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Abstract

The need for validated nonlinear helicopter models and methods to validate these 
models directly is identified. Published validation methods for validating nonlinear 
dynamic models are reviewed and the need for an integrated approach is established. 
Sensitivity coefficient based validation techniques are investigated. Single value 
sensitivity coefficients are found to be useful for parameter and output variable 
selection. Examination o f sensitivity coefficients time histories is found to be a useful 
addition to parametric validation methods. A model distortion technique is evaluated. 
The method is tested with simple systems and simulated data as well as a helicopter 
model and real flight data. The method is discussed. Its application to helicopter 
dynamics is rejected because o f noise problems. A nonlinear one degree o f freedom 
yaw model for an Aerospatiale SA.330 PUMA helicopter is improved and validated 
using analogue matching and a parameter estimation method which uses a linear 
search. The importance o f physical knowledge o f the system being modelled is 
highlighted in the development o f the model. A nonlinear mathematical model o f a 
helicopter main rotor is validated in two specific areas. These are the lag damper and 
the engine/rotor speed model. The validation techniques used are maximum likelihood 
parameter estimation with sensitivity coefficient examination and analogue matching 
o f time response data. The importance o f good physical knowledge o f the system being 
modelled is again indicated. The structure o f the model in the identified areas is 
validated. The validation methods are brought together in a specification for an 
interactive model validation computer package. The benefits o f an integrated 
approach are identified and the computer program is specified so as to take 
advantage o f this. Through this package, the user will interact with the model, the 
available validation methods and the experimental data and will be able to develop 
and validate dynamic models easily and efficiently.
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Chapter 1 

Introduction

1.1 Introduction

A mathematical model is an abstract representation of a physical system. Such a 
model can be analysed and experimented upon as if it were a real system but only if 
one has confidence in the model's representation of the real system. That confidence 
comes from an very important part of the model building process - model validation.

Model validation is the process in which the model is checked against the real system 
to ensure its validity as a mathematical representation of that system. If mathematical 
models are to be used in safety critical applications areas such as the aerospace 
industry, it is essential that they are adequately validated. Linear mathematical models 
are derived from nonlinear system equations based on physical principles by 
linearising around a specific operating point. This means that the range of flight 
conditions over which these models are valid is usually small. A nonlinear model 
derived from the physical equations can be valid over a much wider range of operating 
points and as a result can be much more useful. It is therefore very important that 
nonlinear models are validated and tested and that proven techniques for validation of 
nonlinear models are available.

There are various aspects to the model validation process. These can be described 
using terminology defined by Murray-Smith and Carson-1-. They include the 
following,

i) Theoretical Validity where the model is of sound theoretical foundation 
based on known theories.

ii) Empirical Validity where there is agreement between the model behaviour 
and all available data concerning the system.

iii) Pragmatic Validity defines the extent to which the model is suitable for its 
intended application.
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iv) Heuristic Validity defines the potential of the model to predict system 
behaviour and to test hypotheses.

Empirical validity is particularly important in development of mathematical models of 
dynamic systems and should be checked throughout the development and refinement 
process as well as during the subsequent application of the model.

There are many possible methods of validation for mathematical models. For linear 
models, the frequency domain can be used with techniques borrowed from system 
identification. For nonlinear models, it is common to work in the time domain. These 
time domain nonlinear model validation methods are often based on model refinement 
techniques where the model is fine-tuned to fit the experimental data and results of 
this fine tuning are compared with those for different experimental data sets and with 
theoretical values. Such methods can be either structural or parametric in nature, 
although, where the model is based on physical equations, there may be limited room 
for manoeuvre as far as model structure is concerned if theoretical validity is to be 
maintained. This leaves parametric techniques which include methods based on the 
sensitivity of specific model outputs to specific parameters. Such parametric 
techniques are often based on minimisation of a cost function over an experimental 
time history, or perhaps involve more specific examination of a particular part of the 
system dynamic response to some input such as the magnitude of an overshoot or the 
steady-state response.

The experimental data used in the model validation process is very important. It is 
often desirable to design experiments specifically for a particular validation exercise. 
This is because it may be desirable to isolate one particular sub system or to excite 
specific dynamic modes. Additional instrumentation may also be required to monitor 
variables not normally recorded. The selection of the operating point of the dynamic 
system at which the experiment is to be conducted is also obviously very important as 
is the magnitude of the input and response.

Ideally, one half of the available experimental data should be used for the model 
development and refinement process and the other half should be used to check the 
robustness of the model. Robustness checks should be done using similar data to that 
used in the development and refinement stages. The difference between the model 
output and the robustness data should be small if the model is to be accepted as an 
adequate representation of the system.
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If a model is shown not to agree with some of the experimental data, the validation 
method can often highlight the deficiencies in the model and provide the basis for 
possible improvements. These improvements should of course be validated and 
checked for robustness. In this way, validation is an integral part of the model 
development process in an iterative modelling/validation loop.

An important application of model validation is to define the boundaries of the system 
for which the model is valid. This could represent the range of operating conditions of 
the real system, for example, the flight envelope of an aircraft. Towards the edges of 
the flight envelope, nonlinearities in the system become more prominent and effects 
such as aerodynamic compressibility become important and alter the dynamic 
characteristics of the aircraft. This means that very often, a large increase in model 
complexity is necessary to increase the range of operating points over which the 
model is valid. One very important function of model validation is to define this range 
of operation or validity.

1.2 Helicopter modelling

Mathematical models are used extensively in the aerospace industry because of the 
high costs of product development and aircraft operation. A validated model of an 
aircraft can be used confidently to analyse such characteristics as aircraft dynamics, 
performance and handling qualities cheaply and safely. Real time models can be used 
in piloted simulation for handling qualities evaluation. This is useful for testing flight 
control systems or investigating aircraft modifications. One other major application 
area of nonlinear mathematical models is in the nuclear power industry again for 
reasons of cost and safety.

In the aerospace industry, helicopters present particular modelling difficulties because 
of their highly cross-coupled and nonlinear dynamics compared to fixed wing aircraft. 
This is partly due to the very wide range of flight conditions in which a helicopter is 
capable of operating. For example, forward speed can vary from zero at hover to over 
200 knots (100 m/s). The dynamics associated with the main rotor are highly 
nonlinear. As well as the nonlinearities of incompressible flow, there are 
compressibility effects, tip vortices and their effects on the following blade, and blade 
elasticity in flap, lag and torsion all of which alter the flow of air over the blade and 
the forces and moments generated by the aerodynamics. Another difference between 
the helicopter and an aeroplane is the asymmetry originating with the main rotor. In a
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fixed wing aeroplane, both wings see the same airspeed.This is not always the case 
with a helicopter. In forward flight, the rotation of the blades at one side of the rotor 
adds rotational velocity to the aircraft velocity and at the other side of the rotor, the 
rotation of the rotor subtracts rotational velocity from the aircraft velocity. This means 
that the blades on one side of the rotor encounter a higher airspeed than the blades at 
the other side of the rotor. In a single rotor helicopter, the most common 
configuration, a large torque is generated which wants to rotate the fuselage of the 
helicopter in the opposite direction to the rotation of the rotor. This necessitates an 
anti-torque device like a tail rotor and strongly influences helicopter dynamics in the 
yaw degree of freedom.

As mentioned above, many of the problems inherent in helicopter modelling originate 
with the main rotor dynamics. The main rotor generates the lift and thrust for the 
helicopter and functions as the main control surface for control of the aircraft. The 
rotor consists of between two and seven blades each of which flaps independently 
both in the plane of rotation, and perpendicular to the plane of rotation. The pitch 
angle of each blade is determined by the pilot's controls altering the lift distribution 
across the rotor and therefore the magnitude and direction of the force and moment 
generated. The rotor is powered by one or more engines. There is an optimum rotor 
speed based on the point where the advancing blade tip would begin to experience 
aerodynamic compressibility effects. It is desirable to maintain the rotor speed at this 
value. This function is often controlled by an automatic rotor speed control system 
controlling the fuel flow into the engine. The torque reaction on the fuselage caused 
by the rotation of the main rotor is compensated for by a smaller vertical rotor with 
pedal controlled variable pitch blades attached to the tail fin. This tail rotor also 
provides aircraft yaw control. On some helicopters, there are aerodynamic surfaces 
attached to the airframe which provide lift in forward flight, or in the case of the tail 
fin, assist in aircraft yaw control.

In aerospace engineering, mathematical models are often linearised about a particular 
operating point or flight condition. Such small perturbation models are very useful for 
fixed wing aeroplane applications, but, because of the highly nonlinear nature of 
helicopter dynamics, such small perturbation models are valid for only a small range 
of flight conditions. This means that any helicopter model valid for large excursion 
manoeuvres involving different flight conditions must be nonlinear. Such a nonlinear 
model should be derived from the physical equations of mechanics and aerodynamics 
of the aircraft to give a set of nonlinear differential equations.
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1.3 Applications

1.3.1 Piloted Simulation

One of the main applications of a fully validated nonlinear mathematical model is 
ground based piloted simulation. Feedback from the pilot after a simulation run can 
give considerable insight into aircraft handling qualities and can highlight the 
dependence of various flight characteristics on specific system parameters. Piloted 
simulation does mean that the simulation has to be run in real time and depending on 
the available computing facilities, this can limit the complexity and the number of the 
differential equations in the model.

However, a realistic simulation is possible in real time and can have many 
applications. Piloted simulation is useful for the examination of the effects if design 
modifications on the helicopter without the expense and time involved in satisfying 
the engineering and flight safety considerations necessary for experiments involving a 
real aircraft. The use of piloted simulation to investigate the effect of different rotor 
features is described in Tomlinson and Padfield2 . Piloted simulation is also very 
important for the assessment of handling qualities improvements due to flight control 
systems.

1.3.2 Flight Control Systems

Helicopters have always demanded more from a pilot in terms of flying skill and the 
amount of concentration required compared with fixed-wing aircraft. This is because 
helicopters are inherently unstable for some flight conditions and are subject to a high 
degree of cross-coupling. The instability imposes a high pilot workload even for the 
maintenance of a trimmed flight condition in some cases, eg. hover. The cross­
coupling between the lateral and longitudinal modes also makes flying more difficult 
and more tiring for the pilot.

A flight control system can make the helicopter more stable and easier to fly while 
reducing the effects of cross-coupling and improving the aircraft handling 
characteristics.

An accurate mathematical model is needed for the design of such a control system. 
Models developed for control system design need to be linear for the control system
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design algorithms. These algorithms maximise handling qualities or performance 
criteria using optimisation techniques. These linear models are derived by linearising 
the full nonlinear system equations at specific operating points. With a system such as 
a helicopter which has strong nonlinearities, system dynamics can change 
considerably when the operating point or flight condition changes. A controller is 
designed for one specific linear model. If the model characteristics change with flight 
condition, robustness becomes a very important factor in the design of the control 
system. Robust control strategies include gain scheduling which involves varying 
control system parameters depending on operating point. Validation of the linear 
models is important to determine how far one has to stray from an operating point 
before the model derived at that point becomes useless. Currently these linearised 
models are used for design of low authority stability augmentation systems, but in the 
future, with better models, full authority fly-by-wire systems should be available.

Once a control system has been designed, it must be tested thoroughly by simulation 
before it can be put in an aircraft. This testing should be done with as accurate a 
nonlinear model as is available and it should be tested at the helicopter performance 
limits as well as the normal operating conditions. It is important that the nonlinear 
model used has been validated for the flight conditions at which the control system 
has been tested. The testing of the control system and the nonlinear model together 
can show up any tendency to instability of the complete system and any excess loads 
or stresses on any part of the helicopter, for example, the main rotor.

It is also necessary to run a piloted simulation of the helicopter with the control system 
to test the handling qualities of the system. Again, an accurate model is required, but 
the restriction of real time operation may mean that the model has to be simplified 
depending on the available computing power. Any simplified model would of course 
have to be validated. The real time nonlinear model can be validated using the non- 
real time full nonlinear model.

1.3.3 Design Modifications

A fully validated nonlinear mathematical model can also be very useful in the product 
development process. If an engineer is confident about the model's predictive 
capability and if the model is based on physical equations, simulation can be used to 
investigate the effect of design modifications to the aircraft without the engineering 
and safety related expense of physically altering the aircraft and flight testing. In this
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way, simulation could be used to optimise physical aircraft parameters based on 
performance.

1.4 Background to the research

In recognition of the problems inherent in the development and validation of 
mathematical models of helicopters, research into helicopter modelling, simulation 
and validation has been ongoing at the Defence Research Agency (Aerospace 
Division) at Bedford (DRA Bedford) for a number of years. Early research looked at 
basic modelling for simulation of 'gentle flying'3 . Research progressed over the years 
to HELISIM4 , a generic model developed at DRA Bedford to represent agile flight. 
HELISIM was successfully used to establish vehicle and control system design 
parameters that affected handling in agile flight. Initial validation of HELISIM 
consisted of analogue response matching of model output with flight data. Although 
parametric trends were broadly correct, there were some deficiencies in the model 
which revealed themselves in agile flight simulation. Better validation methods were 
required to determine whether the fault lay in the model structure or the parameter 
data set. This led to joint research activity by DRA Bedford and Glasgow University 
into model validation and development methods.

Model structure has been conveniently be divided into three distinct levels of 
increasing complexity by Padfield^ as shown in table 1. The main difference is in the 
type of main rotor model.

»



Page 18

Level 1 
(Aggregated 
aerodynamic loads)

Level 2
(Individual blade)

Level 3

Aerodynamics Linear (2-D) Nonlinear (Limited 3-D) Nonlinear (3-D)
Dynamic inflow/local Dynamic inflow/local Full wake analysis
momentum theory momentum theory (free or prescribed)

Analytically integrated Local effects of Unsteady 2-D
loads blade/vortex interaction Compressibility 

Unsteady 2-D Numerically integrated 
Compressibility loads 
Numerically integrated loads

Dynamics (i) Rigid blades (i) Rigid blades (i) Elastic modes
6 dof quasi-steady rotor Options as in Level 1 (detailed structural)
9 dof - rotor flapping 
12 dof - flap & lag 
15 dof - flap & lag & pitch

(ii) Limited number of 
blade elastic modes

representation

Application Parametric trends for Parametric trends for Rotor design
flying qualities/ flying qualities/ Rotor load prediction
performance studies performance studies across a high bandwidth

Within operational flight Beyond operational Beyond operational
envelope

Low bandwidth control
flight envelope 

Medium bandwidth 
appropriate to high gain 
active flight control

flight envelope

Table 1 Levels of helicopter model (from Padfield^)

Most of the real time piloted simulation research to date has concentrated on level one 
models. This can include nonlinear six degree of freedom rigid body models with 
analytically integrated blade loadings, dynamic inflow and other dynamic elements 
such as an engine/rotor speed model and blade actuator dynamics. Level one models 
are useful within the normal flight envelope where most of the aerodynamic 
approximations used are valid.

Level 3 represents comprehensive rotor/fuselage dynamics which could be used for 
high bandwidth flight control system design. As a step towards a level 3 model, the 
level 2 model has been proposed, the main distinguishing features of which are likely 
to be nonlinear, unsteady aerodynamics integrated along elastic modal shapes. The 
level 2 requirements are further discussed by Padfield3 .
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1.4.1 System identification based validation methods

Much of the research being done at DRA Bedford and the University of Glasgow 
involves model validation based on system identification techniques. System 
identification methods are used to generate linear models which can be compared with 
flight data and values for parameters which can be compared with parameters from 
linearised nonlinear models such as HELISTAB, the generic nonlinear helicopter 
model developed at DRA Bedford. An important part of the system identification 
process is the type of the control input used for the flight experiments. A 'good' 
control input should be easy to apply, excite the desired dynamic modes, and give a 
good record length. Most of the test inputs used in this research have consisted of 
binary signals and frequency sweeps. The effectiveness of these and of optimal input 
design has also been the subject of research at Glasgow University6 .

The first stage in the analysis of the experimental flight data is preliminary time 
history interpretation and comparison including a kinematic consistency check. This is 
done using software developed at DRA Bedford as part of a system identification and 
model validation package developed through a joint DRA Bedford/University of 
Glasgow research programme and used as a research tool. This initial stage includes a 
Kalman Filter/Smoother and state estimator which removes some of the measurement 
and process noise. The next stage is to define the model structure. Model Structure 
Estimation is done using equation error parameter identification techniques. This 
process establishes the degrees of freedom of the model and the initial conditions for 
the estimation of the system parameters. Step-wise regression is used in either the time 
or frequency domain. At each step, an independent variable is added to or deleted 
from the regression equation until a best fit is obtained. The variable chosen for entry 
into the regression equation at each stage is the one having the highest correlation with 
the residual (the difference between the model output and the flight data).

This should be followed by Maximum Likelihood output error parameter estimation to 
give unbiased, minimum variance estimates. This part of the system identification 
process caused problems when applied to helicopters although it is widely used for 
fixed-wing aircraft. The probable reason for this is that the validity of the model 
structure has not been checked. The model structure validity could be affected by 
incorrect cross-coupling coefficients or unmodelled nonlinearities.
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Ongoing system identification research at DRA Bedford and the University of 
Glasgow is discussed in detail in Padfield, Thome, Murray-Smith, Black and 
Caldwell7 .

1.4.2 Rotor Dynamics

Some of the recent identification and validation research done at DRA Bedford and 
Glasgow University involves main rotor dynamics, specifically rotor flapping and 
aerodynamic inflow representation. Inflow is defined as the induced velocity of the air 
flowing down through the main rotor.

Houston and Black8 used a rotor model linearised from the nonlinear level one 
equations for a PUMA helicopter in the hover with first order inflow as a basis for a 
parameter identifiability study using frequency domain parameter identification 
techniques. Identifiability defines whether or not a model can be derived from the 
available experimental data using a given identification method and is therefore of 
prime importance in mathematical modelling.

The conclusion of the research was that such linear three degree of freedom models 
(inflow, blade flap and vertical body acceleration) can be identified from coning and 
vertical acceleration data but identified model parameters (aerodynamic derivatives) 
are sensitive to experimental frequency range and a priori estimates used as initial 
guesses especially with respect to dynamic inflow parameters.

1.5 Nonlinear model validation

In validation studies, the nonlinear physical equations are often linearised about a 
particular operating point to give a state space description of the model, ie. A set of 
linear first order differential equations. This format is very appropriate for control 
system design and with a linear model, frequency domain algorithms can be used. The 
frequency domain is very convenient for helicopters because much of the unmodelled 
dynamics is at the rotor frequency or higher. This can be effectively removed in a 
frequency domain method. However, as mentioned above, parametric identification 
techniques used on these models can give problems if an output error technique such 
as maximum likelihood is used. A properly validated nonlinear model would increase 
confidence in any linearised model derived from it. A validated nonlinear model is
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also going to be useful for piloted simulation and could also be used as a basis for 
further model development research into areas such as dynamic inflow.

As part of the programme of development for HELISTAB, the nonlinear helicopter 
model developed at DRA Bedford, the development of the mathematical 
representation of rotor dynamics was considered very important. This is recognised as 
the main source of nonlinearities in helicopter flight mechanics and is a major area of 
current helicopter mechanics research. In 1989, when this research began the 
nonlinear real time helicopter model as used at DRA Bedford represented individual 
blade dynamics in the flap degree of freedom, the blade lag degree of freedom was not 
modelled and the engine model including the rotor speed control system had not been 
validated. The yaw degree of freedom also warranted investigation. This mainly 
involves the tail rotor which serves both as a means of aircraft yaw control and an 
anti-torque device to counteract the effect of the main rotor. Initial validation studied 
using time response comparisons with the HELISTAB model showed helicopter yaw 
response to pedal inputs to be another part of the model in need of development and 
validation.

It was also desirable at this stage to develop and investigate techniques of nonlinear 
model development and validation. It would be very useful to be able to validate 
nonlinear models directly i.e. without prior linearisation. Indeed it should be a 
prerequisite to any application of a mathematical model.

This thesis will investigate various validation techniques for nonlinear mathematical 
models of helicopters. It will be shown that a variety of parametric techniques can be 
very effective when used together, and a specification for a comprehensive model 
validation computer package will be suggested. The results of the validation will also 
be presented as suggested modifications to the DRA Bedford nonlinear model, 
HELISTAB in the representation of aircraft yaw dynamics, rotor blade lag dynamics 
and the engine.

1.6 Summary of thesis

Chapter 1 gives an introduction to model validation, the development of nonlinear 
models and applications of nonlinear helicopter models. Existing nonlinear model 
validation methods are reviewed in chapter 2. These methods are for the validation of 
nonlinear physical models using experimental data.
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Chapter 3 introduces and evaluates sensitivity coefficients as a validation tool in the 
form of single value sensitivity coefficients and sensitivity coefficient time histories. 
Both were found to be valuable as a basis for validation especially when used together 
with other methods such as parameter estimation.

In chapter 4, a model distortion technique was investigated. It was found to be 
unsuitable for helicopter modelling mainly because of problems caused by noise on 
experimental data. It may however have potential in other applications where noise 
contamination is less of a problem.

In chapter 5, a helicopter yaw model was developed. This was a one degree of 
freedom nonlinear physical model for turns in the hover. Various dynamic features 
were considered for inclusion in the model. Validation methods used were analogue 
matching, a linear search parameter estimation technique and the application of 
physical knowledge of helicopter yaw dynamics. It was concluded that main rotor 
downwash has an effect on tail rotor thrust in the hover. In chapter 6, a model of the 
main rotor of a helicopter was validated with respect to the representations of the lag 
damper and the engine/rotorspeed controller. Maximum likelihood parameter 
estimation and sensitivity coefficient methods were the validation methods used.

The research is brought together in chapter 7. This chapter specifies an interactive 
computer program which allows the application of all the validation methods 
investigated in his thesis to a particular modelling problem. This chapter illustrates the 
benefit of an integrated approach to model development and validation.

Chapter 8 presents the conclusions and some suggestions for further work.
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Chapter 2 

Nonlinear Model Validation Methods

2.1 Introduction

There are many methods for the validation of nonlinear models. The most common 
method of validating a nonlinear model with experimental data is analogue matching 
where the model output is compared graphically with the data in either the time or 
frequency domain. Parameter estimation is a more accurate technique which is widely 
used in aerospace. Parameter estimation involves statistically estimating values for 
system parameters. These estimates can be compared with theoretical values or 
estimates from other model structures or experimental data sets.

Parameter estimation involves calculation of the sensitivity coefficients, that is the 
derivatives of the model output with respect to the parameter being considered. Visual 
examination of sensitivity coefficient time histories provides a lot of information 
about the system and can be used as part of an integrated validation process or for 
parameter selection prior to estimation.

For more complicated nonlinear models, various validation methods have been or are 
being developed. The model distortion method was developed in the nuclear power 
in d u s t r y ^  and gives a quantitative validity for the model although the methods 
usefulness for validation of nonlinear helicopter models is doubtful. Inverse 
simulation and open loop validation are being developed specifically for application to 
helicopter modelling problems and are promising techniques. Inverse simulation uses 
the flight path of the helicopter, the system output, as the input to an inverse model, 
the output of which is the flight control time histories which can then be compared 
with the actual control inputs. It is of greatest application for modelling of large 
excursion manoeuvres. Inverse simulation reduces problems due to errors being 
integrated in a forward simulation and causing divergence of model output from flight 
data. Open loop validation allows subsystems to be validated by using measured 
aircraft states as inputs to the system.

This chapter investigates the above techniques and represents a survey of model 
validation techniques for nonlinear dynamic models with an emphasis on aerospace 
dynamics.
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2.2 Analogue Matching

One of the simplest and most frequently used model validation techniques is analogue 
matching. This is where the model output is compared graphically with available 
experimental data by superimposing a plot of one on the other. This can be done in 
either the time or frequency domain. The criterion for model validity is 'a good fit' 
between model output and experimental data.

Analogue matching is often used to compare different models of the same system. The 
model giving the best fit is selected by a visual comparison of the time response of the 
models with the experimental data. This method was used by deLeeuw and Hui1 to 
investigate three degree of freedom and six degree of freedom linear representations 
of a Bell-205 helicopter. It is often used in non-aerospace applications. For example, 
time response matching is used to compare different models of solar irradiation on an 
inclined plane by Feuermann^ and different representations of fabric weave in textiles 
are compared by Clapp and Peng^. Time history comparison is also a useful technique 
in the initial stages of a model development and validation process as in the initial 
development work on the nonlinear generic helicopter model developed at the 
Defence Research Agency (Bedford)4 where the time history comparison revealed 
areas of the model in need of further development. Analogue matching becomes a 
more difficult problem with multi-output systems. Where many output variables have 
to be matched, it is often found that improving the fit on one output variable has a 
worsening effect on the fit for another output variable and it is often not clear which is 
correct. As the number of output variables increases, it becomes more difficult to get 
an overall match.

Time history comparison can be a useful validation method but although a poor fit can 
help identify whether or not a particular part of the model is an accurate representation 
of the system, it is difficult to identify further possible model developments. Model 
validation should be part of an iterative development/validation process and as such, 
the indication of further model developments is an important part of any model 
validation method.

Generally time response matching is only one part of the validation process and it is 
used in concert with other methods. Many validation studies include a time history 
comparison as part of the model validation process5’5’7^ ’9 ,1 0 .
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An important subset of time history comparison is comparison of the trim conditions. 
The trim conditions are the initial conditions of the dynamic system before the 
experiment and they represent the steady state, that is, an operating point where, with 
no change in input, the dynamic system variables would theoretically remain at the 
same values ad infinitum. A mathematical model is trimmed by setting the time 
differentials of the dynamic states to zero. The experimental trim values can be 
compared with the theoretical values derived from the model. This validation 
technique is defined by Mansur and Tischler11 as static validation and is used in 
conjunction with dynamic validation (defined as time history comparison as described 
above) in the validation of an Apache AH-64 helicopter model. Static validation can 
be used to identify measurement offsets and to generally set up the model. An 
accurate set of initial conditions is important because any errors in the initial 
conditions will integrate to large discrepancies in long simulation runs.

Response matching is also possible in the frequency domain5 . Frequency response 
comparison is widely used in aerospace and especially helicopter dynamics12 . This is 
because confidence in the model is usually a lot higher regarding the lower 
frequencies representing the aircraft body motions than in the higher frequencies 
representing the rotor modes. The model validity can effectively be examined for the 
body states in isolation from the rotor modes. The same principle can be used to 
identify possible areas of model development. If, for example, the fit is not as good at 
the rotor rotation frequency for a helicopter model, the rotor dynamics could be 
investigated as the next stage of model development

2.3 Parameter Estimation

Parameter estimation is a common technique in model validation. It involves 
statistically estimating system parameters and then comparing the results with other 
parameter estimates from different experiments or with theoretical values for these 
parameters.

The parameters can be physical quantities in the nonlinear system equations or 
coefficients in a linearised transfer function or state space model, i.e. where the 
equations are set out as follows,

x = A x + B u
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where,

x = time differential of the state vector, x,

A = matrix of coefficients in set of first order differential equations, 

x = state vector,

B = matrix of input coefficients in system equations, 

u = system input.

