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Abstract

Graphite forms the endpoint for organic carbon metamorphism; it is extremely resilient to physical, biolog-
ical and chemical degradation. Carbonaceous materials (CM) contained within sediments, collected across
Taiwan and from the Gaoping submarine canyon, were analyzed using Raman spectroscopy to determine
the crystallinity. This allowed the erosional and orogenic movements of petrogenic organic carbon (OCpetro)
during the Taiwanese orogeny to be deduced. After automatically �tting and classifying spectra, the dis-
tribution of four groups of CM within the sediments provides evidence that many forms of OCpetro have
survived at least one previous cycle of erosion, transport and burial before forming rocks in the Western
Foothills of the island. There is extensive detrital graphite present in rocks that have not experienced high-
grade metamorphism, and graphite �akes are also found in recently deposited marine sediments o� Taiwan.
The tectonic and geological history of the island shows that these graphite �akes must have survived at least
three episodes of recycling. Therefore, transformation to graphite during burial and orogeny is a mechanism
for stabilizing organic carbon over geological time, removing biospheric carbon from the active carbon cycle
and protecting it from oxidation during future erosion events.

Keywords: graphite; organic carbon; orogeny; recycling; Raman spectroscopy; erosion

1. Introduction

Erosion drives the transfer of Particulate Organic Carbon (POC) to geological basins, where its long-
term preservation is helped by rapid burial and/or anoxic conditions (France-Lanord and Derry, 1997; Galy
et al., 2007; Hilton et al., 2015; Walsh et al., 1981). This is a key feature of the global carbon cycle,
syphoning large amounts of atmospheric carbon into the lithosphere. Erosion also exposes previously buried
petrogenic carbon (OCpetro) at the Earth's surface, promoting the release of CO2 via microbial or chemical
degradation (Hemingway et al., 2018; Petsch et al., 2000). For the organic pathway to carbon sequestration
to be e�ective on geological time scales, a net transfer has to occur from the atmosphere-surface system
into geological storage. Although this transfer appears to be e�cient in mountain belts where short, steep
transport lines connect source and sink (Galy et al., 2007; Hilton et al., 2008; Kao et al., 2014), these
settings are prone to rapid tectonic recycling, and carbon may re�ux into the atmosphere, especially if the
OCpetro is biologically-available or prone to physical decay. Graphitization by deep burial renders carbon
more recalcitrant, which may limit losses during orogenic recycling (e.g. Galy et al., 2008). Survival rates of
OCpetro during single cycles of erosion and deposition have been estimated at between 15 % and 85 %, with
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shorter distances between source and sink leading to better preservation (Galy et al., 2008; Hilton et al.,
2008; Bouchez et al., 2010). With high survival rates, the ability for OCpetro to persist over multiple cycles
of burial and exhumation is possible, but has not been demonstrated. Here, we address this knowledge
gap, showing that in the rapidly exhuming mountains of Taiwan, highly graphitized OCpetro can escape
degradation during repeated erosional cycles. This raises the prospect of progressive accumulation of POC
in geological basins, provided that tectonic burial is su�ciently deep to drive graphitization.

2. Geological and Tectonic setting

Mountain building in Taiwan is associated with the rapid and ongoing convergence of the Philippine
Sea plate and the Asian continental margin (Teng, 1990). Until 3 Ma, the Taiwan segment of the Asian
margin experienced passive margin sedimentation, dominated by �ne-grained clastic input. Since then,
continental margin deposits and underlying marine sediments of Miocene-Pleistocene age have accreted
along the western mountain front, and progressively uplifted to form the Western Foothills fold and thrust
belt. These rocks have undergone little metamorphism (Yui and Chu, 2000). In the central and northern
part of the island, they abut the Hsuehshan Range, which consists of an Eocene-Oligocene passive margin
sedimentary sequence, metamorphosed during the Plio-Pleistocene from prehnite-pumpellyite facies up to
greenschist facies (Chen et al., 1983, 2019; Yui and Chu, 2000). Further south and east, the Central Range
consists of Tertiary and older metasedimentary rocks that have also experienced this range of metamorphic
conditions, and up to amphibolite facies in the Tananao Complex, which includes carbon-rich black schists.
Major formations and stratigraphic groups are shown in Figure 1.

The emergent mountain belt has been shedding sediment to the west, into the shallow sea between
Taiwan and the Asian mainland. In this basin, a transition from Chinese continental to Taiwanese orogenic
sediment sources occurred in the early-mid Pliocene (Teng, 1990). While older Taiwan-derived sediments
are all submarine, rocks of the younger Cholan and Tuokoshan formations have subaerial components,
representing the precursors of the river fans that dominate the modern coastal plain of west Taiwan. The
deposits of the Taiwan Strait are prone to orogenic recycling, but to the south, sediment can escape into the
Manila trench, and to the north into the Okinawa backarc basin. On million-year timescales, exhumation
in Taiwan is more or less balanced by erosion. Local erosion rates up to 6.0 mm y−1 deliver 500 Mt y−1

sediment to the ocean (Dadson et al., 2003). Some rocks are rapidly recycled from shallow exhumation
trajectories, whilst others were brought up from deep within the orogen (Beyssac et al., 2007; Teng, 1990).

