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1 Introduction 10 

Liver sinusoidal endothelial cells (LSECs) are specialised endothelial cells that have essential 11 
roles in normal liver homeostasis, and are also involved in disease processes. The importance of LSEC 12 
biology has recently been extensively reviewed  (Poisson et al. 2017, Shetty et al. 2018). LSECs line 13 
the walls of the hepatic sinusoid (FIGURE 1) where they scavenge blood borne macromolecules. 14 
LSECs are constantly exposed to antigens carried from the gastrointestinal tract by the portal vein. 15 
LSECs therefore have a crucial role, alongside Kupffer cells, as gate keepers for liver 16 
immunomodulation. If LSEC immune responses are dysregulated, the result is chronic inflammation 17 
which can drive the development of fibrosis (Shetty, et al. 2018).  18 

LSECs maintain a perforated plasma membrane to form fenestrations ranging between 50 and 19 
300 nm in diameter (Cogger et al. 2010). In a healthy, functioning liver, blood enters the sinusoids via 20 
the portal vein and hepatic artery, thus enabling oxygen and macromolecules to be transferred across 21 
the endothelial barrier to hepatocytes, facilitated by the LSEC fenestrae (Poisson, et al. 2017). 22 

Due to their location lining the sinusoid LSECs (FIGURE 1) are in direct contact with blood flow 23 
and therefore exposed to changes in both shear stress and blood pressure. Numerous researchers have 24 
made this observation, however recent reviews of LSEC biology (Poisson, et al. 2017, Shetty, et al. 25 
2018) also illustrate how little is known about mechano-sensing pathways in LSECs. A recent article 26 
by Hilscher et al (Hilscher et al. 2019) has now highlighted how mechano-sensitive pathways in LSECs 27 
can drive recruitment of circulating blood cells to drive portal hypertension. Mechanocrine signaling 28 
by LSECs can orchestrate complex responses across cell types and tissues. This article will highlight 29 
the importance of mechano-biology in LSECs during liver disease and point out important gaps in 30 
knowledge. This exciting research topic has the potential to reveal novel targets for the development 31 
of urgently needed anti-fibrotics. 32 
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 Importantly LSECs are able to modulate phenotypic changes in hepatic stellate cells (HSCs) 33 
(Xie et al. 2012, Marrone et al. 2013, Ding et al. 2014). HSCs are responsible for the altered 34 
extracellular matrix (ECM) production characteristic of liver fibrosis (Tsuchida and Friedman 2017). 35 
In the healthy liver HSCs reside in the space of disse between the endothelial (LSEC) layer and 36 
epithelial (hepatocyte) layer. In response to fibrogenic cues, including inflammatory signals from 37 
hepatocytes or LSECs, HSCs alter their phenotype to become activated myofibroblasts. Activated 38 
HSCs are proliferative, migratory and contractile cells that secrete fibrotic ECM (Hernandez-Gea and 39 
Friedman 2011). This means that mechanically induced changes in LSECs have the potential to rapidly 40 
alter HSC phenotype and drive fibrogenesis. The fact that LSEC dysfunction precedes the development 41 
of fibrosis in non-alcoholic liver disease (Pasarín et al. 2012) supports the hypothesis that signals from 42 
LSECs may be one of the earliest triggers of HSC activation. There is also the potential for the 43 
establishment of a positive feedback loop in which mechanically activated LSECs trigger 44 
mechanocrine signaling that activates HSCs. In turn, activated HSCs alter the ECM to increase tissue 45 
stiffness, driving further mechano-activation of both LSECs and HSCs. Drugs that in some way break 46 
this mechanocrine feedback loop could have great therapeutic potential for the treatment of fibrotic 47 
disease.    48 

2 Mechano-biology in Liver Disease 49 

Key experiments by Rebecca Wells’s group clearly showed that liver stiffness changes very early 50 
following hepatic injury (Georges et al. 2007), and that increased substrate stiffness is necessary for 51 
HSC activation (Wells 2005, Olsen et al. 2011), a key step in fibrogenesis This raises the question of 52 
whether increased hepatic stiffness is a symptom or a driver of liver disease. Or both? Mechanical force 53 
across a tissue can change due to fluctuations in blood pressure, the behavior of contractile cells (eg: 54 
HSCs) and changes in the ECM. Following liver injury changes in hepatic blood pressure occur rapidly 55 
(Rockey 2001, Georges, et al. 2007), and hypertension in the context of non-alcoholic fatty liver 56 
disease appears to increase the risk of fibrosis (Dixon et al. 2001, Arima et al. 2014).  57 

