component error indices.

Figure 7.34 shows the error indices calculated for all of the 21, two component 

hypotheses. W hat should be noted here that there are many of these which give low 

values and no single diagnosis stands out as being most most probable. Figure 7.35 

shows the hitting indices for the same 21 hypotheses. Again, no single hypothesis 

stands out as being lower than the rest.

From the hitting indices in figure 7.35 the hitting indices are computed for 

the single component hypotheses, as described on page 152. These are shown in 

figure 7.36. It can be seen clearly the hitting index for K1 is lowest, and the index 

for K8 is the second lowest. Also, comparing this with figure 7.35, it is seen that
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Figure 7.35: The two component hitting indices.
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Figure 7.36: The single component hitting indices.
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the hitting index for K1 is substantially lower than for any of the two component 

hypotheses. One can therefore be confident that a fault in K1 is the most likely 

explanation for the systems’ behaviour. Now K ls ’ parameter must be found.

To find K ls ’ parameter all of the hypotheses tested which were supersets of K1 

must be considered. Each one of these tests calculated a value for K ls ’ parameter. 

K1 will now be given a value by finding the average value for K ls ’ parameter, as 

calculated by each of these tests. The result for this is shown in figure 7.37. To 

show that this a reasonable estimate of K ls ’ parameter, this can be compared with 

the values obtained for K1 in figure 7.20 when only a single fault diagnosis was 

considered. These are seen to be very similar.

xlO11 The value for K ls ’ parameter

4.7

4.6

4.5

J3
c3>

4.4

4.3

4.2

3.9

Time (minutes)

Figure 7.37: The average parameter estimate for K l.

If the fault was indeed due to two faults, one of the hitting indices for the two 

component hypothesis would have been substantially lower than the rest, and the 

hitting indices for the single component faults would have been much larger.
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S u m m ary

Here an attem pt was made to show how the diagnosis process works when it considers 

the possibility of multiple faults. Because of the large amount of data produced, it 

was not possible to go into great detail here, but the diagnosis processes did correctly 

identify the fault and produce a good estimate for the new value for K ls’ parameter.

7.5 D iagnosing M ultiple Faults
i

! In this last section, the results obtained when a multiple fault occurs are given. The
|
| faults induced in the system are as before, but this time they occur simultaneously.

| That is, a leak occurs in the tank and the pipe from the pump to the tank becomes
I
i  partially blocked.
!

The measured inputs and outputs can be seen in figure 7.38. The actual outputs

| are the solid lines and the expected outputs are the dashed lines. The two faults

occurred at approximately time =  10 minutes. At times before 10 minutes, there is 

little difference between the actual and expected output values. Shortly after the 10 

minute mark, an error appears between the actual and expected flow. This is then 

followed by an error between the actual and expected water depth. The error index 

(in figure 7.39) crossed its limit at around 13 minutes, and a fault is detected at time 

13 minutes and 12 seconds.

The diagnosis process takes place exactly as described in the previous section. 

Error indices for each two component hypothesis are calculated, and from these a 

hitting index for one and two component hypotheses are calculated. These hitting 

indices are shown in figure 7.40. Looking at this it can be seen that there are four 

hitting indices which are consistently low. These are (in order of minimum magnitude) 

{Kl, K6} {Kl, K4} {I<8, K3} {I<8, K6}.
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Figure 7.38: The sensor measurements and expected outputs.
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Figure 7.39: The error index and its’ limit.
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• {Kl, K6} This has the lowest hitting index, and corresponds to an increase in 

the pipe friction in the pipe from the pump to the tank (K l) and an increase in 

the static parameter for flow through the output valve (K6). This is effectively 

what the genuine fault is, a blockage in the input pipe, and an increase in flow 

out of the tank.

• {Kl, K4} This has the second lowest hitting index, and corresponds to an 

increase in the pipe friction in the pipe from the pump to the tank as before 

(K l), and an increase in the proportional parameter for flow through the output 

valve (K4). This is also effectively what the genuine fault is.

• {K8, K3} This has the third lowest hitting index. This is indicated as being 

likely, because a fault in these components has a similar effect as the effect of 

the genuine faults. Firstly I<8 (the pump supply pressure) is indicated as being 

a candidate because if K8 were to decrease, then the result would be a smaller 

flow into the tank. As it happens the real fault was due to a restriction in 

the input pipe, but this also has the effect of reducing the flow into the tank. 

