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School of Mathematics, University of East Anglia, Norwich NR4 7TJ, UK

MARK J. H. SIMMONS
School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK

AND

JAMAL UDDIN
School of Mathematics, University of Birmingham, Birmingham B15 2TT, UK

[Received on 30 August 2018]

Wallwork et al. (2002) and Decent et al. (2002) developed an asymptotic method for describing the
trajectory and instability of slender curved liquid jets. Decent et al. (2018) showed that this method is
accurate for slender curved jets when the torsion of the centreline of the jet is small or O(1), but the
asymptotic method may become invalid when the torsion is asymptotically large. This paper examines
the torsion for a slender steady curved jet which emerges from an orifice on the outer surface of a rapidly
rotating container. The torsion may become asymptotically large close to the orifice when the Rossby
number Rb≪ 1, which corresponds to especially high rotation rates. This paper examines this asymptotic
limit in different scenarios and shows that the torsion may become asymptotically large inside a small
inner region close to the orifice where the jet is not slender. Outer region equations which describe the
slender jet are determined and the torsion is found not to be asymptotically large in the outer region, and
these equations can always be used to describe the jet even when the torsion is asymptotically large close
to the orifice. It is in this outer region where travelling waves propagate down the jet and cause it to
rupture in the unsteady formulation, and so the method developed by Wallwork et al. (2002) and Decent
et al. (2002) can be used to accurately study the jet dynamics even when the torsion is asymptotically
large at the orifice.

Keywords: Liquid jets, surface tension, rotation.

1. Introduction

A method was developed by Wallwork et al. (2002) and Decent et al. (2002) to study slender curved
liquid jets that emerge from an orifice on the outer surface of a rapidly rotating cylindrical container
where the axis of rotation of the cylinder is vertical. Decent et al. (2002) included gravity, while
Wallwork et al. (2002) neglected gravity in the model. In those papers, the trajectory of the curved
jet was determined under steady conditions and then perturbed with small linear unstable travelling



waves that propagate down the jet and cause it to rupture. This method was extended in a series of
papers such as by Parau et al. (2006, 2007) and Uddin et al. (2006, 2008) to examine nonlinear
wave effects and other physical effects such as non-Newtonian viscosity and surfactants. The results
of these computational studies were compared successfully to laboratory experiments by Wallwork et
al. (2002), Wong et al. (2004), Partridge et al. (2005) and Hawkins et al. (2010). This work was
motivated by industrial manufacturing processes called prilling (Wallwork et al. 2002) based around
droplet production. In these manufacturing processes, uniform sized drops which arise from the jet
break-up are required, often at high flow rates and from complex liquids, and thus the unsteady dynamics
need to be understood in order to identify appropriate operating parameter values in which the instability
behaves in the desired manner (see Decent et al. 2009, Gurney et al. 2010 and Uddin et al. 2009, 2012).
Other related papers include the examination of a viscous Cosserat model (Arne et al. 2010), particle
laden viscous jets (Gramlich & Piesche 2012), viscoelastic jets (Marheineke et al. 2016), curved viscous
fibres (Marheineke & Wegener 2009, Panda et al. 2008)), the effect of crossflow (Ng et al. 2008),
nanofibre formation (Noroozi et al. 2017), polymeric fluids (Riahi 2017) and coiling jets (Ribe 2004,
Ribe et al. 2006), which illustrate the wide range of other industrial applications for curved jets and
together demonstrate the rich and varied dynamics that can result from these complex curved flows.

Wallwork et al. (2002) and Decent et al. (2002) used a coordinate system that is locally cylindrically
polar on a short lengthscale, but which curves on a longer lengthscale, to derive the various equations
that describe the steady slender jet and unsteady jet dynamics, and used the method of multiple scales
to describe the slender jet using a small parameter ε → 0, where ε = a/s0, a is the radius of the orifice
from which the jet emerges and s0 is the radius of the rotating cylindrical container. Shikhmurzaev
& Sisoev (2017) showed that the torsion of the centreline of a jet, denoted here by κ2, can influence
the flow of the jet, and also produced equations that describe a curved jet which are valid even when
the jet is not asymptotically slender by using differential geometry. Following that paper, Decent et al.
(2018) showed that the method used by Wallwork et al. (2002) and Decent et al. (2002) is accurate
for slender jets when the torsion is small or O(1), and also showed that the methods developed by
Wallwork et al. (2002), Decent et al. (2002) and Shikhmurzaev & Sisoev (2017) produce slender jet
equations that agree at leading order in ε (based upon asymptotic expansions of the physical equations
in ε). Decent et al. (2018) also showed that their slender jet model may break-down if the torsion
is asymptotically large, and in particular argued that this may occur if κ2 = O

(
ε−1

)
or larger. This

asymptotically large torsion corresponds to the basis vectors of the coordinate system no longer being
orthogonal and this non-orthogonality having an effect at leading order on the jet, based upon asymptotic
expansions using ε (see Decent et al. 2018): in other words, the coordinate system used by Wallwork
et al. (2002) and Decent et al. (2002) may become inappropriate to describe the jet effectively when
κ2 is sufficiently asymptotically large. However, in all previous situations examined numerically or in
laboratory experiments, the torsion has been small (and often zero) or at most O(1) (e.g. Wallwork et
al. 2002, Decent et al. 2002, 2009, Wong et al. 2004, Partridge et al. 2005, Parau et al. 2006, 2007,
Uddin et al. 2006, 2008, 2009, 2012, Gurney et al. 2010 and Hawkins et al. 2010), and so a situation
where the torsion may become large has not previously been examined in any detail.

This paper concentrates on steady solutions to the slender jet equations which describe the jet’s
curved trajectory, and we will examine situations where the torsion may become large on the jet. The
steady jet equations derived by Decent et al. (2002) are shown as follows in equations (1.1). The
coordinate of these ordinary differential equations is the arclength s along the centreline of the slender
curved liquid jet, measured from the orifice which is located at s = 0, so that s > 0 along the jet. The
arclength s is nondimensionalised with respect to s0. In these equations u0 (s) is the leading order speed
of the jet (nondimensionalised with respect to the physical exit speed of the jet at the orifice), R0 (s)



is the leading order local radius of the jet measured away from the jet’s centreline (i.e. the location
of the free-surface of the jet which marks the boundary between the liquid and the surrounding air,
and which is nondimensionalised with respect to a), and X (s), Y (s) and Z (s) give the location of the
steady centreline of the curved liquid jet relative to Cartesian coordinates x,y,z, where this Cartesian
coordinate system rotates with the rotating cylinder (X , Y and Z are nondimensionalised with respect to
s0). The y-axis points vertically upwards. The x-axis points away from the axis of the rotating cylindrical
container and through the centre of the orifice so that the x-axis is normal to the surface of the rotating
container. The z-axis is tangential to the surface of the rotating cylindrical container. The origin of the
x,y,z coordinate system is located at the centre of the orifice where the jet emerges from the rotating
container. Therefore the centreline of the jet is the curve x = X (s), y =Y (s) and z = Z (s). The rotating
cylinder, the path of the jet and the coordinate system are sketched in Figure 1.

There are three parameters in this system of equations, namely Rb = U/(s0Ω), Fr = U/(s0g)1/2

and We = ρU2a/σ , which are the Rossby, Froude and Weber numbers respectively, where in these
expressions U is the exit speed of the jet at the orifice, Ω is the rate of rotation of the container, ρ is the
liquid density, σ is the surface tension of the liquid and g is the acceleration due to gravity. Note that
Rb−1 represents the dimensionless rotation rate, Fr−1 represents the dimensionless gravity and We−1

represents the dimensionless surface tension, all relative to the speed of the flow in the jet.
These steady equations were found by Decent et al. (2002) to be

u2
0 = 1−2Y Fr−2 +Rb−2 (X2 +2X +Z2)+2We−1 (1−R0

−1) ,
R2

0u0 = 1,

−
(
Z′X ′′−X ′Z′′)Fr−2 +2Y ′′u0Rb−1 = (X +1)

(
Y ′′Z′−Z′′Y ′)Rb−2 +Z

(
Y ′X ′′−Y ′′X ′)Rb−2,(

u2
0 −We−1R−1

0
)(

X ′′2 +Y ′′2 +Z′′2)= 2u0Rb−1 (X ′Z′′−Z′X ′′)+Rb−2 ((X +1)X ′′+ZZ′′)−Y ′′Fr−2,

X ′2 +Y ′2 +Z′2 = 1 (1.1)

where the dashes denote differentiation with respect to s. The initial conditions of these equations are
X ′ = R0 = u0 = 1 and X = Y = Y ′ = Z = Z′ = 0 at s = 0. Wallwork et al. (2002) determined these
equations in the special case in which Fr = ∞ (i.e. neglecting gravity).