With linear models the parameters can be estimated in the time or frequency domain, 
while with nonlinear systems, the time domain must be used. For helicopter 
applications, frequency domain identification has proved very useful because the 
portion of the frequency spectrum that is of interest can be selected thus excluding any 
high frequency noise7 , As well as values for the parameters, the parameter 
estimation process also produces Cramer-Rao bounds (see Iliff15 ) which provide an 
indication of the variance of estimated parameters. The value of the Cramer-Rao 
bound is of more use for comparisons between estimates for different parameters or 
different experiments than as an absolute representation of variance but nevertheless 
provide useful information as to how accurate the parameter estimate is and how near 
it must be to the theoretical value for the model to be valid. The value of the 
sensitivity coefficients is an important factor in the calculation of the Cramer-Rao 
bounds.

A comprehensive study of parameter estimation is given in Beck and Arnold1 4 . 
Parameter estimation and its application in the aerospace industry along with detailed 
examples of the parameter estimation procedure is reviewed in Hiff*5 . A complete 
review of the use of system identification and parameter estimation for model 
development and validation is given in an AGARD lecture series1 5 . This lecture 
series covers the complete process specifically for helicopter applications and includes 
papers on experimental design, data processing, data quality evaluation, system 
identification techniques in time and frequency domains, robustness issues, examples 
and applications of system identification.

2.3.1 Parameter selection

The selection of which parameters to estimate is an important part of the parameter 
estimation process. It is not always possible to identify all of the parameters from the 
given data. Identifiability and ultimately parameter selection depends on the
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experimental input signal and the available data. Leith, Bradley and Murray-Smith1 6 
in a validation study of helicopter coupled blade flapping/inflow models showed that 
identifiability is an important consideration in any validation study.

Step-wise regression is an efficient method of selecting parameters. It involves using 
an equation error technique which minimises a cost function representing the error 
between experimental data and a dynamic variable using a least squares algorithm in a 
sequence of steps, each time adding or deleting an independent parameter to the 
regression equation until a best fit to experimental data is obtained. This is effectively 
model structure estimation since the addition of independent variables to the 
regression equation means that the output variable is now dependent on another 
dynamic variable and the order of the model has been increased by one. As each 
independent variable is added to or deleted from the regression equation, the statistical 
confidence in the expression is measured and the optimal model structure occurs when 
confidence is at its highest. This is not necessarily where the model order is highest 
because the addition of extra independent variables can decrease confidence if, for 
example, there are linear dependence problems between the new variable and an 
existing one. Step-wise regression is an effective technique of parameter selection and 
model structure estimation and it has been used by Klein17 with fixed wing aircraft 
applications and by Padfield, Thorne, Murray-Smith, Black and Caldwell1 ̂  with 
helicopter models.

For full nonlinear models consisting of the nonlinear physical equations, physical 
parameters will have a certain confidence associated with their theoretical values. For 
example, in a real time helicopter model, the parts of the physical equations 
concerning dimensions or mass moments of inertia will be more accurate than the lift 
and drag coefficient at the blade tip or any approximations to blade bending or 
twisting modes. Weaker areas of the model can be concentrated on in the parameter 
estimation by selecting parameters in which confidence of the theoretical values is low 
or parameters in a particular part of the model suspected to be in need of further 
development.

Another method of parameter selection is to use sensitivity information. Sensitivity 
coefficients give the importance of a specific parameter for a particular output. Single 
value sensitivity coefficients are used for parameter selection in chapter 3 of this 
thesis.
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2.3.2 Estimation methods

The equation error method of step-wise regression as detailed above, produces 
estimates of parameter values. These estimates are biased because of measurement 
noise. To produce unbiased results, it is necessary to use an output error or a 
maximum likelihood technique both of which are widely used in aerospace.

Output error estimation is based on minimising a cost function which represents the 
error between model output and experimental data. This cost function is usually least 
squares and it can include weights for different outputs and a priori parameter 
information. Maximum likelihood estimation is based on maximising the probability 
of the model output fitting the experimental data exactly given the parameter 
values1 There is no bias due to measurement noise and if a Kalman filter is 
included in the estimator, process noise can also be accounted for. Maximum 
likelihood estimation with process noise accounted for is therefore more accurate than 
output error, but a Kalman filter will only work with a linear system or a moderately 
nonlinear system using a first order linearised representation1 ^ . Therefore, if process 
noise is not considered a problem, or if the model is very nonlinear, it is sometimes 
necessary to use an output error estimator. Output error estimation is a subset of 
maximum likelihood which does not account for process noise.

The results of the parameter estimation are often compared with theoretical values for 
the parameter calculated form the original physical equations. When different model 
structures are being tested, it can be useful to compare estimates of common 
parameters with each other and with the theoretical value1 . It can also be useful to 
compare the estimates calculated using different experimental data sets with the same 
type of experiment.

The technique of comparing estimated and theoretical values is used by Kaletka, 
Tischler, von Griinhagen and Fletcher12 in both the time and frequency domains for 
six degree of freedom helicopter model identification with analogue matching used as 
a further validation tool and by Gawthorp, Mirab and Li5 in the time domain with a 
nonlinear model of a flexible robot arm.

Parameter estimates can be used for model development if there was uncertainty about 
the original value and if confidence in the estimated value is higher than in the a priori 
theoretical value. This technique is used in Blackwell, Feik and Perrin6 with a
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linearised small perturbation model of a helicopter rotor including blade lag dynamics 
and rotor speed dynamics and by Gawthorp, Mirab and Li5 using parameter 
estimation with a model of a robot arm. The model with the new parameter values 
should of course be validated with a different set of experimental data.

2.3.3 Sensitivity coefficients

The sensitivity coefficient is the derivative of the model output with respect to a 
system parameter. Most parameter estimation methods involve minimising a cost 
function using a derivative based search method, so the calculation of the sensitivity 
coefficient is important. Methods of calculating sensitivity coefficients together with 
an examination of the problem when the model is nonlinear is given in chapter 3.

Sensitivity coefficients can also be used as an integral part of the model validation and 
development process. Lehman and Stark26 use single value sensitivity coefficients 
and sensitivity coefficient time histories for nonlinear model validation. Single value 
sensitivity coefficients are used to validate a linearised model against the nonlinear 
model from which it was derived by comparison of the sensitivity coefficients. 
Sensitivity coefficient time histories are used as well as single value sensitivity 
coefficients to provide clues as to system dynamics and the possible effects of specific 
parameters on these dynamics.

2.4 Nonlinear Validation using Parametric Techniques

The on-going research programme at Glasgow University and DRA Bedford has 
included a lot of work with parameter estimation for linear models in the frequency 
domain. Helicopters however, have highly nonlinear characteristics and models 
linearised about a particular operating point are valid over only a small range. Despite 
this, by estimating aerodynamic coefficients and plotting these together with the 
theoretical values against flight condition (eg. forward speed) the trend of the 
coefficient can be compared with the theoretical trend for that parameter. The 
comparison of individual estimates with theoretical values gives a guide to the validity 
of the linearised models. The trend can also give insight into the nonlinear model from 
which the linearised models were derived. Any discrepancy between the theoretical 
and estimated trends can be investigated in the nonlinear model perhaps leading to 
further development. This method is only useful however if the experiments are over a
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small range of flight conditions. Large excursion manoeuvres would render the 
linearised model invalid16.

The concept of validating one nonlinear model with several linear models representing 
different operating points has also been used by Klein17 in a method known as data 
partitioning. The method is especially useful where the flight experiment includes a 
wide range of flight conditions. It involves partitioning the experimental time response 
data of the variable representing flight condition, in this case angle of attack, to give 
several sections of flight data each containing data where the angle of attack varied by 
only a small amount even although the entire experiment taken as a whole involved a 
large variation in angle of attack. Sections from the same or different experiments but 
with the same range of angle of attack could be strung together to form several 
experimental flight records each of which involves only a small variation of angle of 
attack. The relevant aircraft parameters could then be estimated at each value of angle 
of attack using step-wise regression and plotted against angle of attack for comparison 
with the trends of the theoretical values.

A related validation method is the comparison of the model eigenvalues with peaks in 
the power spectrum of the experimental output data. The eigenvalues of a system 
represent the natural frequencies of the various dynamic modes of the system and can 
be easily calculated for a linear model. Fu and Kaletka2 1 use eigenvalue comparison 
to compare helicopter models with different levels of complexity and found the 
models to be consistent with each other for the lower frequencies and the higher 
frequency eigenvalues in the higher order models were where they had been expected.

2.5 Model Distortion

An approach to model validation pioneered by Butterfield and Thomas22 is model 
distortion. This technique is based on the assumption that model output should fit 
experimental data exactly. To allow this, the model is distorted just sufficiently for an 
exact fit. The amount of distortion required is measured and is used as a quantitative 
estimate of model validity or compared with a threshold distortion limit representing 
the model validation criterion. In practice, the model is distorted by varying the 
system parameters with time in such a way as to minimise the error between the 
original parameters and the optimised values while still satisfying the condition that 
model output must equal experimental data exactly.
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Two implementations of the model distortion method are given by Butterfield and 
Thomas. The first is a more general time domain method based on nonlinear 
differential equations. The second is derived from the first and works for linear 
transfer function representations. The technique was developed in the nuclear power 
industry and published applications of the transfer function technique include 
Butterfield and Thomas23 and Li2 4 . Applications of the time domain method are 
also given in Butterfield and Thomas23.

Cameron2 5 derives a simplified expression for the solution to the time domain model 
distortion for linear models and suggests that this technique is not particularly useful 
with noisy experimental data and is perhaps better suited to validating linearised 
models against full nonlinear representations. An example of this type of validation is 
given.

A more detailed explanation of the model distortion technique together with the theory 
and the results of an investigation into the time domain technique vis-a-vis helicopter 
applications is given in chapter 3 of this thesis. The conclusion of the research is that 
despite initial promise especially with regard to the parameter time histories produced, 
the model distortion method is not suitable for validation of nonlinear helicopter 
models with experimental flight data. The technique does not work with noisy data. 
This is also concluded by Cameron2 5 .

2.6 Inverse Simulation

The validation of mathematical models over a range of flight conditions wide enough 
to include Nap-of-the-Earth (NOE) manoeuvres represents a considerable problem. 
NOE manoeuvres (where the pilot follows ground terrain as closely as possible while 
manoeuvring as quickly as possible) involve aggressive control inputs across a wide 
range of operating points. This inevitably means that the aircraft flight path includes 
flight conditions where the model validity is not good and a computer simulation of 
the helicopter would start to diverge from the real system. If a pilot is flying a 
prescribed manoeuvre as opposed to applying a control input for investigation of the 
transient, the pilot is using feedback and is acting as a controller of the aircraft. In an 
open loop computer simulation of the system, this controller is not modelled and this 
will lead to errors in the simulation. Both of the above sources of error together with 
the large amplitude of the control inputs would lead to significant divergence of the
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model output from flight data in the simulation output because of integrals ramping if 
a conventional validation technique based on system simulation was used.

One solution to this problem is inverse simulation2 6 . This is a technique developed 
by Thomson at Glasgow University which involves using the defined flight path as the 
input to an inverse simulation the output of which is the control time histories which 
can then be compared with the actual control inputs for model validation. The inverse 
model is derived from the nonlinear differential equations - in this case, the six degree 
of freedom helicopter model. The pilot is assumed to be a perfect controller with 
infinite feedback as this is the only way he could follow a prescribed flight path 
exactly. This assumption does not appear to compromise the technique.

Results with helicopter NOE manoeuvres including a side-step and quick-hop have 
been encouraging26 and research into this method is continuing.

2.7 Open loop simulation

Many techniques of model validation are based on comparison of flight data with 
simulated model output for various vehicle dynamic states. If the complete model is 
driven by the control input time histories, it can sometimes be very difficult to 
determine the cause of any discrepancy between the flight data and the simulation 
output. This becomes more of a problem as the dynamic system under consideration 
becomes more complicated. The highly coupled nonlinear dynamics of the helicopter 
present particular difficulties.

One possible solution is to model the subsystem which is being validated as a 
complete and independent system (eg. main rotor, tail rotor, engine). This presents 
problems when dealing with helicopter models because of the high degree of cross 
coupling - the dynamics of the subsystem are affected by the dynamics of the rest of 
the helicopter. Even where the aircraft is being actively maintained in one flight 
condition (eg. hover) by the pilot as happens in many flight experiments, there are 
small variations in the aircraft body states. For a subsystem model, this must be 
considered as process noise which limits the effectiveness of any model validation or 
development on the subsystem.

Padfield and DuVal27 describe the conventional approach where a model of a 
compete system is driven by the control input time histories as closed loop simulation
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where all the states are generated within the simulation (Figure la). Open loop 
simulation is defined as simulation of an independent subsystem using flight data to 
represent unknown states.

The open loop simulation approach involves using flight data records of state 
variables to drive the simulation of a subsystem (Figure lb). This means that the 
aircraft motions are incorporated into the model and not considered process noise. The 
only source of process noise in this model will be the model of the subsystem itself, 
and any discrepancies between model output and flight data will be due to the 
subsystem model making validation and development much simpler. This technique 
has been used with helicopter rotor dynamics and compared with closed loop 
simulation with favourable results2 8 .

a) Closed loop simulation

Input from 
pilot's controls System output (rotor 

states)

Body
states calculated 
in simulation

Main rotor 
model

Fuselage, 

Tail rotor, 

Engine, 

Empennage 
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b) Open loop simulation

Input from 
pilot's controls

Recorded body 
states from flight 
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System output (rotor 
states)__________

Figure 1 Comparison of open loop and closed loop simulation
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2.8 Conclusions

Each of the above techniques represents a valuable model validation method. It is 
important that the correct technique for the particular problem is used. For example, 
inverse simulation is a good technique for validation of a model representing large 
excursion manoeuvres. These model validation methods should not however be 
regarded as mutually exclusive. It is often desirable to use more than one method on a 
particular problem. Different techniques can validate different parts of the model or 
act as a check on each other.

All of the techniques discussed in this chapter are statistical in nature. They could all 
be used simply by application to the set of equations representing the model being 
validated together with experimental data and examining and interpreting the results 
statistically. This would not be the most efficient use of the model validation 
technique. An essential component of model validation is physical knowledge of the 
system being modelled. Only then can the correct validation techniques be chosen and 
the results correctly interpreted. For a complex nonlinear dynamic system such as a 
helicopter, no mathematical model is going to be perfect. This means that the 
assumption of model validity will be subjective to some extent no matter which 
validation technique is used. That subjectivity depends on interpretation of the 
validation results in terms of the physical model and the ability to explain the results 
in physical terms. Physical knowledge of the dynamic system being modelled should 
be considered an essential component of the validation of nonlinear physical models.
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3.1 Introduction

Most of the search techniques used to minimise the cost function in the parameter 
estimation process (chapter 2) require the derivative of the model output with respect 
to the parameters being estimated. This derivative is known as the sensitivity 
coefficient. Sensitivity coefficients can also provide information of direct value with 
model validation and development process. Single value sensitivity coefficients can be 
used for validation and for parameter selection prior to estimation. Sensitivity 
coefficient time histories can be used for model development when examined in 
context with a parameter estimation process.

3.2 Calculation of sensitivity coefficients for nonlinear systems

With continuous well-behaved functions, a finite difference algorithm can be used to 
determine the derivative or sensitivity coefficient. This method is the most commonly 
used for well-behaved nonlinear models. Nonlinear mathematical models based on 
physical equations however, often contain discontinuous nonlinearities such as a 
saturation function, a deadband or hysteresis. Theoretically the properties of these 
nonlinearities can be estimated using parameter estimation techniques. For 
discontinuous nonlinearities however, a finite difference technique has an amplitude 
effect similar to filtering the function with a low pass filter with a cut-off frequency 
which is dependent on the size of the difference. For example, figure 2 illustrates the 
effect of a finite difference algorithm on a signum function. That is, a function which 
returns +a for a positive input and -a for a negative input where a is a constant. This 
function is often used to represent friction. To generate a sensitivity function, it is 
necessary to differentiate the output of each component with respect to its input (the 
input could be a function of the parameter). The true derivative is zero with an 
impulse function where the input is zero. The result of a finite difference 
approximation to the derivative is a pulse, the shape of which is decided by the value 
of the difference, 5. As 5 tends to zero, the derivative of the function tends to the 
correct shape, but where 8 is not zero, and the input to the nonlinear element 
approaches zero, the derivative will be inaccurate and serious convergence problems 
could arise in the minimisation stage of the parameter estimation process.
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Signum function Exact derivative Finite difference derivative
(impulse)

y(x+6)-y(x)

x

Figure 2 Methods of partial differentiation of signum function

One solution is to use a search method which does not require derivatives. A direct 
search algorithm is used by Jategaonkar1 to minimise the maximum likelihood cost 
function for a dynamic system with discontinuous nonlinearities. The technique is 
used to estimate a deadband nonlinearity on a control surface actuator of a research 
aircraft using real flight data. Such search algorithms are often slower than derivative 
based methods. A comparison by Jategaonkar and Plaetschke2 of a direct search 
algorithm with a quasi-linearised derivative based method showed the direct search 
method to be considerably slower.

The alternative is to use sensitivity equations derived by analytically differentiating 
the main system equations. These sensitivity equations form a separate dynamic 
system which must be simulated alongside the main system. This is best done 
manually since computational algebra packages tend to produce equations which are 
very long-winded and while they are useful for checking the manual differentiation, 
they would add a considerable computation time overhead to the parameter estimation 
process. This is because the sensitivity cosystem must be simulated meaning that each 
of the sensitivity equations must be evaluated at each integration step in the system 
simulation. The sensitivity coefficients generated by the computer algebra package, 
although algebraically identical to the real equations, contain many more terms than 
equations calculated by manual differentiation and therefore take longer to evaluate on 
a computer. The use of sensitivity equations can be defined as the cosystem 
approach3 because the sensitivity equations form a dynamic system which runs in 
parallel with the real system and is driven by the dynamic variables from the real 
system (figure 3).
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The sensitivity cosystem approach allows inclusion of discontinuous nonlinearities 
using a method derived by Vuskovic and Ciric4 . The cosystem is generated on a 
function by function basis using partial differentiation. Given the original system with 
linear and nonlinear functions, some of which are dependent on a parameter q, 
calculate the sensitivity coefficients of the model output with respect to the parameter 
q, by differentiating the system equations.

Linear elements of a system are represented by,

The cosystem expression is derived by differentiating the real system with respect to the 
parameter q. Where the function w of the linear element is not dependent on q,

(3.1),

and nonlinear elements by,

Zk =  fk (£ k (t)) (3.2).

(3.3).

For linear elements where the function w is dependent on q,

3wj(t,x)

(3.4).

For nonlinear elements,

(3.5).

This is shown digrammatically in figure 3 with a system including two functions - one 
linear and one nonlinear, both of which are dependent on parameter q.
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Figure 3 Block diagram of dynamic system and sensitivity cosystem

In practice, a discontinuous nonlinear element is replaced by another discontinuous 
nonlinear element in the cosystem whose input is the output state of the nonlinear 
element in the real system. Cosystem outputs are exact derivatives of the model 
outputs and can therefore be used in the search algorithm as part of the parameter 
estimation process without the problem of selecting a value for a finite difference and 
therefore reducing the likelihood of numerical computational problems.

An example of the use of a cosystem is the estimation of a pure time delay in the time 
domain. Time delays are relatively easy to estimate with linear models in the 
frequency domain using correlation techniques as used Kaletka, Tischler, von 
Griinhagen and Fletcher5 with helicopter data but with a nonlinear model, it is 
necessary to work in the time domain. Pure time delays occur in flight data because of 
delays in data acquisition systems on board the aircraft and also different sampling 
rates for different variables. Time delays can also be used to approximate dynamic 
features such as first order lags in control actuators. Results of the time delay 
estimation must therefore be interpreted with care. The time delay can be estimated by 
shifting the output in the time domain by the relevant amount and using a finite 
difference equation to calculate the sensitivity coefficient numerically. This is the 
method used by Blackwell and Feik6. Time delays and other parameters are 
successfully estimated in a nonlinear model using a maximum likelihood technique. 
Finite differences are used to approximate the derivatives used in the search in the cost 
function optimisation. Several examples are given including a fixed wing aeroplane



Page 42

model incorporating a time delay and a model of an aircraft landing gear with a 
breakpoint nonlinearity. The importance of the size of difference for the finite 
difference calculation for a nonlinear model is emphasised in the paper. This could 
present problems in a more complicated system with other nonlinearities.

The cosystem approach to time delay estimation involves analytically differentiating 
the time delay function with respect to the delay represented here by parameter p.

Given,

y(t) = x(t-p) (3.6),

where p is the time delay, the sensitivity coefficient with respect to p is, 

dy _ ,im x(t-p+5) - x(t-p)
3p 8—>0 §

_ [im x(t+5-p) - x(t-p)
8-»0 §

_ d*(t-p) 
at

_ dy
at (3.7).

That is, the sensitivity coefficient for a time delay whose parameter is the size of the 
delay is the negative of the time derivative of the real system time delay function 
output. Parameter estimation requires simulation of the model and in a simulation 
package it is usually quite easy to obtain time derivatives of dynamic variables.

3.3 Single value sensitivity coefficients

As well as their use in parameter estimation search algorithms, sensitivity coefficients 
can provide useful parametric information for model validation and development. 
Single value sensitivity coefficients are used by Lehman and Stark7 to indicate the 
importance of individual parameters for particular outputs. It is suggested that 
sensitivity coefficients could be tabulated as single values for all the possible 
parameters and all possible outputs so that the relative effect of changing any 
parameters on any particular outputs could be seen at a glance.
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A single value sensitivity coefficient representing the effect of a particular parameter 
on a particular output can be very useful in parameter selection prior to parameter 
estimation and can give valuable information about the model and which parts of the 
model are most relevant for the application or experiment being considered 
(calculation of any sensitivity coefficient requires a simulation run and is therefore 
dependent on the chosen input function). Lehman and Stark^ also use the sensitivity 
coefficients to validate a linearised model of eye movement against the nonlinear 
model. The values of the sensitivity coefficients are compared and if the match is 
good, the linearised model is considered a valid representation. This validation 
method also provides information regarding development areas in the linearised model 
if the model is found not to be valid.

3.3.1 Experimental application of single value sensitivity coefficients

The method of single value sensitivity coefficients was used to select the parameters 
having the largest effect on model output so that those parameters could be used in the 
model distortion technique in chapter 4.

From Lehman and Stark^, the single value sensitivity coefficient,

d b i / b i o

dPj/P;jO

where p and b represent the parameter and system output and pjQ and bjQ are the 
nominal values of the parameter and model output.

This still leaves the problem of how to generate the sensitivity coefficients, and more 
specifically, how is bj defined.

For each experiment, there is a time response of each sensitivity coefficient, Sixty- 
four parameters and eight outputs gives five hundred and twelve sensitivity 
coefficients. Each time response has to be reduced to a single value. There are many 
ways of doing this but the problem is complicated by the fact that the system is 
unstable. This means that some of the sensitivity coefficients will be unstable and will
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increase exponentially with time. Various possible methods of calculating the 
sensitivity coefficients were postulated and tested experimentally with a linear 
helicopter model.

The experiments were based on an eight state model of a PUMA helicopter in the 
hover with a collective step as an input.

Possible values to take for sensitivity coefficients were maximum sensitivity over a 
given time span (absolute and squared), sum over a given time span (absolute and 
squared) and value of sensitivity at some arbitrary time point. The results from 
maximum absolute, sum of absolute and arbitrary time sample were very similar. The 
results from the squared categories were as expected i.e. the results of the absolute 
categories with the larger peaks emphasised.

It was decided that a squared category would be better for this application because a 
smaller number of parameters was desirable. The sensitivities were calculated and 
plotted in two formats. One consisted of eight plots (one for each output) each of 
sixty-four points (one for each parameter). This showed which parameters would have 
the greatest effect on output if they were altered. The other format was sixty-four plots 
of eight points each. This showed which outputs were most affected by a change in 
each parameter.

It was hoped that this method could be used to identify a parameter of the six degree 
of freedom helicopter model with high sensitivity for the investigation of the model 
distortion model validation technique (chapter 4). This was therefore chosen as an 
example to investigate the sensitivity coefficient generation method.

For a collective step in the six degree of freedom linear model, the sensitivity of 
vertical velocity, w, to each of the coefficients in the A matrix is,
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columns 1 to 4

0 .0 0 9 3  0 .6 58 2  0 .1217  0

0 . 1 6 6 6  1 07 . 482 4  0 .5590 0

0 . 0 2 6 4  0 .0222  1 . 2125  1 . 78 67

1 . 0 0 9 6  3 .5 8 4 6  0 0

0 . 0 2 0 0  0 . 14 54  0 . 6225  0

0 . 0 0 6 0  0 .0 10 8  0 .1752 0

0 2 .5 6 8 6  0 0

0 0 0 2 . 8 1 0 5

columns 5 to 8

0 .0030  0 .1 41 5  0 0 . 00 83

0 .0022  0 .1 8 46  0 0 . 0 4 2 5

0 .0 07 6  0 . 10 2 6  0 .0 0 26  0 . 0 1 4 9

0 .0030  0 0 0

0 .0 28 1  0 . 27 74  0 0 . 0 0 0 5

0 .0242  0 . 47 04  0 .6 4 66  0 .0 60 2

0 .9652  0 0 0

0 .1 74 0  0 .0 35 5  1 .5 7 44  0 .2 9 5 0

The sensitivity information was also generated in the graphical format (figure 4).
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Figure 4 Sensitivity coefficients for vertical velocity output for each of the sixty- 
four parameters in the system A matrix (8 state linear helicopter model) for 
collective step input

The letters down the left hand side of the graph represent the eight outputs. These are 
u, w, q, 0, v, p, O and r, (forward velocity, vertical velocity, pitch rate, pitch angle, 
lateral velocity, roll rate, roll angle and yaw rate respectively). The maximum 
sensitivity coefficient for each output is normalised to one. This means that different 
outputs cannot be compared directly on this graph. The numbers along the bottom of 
the graph represent the 64 parameters in the A matrix of the helicopter model. Peak X 
is at aerodynamic coefficient number 10 on the second row (w output). This 
corresponds to the aerodynamic coefficient Z^. 7 ^  is the parameter with the largest 
sensitivity coefficient and therefore was the parameter chosen for the investigation of 
the model distortion technique (chapter 4).

3.4 Sensitivity coefficient time histories

Time response plots of the sensitivity coefficients are a very useful tool for model 
analysis, validation and development. Lehman and Stark^ use time histories of
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sensitivity coefficients to provide clues as to the model dynamics and the effects of the 
different parameters on the dynamics. This is particularly useful with the nonlinear 
model because otherwise it can be very difficult to obtain this information. When 
compared with the model time response and the experimental data, the effect on the 
model output of varying the parameter can be seen clearly. If, for example, one part of 
the model time response is a bad fit to flight data, like an initial transient for example, 
it is possible that examination of the sensitivity coefficients will reveal a parameter 
with increased sensitivity at that point indicating that the model could perhaps be 
improved by altering this parameter. This is illustrated by an example from chapter 5 
of this thesis in figure 5. The model output is helicopter rotor speed and the 
parameters under consideration are engine controller gain and time constant. The part 
of the time response shown is the transient after a step input. The first six seconds of 
the record (not shown) represent trimmed flight. It can be seen that improving the fit 
on the second peak in the time response would involve adjusting the time constant and 
modelling the controller with a gain alone would be inadequate.
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Figure 5 Section of engine model time response to main rotor collective step with 
sensitivity coefficients for engine parameters (see chapter 6)
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Time history plots of sensitivity coefficients are also useful for detecting any linear 
dependence between parameters. That is where the effect of altering one parameter is 
very similar to the effect of altering another. Linear dependence causes numerical 
problems in the minimisation part of the parameter estimation process and should be 
avoided. Linear dependence can be spotted easily from graphical plots of sensitivity 
coefficients as two of the plots having very similar shapes8 .