Secondly K3 (the tanks parameter) is indicated as being a candidate because 

if K3 were to increase, this would correspond to an increase in the tanks cross- 

sectional area. The result of that would be that the level in the tank would not 

rise as quickly for the same in flow. The actual fault was a leak in the tank, 

which has the same effect, namely that the level of water in the tank does not 

rise as quickly as expected.

• {K8, K6} This has the fourth lowest hitting index. K8 is indicated for the 

reasons just described, and K6 is indicated because, as also described above, it 

represents a constant out flow from the tank, and the behaviour of the leak is 

similar to this.
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The hitting indices.
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Figure 7.40: The hitting indices for all one and two component hypotheses. 

S u m m ary

To summarise these results, the lowest two hitting indices correspond well to the 

actual faults that were induced on the system. Other hypotheses which also had 

low values would produce similar symptoms to the actual faults. As the size of the 

faults were not excessive, and the system was not accurately known, it was not easy to 

differentiate between these, although the lowest hitting index did accurately represent 

the faults.



Chapter 8

Conclusions.

Fault detection and fault diagnosis in dynamic engineering systems have been 

examined. Constraint propagation techniques [52] [51] [27], have been used together 

with established model based approaches to fault detection [41] [12] [21] and fault 

diagnosis [62] [19] [74] [36] [8] [70]. In addition aspects of multiple fault diagnosis 

theory [68] [10] [11] have been drawn upon to enable us to reason about multiple 

faults and to do this in a way which does not vastly increase the computing overheads, 

although an increase is required.

Although the overall detection and diagnosis system is similar to that of others, 

an attem pt has been made to cope with model inaccuracies, noisy measurements and 

systems where the states of the system are not necessarily measurable. The result of 

this is a recursive in time diagnosis algorithm which can be used on-line rather than 

a post-process fault diagnosis system. The faults which this system was designed to 

diagnose must be representable as a change in a components’ parameter, rather than a 

new, undefined behaviour. Therefore, to show that one or more components are faulty, 

it is necessary to evaluate their new parameters and show that the new values are 

consistent with the systems’ behaviour. This has been advantageous for two reasons, 

since it has allowed the exploitation of the dynamic nature of the systems being
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considered and this has enabled the identification of single and multiple component 

faults in systems where the number of sensors are limited. Previous implementation 

of constraint propagation methods have not been able to do this.

Our implementation consists of an off-line system analysis section, and an on-line 

fault detection and diagnosis section. The off-line section extracts system equations 

from the model and generates a self contained C + +  source code which contains all of 

the algorithms necessary to detect and diagnose faults in a particular system. This 

can be ported to any machine with C ++ . This has allowed us to shift the bulk of 

the computation to the once only off-line part of the system. This has resulted in a 

practicable implementation which can be used on-line, and in real time.

Through simulations and tests on a real system, it has been shown that the 

approach adopted here is capable of detecting and diagnosing faults. In a noisy, 

imprecisely known system it is impossible to be 100% sure that a diagnosis is correct. 

The system therefore orders the hypotheses, so that the most likely ones can be 

checked first.

In chapter 2 a survey of other fault detection and fault diagnosis methods was 

presented. The origins of constraint propagation techniques and different approaches 

to system modelling were also given.

In chapter 3 the background to the bond graph modelling techniques were given. 

These enabled the models of systems to be made much more quickly and easily. Bond 

graphs can be used to represent systems from more than one domain, in a standard 

format, enabling the fault analysis algorithms to work on mechanical, electrical, 

hydraulic or thermodynamic systems, or any system which combines any of these 

domains.

Also shown was how the constraint propagation methods have been used in fault 

detection and diagnosis, and some of the limitations with their use in these ways were
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highlighted. Notably their inability to cope with noisy systems, inaccurate system 

models and dynamic system where not all of the systems’ states are measurable. 

Dynamic components were briefly introduced, and it was shown that by using the 

measurements from more than one time interval, the rates of change could be resolved. 

The combinatorial problem of considering multiple fault hypotheses was also discussed 

and it was shown that for a system with N  components, there were 2^ — 1 possible 

component combinations.

Chapter 4 described how to propagate signals through time and the model, and 

also described the propagation algorithm. This algorithm, when given some known 

signals, can find the shortest route from any unknown signal to these known signals, 

in such a way that it is possible to solve all of the constitutive relationships of the 

components’ which are en route, to yield the unknown signals or parameters in terms 

of the known signals and known parameters. An overview of the software which has 

been developed was given. This indicated the different roles of the off-line and on-line 

sections of the software. Also described in detail was the filtering method used on the 

measured signals, before input to the rest of the detection/diagnosis system. Using 

this filtering method greatly increased the performance, both in terms of speed and 

accuracy, of the parameter estimation and therefore the diagnosis algorithm. It also 

reduced the likelihood of a false alarm being triggered by the presence of noise.