Interest in the role of mechanically sensitive processes in fibrotic disease has largely focused on 58 
HSCs (Wells 2005, Wells 2013, Daniel et al. 2018). Recently, mechanically sensitive signaling 59 
pathways have been shown to function in HSCs. Latent TGFbeta, a pro-fibrotic cytokine (Gressner et 60 
al. 2002), is released from the ECM by contractile force transmitted from HSCs via the αv integrin 61 
subunit  (Henderson et al. 2013). Furthermore, the mechano-sensitive transcriptional regulator Yes 62 
Associated Protein 1 (YAP1) (Dupont et al. 2011) is activated in HSCs by increased substrate stiffness 63 
(Mannaerts et al. 2015, Martin et al. 2016). YAP1 can be inhibited using verteporfin (Liu-Chittenden 64 
et al. 2012) to reduce fibrosis in vivo (Martin, et al. 2016). By contrast, relatively little is known about 65 
how LSECs sense and respond to external mechanical cues.  66 

2.1 Portal Hypertension and Regulation of Sinusoidal Tone 67 

Changes in vascular tone cause rapid changes in blood pressure, shear forces and the overall 68 
mechanical stiffness of the liver (Rockey 2001). LSECs regulate vascular tone by releasing 69 
vasoconstrictors, e.g. cyclooxygenase 1 (COX1) and thromboxane A2 (TXA2); and vasodilators, e.g. 70 
NO which act on HSCs to modulate their contraction and therefore regulate sinusoidal pressure 71 
(Gracia-Sancho et al. 2019).  Some studies suggest that endothelin, a potent vasoconstrictor, has an 72 
important role in driving portal hypertension, as patients with cirrhosis have an increased circulating 73 
ET-1 (Trevisani et al. 1997). When liver injury occurs, HSCs secrete Endothelin-1 (ET-1), establishing 74 
an autocrine loop contributing to increased blood pressure (Gandhi et al. 1996, Rockey 2001, Cho et 75 
al. 2019). Intriguingly, recent data suggests that ET-1 activates YAP-1 in ovarian cancer cells (Tocci 76 
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et al. 2019). Tocci and co-workers showed that beta-arrestin, functioning downstream of ETAR, 77 
physically interacts with YAP1 to increase nuclear shuttling.   78 

Research is now beginning to reveal how LSECs detect and respond to changes in hepatic blood 79 
flow and altered ECM stiffness. 80 

3 Potential for Mechano-signalling by LSECs 81 

LSECs are exposed to mechanical cues derived from both blood flow/pressure changes and 82 
changes in the surrounding ECM of the liver during fibrotic disease. Endothelial cell populations in 83 
other vascular beds are able to detect and respond to mechanical cues, so it seems reasonable to suggest 84 
similar mechanisms would exist in LSECs. Several different mechano-signaling pathways, including 85 
Neurogenic locus notch homolog (Notch) 1 (Mack et al. 2017), PIEZO channels (Li et al. 2014, Ranade 86 
et al. 2014, Wang et al. 2016) and YAP1 (Nakajima et al. 2017), have all been shown to function in 87 
endothelial cells. Furthermore, as described above, ET-1 can drive YAP1 nuclear shuttling (Tocci, et 88 
al. 2019). This makes possible a positive feedback loop where HSCs activated by mechanical cues 89 
release ET-1, which could have a dual function. 1. Autocrine constriction of activated HSCs, 90 
contributing to portal hypertension and increased liver stiffness; and 2. YAP1 activation in both HSCs 91 
and LSECs, due to ET-1 signaling and increased mechanical stiffness. 92 

3.1 NOTCH 93 

Notch proteins are transmembrane proteins that undergo proteolytic cleavage upon ligand 94 
binding. Notch ligands are themselves membrane bound proteins from the jagged and delta families. 95 
Upon binding to jagged or delta proteins presented by neighboring cells, Notch proteins are cleaved to 96 
release an intracellular domain (NICD) that translocates to the nucleus to orchestrate transcriptional 97 
regulation (Kopan 2012). This highly conserved mechanism allows cell-to-cell contact to regulate key 98 
processes such as proliferation, cell fate, differentiation and cell death. 99 