3.5 Discussion

For nonlinear systems, derivation of analytic sensitivity coefficients is preferable to a 
finite difference approximation. With severe nonlinearities, selection of the difference 
becomes very important and if sensitivity coefficients are not accurate representations, 
convergence problems can result in any parameter estimation procedures. Analytic 
differentiation using the cosystem approach gives exact differentials which can be 
used with confidence in parameter estimation or for model validation.

This method of single value sensitivity coefficients is very useful for selecting 
parameters most likely to have the largest effect on the model output and has possible 
applications in many parametric model validation methods. It is most useful for linear 
systems however, as removing parameters from consideration in nonlinear models 
based solely on this sensitivity information requires care.

The use of single value sensitivity coefficients for validation should be considered for 
inclusion in any model validation procedure where one model is being validated 
against another. For example, when a linearised model is being validated with a full 
nonlinear model. Sensitivity coefficient time histories give valuable insight into a 
validation problem especially regarding the effects of individual parameters. They 
should be considered an integral part of any parametric model validation method.
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Chapter 4 

Investigation of Model Distortion Technique

4.1 Introduction

In 1986, Butterfield and Thomas1 proposed a model validation technique based on 
distorting a nonlinear model by varying its parameters in order to achieve an exact fit 
of model output to experimental data. This model distortion method is based on the 
premise that 'any model can be made to follow any observed transient by introducing 
enough distortion: the less the required distortion, the better the model'. This distortion 
can be measured and can provide a quantitative criterion of validity of the model. If 
the required distortion is within acceptable limits with respect to approximations made 
in the mathematical model, the model can be considered a valid representation of the 
system.

This model distortion technique was developed for use in the modelling of nuclear 
power plant. The nuclear industry is a field where safety is of paramount importance 
and therefore where model validity is critical. The technique involves varying the 
system parameters in time in such a way that the model output fits the experimental 
data perfectly. This produces a time history for each parameter from which a 
parameter variance can be calculated. In a model derived from physical principles, this 
variance can be compared with the uncertainty in the value of the physical quantity.

In use, given that the mathematical model to be validated consists of a set of nonlinear 
differential equations, the set of equations is solved for any unknown parameters at 
each time point independently. Unmeasured states are considered parameters and their 
time histories are also estimated. Usually, there are more parameters than equations 
and the problem is overdetermined. This means that the solution takes the form of a 
constrained optimisation of some cost function where the constraint is the model 
output equals experimental data.

Results of two applications of this time domain model distortion technique have been 
published. Butterfield and Thomas2 illustrate the method using a simple version of the 
method for two parameters in a first order linearised model of a hydraulic oil supply 
system. A small number of points is used but the resulting parameter time history is 
oscillatory unlike the system time response. A rolling average is used to smooth the
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parameter time history producing a peak at the start of the time history followed by a 
steady state constant value. It is suggested that this parameter time variation indicates 
a deficiency in the model and that perhaps the parameter should be time varying 
thereby illustrating the potential of the model distortion technique for model 
development.

Cameron3 derives explicit formulas with some assumptions for the necessary 
distortion for application of the model distortion technique to linear state space 
systems. This reduces the considerable amount of computation inherent in the model 
distortion technique. The example given is the validation of a linearised model against 
the nonlinear model from which it was derived. A small number of time points is 
given and the variance of the resulting parameter time history is used as a quantitative 
measure of model validity. The resulting time histories are oscillatory despite the 
almost first order appearance of the system dynamic time response. It is proposed by 
Cameron3 that this technique is of more use with applications such as validating a 
linearised model against the full nonlinear model rather than with experimental data 
since it is suggested that the model distortion technique is only of use in cases where 
the output data is noise free. This paper3 was published in May, 1992, after the 
completion of the research described in this chapter, and it confirms the conclusion of 
this work regarding noise. Cameron's paper3 also suggests that the oscillatory nature 
of the parameter time responses detailed in this chapter was not a peculiarity of that 
particular example.

4.2 Application of model distortion technique to helicopter dynamics

This technique was specifically designed for nonlinear mathematical models 
developed from physical principles. The physical parameters of such a model have 
uncertainties associated with their values. These uncertainties can be compared with 
the variance of the parameter time histories produced by the model distortion 
technique. It was realised that such a technique could have applications in nonlinear 
helicopter model validation.

The resulting parameter time histories also had possibilities where flight experiments 
involved large excursion manoeuvres with consummate large variations in flight 
condition or operating point. The resultant parameter time histories could perhaps be 
compared with the expected variations of the parameters for that manoeuvre through 
these operating points.
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It was concluded that it would be useful to evaluate this model distortion technique for 
applications to validation of nonlinear helicopter models. Previously, the technique 
had been used with simpler models of processes in a nuclear power plant. A helicopter 
presents significantly different problems. Specifically, a larger range of frequencies, 
more dynamic variables or states, and considerable high frequency noise.

4.3 Theory (from Butterfield and Thomas*)

The model is described as a set of nonlinear differential equations of the form,

x = f (x,p,u)  (4.1)

where,

x = state vector ( vector of system dynamic variables),
I

p = vector of system parameters, 

u = experimental input signal.

Normally, this equation would be integrated over time to give a time response of the 
model in response to the measured experimental input. This can then be compared 
with the experimental output data. In the model distortion technique however, 
equation 4.1 is solved at each time point for the parameter vector p. It is therefore 
necessary to differentiate the flight data to get the left hand side of equation 4.1. Any 
states which are not measured and cannot be derived by differentiation of 
experimental data are defined as parameters for the first run of the optimisation and 
their time history is used as experimental data in subsequent optimisations to 
determine the parameters in the rest of the model. Usually there are more parameters 
than equations - the problem is overdetermined. So it is necessary to postulate a cost 
function,

Cost
< P i - P o >2

w2

where,
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pj = parameters to be identified,

Pq = a priori estimates of parameter values, 

w = parameter weighting factors based on nominal parameter value,

and minimise C with the constraint that model output equals experimental data 
exactly. This constrained optimisation problem can be solved using Lagrange 
multipliers^.

The problem is to minimise C, where,

k
c  =  X  (PrPoP

i=l (4.2)
subject to

<J)i = Zi-Xi = 0 i = l , q
Derive function,

q

i=l
and solve,

<J>i =  0  i=l,q

k q
F = X  (Pi-POp + Z

i=l j=l
therefore,

(4.3).

where,
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c = cost function of unknown parameters,
k = number of parameters including unknown states,

Pi = normalised parameter value,

P0 = a priori estimate of parameter (normalised),

zi = experimental flight data for equation 4.3,

xi = model output for equation 4.2,

q = number of dynamic variables for which flight data is available

®i = residual (flight data - model output) for equation i,
F = Lagrange function,
X = Parameter used in method of Lagrange multipliers.

Equation 4.3 is solved at each time point to give p, and when the parameter vector p 
has been calculated at every time point, the parameter time histories can be 
constructed.

The resulting parameter time histories can be analysed to determine the validity of the 
model. The variance of the parameter over the length of the experiment can be 
calculated and compared with the expected variance i.e. the confidence of that 
parameter in this particular model. If it is less than expected variance for each 
parameter then the model can be said to be valid for this particular experiment. The 
shape of the parameter time history could also reveal information about the model. For 
example, if the flight condition changes significantly during the experiment and a 
parameter value changes at the same point.

The model distortion algorithm is a constrained minimisation. The method used to 
solve this was Lagrange multipliers This reduces the problem to solving a set of 
nonlinear algebraic equations. This must be done at each point in the time history, 
typically 400 points in these experiments. PRO-MATLAB was the computer package 
chosen to solve this problem because of the ease of mainpulating data and presenting 
results graphically. There was also a routine available called 'fsolve'5 in PRO- 
MATLAB which was ideal for solving the equations. It solves systems of nonlinear 
equations using Newton's method with a few modifications including a linear search 
to ensure global convergence. The computer used was a DEC VAXstation 2000.
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4.4 Experimental Analysis

4.4.1 Second order system

In order to gain a basic understanding of the method, initially, the model distortion 
technique would be tested with a simple dynamic system - a linear second order 
system with two parameters, natural frequency (co), and damping factor (£). These two 
parameters would be estimated using the model distortion technique with initial 
estimates of pQ slightly offset from the correct parameter values in order to investigate 
the effect of these starting values. The noise response of the method would also be 
tested by adding white noise to the simulated data and to the input signal.

This second order equation was modelled and simulated to give simulated 
experimental data. The model can be described as a transfer function thus,

Y ( S ) CO2
 =  s—  (4.4)
U ( s ) s + 2£g)C-K0z .

The parameters were chosen arbitrarily at co=0.3 and ^=2 to give a good response for 
the time period being considered. The mathematical model of the system was coded 
in differential equation form thus,

X1 = x 2 / ( 4 . 5 )

X2 = -2^00X2 -c A c -l+ g A i ( 4 . 6 )  .

A step function was used as the input (u) and simulated data was generated for X2  and 
x j. The simulated data is shown in figure 6.
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Figure 6 Time response of second order system

The X2  data was differentiated with respect to time and the model distortion technique 
was applied to equation 4.6 with the intention of obtaining parameter time histories for 
natural frequency and damping factor. A priori estimates for the cost function were 
given as coq=2.1, and £q=0.27.

Since simulated data was being used, it would not be unreasonable to expect the 
experimental output to show constant values for the two parameters co and % 
throughout the time history of the experiment. The resulting time histories in fact 
showed co and E, to be oscillatory (figure 7).
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Figure 7 Parameter time histories for second order system with simulated data

The parameters oscillated between the correct parameter value (known because this 
was simulated data) and the parameter estimate used in the optimisation. The 
frequency of the oscillation appeared to be the same as the frequency of the time 
history of the experiment. This was verified by running the experiment using a
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different value of natural frequency for the simulated system. The period of the 
oscillations in the resulting parameter time history changed accordingly. The 
oscillations were always present - if the initial guess values were the correct value for 
the system, the parameter time histories showed the same shape of oscillation but with 
a very small amplitude. The cost function (figure 7) showed that when the cost 
function was at a maximum (it was also periodic), the values of co and £ from the time 
histories were correct. These points corresponded to the turning points of the original 
time history suggesting that at these points, only the time response of exactly the same 
dynamic system would have the same amplitude after the same time since the turning 
points represent the 'limits' of the time response curve. Other points on the time 
response curve could occur in the responses of other second order systems with 
different values for the parameters. The points 'chosen' for the resulting time histories 
represent those points which minimised the cost function in the model distortion 
algorithm.

The experiment was verified by simulating the second order system with the time 
varying parameters from figure 7 and the same input. The output is shown in figure 8  

and is identical to that in figure 6  as expected.

model output
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Figure 8 Time response of second order system with time varying parameters

Oscillations were also evident in the results from the two published applications of the 
time domain model distortion m ethod^. In each of these cases, the number of points 
was too low to discern if there was any regular shape to the periodicity.
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4.4.2 Noise response

The noise response of any model validation algorithm is very important. The model 
perturbation algorithm was tested with the second order system and two types of 
additive noise. On the input signal and as measurement noise on the simulated data.

White noise was added to the input signal before it was used to generate the simulated 
data. The resulting parameter time histories (figure 9) were similar to those for a noise 
free signal but only for the first two or three oscillations (about five seconds). After 
this point the signal became very noisy. At this point the time response is settling 
down and the differential of the time response which is the signal that the optimisation 
is using is tending to zero. This becomes more apparent as the transient decays to zero 
in the steady state. This means that in the constraint equation (equation 4.6), the input 
noise has a much larger affect than the dynamic response. The parameter time 
histories therefore reflect the noise more than the response. The stationary points 
where there is only one solution to the constraint equation are still evident however as 
areas in the time history (figure 9) where the noise amplitude is at a minimum. The 
increasing noise amplitude (most obvious in the cost function) as time increases 
suggests that this technique should only be used with dynamic response and not steady 
state experimental data.
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Figure 9 Parameter time histories for second order system with white noise 
added to the input signal

Simulated measurement noise at a signal to noise ratio of 0.5% was also added to the 
simulated data before it was differentiated. It is important to test the robustness of any 
validation technique with respect to measurement noise - especially in aerospace
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applications. This measurement noise is more realistic since real experimental data 
will be contaminated with measurement noise. The results showed a noisy periodic 
time history (figure 1 0 ).

Damping factor
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Figure 10 Parameter time histories for second order system with white noise 
added to the simulated data

Again, the noise free sections correspond to the stationary points where there is only 
one solution to the cost equation as above.

The model distortion method was also tested on variations of the second order system. 
In one experiment, a third pole was added to the system generating the simulated data 
forcing the algorithm to estimate parameter time histories for a second order system
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using simulated data generated by a third order system. In the other, a nonlinearity in 
the form of a velocity squared term was added to the second order system used for 
generation of the simulated data.

4.4.3 Third order system

In helicopter mathematical model development, unmodelled higher order or nonlinear 
dynamics are a common source of noise. An example is the high frequency dynamic 
modes caused by rotor blade flexibility. A model validation method which could 
identify unmodelled dynamics would be very useful. To test the model distortion 
technique for this model structure estimation capability, the same second order system 
was used but with simulated data generated from a system with the same dynamics as 
the second order system and an extra pole at s=-0.5. Its transfer function was

Y (s ) co2  a
 = - r ---------------- 7 ------  (4.7)
U(s)  s z + 2^coa-Koz s+a.

The resulting parameter time histories are shown in figure 11.
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Figure 11 Parameter time histories of second order system using simulated data 
from a third order system

The parameter time histories were again periodic but with larger amplitude (and 
variance) than for the second order system. This was because the third order system 
time response approximated a second order system time response with different values 
for natural frequency and damping factor. This meant that the a priori parameter 
estimates were considerably off target. A least squares parameter estimation algorithm 
was used on the output data from the simulated third order system to estimate natural 
frequency and damping factor of a second order system. The resulting values of co=1.4 
and ^=0.3 corresponded with the parameter time histories. The larger variance in the 
parameters suggests less confidence in the validity of the model using the original
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validation criteria of the model distortion method. This agrees with the initial second 
order parameter values being wrong for this third order data.

4.4.4 Nonlinear system

Nonlinearities are a common feature in helicopter models. It was decided therefore to 
test the model distortion method with a nonlinearity. The nonlinearity consisted of a 
velocity squared term in one of the system equations (equation 4.7). The parameter 
time histories are shown in figure 1 2 .
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1 .0 0 J
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Figure 12 Parameter time history of second order system using simulated data 
from a nonlinear system
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The parameter time histories were again oscillatory - with a large variance and 
oscillations. The shape of the curve was different from the linear case.

4.4.5 Linear helicopter model

A more realistic test of the algorithm is to use a more complicated model. It was 
decided that a suitable model would be an eight state linear representation of a 
helicopter. This provided the option of using genuine flight data from a flight 
experiment. The model was a six degree of freedom rigid body helicopter model with 
eight states giving sixty-four possible parameters in the system A matrix. It would not 
be possible to use all these coefficients as parameters, so some method had to be 
devised to decide which parameters should be estimated in the optimisation.

It was decided to use sensitivity information to discover which parameters would have 
the largest effect on the model output if they were changed. The method is detailed in 
appendix I.

Zw was selected as the parameter for the Butterfield method with simulated data. Z^q 
was set to be off by 1 0 %, and it was possible to deduce from the parameter time 
history (figure 13), that the estimate was low.

-0 .25

-0 .30

-0 .35

St
N -0 .40

-0 .45

-0 .5 0

time (seconds)

Figure 13 Time response of Zw
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The spike is at the beginning of the transient response and represents the difficulty of 
matching this part of the model output to the simulated data exactly even with a small 
a priori parameter estimate. In all the optimisations involving real flight data, the first 
5 seconds of data corresponded to trimmed flight The corresponding part of the time 
history of the parameters was extremely noisy. For this reason, a time axis of 5.5 to 10 
seconds is used in the time response plots.

Real flight data was available for a PUMA in hover as was an eight state linear model. 
Tyj was again estimated using the model distortion technique. In order to justify using 
sensitivity coefficients to select the parameters to be optimised, Zq was also estimated 
using the method. Z q  has a much lower sensitivity coefficient than Z ^ , that is, the 
effect on model output of changing Zw is much greater than the effect of changing Zq . 
Three optimisations were done, Zw on its own, Zq on its own, and and Zq 
together.
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Figure 14a Time response of Zw and Z6 where optimisation is done separately 
for each parameter
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Figure 14b Time response of Zw and Zq where optimisation is done for both 
parameters together

The results (figure 14) show that Zq varies considerably to give a perfect fit as 
expected for a parameter with a very low sensitivity coefficient, whereas, the 
estimate is reasonably accurate (Zw has a high sensitivity coefficient). These 
observations were confirmed by the plots for Z^ and Z q  together which showed Z q 

staying at the Z q q  values and Z ^ adjusting to fit the model to the flight data and 
having a time history very similar to that generated by estimating on its own. The 
start of the transient between t=5.5 and t= 6  seconds gives different parameter values 
from the rest of the time history. The probable cause of this is that there was a peak in 
the flight data at the start of following the transient which is not modelled in the linear
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six degree of freedom model. At this peak, the parameter time histories also appear 
noisy (high variance) indicating that the model is not good at this point in the time 
response (figure 15). This suggests a model structure problem.

Vertical acceleration
2.5

2.0
01
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Figure 15 Time response of linear helicopter model compared with flight data 

4.5 Discussion

For all the experiments, the optimisations took a long time to run on the computer - 
typically ten hours of processing time for a simple second order system at 400 points. 
This represents a significant disadvantage of the model distortion technique compared 
to other validation methods. The experiments with the simple linear model and 
simulated data showed that the variance of the resulting parameter time histories could 
be used as a measure of model validity and although the shape of the time history may 
be able to give some information regarding parametric values, it is unlikely that model 
structure information could be determined from the results of this model distortion 
method. The experiments with the third order system and the nonlinear system 
produced time histories which showed from the parameter variances that the model 
was no longer a good representation, but there did not seem to be any correlation 
between the time history shape and the nature of the modelling inaccuracy.
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Where real flight data was used, it was realised that some parts of the model time 
response would be more accurate than others and it was hoped that this would be 
reflected in the parameter time histories. This phenomenon was evident to a certain 
extent with the real data and the linear model where the parameter time history 
showed a peak corresponding to a discrepancy between the flight data and model 
output at the start of the transient. It is doubtful however whether the parameter time 
history revealed any more information than a comparison of model time response with 
flight data.

Noise presented a major problem especially where the time response of the system is 
near a steady state or trimmed condition. This is probably because the constraint 
equation used in the model distortion technique uses the time derivative of the state 
time history and in a steady state or trim condition, this derivative will effectively be 
zero. Any additive noise in the system can be effectively thought of as having a 
constant amplitude. Whereas this noise amplitude may only be 10% of a signal during 
a transient, approaching the steady state, the noise will dwarf the derivative of the data 
and the parameter time history will reflect this as can be seen in the steady state in the 
results from the simple model experiments and the first 5.5 seconds (representing 
trimmed flight) of results from the experiments with real flight data. Cameror? 
concluded that the model distortion method is useful only with noise free data. This 
agrees with the above Findings.

The conclusion must therefore be that this method is unsuitable for helicopter 
applications because of the noise levels on helicopter flight data and the problems 
with the technique as the system response approaches steady state or trimmed flight.
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Development and Validation of a Helicopter 
Yaw Model

5.1 Introduction

Most helicopters have one main rotor and a tail rotor. The main rotor provides the 
thrust vector to counteract the aircraft weight and provide a motive force for flight. A 
result of the engine torque driving the main rotor is a torque reaction in the fuselage 
which tries to rotate the aircraft in the opposite direction. The most common way to 
counteract the torque reaction is to use a smaller rotor mounted vertically on the 
helicopter tail fin producing a sideways force at the end of a long moment arm (the tail 
boom) to balance the rotor torque. The thrust generated by this tail rotor must be 
controllable because the main rotor torque varies with flight condition and while 
manoeuvring. The thrust is controlled by varying the pitch of the tail rotor blades 
collectively using the pedals in the cockpit. This also gives the pilot yaw control of the 
aircraft. The tail rotor typically takes 10% of the total engine power.

The fact that in trimmed flight with no yaw rate a sizable amount of tail rotor thrust is 
still required to balance the main rotor torque means that aircraft yaw control to left 
and right is asymmetrical. Turning in one direction requires tail rotor thrust to be 
increased towards its maximum where blade stall may start to cause problems. 
Turning in the opposite direction means reducing tail rotor thrust eventually to the 
extent that the rotor enters the vortex ring condition. This is where the velocity of the 
air flowing through the rotor is the same as the free stream velocity of the air flowing 
around the rotor causing vortices to be generated and shed alternately from each side 
of the rotor dramatically reducing the thrust produced by the rotor. These turning rate 
limits are also affected by the free stream velocity of the air around the rotor i.e. the 
velocity of the aircraft

The tail rotor blades are usually hinged in the flap degree of freedom. This hinge is 
often engineered so that the blade pitch is coupled to the blade flap. Blade pitch 
coupling reduces the steady state and transient flapping by introducing a cyclic 
variation in blade pitch. The coupling is usually negative but it has been found by 
Gaffey1  that positive coupling is also effective.
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The tail rotor affects the aircraft dynamic response in degrees of freedom other than 
yaw. The aircraft yaw mode is coupled to roll through the Dutch roll mode. This is an 
oscillatory mode with a period of 1-2 seconds which occurs in all aircraft. The tail 
rotor produces its own torque reaction in the fuselage in aircraft pitch mode and the 
high rate of rotation of the tail rotor means that the effect of gyroscopic precession on 
the aircraft body states cannot be ignored.

Modelling or prediction of the behaviour of the tail rotor is difficult. In its 'trim' 
position, the tail rotor is balancing the main rotor torque which varies with flight 
condition. The aerodynamic environment at the tail rotor is very difficult to predict 
because of its proximity to the tail fin and the effects of main rotor downwash 
including main rotor blade tip vortices. This makes accurate prediction of the force 
generated by the tail rotor very difficult.

One result of this is that many aspects of tail rotor design have evolved as much 
through experimentation and trial and error as through performance predictions using 
mathematical models. Design features, such as which side of the fin to put the rotor 
and its direction of rotation, have been determined by experience and 
experimentation2 . The most efficient configuration is now accepted to be a tractor 
arrangement where the tail rotor wake strikes the fin and rotation such that the blade 
nearest the main rotor is going up.

5.2 Flight data acquisition system on research PUMA

Instrumentation on the PUMA helicopter at the Defence Research Agency at Bedford 
is capable of recording all aircraft rates and attitudes, control positions and blade 
motions2

The data acquisition system involves a variety of sensor types. Blade flap and lag 
angle are measured by potentiometers on the respective hinges. Body accelerations 
and angular rates of rotation are measured by linear accelerometers and rate gyros 
situated in a sensor package at the centre of gravity of the helicopter. Rotor speed is 
measured using an optical sensor and a disk connected to the rotor shaft with a white 
line painted on it. One effect of this sensor is that there is only one record of rotor 
speed for each revolution of the disk giving a discrete signal with a low sampling 
frequency (one per revolution or about 4.4 Hz). The effect of this low sampling rate is 
investigated in chapter 6 . There are also pressure sensors and strain gauges on an
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instrumented main rotor blade providing information which allows calculation of 
aerodynamic loads and blade deformation. A nose boom on the helicopter allows 
sensors for airspeed, angle of attack and sideslip to be located out of the downwash 
from the main rotor.

The analogue signals from the various sensors on the main rotor go to an amplifier 
mounted on top of the rotor hub. The amplification gives an improved signal to noise 
ratio. The data then passes through slip-rings into the helicopter. The signals are then 
multiplexed to one channel, passed through an analogue to digital converter and stored 
on magnetic tape as a digital signal.

A Central Processing Unit controls the multiplexer. There is a maximum data rate of 
128 K samples per second for all the data. The multiplexer controller can be 
programmed to allocate sample rates to different variables thereby giving a higher 
priority and sampling rate to certain measurements. For example, blade flap and lag 
angles are sampled at 1024 Hz, rotor speed is sampled at 64 Hz.

The data are stored digitally on tape and also transmitted in real-time to a ground 
station for fatigue damage accounting and observation of maximum load limits. The 
data can then be taken from the tape and put into a different format for analysis on a 
computer.

5.3 Experiments and flight data

In May 1988, a set of flight experiments were flown in Italy in exceptionally good still 
air conditions with the RAE PUMA helicopter. The experiments included hover turns 
out of ground effect with step inputs to the pedals to port and starboard of magnitude 
4°, 8 ° and 13°. The experiments are referred to as events 3,4,5,7, 8  and 10. During the 
experiments, the pilot worked to keep the aircraft level and in the hover. It was 
proposed that the flight data from this experiment, which included aircraft yaw rate, 
could be used to validate and possibly improve the tail rotor representation in 
HELISTAB.

Blade collective pitch data was not available due to a failure of the slip ring assembly 
on the helicopter. It was necessary therefore to derive the tail rotor collective pitch 
from the tail rotor jack data. The relevant calibration record was found and the 
gradient information calculated using a least squares fit to a straight line (figure 16).



Page 76

o o
o

H 1--------1--------1-------a--------1--------1--------1--------*-------1o

2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8
jack position (inches)

Figure 16 Jack Calibration showing ground based measurements of tail rotor 
pitch actuation mechanism. Testing in both directions shows backlash.

0Qt = -0.30 x Jack + offset (0Qt is in radians) (5.1)

This method could not however, be used to find the offset. The offset was calculated 
by looking at the trim at the start of each of the flight records and getting the trim 
position for the tail rotor jack. The trim collective pitch was derived using the trim 
equations of the helicopter and the offset was calculated. This also ensured that the 
model was trimmed correctly. This is important because any errors would be 
integrated up in the simulation.

5.4 Development and Validation of Yaw model

HELISTAB5  is a real-time nonlinear helicopter model developed at the Defence 
Research Agency at Bedford. From initial validation studies using analogue 
matching 6 , the aircraft yaw response to pedal inputs had been identified previously as 
a weak point of the model. The model of the tail rotor in HELISTAB uses 
instantaneous inflow optimised iteratively with no pitch flap coupling.

It was realised that tail rotor dynamics were a crucial part of any yaw model. 
Available flight data included step responses to pedal inputs with the pilot maintaining 
a hover (hover turns). This meant that it would be possible to model the system as a 
one degree of freedom yaw model developing and validating the tail rotor dynamics
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without the additional complication of other dynamic modes from the rest of the 
aircraft.

Various model validation/development techniques were applied to this problem with 
the aim of evaluating these techniques as well as improving the helicopter yaw model.