In chapter 5 the method for detecting faults in dynamic systems was described. 

This consisted of predicting what the systems’ outputs should be, given the system 

model and the measured system inputs. The predicted system outputs were then 

compared to the actual system outputs and an error index was calculated which 

reflected, on average, the percentage difference between the two sets of outputs. If 

this error index exceeded a limit determined by the measurement noise content, a 

fault was indicated. While this was happening, the models’ states were being adjusted
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according to the actual system outputs, and how accurate our model of the system 

was. In this way modelling inaccuracies could be compensated for by adjusting the 

states to reduce the difference between the predicted and actual outputs.

In chapter 6 the fault diagnosis method was discussed, and it was shown how to 

determine how well an estimated parameter, in a component suspected to be faulty, 

reflected the systems’ behaviour. This formed the basis for a dynamic system theorem 

prover which is compatible with that described by Reiter [68]. This enabled us to go 

on and consider multiple fault diagnoses. In addition to this a method was proposed 

for reducing the significant amount of computation required by only testing a subset 

of all of the multiple faults to be checked, and then extrapolating this information to 

reason about hypotheses which were not explicitly tested. Some of the limitations of 

this were outlined when the methods were applied to real systems, this was chiefly that 

system equations needed to be solvable. Finally determination of which hypotheses 

were the mostly likely was explained, as it is not possible to be absolutely certain 

about any of the hypothesis.

In chapter 7 all of these methods were put to the test on a real system. The system 

consisted of a water tank, a pump and an assortment of pipes, control valves and 

presure sensors. The system was noisy and approximations were made in modelling 

the system. Firstly the detection algorithm was tested on the system when no fault 

was present. Happily, no fault was detected. This showed that the modelling errors 

and noisy measurements did not produce a false alarm.

The detection algorithm was then tested on two examples of a fault. In each case, 

shortly after the fault occurred, a fault was detected. These faults were small changes 

in the system, namely a slight restriction imposed in a pipe and a small leak in the 

tank.

Next the diagnosis algorithm was shown finding which component failure most



CHAPTER 8. CONCLUSIONS. 201

accurately described the systems faulty behaviour, and the estimates of the parameter 

associated with the fault were shown. This was done for both of the faults described 

above.

The extrapolation algorithm performance was shown when considering the possi­

bility that multiple faults could occur. 21 two component hypotheses were tested, and 

then the decision that the fault was caused by a single component failure was taken, 

and an estimate of its new parameter value was produced. This was even though 

single component fault hypotheses were not explicitly being tested. This showed that 

the number of computationally expensive hypotheses tests could be reduced, without 

reducing the number of hypotheses which could be reasoned about. This makes the 

diagnosis of multiple faults possible in real time, and helps reduce the combinatorial 

problem when multiple faults are considered.

Finally, the diagnosis of two separate faults occurring at the same time was 

investigated. Hitting indices for single and double faults were calculated, and the 

lowest hitting indices were those from multiple fault hypotheses which would produce 

similar symptoms to those which the faulty system was exhibiting. The hypothesis 

with the lowest hitting index was also the one which most closely represented what 

the actual faults were.

Although the algorithms work, there is no doubt that their performance could 

be increased by a more sophisticated parameter estimation method and an improved 

hitting index calculation algorithm.



A ppendix  A

A utom atic Constraint G eneration.

Here the workings of the automatic constraint generation algorithm will be discussed 

in detail. Information which must be kept during the propagation is identified and two 

alternatives for the strategy for finding the shortest possible route for propagating 

are discussed. One of these is substantially faster than the other, but also could 

require considerably more memory to implement successfully. A detailed example 

will then be shown of how the constraints for a particular situation are automatically 

generated. The DC motor will be used again, and the constraints will be generated 

which will allow the calculation of the value for the resistors’ parameter (R ) and the 

value for the inductance of the motors’ windings (L), assuming that both of these are 

unknown, and the applied voltage and the speed of the motor are being measured.

A .l  Inform ation requirem ents during 

propagation.

During the automatic constraint generation, an account must be kept of information 

which describes the current state of the propagation process. This was implemented 

in prolog, and the information was represented in lists, the algorithm will therefore
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be explained with relation to lists. The propagation which is described here starts at 

any unknown signals or parameters that are to be found, and then a route is found to 

known measurements or parameters. When such a route has been found, propagation 

takes place backwards along this path, from the known variables, to the unknowns 

to be evaluated. Here the first stage of this is looked at which involves propagating 

from the unknowns to the knowns.