Notch proteins are expressed by vascular endothelial cells (Del Amo et al. 1992), and play a 100 
critical role in development of the vascular system (Krebs et al. 2000). Mechanical force is necessary 101 
to reveal the Notch cleavage site and allow release of NICD (Gordon et al. 2007, Wang and Ha 2013). 102 
It has recently been shown that Notch1 localization in endothelial cells is polarized by shear force. 103 
Notch1 protein polarization occurs in the direction of flow, and Notch1 is aligned with the downstream 104 
direction of flow across the endothelial cell layer (Mack, et al. 2017). Furthermore, levels of nuclear 105 
NICD increased in a step wise fashion as shear stress induced by flow increased, providing compelling 106 
evidence that endothelial Notch is a mechano-sensor (Mack, et al. 2017) that regulates endothelial 107 
function and phenotype in response to changes in shear stress. 108 

In the liver Notch is expressed by LSECs (Loomes et al. 2002, Köhler et al. 2004). Targeted 109 
deletion of Notch1, or the canonical notch effector Rbpj1, specifically in LSECs, caused dilated 110 
sinusoids and portal hypertension in adult mice (Cuervo et al. 2016). When Notch1 protein expression 111 
was disrupted in LSECs at birth, development of the liver vasculature was severely disrupted (Cuervo, 112 
et al. 2016). Conversely, forced Notch pathway activation by endothelial specific overexpression of 113 
NICD also disrupted normal liver homeostasis, with expanded sinusoids, reduced hepatocyte 114 
proliferation and increased hepatocyte cell death. LSECs appeared to become dedifferentiated, and the 115 
fibrogenic response to CCl4 induced liver injury was increased (Duan et al. 2018).  116 

These findings highlight the importance of tightly regulated Notch1 signaling in LSECs for 117 
normal liver function. Mechanical regulation of Notch1 could play a critical role in normal liver 118 
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homeostasis, and in the response to liver injury. Intriguingly, recent data (Hilscher, et al. 2019) shows 119 
that the Notch1 pathway in LSECs is sensitive to mechanical cues. Hilscher et al suggest that stretch 120 
activated PIEZO cation channels activate Notch signaling which drives recruitment of neutrophils and 121 
formation of neutrophil extracellular traps that cause portal hypertension. 122 

3.2 PIEZO Channels 123 

PIEZO proteins form mechano-sensitive cation channels in the plasma membrane (Coste et al. 124 
2010, Coste et al. 2012). PIEZO1 is essential for correct vascular development, and global knockout 125 
of PIEZO1 is lethal (Li, et al. 2014, Ranade, et al. 2014). PIEZO1 channels are present in the plasma 126 
membrane of endothelial cells and activated by shear stress to trigger Calcium influx into the cell (Li, 127 
et al. 2014, Ranade, et al. 2014). Since their initial discovery, it has been shown that PIEZO1 is also 128 
critical for normal vascular homeostasis. Endothelial cells respond to changes in shear forces via 129 
PIEZO1. PIEZO1 induced signaling elicits downstream changes in vascular tone and blood pressure. 130 
In mice with endothelial specific PIEZO1 deficiency the ability of endothelial cells to respond to 131 
changes in flow by releasing NO to trigger vasodilation was lost, resulting in hypertension (Wang, et 132 
al. 2016).  133 

PIEZO channels are present on LSECs (Li, et al. 2014), and, as mentioned above, Hilscher et al 134 
have recently highlighted how PIEZO1 channels modulate Notch pathway activity in response to 135 
changes in blood pressure (Hilscher, et al. 2019). In their experimental model of cyclic stretch, 136 
integrins transmitted changes in mechanical force to activate PIEZO1 cation channels, possibly via 137 
myosin (Pathak et al. 2014, Quintanilla 2019). Similarly, force transmitted via non-muscle myosin has 138 
recently been shown to be involved in the ligand-activated cleavage of Notch (Hunter et al. 2019). In 139 
LSECs the integrin-activated PIEZO1 channels interact with the Notch1 receptor to activate Notch 140 
target genes via production of the transcription factors Hes1 and Hey1 (Hilscher, et al. 2019). Future 141 
experiments are necessary to establish whether myosin filaments in LSECs can interact directly with 142 
Notch1, or via PIEZO1, to drive notch cleavage and downstream signaling. It is also important to note 143 
that the actomyosin cytoskeleton has a crucial role in maintaining the fenestrated plasma membrane 144 
characteristic of healthy LSECs (Yokomori et al. 2004, Yokomori 2008, Venkatraman and Tucker-145 
Kellogg 2013). This adds further complexity to the interplay between external and internal mechanical 146 
forces. How are changes in external force transmitted into LSECs? How do changes in external force 147 
affect the LSEC cytoskeleton? Could external mechanical cues have a direct influence on the 148 
maintenance of the fenestrated plasma membrane?  149 