The constraint of real time simulation means a simple low order model of the yaw 
dynamics and particularly the tail rotor is necessary. Several hypotheses were 
examined for model improvement within this constraint.

a) Possibility that the tail rotor enters the vortex ring condition.

b) Incorporating pitch-flap coupling in the model.

c) The effect of wind blowing the main rotor downwash over the tail rotor.

d) Aerodynamic drag on the side of the helicopter tail boom.

e) The effect of the main rotor downwash flowing over the tail rotor in
hover.

Validation techniques used were analogue matching of time responses, parameter 
estimation using a linear search and analogue matching of time responses for different 
parameter values.

5.4.1 Helicopter yaw dynamics - theory

The following equations are taken from Padfield5 and describe the basis for a simple 
one degree of freedom mathematical representation of yaw dynamics on the aerospatiale 
PUMA helicopter. The model is a nonlinear representation with instantaneous inflow 
calculated using an iterative loop with a Newton Raphson minimisation.

Figure 17 gives a diagramatic representation of the helicopter.
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Figure 17 Schematic diagram of helicopter

The yaw equation for a one degree of freedom yaw model is

. x F - Q  
r = - i —Azz

where,

Q = main rotor torque,

x = distance form tail rotor to main rotor,

F = thrust force produced by tail rotor,

r = aircraft yaw rate,

Izz = moment of inertia about vertical z axis.

The tail rotor thrust is calculated thus,

F = p (^IRj)2 g aoT (tcRt2) ~ t t  ■ Fbik
aoT g

where,

p = air density,

Q. = tail rotor rotation speed,

(5 .2 ),

(5 .3 ),
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Rt = tail rotor radius,

c  = tail rotor solidity,

aoT = lift curve slope of tail rotor,

Cj t  = tail rotor thrust coefficient,

Fbik = Fin blockage factor.

The fin blockage factor is an empirical parameter which represents the effect on the 
thrust of the tail fin.

Sfn = area of tail fin.

The thrust coefficient and the tail rotor inflow are calculated together in an iterative 
loop.

where,

Got = tail rotor collective pitch,

|_it = normalised airspeed tangential to tail rotor disk,

|iz = normalised airspeed perpindicular to tail rotor disk, 

^OT = inflow velocity at tail rotor.

The tail rotor collective pitch, 0qt includes pitch flap coupling.

where,

(5.4) ,

and

2 V h t 2 + ( - N- X )2 (5 .5 ),
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0oot + 831 —M j  (-(Jt - aJ
9 Up / 3dqt-----------------------------------

1 '  ^  +W I ( 5 . 6 )

where,

0OOT = blade collective pitch at blade root,

S3 = pitch flap coupling coefficient,

np = blade inertia number,

Ap = rotor blade flap frequency ratio

The yaw model was to be simulated using TSIM7 , a FORTRAN based simulation 
program running on a VAX. A fourth order Runge-Kutta integration algorithm was 
used for the integration. Initially the model was configured to represent coning and 
pitch flap coupling ( 8 3  was found to equal -45°) with the calibration equation 
(equation 5.1) controlling the input. The model was trimmed at each experiment by 
adjusting the initial condition of the tail rotor blade collective pitch as described 
above.

5.4.2 Pitch-flap coupling

Even although pitch flap coupling is a physical phenomenon, it is important to 
validate the decision to incorporate pitch flap coupling into the model. Equation 5.4 
implies that the addition of pitch flap coupling will make the effective tail rotor 
collective pitch a dynamic variable with a first order lag rather than a constant as is the 
case with no pitch flap coupling. This extra pole will effectively slow down the 
response of the model to an input. It can be seen from figure 17 that in all cases, the 
model response is faster than the experimental data suggesting that incorporating pitch 
flap coupling would improve the model. To verify this, event 3 was simulated with
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and without pitch flap coupling. From the results (figure 18) can be seen that the fit is 
improved where pitch flap coupling is incorporated.

Event 3

1.0

0.8

0.6

0.4v
a)u, 0.2

0.0

- 0.2 16 18 2 0141 0
time (seconds)

— • delta3=0   d e lta 3 = -4 5 ‘ —  Flight data

Figure 18 Yaw model time response to step input on tail rotor collective pitch in 
hover with and without pitch flap coupling

5.4.3 Investigation of the effect of drag on the tail boom

The downwash from the main rotor is blown down over the tail boom. When the helicopter is 
turning , this generates an angle of attack large enough for the creation of aerodynamic lift on 
the tail boom in a direction so as to affect the yaw moment of the helicopter. There will also be 
aerodynamic drag on the side of the tail boom as the helicopter rotates in the yaw axis. A 
diagram of the tailboom showing the lift effect is given in figure 19.
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Figure 19 Airflow over helicopter tailboom

This effect is of course dependent on the shape of the tail boom. On the Aerospatiale PUMA, 
the dimensions of the tail boom are as in figure 2 0 .

Side view

3.6m

1.3m

4.3m

Plan view

3.6m

Figure 20 Aerospatiale PUMA tail boom(from Jane’s all the World’s aircraft8)

Downwash from 
main rotor
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As can be seen from figure 20, the area of the tail boom looking side on is approximately 4m2. 
The thickness of the tail boom as seen from above is about 60% - too large for any appreciable 
aerodynamic lift effect This leaves aerodynamic drag on the side of the tail boom as a possible 
influence on yaw dynamics. The effect of this drag was calculated roughly for a worst case.

D = i p V 2 CDs

where,

D = aerodynamic drag force, 

p =  air density ( 1 .2 2 ),

V = air velocity,

Cd= drag coefficient, 

s = area of surface.

Given a turn rate of 0.5 radians per second (from figure 21) at a distance of approximately 6 m 
from the aircraft hub, the air velocity is 3 metres per second. Assuming a worst case, the drag 
coefficient is 1. The area, from figure 20, is 4m2. Therefore D=21 N giving a turning moment 
of 126 Nm at 6 m from the hub. This is negligible compared to the 40 000N main rotor torque.

It can therefore be concluded that flow of air around the tailboom has no effect on the aircraft 
yaw mode.

5.4.4 Investigation of vortex ring and wind effects

The time response of the model with pitch flap coupling incorporated is shown in figure 21 
together with the flight data for a set of hover turns to port and starboard.
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Figure 21a Time response of yaw model with pitch flap coupling to step input in 
tail rotor collective pitch in hover
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Figure 21b Time response of yaw model with pitch flap coupling to step input in 
tail rotor collective pitch in hover
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It can be seen that the model is relatively good for turns to starboard (positive yaw 
rate) but to port, (negative yaw rate) gives very poor predictions. This asymmetry 
hinted at the possibility that the tail rotor was entering the vortex ring condition in 
turns to port. This was ruled out because the simulation revealed tail rotor inflow at 
the trim condition to be of the order of 16 metres per second. This corresponds to an 
aircraft yaw rate of 1.8 radians per second. The vortex ring condition arises when the 
inflow velocity is close to the velocity of the air around the tail rotor9 . It can be seen 
from the flight data in figure 2 1  that the maximum aircraft yaw rate for these 
experiments is nowhere near this value.

It was noticed that the flight data exhibited a periodic motion which correlated with 
the heading angle or yaw attitude. One possibility is a geographical feature on the 
horizon which would cause the pilot to alter the pitch of the aircraft periodically while 
trying to maintain hover. The records of pitch attitude from the flight were retrieved 
and this possibility was ruled out. Another possibility was a low velocity wind. The 
conditions on the day of the experiment were classified as still air. This means that the 
wind speed never exceeded 2  knots ( 1  m/s) during the experiment, but even a small 
wind speed would have a large effect on aircraft yaw rate if it caused the main rotor 
downwash to be blown over the tail rotor increasing the tail rotor inflow and therefore 
increasing the tail rotor thrust.

It was realised that the effect of wind blowing the main rotor downwash over the tail 
rotor would depend on how much of the tail rotor disk was in the downwash. The 
downwash was modelled as an eccentric cylinder coming down from the main rotor 
disk as in figure 22. The fraction of the disk in that cylinder was calculated as follows.
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main rotor disk

main rotor downwash /  
/

Area of tail rotor disk inside main 
rotor downwash

•dge of main rotor downwash

Figure 22 Diagram showing tail rotor disk in main rotor downwash
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To calculate the angle of the main rotor downwash, let p be the vector representing the 
edge of the downwash.

p = (w, -X,0),

where X is the downwash velocity and w is the velocity of the wind blowing the 
aircraft. The wind is coming from the direction indicated by the angle <p where cp=0 
represents head on. After rotating p around the vertical axis by cp,

p ’ = (w coscp, -X, 0 ).

This means that the angle of the downwash is

where <po is the direction the wind is coming from.

Given,

y = tan - tan
'A  %

1 = V X2 + z2, 

p = 1 sin 7 9

the area of the disk that is inside the main rotor downwash is,

0 p > R

A =
R2 - }r pR sin (§-)

2 2 F \21 R>p>-R

7cR2 p<-R (5.8).

This area was multiplied by an arbitrary constant, an overall scale factor, to give a value 
for tangential air velocity at the tail rotor.
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The shape of the effect of aircraft heading angle on tangential inflow is plotted in 
figure 23 which represents tangential inflow for event 3, where the helicopter is in a 
hover turn, for arbitrary parameter values.

Event 3

0.12

0.10

CO 0.08
6

0.06*o
0.04

0.02

0.00
14 2 0

time (seconds)

Figure 23 Time response of expected tangential inflow arising from wind 
blowing main rotor downwash over tail rotor for tail rotor collective step input

It was realised that the main rotor downwash would not form an exact cylinder and the 
other effects such as tail fin interference and main rotor blade tip vortices would have 
an important effect, but the model was considered to be a sufficiently accurate 
representation for an initial investigation into this problem.

The wind model was included in the tail rotor model and had three parameters - the 
wind direction, the wind speed and an overall scale factor for the thrust coefficient. 
Because of the iterative loop, it was not possible to derive analytic sensitivity 
coefficients. Using finite differences also caused problems because of the 
discontinuities. This made parameter estimation difficult.

In order to investigate the effects of each of the three parameters, a linear search was 
done where each parameter was varied in turn and the sum of the square of the error 
between model output and flight data (for yaw rate) over a time history of 19 seconds 
was plotted. This was done for events 3 and 7, one for port and one for starboard 
(figure 24).
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Figure 24 Variation of sum of squared error between flight data and model 
output for yaw model where downwash is blown over the tail rotor while varying 
wind direction
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Figure 24 (cont.) Variation of sum of squared error between flight data and 
model output for yaw model where downwash is blown over the tail rotor while 
varying wind speed
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Figure 24 (cont.) Variation of sum of squared error between flight data and 
model output for yaw model where downwash is blown over the tail rotor while 
varying effect of additional inflow on tailrotor

The flat part of the graph of wind speed represents the region of operation where the 
tail rotor is completely outside the downwash of the main rotor. For event 3, this 
region coincides with the minimum of the cost function implying that adding wind
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makes the model worse rather than better. Conversely, the cost function plots for 
event 7 suggest that the adding the wind to the model improves the accuracy of the 
model. The tail rotor was simulated with the wind parameters selected as the values 
giving the smallest value for the cost functions for event 7. The time response (figure 
25) shows that although the average magnitude increases to match the flight data, and 
the error between flight data and model output is reduced compared to the original 
(figure 2 1 ), the wind introduces a periodicity which is not present in the flight data 
and not realistic regarding the high rates of angular acceleration. It was concluded that 
although adding the wind decreased the cost function, it did not improve the accuracy 
of the model. The wind gave the yaw of response an oscillatory nature which reduced 
the overall magnitude of the model output and the squares of the difference between 
model output and flight data but it is obviously not a good fit to flight data. This 
investigation highlighted the importance of visually examining the model output and 
the experimental data and not relying on a cost function as an indication of model 
validity.
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- 1 . 0Q>
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£  - 2 . 0
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2 0

—  model output — - flight data

Figure 25 Time response of yaw model with wind blowing main rotor downwash 
over the tail rotor with optimised parameters

5.4.5 Main rotor downwash

The largest discrepancy between model output and flight data appeared to be the 
difference in fit for turns to port and starboard. Rotor downwash blowing over the tail 
rotor would increase the tangential inflow and could as a result increase the thrust 
generated by the tail rotor quite considerably. Because of the asymmetrical nature of
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helicopter yaw dynamics where the tail rotor is counter balancing the main rotor 
torque, any increase in the thrust produced by the rotor is going to have more of an 
effect in turns to starboard than to port. The model at this stage did not include any 
representation of main rotor downwash. The model was altered to include a 
representation of the main rotor downwash. The additional tangential inflow velocity 
was defined as a scale factor, INFCON, multiplied by the main rotor inflow. The scale 
factor was defined as a parameter but parameter estimation was not possible because 
the model had to be retrimmed with each new value of INFCON. A linear search was 
carried out on each of the events with INFCON being varied from 0.1 to 0.9. The sum 
of the error squared was calculated at each time point and the time responses were 
recorded for turns to port and starboard. They can be seen in figure 26.
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Figure 26 Variation of parameter INFCON which represents the fraction of
main rotor downwash contributing to tangential inflow at the tail rotor
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Figure 26 (cont.) Variation of parameter INFCON which represents the fraction
of main rotor downwash contributing to tangential inflow at the tail rotor
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Time history for variation of INFCON
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Figure 26 (cont) Variation of parameter INFCON which represents the fraction
of main rotor downwash contributing to tangential inflow at the tail rotor
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Figure 26 (cont) Variation of parameter INFCON which represents the fraction
of main rotor downwash contributing to tangential inflow at the tail rotor
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Visual examination of the time response plots together with the plots of the sum of the 
squares of the error between flight data and model output implied that main rotor 
downwash/tail rotor interaction was important and a value of about 0 . 8  might be 
realistic. It is not possible to deduce a more accurate or definitive value for the 
parameter INFCON from the available information. This is because it can seen that 
the model in its current state, although an improvement on the original model, could 
not be said to give an accurate representation of PUMA yaw dynamics.

5.5 Unmodelled cross-coupling dynamics from aircraft motion

Examination of other available fight data for this series of experiments, in particular 
aircraft roll rate, showed that although the pilot was working to maintain hover, the 
helicopter was moving and probably exciting other dynamic modes. A potential 
source of unmodelled yaw dynamics are perturbations in lateral acceleration. This is 
related to aircraft roll angle since in the hover, the lateral force provided by the tail 
rotor should be balanced by a lateral force from the main rotor (with the helicopter 
hovering right wheel down). Other influences include cross coupling between yaw, 
pitch and roll. Roll coupling due to gyroscopic precession is not negligible, because 
the tail rotor has a high rate of rotation.

5.6 Conclusions

The inclusion of pitch flap coupling and main rotor downwash in the yaw dynamics 
model considerably improves the ability of the model to predict yaw rate in hover 
turns although the extent of the effect of the downwash could not be precisely 
determined. Tail boom drag proved insignificant in hover but weathervaning could be 
important in forward flight.

Wind could not be considered a contributory factor from the above results although 
the yaw sensitivity to wind speed is high and the flight data did appear to exhibit a 
periodic motion which correlated with aircraft heading. Further flight experiments of 
the same type, hover turns, are necessary to investigate the effect of wind blowing the 
main rotor downwash over the tail rotor with wind speed and direction during the 
experiment recorded as part of the flight data.
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The fit of the model to the flight data is still inaccurate for most of the experiments. It 
is probable that some of these inaccuracies come from unmodelled dynamics due to 
the helicopter not being in a perfect hover. These inaccuracies could perhaps be 
eliminated by using the experimental flight data of the aircraft body states to force the 
model in an open loop simulation1 0  thereby eliminating cross coupling effects.
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Chapter 6 

Validation of a helicopter main rotor model

6.1 Introduction

A helicopter is a complex nonlinear system. It is very useful to be able to focus on 
specific areas of such a system by splitting it into subsystems. An important system on 
a helicopter is the main rotor. It provides the lift and control for the helicopter. The 
main rotor is the source of many of the dynamic modes on a helicopter and is 
therefore a crucial part of any helicopter model.

In this chapter, a nonlinear physical model of a helicopter rotor will be investigated. 
Parametric validation techniques will be applied to two areas of the model - the lag 
damper and the engine and rotorspeed models. These techniques of Maximum 
Likelihood parameter estimation and sensitivity coefficient examination will be shown 
to be useful model validation methods for this type of problem.

6.2 The rotor model

The main rotor provides the thrust and lift for the helicopter. On the Aerospatiale 
PUMA, it consists of four blades rotating at 265 rpm, clockwise when viewed from 
above. Each blade is of aerofoil cross section and is effectively a wing which 
generates lift and drag as air flows over it.

The pilot controls the pitch of the rotor blades both collectively for changes in overall 
lift and cyclically where pitch is increased at one side of the rotor relative to the other 
producing an uneven lift distribution. This generates a turning moment allowing the 
helicopter to be manoeuvred.

The rate of rotation of the rotor blades is an important design parameter. It wants to be 
as high as possible while keeping the advancing blade tip speed at the helicopter's 
maximum forward velocity below the speed of sound. During flight, the forces on the 
rotor in the plane of rotation vary considerably, and it is necessary to actively control 
engine power to maintain a constant rotor speed. On the PUMA this is done using an 
automatic control system as shown in figure 27.
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Figure 27 Block diagram of helicopter engine, gearbox and rotor speed 
controller

The controller parameters are engine time constant and engine gain.

The lift and drag forces generated on each rotor blade vary depending on the airflow 
over that blade. This means that the blade will tend to flap up and down and 
backwards and forwards relative to the plane of rotation. To prevent excessive stress 
levels in the blade root, the rotor blades are designed so as to be allowed to flap and 
lag. On the PUMA this is done using fully articulated rotor blades. That is blades 
which are hinged to allow free movement in the flap and lag degrees of freedom. A 
diagram of the rotor head on an Aerospatiale PUMA is given in figure 28.
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8) Drag hinge hydraulic reservoir

9) Pitch-change arm

10) Pitch-change bearing

11) Pitch-change bearing lubrication reservoir

12) Blade attachment point

Figure 28 Rotor hub of an Aerospatiale SA330 PUMA helicopter (from 
G unstonl)
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The relevant forces on each blade are the weight of the blade pulling it down, 
aerodynamic lift pulling it up, aerodynamic drag pulling it back and centripetal 
acceleration pushing the blade to a straight out position. These forces combine to 
produce the flap and lag modes. The flap mode has natural damping unlike the lag 
mode which is underdamped. The lag natural frequency is often near the rotor 
frequency so resonance is potentially a large problem. A common solution is to put a 
mechanical damper at the blade root in the lag degree of freedom. In the PUMA, the 
lag damper is in the form of a dashpot which can be seen in figure 28.

When modelling a helicopter rotor, it is necessary to consider inflow. Inflow is the 
velocity of the air moving down through the main rotor. It affects the aerodynamic 
forces generated at the blades and is generated by the downwash from these blades. It 
can be modelled as a constant, as an instantaneously changing value (assuming no air 
mass) or as a dynamic variable depending on the complexity of the model. Because of 
the difficulty of measuring inflow, identifiability is a big problem with the validation 
of inflow models^.

The rotor model used in this chapter accounts for rotor speed dynamics, blade 
dynamics and inflow and consists of six nonlinear differential equations of which two 
are second order representing five degrees of freedom - dynamic inflow, blade flap, 
blade lag, heave velocity and rotor speed. The equations are
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where,
a 6 aerodynamic lift curve slope

AC 25 Lag damper damping coefficient

c 5.401 rotor blade chord

CO 1 dynamic inflow apparent air mass
cdf 1.5 main rotor downforce drag coefficient

G -444801 engine controller gain
1189 moment of inertia of rotor

k 1.4 inflow momentum correction factor

Km (3 0.7 moment correction factor
m 5400 aircraft mass
Mp 249 flap moment of inertia of one blade

N 4 number of blades

Q engine torque
R 7.498 blade radius
sfp 1.767 fuselage area exposed to main rotor downforce

Te - 1 . 0 engine controller time constant
temp4 trim variable in rotor speed equation to allow for unmodelled engine 

torque losses in the tail rotor and gearbox
vi inflow velocity

w aircraft heave velocity

P coning angle

50 0 . 0 1 2 profile drag coefficient

y 10.18 Lock number

% blade collective pitch

p air density determined from flight trim condition
a 0.0917 main rotor solidity
Q rotor speed

27.76 trim rotor speed

C blade lag angle

The model was derived by A. T. McCallum and S. S. Houston of the Defence 
Research Agency at Bedford. It is derived from expressions in Padfield3 , Houston4  

and Blackwell, Feik and Perrin5 .
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The rotor speed equation (equation 6.4) is based on momentum theory while the 
inflow, blade dynamics and heave equation are based on blade element theory.

Identified areas of uncertainty in the model are the lag damper and the engine model. 
An explicit lag damper representation had been a recent addition to the model and had 
not yet been validated. The engine and controller model is a first order approximation 
and as such should be validated to verify that it is an adequate representation.

This model is very nonlinear. That is, any linearised representation would change 
significantly different with even a small change in operating point. This means that 
more conventional validation techniques using linearised models would be of limited 
use. It is necessary therefore to validate this model as a full nonlinear representation 
using nonlinear model validation techniques. The methods chosen were parameter 
estimation and sensitivity coefficient examination. An important criterion for choosing 
such methods is the availability of relevant flight data. Parameters selected for 
parameter estimation must be identifiable with measurable output variables. For 
example, lag damper parameters could be estimated because of the availability of 
blade lag angle data and the high sensitivity of blade lag angle to the lag damper 
parameters.

This chapter can also be considered an investigation of the validation methods used.

6.3 Parameter Estimation based Model Validation Methods

The rotor model is constructed from physical nonlinear differential equations. Areas 
of uncertainty being investigated are the lag damper and the engine model using blade 
lag angle and rotor speed data respectively with a maximum likelihood based 
technique of parameter estimation.

The parameter estimation process requires sensitivity coefficients to be generated. 
Sensitivity coefficients are necessary for the minimisation of the parameter estimation 
cost function. They can also be a very useful aid to model validation if examined 
visually as part of the parameter estimation process (see chapter 3).

Given that an output error parameter estimation technique is to be used, there are still 
many possible variations. The experimental data to be used and the parameters to be 
estimated must be selected. Selection of experimental data includes choice of output
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variables as well as the specific experiment. Concerning the experiment, the test input 
signal should excite the part of the model being validated while having as little effect 
as possible on the rest of the system. The complete data record may contain a trimmed 
steady state at the start of the record before the input is applied and recovery after the 
system response to the aircraft. It is therefore necessary to select the portion of the 
data to be used in the estimation process.

It may be advantageous to pre-process or filter the data in some way before the 
parameter estimation. This should however be approached with caution as it is better 
not to alter the data if possible. Any filtering would have to be accounted for in the 
model validation process.

The results of the parameter estimation include Cramer-Rao bounds which are 
estimates of the relative variance of the different parameters. These parameter 
estimates can be compared with physical values or with results from different 
experimental data sets. Good agreement is an indication of model validity.

6.3.1 Investigation of model structure

Parameter estimation can also be used to investigate changes in model structure. If 
changing the structure of a part of the model has an effect on the estimated parameters 
and Cramer-Rao bounds on a related parameter set, parametric techniques can be used 
to validate that model structure. For example, if changing the structure significantly 
increases the size of the Cramer-Rao bounds, the likelihood of that structure being a 
more accurate representation of the system is decreased.

If a parameter estimate varies considerably with different data sets and these data sets 
are from similar experiments, it is probable that the parameter does not represent a 
physical quantity and the structure of that part of the model should be re-examined. 
Agreement for different data sets on the other hand, suggests that the structure is 
correct and the results of the parameter estimation can provide a value for the 
parameter if it is not easily discernible from theory.

6.4 Sensitivity methods

The generation of sensitivity coefficients is necessary for the parameter estimation 
process. The sensitivity coefficients are derived analytically in this research for
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accuracy and because of difficulties with a finite difference technique and 
nonlinearities (see chapter 3, section 3.2). Initially, the sensitivity coefficients can be 
used to select the output variables to be used and to detect any linear dependence 
between the parameters. This is where the effect of one parameter on an output is the 
same as the effect of another parameter and it causes problems in the parameter 
estimation process.

Visual examination of the sensitivity coefficient time histories can give valuable 
insight to the model and parameters and how the parameters affect the model.

6.5 Maximum Likelihood Parameter Estimation - Theory

Parameter estimation is a statistical technique where a cost function involving the model 
and experimental data is postulated and then minimised with respect to the parameters. 
The maximum likelihood method is based on a cost function where the object is to 
maximise the probability of fitting the model output to flight data given the parameter 
set. The method can eliminate bias errors due to state and measurement noise for linear 
or linearised systems and is described in Iliff6 , from which the following equations are 
taken.

The first step is to define the system.

x = dynamic system variable,

x = time derivative of x, 

t = time,

q = time at interval number i, 

f = arbitrary nonlinear function, 

g = arbitrary nonlinear function,

^ = parameter vector (to be estimated), 

z = model output,

G = weighting matrix,

x(t) = fjx(t),u(t)^] (6.9),

( 6 . 1 0 ),

where,
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rji = measurement noise.

The maximum likelihood method used here is for a complete nonlinear model so it is 
not possible to implement the Kalman Filter necessary to account for state noise.

The maximum likelihood cost function for estimation with no bias errors due to 
measurement noise is,

jfe) = 4  Z  N o - - z^ti)] + 1 N log |G G T1
2 i=i 2  (6 . 1 1 ).

where,

z = model output,

N = number of data points in simulation run.

To minimise the cost function J, a Gauss-Newton algorithm is used. The parameters 
are adjusted according to equation 6 . 1 2 .

(6 . 12).L. 4  4v V(U W U

where,

L = iteration number.

The first and second derivatives are,

M d = - 1  N o  - z ^ o f t e G T l iv ^ t , ) ]
i=i ( 6 .1 3 ) ,

vV (d  = I  [v^(ti)]T(GGT)’ fv ^ .0 ]

The Cramer-Rao bound represents the uncertainty of the parameter value and is 
calculated by taking the information matrix, inverting it, and taking the square root of 
the corresponding diagonal element. That is,

H- 1 = 2Jmin f t  [V5 ^(tiffG G T)'1̂  z4(ti)] |  */ (N-l)
( 6 .1 5 ) ,

C - R i = V H - ‘(i , i )  ( 6 . 16 ) ,



Page 113

where C-R is the Cramer-Rao bound and i is the parameter number.

The application of maximum likelihood estimation in this thesis is for single output 
systems only so the weighting matrix (G G T )-l is unimportant and can be set to one. 
This simplifies the estimator equations.

6 . 6  Experimental

The rotor model was to be validated as a subsystem. That is, without any 
representation of non-rotor states with the exception of heave which is vertical 
velocity. For this type of approach to be successful, it is important that unmodelled 
dynamic modes are not excited during the experiment. This was achieved in the 
helicopter flight experiments by designing the experiment to be a step response to 
main rotor collective pitch from a hover condition resulting in aircraft motion mainly 
in the vertical axis.