At all times during propagation, the following information must be stored.

1. A list containing which parameters or signals to be found. This changes 

throughout the propagation process, at the beginning it is a list containing the 

unknowns of primary interest which are to be found. As propagation proceeds, 

the list contains what must be found in order to be able to calculate the initial 

signals and parameters which were in the list. At the end of propagation, the list 

will be empty, indicating that enough information has been found to calculate 

the original objectives. This list will be called U , a list of unknow ns to be 

found.

2. A list which contains the parameters and signals which are known. This list 

will be called K , the know n parameters and signals.

3. A list which contains the components which may be propagated through. Any 

one component may be used only once to propagate through, so whenever one is 

used, it must be removed from this list, so that it cannot be used again. This list 

will be called C, the list of com ponen ts  which may be used for propagation.

The need and use of these will be described further over the following sections.
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A .2 Finding the shortest possible path.

Before we begin with the actual propagation itself, lets first look at an important area 

which must be covered by the implementation. The path that is found from unknown 

values to known parameters or signals must be the shortest possible path. If not 

the path will unnecessarily involve other components making the final solution more 

complex and making it more time consuming to solve during the on-line detection 

and diagnosis process. This problem arises because, during propagation, there will 

quite frequently arise situations in which there is a choice of which component to 

propagate through next. i.e. from the list [/, K  and C, the situation will be that the 

signal x is to be found, and this could be done by propagating through component A 

or through component B. At this stage in the propagation there is no way of telling 

which, if either, is the better path to take.

A .2.1 Our m ethod for finding th e shortest path.

The solution adopted here to overcome this problem is, whenever there is a choice 

of two or more paths to take, all of these path are taken, independently, but 

simultaneously. To explain what this means examine figure A.I. P  =  0 is the initial 

position where no propagation has taken place. [/, K  and C will be set up indicating 

what must be found, what is known and which components are to be used. These 

are indicated by U\, K \ and C\. The algorithm/program then goes through a one 

component propagation step to P  =  1, where one component has been propagated 

through, and there was no choice to make about which component to propagate 

through. List U , K  and C will have change to reflect the change in the current state 

of propagation to C/2, 1^ 2 and C2. Another one component propagation step can now 

be made. This time there is a choice, and there are two alternatives which can be 

taken, taking both of these leads to the state where there are two sets of values for
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C/, K  and C, {C/3, ^ 3 ,  Cz] and {C/4, K 4 , C 4 } . Both of these are equally valid without 

further information, and therefore both of them must be explored. For the next one 

component propagation step, both of these sets will be used separately, firstly looking 

at {C/3, A 3 ,  C 3 } , and propagating through one component giving {C/5, K 5, C 5}  and 

then through {C/4, A4, C4} giving {C^, K&, Cq). It is of course possible that either 

or both of these could have resulted in another choice giving even more sets of C/, K  

and C  which need to be investigated. This process continues as shown in figure A.l, 

with the number of single component propagations to be done at each stage gradually 

increasing.

H V K . C }  P = 0

1
{ U 2 ’ K 2 ’C 2 }

<U 3’K3’C 3}
{u4 .k4 ,c4}

P=1

P=2

{U5,K5,C.} {u6 ,k6>c6} P=3

Figure A.l: The propagation tree.

At first it would seem that the number for different propagation routes is enormous
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and that this rapidly increasing number of routes to be checked would quickly consume 

large amounts of memory for storing all of these sets of U, K  and C, and the 

program would slow down drastically as the amount of processing for each step 

increased. Although it is true that the number of alternative routes does increase, 

it is possible to ‘prune’ this ‘tree’ of possible routes as it is being created thereby 

reducing the actual number of routes which need to be checked. The first point to 

note is that different routes may in fact be considered as being the same. For example 

if propagating from known measurements to find a signal, one route may go along the 

route A=>B=$-C=>D=$-E, whereas another route might be C => D =$■ B  => A E .

These are both different routes, but they involve going through exactly the same 

components, so later when all of these five components’ relationships are solved for 

the signal to be found, exactly the same answer is obtained for each of the routes, i.e. 

going from known data, through the same component to a signal. If the known data 

is the same for each route, and each route goes through the same components, only 

in a different order, then the result for the signal, when taken together, will be the 

same for each route. One of these routes can therefore be safely deleted without a 

the final outcome. This also means that any additional choices of routes originating 

from the one which is deleted, will never be created.