3.3  YAP1 150 

Another mechanism for mechano-signaling in LSECs is YAP1, which has recently been shown 151 
to be sensitive to shear forces in zebrafish endothelial cells (Nakajima, et al. 2017). Nuclear YAP1 is 152 
also present in primary LSECs isolated from murine livers (Zhang et al. 2018). YAP1 can be activated 153 
downstream of PIEZO1 (Pathak, et al. 2014). Further work is therefore necessary to confirm YAP1 154 
expression and function in mammalian LSECs, and whether YAP1 status in LSECs can be regulated 155 
by PIEZO channel activation. Current understanding of YAP1 function in the liver has recently been 156 
extensively reviewed (Manmadhan and Ehmer 2019).   157 

4 Therapeutic Potential 158 

LSEC phenotype restoration through inhibition of mechano-sensitive pathways provides an 159 
intriguing therapeautic strategy for the treatment, and even reversal, of liver fibrosis. Compelling 160 
evidence that LSECs signal to neighboring cells in a context dependent manner to drive either tissue 161 
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regeneration or fibrosis (Ding, et al. 2014) provides strong support for the targeting of LSECs as a 162 
means to drive fibrosis regression. As many of the pathways discussed are not specific to LSECs, or 163 
even to endothelial cells, a means of delivering a therapy specifically to LSECs is desirable. Nano-164 
particles targeting LSECs for the regulation of auto-immunity have already been developed (Carambia 165 
et al. 2015). Similar approaches could be used to deliver molecules targeting mechano-sensing 166 
pathways specifically to LSECs. Timing of therapy will be crucial. Early intervention would arguably 167 
provide more chance of success, however this challenging due to issues with late diagnosis. However, 168 
clearance of hepatitis C infection leads to fibrosis regression, and clearly shows that human liver 169 
fibrosis is reversible at later stages than previously thought (van der Meer and Berenguer 2016). 170 

4.1 Targeting Notch 171 

Two classes of drug that target notch signaling are currently in clinical trials as cancer therapies 172 
(Venkatesh et al. 2018): 1. Gamma-secretase inhibitors (GSIs) target the enzymes responsible for 173 
cleavage of Notch and block release of NICD. 2. Monoclonal antibodies block notch-ligand receptor 174 
interactions. Both classes of drug have dose limiting side effects linked to normal notch function in the 175 
gastrointestinal tract. Successful adoption of notch inhibition as a therapeutic strategy for liver fibrosis 176 
would therefore require cellular targeting to avoid severe side effects. As mentioned previously (section 177 
3.1), Notch has diverse functions during liver development, homeostasis and disease (Adams and Jafar-178 
Nejad 2019). In hepatocytes (Zhu et al. 2018) or LSECs (Duan, et al. 2018) Notch signaling can induce 179 
HSC activation and promotes fibrosis. It has been demonstrated that inhibition of Notch signaling using 180 
a GSI in vivo ameliorated fibrosis in a CCl4 pre-clinical model (Chen et al. 2012). Therefore, 181 
therapeutic targeting of Notch would impact multiple pro-fibrotic mechanisms, potentially including 182 
mechano-crine signaling by LSECs (Hilscher, et al. 2019). 183 

4.2 Targeting PIEZO channels 184 

Yoda1 was the first molecule identified which could artificially regulate PIEZO channel activity 185 
(Syeda et al. 2015). However, Yoda1 functions as an agonist and causes activation of PIEZO1. Based 186 
on the evidence from Hilscher et al activating PIEZO1 would have a negative impact on liver fibrosis. 187 
(Hilscher, et al. 2019). Dooku is a more recently identified analogue of Yoda1, which appears to 188 
function as a Yoda1 antagonist (Evans et al. 2018). Importantly this molecule only inhibits Yoda1 189 
induced PIEZO channel activation. As yet, no small molecule antagonists of PIEZO channel mechano-190 
activation have been discovered. It is interesting to speculate what effect PIEZO channel inhibitors 191 
might have on liver fibrosis, especially if they could be delivered specifically to LSECs. As PIEZO 192 
receptors are widely expressed across endothelial cell types, long term global treatment with a PIEZO 193 
antagonist would likely have undesirable side effects.   194 