The torsion of the centreline of the curved jet is κ2 = P/Q where

P = X ′ (−Z′′Y ′′′+Y ′′Z′′′)+Z′ (−Y ′′X ′′′+X ′′Y ′′′)+Y ′ (−X ′′Z′′′+Z′′X ′′′) , (1.2)

Q =
(
−Z′Y ′′+Y ′Z′′)2

+
(
Y ′X ′′−X ′Y ′′)2

+
(
−X ′Z′′+Z′X ′′)2 (1.3)

(see Decent et al. 2018).
A numerical solution can be found to equations (1.1) to (1.3) for O(1) values of the parameters.

Equations (1.1) can be written as a set of ODEs involving the jet location X , Y and Z. These equations
are then solved numerically using a Runge-Kutta scheme with the initial conditions at the nozzle. We
utilized the numerical solver ode45 in MATLAB which implements a Runge-Kutta method with a vari-
able integration step. Figure 2 shows the trajectory of a typical curved jet for parameter values Fr = 1,
Rb = 1 and We = 10 (such numerical solutions are explored in more detail by Decent et al. 2002),
and Figure 3 shows the torsion κ2 plotted against the arclength s for the same parameter values. This
curve for the torsion is found to be typical, with an initially negative value for the torsion at the orifice
and with the torsion tending slowly towards zero for large s. It can be seen that the torsion κ2 is not
asymptotically large for these parameter values for any value of s.



Wallwork et al. (2002) and Decent et al. (2002) showed that these jets break-up into droplets for an
O(1) value of the arclength s, caused by growing unstable travelling waves that propagate along the jet,
and confirmed by comparison with experiments such as by Wong et al. (2004), Partridge et al. (2005)
and Hawkins et al. (2010). However experimental observations also indicate that a jet does not form
and droplets are produced directly from the orifice for small values of the Weber number We.

This paper examines situations where the torsion may become large, in order to determine if the
method developed by Wallwork et al. (2002) and Decent et al. (2002) remains valid for a slender jet.
Decent et al. (2018) showed that the torsion may become large at the orifice when Rb ≪ 1 and so this
situation is examined in this paper in detail using an asymptotic method. This paper will show that
even when the torsion is asymptotically large at the orifice, it is only large in a narrow inner region
asymptotically close to the orifice and in which the jet is not slender. Outside of this narrow inner
region, this paper will show that the jet is described by an outer region in which the jet is slender and
in which the torsion is never asymptotically large. Hence the method developed by Wallwork et al.
(2002) and Decent et al. (2002) can always be used in an outer region even when the torsion becomes
asymptotically large at the orifice. This is important because the method developed by Wallwork et al.
(2002) and Decent et al. (2002) has been shown to be straight forward to implement, while in contrast
the exact mathematical method of Shikhmurzaev & Sisoev (2017) produces lengthier equations. As the
range of industrial applications of curved jets are increasing then it is important to know that this straight
forward method is accurate.

Equations (1.1) to (1.3) were solved close to the orifice for s → 0 by Decent et al. (2018) (valid for
all values of the non-dimensional paramaters Rb, Fr and We), giving that

X = s−
We2

(
Rb2 +4Fr4

)
6Fr4Rb2 (1−We)2 s3 +O

(
s4) ,

Y =
We

2Fr2 (1−We)
s2 +

We3

Rb2Fr2 (1−We)2 (2We+1)
s3 +O

(
s4) ,

Z =
We

Rb(We−1)
s2 − 2We2

3Rb3 (1−We)2 s3 +O
(
s4) , (1.4)

R0 = 1− We
Rb2 (2We+1)

s+O
(
s2) ,

u0 = 1+
2We

Rb2 (2We+1)
s+O

(
s2)

and

κ2 =− 4WeFr2

Rb(2We+1)(Rb2 +4Fr4)
+

2WeJ

Rb3Fr2
(
4Fr4 +Rb2)2

(2We+1)3 (We−1)2
s+O

(
s2) , (1.5)

where

J = 64Fr8Rb2We4 +208Fr8Rb2We3 +144Fr8Rb2We2 +64Fr8We4 +16Fr4Rb4We4

+20Fr8Rb2We−168We3Fr8 +100Fr4Rb4We3 −4Fr8Rb2 +72Fr8We2

+84Fr4Rb4We2 +32Fr8We+17Fr4Rb4We−18Rb2We3Fr4 +12Rb6We3 (1.6)

−Fr4Rb4 +18Fr4Rb2We2 +12Rb6We2 +3Rb6We.



The singularity in the above expansions at We = 1 is well known e.g. Keller & Geer (1973). (Note that
Decent et al. (2018) only calculated the first term in the above expansion for κ2. In order to determine
the second term shown here it was necessary to determine terms up to and including O

(
s4
)

in the other
expansions in (1.4), though these terms are not shown here for the purposes of brevity.)

Decent et al. (2018) also showed that κ2 = O
(
s−1/2

)
as s → ∞, far from the orifice, so that κ2 → 0

as s → ∞. (This result is valid for all values of the non-dimensional paramaters Rb, Fr and We.) This
slow decay of κ2 towards zero associated with s−1/2 can be seen in Figure 3. When κ2 is examined
computationally for much larger values of s (e.g. s = 1000) for the parameters shown in Figure 3, then
this decay proportional to s−1/2 can be confirmed computationally.

When the parameters Rb, Fr and We are O(1), the torsion κ2 is always found to be O(1) or small,
and so the asymptotic method developed by Wallwork et al. (2002) and Decent et al. (2002) is always
accurate (because of Decent et al. 2018). As pointed out by Decent et al. (2018) and as can be seen from
equation (1.5), the torsion κ2 is asymptotically large close to the orifice when Rb ≪ 1. In such situations
there are steep gradients in the solutions close to s = 0 (as can be seen in (1.4)) and a numerical solution
is not the most appropriate method to fully understand the behaviour of (1.1) for Rb ≪ 1. This paper
therefore examines asymptotic solutions to equations (1.1) using the limit Rb → 0 and examines three
different scenarios: (i) Fr = O(1); (ii) Fr = O

(√
Rb

)
; and (iii) Fr = O(Rb). These three scenarios are

motivated by different asymptotic balances inherent in (1.5) and are considered in the following three
sections of this paper. When Rb ≪ 1 and Fr = O(1) then κ2 = O

(
Rb−1

)
from (1.5). When Rb ≪ 1

and Fr = O
(√

Rb
)

then κ2 = O
(
Rb−2

)
from (1.5), and the term Rb2 +4Fr4 in (1.5) is asymptotically

balanced (i.e. 4Fr4 = O
(
Rb2

)
). When Rb ≪ 1 and Fr = O(Rb) then κ2 = O

(
Rb−1

)
from (1.5), and

there is an asymptotic balance between the term Rb2 + 4Fr4 and the term Fr2 in the leading order
expression for κ2 in (1.5) (i.e. Rb2 + 4Fr4 = O

(
Rb2

)
and Fr2 = O

(
Rb2

)
). In each case, an inner

region close to the orifice at s = 0 is identified in this paper, as well as an outer region for s = O(1).
(Experiments show that travelling waves propagate along the jet when s = O(1) and cause the jet to
rupture, and hence this is a feature associated primarily with the outer region.)

The limit of Rb ≪ 1 takes the model into an extreme scenario at especially high rotation rate. For
example, in the experiments by Wallwork et al. (2002) the rotation rate was around 100 revolutions
per minute (r.p.m.), while it would have needed to be about 10,000 r.p.m. for Rb ≪ 1, as discussed by
Decent et al. (2018).