Additionally, a restriction that propagation may only take place backwards 

through time is imposed, and a limit is put upon how far backwards in time to 

propagate. Therefore if a route goes backwards in time too far, it will be deleted, 

also if a route goes backwards in time from the current time, e.g. propagates through 

a state, and later tries to propagate forwards in time through another state, it is 

prevented from doing so. This reduces how often valid choices are available. If the 

only route possible involved the violation of one of these restrictions, then obviously 

that whole route is deleted since it has no path which it is allowed to take. If the
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list, U (the unknowns), is not empty, but the list, C (the component which may be 

propagated through), is empty, then this means some unknowns are still to be found, 

but there are no more components to propagate through1. This route is therefore 

deleted as it has failed to find a valid path.

The whole of the above process continues until, for any route, the list U becomes 

empty, that is, there are no more unknowns to be found for that path. Since every 

possible valid route had been taken from the original unknown parameter or signal, 

the one for which U becomes empty first must also be the shortest route.

It is possible for all of the routes to be deleted before any of them have successfully 

managed to reduce their unknown list, U , to the empty list. In this case there is no 

valid route and a solution for the unknown cannot be found. This would happen, 

for example in the DC motor if only the applied voltage is measured, and the value 

of R  was required given these voltage measurements, then there is no way to find 

a solution. Various routes will be explored, but eventually they will all be deleted 

as being invalid. This is why a limit on how far backwards in time the algorithm is 

allowed to go is imposed. Otherwise, in this situation, the algorithm would go on 

forever going further backwards in time looking for another known value so that it 

would be able to solve the equations.

A .2.2 A n alternative m ethod.

As an alternative to trying to travel down all of the possible routes simultaneously,

one route could be taken and backtracking employed every time the route turned

out to be an incorrect one. In this case the first valid route found could not be

guaranteed to be the correct one. A note would have to be made of the route and the

backtracking employed again to find all of the possible valid routes and then pick the

1There is one exception to this in the implementation which will be discussed later.
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smallest one from these. Doing this would probably reduce the memory requirements 

for the algorithm, but it would certainly greatly increase the time for the shortest 

route to be found, as every possible route would have to be taken to prove whether or 

not it was a valid one. The algorithm use here stops as soon as the first valid route is 

found, this also must be the shortest path. When this happens there could be many 

other routes which are still under investigation in memory and the will be others 

which have not been started yet, but as the shortest, valid path has been found, all 

of these others can be discarded.

A .3 An exam ple of propagation.

To help show how the automatic constraint generation algorithm works, figure A.2 will 

be referred to, this is a block diagram of a DC motor showing three consecutive periods 

of times as before, but all of the components and all of the connections between the 

components have been indicated. The connections between components are labelled 

‘a’ through ‘m’, these will be referred to as signals. Each state in figure A.2 is shown 

as consisting of three components, namely the parameter, the change in time between 

the time frames df, and a summing junction which sums the previous state with the 

change in the state to give the current state. In the model this is represented as two 

components, the parameter being one, and the change in time &; summing junction 

being the other. The shaded areas labelled Sa  and Sb represent these. The two 

other summing junctions have been given the labels Aa and Ab. When referring to 

a particular component or connection, the time frame will be appended to the label 

of the component or connection, e.g. if to refer to the inertia (J)  in the current time 

frame J0 would be used, for the previous time frame Ji is used, etc. therefore Ab2 

would refer to the summing junction Ab in the time frame labelled ’Time =  2’.

In the initial situation the lists £/, K  and C will have the following values.
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CO from Time = 3.Current from Time = 3.

All, 'Mi

Time= 2

I fP ;

Time = 1

Sal

f i n

Time = 0

Figure A.2: A block diagram of a DC motor.
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•  U = {R , L],  the unknowns.

•  K  =  { 14? Ka, Kb, J , C}, the known parameters and measurements. Vx 

indicates that V  is know for any value of x i.e. all the values for V  for every 

time period are known. To indicate that the current value of V  was known, but 

no other values for V  were known, then the list would contain Vo instead of Vx. 

Parameters need no subscript as a parameter is constant for every time step.

•  C = {L0, Ro, K a 0, Kb0 , J0, Co, Aa0, Ab0, Sa0, Sb0}. These are not to be 

confused with parameter values. Here, L q means that the relation for L for 

the current time step has not been used for propagation, it is independent of 

whether the parameter L  is known or unknown.

The algorithm begins by first looking at the first element of U, this is the parameter 

R,  to find R  (the parameter) the relationship of R  (the component) must be used. 