Two sets of flight data were available. A 2 degree step upwards and a 1 degree step 
downwards, both measured at the blade root. The experiments were flown using the 
Defence Research Agency at Bedford research PUMA helicopter. Recorded rotor data 
included individual blade flap and lag angles, blade pitch, engine output torque, rotor 
speed and aircraft vertical acceleration. The data were recorded using the aircraft's on 
board data acquisition system (Section 5.2 in this thesis). The individual blade data 
were averaged to give overall values since in the hover there should be little or no 
cyclic pitch or flap variation. The blade angle data was sampled at a rate of 1024 Hz. 
Rotor speed was sampled at once per rotor revolution or about 4.4 Hz. This was 
considered a possible source of problems in the engine model validation and is 
considered in section 6.8.3.

The step response of the rotor model using the blade collective pitch data shown in the 
figures, as the model input is shown in figures 29 and 30 respectively for flight 
experiments 1 and 2  together with the relevant flight data.
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6.6.1 Computer implementation of parameter estimation

The parameter estimation process requires the model to be simulated to produce the 
output variable z and the sensitivity coefficients. The system equations were 
differentiated manually to derive the sensitivity equations for each parameter (see 
chapter 3 section 3.2). This cosystem was simulated alongside the main model.

The system was simulated using TSIM7 , a FORTRAN based continuous time 
simulation program. The equations are integrated using a fourth order Runge-Kutta 
algorithm with a step size of 0.0078125 seconds which is equivalent to a 128 Hz 
sampling rate. This is much higher than any of the dynamic modes in the model. The 
simulation package TSIM allows integration of FORTRAN routines into the model. 
This is how the parameter estimation routines were integrated with the simulation. 
TSIM also has graphical output capabilities facilitating analogue matching and 
examination of sensitivity coefficient time histories. The software was used on a 
Digital MicroVax II.

6.7 Lag damper model validation

The original model from DRA Bedford (section 6.2) had one term to represent the lag 
damper. This was the damping coefficient A^. It had been set at 25 as a result of some 
rig tests (section 6.7.1).

When a mathematical model is changed by for example, adding an extra term, it is 

important that the new model is validated. In this case, the model was to be validated 

using parameter estimation and sensitivity coefficients. This was because of the 

parametric nature of the problem. As well as the damping term, two other terms were 

added to the equation (equation 6 .6 ) to represent a spring term and friction within the 

damper. This gave an overall expression for the damper as.

*
£= . . .  - - c £  " D*s i gn (£)

represents the blade lag dynamics not including the lag damper (centrifugal, 
coriolis, inertia and gravitational forces).



represents rotor blade lag angle

represents the viscous damping coefficient. had the highest sensitivity 
coefficient.

represents a spring constant. The most likely source of the springiness is the 
fluid in the damper being compressed. The low sensitivity of this parameter 
suggests that it is not of great importance.

D represents friction present in the damper - hence the nonlinear signum function. 
Friction works against you whichever direction you are moving in.

The sensitivity coefficients were evaluated as single value sensitivity coefficients 
(chapter 3, section 3.3) showed that the effect of each parameter on the blade lag angle 
was significantly larger than that on any other model output (see table 2  and figure 
31), so blade angle data was used for the parameter estimation.
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output variable sensitivity (%age change
in output for 1 % change in A^)

flap angle 0.0025%
vertical acceleration 0.0025%

rotor speed 0.000075%
engine torque 0 .0 0 1 %

lag angle 0.05%

Table 2 Single value sensitivity coefficients for lag damper parameter A£

0.05% t --- ------

0.04%

I '  0.03%
zs*5
g 0.02%

0 .01%

0 .0 0 % I— * — i— i— { : — i-------------- —i— •; • ■ 1— •— — i
flap angle vertical accel. rotor speed engine torque lag angle

output variable

Figure 31 Bar chart showing relative sensitivities of output variables to lag 
damper damping coefficient

Before the parameter estimation, it was necessary to trim the model. That is, to ensure 
that the initial conditions of the output variable matched the first few seconds of the 
flight data record representing trimmed flight in the hover before application of the 
experimental input. The simulation program used, TSIM^, had an inbuilt trim routine 
which solved the trim equations (state derivatives equal to zero) for selected input 
parameters. The main parameters used were temp4 and air density. Temp4 was part of 
the rotor speed equation and represented unmodelled aerodynamic forces on the 
blades as well as losses in the transmission system.

I
[

i
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Air density was not recorded during the flight experiments and it was used as a trim 
variable. This was done because it was noticed that, of the two experiments, both 
started from the hover but with different values for collective pitch. The experiments 
took place one after the other on the same flight. After ruling out a change in mass due 
to fuel burn as the cause of the collective pitch angle discrepancy (the change in mass 
was not nearly sufficient), it was concluded that a change in altitude and therefore air 
density was the only reasonable explanation. It is not unreasonable that the helicopter 
would change altitude between experiments because it is important that such 
experiments are done in clean air (no wind or turbulence) and it is sometimes 
necessary to move in order to find some. Another possibility is that the pilot was 
complying with an air traffic control instruction to change altitude because of traffic. 
The trimmed values of air density were checked and the equivalent altitude checked in 
all cases to verify that the altitude was reasonable for this aircraft.

6.7.1 Parameter estimation results

The three parameters were estimated using the flight data for lag angle up to the end 
of the step input in each case. A fourth order Runge Kutta algorithm was used to 
integrate the nonlinear equations. Sensitivity coefficients were calculated from exact 
sensitivity equations derived analytically.

experiment 1 experiment 2

Ac 44.6 (0.46) 36.3 (0.55)

Cc -0.34 (0.0017) -1.71 (0.031)

D -0.13 (0.0045) 0.059 (0.0087)

Cramer-Rao bounds are given in brackets.

As can be seen, the values for A are relatively similar but C£ and D vary considerably. 
This suggests that although the parameter estimation algorithm does improve the fit of 
model output to flight data by estimating values for and D, these values for and 
D do not represent real lag damper parameters. and D are numerically 
unidentifiable.



It was decided that the most acceptable representation of the lag damper would be the 
single parameter A^. was estimated on its own for both experiments.

The results were,

experiment 1 experiment 2

Ac 34.8 (0.54) 30.9 (0.91)

It can be seen that the results are reasonably close. This increases confidence in the lag 
damper model. The theoretical value of this parameter was derived by mechanical 
testing of a damper on a test rig (section 6.7.2) and gave a value of 25 for A^.

Graphical analysis gives a good indication of model validity. Figure 32 shows a time 
response of lag angle for both flight experiments with the original model, the 
estimated model and the flight data superimposed on each other. Figure 33 shows the 
effect of the estimated parameter from one experiment on the output of the model for 
the second experiment.
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Figure 32 Time response of blade lag angle for flight experiments one and two 
with original model and estimated model
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Flight 2 data with flight 1 param eters
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Figure 33 Time response of blade lag angle for one flight experiment with 
parameters estimated from other flight experiment and original model

It can be seen that the estimated value of slightly improves the fit in each case and 
also that using the value estimated from one experiment with the data from the other 
experiment gives a better fit. This final stage of analogue matching with different data 
is important because it indicates that the fit is not simply the result of a statistical best 
fit.

6.7.2 Derivation of original value for lag damper damping coefficient

The lag damper of the Aerospatiale PUMA helicopter has been tested by the aircraft 
operators and manufacturers. The damper was removed from the helicopter and placed
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in a mechanical test rig. It was then subjected to an input amplitude typical of its 
operational range at three different frequencies. Its response to this input was 
measured and the damping coefficient was calculated at 25 kg/s.

6.7.3 Lag damper validation - conclusions

From this validation exercise, it can be concluded that the best representation for the 
lag damper is one term in the damping coefficient A^. The parameter estimation 
results suggest a value slightly higher than the physical value of 25 (section 6.7.2), but 
it would be necessary to do more flight experiments to verify this. A different 
experimental input might help to indicate why the estimate for A^ was high.

Maximum likelihood parameter estimation proved a useful technique for this 
validation exercise. The sensitivity coefficients were helpful in selecting the output 
variable for the identification.

6.8 Engine model validation

The main rotor model for the Aerospatiale Puma helicopter as described in section 6.2 
includes a model of the engine and rotor speed dynamics of the helicopter. 
Examination of the fit between flight data and model output for rotor speed showed 
that this part of the rotor model did not give a good fit to flight data. Different model 
structures and parameter sets for the engine and rotor speed model were examined 
using both low sampling rate rotor speed flight data and digitally filtered rotor azimuth 
data at a much higher sampling frequency. Improvements to the model were suggested 
and validated with a second set of flight data.

6.8.1 Engine/Rotor speed model

Helicopter rotor speed is often modelled as a constant, and the engine speed is usually 
maintained at a constant value by an automatic control system. However, in the Puma 
helicopter which has an automatic control system controlling fuel flow, the rotor speed 
does vary transiently and it is likely that this variation is important when modelling 
large excursion manoeuvres^.

The rotor speed dynamics are represented in the model by two first order nonlinear 
differential equations,



Q  = 4(//>  + hRMp)(Z+ 2 & £ 2 - £)) + h R M n & n i ; - p p - p 2 - f 2[

l+ aaQ R  1 A: I A:
16vt-

M r

+  —  - tempA
I r (6.4).

G = G(r2-r2b) + r,G
(6.5).

The variables are as defined in section 6.2.

In equation 6.4 the dynamic variable is rotor speed. Equation 6 .5., representing the 
engine and speed controller in which the dynamic variable is rotor torque. Flight data 
are available for both rotor speed and engine torque although the engine torque data 
includes tail rotor torque and transmission system losses not represented in the main 
rotor model. It was decided that rotor speed data alone should be used for this exercise 
since the difference between rotor torque and engine torque can be up to 15%.

The rotor speed equation uses momentum theory to calculate the variation of rate of 
rotation of the rotor as the aerodynamic load on the rotor varies. The rotor torque 
equation consists of a gain factor multiplied by rotor speed and a first order lag in the 
engine dynamics.

The theoretical parameter values for the engine and controller equation, equation 6.5, 
are gain, G = -44480, and time constant, Te = -1.00 ®.

There were two sets of flight data available for the engine model validation as with the 
lag damper. A useful rule of model validation and development is that half the data 
should be used for development and half the data used for checking the model®. This 
was done with the engine/rotor speed model validation. Data from flight experiment 1 
were used for the model development and data from flight experiment 2  were used for 
the validation (analogue matching).
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6.8.2 Parameter Estimation

The available flight data from experiment 1 consisted of a step response to main rotor 
collective in the hover. The recovery was also included in the experimental record but 
it was noted that during the recovery the helicopter had encountered some vortex ring 
flow which was not modelled. It was decided therefore to base the parameter 
estimation on that portion of the time history corresponding to the step and omit the 
recovery. A plot of the main rotor collective can be seen in figure 34.
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Figure 34 Time response of main rotor collective pitch for flight experiment 1 
(system input)

The model was trimmed to the values in the first five seconds of the flight data by 
varying trim inflow and air density (see section 6.7). The model was then driven by 
the experimental record of the main rotor collective pitch. The maximum likelihood 
parameter estimation method defined in section 6.5 was used to estimate values for the 
parameters G and Te in equation 6.5. Cramer-Rao bounds were also calculated to give 
an indication of the accuracy of the parameter estimate. These should not be taken as 
an absolute indication of the error magnitude but can be used for comparison between 
different estimations. The Cramer-Rao bound is given in brackets after the parameter 
estimate.

The sensitivity coefficients were initially calculated using a finite difference approach. 
This was because different model structures for rotor speed dynamics were to be 
tested and analytic sensitivity equations would take a considerable amount of time to
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develop for each model. However, once a model structure had been decided upon, 
analytic sensitivity equations were used. This was because analytically derived 
sensitivity coefficients give much better convergence to the cost function minimum 
(chapter 3, section 3.2).

The parameters G and Te, the gain and the time constant were estimated over a 9.6 
second time history consisting of solely the step response and an 1 1  second time 
history including some of the recovery but not the vortex ring mode. The time 
responses are shown in figure 35 for the original parameters and for the estimated time 
responses over the two record lengths. The time response of the sensitivity coefficients 
at the transient for each of the two parameters is also shown. The sensitivity 
coefficient (figure 36) shows the effect each parameter has on the system transient 
response. It can be seen that the initial response is affected more by Te and the 'double 
peak' of the response is affected by the engine gain , G. This technique of sensitivity 
coefficient examination can provide useful clues to the origins of discrepancies found 
when matching experimental data to model output.
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Figure 36 Sensitivity coefficients of engine parameters Te and G over time 
history of system transient

Figure 35 illustrates the importance of the selection of the part of the time response 
over which to base the estimation. In this case it was decided to use a 9.6 second 
record length and to look only at the step response because this seemed to be a better 
representation of the system time response.

6.8.3 Effect of flight data sampling rate

It can be seen from figure 35 that the effective sampling frequency is very low, about
4.4 Hz. It is possible that such a low sampling frequency could affect the parameter 
estimation process, so an alternative source of rotor speed data was sought. This is 
because of the method of measurement of rotor speed on the Puma. A disk with a line 
painted along a radius is attached to the rotor shaft and the data acquisition system 
(chapter 5, section 5.2) records the time at which the line passes an optical sensor i.e. 
once for each revolution of the disk. This means that a value of rotor speed is 
calculated once per revolution of the rotor, about 4.4 times per second. A zero order 
hold is used by the data acquisition system to give a data sampling rate of 64 Hz.
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The azimuth angle is also recorded. This is the actual angular displacement of the 
rotor disc from a reference. This is recorded at a much higher sampling rate, 1024 Hz, 
and theoretically, it should be possible to differentiate the signal to get a record of 
rotor speed. If the azimuth signal is differentiated directly, the resulting time history is 
too noisy to be of any use for parameter estimation. It is therefore necessary to filter 
the data.

This was done by subtracting the part of the data corresponding to a constant trim 
rotor speed using a least squares algorithm giving a perturbation data record. This 
perturbation data was then filtered using a low pass filter before numerically 
differentiating and adding to the DC trim value calculated in the least squares fit It 
was realised that a filter with a well defined cutoff would be required. The cutoff 
frequency was selected as 1 Hz. This was above the frequency of the modes of interest 
but would remove any rotor frequency noise. A fifth order Butterworth filter was used 
with the frequency response shown in figure 37.
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Figure 37 Frequency response of low pass filter used on differentiated azimuth 
data to represent rotor speed

The data were filtered using the FiltFilt command in PRO-MATLAB1  which includes 
forward-reverse filtering for zero phase shift.
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The time history of rotor speed resulting from processing the azimuth data is shown 
compared with the rotor speed record in figure 38. The main differences are the 
magnitude of the peak at the beginning of the transient and an effective time delay in 
the low sampling rate data.
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Figure 38 Comparison of rotor speed data with differentiated and filtered 
azimuth data

Figure 38 shows good correlation between the rotor speed and azimuth flight data 
records.

The increased magnitude of the peak for the azimuth data made a difference in the 
model to flight data fit. It is probable that the azimuth record gives a more accurate 
representation of this peak because it can be seen how the low frequency sampling 
would reduce its magnitude. Another effect of low frequency sampling with a zero 
order hold is to introduce a T/2 time delay where T is the sampling period of the data.

The two engine parameters were estimated over a time period of 9.6 seconds using the 
filtered and differentiated azimuth data to represent rotor speed. The results are shown 
in figure 39.
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Figure 39 Time response of rotor model where engine parameters have been 
estimated using differentiated azimuth data

The Cramer-Rao bounds show these results to be worse than those achieved for the 
low sampling rate rotor speed (figure 35) although it can be seen that the azimuth 
record is effectively noise free and therefore likely to be more accurate because of its 
higher sampling rate and method of measurement.The increased Cramer-Rao bounds 
could be the result of an increased error squared term caused by the size of the initial 
transient peak at time = 5.5 seconds.

6.8.4 Time delays in the system

It has been suggested that time delays could be more prevalent in flight data than 
previously thought10 . To test whether this time delay would have any effect on the 
parameter estimation process, the time delay was estimated as a parameter. An 
analytic expression for the sensitivity coefficient of a time delay was calculated and 
found to be the derivative of the input to the time delay (chapter 3, section 3.2). This 
was implemented and a value for the time delay was estimated. This value was small 
and varied considerably for different record lengths and different sets of flight data 
giving positive and negative results. The conclusion was that it was not possible to 
identify a time delay from the flight data.
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6.8.5 Engine model validation - conclusions

The low sampling rate of the flight data does not make much difference to the fit 
although its limitations are revealed in the size of the initial transient peak. The 
parameter estimates for both sources of flight data are reasonably close to each other if 
slightly different from the original theoretically derived values of G=-44480 and Te =-
1.0 calculated from simplified engine equations?. Taking the azimuth derived data as 
the more accurate, the parameter values of G=-38690 and Te=-1.235 were used for a 
simulation with a second set of flight data as the second part of the model 
development and validation process. The results of this analogue matching 
comparison (figure 40) show that the fit is better than that achieved with the original 
parameters.
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6.9 Investigation of an alternative model structure for rotor speed dynamics

The aerodynamic load on the rotor is calculated using inflow and momentum 
dynamics in the rotor speed dynamics equation (equation 6.4). The rest of the rotor 
model (the flap and lag dynamics) use blade element theory. It was decided to 
represent rotor speed dynamics using blade element dynamics to calculate the 
aerodynamic load for the rotor speed equation. The linearised expressions for lift and 
drag at a rotor blade element were analytically integrated along the rotor blade to give 
an expression for the total aerodynamic torque on the main rotor. This expression was 
summed with engine torque to give a differential equation for rotor speed.

The blade element model was implemented and tested by estimating the engine 
parameters and comparing the time response of the model with flight data. Figure 41 
shows the time response of rotor speed calculated using a blade element model 
superimposed on the time response of rotor speed using the momentum method to 
calculate rotor speed. The time responses are plotted for the theoretical parameter 
values and parameter values estimated with the blade element model. It can be seen 
from the Cramer-Rao bounds as well as the fit, that the momentum/inflow model and 
the blade element model give a very similar response.
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Comparison of rpm model structure
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Figure 41 Time response of rotor model for two model structures for rotor speed 
dynamics

One accepted technique for model structure validation is to plot the residuals against 
time. The residuals are defined as the difference between model output and 
experimental data. If the model structure is correct, the residual plot should show zero 
mean. Any peaks indicate faults with the model structure. The residual plots for the 
inflow momentum model and the blade element model are shown in figure 42.
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rpm model structure comparison
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Figure 42 Comparison of residuals for the two different model structures for 
rotor speed dynamics

Figure 42 also shows the similarity of the models. It reveals a possible structure fault 
in the model at the start of the transient indicating a starting point for and future 
development work on the model.

The momentum/inflow rotor speed dynamics equation is based on the dynamic intlow 
equation which uses blade element theory. This could explain why the blade element 
results and the momentum results are so close.
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6.10 Investigation of the effect of blade twist

On the Aerospatiale PUMA helicopter, the rotor blades are twisted so that the angle of 
attack at the tip of the blade is 8.5 degrees less than at the root. This is necessary 
because the airspeed at the blade tip is much higher and therefore more lift is 
generated at a given angle of attack. If the angle of attack was constant along the 
blade, the blades would tend to bend up at the tips causing structural problems.

The blade twist was incorporated into the rotor speed blade element equation. 
However, when an attempt was made to simulate the model, it was impossible to trim 
the model in the hover with the experimental flight data. It was deduced that the 
reason for this was that the rest of the rotor model although derived from blade 
element theory, did not include expressions for blade twist and if twist was to be 
included in the model at all, it would need to be in all the rotor equations.

This is a large task but worth considering as a next stage for the development of this 
rotor model.

6.11 Conclusions

Parameter estimation is a valuable technique for model validation. It has been applied 
to two problems in this chapter, the lag damper and the engine and controller model. It 
was concluded that one term, the damping coefficient, was necessary to represent the 
lag damper within the rotor model. Its value, and the values of the engine parameters 
were estimated to be slightly different from the original theoretically derived 
parameter values, but more experimental data would be required to justify changing 
the parameter values from the theoretical value.

Sensitivity coefficients were also used as part of the model validation process. By 
comparing the estimates with other estimates and with theoretical values, the model 
was validated. Analytically derived sensitivity coefficients were used to improve 
convergence in the parameter estimation process, a particular problem with nonlinear 
models.

It is also very useful to examine sensitivity coefficient time responses alongside time 
responses of the model and experimental data because this can give valuable physical 
insight into the problem and the effects of individual parameters on the model. This
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technique was used with the engine parameters. Single value sensitivity coefficients 
proved useful in the initial stages of the parameter estimation to select the output 
variables and flight data to be used in the cost function. They can also be useful for 
parameter selection prior to estimation (see chapter 3, section 3.3).

Analogue matching of time responses to experimental data from a different 
experiment proved a useful validation method and was successfully applied to the 
rotor model.

The combination of analogue matching, sensitivity coefficient examination and 
parameter estimation is a powerful simulation based validation tool. But physical 
knowledge of the system is also required if full advantage of these methods is to be 
taken.
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Chapter 7

An Interactive Model Validation Computer 
Program

7.1 Introduction

Many model validation methods have been investigated and evaluated in this research. 
These methods have all been suitable for, and applied to nonlinear physical models of 
a helicopter but are equally valid for nonlinear physical models of any dynamic 
system.

All the approaches considered are similar in that they have been based on continuous 
time simulation runs of the models using numerical integration. Although all the 
methods are useful techniques in their own right, they are at their most valuable when 
applied to the problem in a coordinated fashion as part of an integrated strategy. An 
important part of that strategy is physical knowledge of the system being modelled. 
Physical knowledge improves interpretation of the validation results and together with 
the validation tools, provides the basis for a comprehensive model development and 
validation methodology.

It is desirable to have an integrated approach to validation and development of 
nonlinear physical models. A computer package with a graphical output and a 
selection of validation tools would be an ideal addition to the development and 
validation process. This chapter will specify such a computer package using the model 
validation tools which have been developed and investigated in this thesis. It will also 
suggest how such a package could be implemented and applied.

7.2 Specification for a model validation and development package

7.2.1 User interface

The object of a computer program like this is to facilitate the use of model validation 
techniques in an integrated environment. A good user interface is therefore very 
important. A windows based system would be easy to use and familiar to most 
computer users. Such a system is one in which different programs are run in windows 
on the screen display. Information can be copied from one window to another and
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when a window is not in use it can be shrunk to an icon. Such a system can be easily 
driven by mouse with pull down menus presenting program options. A high quality 
graphical output would be required for such a program and graphics hard copy output 
would also be necessary.

7.2.2 System simulation

The basic model would be represented by differential equations or transfer functions 
which would be integrated to simulate the system and generate time response data. It 
should also be possible to enter the model in graphical form such as a block diagram 
or signal-flow graph. The equations which make up the model should be easily 
accessible. It should be possible to view and edit these equations in a 'model' window. 
It should be possible to linearise the model to state space or transfer function form 
(where appropriate) and to generate eigenvalues of the system. It would be necessary 
to input the operating point or a range of operating points and it should be possible to 
plot variations of linearised parameters or eigenvalues against operating point.

The fundamental function of the program will be simulation in the time domain. 
Continuous time simulation is the basis of all the validation methods investigated in 
this thesis. It should also be possible for the user to select simulation parameters such 
as integration algorithm, step size, system input (from recorded data or otherwise), 
trim conditions or parameters, and the length of the simulation. It should be possible 
to plot time responses of selected variables in the model separately or superimposed 
on other time responses or experimental data. It should be possible for these time 
responses to be stored on disk or processed by filtering or converting to the frequency 
domain. It should also be possible to vary individual system parameters and to plot 
system time responses for a variety of parameter values as with the yaw model 
validation in chapter 5.

7.2.3 Parameter Estimation

Parameter estimation is an important validation method and should be an integral part 
of this validation program. The parameter estimation routine would allow a chosen 
parameter set to be estimated using selected experimental data for specified output 
variables. User options would be varied and would include the parameter estimation 
method - the cost function definition and the search algorithm. A good range of 
available search algorithms is important to ensure rapid convergence for nonlinear
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models. It should also be possible to estimate parameters over selected segments of 
the system time response like for example, a particular part of a transient response and 
to weight individual segments of the time response. Parameter estimates should be 
presented with Cramer-Rao bounds where appropriate and it should be possible to 
manually weight selected outputs and parameters for the parameter estimation process.

7.2.4 Sensitivity Coefficients

Sensitivity coefficients are necessary for parameter estimation as well as being very 
useful for model validation in their own right. Exact sensitivity coefficients can be 
generated from cosystems of sensitivity equations which run in parallel with the 
system equations. Such sensitivity equations are best derived by differentiating the 
system equations manually (chapter 3, section 3.2), but it is probable that computer 
algebra packages will eventually develop to the stage that this process could be 
automated. It is also possible to calculate sensitivity coefficients using finite difference 
methods and this should be an option.

The sensitivity coefficient routines need to be fully integrated with the simulation and 
parameter estimation routines because the cosystem runs in parallel with the real 
system simulation and sensitivity coefficients are an integral part of parameter 
estimation search algorithms.

7.2.5 Animated time responses with respect to parameter variations

Sensitivity coefficients can be a very quick way of analysing the effects of small 
parameter changes on the model output. By summing the sensitivity coefficient with 
the model output, an approximation to the output of the modified model can be 
calculated almost instantaneously. It is in effect a first order linearisation of the model 
where,

f(x+8 ) ~ f(x) + 8  ^  
d x

This facility could be used to give an animated plot of the model output over 
experimental data while parameters were varied continuously by, for example, moving 
a slide on a bar with the mouse. As the parameters get further from the operating point 
at which the sensitivity coefficients and the time response were calculated, the
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modified response is going to be less accurate. This depends of course on the degree 
of nonlinearity of the model. It should however, be possible to simulate the nonlinear 
system and generate sensitivity coefficients repeatedly while the animated parametric 
investigation is taking place. This means that the operating point and therefore the 
time response and the sensitivity coefficients are periodically being updated 
maintaining accuracy. The deviation of the current parameter values from those at 
which the sensitivity coefficients and the time response were calculated could be 
displayed alongside the modified time responses. This repeated updating of the system 
would mean that the user would only have to leave the parameters constant for as long 
as it took to run one nonlinear simulation to get an accurate time response for the 
nonlinear model at that parameter set. The length of this time period would of course 
depend on the computer hardware as well as the parameters for the simulation 
procedure. This facility would be extremely useful in the model development stages 
and would give a 'feel' for the model to supplement knowledge about the system being 
modelled. A possible screen display of this routine is given figure 43.

Animated time response with respect to parameter variations

out put

t i m e

Linearised at.Parameters

A = 2.3 ^

B = -0.45 ^

2.23

-0.4

Figure 43 Example of window showing animated time response algorithm output 
with system time response over experimental data and parameter values
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7.2.6 Parameter Selection

Parameter selection is an important part of parameter estimation and it should be 
possible to display single value sensitivity coefficients (chapter 3, section 3.3 and 
chapter 6 , section 6.7) to indicate the effects of the parameters on system outputs. 
Equation error estimation could also be incorporated into the parameter estimation 
routines as another parameter selection technique.

7.2.7 Model Structure Investigation

It should be possible to have more than one model structure in the system at any one 
time so that the different model structures can be simulated together and the results 
compared. The full range of model analysis methods should be available for 
application to all the model structures so that these structures can be compared. It 
should also be possible to produce residual plots for model structure investigation.