In summary, by examining the model in such extremes, this paper demonstrates that the method
developed by Wallwork et al. (2002) and Decent et al. (2002) is valid in an outer region for s = O(1)
in each case, however large the torsion is at the orifice, since the torsion will be found here to be O(1)
or smaller in the outer regions. This observation is important since the method developed by Wallwork
et al. (2002) and Decent et al. (2002) has been shown to be straight forward to implement in various
complex scenarios (e.g. examining non-Newtonian liquids, compound jets with multiple liquids, liquids
with surfactants), and this paper shows that it can be used in an outer region where the jet is slender and
where the jet usually becomes unstable and ruptures, even when Rb ≪ 1. This paper will also show that
the jet is not slender in the inner region where the torsion can become asymptotically large.
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FIG. 1. Sketch of the flow and coordinate system showing the rotating cylinder, which rotates anti-clockwise about its central axis.
The centreline of the liquid jet is shown by the dashed line. The x, y, z coordinate system is shown, and the coordinate system
rotates with the cylinder. The centreline of the jet is given by the curve x = X (s), y =Y (s) and z = Z (s). The direction of gravity
is also shown.
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FIG. 2. The trajectory of a rotating liquid jet for Fr = 1, Rb = 1 and We = 10. The graph shows X (solid line), Y (dashed line)
and Z (dotted line) plotted against arclength s. The jet’s centreline will be at x = X (s), y =Y (s) and z = Z (s). The jet’s centreline
is rotating around the container and hence X and Z can be seen to be both positive and negative as the jet spirals away from the
container. The jet does not intersect again with the container, after it leaves the orifice at s = 0, as it spirals away. The vertical
coordinate Y can be seen to be approximately linear as the jet falls under gravity.
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FIG. 3. The torsion κ2 plotted against the arclength s for Fr = 1, Rb = 1 and We = 10.

2. Asymptotic scenario 1: Rb ≪ 1 and Fr = O(1)

This section considers Rb ≪ 1 and Fr = O(1), and examines an inner region close to the orifice and
matches to an outer region where s = O(1).

2.1 Inner region

Examining equations (1.1) for Rb → 0 and Fr = O(1), it can be seen from (1.4) that there are steep
gradients in the variables as s increases from zero when Rb → 0. The equations are rescaled in an inner
region close to s = 0 using X = X̂Rbm, Y = Ŷ Rbp, Z = ẐRbq and s = s̄Rbn where m,n, p and q are
positive constants to be determined. (In this subsection, which describes this inner region, dashes will
now denote differentiation with respect to s̄, and also subsequently when inner regions are discussed
throughout this paper.)

From the equation for u0 in (1.1), m = 2 so that u0 varies with s̄ at leading order and also so that
u0 = O(1) in this inner region which is required since u0 = 1 at s = 0. Since X ′ = 1 at s = 0 then
X ′ = O(1) in this inner region, and also examining the last of the five equations in (1.1) it can thus be
seen that n = 2. Then the leading order terms from the small s asymptotic expansions for Y and Z in
(1.4) show that p = 4 and q = 3.

We pose asymptotic series using u0 =U0 (s̄)+U2 (s̄)Rb2+O
(
Rb4

)
, R0 = r0 (s̄)+r2 (s̄)Rb2+O

(
Rb4

)
,

X̂ =X0 (s̄)+X2 (s̄)Rb2+O
(
Rb4

)
, Ŷ =Y0 (s̄)+Y2 (s̄)Rb2+O

(
Rb4

)
and Ẑ =Z0 (s̄)+Z2 (s̄)Rb2+O

(
Rb4

)
.

Then (X ′
0)

2 = 1 from the final equation in (1.1). Since X ′
0 = 1 and X0 = 0 at s̄= 0 then X0 = s̄. Therefore,

(1.1) gives that

U2
0 = 1+2s̄+2We−1 (1− r0

−1) ,
r2

0U0 = 1,(
U2

0 −We−1r−1
0

)
Z0

′′ = 2U0 −Z′
0,

Fr−2 +
(
U2

0 −We−1r−1
0

)
Y ′′

0 +Y ′
0 = 0,

2X ′
2 +Z′2

0 = 0. (2.1)

These inner region equations (2.1) need to be solved subject to X2 = X ′
2 = Y0 = Y ′

0 = Z0 = Z′
0 = 0 at

s̄ = 0.
Note that from (1.2) and (1.3), P = O

(
Rb−3

)
and Q = O

(
Rb−2

)
in the inner region. Hence the

torsion κ2 = O
(
Rb−1

)
in the inner region.



Equations (2.1) can be solved for s̄ → 0. This gives U0 = 1+ 2We(2We+1)−1s̄+O
(
s̄2
)
, r0 =

1−We(2We+1)−1s̄+O
(
s̄2
)
, X2 =−2We2(We−1)−2s̄3/3+O

(
s̄4
)
, Y0 =−WeFr−2 (We−1)−1s̄2/2+

We3Fr−2 (2We+1)−1 (We−1)−2s̄3+O
(
s̄4
)

and Z0 =We(We−1)−1s̄2−2We2(We−1)−2s̄3/3+O
(
s̄4
)
.

These agree with (1.4) for Rb → 0. Determining the torsion κ2 in the inner region for s̄ → 0 using (1.2),
(1.3) and Rb → 0, gives κ2 =−WeRb−1Fr−2 (2We+1)−1 +O(s̄) which agrees with (1.5) for Rb → 0.
As expected, the torsion is O

(
Rb−1

)
in the inner region for s̄ → 0. Therefore, this asymptotic expan-

sion for small s̄ confirms agreement with (1.4) and (1.5), and confirms the initial asymptotic size of the
torsion at the orifice.

Equations (2.1) can also be solved for s̄ → ∞. By seeking leading order terms for each of the
variables in the form of a constant times by s̄constant , and seeking the largest terms as s̄ → ∞, and
then seeking higher-order terms, gives U0 =

√
2s̄−We−1 (2s̄)−1/4 +

√
2
(
1+2We−1

)
(16s̄)−1/2 + ...,

r0 = (2s̄)−1/4 +(4Wes̄)−1 + ..., X2 =−s̄2/2+ ..., Y0 =−Fr−2s̄+ Ỹ s̄1/2 + ... and Z0 = 2
√

2s̄3/2/3+ ....
In this equation for Y0, Ỹ is a constant which cannot be determined from the s̄ → ∞ asymptotics and
must be found from a numerical solution to (2.1) in the inner region, and so Ỹ will depend upon the
parameters We and Fr. The torsion can be determined in the inner region for s̄ → ∞ using (1.2), (1.3)
and Rb → 0 which is found to be κ2 =−

√
2Ỹ Rb−1 (2s̄)−2 + ... so that κ2 → 0 as s̄ → ∞. Note that this

expression for the torsion contains Rb, and so κ2 = O
(
Rb−1

)
as it is throughout the inner region, but

also note that the torsion tends to zero for large s̄. Consequently note that the torsion κ2 is O
(
Rb−1

)
at

s̄ = 0 at the start of the inner region, but has tended to zero as s̄ → ∞ at the other side of the inner region.
Equations (2.1) can be solved exactly at leading order in the limit We→∞ giving U0 =

√
1+2s̄, r0 =

(1+2s̄)−1/4, X2 = s̄(1− s̄)/2− ln(1+2s̄)/4, Y0 = Fr−2
(√

2s̄+1− s̄−1
)

and Z0 = (2s̄+1)3/2 /3−√
2s̄+1+2/3. This also shows that Ỹ =

√
2Fr−2 for We → ∞. The torsion κ2 can now be determined

exactly throughout the inner region for We → ∞. Expanding P and Q in terms of Rb using (1.2) and
(1.3), the torsion is found to be

κ2 =
Y ′′

0 Z′′′
0 −Y ′′′

0 Z′′
0

Rb
(
Z′′

0

)2 + ... (2.2)

at leading order in Rb, which is valid for We = O(1) and for We → ∞. Therefore, the torsion in the inner
region for We → ∞ is given by κ2 =−Rb−1Fr−2 (1+ s̄)−2/2+ ... for Rb → 0. Therefore, the torsion κ2
increases from its initial value at s̄ = 0 and tends to zero as s̄ → ∞.