From figure A.2 it is seen that in order to find R  (the parameter), the values of cq 

and h0 need to be known. The three list U, K  and C can now be updated.

1. U = {cq , ho, L}.
I< =  {R, Vx, ljx, Ka,  Kb, J,  C }. 

C = { L q, Kao? Kbo, Jo, Co, Aao, Abo, Sao, Sbo}.

You will notice that R  in U has been replaced by Co and h0, since these are needed 

to find R. R  has appeared in K,  since R  would be known if the values the members of 

U were known. Ro has been removed from C since its relationship was used in finding 

that R  was dependent on Co and h0. After each step the list U is sorted according to 

the following rules.

1. Any duplicates in U are removed.

2. If U contains any unknown parameters, they are all placed at the end of the list. 

The order of the parameters themselves is not important. Since the algorithm
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always starts at the beginning of U, this means that the algorithm will only 

attem pt to find a parameter once all of the signals which are unknown have been 

found. This results in the algorithm following a path from the unknowns to be 

found, to the known values. When that path is complete, the next parameter 

in U is used and this process is repeated.

3. The signals are sorted according to which time period they refer to. e.g. e0 

refers to the signal e in the present time period and C\ refers to the signal e in 

the previous time period, eo will come before t \ .  This means that an earlier 

time period will only be used if there is no other route through the current time 

period.

The above step is then repeated. Looking at Co which is the first member of U. 

Since R q has been removed from C there is no choice but to use A60 to find Co. Doing 

this produces the following results.

2. U = {Vo, 60, do, ho, L] 
I< = {co , R , 14, ivx, K a , Kb, J,  C}. 
C =  {Lo, Kao, Kbo, Jo, Co, Aao, Sao, Sbo}.

The process is then repeated, looking at the first member of U again. This time 

V0 is the first member of U, its value is known since it is measured and 14 appears in 

K .  It can then be removed from U to give U = {bo, do, ho, L}.  The values of U, K  

and C  the change as follows.

Propagating through Kb0.

3. U = {Kb, u > q ,  do, ho, L } 
I< =  { bQ, co, R, 14, u>®, Ka, Kb, J,  C}. 
C = {Lo, Kao, Jo, Co, Aao, Sao, Sbo}.

In U, Kb  is a known parameter, and so it can be removed.

4. U — {ĉ o> do, ho, L}.
K  — { 60, Co, R, Vx, ujx , K  a, A b, J , C }.

C =  { L q , Kao, Jo, Cq, Aao, Sao, Sbo}.
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In U, loq is a measured signal, it is therefore known and it can be removed from U.

5. U = { d o , /io? L}. 
I< =  {60 , cq , R , Vx, cax, Ka, Kb, J , C}.
C  = { L q, KaQ, Jq, C o, Aao, Sao, Sbo}.

Propagating through L0.

6 . U =  {L,  e 0 , h0, L}.
I< = {d0, b0, co, R, Vx, ujx, Ka, Kb, J , C}.
C  = { K a o ,  do, C q, Aao, Sao, Sbo}.

In U, L  now appears twice. One of these occurrences of L  can therefore be removed.

After sorting, U will be as shown below.

7. U =  { eo , ho, L}. 
I< = {d0, b0, Co, R, Vx, ujx, Ka, Kb, J,  C}. 
C  =  {Kao,  do , Cq, Aao, Sao, Sbo}.

Propagating through Sb0.

8 . U =  {hi, ho, ho, L}.
df — {eo, do, bo, Co, R , Vj, ojx, K.a, I^b, J , C*}.
C  =  {Kao,  do , Co, Aao, 5^o}*

One of the duplicates in U, ho, is removed.

9. U = {hu h0,L } .
I< = { e 0 , d0, b0, Co, R, Vx, u x, K a, Kb, J , C}.
C = {Kao,  do, Co, Aao, Sao}.

U is sorted putting ho before hi.

10. U =  {ho, hi, L } .

I< =  {e0, d0, b0, cq, R, Vx, u x, K a, Kb, J , C}.
C =  {Kao,  do, C o , Aao, S ,«o}- 

Propagating through Kao.

11. U = {Ka, io, hi, L}.
I< = {h0, e0, d0, b0, Co, R, Vx, u x, Ka, Kb, J , C}.
C =  {do, Co, A ao, Sao}-

Ka  is removed from U as this parameter is known.