7.2.8 Input and Output

All the results should be clearly displayed on the screen and it should be possible to 
save them to disk, send them to a printer or copy them to other applications such as 
mathematical analysis packages or control system design programs. An example of 
what the output from this program would look like is given in figure 44.

7.2.9 Other validation methods

This program should be as comprehensive as possible in that it should contain a wide 
range of validation methods. One useful method for large excursion manoeuvres of 
complicated nonlinear systems such as helicopters is inverse simulation (chapter 2 , 
section 2.6). Inverse simulation means taking a recorded flight path from a flight 
experiment as the input to an inverse model. The output of the simulation is the 
control time histories which can then be compared with the recorded control time 
histories. This method could run in its own window allowing comparison of the results 
of one validation method with another as well as applying different methods together.

Other possible validation techniques include open loop simulation (chapter 2, section 
2.7) which could be integrated with other techniques. Open loop simulation allows a 
subsystem of the main system to be modelled as an independent system by using
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experimental records of system state variables as inputs to the model rather than 
calculating them in a model of the complete system. Open loop simulation means that 
a subsystem model can be simulated and validated independently using other 
techniques. It is a method which works together with other methods and is therefore 
ideal for an integrated package such as the one specified in this chapter t

Model development and validation toolbox

Figure 44 Possible appearance of validation program output showing windows 
based output with various applications running

7.3 Implementation of Validation Program

One result of this research is that validation methods involving simulation of nonlinear 
models is slow. Simulation times will have to be considerably reduced for a program 
this to be a viable proposition. One way of speeding up program execution is to use a 
parallel computer. This is where the computer consists of many microprocessors 
running in parallel and communicating with each other and a master controller 
processor.

The INMOS Transputer1  is a suitable processor for this type of application. It is 
designed to be used in parallel and is very fast. The transputers are supplied as
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individual units with on board memory and can be connected together in a network 
structure with a control hierarchy which depends on the application. They can be 
interfaced via a master controller to a variety of desk top computers to provide input 
and output facilities like a keyboard, mouse and high resolution colour display.

One problem with implementing software on a transputer network is splitting the 
program up into sections that can run efficiently in parallel. Communication between 
transputers is comparatively slow and should be kept to a minimum meaning that 
processes running on individual transputers should be as independent as possible.

Despite these problems, this model development and validation program is one which 
leads itself to parallel implementation very well. The most computationally intensive 
part of the program is simulation of the model itself and sensitivity cosystems. Each 
sensitivity cosystem requires the results from the system simulation at each integration 
time step but they are completely independent of each other. An effective parallel 
implementation of this would be to have the main system simulation and one 
cosystem running on each transputer as cosystems. This would mean that simulation 
times would not be dependent on the number of cosystems.

Another common task for this program will be simulation of the same basic system 
with various sets of parameter values generating a linear search or with alternative 
model structures. This would be a simple task to implement of a transputer network 
because the simulations are independent of each other and each simulation could run 
on its own transputer communicating the results back to the host computer.

The upgrading of the time response and sensitivity coefficients for the animated 
parameter adjustment facility described in section 7.2.5 is an excellent candidate for 
parallel processing. The animated parameter adjustment using sensitivity coefficients 
and the system simulation to update the values are completely independent and can 
therefore run completely in parallel with communication of the time responses and the 
sensitivity coefficients from the simulation process to the parameter animation process 
at the end of each simulation.

A complicated screen display can take a lot of computer power to drive it but it is 
possible to drive the screen display from a transputer graphics board. This means that 
graphics processing does not take up valuable processing time - it is done in parallel to 
the operation of the main validation program.
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There are several programming languages available for transputer networks. Some are 
transputer specific such as OCCAM2  and some are parallel versions of conventional 
languages such as C, PASCAL or FORTRAN. The language used would depend on 
the availability of ready-written routines and the experience and programming skills of 
the programmer. Proprietary software packages or other high level languages can only 
be used on transputers if there has been a version written specifically for transputer 
implementation or if the source code is available and can be transferred to the 
transputer. This could cause problems and increase programming time. One possible 
solutions is to run the package on the host computer while interfacing with the 
transputers.

An example of a transputer network is shown in figure 45 for the case where different 
versions of the same system are being simulated in parallel.

Each transputer process (1 to 4) 
represents a different simulation.

Process Process ProcessProcess
Master
Controller

Transputer
graphics
board

Colour
graphics
display

HOST
COMPUTER

Figure 45 Transputer network for simulating four systems in parallel
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7.4 Applications

A package such as this would be most useful in the model development stage. Its ease 
of use and flexibility would allow the user to test a wide range of possible models 
improvements both structural and parametric and to develop criteria for validation of 
these improvements.

With good physical knowledge of the system and familiarity with the software, the 
engineer could interact with the model, experimenting with a variety of alterations to 
the model using the tools to develop a better, fully validated model. Such a package 
and the inherent development and validation techniques could of course be used with 
a model of any continuous time dynamic system and is by no means restricted to 
helicopter applications.
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Chapter 8 

Conclusions and Suggestions for Further Work

8.1 Conclusions

The general conclusion of this research is that model development and validation 
should be regarded as an interactive process where the user has available a range of 
validation techniques and selects the most appropriate for the task. The selection 
criterion should be based on available experimental data, prior knowledge of 
uncertainties in the model, the type of nonlinearities in the model and importantly, 
physical knowledge of the system being modelled.

Various validation techniques have been investigated in this thesis.

8.1.1 Validation methods

The model distortion method described in chapter 4 was designed for the nuclear 
power industry and published applications of the technique have been from that 
industry. Experiments with simple systems and simulated data showed how the model 
distortion method works and how it might be applied. The method does not however 
work in cases where the experimental data is noisy and is therefore of little use for 
helicopter models where the flight data contains a lot of high frequency noise due to 
the high vibration environment. It would be a worthwhile exercise to evaluate the 
technique with a simpler nonlinear system if relatively noise-free measurement data 
was available.

Analogue matching of model time responses to experimental data is a common 
validation technique. In this thesis, it has been extended to include several output plots 
for different parameter values superimposed on each other and on the flight data as a 
parameter estimation technique with a linear search. Analogue matching was found to 
be particularly useful in the latter stages of model validation especially where the 
initial stages of the development process were based on experimental data. The model 
output was compared with experimental data using previously untouched data from a 
different experiment.
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Sensitivity coefficients proved very important for model validation. Single value 
sensitivity coefficients give an indication of the effect of particular model parameters 
on specific outputs and are useful for selecting the output variables and parameter sets 
for parametric validation techniques. Single value sensitivity coefficients can give 
considerable insight to the model and represent a powerful validation tool.

Time histories of sensitivity coefficients can be produced by solving a sensitivity 
cosystem. This is a dynamic system made up of differential equations which are the 
partial derivatives of the main system equations with respect to some model 
parameter. The cosystem is simulated alongside the main system to produce time 
histories of the sensitivity coefficients. These sensitivity coefficients are an essential 
part of the parameter estimation process providing the gradient information for the 
cost function minimisation. Examination of the sensitivity coefficient time responses 
proved a very useful validation tool in this research. It provides information as to the 
effect of the parameter on a particular model output over the length of an experiment, 
ie. the effect on trimmed condition, different parts of the transient response and the 
steady state response. This can provide clues to model development and is especially 
useful when used in conjunction with other parametric techniques such as parameter 
estimation.

Maximum Likelihood parameter estimation produces estimates for model parameters 
free from bias errors due to measurement noise. Parameter estimation was 
successfully applied to the nonlinear rotor model (chapter 6 ). The estimates were 
compared with theoretical values for physical models and with estimates of the same 
parameters from other models or the same model and a different experimental data set. 
In all cases, consistency of parameter values implies model validity. Analytically 
derived sensitivity cosystems (chapter 3) were used to produce the sensitivity 
coefficients for the parameter estimation search algorithm. This allowed estimation of 
discontinuous nonlinear elements to be estimated accurately.

All of the above validation techniques were applied to helicopter mechanics and 
application of all of the validation techniques was greatly enhanced by physical 
knowledge of the system being modelled. Physical knowledge is necessary for 
interpretation of the results of all the validation methods and should be considered 
essential when validating physical models.
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8.1.2 Application of model validation methods

The combination of physical knowledge and analogue matching in chapter 5 led to the 
development of an improved yaw model for the real time helicopter model. It was 
concluded that in the hover, pitch-flap coupling should be included in the 
representation of tail rotor dynamics, the main rotor downwash affects the yaw model 
by increasing the thrust generated by the tail rotor.

A main rotor model was investigated in chapter 6  with respect to the lag damper and 
the engine and controller representation. Single value sensitivity coefficients were 
used for output variable selection and a combination of parameter estimation, 
analogue matching, and sensitivity coefficient time response examination was used for 
the development and validation stages. Model structures were verified for the lag 
damper and engine controller but more flight data are necessary to produce validated 
parameter values.

Single value sensitivity coefficients were also used to select the parameter set for the 
model distortion technique (chapter 3, section 3.3.1).

8.1.3 Summary

This thesis has shown that nonlinear mathematical models can be validated using 
nonlinear validation techniques. Various nonlinear validation techniques have been 
investigated with respect to physical models of helicopter mechanics. These 
techniques have been evaluated and an integrated approach to model validation and 
development has been established. This integrated approach is presented in chapter 7 
as a specification for a hypothetical computer program for model development and 
validation.

Such a program would allow the user to apply selected validation methods to a 
mathematical model and experimental data and essentially to interact with the model 
and the validation process to produce a better and more accurate representation of the 
system and improved model validity.
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8.2 Suggestions for further work

The mathematical helicopter models which have been used in this thesis are models of 
subsystems of the helicopter rather than the complete system. Specifically, they 
represent the yaw mode and the main rotor in isolation as independent systems rather 
than as part of a model of the complete aircraft. This greatly facilitates the modelling 
process because the model is much simpler, but in a complex system such as a 
helicopter with a lot of cross-coupling between different modes, great care must be 
taken to ensure that unmodelled dynamics from the rest of the aircraft are not affecting 
the subsystem. In the case of the yaw model and the main rotor model, this was done 
by experiment design whereby the pilot maintained all aircraft states in a trimmed 
state except that being excited in the experiment. This is a useful technique but it 
assumes that the pilot is a perfect controller in that he can remove all the cross­
coupling effects.

One possible solution is to measure all the aircraft states and use that data as input to 
the subsystem. This is known as open loop simulation and is defined in chapter 2, 
section 2.7. Open loop simulation effectively isolates the subsystem as a separate 
dynamic system. Further research into this technique is needed to provide a theoretical 
basis for open loop simulation, to investigate the effects of noise and bias error in the 
flight data on the subsystem output and to determine the effect of the degree of cross­
coupling present in the model. Open loop simulation has the potential to be a powerful 
validation tool. The ability to isolate individual sections of the model means that these 
sections could be developed and validated separately as individual systems. This 
modular approach would substantially improve the validation process. A possible 
example of an application area for of open loop simulation is the helicopter yaw 
model developed in chapter 5 of this thesis. The excitement of other modes in the 
aircraft was identified as a source of difficulty in validating the model. Open loop 
simulation would remove the effects of these other modes and allow the yaw model to 
be developed and validated as a subsystem.

The structure of the lag damper and the engine controller representation in the main 
rotor model was validated using parameter estimation (chapter 6 ), but the values for 
the parameters were not conclusive because of insufficient flight data. Further 
experiments would allow values for the parameters to be derived and validated. As 
stated in chapter 6  section 6 . 1 0  , a worthwhile next stage in the development of the 
rotor model is inclusion of rotor blade twist. This would be more representative of he
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real system and should improve the model with respect to rotor dynamics without 
causing any significant increase in computation time during simulation.

The model validation computer package described in chapter 7 is realisable. If 
implemented on a transputer network as suggested it would be fast enough and it 
would be a powerful aid to model development. Such a program would allow many 
validation tools to be used interactively and would substantially improve the model 
validation process.
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Appendix 1 

Model Distortion Method 

Program Listings

The following routines were used to evaluate the model distortion technique (chapter 
4). The example given here is for a linear helicopter model and two parameters. The 
programs were run on a Digital VAXstation 2000 using MATLAB from batch jobs. 
MATLAB is a mathematical analysis package based on matrices. The programs took 
several hours to run.
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Program makedataheli

This program is written in MATLAB. It generates the simulated data used for the 
model distortion technique in chapter 4. A linear eight state representation of a 
helicopter is simulated and the output differentiated with respect to time. There is an 
option to add white noise to the signal.

Program listing

% Generates time history data 
example for
% the butterworth technique.
load thO;
load pumahover
h=7.8125e-3;
t = (0:h:10)';
zer=zeros(t );
in=zer;
i n (1:100)=ones(1,100); 
in(101:200)=-l*ones(1,100); 
u=[thO(1:1281) zer zer zer]; 
%load hover;
[y,x]=lsim(A,B,C,D,u,t); 
w = x ( : , 2 ) ;
wdot=diffate(w,h); 
rand('normal');
%r=rand(w)*.1; 
t = 0 ; 
w=w+r; 
wopt=w; 
input=u;

for an eighth order system used as an

%get system input vector 
%get system equations 
%set up integration

%system input 

%simulate system
%select vert velocity (w) from output 
%differentiate vertical velocity

% generate additive white noise

Variables
thO main rotor collective (system input)
h integration interval
t time vector for simulation

> zer column of zeros
|

i
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in input
u input vector
A, B,C,D system matrices
y simulation output
X simulation state time histories
w vertical velocity
wdot vertical acceleration
r white noise vector
wopt simulated data with added noise
input system input used to generate simulated data

The differentiation routine is done by a small MATLAB routine using a second order 
algorithm.
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Function diffate

This function is written in MATLAB and it differentiates the input x, using a 
numerical second order algorithm where x is a time history with step size h. 

Program listing
function y=diffate(x,h);
%differentiates function x using second order method. Error is ~hA2 
[a b]=size(x); 
switch=0; 
if a<b,

switch=l; 
x = x ' ; 

end 
y=x;
[a b]=size(x); 
n=a ;
y(l, :) = (-3* x (1, :)+4*x(2, :)-x(3, :))/(2*h); 
for k=2:n-1,

y(k, :) = (x(k+1, :)-X(k-1, :))/(2*h); 
end
y (n,:)=(x(n-2,:)-4*x(n-l,:)+3*x(n,:))/(2*h); 
if switch==l,

y = y ' ;
end

Variables
y function output (derivative)
x function input
h step size
a number of rows in input vector
b number of columns in input vector
switch flag to make input have more rows than columns so that input

is b time histories with a points in each
n number of time points
k loop variable
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Program optimise

This program, written in MATLAB, executes the model distortion algorithm on a 
linear helicopter model using simulated data generated in makedataheli above. The 
technique of Lagrange multipliers is used (see chapter 5). It is implemented using the 
MATLAB fsolve command1 . The parameter values at each time point are stored in an 
array which can be plotted or processed to produce a mean and variance.

Program listing
% Does Lagrange optimisation for model distortion technique 
lamda=l;
zw0=-0.28; %initial parameter values
zt0=-0.35; 
h=7.8125e-3; 
paras=[];
details=zeros(16,1); 
details(1)=2; 
p 2 = [zwO;ztO;lamda]; 
data=ones(1,42); 
for t=h*2:h:19.9, 
u=input(t/h+1,:); 
equations 
data(1)= w (t/h+1); 
data(2)=wdot(t/h+1); 
data(3:10)= x (t/h+1,: ) ; 
data(11:14)=u; 
data(15)=zw0; 
data(16)=zt0; 
data(17:2 4)= A (2, :); 
data(25:28)= B (2,:); 
data(29:36)= A (5,:); 
data(37:40)=B(5,:);
%data(41)= w (t/h+1);
%data(42)=wdot(t/h+1);
[p2,tcode]=fsolve('systemheli',p 2 ,details, data) ; %solve lagrange 
equations 
zw=p2(1);

i
i

%integration interval 
%initialise variables

%initialise parameter values 

%main loop
%assign variables to pass to system
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z t = p 2 ( 2 ) ;

pp=[zw;zt;w(t/h+l)]; %save results in array
paras=[paras pp]; 
term=[term; tcode];
if fix(t*10)==t*10, %backup results to disk

save updatehovsimnoise paras t term 
end 
end
save updatehovsimnoise paras t term

Variables
lamda Lagrange parameter 
zwO,ztO initial parameter values 
h integration interval
paras cumulative save vector for parameter values 
details control vector for fsolve algorithm 
p2 parameter vector
data variable to be passed to system model
t time vector
u system input
A,B system matrices
w vertical velocity simulated data
wdot vertical acceleration 
tcode solve algorithm termination code 
term cumulative save vector for tcode
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Function systemheli

This is a MATLAB function, called by optimise, which evaluates the differential 
equations making up the model. The model in this case is an eighth order linear 
helicopter model. It is possible to weight individual parameters in this function.

Program Listing
% Second system
function dG=systemheli(p,data);
w=data(1);
wdot=data(2);
x=data(3:10);
u=data(11:14);
zw=p(1);
z t = p ( 2 ) ;

lamda=p(3);
zw0=data(15);
zt0=data(16);
A2=data(17:24);
B2=data(25:28);
A5=data(29:36);
B5=data(37:40);
%v=data(41);
%vdot=data(42); 
x (2)=w;
% x (5)=v;
A 2 (4)= z t ;
A 2 (2)=zw;
%A 5 (1)=yu; 
zvAveight = l/l ; 
ztweight=l/l;
d G = [2 * zwwe ight *(zw-zwO)+lamda *x(2);
2 *ztweight*(zt-ztO)+lamda*x(4); 
wdot-(sum(A2.*x)+sum(B2.*u))];

Variables
dG function output



p parameter vector
data data used by function
w vertical velocity simulated data
wdot vertical acceleration 
x state values
u system input
A,B system matrices
w vertical velocity simulated data
t time vector
zw,zt,lamda parameters 
zwO,ztO initial values of parameters 
A2,A5 relevant parts of system A matrix
B2,B5 relevant parts of system B matrix
zwweight weight for parameter zw
ztweight weight for parameter xw
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Appendix 2 

Yaw Model Development 

Program Listings

The following programs simulate the yaw motion of an Aerospatiale PUMA 
helicopter. The programs are written in a FORTRAN based simulation language, 
TSIM^ and were used to development and validate the model as described in chapter 
5. The TSIM code is compiled and run in a TSIM operating environment.
The programs were run on a Digital Micro VAX EL

Programs YAW.SIM and TAILROTOR.SIM

The following TSIM routines define the yaw model. The system equations are in a 
separate include file, TAILROTOR.SIM.

Program listing YAW.SIM

C This program simulates the yaw motion of a helicopter with tail
C rotor dynamics.
C
C Written September 1991
C 
C 
C

INCLUDE 1 EXTERNALSVARS2.INC'
C
C
C Define states of system 
C
C RA - aircraft yaw rate
C YAW - aircraft heading angle
C THOT - tail rotor collective after delta3 adjustment
C THOOT - tail rotor collective beore delta3 adjustment
C XOT - tail rotor jack
C YT - side foce generated by tail rotor
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C VELZT - wind velocity normal to plane of tail rotor
C

STATE RA,YAW,HEAD
NODE VELZT,Y T ,THOOT,XOT,JACK,BIAS,VELT

C
C
C Define system parameters 
C
C -- helicopter configuration 
C

VARIABLE FINBLK,FINARE,RT,UA,W A ,LENGTH,INFCON,INFLOW 
VARIABLE Q ,XCG,OMEGAT,VA,HEIGHT,P,DELTA3,OLDCTT,THOT 
VARIABLE NLT,AOT,SOLT,INRTIA,RHO,FAILFG,CTT,INFLOT 
VARIABLE VLIMHI,VLIMLO,FAILVR,OLDINF,AO,A 1 ,A 2 ,A3 
VARIABLE NORM,HEADIN,ROLL,RPM,RRATE,TORQUE,YRATE 
VARIABLE RTML,DLAMTR,UMTSQ,FYRT,W T ,INFL02,THRUST 
VARIABLE FNFLOT,FTHOT,FFILFG,FCTT, FRTML, FLAMTR,FUMTSQ 
VARIABLE WINDAR, WINDB, WINDSC, R , WMIN, WMAX, WTOT, BETA, CH10 
VARIABLE DWASH,WIND,GAMMA,LL,PP,THETA 
INTEGER COUNT

C
C Initialisation 
C

IF (INIT.NE.O) THEN
FINBLK=1.0-3.0/4. 0*FINARE/(3.1415*RT**2)

C
C VELT=SQRT(UA**2+(WA-INFCON*INFLOW+Q*(LENGTH+XCG))**2)
C 1 /(OMEGAT*RT)

END IF
C
C

INCLUDE 'TAILROTOR.SIM'
SIMSTOP

C
END
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Program listing for TAILROTOR.SIM

C FIRST ORDER TAIL ROTOR MODEL
C
C FROM G. PADFIELD HELISTAB REPORT
C
C WRITTEN AUGUST 1991
C
c
C INPUT ACTUATOR
C

STH00T=-0.30*JACK+BIAS
C
C
C EFFECT OF WIND COMING FROM ONE DIRECTION AND BLOWING MAIN ROTOR
C DOWNWASH OVER TAIL ROTOR
C

BETA=-INFLOW/WIND/COSD(HEAD-CHIO)
C

GAMMA=ATAN(-BETA)-ATAN(1.013/I.646)
IF (GAMMA.LT.0.0) THEN

GAMMA=GAMMA+3.1415
END IF
LL=SQRT(1.646**2+1.013**2)
PP=LL*SIN(GAMMA)
IF (PP.GE.RT) THEN 

WINDAR=0.0 
GOTO 123

END IF
IF (PP.LE.-RT) THEN

WINDAR=3.1415*RT**2 
GOTO 123

END IF
THETA=2*ACOS(PP/RT)
WINDAR=THETA/2*RT**2-0.5*PP*RT*SIN(THETA/2.0)

IF (WINDAR.LT.0.0) THEN



WINDAR=0.0
END IF 

123 CONTINUE 
CC

INFCON=WINDAR*WINDSC
C

SVELZT=(-VA+(LENGTH+XCG)*RA-HEIGHT* P )
1 /(OMEGAT*RT)

C
SVELT=SQRT(UA**2+(WA-INFCON*INFLOW+Q*(LENGTH+XCG))**2) 

1 /(OMEGAT*RT)
C
C ITERATE FOLLOWING TWO EQUATIONS FOR TAIL ROTOR INFLOW
THRUST
C COEFFICIENT USING NEWTON METHOD
C

DO 100 COUNT=l,10
C

RTML=-VELZT-INFLOT 
UMTSQ=VELT * * 2 + RTML* * 2

C
C pitch-flap coupling

TH0T=(TH00T+DELTA3 *NLT*4.0/3.0 * RTML)
1 /{1.0-DELTA3*NLT*(1+VELT**2))

C
CTT=(A0T*SOLT/2.0)*(TH0T/3.0*(1.0+3.0/2.0*VELT**2)

1 +RTML/2.0)
C

TEMPTR=2.0*(UMTSQ**1.5)-RTML*CTT+0.25*AOT*SOLT*UMTSQ
C

DLAMTR=-(2.0*INFLOT*SQRT(UMTSQ)-CTT)*UMTSQ/TEMPTR
C

INFLOT=INFLOT+DLAMTR 
100 CONTINUE

C
IF (INFLOT.NE.0.0) THEN

FAILFG=DLAMTR/INFLOT



Page 165

ELSE
FAILFG=1

END IF
C

THRUST=2.0*RHO*3.1415*RT**2*(VELZT+INFLOT)*INFLOT
C
C FORCE EQUATION
C

SYT=RHO*(OMEGAT*RT)**2*SOLT*AOT*(3.1415*RT)**2 
1 * (CTT/AOT/SOLT)*FINBLK

C
C DYNAMIC EQUATION
C

SHEAD=YRATE*180/3.1415 
SYAW=-RA*180/3.1415

C
SRA=(LENGTH*YT-TORQUE)/INRTIA 

Variables
TH00T Tail rotor collective pitch
JACK tail rotor jack position
BIAS offset for tail rotor collective {calculated in model trim
algorithm)
BETA Angle of main rotor downwash
INFLOW Main rotor inflow
CHIO wind direction
HEAD aircraft heading
WIND windspeed
GAMMA angle of downwash in xz plane
LL distance form centre of tail rotor disc to edge of main rotor
disc
RT radius of tail rotor
PP, THETA see figure 22
WINDAR area of tail rotor disc inside main rotor downwash 
INFCON multiplicative factor representing effect of main rotor 
downwash on tail rotor thrust 
VELZT perpindicular inflow to tail rotor
LENGTH distance from tail rotor to aircraft reference point



Page 166

XCG distance from aircraft reference point to centre of gravity
VA aircraft sideward velocity
RA aircraft yaw rate
HEIGHT height of tailrotor above centre of gravity
P aircraft roll rate
OMEGAT rate of rotation of tail rotor
VELT tangential inflow to tail rotor
UA aircraft forward velocity
WA aircraft vertical velocity
INFLOW tail rotor inflow
Q aircraft pitch rate
COUNT loop variable
RTML perpindicular air velocity at tail rotor 
INFLOT tail rotor inflow
UMTSQ square of total airflow at tail rotor
THOT tail rotor collective pitch
DELTA3 pitch/flpa coupling
NLT blade flapping ratio
CTT thrust coefficient at tail rotor
AOT tail rotor lift curve slope
SOLT tail rotor solidity ratio
TEMPTR intermediate variable
DLAMTR derivative of inflow used in Newton optimisation
FAILFG flag to indicate if convergence in inflow calculation was
successful
THRUST tail rotor thrust 
RHO air density
YT force generated by tail rotor
FINBLK blockage factor caused by tail fin 
TORQUE main rotor torque in hover
INRTIA moment of inertial of helicopter about z-axis 
FINARE area of tail fin

Notes 
States are defined as dynamic variables in the system which are integrated. Nodes are 
defined as input/output variables or summing junction variables. Equations are stated 
S<variable>=<expression>.
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If the variable is a state this is a differential equation and the S represents the 
differential operator. If the variable is a node, it is evaluated as an algebraic 
expression.
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Appendix 3 

Main Rotor Model Development 

Program Listings

The following programs simulate the main rotor of a helicopter. The model is in the 
form of eight nonlinear differential equations. The program is written in TSIM^, a 
FORTRAN based simulation language. It is used in chapter 6  of this thesis.

The main program is ROTOR.SIM. This defines the variables and routines used in the 
simulation. There are several include files within ROTOR. SIM. These include 
HOVMAINOLD.SIM, the rotor equations, HOVCOSAZ.SIM, the cosystem equations 
for parameter Aj:, ESTIMATE.SIM, a program used for parameter estimation and 
EXTERNALSMULTI.INC which is a collection of routines for parameter estimation. 
These routines are written in FORTRAN and are called from the TSIM operating 
environment from which simulations are run and results analysed.