Since (1.4) have a singularity at We → 1, it is also interesting to examine the limit We → 1 in this
inner region in order to understand what the singularity does to the torsion κ2. A further asymptotic
region can be identified close to s̄ = 0 in this limit, which is examined using s̄ = α s̃ and We = 1+ωα
where α → 0, α > 0 and ω =±1, so that We > 1 when ω = 1, and We < 1 when ω =−1. Then equa-
tions (2.1) give that U0 = 1+2s̃α/3+ s̃α2 (2ω − s̃)/9+O

(
α3

)
and r0 = 1− s̃α/3+ s̃α2 (2s̃−ω)/9+

O
(
α3

)
. We expand Y0 = αỸ1 (s̃)+α2Ỹ2 (s̃)+O

(
α3

)
and Z0 = α Z̃1 (s̃)+α2Z̃2 (s̃)+O

(
α3

)
. Then (2.1)

gives that Ỹ1 = −Fr−2s̃+ωFr−2 ln |s̃+ω| and Z̃1 = 2s̃− 2ω ln |s̃+ω|. The torsion can be calculated
to be κ2 = −(1+ω s̃)Fr−2Rb−1/3+O(α) as α → 0. Note that when We < 1 in this region (i.e. for
ω = −1) then there are singularities in Y0 and Z0 at s̃ = 1. Though there are no singularities in the
solution for Y0 and Z0 (in the physical domain of the jet for s̃ > 0) for We > 1 (i.e. for ω = 1). However,
κ2 is not singular in this region for ω = 1 or ω =−1. Also note that κ2 = 0 at s̃ = 1 when ω =−1. This
set of asymptotics for We → 1 could be further examined asymptotically close to s̃ = 1, however it has
been shown here that the torsion κ2 → 0 (rather than becoming large) as s̃ → 1 for We < 1 and hence
this is not relevant in the context of this paper where we are concerned with situations when the torsion



becomes large. Also experiments show (e.g. Wong et al. 2004) that for small We the jets are short and
break-up at the orifice.

2.2 Outer region

An outer region is now examined where s = O(1). Taking the far-field of the inner region and using
s̄ = sRb−2 gives that u0 =

√
2s/Rb+ ..., R0 =

√
Rb(2s)−1/4 + ..., X = s+ ..., Y =−Rb2Fr−2s+ ... and

Z = 2
√

2s3/2/3+ ... in the far-field of the inner region. These expressions can be used to determine
the expansions in the outer region. That is, the first terms in expansions in Rb in the outer region are
given by u0 = Rb−1U + ..., R0 =

√
RbR+ ... and Y = Rb2Ȳ + ... as Rb → 0, while X and Z are O(1) at

leading order in Rb in the outer region. Substituting these into equations (1.1) and taking Rb → 0 gives
the leading order equations in the outer region as

U =
√

X2 +2X +Z2,

R =
(
X2 +2X +Z2)−1/4

,(
Z′X ′′−X ′Z′′)Fr−2 = 2Ȳ ′′U − (X +1)

(
Ȳ ′′Z′−Z′′Ȳ ′)−Z

(
Ȳ ′X ′′− Ȳ ′′X ′), (2.3)

U2 (X ′′2 +Z′′2)= 2U
(
X ′Z′′−Z′X ′′)+(X +1)X ′′+ZZ′′,

X ′2 +Z′2 = 1.

Note that the Weber number We does not appear in these leading order outer region equations (2.3).
The above outer region equations (2.3) for X , Z, U and R are the two-dimensional steady jet tra-

jectory equations from Wallwork et al (2002) for small Rb, which correspond to the problem without
gravity (i.e. Fr = ∞), together with an additional equation for Ȳ that has decoupled from the other equa-
tions in the outer region. Thus the outer region has become equivalent to the two-dimensional planar
equations for the jet trajectory, with an additional equation which gives the smaller fall caused by gravity
described by Ȳ . Consequently these outer region equations are the jet equations studied by Wallwork et
al. (2002) at leading order in Rb.

The asymptotic size of the torsion κ2 in the outer region can be found from (1.2) and (1.3), noting
that Y = O

(
Rb2

)
in the outer region. Equations (1.2) and (1.3) give that P = O

(
Rb2

)
and Q = O(1)

where Rb → 0. Therefore, κ2 = O
(
Rb2

)
in the outer region and thus the torsion is small throughtout the

outer region.
Equations (2.3) can be solved for s → ∞ by introducing two new functions r (s) and θ (s) by writing

X and Z using X = r (s)cos(θ (s))−1 and Z = r (s)sin(θ (s)). Substituting these into (2.3) and seeking
a solution for large s gives that r = ζ

√
s+ ... and θ = γ

√
s+ ... as s → ∞, where ζ and γ are O(1)

constants and ζ γ = 2. Thus ζ and γ are related, and they would be determined from solving (2.3)
numerically. Solving the equation for Ȳ in (2.3) for large s using these solutions for X and Z gives that
Ȳ = −γ2Fr−2s/2+ ... as s → ∞. These large s asymptotics can then be used to show that the torsion
κ2 = Rb2γ3Fr−2s−1/2/4+ ... as s → ∞ using (1.2) and (1.3). Therefore, the torsion κ2 → 0 as s → ∞.

2.3 Numerical solutions in the inner and outer regions

Figures 4, 5 and 6 show the torsion κ2 plotted against the arclength s̄, calculated computationally from
the inner region equations (2.1) for the scalings used in this section, shown for various parameter values.
(Equation (2.2) is used to determine the torsion κ2.) Figure 4 shows how κ2 varies with Fr for We = 10



and Rb = 0.01, showing curves for κ2 for Fr = 0.5,1 and 3. It can be seen that the torsion κ2 increases
along each curve from an initially negative value and tends to zero in the far-field for large s̄.

Figure 5 shows how κ2 varies with We for Rb= 0.01 and Fr = 1, showing curves for κ2 for We= 2,3
and 100. Again, κ2 increases along each curve and tends to zero in the far-field. However, it can be seen
in Figure 5 that varying We does not cause significant changes to the torsion in this case.

Figure 6 shows how κ2 varies with three smaller values of We for Rb = 0.01 and Fr = 1, showing
curves for κ2 for We = 0.2,0.5 and 3. Figure 6 shows that the torsion heads towards κ2 = 0 at a
singularity at a finite value of s̄ for the two curves on which We < 1, namely We = 0.2 and 0.5, in
keeping with the behaviour identified for We → 1 for We < 1 in subsection 2.1. However, for We = 3,
there is no singularity and the solution tends to zero as s̄ increases to infinity. Note though that the large
s̄ behaviour for κ2 is similiar for We = 0.2 and We = 3 until the curve for We = 0.2 hits the singularity
and the curve halts at κ2 = 0. We know from the We → 1 asymptotics for We < 1 that the singularity can
be integrated through. Note that Wallwork et al. (2002) and Wong et al. (2004) showed in laboratory
experiments that a coherent jet is usually not formed for We < 1 and break-up occurs close to the orifice,
and so it is likely that the jet will break-up before the singularity at κ2 = 0 is reached.

The behaviour of Y0 and Z0 plotted against arclength s̄ in the inner region is shown in Figures 7 and
8 respectively, which each show Y0 and Z0 for We = 0.5 and We = 2 for Fr = 1. These curves are found
by solving (2.1) numerically. For We < 1, a singularity is found in the solution for Y0 and Z0 at finite s̄
and this corresponds to the value of s̄ at which κ2 = 0 (compare to Figure 6). For We > 1, the solution
does not have a singularity.

The outer region equations (2.3) can also be solved numerically. This numerical solution is shown
in Figure 9 for Fr = 1. The solid line shows r (s), the dashed line shows θ (s) and the dotted line shows
Ȳ (s), where X = r (s)cos(θ (s))−1 and Z = r (s)sin(θ (s)). It can be seen that the jet’s trajectory falls
under gravity (since Ȳ is negative and decreasing) and the jet spirals away from the orifice (since r and
θ are increasing).