12. U = { io , hi, L}.
K  —  { / i q ,  eo, do, bo, Cq,  R, Vx, ojx, Ka, Kb, J , C}.
C = {do, Co, Aa0, iS'cto}•

Propagating through Aa0.
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13. U =  {k0, j 0, hu  L).
K  = {io, ho, eo, Jo, fro, Co, 72, K a , K b , J ,  (7}.
C =  {Jo, Co, S ^ } .

Propagating through J0.

14. U = {J, /o, jo, ^i, J'}-
I£ {^o, fr’O5 ^0) Jo, fro, Q), 72, 14, ^ i ,  K.a, l*Cfr, J ,  C*}.
C =  {Co, Sa0}.

J  is removed from 27 as this parameter is known.

15. U =  {/0, jo, ^i, ■£}•
I< = {k0, io, V  c0, J0, fro, co, 72, 14, Ka, Kb, J , C}.
C = {Co, Sa0}.

Propagating through Sa0.

16. U =  {w0, Wi, j 0, &i, L).
K  =  {/0, &0, z'o, h0, e0, J0, fro, Co, 72, 14, <*;*, Ka, Kb, J , C}.
C =  {Co}.

Both Wo and w\ are measured values and so they are both removed from U.

17. C =  {j0, hu L}.
K  {lo, ko, Zo, ho, Gq, Jo, fro, Co, R , 14, Ka, Kb, J , C}.
C =  {Co}.

Propagating through Co.

18. U = {C ,w 0 , h 1 ,L } .
K  {jo, ô, ^  ô, ho, eo, Jo, fro, Co, R , 14, ^ i ,  Ka, Kb, J ,  C}.
C =  {}-

C is known and u>o is known, they are both removed from U.

19. U = {hu  L).
K  {jo, ô, *b, *o, fr'O, Co, Jo, fro, Co, 72, 14, ^x, Ka, Kb, J , C}.
C =  {}.
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At this point C is empty and U still contains unknowns. Above it was stated 

that in this situation propagation ceases, there is however one situation in which 

propagation does not cease. That is when, after U has been sorted, the first element 

of U refers to a time period that has not been descended to yet. In this case the first 

element of U is hi. When this happens, all of the components from this new time 

period are inserted into C. So C becomes as shown below. This is done because at 

the beginning of propagation it is not known how far backwards in time it will be 

necessary to go. It would be possible at the beginning to put all of the components 

from the last 20 or even 40 time periods into C. This just means that large amounts 

of data will be manipulated throughout the propagation, although it is possible to 

do this, it was considered undesirable from a program execution point of view.

20 . U =  {hu  L}.
K  — {joj 0̂) ô, ^Oi Co, do, ^o, Co, R , V®, Ka^ Kb^ J , .
C — {Tj, R \ , K d \ , Kb\, J j, C\ , A cl\) Ab\ , Sci\ , Sb\ }

To find a value for hi there is the choice to propagate through K a i , Ri or Sbi. As

stated earlier in these situations all three of these routes are taken. Each one of

these would give (/, K  and C as follows 
Propagating through K a\.

21. (a) U = {K a , iu  L}.
K  {/&!, jo, /o, *b, *0, *0, eo, do, &o, Co, R , ka?, Ka^ K b , J , C}.
C = {L1? i?1? K bi, J 1? Ci, Aal5 A6x, 5 a 1? 56x}.

or
Propagating through Ri.

(b) U =  {A, ci, L}.
K  jo, /o , ^o, *o, ^o, Co, do, 60, Co, i?, Px, ^ i ,  Ko>, K b , J , C}.
C — {Tx, JTuj, Kb\, t/i, Ci, A dj, Ab\, S a \y 5*61}

or
Propagating through 5&i.

(c) C/ =  {ei,/i2,T}.
K  { ̂ 1, Jo, 0̂ , ^ 0 , 0̂, ^0, Co, do, 60, Co, A ,  Pj,, K b , J , C J .

C — {Ti, , K cl\, K b \ , «/i, Ci, Adi, (Sui}.
Each of these sets of {t/, A", C} would now be followed simultaneously, here though,

only results of propagating though Ka\ will be followed.
So, following on from 21(a) above removing Ka  and propagating through Aa\.
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22. U = {kt , j t , L }
K  — h \ )  jo , lo, *b , ho, ^o, d o , bo, ^o? V x, Ka, Kb, J , C*}.

C7 — { L x , -^ i?  Kbi, J \ , C7i j  A 6 x , Sb\,  5*01}.

Propagating through 5 a ! .