Program listing for ROTOR.SIM

C This program simulates the main rotor of a helicopter with flap
C and lag dynamics. There are many simulations, the main one and
C cosystems for sensitivity coefficient calculation.
C A least squares method is then used to estimate this
C parameter using flight data. There are also routines to
calculate the
C sensitivity coefficients by a finite difference method for
checking
C the cosystem during its development and for comparisons of the
two
C methods.
C This version is modified to include the system equations in the
correct
C TSIM format.
C
C Written May 1990
C Updated July 1990
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C Updated September 1990
C

INCLUDE 'EXTERNALSVARS2.INC'
C
C
C Define states of system
C XI - Induced velocity/ Inflow (normlised)
C X2 - BetaO, Multiblade Flapping angle
C X3 - BetaOdot. Multiblade flapping velocity
C X4 - Vertical Velocity (of hub and aircraft)
C X5 - Rotorspeed
C X6 - Engine Torque
. C X7 - ZetaO, Multiblade Lag Angle
C X8 - ZetaOdot, Multiblade lag velocity
C

STATE X 3 ,X4,X 7 ,X8 
STATE X1,X2,X5,X6

STATE CCX1,CCX2,CCX3,CCX4,CCX5,CCX6,CCX7,CCX8 
STATE EEX1,EEX2,EEX3,EEX4 , EEX5,EEX6,EEX7,EEX8 
STATE DDX1,DDX2,DDX3,DDX4,DDX5,DDX6,DDX7,DDX8 

NODE THO
VARIABLE CD,UPUT,DUPUT,DCDDP, LIFTDG,LIFTER,KENG 
VARIABLE ANSI,ANS2,ANS3,ANS4,ANS5
VARIABLE Mil,PITTL,CT,FAILFG, HHH, INFLOW,FI,VELZ,FFKENG 
VARIABLE INERT, QLAG, FLAG, FDAMP, FDENGG, FEENGT, FINDD, FINDE, FINDF 
VARIABLE CORR1,CORR2,CORR3,CORR4,CORR5,CORR6,CORR7,CORR8 
VARIABLE

CCCOR1,CCCOR2,CCCOR3,CCCOR4,CCCOR5, CCCOR6,CCCOR7,CCCOR8 
VARIABLE

DDCORl,DDCOR2,DDCOR3,DDCOR4,DDCOR5,DDCOR6,DDCOR7,DDCOR8 
VARIABLE

EECOR1,EECOR2,EECOR3,EECOR4,EECOR5,EECOR6,EECOR7,EECOR8 
VARIABLE

FFCOR1,FFCOR2,FFCOR3,FFCOR4,FFCOR5, FFCOR6,FFCOR7,FFCOR8 
INTEGER COUNT

VARIABLE DL1, DL2,TQWGT,RPMWGT,THOTW,CR1,CR2,CR3,NUMSTP 
c REAL*4 DELAY1,DELAY2
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c COMMON /UGDCMN/ DELAY1(0:100,2),DELAY2(0:100,2)
C
C Define system parameters 
C
C -- helicopter configuration 
C

VARIABLE RESID,X7X8,ROTLAG,DISK, DET,FDT,DTRM,DETA, ROTDAT 
VARIABLE CONDAT, LAGDAT, TQDAT, NORDAT, RPMDAT, CONRAD, GRAV, HH 
VARIABLE A, C, NBLADE, OMEGA, R, RKMOM, SOL, LOCK, DELTA, C l , C2 
VARIABLE MBTA, MASS, ENGGAI, ENGTCO, RHO, IBTA0 , IR, TEMP4 , TEMP5 
VARIABLE CO , DEL0 , TAUAM, HOFF, KMBTA, AZETA, BZETA, CZETA, DAMPC 
VARIABLE SFP,CDF,LAG,OPTBEG,OPTEND,ENGFF 
VARIABLE TAUE1,TAU30,TAU31,TAU20 , TAU21,LAG0,DAT1,DAT2

C
VARIABLE F3,F4,F5,F6,F8

C
C External definitions.
C

EXTERNAL 1 4100
EXTERNAL 2 4200
EXTERNAL 3 4300
EXTERNAL 4 4400
EXTERNAL 6 4600
EXTERNAL 7 4700
EXTERNAL 8 4800
EXTERNAL 11 5100
EXTERNAL 12 5200
EXTERNAL 13 5300
EXTERNAL 15 5500
EXTERNAL 17 5700
EXTERNAL 18 5800
EXTERNAL 19 5900
EXTERNAL 20 6000
EXTERNAL 21 6100
EXTERNAL 22 6200
EXTERNAL 23 6300
EXTERNAL 24 6400

I

!
i  • 'I



Page 171

EXTERNAL 2 5 6500 
external 26 6600 

c EXTERNAL 27 67 00
C EXTERNAL 3 0 43 50
C

WAIT
C
C Initialisation
C
C

IF (INIT.EQ.l) THEN
LOCK = RHO*A*C*R**4/IBTAO 
SOL = NBLADE*C*R/(3.1415927*R**2) 

C HHOLFA = 0 . 0
C FCHHOLD = 0 . 0
C FDHHOLD = 0 . 0
C FDX1=X1
C FDX2=X2
C FDX3=X3
C FDX4=X4
C FDX5=X5
C FDX6=X6
C FDX7 =X7
C FDX8=X8
C FEX1=X1
C FEX2=X2
C FEX3=X3
C FEX4=X4
C FEX5=X5
C FEX6=X6
C FEX7 =X7
C FEX8=X8
C FFX1=X1
C FFX2=X2
C FFX3 =X3
C FFX4=X4
C FFX5=X5
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C FFX6=X6
C FFX7 =X7
C FFX8=X8

END IF
C OPTIONS TO INCLUDE FILES FOR DIFFERENT PARAMETER ESTIMATION
PROBLEMS

INCLUDE 'HOVMAINOLDMOM.SIM'
c INCLUDE 'HOVMAINOLDFDMOM.SIM’
c INCLUDE 'HOVMAINOLDENGGAI.S I M '
c INCLUDE 'HOVMAINOLDENGTCO.SIM'
c INCLUDE 'HOVCOSENGGAI.SIM'
c INCLUDE 'HOVCOSENGtco.SIM'

INCLUDE 'HOVCOSoldAZ.SIM'
INCLUDE 1HOVCOSoldcZ.SIM1

INCLUDE 'HOVCOSolddc.SIM
c INCLUDE 'FINDIFFSENSCOEFF.SIM'

INCLUDE 1ESTIMATE3.sim*
c SIMSTOP
C

INCLUDE 'EXTERNALSMULTI.INC'
C

END
C INCLUDE 'DELAY.ICL'

Program listing for HOVMAINOLD.SIM

C This simulation simulates the main rotor on a PUMA helicopter
and is
C part of a parameter estimation program ROTORPARA.SIM.
C
C Written May 1990
C
C Inflow equation - version using apparent additional air mass 
C

SX1 = ((3.0/16.0*A*C*NBLADE*(X5)/(3.1415927*R)
1 *(2.0/3.0*(X5)*R*(THO)
1 -(Xl)+(X4)-2.0/3.0*R*X3)
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1 -1.5/R*1.0/(1.0+A*SOL/(16.0*X1/X5/R))
1 * (XI)/RKMOM
1 *((XI)/RKMOM-(X4)
1 +2.0/3.0*R*X3))/0.637)/C0

C 
C
C Coning kinematics 
C

SX2 = X3
C
C Flapping equation (From SSH European Forum Paper)
C Modified to include contribution from lag
C

SX3
1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1

C
C Flapping 
C
C SX3
C 1
C 1
C 1
C 1
C 1
c 

c

C Lagging Equation (ATMcC - Same as Blackwell, Feik & Perrin)

= SX4 *MBTA/IBTAO 
+2.0*X5*X8*X2 
+X2 *X7 *SX5 
-X3 * (X5-X8)

*LOCK/8.0*1.0/(1.0+3.142*SOL/(4.0*X1/X5/R))
+X4/(6.0 *R)* (X5-X8)

*LOCK*l.0/(1.0+3.142 *SOL/(4.0 *X1/X5/R))
-XI/(6.0*R)* (X5-X8)

*LOCK*l.0/(1.0+3.142*SOL/(4.0*X1/X5/R))
+TH0*(X5-X8)**2

*LOCK/8.0*1.0/(1.0+3.142 *SOL/(4.0*X1/X5/R))
- X5**2*(1.0+HOFF*R*MBTA/IBTAO)*X2

Equation (ATMcC - Similar to Blackwell, Feik & Perrin)

= -X5**2.0*X2*(1.0+HOFF*R*MBTA/IBTAO)
+2.0*X5*X8*X2
+MBTA/IBTAO*SX4
-SX5*X7 *X2*HOFF*R*MBTA/IBTAO
-X8* *2.0 *X2
+ (AERODYNAMIC TERMS)
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S X 7  = X8

SX8 = 2.0*X2*X8*X3 
1 -2.0*X5*X3*X2
1 +SX5*(1.0+HOFF*R*MBTA/IBTAO)
1 -X5**2.0*X7*HOFF*R*MBTA/IBTAO
1 +1.0*( LOCK/{6.0*R)* (X5-X8)*(X1-X4)*TH0
1 + LOCK/8.0 * (X5-X8)*X3*TH0
1 - LOCK/(4.0*R**2)* (X1-X4)**2
1 - LOCK/(3.0*R)* (X1-X4)*X3
1 - LOCK/8.0*X3**2
1 + LOCK/(8.0*A)*DEL0*(X5-X8)**2 )

C
C Plus lag damper terms 
C

1 - AZETA*X8 - CZETA*X7 - SIGN(1.0,X 8 )*DAMPC
C
C Hub Force Equation {From SSH European Forum Paper)
C

SX4 = X5*X3*NBLADE*IBTAO*LOCK/(6.0*MASS*R)
1 +SX3 *NBLADE*MBTA*KMBTA/MASS
1 +X5*X1*NBLADE*IBTAO*LOCK/(4.0*MASS*R**2)
1 -X5*X4*NBLADE*IBTAO*LOCK/(4.0*MASS*R**2)
1 -X5 * *2 *TH0 *NBLADE*IBTAO *LOCK/(6.0*MASS*R)+9.81

C
C Plus fuselage, tailplane, wing etc drag
C

1 +0.5*RHO*(X1-X4 ) * * 2 *SFP*CDF/MASS
C
C Rotorspeed degree of freedom (ATMcC Same as Blackwell, Feik & 
Perrin)
C

SX5 = NBLADE/IR*{(IBTAO+HOFF*R*MBTA)
1 *{SX8 + 2.0*X3*X2*(X5-X8))
1 +HOFF*R*MBTA*X7
1 *(2.0*X5*X8 - X2*SX3 - X3**2 - X8**2))
1 - (4 .0/3 .0*RHO*3.1415927*R**3*SX1
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1 + 2.0*RHO*3.1415927*R**2
1 *1.0/(1.0+A*SOL/(16.0*X1/X5/R))
1 * (XI)/RKMOM
1 *((XI)/RKMOM
1 -X4+2.0/3.0*R*X3))
1 *((X1)-X4)
1 / (X5)/IR+X6/IR-TEMP4

C
C Plus profile part 
C

1 -RHO*3.1415927*R**4*X5**3*(DELO*SOL/8.0)/X5/IR
C
C BLADE ELEMENT ROTOR SPEED DYNAMICS 
c
C BLADE ELEMENT FUNCTION FOR BLADE TWIST
C
c SX5:=INT(DRAG,R)+INT(LIFT,R);
C LIFTDG=-(C*R*RHO*X5**2*(3.*A*R**3*X3**2+3.*A*R**3*X3*TH0
C . *X8-3.*A*R**3*X3*TH0*X5-8.*A*R**2*X4*X3-4.*A*R**2*X4
C . *TH0*X8+4.*A*R**2*X4*TH0*X5-4.*A*R**2*X3**2*HOFF+8.*
C . A*R**2*X3*Xl-4.*A*R**2*X3*HOFF*THO*X8+4.*A*R**2*X3*
C . HOFF*THO*X5+4.*A*R**2*Xl*TH0*X8-4.*A*R**2*X1*TH0*X5+
C . 6.*A*R*X4**2+12.*A*R*X4*X3*HOFF-12.*A*R*X4*Xl+6.*A*R*
C . X4*HOFF*THO*X8-6.*A*R*X4*HOFF*THO*X5-12.*A*R*X3*X1*
CC . HOFF+6.*A*R*Xl**2-6.*A*R*X1*HOFF*THO*X8+6.*A*R*X1*
CC . HOFF*THO*X5-12.*A*X4**2*HOFF+24.*A*X4*X1*H0FF-12.*A*
C . Xl**2*HOFF-3.*R**3*X8**2*DEL0+6.*R**3*X8*DEL0*X5-3.*
C . R**3*DEL0*X5**2))/(24.*(X8**2-2.*X8*X5+X5**2))
C LIFTER=-(A*C*(R/4.)*RHO*X5**2*(3.*(R/4.)**3*X3**2
C . +3 . * (R/4.)**3*X3*
C . TH0*X8-3.*(R/4.)**3*X3*TH0*X5-8.*(R/4.)**2*X4*X3-4.
C . * (R/4.)**2*X4*
C . TH0*X8+4.*(R/4.)**2*X4*TH0*X5-4.*(R/4.)**2*X3**2*HOFF+8.
C . * (R/4.)**2*
C . X3*X1-
4.*(R/4.)**2*X3*HOFF*THO*X8+4.*(R/4.)**2*X3*HOFF*THO*X5+
C . 4.*(R/4.)* *2 *X1*TH0 *X8-4.*(R/4.)**2*Xl*TH0*X5 + 6 .*(R / 4 .)*X4**2
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c +12.*(R/4.)*
c X4*X3 *HOFF-12.*(R/4.)*X4*Xl+6.*(R/4.)*X4*HOFF*THO*X8-
6 .* {R/4.)
C *X4*
C HOFF*THO*X5-12.*(R/4.)*X3*X1*HOFF+6.*(R/4.)*Xl**2-6.*(R/4
C *X1*HOFF
C *TH0*X8+6.*(R/4.)*X1*HOFF*THO*X5-12.*X4**2*HOFF+24.*X4*X1
C *HOFF-12.*Xl**2*HOFF))/(24.*(X8**2-2.*X8*X5+X5**2))
C
C SX5=(-(LIFTDG-LIFTER
c 1 ))*NBLADE/IR
c 1 +X6/IR-TEMP5
CC
c UPUT=(X1+R*X3-X4)/(X5-X8)/R
c CD =A*(THO-UPUT)*UPUT+DEL0
c FDAMP=-AZETA*X8-CZETA*X7-SIGN(1.0;X 8 )*DAMPC
c SX5=NBLADE/IR*((IBTAO+HOFF * R *MBT A )
c 1 * (SX8 + 2.0*X3 *X2 * (X5-X8))
c 1 +HOFF*R*MBTA*X7
c 1 *(2.0*X5*X8 - X2*SX3 - X3**2 - X8**2))
c aero drag 10/3/92 with twist
c 1 -(0.5*RHO*C*CD*(X5-X8)**2*{R**4/4.0-HOFF*R**3/3.0)
c

CC
c 1 -(0.5*RHO*C*(X5-X8)**2
c 1 * (A* (X1+R*X3-X4)/ (X5-X8)/R*((TH0-(X1+R*X3-X4)
c 1 / (X5-X8)/R)*R**4/4.0)
c 1 +DEL0*(R**4/4.0-H*R**3/3.0)
c 1 -A*HOFF*(X1+R*X3-X4)/ (X5-X8)/R
c 1 * ( (TH0-(X1+R*X3-X4)/ (X5-X8)/R)*R**3/3.0))
Cc
CC 1 -0.5*RHO*C*(A*(X5-X8)*(THO*(X1-X4)*R**2/2.0+TH0*X3*
cc 1 R**3/3.O+THOTW*(X1-X4)*R**3/3.0+TH0TW*X3*R**4/4.
cc 1 -A* ( (X1-X4)**2*R+X3*(X1-X4)*R**2+X3**2*R**3/3.0)
cc 1 +DEL0*(X5-X8)**2*R**3/3.0)*HOFF*R*NBLADE/IR
c

c
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c

C Engine as lag 
C

SX6 = ENGGAI*(X5-OMEGA) + ENGTCO*X6
C
C with anticipator term 
C
C 1 + ENGFF*SX5
C
C Height integrator 
C
C SH = - X4
C
C End of equations defining system

Program listing for HOVCOSAZ.SIM

C This program simulates the cosystem of the helicopter rotor and
is an
C INCLUDE file in the parameter estimation program ROTORPARA.SIM.
C The parameter is AZETA.
C
C Written May 1990
C Modified June 1990
C
C Inflow equation - version using apparent additional air mass 
C

CCTH0=TH0
C

SCCX1 = ( (3.0/16.0*A*C*NBLADE*(CCX5)/(3.1415927*R)
1 *(2.0/3.0*X5*R*CCTH0-(XI)+(X4)-2.0/3.0*R*X3)
1 +3.0/16.0*A*C*NBLADE*(X5)/(3.1415927*R)
1 *(2.0/3.0*CCX5*R*CCTH0-(CCX1)+ (CCX4)-2.0/3.0*R*CCX3)
1 +1.5/R*1.0/(1.0+A*SOL/(16.0*X1/X5/R))**2
1 *A*SOL*R/16.0*(X1*CCX5-X5*CCX1)/XI**2
1 * (XI)/RKMOM
1 * ( (XI)/RKMOM-(X4)
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1 +2.0/3.0*R*X3)
1 -1.5/R*1.0/(1.0+A*SOL/(16.0*X1/X5/R))
1 * (CCX1)/RKMOM
1 * ( (XI)/RKMOM-{X4)
1 +2.0/3.0*R*X3)
1 -1.5/R*1.0/(1.0+A*SOL/(16.0*X1/X5/R))
1 * (XI)/RKMOM
1 *((CCX1)/RKMOM-(CCX4)
1 +2.0/3.0*R*CCX3))/0.637)/C0

C
C Coning kinematics 
C

SCCX2 = CCX3
C
C Flapping equation (From SSH European Forum Paper)
C Modified to include contribution from lag
C

CCF3 =+2.0*(CCX5*X8*X2+X5*CCX8*X2+X5*X8*CCX2)
1 -CCX3 * (X5-X8)
1 *LOCK/8.0*1.0/(1.0+3.142*SOL/(4.0*X1/X5/R))
1 -X3*(CCX5-CCX8)
1 *LOCK/8.0*1.0/(1.0+3.142 *SOL/(4.0 *X1/X5/R))
1 -X3 * (X5-X8)
1 *LOCK/8.0*(-1.0)/(1.0+3.142*SOL/(4.0*X1/X5/R))**2
1 *3.142 *SOL*R/4.0*(CCX5*X1-X5*CCX1)/Xl**2
1 +CCX4/(6.0*R)* (X5-X8)
1 *LOCK*1.0/(1.0+3.142*SOL/(4.0*X1/X5/R))
1 +X4/(6.0*R)* (CCX5-CCX8)
1 *LOCK*1.0/(1.0+3.142*SOL/(4.0*X1/X5/R))
1 +X4/(6.0*R)* (X5-X8)
1 *LOCK*(-1.0)/(1.0+3.142*SOL/(4.0*X1/X5/R))**2
1 *3.142 *SOL*R/4. 0* (CCX5*X1-X5*CCX1)/Xl**2
1 -CCX1/(6.0*R)* (X5-X8)
1 *LOCK*l.0/(1.0+3.142 *SOL/(4.0*X1/X5/R))
1 -XI/(6.0*R)* (CCX5-CCX8)
1 *LOCK*l.0/(1.0+3.142*SOL/(4.0*X1/X5/R))
1 -XI/(6.0*R)* (X5-X8)
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1 *LOCK*(-1.0)/(1.0+3.142*SOL/(4.0*X1/X5/R)) **2
1 *3.142*SOL*R/4.0*(CCX5*X1-X5*CCX1)/Xl**2
1 +CCTH0*2.0*(X5-X8)*{CCX5-CCX8)
1 *LOCK/8.0*1.0/(1.0+3.142 *SOL/(4.0*X1/X5/R))
1 +CCTH0*(X5-X8)**2
1 *LOCK/8.0*(-1.0)/(1.0+3.142*SOL/(4.0*X1/X5/R))**2
1 *3 .142*SOL*R/4.0*(CCX5*X1-X5*CCX1)/XI**2
1 - 2 *X5*CCX5*(1.0+HOFF*R*MBTA/IBTAO)*X2
1 - X5**2*(1.0+HOFF*R*MBTA/IBTA0)*CCX2

C
SCCX7 = CCX8 
CCF8 = 2.0*CCX2*X8*X3 

1 +2.0*X2*CCX8*X3
1 +2.0*X2*X8*CCX3
1 -2.0*CCX5*X3 *X2
1 -2.0*X5*CCX3*X2
1 -2.0*X5*X3*CCX2
1 -2.0*X5*CCX5*X7*HOFF*R*MBTA/IBTAO
1 -X5 **2 *CCX7 *HOFF*R*MBTA/IBTAO
1 +1.0*( LOCK/(6.0*R)* ( (CCX5-CCX8)* (X1-X4)+ (X5-X8)*
1 (CCX1-CCX4))*CCTHO
1 + LOCK/8.0*CCTH0*((CCX5-CCX8)*X3 +(X5-X8)*CCX3)
1 - LOCK/(4.0*R**2)*2.0*(X1-X4)*(CCX1-CCX4)
1 - LOCK/(3.0*R)* (CCX1-CCX4)*X3
1 - LOCK/(3.0*R)* (X1-X4)*CCX3
1 - LOCK/8.0*X3*2*CCX3
1 + LOCK/(8.0*A)*DEL0*(X5-X8)*2.0*(CCX5-CCX8) )

C
C Plus lag damper terms 
C

1 - AZETA*CCX8 - CZETA*CCX7
C
C Plus cosystem input
C

1 - X8
C
C Hub Force Equation (From SSH European Forum Paper)
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CCF4 = CCX5*X3*NBLADE*IBTAO*LOCK/(6.0*MASS*R)
1 +X5*CCX3 *NBLADE*IBTAO *LOCK/(6.0*MASS*R)
1 +CCX5 *X1*NBLADE*IBTAO *LOCK/(4.0*MASS*R**2)
1 +X5*CCX1*NBLADE*IBTAO*LOCK/(4.0*MASS*R**2)
1 -CCX5*X4*NBLADE*IBTAO*LOCK/(4.0*MASS*R**2)
1 -X5*CCX4*NBLADE*IBTAO*LOCK/{4.0*MASS*R**2)
1 -2*CCX5*X5*CCTHO*NBLADE*IBTAO*LOCK/{6.0*MASS*R)

C
C Plus fuselage, tailplane, wing etc drag 
C

1 + 0 .5*RH0*(X1-X4)*2.0*(CCX1-CCX4)*SFP*CDF/MASS
C
C Rotorspeed degree of freedom (ATMcC Same as Blackwell, Feik & 
Perrin)
C
C

CCF5 = NBLADE/IR*((IBTAO+HOFF*R*MBTA)
1 *( 2.0*CCX3*X2*(X5-X8)
1 + 2.0*X3 *CCX2 * (X5-X8)
1 + 2.0*X3*X2*(CCX5-CCX8))
1 +HOFF*R*MBTA*CCX7
1 *(2.0*X5*X8-X3**2-X8**2)
1 +HOFF*R*MBTA*X7
1 * (2 . 0 * (CCX5*X8+X5*CCX8)
1 - X3*2.0*CCX3 - X8*2.0*CCX8))
1 -(
1 +2.0*RHO*3.1415927*R**2
1 *(1.0)/(1.0+A*SOL/(16.0*X1/X5/R))**2
1 *A*SOL*R/16.0*(CCX5*X1-X5*CCX1)/Xl**2
1 * (XI)/RKMOM
1 *((XI)/RKMOM
1 -X4+2.0/3.0*R*X3))
1 *((XI)-X4)/X5/IR
1 -(2.0*RHO*3.1415927*R**2
1 *1.0/(1.0+A*SOL/(16.0*X1/X5/R))
1 * (CCX1)/RKMOM
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1 * ( ( X I ) / R K MO M

1 -X4 + 2 .0/3.0 *R*X3))
1 *((X1)-X4)
1 / (X5)/IR
1 -(2.0*RHO*3.1415927*R**2.0
1 *1.0/(1.0+A*SOL/(16.0*X1/X5/R))
1 *X1/RKMOM
1 *((CCX1)/RKMOM
1 -CCX4+2.0/3.0*R*CCX3))
1 *((X1)-X4)
1 / (X5)/IR
1 -(
1 +2.0*RHO*3.1415927*R**2.0
1 *1.0/(1.0+A*SOL/(16.0*X1/X5/R))
1 * (XI)/RKMOM
1 * ( (XI)/RKMOM
1 -X4+2.0/3.0*R*X3))
1 * ( (CCX1)-CCX4)
1 / (X5)/IR
1 -<4.0/3.0*RHO*3.1415927*R**3.0*SX1
1 + 2 .0*RHO*3.1415927*R**2.0
1 *1.0/(1.0+A*SOL/(16.0*X1/X5/R))
1 * (XI)/RKMOM
1 * ( (XI)/RKMOM
1 -X4+2.0/3.0*R*X3))
1 * { (XI)-X4)
1 /((-1.0)*X5**2)*CCX5/IR
1 +CCX6/IR

C
C Plus profile part 
C

1 -RHO*3.142*(R**4.0)*3.0*(X5**2)*CCX5*(DELO*SOL/8.0/X5/IR)
1 +RHO*3.142*R**4.0*X5**3.0*DEL0*SOL*CCX5/8.0/IR/(X5**2.0)

C
C
C Engine as lag
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c

CCF6 = ENGGAI*(CCX5) + ENGTC0*CCX6
C

SCCTHO = 0
C

X7X8=X7 *X8
C

DETA=X2*X7 *NBLADE/IR*HOFF*R*MBTA*X7*X2 +1-MBTA/IBTAO *NBLADE 
1 *MBTA*KMBTA/MASS

C
CCDETA=(CCX2 *X7 +X2 *CCX7)*NBLADE/IR*HOFF*R*MBTA*(CCX7 *X2+X7 

1 *CCX2)
C

SCCX3 =-1.0*CCDETA/(DETA**2)*{F3-MBTA/IBTAO *F4+X2 *X7 *F5)
1 +1/DETA*(CCF3-MBTA/IBTAO *CCF4+CCX2 *X7 *F5+X2 *CCX7
1 *F5+X2*X7*CCF5)

C
SCCX4=-1.0*CCDETA/(DETA**2)*(-NBLADE*MBTA*KMBTA/MASS*F3 

1 +(1+X2*X7*NBLADE/IR*HOFF*R*MBTA*X7*X2)*F4
1 +(-X7 *X2 *NBLADE *MBTA*KMBTA/MAS S )*F5)

C
1 +1/DETA*(-NBLADE*MBTA*KMBTA/MASS*CCF3
1 +((CCX2*X7 +X2*CCX7)*NBLADE/IR*HOFF*R*MBTA*
1 (CCX2*X7+X2*CCX7))*F4
1 +(1+X2*X7*NBLADE/IR*HOFF*R*MBTA*X7*X2)*CCF4
1 +(-(CCX2*X7+X2*CCX7)*NBLADE*MBTA*KMBTA/MASS)*F5
1 +( - X I *X2*NBLADE*MBTA*KMBTA/MASS)*CCF5)