2.4 Summary of the results from this section for asymptotic scenario 1: Rb ≪ 1 and Fr = O(1)

In summary, this section has identified an inner and outer solution, where the torsion is only asymptoti-
cally large in the inner region and the torsion decays to become small as it approaches the outer region.
The inner and outer regions were solved asymptotically close to and far from the orifice, confirming
observations from numerical calculations on the size of the torsion. These asymptotic results showed
that the torsion is O

(
Rb−1

)
at the orifice, and it decays to be O

(
Rb−1 (s̄)−2

)
at the far-field of the

inner region where s̄ is large. In the outer region the torsion has been shown to be O
(
Rb2

)
, while at the

far-field of the outer region the torsion has decayed further to be O
(
Rb2s−1/2

)
where s is large. These

asymptotic results will be used to make further conclusions in section 6.
It can also be seen that the large torsion in the inner region has caused the trajectory of the jet to

change direction as it leaves the orifice. In particular note that Y ′ → −Rb2Fr−2 as s → 0 in the outer
region, while Y ′ = 0 at s = 0 at the orifice (from the initial conditions to equations (1.1)). In contrast,
in the outer region X ′ → 1 and Z′ → 0 as s → 0, and the initial conditions at the orifice are X ′ = 1 and
Z′ = 0 at s = 0, and so these are unchanged at leading order in Rb. Consequently, in the inner region,
the direction of the centreline has changed over a short distance, though this does not cause a change at
leading order in X ′ or Z′ at the start of the outer region when compared to their values at the orifice, but
it does cause an O

(
Rb2

)
change in Y ′ when compared to its value at the orifice. (There will of course

be corresponding higher order changes in X ′ and Z′ linked to this O
(
Rb2

)
change in Y ′.) Also note that



the outer region equations were found in this section to be identical to the slender jet equations studied
previously by Wallwork et al. (2002) at leading order in Rb. These outer region equations can be solved
numerically and these numerical solutions show that the jet spirals away from the container in the outer
region.

Two cases, We → ∞ and We → 1, were additionally examined in the inner region. For We → ∞, the
inner region equations could be solved analytically without using a numerical solution, confirming the
features observed in the numerical solutions. Also, by expanding this large We solution for both small
and large s̄ confirms the other asymptotic results in this section. For We → 1, it was shown that there
is a singularity in the solution for We < 1 at which κ2 approaches zero, and this feature is also found
in the numerical solutions for We < 1, and so we note that the torsion κ2 does not become large at this
singularity.
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FIG. 4. Torsion κ2 plotted against s̄ for various values of the Froude number (Fr = 0.5,1 and 3) in the inner region for section 2.
The other parameters are Rb = 0.01 and We = 10.
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2. The other parameters are Rb = 0.01 and Fr = 1.

3. Asymptotic scenario 2: Rb ≪ 1 and Fr = O
(√

Rb
)

This section examines Rb → 0 and Fr → 0. If Fr2 = O(Rb) as Rb → 0 then the term Rb2 + 4Fr4

in equation (1.5) will be asymptotically balanced and so this appears to be an important limit for the
consideration of the torsion. Therefore, the equations are rescaled in an inner region close to s = 0
using X = x̂Rbm, Y = ŷRbp, Z = ẑRbq, s = s̄Rbn and Fr2 = f 2Rb where m,n, p and q are positive
constants which are taken to be the same as in the previous section so that m = n = 2, p = 4 and
q = 3. Also f = O(1) is a parameter. Expanding using u0 = Û0 (s̄)+O(Rb), R0 = r̂0 (s̄) +O(Rb),

x̂ = X̂0 (s̄)+ X̂2 (s̄)Rb2+O
(
Rb3

)
, ŷ = Rb−1Ŷ0 (s̄)+O(1) and ẑ = Ẑ0 (s̄)+O(Rb), then

(
X̂0

′
)2

= 1 from

the fifth equation in (1.1). Since X̂0
′
= 1 and X̂0 = 0 at s̄ = 0 then X̂0 = s̄. Therefore, (1.1) gives that

Û0
2
= 1+2s̄+2We−1 (1− r̂0

−1) ,
r̂0

2Û0 = 1,

−Ẑ0
′′ f−2 −2Ŷ0

′′Û0 + Ŷ0
′′Ẑ0

′
= Ẑ0

′′Ŷ0
′
, (3.1)(

Û0
2 −We−1r̂0

−1
)(

Ŷ0
′′2
+ Ẑ0

′′2
)
=− f−2Ŷ0

′′
+2Û0Ẑ0

′′
+ X̂2

′′
,

2X̂2
′
+ Ŷ0

′2
+ Ẑ0

′2
= 0.

These inner region equations need to be solved for X̂2, Ŷ0 and Ẑ0 subject to X̂2 = X̂2
′
= Ŷ0 = Ŷ0

′
= Ẑ0 =

Ẑ0
′
= 0 at s̄ = 0.
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FIG. 7. Y0 plotted against s̄ for We = 0.5 and 2 at Fr = 1. These curves are solutions to (2.1).
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Examining s̄ → 0, X̂2 =−We2
(
1+4 f 4

)
f−4 (1−We)−2s̄3/6+O

(
s̄4
)
, Ŷ0 =We f−2 (1−We)−1s̄2/2

+We3 f−2 (1−We)−2 (2We+1)−1s̄3 +O
(
s̄4
)
, Ẑ0 =We(We−1)−1s̄2 −2We2(1−We)−2s̄3/3+O

(
s̄4
)
,

r̂0 = 1−We(2We+1)−1s̄+O
(
s̄2
)
, Û0 = 1+ 2We(2We+1)−1s̄+O

(
s̄2
)

and, using (1.2) and (1.3),

κ2 =−4We f 2Rb−2 (2We+1)−1 (1+4 f 4
)−1

+O(s̄).
As in the previous section the equations can also be solved for s̄ → ∞. This gives Û0 =

√
2s̄−

We−1 (2s̄)−1/4 +
√

2(1+2/We)(16s̄)−1/2 + ..., r̂0 = (2s̄)−1/4 +(4Wes̄)−1 + ..., X̂2 =−s̄2/2+ ..., Ŷ0 =
− f−2s̄+ ỹs̄1/2 + ... and Ẑ0 = 2

√
2s̄3/2/3+ .... Here ỹ is a constant which cannot be found from the

far-field asymptotics but would be found from a numerical solution of the inner region equations, and
so that ỹ will depend upon We and f . The torsion can be determined in the inner region for s̄ → ∞ using
(1.2), (1.3) and Rb → 0, and is found to be κ2 =−

√
2ỹRb−2 (2s̄)−2 + ... so that κ2 → 0 as s̄ → ∞. The

torsion κ2 is O
(
Rb−2

)
at s̄ = 0 at the start of the inner region, but has tended to zero as s̄ → ∞ at the

far-field of the inner region.
To determine the equations in the outer region in this section, we again consider the far-field asymp-

totics of the inner region written in terms of s. This gives u0 =
√

2sRb−1 + ..., R0 =
√

Rb(2s)−1/4 + ...,



FIG. 9. Numerical solution to outer region equations (2.3) for Fr = 1. The solid line shows r (s), the dashed line shows θ (s) and
the dotted line shows Ȳ (s), where X = r (s)cos(θ (s))−1 and Z = r (s)sin(θ (s)).

X = s+ ..., Y = −Rb f−2s+ ... and Z = 2
√

2s3/2/3+ ... for the far-field of the inner region. There-
fore, in the outer region it is necessary to use the leading order expansions in Rb as u0 = Rb−1V̄ + ...,
R0 =

√
RbS̄+ ... and Y = Rbȳ+ ... as Rb → 0, while X and Z are O(1) at leading order in Rb. Substi-

tuting these into equations (1.1), together with Fr2 = f 2Rb, and taking Rb → 0, gives the leading order
equations in the outer region as

V̄ =
√

X2 +2X +Z2,

S̄ =
(
X2 +2X +Z2)−1/4

,(
Z′X ′′−X ′Z′′) f−2 = 2ȳ′′V̄ − (X +1)

(
ȳ′′Z′−Z′′ȳ′

)
−Z

(
ȳ′X ′′− ȳ′′X ′), (3.2)

V̄ 2 (X ′′2 +Z′′2)= 2V̄
(
X ′Z′′−Z′X ′′)+(X +1)X ′′+ZZ′′,

X ′2 +Z′2 = 1.

Note these are similar to the outer region equations in the previous section (in which Fr = O(1)), but Y
is scaled differently in this region. (Compare (3.2) with (2.3).) Again these outer region equations are
the same as those studied by Wallwork et al. (2002) at leading order in Rb.

Here P = O(Rb) and Q = O(1) in the outer region, so that the torsion κ2 = O(Rb) in the outer
region in this section. We can determine the torsion in the far-field of the outer region using the same
method as in section 2, which gives in this region κ2 = Rbγ3 f−2s−1/2/4+ ... as s → ∞, where γ is an
O(1) constant. Therefore, the torsion κ2 → 0 as s → ∞.