4.3 Integrins 195 

Hilscher et al demonstrate that PIEZO channel mechano-activation is triggered by integrin 196 
signaling; treatment of cells with arginine-glycine-aspartate (RGD) peptide inhibited stretch-induced 197 
transcription of Notch target genes. (Hilscher, et al. 2019). Identification and targeting of the integrin 198 
heterodimers (Raab-Westphal et al. 2017) involved in this mechanism could be a strategy for 199 
developing anti-fibrotics. The integrin subunits present in the LSEC cell membrane are yet to be fully 200 
characterised. Mass spectrometry showed that integrin beta 3 is expressed by LSECs following partial 201 
hepatectomy (Li et al. 2010). Candidate integrin alpha subunits include alphaV and alphaIIb, both of 202 
which partner with the beta3 subunit to facilitate interactions between LSECs and platelets (Lalor et 203 
al. 2013).  204 
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4.4 Targeting YAP1? 205 

Verteporfin (tradename Visudyne, Novartis) was originally developed as a light activated treatment for 206 
neovascular macular degeneration (Michels and Schmidt-Erfurth 2001). Verteporfin’s ability to inhibit 207 
YAP1 activity was identified by screening for compounds able to disrupt the interaction between YAP-208 
1 and it’s DNA binding partner TEAD1 (Liu-Chittenden, et al. 2012). Mice tolerate verteporfin 209 
treatment via intraperitoneal injection over 3 weeks (Martin, et al. 2016). However, further studies are 210 
needed to assess its specificity and potential for development as a long term therapeutic strategy. In 211 
light of this it is important to note that more specific alternatives to verteporfin have already been 212 
developed and tested in vitro (Smith et al. 2019).  213 

5 Discussion 214 

The data presented by Hilscher et al (Hilscher, et al. 2019) is compelling: mechanical cues alter 215 
LSEC function. In response to mechanical stretch PIEZO channels activate the notch pathway to trigger 216 
secretion of the chemokine CXCL1 by LSECs. CXCL1 release recruits neutrophils that drive 217 
microthrombi formation and promote portal hypertension. This is the first direct evidence of mechano-218 
sensing by LSECs, and links PIEZO channels with notch-signaling, both of which are known to be 219 
mechanically activated in other contexts. It is reasonable to expect that integrins will also be involved 220 
in the detection of mechanical cues by LSECs. For other mechanosensitive pathways such as 221 
YAP/TAZ there is potential for involvement in LSEC biology as YAP1 responds to shear stress in a 222 
zebrafish model (Nakajima, et al. 2017). Another area of interest is how actomyosin contractility 223 
responds to and generates force to regulate LSEC shape (fenestrae) and integrate external and internal 224 
cues via PIEZO (Quintanilla 2019), notch (Hunter, et al. 2019), or Yap1 (Mana-Capelli et al. 2014). 225 
The next challenge will be to harness our improving understanding of the importance of 226 
mechanobiology in LSECs to attempt to develop novel therapies for liver disease. Breaking the positive 227 
feedback loop set in motion when mechanical cues cause LSECs to trigger neutrophil recruitment, and 228 
potentially HSC activation, could be a successful therapeutic strategy.       229 
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  428 

Figure 1; Mechano-sensing by LSECs drives fibrotic processes. LSECs can respond to changes in 429 
shear stress and pressure in the sinusoid through activation of PIEZO channels. Data by Hilscher at al 430 
suggests this is triggered by integrins and myosin filaments. PIEZO channel activation drives cleavage 431 
of Notch to release NICD, and transcription of Notch pathway genes HES1 and HEY1. Activation of 432 
this mechanism results in chemokine secretion (CXCL1) which recruits neutrophils (a). Signalling by 433 
LSECs is also known to trigger HSC activation (b) which leads to stiffening of the ECM, potentially 434 
driving activation of other mechano-sensitive pathways (c) such as YAP1. 435 
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