C
SCCX5=-1.0*CCDETA/(DETA**2)*(-NBLADE/IR*HOFF*R*MBTA*X7*X2*F3 

1 + (MBTA/IBTAO*NBLADE/IR*HOFF*R*MBTA*X7*X2)*F4
1 +(1-MBTA/IBTAO *NBLADE*MBTA*KMBTA/MASS)*F5)
1 + 1/DETA*(-NBLADE/IR*HOFF*R*MBTA*(CCX7*X2*F3
1 +X7 *CCX2 *F3+X7 *X2 *CCF3)
1 +MBTA/IBTAO*NBLADE/IR*HOFF*R*MBTA*(CCX7*X2*F4
1 +X7*CCX2*F4+X7*X2*CCF4)
1 +(1-MBTA/IBTAO *NBLADE*MBTA*KMBTA/MASS)*CCF5)

C
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SCCX6 = - 1 .0*CCDETA/(DETA**2)*(ENGGAI* 0.1*NBLADE/IR*HOFF*R 
1 *MBTA*X7*X2*F3
1 +(-ENGGAI*0.1*MBTA/IBTAO*NBLADE/IR*HOFF*R*MBTA*X7*X2)*F4
1 +(ENGGAI*0.1*(1-MBTA/IBTAO*NBLADE*MBTA*KMBTA/MASS))*F5
1 + {X2 *X7 * NBLADE / IR*H0FF*R*MBTA*X7 *X2 +1 -MBTA/ IBTAO * NBLADE
1 *MBTA*KMBTA/MASS)*F6)
1 +1/DETA*(ENGGAI*0.1*NBLADE/IR*HOFF*R*MBTA*(CCX7*X2*F3
1 +X7 *CCX2 *F3+X7 *X2 *CCF3)
1 -ENGGAI *0.1*MBTA/1BTAO *NBLADE/1R * HOFF *R *MBTA* (CCX7*X2*F4
1 +X7*CCX2*F4+X7*X2*CCF4)
1 + (ENGGAI *0.1*(1-MBTA/IBTAO*NBLADE*MBTA*KMBTA/MASS) )*CCF5
1 + ( (CCX2 *X7 +X2 *CCX7)*NBLADE/IR*HOFF*R*MBTA*(CCX2*X7+X2
1 *CCX7)+1-MBTA/IBTAO *NBLADE
1 *MBTA*KMBTA/MASS)*CCF6)

C
SCCX8=-1.0*CCDETA/(DETA**2)*((l+HOFF*R*MBTA/IBTAO)*NBLADE 

1 /IR*H0FF*R*MBTA*X7 *X2 *F3
1 +(-(1+H0FF*R*MBTA/IBTAO)*MBTA/IBTAO*NBLADE/IR*HOFF
1 *R*MBTA*X7*X2)*F4
1 + ( (1+H0FF*R*MBTA/IBTAO)*(1-

MBTA/IBTAO *NBLADE*MBTA*KMBTA 
1 /MASS))*F5
1 + (X2*X7*NBLADE/IR*HOFF*R*MBTA*X7*X2+l-

MBTA/IBTAO *NBLADE
1 *MBTA*KMBTA/MASS)*F8)
1 +1/DETA*((1+H0FF*R*MBTA/IBTAO)*NBLADE/IR*HOFF*R*MBTA*
1 (CCX7 *X2 *F3+X7 *CCX2 *F3+X7 *X2 *CCF3)
1 -(1+H0FF*R*MBTA/IBTAO)*MBTA/IBTAO *NBLADE/IR*HOFF
1 *R*MBTA*(CCX7 *X2 *F4+X7 *CCX2 *F4+X7 *X2 *CCF4)
1 + ( (1+H0FF*R*MBTA/IBTAO)*(1-

MBTA/IBTAO *NBLADE*MBTA*KMBTA 
1 /MASS))*CCF5
1

+ ((CCX2 *X7 +X2 *CCX7)*NBLADE/IR*HOFF*R*MBTA*(CCX7 *X2+CCX2 
1 *X7))*F8
1 + (X2*X7*NBLADE/IR*HOFF*R*MBTA*X7*X2+l-

MBTA/IBTAO *NBLADE
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1 *MBTA*KMBTA/MASS)*CCF8)
C
C
C End of equations defining system

Program listing for ESTIMATE3.SIM

C This file calculates sums or errors and sensitivity
coefficients for
C the optimisation routine in EXTERNALSCOMULTI.INC.
C Initialise variables

IF (INIT.NE.O) THEN 
MERR2=0 
XE=0 
UU11=0 
UU12=0 
UU22=0 
UU23=0 
UU33=0 
UU13 =0 
B1 = 0 
B2 = 0 
B3 = 0 
XSQ=0 

END IF
IF ((ICHANG.E Q .1).AND.(RTIME.G T .0.0)) THEN 

U1=CCX7 
U2=DDX7 
U3=EEX7
UU11=UU11+U1*U1 
UU12=UU12+U1*U2 
UU2 2 =UU2 2 +U2 *U2 
UU23=UU23+U2*U3 
UU33=UU33+U3 *U3 
UU13=UU13+U1*U3 
ERRR=LAGDAT-X7
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RESID=ERRR 
B1=B1+ERRR*U1 
B2=B2+ERRR*U2 
B3 =B3+ERRR*U3 
MERR2=MERR2+ERRR*ERRR

XXE=XE
XXSQ=XSQ

XMERR2 =MERR2 
END IF

Program listing for EXTERNALSMULTI.INC

C INCLUDE file for helicopter optimisation example. This file is
included
C in HELICOPTER.SIM.
C It consists of several EXTERNALS,
C 1) Initialise ML variables
C 2) Calculate ML weights
C 3) Does parameter estimation for 2 paramet
C 4) Discretise time delay parameter
C 5) Holds graphic screen until key is press
disk
C f ile.
C 6, 7) AZETA=estmal
C of sensitivity coefficients.
C 8) Finite difference variable assignment.
C 9,10) tbias=estma5
C 11 ,12) DAMPC=estma3
C 13 ) One parameter estimator
C 15 ) Three parameter estimator
C 17 ) Five parameter estimator
C 18 ,19) ENGGAI=estmal
C 20 ,21) CZETA=estma2
C 22 ,23) engtco=estma2
C 24 ) Four parameter estimator
C 25 ) Close file 27
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C 26) Second stage of Box-Kanemasu algorithm
C
C The Gauss-Newton method is used for the parameter estimation
searches
C
C
C Initialise ML variables
4100 IF (TOT.EQ.O) THEN

TOT=l.0 
WTOT1=1.0 
WTOT2=l.0 
WTOT3=1.0 
WTOT4=l.0 

END IF 
SIMSTOP

C
C Calculate ML variables
4200 if (tot.ne.0.0) then 

Wl=WTOTl/TOT 
W2=WTOT2/TOT 
W3=WTOT3/TOT 
W4=WTOT4/TOT 

else 
wl = l 
w2 = l 
w3 = l 
w4 = l 

endif 
SIMSTOP

C
4250 FORMAT (G20.10)

4280 FORMAT (15)
C
C Get data from disk
C
C Parameter estimation for three parameters
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4300 DTRM=UU11*UU22-UU12*UU12 
IF (DTRM.EQ.O) THEN 

WRITE(*,4308)
GOTO 43 09 

END IF
4308 FORMAT(' SENSITIVITY COEFFICIENTS ARE ZERO') 

DQ1=1/DTRM*{(UU22)*B1+(-UU12)*B2)
DQ2=1/DTRM*((-UU12)*B1+(UU11)*B2)
WRITE(5,4322)UU11,UU22,UU12,DQ1,DQ2 

4322 FORMAT (1UU11,UU22,UU12,DQ1,DQ2=',5E15.5)
CR1=(UU22/DTRM*MERR2/ (numstp-1))
CR2=(UU11/DTRM*MERR2/ (NUMSTP-1))
ESTMA1=ESTMA1+DQ1 
ESTMA2=ESTMA2+DQ2

4309 WRITE(5,4302) MERR2
43 02 FORMAT(' SUM OF SQUARE ERRORS IS ',G2 0.10)

WRITE(5,43 03) ESTMA1,CR1 
WRI T E (5,43 04) ESTMA2,CR2

4303 FORMAT(’ NEW ESTIMATE OF AZETA IS \F20.10,
1 • WITH ERROR OF ',E15.5)

4304 FORMAT(' NEW ESTIMATE OF CZETA IS ',F20.10,
1 1 WITH ERROR OF \E15.5)
S0=MERR2
GK=DQ1*B1+DQ2*B2 
IF (GK.LT.0) THEN 

WRITE(*,4388)
4388 FORMAT(' GK IS LESS THAN ZERO')

STOP
END IF 
ALPHA=1.0 
AA=1.1 
SIMSTOP

C
43 50 CONTINUE 

SIMSTOP
C
C DISCRETISE PARAMETER DL1 - TIME DELAY
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4400 DL1=7.8125E-3*INT{(DLl+3.90625E-3)/ 7 .8125E-3)
IF (DL1.LT.0.0) DL1=0.0 
SIMSTOP

C
C Hold graphics screen until key is pressed
4500 WRITE(5,4552)
4552 FORMAT(' CLEAR SCREEN, PRESS VDU KEY THEN RETURN.')

READ{*,4553)
4553 FORMAT(A5)

SIMSTOP
C
C Azeta=estmal
4600 ESTMA1=AZETA

SIMSTOP
C
47 00 AZETA=ESTMA1 

SIMSTOP
C
C calculations for finite difference calculation of sensitivity
coefficients
4800 FAAZET=AZETA+FINDA 

FBBIAS=BIAS+FINDB 
FCCZET=CZETA+FINDC 
FDENGG=ENGGAI + FINDD 
FEENGT=ENGTCO+FINDE 
FFKENG=KENG+FINDF 
SIMSTOP

C
4900 ESTMA5=TBIAS

SIMSTOP
C
5000 TBIAS=ESTMA5 

SIMSTOP
C
5100 ESTMA3 =DAMPC 

SIMSTOP
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52 00 DAMPC=ESTMA3
SIMSTOP

C
C One parameter parameter estimation
5300 HH=1.0

IF (XSQ.EQ.O) THEN
IF (UU11.EQ.0) THEN 

WRITE(*,5308)
GOTO 53 09 

END IF 
XSQ=UU11 
XE=B1

END IF
5308 FORMAT{' SENSITIVITY COEFFICIENTS ARE ZERO') 

IF (XSQ.NE.0) THEN
WRITE(*,5301)
B1=XE
DQ1=XE/XSQ 
ESTMA1=ESTMA1+DQ1 
CR1=1.0/XSQ*MERR2/NUMSTP 

END IF
5301 FORMAT(' TESTING...’)
5309 WRITE(5,5302) MERR2
53 02 FORMAT(' SUM OF SQUARE ERRORS IS \ G 2  0.10)

WRITE(5,53 03) ESTMA1 
WRITE(5,53 03) ESTMA1,CR1 

53 03 FORMAT (' NEW ESTIMATE OF AZETA IS \ F 2  0.10,
1 ' WITH ERROR OF \E15.5)
S0=MERR2 
GK=DQ1*B1 
IF (GK.LT.0) THEN 

WRITE(*,5388)
5388 FORMAT(' GK IS LESS THAN ZERO')

STOP
END IF 
ALPHA=1.0 
A A=1.1
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SIMSTOP
C
C Three parameter estimator
5500 DTRM=UU11*(UU22*UU33-UU32*UU23)-UU12*(UU21*UU33-UU23*UU31)+

* UU13*(UU21*UU32-UU22*UU31)
IF (DTRM.EQ.O) THEN

WRITE(*,5508)
GOTO 5509 

END IF
5508 FORMAT(' SENSITIVITY COEFFICIENTS ARE ZERO')

DQ1 = 1/DTRM*((UU22 *UU33-UU23 *UU32) *B1 +(UU23*UU31-UU21*UU33)*B2 +
* (UU21*UU32-UU22*UU31)*B3)
DQ2=1/DTRM*((UU13*UU32-UU12*UU33)*B1+(UU11*UU33-UU13*UU31)*B2+

* (UU31*UU12-UU11*UU32)*B3)
DQ3=1/DTRM*((UU12*UU23-UU13*UU22)*B1 +(UU13*UU21- 

UU11*UU23)*B2+
* (UU11*UU22-UU12*UU21)*B3)
CR1=(UU22 *UU33-UU23 *UU32)/DTRM*MERR2/ (NUMSTP-1)
CR2=(UU11*UU33-UU13 *UU31)/DTRM*MERR2/ (NUMSTP-1)
CR3=(UU11*UU22-UU12 *UU21)/DTRM*MERR2/ (NUMSTP-1)
ESTMA1=ESTMA1+DQ1
ESTMA2 =ESTMA2+DQ2
ESTMA3=ESTMA3+DQ3

5509 WRITE(5,5502) MERR2
5502 FORMAT(' SUM OF SQUARE ERRORS IS \ G 2  0.10)

WRITE(5,5503) ESTMA1,CR1
WRITE(5,5504) ESTMA2,CR2 
WRITE(5,5505) ESTMA3,CR3

5503 FORMAT(' NEW ESTIMATE OF ENGGAI IS ',F20.10, ' S .D . = ',E 1 5 .5)
5504 FORMAT(1 NEW ESTIMATE OF ENGTCO IS \ F 2 0 . 1 0 , 1 S .D .=',E 1 5 .5)
5505 FORMAT(' NEW ESTIMATE OF DAMPC IS \F20.10,

1 ' S.D.=',E15.5)
c
c Additional code for Box-Kanemasu search
C

S0=MERR2
GK1=UU11*DQ1+UU12 *DQ2+UU13 *DQ3



GK2 =UU21*DQ1+UU22 *DQ2+UU23 *DQ3 
GK3 =UU3 1 * DQ1+UU3 2 * DQ2 +UU3 3 * DQ3 

GK=DQ1*GK1+DQ2*GK2 +DQ3 *GK3 
IF (GK.LT.O) THEN

WRITE(*,5588)
5588 FORMAT(' GK IS LESS THAN ZERO') 

SIMSTOP
END IF 
ALPHA=1.0 
AA=1.1 
SIMSTOP

C
C Five parameter estimator
5700 A A A (1,1)=UU11 

A A A (1,2)=UU12 
A A A (1,3)=UU13 
A A A {1,4)=UU14 
A A A (1,5)=UU15 
A A A (2,1)=UU12 
A A A (2,2)=UU22 
A A A (2,3)=UU23 
A A A (2,4)=UU24 
A A A (2,5)=UU2 5 
A A A (3,1)=UU13 
AAA(3,2)=UU23 
A A A (3,3)=UU33 
A A A (3,4)=UU34 
A A A (3,5)=UU35 
A A A (4,1)=UU14 
A A A (4,2)=UU24 
A A A (4,3)=UU34 
AAA (4,4)=UU44 
A A A (4,5)=UU45 
AAA{5,1)=UU15 
AAA (5, 2 ) =UU2 5 
A A A (5,3)=UU35 
A A A (5,4)=UU45
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A A A (5,5)=UU55 
C MATRIX INVERSION ROUTINE

N=5
DO 5720 1=1,N 

DO 5710 J=1,N 
5710 BBB(I ,J )=0.0
5720 B B B (I,I)=1. 0 

DO 5760 K=1,N 
DO 5740 1=1,N 
IF(I.NE.K) THEN

Z=AAA(I ,K)/AAA(K,K)
DO 5730 J=1,N 
A A A (I ,J )=AAA(I,J )-AAA(K,J)*Z 
BBB(I,J)=BBB(I,J)-BBB(K,J)*Z 

573 0 CONTINUE
END IF 

5740 CONTINUE
Z =A A A (K ,K )

DO 5750 J=1,N
A A A (K ,J )=A A A (K ,J )/Z 
BBB(K,J)=BBB(K,J)/Z 

57 50 CONTINUE
5760 CONTINUE

C
DQ1=BBB(1,1)*B1+BBB(1,2)*B2+BBB(1,3)*B3+BBB(1,4)*B4 

1 +BBB(1,5)*B5 
DQ2=BBB(2,1)*B1+BBB(2,2)*B2+BBB{2,3)*B3+BBB(2,4)*B4 

1 +BBB(2,5)*B5 
DQ3=BBB(3,1)*B1+BBB(3,2)*B2+BBB(3,3)*B3+BBB(3,4)*B4 

1 +BBB(3,5)*B5 
DQ4=BBB(4,1)*B1+BBB(4,2)*B2+BBB(4,3)*B3+BBB(4,4)*B4 

1 +BBB(4,5)*B5 
DQ5=BBB(5,1)*B1+BBB(5,2)*B2+BBB(5,3)*B3+BBB(5,4)*B4 

1 +BBB(5,5)*B5
C

ESTMA1=ESTMA1+DQ1
ESTMA2=ESTMA2+DQ2



ESTMA3 =ESTMA3+DQ3 
ESTMA4=ESTMA4+DQ4 
ESTMA5=ESTMA5+DQ5

5709 WRITE(5,5702) MERR2
5702 FORMAT(' SUM OF SQUARE ERRORS IS ,G2 0 .10)

WRITE(5, 5703 ) ESTMA1
WRITE(5,5704) ESTMA2
WRITE(5, 5705) ESTMA3
WRITE(5, 5706) ESTMA4
WRITE(5,5707) ESTMA5

5703 FORMAT(' NEW ESTIMATE OF AZETA IS ' , F20 .10)
5704 FORMAT(' NEW ESTIMATE OF CZETA IS ' , F20 .10)
5705 FORMAT(' NEW ESTIMATE OF BIAS IS , F2 0 .10)
5706 FORMAT(1 NEW ESTIMATE OF RBIAS IS ' , F2 0 . 10)
5707 FORMAT(' NEW ESTIMATE OF TBIAS IS \  F2 0 .10)

C
S0=MERR2
GK=DQ1*B1+DQ2 *B2+DQ3 *B3+DQ4 *B4+DQ5*B5 
IF (GK.LT.O.O) THEN 

WRITE(*, 5788)
5788 FORMAT (' GK IS LESS THAN ZERO')

STOP
END IF 
ALPHA=1.0 
AA=1.1 
SIMSTOP

C
C Clse data files
6500 CLOSE(27)

CLOSE(28)
CLOSE(29)
SIMSTOP

C
5800 ESTMA1=AZETA 

SIMSTOP
C
5900 AZETA=ESTMA1



c

6000

C
6100

C
6200

C
6300

C
C
6400

C

6410

SIMSTOP

ESTMA3 =DAMPC 
SIMSTOP

DAMPC=ESTMA3
SIMSTOP

ESTMA2 =CZETA 
SIMSTOP

CZETA=ESTMA2
SIMSTOP

Four parameter estimator 
HH=1
AAA (1,1) =UU11
A A A (1,2)=UU12
AAA(1,3)=UU13
A A A (1,4)=UU14
A A A (2,1)=UU12
A A A (2,2)=UU22
A A A (2,3)=UU23
A A A (2,4)=UU24
A A A (3,1)=UU13
AAA (3 , 2 ) =UU23
A A A (3,3)=UU33
A A A (3,4)=UU34
A A A (4,1)=UU14
A A A (4,2)=UU24
A A A (4,3)=UU34
A A A (4,4)=UU44
MATRIX INVERSION ROUTINE
N=4
DO 6420 1=1,N 

DO 6410 J=1,N 
BBB(I,J)=0.0
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6420 B B B (I,I)=1.0 
DO 6460 K=1,N 

DO 6440 1=1,N 
IF(I.NE.K) THEN

Z=AAA{I,K)/AAA(K,K)
DO 6430 J=1,N 
A A A (I,J )=AAA(I,J )-AAA(K,J)*Z 
BBB(I, J)=BBB(I,J)-BBB(K,J)*Z 

643 0 CONTINUE
END IF 

6440 CONTINUE
Z=AAA(K, K)

DO 6450 J=1,N
AAA (K, J) =AAA (K, J ) / Z 
B BB(K ,J )=BBB(K ,J )/Z 

6450 CONTINUE
6460 CONTINUE

C
DQ1=BBB(1,1)*B1+BBB(1,2)*B2+BBB(1,3)*B3+BBB(1,4)*B4 
DQ2=BBB(2,1)*B1+BBB(2,2)*B2+BBB(2,3)*B3+BBB(2,4)*B4 
DQ3=BBB(3,1)*B1+BBB(3,2)*B2+BBB(3 , 3)*B3+BBB(3,4)*B4 
DQ4=BBB(4,1)*B1+BBB(4,2)*B2+BBB(4,3)*B3+BBB(4,4)*B4

C
ESTMA1=ESTMA1+DQ1 
ESTMA2= ESTMA2+DQ2 
ESTMA3=ESTMA3+DQ3 
ESTMA4=ESTMA4+DQ4 

6409 WRITE(5,6402) MERR2
6402 FORMAT(' SUM OF SQUARE ERRORS IS ',G20.10)

WRITE(5,6403) ESTMA1
WRITE(5,6404) ESTMA2 
WRITE(5,6405) ESTMA3 
WRITE(5,6406) ESTMA4

6403 FORMAT(' FIRST ESTIMATE OF ENGGAI IS ',F2 0.10)
6404 FORMAT(' FIRST ESTIMATE OF ENGTCO IS ',F20.10)
6405 FORMAT(' FIRST ESTIMATE OF ENGFF IS \F20.10)
640 6 FORMAT{' FIRST ESTIMATE OF DELAY IS ',F2 0.10)
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S0=MERR2
GK1=UU11*DQ1+UU12*DQ2+UU13*DQ3+UU14*DQ4 
GK2=UU12 *DQ1+UU22 *DQ2+UU23 *DQ3+UU24*DQ4 
GK3=UU13*DQ1+UU23*DQ2+UU33*DQ3+UU34*DQ4 
GK4 =UU14 * DQ1+UU2 4 * DQ2 +UU3 4 * DQ3 +UU4 4 * DQ4 

GK=DQ1*GK1+DQ2*GK2 + DQ3 *GK3 + DQ4 *GK4 
IF (GK.LT.O) THEN 

WRITE(*,6488)
6488 FORMAT(' GK IS LESS THAN ZERO')

END IF 
ALPHA=1.0 
AA=1.1 
SIMSTOP

C
C Second stage of Box-Kanemasu search algorithm
6600 Sl=MERR2

ESTMA1=ESTMA1-HH*DQ1 
ESTMA2=ESTMA2-HH * DQ2 
ESTMA3=ESTMA3-HH*DQ3 
ESTMA4=ESTMA4-HH*DQ4 
ESTMA5=ESTMA5-HH*DQ5 
IF (S1.GT.S0) THEN 

HH=0.5*HH 
ALPHA=HH
WRITE(*,6668) HH 
IF (HH.LT.0.01) THEN

WRITE (*,6666) HH,S0,S1,GK 
SIMSTOP

END IF 
GOTO 6667

END IF
6666 FORMAT(' ALPHA IS LESS THAN 0.01, ALPHA=',F20.10, ' S 0 = ‘, 

1 F20.10,' Sl=',F20.10, 1 G K = 1,F2 0.10)
6668 FORMAT(' DO AN @LOOP2, ERROR INCREASED, HH=',F20.10) 

HH=ALPHA*AA 
S2=S0-ALPHA*GK*(2-1/A)
IF (S1.GE.S2) THEN
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HH=ALPHA* *2 *GK/(S1-S0 + 2 .0 *ALPHA*GK)
END IF
CR1=(UU22 *UU33-UU23 *UU32)/DTRM*MERR2/ (NUMSTP-1)
CR2=(UU11*UU33-UU13*UU31)/DTRM*MERR2/(NUMSTP-1)
CR3=(UU11*UU22-UU12*UU21)/DTRM*MERR2/(NUMSTP-1) 
ESTMA1=ESTMA1+HH*DQ1 
ESTMA2=ESTMA2+HH * DQ2 
ESTMA3=ESTMA3+HH*DQ3 

6609 WRITE(5f6602) MERR2
6602 FORMAT(' SUM OF SQUARE ERRORS IS \G20.10)

WRITE(5,6603) ESTMA1,CR1
WRITE(5,6604) ESTMA2,CR2 
WRITE(5,6605) ESTMA3,CR3

6603 FORMAT(' NEW ESTIMATE OF ENGGAI IS ',F20.10,' S.D.=',E 1 5 .5)
6604 FORMAT(' NEW ESTIMATE OF ENGTCO IS 'fF20.10)
6605 FORMAT(' NEW ESTIMATE OF ENGINE FEEDFORWARD IS ',F20.10,

1 ' S.D.=',E15.5)
6667 CONTINUE 

SIMSTOP
C
6700 HH=1.0

SIMSTOP

Variables

xl Induced velocity/ Inflow (normlised)
x2 BetaO, Multiblade Flapping angle
x3 BetaOdot. Multiblade flapping velocity
x4 Vertical Velocity (of hub and aircraft)
x5 Rotorspeed
x6 Engine Torque
x7 ZetaO, Multiblade Lag Angle
X8 ZetaOdot, Multiblade lag velocity
INIT system flag indicating first pass of simulation
LOCK Lock number
RHO air density
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A lift curve slope
C rotor blade chord
R rotor blade radius
IBTAO flapping moment of inertia of blade
NBLADE number of rotor blades
MBTA blade lag moment of inertia
MASS aircraft mass
SOL main rotor solidity
SX1 signifies time derivative of XI (as with all states)
THO main rotor collective pitch angle
RKMOM momentum correction factor used in inflow
CO apparent additional air mass for inflow
HOFF flapping hinge offset
DELO blade profile drag coefficient
AZETA lag damper damping coefficient
CZETA lag damper spring constant
DAMPC lag damper friction coefficient
KMBTA inertia correction factor
SFP effective aircraft frontal area in heave
CDF aircraft drag coefficient
IR main rotor moment of inertia
TEMP4 trim variable for rotor speed dynamics
UPUT inflow velocity at blade element
CD drag factor for blade element
FDAMP lag force due to lag damper
ENGGAI gain of rotor speed controller
ENGTCO time constant of rotor speed controller and engine
H aircraft altitude
CCX1 derivative of XI with respect to parameter AZETA (same for
all states)
MERR2 sum of squres of the error between model output and flight
data
XE sum of product of senstivity coefficient and output error
XSQ sum of square of sensitivity coefficient
Ux sensitivity coefficient for parameter x
UUxy sum of products of sensitivity coefficients x and y
Bx product of sensitivity coefficient x and output error
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ICHANG system flag indicating if first pass this integration 
interval
RTIME time in simulation

States are defined as dynamic variables in the system which are integrated. Nodes are 
defined as input/output variables or summing junction variables. Equations are stated 
S<variable>=<expression>.
If the variable is a state this is a differential equation and the S represents the 
differential operator. If the variable is a node, it is evaluated as an algebraic 
expression.
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CCX7 sensitivity coefficient for parameter AZETA and output lag 
angle
ERRR error between flight data and model output
WT0T1 etc totals used in estiamtion process 
Wx maximum Likelihood paraemter estimation weights
DTRM determinant of sensitivity matrix
DQx change in parameter calculated form parameter estimation
CRx Cramer-Rao bound for parameter x
ESTMAx parameter being estimated
SO sum of square errors
DLl discrete time dlay
BIAS bias error in data
KENG additional engine parameter
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