Finally note that the equations in the inner region in this section (3.1) can be solved exactly in the
combined limit We →∞ and f →∞. This gives at leading order in f and We the solutions Û0 =

√
1+2s̄,

X̂2 = s̄/2− s̄2/2− ln(1+2s̄)/4, Ŷ0 = f−2
(
−s̄+

√
1+2s̄−1

)
and Ẑ0 = 2s̄

√
1+2s̄−2(1+2s̄)3/2 /3+

2/3. This gives κ2 = −Rb−2 f−2 (1+ s̄)−2/2 in the inner region in this combined limit We → ∞ and
f → ∞.

In summary, this section has again identified inner and outer regions, where the torsion is only
asymptotically large in the inner region. The torsion is small in the outer region (i.e. O(Rb)), despite
the fact that the torsion κ2 = O

(
Rb−2

)
at the orifice and thus asymptotically larger at the orifice than

in section 2. The inner and outer regions were solved asymptotically close to and far from the orifice,
giving the asymptotic size of the torsion at these locations. These asymptotic results showed that the
torsion decays to be O

(
Rb−2 (s̄)−2

)
at the far-field of the inner region where s̄ is large, while at the far-

field of the outer region the torsion has decayed further to be O
(
s−1/2Rb

)
for large s. These asymptotic

results will be used to make further conclusions in section 6.
Once again it can be seen that the large torsion in the inner region has caused the trajectory of the

jet to change direction as it leaves the orifice. Note that Y ′ →−Rb f−2 as s → 0 in the outer region, but
Y ′ = 0 at s = 0 at the orifice (from the initial conditions to equations (1.1)). As in section 2, in the outer
region X ′ → 1 and Z′ → 0 as s → 0, while the initial conditions at the orifice are X ′ = 1 and Z′ = 0 at
s = 0, and so these are unchanged at leading order in Rb. Therefore in the inner region, the direction of
the centreline has changed over a short distance, though this does not cause a change at leading order
in X ′ or Z′, but it does cause an O(Rb) change in Y ′ as the trajectory enters the outer region when
compared to the value of Y ′ at the orifice. (There will be corresponding higher order changes in X ′

and Z′ caused by this O(Rb) change in Y ′.) The outer region equations are the same as the equations
studied by Wallwork et al. (2002) at leading order in Rb as in section 2. These equations can be solved
numerically and these solutions show that the jet spirals away from the container in the outer region.

The inner region equations were also solved exactly in the limit We → ∞ and f → ∞, and the results
confirmed the observations in this section. Note that by expanding this solution for both small and large
s̄ then the other asymptotic results in this section can be confirmed.

4. Asymptotic scenario 3: Rb ≪ 1 and Fr = O(Rb)

This section again examines Rb → 0 and Fr → 0. If Fr = O(Rb) as Rb → 0 then there will be an
asymptotic balance in the first term in equation (1.5) between terms in the denominator (i.e. Rb2+4Fr4)
and numerator (i.e. Fr2), and so this appears to be an important limit for the consideration of the torsion.
Therefore, the equations are rescaled in an inner region close to s = 0 using X = x̃Rbm, Y = ỹRbp,
Z = z̃Rbq, s = s̄Rbn and Fr = f̂ Rb where m,n, p and q are positive constants which are taken to be the
same as in section 2 so that m = n = 2, p = 4 and q = 3. Also f̂ = O(1) is a parameter. Expanding
using u0 = Ũ0 (s̄)+O

(
Rb2

)
, R0 = r̃0 (s̄)+O

(
Rb2

)
, x̃ = x0 (s̄)+O

(
Rb2

)
, ỹ = Rb−2y0 (s̄)+O(1) and



z̃ = z0 (s̄)+O
(
Rb2

)
gives

Ũ0
2
= 1−2y0 f̂−2 +2x0 +2We−1 (1− r̃0

−1) ,
r̃0

2Ũ0 = 1,(
z0

′x0
′′− x0

′z0
′′) f̂−2 = 2y0

′′Ũ0 − y0
′′z0

′+ z0
′′y0

′, (4.1)(
Ũ0

2 −We−1r̃0
−1
)(

x0
′′2 + y0

′′2)=− f̂−2y′′0 + x′′0 ,

x′20 + y′20 = 1.

These inner region equations need to be solved for x0, y0 and z0 subject to x′0 = 1 and x0 = y0 = y′0 =
z0 = z′0 = 0 at s̄ = 0.

Examining s̄ → 0 gives x0 = s̄ −We2 f̂−4 (1−We)−2s̄3/6 + O
(
s̄4
)
, y0 = We f̂−2 (1−We)−1s̄2/2

+We3 f̂−2 (1−We)−2 (2We+1)−1s̄3 +O
(
s̄4
)
, z0 = We(We−1)−1s̄2 −2We2(1−We)−2s̄3/3 +O

(
s̄4
)
,

r̃0 = 1 −We(2We+1)−1s̄ +O
(
s̄2
)
, Ũ0 = 1 +2We(2We+1)−1s̄ +O

(
s̄2
)

and, using (1.2) and (1.3),
κ2 =−4We f̂ 2Rb−1 (2We+1)−1 +O(s̄).

The equations can also be solved for s̄ → ∞. This gives Ũ0 =
√

2
(
1+ f̂ 4

)1/4
f̂−1√s̄+ ..., r̃0 =√

f̂
(
1+ f̂ 4

)−1/8
(2s̄)−1/4+ ..., x0 = f̂ 2s̄/

√
1+ f̂ 4+β f̂−2s̄1/2+ ..., y0 =−s̄/

√
1+ f̂ 4+β s̄1/2+ ... and

z0 = 2
√

2 f̂ 3
(
1+ f̂ 4

)−3/4
s̄3/2/3+ .... In these equations β is an O(1) constant which cannot be found

from the far-field asymptotics but would be found from a numerical solution in the inner region and
so will depend upon We and f̂ . The torsion can be determined in the inner region for s̄ → ∞ using
(1.2), (1.3) and Rb → 0. From (1.2), P = −

√
2 f̂

(
1+ f̂ 4

)−1/4 β (2s̄)−3 Rb−5 + ..., and from (1.3), Q =

β 2
(
1+ f̂ 4

)
Rb−4 (2s̄)−3 f̂−4/2+ f̂ 6

(
1+ f̂ 4

)−3/2
Rb−2 (2s̄)−1 + ... where the first two terms of Q have

been shown. This is because the first term in Q shown here dominates for large s̄ for 1 ≪ s̄ ≪ Rb−1, but
for s̄ ≫ Rb−1 then the second term instead becomes dominant. Therefore, for 1 ≪ s̄ ≪ Rb−1 then κ2 =

−2
√

2 f̂ 5Rb−1β−1
(
1+ f̂ 4

)−5/4
+ ..., and for s̄ ≫ Rb−1 then κ2 =−

√
2β

(
1+ f̂ 4

)5/4
Rb−3 (2s̄)−2 f̂−5+

..., so that κ2 → 0 as s̄ → ∞.
An outer region is now examined where s = O(1). Taking the far-field of the inner region and using

s̄ = sRb−2 gives that u0 =
√

2
(
1+ f̂ 4

)1/4
Rb−1 f̂−1√s+ ..., R0 = 2−1/4

√
Rb

√
f̂
(
1+ f̂ 4

)−1/8
s−1/4+ ...,

X = f̂ 2s/
√

1+ f̂ 4 + ..., Y =−s/
√

1+ f̂ 4 + ... and Z = 2
√

2 f̂ 3
(
1+ f̂ 4

)−3/4
s3/2/3+ ... for the far-field

of the inner region. Therefore, X = O(1), Y = O(1), Z = O(1), u0 = O
(
Rb−1

)
and R0 = O

(√
Rb

)
in

the outer region for Fr = O(Rb) as Rb → 0. Writing u0 = Rb−1V + ... and R0 =
√

RbS+ ... in the outer
region for Fr = O(Rb) as Rb → 0, and substituting these into (1.1), together with Fr = f̂ Rb for Rb → 0,
gives the leading order outer region equations

V 2 =−2Y f̂−2 +X2 +2X +Z2,

S2V = 1,(
Z′X ′′−X ′Z′′) f̂−2 = 2Y ′′V − (X +1)

(
Y ′′Z′−Z′′Y ′)−Z

(
Y ′X ′′−Y ′′X ′), (4.2)

V 2 (X ′′2 +Y ′′2 +Z′′2)=−Y ′′ f̂−2 +2V
(
X ′Z′′−Z′X ′′)+(X +1)X ′′+ZZ′′,

X ′2 +Y ′2 +Z′2 = 1,

where f̂ = O(1).