23. U =  { w i,  w 2 , i i ,  £ }

K  — Ji? h\ 5 Jo? 0̂? *0, ^0? ^0? do, ̂ 0? V ,̂ ^x? Ka, Kb, J , C }.
C  =  { £ 1 ,  f lx ,  tf& x , JU CU A h , S h } .

Now removing a?! and u)2 from U and propagating through C.

24. U = {uu L}
K  — {ji? 1̂ ? h\, jo, lo, ko, 0̂} b-o, €0 , do, bo, C q ,  R, Vx, u)x? Ka, Kb, J, C*}.
C =  { R  /?!, I<bu Ju  A h , Sbi}.

Removing u?x from U gives.

25. U = {L}
K  — {ji} Jij h\, jo, Iq, Icq, zq, ho, Cq, do, bo, cq, R,  V̂ , ^xj Ka,  Kb, J,  C}- 
C =  {Lu  R u  Kbi, Ju  A h ,  S h } .

Now U contains only L. Looking at C it can be seen that L\  has not been used

yet. If it had been used, all of the components from the next time period would be

added to C e.g. L 2, R 2, etc. So now, starting at L\  it is necessary to find the values

of di and ei.

26. U =  R ,  d }  
K  — {L , j \ ,k \ , j \ , h\, jo, lo, ko, i q ,  ho, c q , do, bo, C q , R,  Vx, ojx, Ka, Kb, J,  C } 

C  =  { R i ,  K h ,  J i ,  A h ,  S h } .

It should now be clear how this will continue, from di and ex propagation continues 

until C is empty. Since all of the possible routes are taken, the first one in which 

C becomes empty is the smallest. If a record is kept of all the components passed 

through and all of the variables which were to be found, then this information can be 

used to generate a mathematical description of how R  and L are functions of u>o, u  1, 

^3* ^0 and Vi. This would look something like table A.I.

All of these can then be decomposed to the actual mathematical relationships 

(e.g. cq = R  x ho) and then all of these equations must be solved, simultaneously 

if necessary. To do this, all of these equations are printed out into in a file which is



APPENDIX A. AUTOMATIC CONSTRAINT GENERATION. 216

Unknown Found by using 
component

Found by using 
known values

R Ro Co? ^0
Co Abo K>, bo, d0

bo Kbo Kb, uq
do Lo L, eo

• :

: : 1
h So, 2 UJ2 , UJ3

J2 c 2 UJ2 , C

Table A.l: All of the components needed to solve in order of propagation.

then fed into symbolic equation solving package. This solves all of the equations 

and produces results, which for the example used here, would be of the form

L =  / l  ><*>2, w3> Kb K ) and R  =  /2(^0,^l 5^25^35 Kb K)*

In this case,

where

A  — d t 2K {C d tu j \ Vo — C d tV n J o T uj2 JKwq — uj2 JVo — ^K uj2 4 J wi K T J uj\ Vo

—  J V \U q)

B  =  C 2uj2 dt2w0 — C 2dt2bj\ -f C u 2 dtJ(jJi 4- 2Cuj2d tJu Q — Cuj^dtJujQ — 2 CdtJuj\

— l j 2J 2 u)2J 2l j \ 4 oj2J 2<jJq 4 u)^J2u)\ — lo-^J2ujq — J 2d 2 

C — —dtK[Cuj2 dtRljq — Cu>2dtVo — CdtKcj2 4  Cdtuj\V\ 4  Cdtuj\\o  — CdtV\ujQ 

4 ̂ 2 J K u ) \ 4 2 l j2J K u jq  — l j 2J V \ — 2 l j2JVq — 6J3 J K u j 0  4 UJ3 J V 0 — 2J K u j 2 

4 2t/ct?jVi 4 JcjiV o — JV\ujq)

D = C 2Lo2 dt2u Q — C 2 dt2uj\ 4 Cuj2 dtJuj\ 4 2Cuj2dtJujQ — Cuj^dtJujQ — 2CdtJuj2

— to2 J 2 4 uj2J 2uj\ 4 uj2J 2ujo 4 uj^ J 2uj\ — uĵ J 2ujq — J 2uj2
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These fairly complex equations which give R and L in terms of known parameters 

and measurements were all generated automatically by the propagation algorithm, 

which found the route from the known to unknown values and then passed that 

information to the symbolic equation solver which produced the solved equations 

shown above.

So, to summarise, the software is given a description of a dynamic system. It 

is informed which signals are measured and which are to be found. It will then 

find how these are related in the simplest terms (i.e. via the shortest route) and 

solve the equations to give the desired variables in terms of the known variables and 

measurements.
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