Note that in this outer region, P = O(1), Q = O(1) and the torsion κ2 = O(1). The far-field
behaviour of these equations can be determined as in the previous two sections to be κ2 = γ3/

(
4 f̂ 2√s

)
=

O
(
s−1/2

)
as s → ∞ in this outer region. Therefore, κ2 → 0 as s → ∞ in the outer region.

The outer region equations (4.2) can be solved numerically. This is shown in Figure 10 for f̂ = 1.
Using X = r (s)cos(θ (s))−1 and Z = r (s)sin(θ (s)), the solid line shows r (s), the dashed line shows
θ (s) and the dotted line shows Y (s). The trajectory in the outer region spirals away from the rotating
container and falls under gravity.

Finally, equations (4.1) in the inner region in this section can be solved exactly in the combined
limit We → ∞ and f̂ → ∞. This gives at leading order in f̂ and We the solutions Ũ0 =

√
1+2s̄+ ...,

x0 = s̄+ f̂−4
(
−s̄/2+

√
1+2s̄− ln(1+2s̄)/4−1

)
+ ..., y0 = f̂−2

(
−s̄+

√
1+2s̄−1

)
+ ... and z0 =

2s̄
√

1+2s̄− 2(1+2s̄)3/2 /3+ 2/3+ ..., where the first two terms of the expansion for x0 with respect
to f̂ have been determined. Then P = −2(1+2s̄)−3 Rb−5 f̂−2 + ... and Q = (1+2s̄)−3 Rb−4 f̂−4 +

4(s̄+1)2Rb−2 (1+2s̄)−3 + ..., so that κ2 =−2 f̂ 2Rb−1 + ... at leading order for 0 6 s̄ ≪ Rb−1. Again,
because of the ordering of Q, there is a different expression for the torsion for s̄ ≫ Rb−1, which in this
case is κ2 =−

(
2Rb3 f̂ 2s̄2

)−1
+ ... in the combined limit We → ∞ and f̂ → ∞.

In summary, this section has again found inner and outer regions, where the torsion is asymptotically
large at the start of the inner region, but the torsion decays to be O(1) in the outer region. The inner
and outer regions were solved asymptotically close to and far from the orifice. These asymptotic results
showed that the torsion is O

(
Rb−1

)
at the orifice, and decays to be O

(
Rb−3 (s̄)−2

)
at the far-field of

the inner region when s̄ ≫ Rb−1. However, when 1 ≪ s̄ ≪ Rb−1 then the torsion is shown here to be
O
(
Rb−1

)
in the inner region. At the far-field of the outer region the torsion has decayed further to be

O
(
s−1/2

)
for large s. These asymptotic results will be used to make further conclusions in section 6.

As in the previous two sections it can also be seen that the large torsion in the inner region causes
the trajectory of the jet to change direction as it leaves the orifice. This can be seen by noting that
X ′ → f̂ 2/

√
1+ f̂ 4 and Y ′ → −1/

√
1+ f̂ 4 as s → 0 in the outer region, while in contrast X ′ = 1 and

Y ′ = 0 at s = 0 at the orifice (from the initial conditions to equations (1.1)). However, Z′ → 0 as s → 0
in the outer region, and Z′ = 0 at s = 0 at the orifice from the initial conditions to (1.1). Consequently,
unlike in sections 2 and 3, the jet’s trajectory has an O(1) change in direction over the narrow inner
region, with an O(1) change in X ′ and Y ′ at the start of the outer region when compared to the initial
conditions at the orifice. This does not occur for Z′. The outer region equations were also solved
numerically in this section, showing the jet spiralling away from the container.

The inner region equations were also solved exactly in the limit We → ∞ and f̂ → ∞, confirming
the observations found elsewhere in this section. Also, by expanding these solutions for both small and
large s̄, the other asymptotic results in this section can be confirmed.

5. Other asymptotic scenarios for small Rb

When Fr ≪ Rb as Rb → 0 then the equations become dominated by gravity, as can be seen from the
equation for u0 in (1.1), and rotation no longer appears at leading order in the equation for the speed
of the jet. Equation (1.5) shows that κ2 = O

(
Fr2/Rb3

)
for Fr ≪ Rb as Rb → 0 at s = 0. So for

Fr = O
(
Rb3/2

)
then κ2 = O(1) at s = 0 for Rb → 0. For Fr ≪ Rb3/2 then κ2 → 0 at s = 0 for Rb →

0. Therefore, these situations are not examined in this paper since κ2 is not asymptotically large in
this situation for Fr 6 O

(
Rb3/2

)
. Physically this scenario is associated with gravity dominating over



FIG. 10. Numerical solution to outer region equations (4.2) for f̂ = 1. Using X = r (s)cos(θ (s))−1 and Z = r (s)sin(θ (s)), the
solid line shows r (s), the dashed line shows θ (s) and the dotted line shows Y (s).

rotation.
Also, when Fr = O

(
Rb−1/2

)
then κ2 = O(1) at s̄ = 0 from (1.5). For Fr ≫ Rb−1/2 then κ2 → 0 at

s = 0 as Rb → 0 from (1.5). Again, these situations are not examined in this paper since κ2 does not
become asymptotically large in this situation for Fr > O

(
Rb−1/2

)
. Physically this scenario is associated

with gravity being a weak influence on the jet.

6. Discussion

Note that in sections 2, 3 and 4, the torsion κ2 is only asymptotically large in the inner region, and the
torsion is small or O(1) throughout the outer region. We now use the asymptotic results from these
sections to draw some further conclusions.

Table 1 shows a summary of each of the three asymptotic calculations carried out in sections 2, 3
and 4 for Rb → 0. The first column gives the scaling of Fr in each calculation from sections 2, 3 and
4 respectively. The second column shows the scaling of the torsion κ2 at the orifice at s = 0 from (1.5)
in each case. The third, fourth and fifth columns give the asymptotic size of κ2 using the far-field of
the inner region in each case when s = O

(
Rb3/2

)
, when s = O(Rb) and when s = O

(√
Rb

)
(so that

s̄ = O
(
Rb−1/2

)
, s̄ = O

(
Rb−1

)
and s̄ = O

(
Rb−3/2

)
respectively) which correspond to early, mid and far

points in the inner region far-field. The sixth column gives the asymptotic size of κ2 in the outer region
when s = O(1) in each asymptotic calculation. Finally, the seventh column gives the behaviour of κ2 as



s → ∞ at the far-field of the outer region.

Table 1. Comparison of the asymptotic size of the torsion κ2 for the three asymptotic calculations carried out in this paper, showing
Fr = O(1), Fr = O

(
Rb1/2

)
and Fr = O(Rb) for Rb → 0 (from sections 2, 3 and 4 respectively), for different asymptotic sizes of

the arclength s. For each asymptotic size of Fr, the table shows the asymptotic size of the torsion κ2 at the orifice (where s = 0),
at three (early, mid and far) points in the far-field of the inner region, in the outer region (when s = O(1)) and at the far-field of
the outer region (where s → ∞).

1st column: 2nd column: 3rd column: 4th column:
Size of κ2 Size of κ2 Size of κ2

Size of Fr at orifice at an early point at a mid-point
where of far-field of far-field
s = 0 in inner region in inner region

where where
s = O

(
Rb3/2

)
s = O(Rb)

Fr = O(1) κ2 = O
(
Rb−1

)
κ2 = O(1) κ2 = O(Rb)

Fr = O
(

Rb1/2
)

κ2 = O
(
Rb−2

)
κ2 = O

(
Rb−1

)
κ2 = O(1)

Fr = O(Rb) κ2 = O
(
Rb−1

)
κ2 = O

(
Rb−1

)
κ2 = O

(
Rb−1

)
1st column: 5th column: 6th column: 7th column:

Size of κ2 Size of κ2 Size of κ2
Size of Fr at a far point in outer in far-field of

of far-field region outer region
in inner region where where

where s = O(1) s → ∞
s = O

(
Rb1/2

)
Fr = O(1) κ2 = O

(
Rb2

)
κ2 = O

(
Rb2

)
κ2 = O

(
s−1/2Rb2

)
Fr = O

(
Rb1/2

)
κ2 = O(Rb) κ2 = O(Rb) κ2 = O

(
s−1/2Rb

)
Fr = O(Rb) κ2 = O(1) κ2 = O(1) κ2 = O

(
s−1/2

)
It can be seen that κ2 is only large in a narrow region for 0 6 s < O

(
Rb1/2

)
. Once s = O

(
Rb1/2

)
then the torsion is no longer large in any of the three scenarios. This means that the torsion can only be
crucial to the flow in a narrow region close to the orifice for Rb ≪ 1.

Also note that the table shows that asymptotically large values of the torsion persist longest for
Fr = O(Rb), though it is still only O(1) when s = O

(
Rb1/2

)
and thus no longer asymptotically large.

In fact, for the first two asymptotic calculations, for Fr = O(1) and Fr = O
(
Rb1/2

)
, then the torsion

has decayed so rapidly that it is much less than O(1) in the outer region.
The most extreme region for large torsion is when Fr = O

(
Rb1/2

)
where κ2 = O

(
Rb−2

)
at s = 0.

However, the torsion quickly decays to O(Rb) in the outer region in this scenario.
Decent et al. (2018) showed that the slender jet model may break-down if the torsion is asymp-

totically large, and in particular argued that this may occur if κ2 = O
(
ε−1

)
. Consider this first in the

context of the scenario discussed in section 2. If Rb = O(ε) and Fr = O(1) then κ2 = O
(
ε−1

)
at

s = 0 from (1.5). Therefore, |κ2| ≪ O
(
ε−1

)
at s = 0 so long as ε ≪ Rb when Fr = O(1). However,

it is instructive to consider what happens as Rb → ε for Fr = O(1). When Rb = O(ε) for Fr = O(1)
then the part of the inner region where the torsion is O

(
ε−1

)
is at most from the orifice at s = 0 until

s = O
(
Rb3/2

)
= O

(
ε3/2

)
from Table 1 (where the torsion has become O(1)), where ε → 0. It would



appear to be in this small region for Rb = O(ε) and Fr = O(1) where the method developed by Wall-
work et al. (2002) and Decent et al. (2002) might become invalid. (When the method breaks down,
then the torsion may become sufficiently large to appear in the modified leading order jet equations.)

The arguments made in the previous paragraph for section 2 can now be repeated for section 3. When
Rb ≪ 1 and Fr = O

(
Rb1/2

)
, then κ2 = O

(
ε−1

)
at s = 0 if Rb = O

(
ε1/2

)
and Fr = O

(
ε1/4

)
from (1.5).

Therefore, |κ2| ≪ O
(
ε−1

)
at s = 0 so long as ε1/2 ≪ Rb. However, as Rb → ε1/2 for Fr = O

(
Rb1/2

)
in section 3, then the length of the inner region where the torsion may be O

(
ε−1

)
would be at most

from s = 0 at the orifice until s = O
(
Rb3/2

)
= O

(
ε3/4

)
using Table 1 (where the torsion has become an

order of magnitude smaller in Rb) where ε → 0, and it would appear to only be in this small region for
Rb = O

(
ε1/2

)
and Fr = O

(
Rb1/2

)
where the method developed by Wallwork et al. (2002) and Decent

et al. (2002) might become invalid.
The above can also be considered for section 4. When Rb ≪ 1 and Fr = O(Rb), then κ2 = O

(
ε−1

)
at s = 0 if Rb = O(ε) and Fr = O(ε) from (1.5). Therefore, |κ2| ≪ O

(
ε−1

)
at s = 0 so long as ε ≪ Rb.

As Rb → ε for Fr = O(Rb) in section 4, then the length of the inner region where the torsion may be
O
(
ε−1

)
would be at most from the orifice at s = 0 until s = O

(
Rb1/2

)
= O

(
ε1/2

)
using Table 1 (where

the torsion has become O(1)) for ε → 0, and it would appear to be only be in this region for Rb = O(ε)
and Fr = O(Rb) where the method developed by Wallwork et al. (2002) and Decent et al. (2002) may
become invalid.

Thus asymptotically large torsion such that κ2 = O
(
ε−1

)
occurs only in a narrow inner region close

to the orifice, and this region is asymptotically small as ε → 0. Over this narrow region the torsion
quickly becomes small or O(1) as the flow emerges out of the inner region. Note that the jet is not
asymptotically slender when κ2 = O

(
ε−1

)
since s would have to be rescaled with ε in a narrow orifice

based region. From the underlying Euler equations the appropriate scaling in such a region would appear
to be s = O(ε). (Also note that if the slender jet method instead breaks down for κ2 = O

(
ε−N

)
then the

above arguments can be repeated for any value of N > 0 and not just for N = 1. It is then again only
in a narrow orifice based region, where the jet is not slender, where the slender jet method may not be
valid, whatever the value of N > 0 which causes the torsion to become sufficiently asymptotically large
that the slender jet asymptotic expansions in Wallwork et al. (2002) and Decent et al. (2002) become
non-uniform.)

Figure 3 shows the torsion determined from a numerical solution to (1.1) when Rb = O(1). In
comparison, Figure 11 shows the torsion κ2, plotted against arclength s, determined from a numerical
solution of equations (1.1) when Rb is fairly small, namely for Rb = 0.1. (Though ε is typically much
smaller than 0.1.) Figure 11 shows three curves, for Fr = 1 (corresponding to section 2), for Fr = 0.3
(corresponding to section 3), and for Fr = 0.1 (corresponding to section 4). The Weber number We = 10
for all three curves. It can be seen that there are steep gradients close to s = 0 and that these numerical
solutions decay to zero in each case, as in sections 2, 3 and 4. As Rb decreases further below 0.1, then
the asymptotics show that |κ2| will become larger at s = 0 but will also decay more rapidly to zero as s
increases.

Other physical effects neglected in previous studies are likely to become more important for these
high rotation rates. The shape of the orifice and flow within the orifice may become more important in a
narrow region close to the orifice. Also the flow of air caused by the rotating container will be expected
to interact with the jet at high rotation rates, due to the increased influence of air resistance caused by
ambient pressure and frictional forces. Fenn & Middleman (1969) define a criterion for the influence
of air resistance upon Newtonian jets in quiescent air when a critical Weber number (based upon the



air density rather than the liquid density) exceeds a value of 5.3. Whilst this is an order of magnitude
larger than the values used in most simulations and physical experiments, the additional air flow caused
by the rotating container nevertheless will have a significant impact on the jet trajectory and break-up in
practice at high rotation rates. This has not been included in the model described here.

In summary, in this paper the most extreme situations for the torsion have been examined for which
Rb ≪ 1, and in these situations the torsion could only be important in an asymptotically narrow region
close to the orifice. If the torsion does not become sufficiently large at the orifice to cause the slender
model to become invalid, then the asymptotic method developed by Wallwork et al. (2002) and Decent
et al. (2002) is valid everywhere on the jet. If the torsion is sufficiently asymptotically large at the
orifice (and Decent et al. (2018) argued that the torsion would need to be O

(
ε−1

)
), then the method

developed by Wallwork et al. (2002) and Decent et al. (2002) may break-down in a narrow asymptotic
region that scales with ε close to the orifice where ε → 0. This means that it has been shown here that
asymptotically large torsion can only be maintained on the jet for an asymptotically short distance.

Once away from this narrow inner region then the jet will be able to be described by the outer region
equations found in this paper in sections 2, 3 and 4, which are simplified versions of the trajectory
equations found previously by Wallwork et al. (2002) and Decent et al. (2002). It is in this outer region
where s = O(1) where the jet dynamics cause travelling waves to propagate down the jet and cause it to
rupture as described by Wallwork et al. (2002), Decent et al. (2002) and subsequent papers (e.g. Parau
et al. 2006, 2007 and Uddin et al. 2006, 2008).

Therefore, the method of Wallwork et al. (2002) and Decent et al. (2002) can be used to describe
the jet dynamics even when Rb is asymptotically small and even when the torsion κ2 = O

(
ε−1

)
at the

orifice. Thus as new industrial applications for curved slender jets appear, this is an accurate and useful
method.
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