The Taiwan Central Range contains carbon-bearing metamorphic units, with up to 0.54 % OC in black
schists, whilst low-grade rocks in the Western Foothills contain up to 0.65 % OC along with larger coal
clasts (Hilton et al., 2010). Here we use Raman spectroscopy on samples collected o�shore and from rivers
draining the Central Range and Western Foothills to investigate recycling of OCpetro during the Taiwan
orogeny. Raman spectroscopy of carbonaceous material (CM; material that has been partially or wholly
transformed from organic matter into graphite) can be used to determine the thermal history of geological
samples through the degree of OCpetro graphitization, which has been shown to increase systematically
between 200 °C (extremely amorphous) and 645 °C (completely crystalline) (Beyssac et al., 2002a, 2003;
Lah�d et al., 2010). This relationship has also been used as a sediment source marker to understand
sedimentary processes (Nibourel et al., 2015; Sparkes et al., 2013, 2018). Sediment from multiple sources
can be deconvolved by characterising the distribution of di�erent classes of OCpetro within a heterogeneous
sample (Sparkes et al., 2018). Taiwanese lithologies have experienced a range of metamorphic conditions,
and therefore host a wide distribution of OCpetro crystal structures (Sparkes et al., 2013). A thorough
survey of Taiwanese bedrock by Beyssac et al. (2007) found that autochthonous OCpetro in rocks of the
Central Range and Hueshuan Range bear evidence of metamorphic temperatures ranging from <330 to 516
°C, below the threshold for complete graphitization (645 °C). They also found rare graphite �akes in the
Miocene formations of west Taiwan, which petrography deemed detrital.

The wide range of OCpetro metamorphism present in Taiwan allows individual catchments to be �nger-
printed using Raman spectroscopy. Additionally, the typhoon-prone climate causes large volumes of sediment
to be harvested episodically from across Taiwan and delivered to the surrounding seas via hyperpycnal �ows,
where an integrated sedimentary signal can be recovered from o�shore samples. One such episode followed
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Figure 1: Geological map of southern Taiwan, showing catchments sampled in this study. Major stratigraphic groups are
shown, along with representative formations and their ages. Sample sites are shown by black triangles. SH: Gaoping Shelf,
CN: Gaoping Submarine Canyon, LN: Laonung River, CY: Chenyoulan River, SED: Grass Lake Creek sediment, CL: Grass
Lake Creek coal.

typhoon Morakot in August 2009. This typhoon generated signi�cant deposition of terrestrial sediment in
the Gaoping submarine canyon and Manila trench (Sparkes et al., 2015; Carter et al., 2014). Radiocarbon
dating showed that the organic matter in these sediments was dominated by OCpetro, with a fraction modern
organic carbon of 0.34 (Sparkes et al., 2015).

3. Materials and Methods

3.1. Sample Sites

This study is focused on the closely coupled Gaoping River and Canyon system (Liu et al., 2016). The
Gaoping River is the second largest in Taiwan, with a drainage area of 3257 km2, and an average annual
sediment load of about 50 Mt y−1 (Dadson et al., 2003). Within this watershed are rocks from a wide range
of lithological groups. The Laonung tributary drains 63 % of the catchment (see Figure 1). This fraction
comprises predominantly Eocene Central Range units, especially the Lushan and Pilushan formations, and
Miocene rocks from the Western Foothills, along with some Oligocene units of the Hsueshuan Range and
a minor amount of pre-Tertiary Central Range. The lower part of the Gaoping catchment drains younger
Western Foothills rocks, from the Mid Miocene to Pliocene formations, and a small amount of Eocene
Hsuehshan Range material. Erosion rates vary across the study area, and are highest where high storm
frequency concides with weak substrates and rapid tectonic deformation (Dadson et al., 2003). Therefore
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the younger, less metamorphosed lithologies within the Gaoping and Laonung catchments are likely to
contribute relatively more sediment to the �uvial and marine system.

Sediments (sample code �LN�), with coarse sand to silt-sized grains, were collected from a river bar and
�ood deposits on the banks of the Laonung River after typhoon Morakot (see Sparkes et al., 2015, and the
supporting information for further details).

To better characterize the variety of formations within the Gaoping catchment, two smaller catchments
draining a restricted range of outcropping formations were sampled further north in Taiwan (Figure 1).
First, the Chenyoulan River in central Taiwan drains rocks of Eocene to Miocene age from the Hsueshuan
Range and Western Foothills but, in contrast to the Laonung River, does not comprise formations belonging
to the Central Range. Suspended sediment samples were collected from the Chenyoulan River (�CY�) before
typhoon Fanapi (2010) and on the rising limb of the typhoon �ood. Second, the Grass Lake Creek in
Taichung County drains exclusively Plio-Pleistocene age material from the Western Foothills' Cholan and
Tuokoshan Formations (Chen et al., 2001). Hand specimens of sandstone from the river bedload (�SED�)
represent material from across the catchment. In addition, cm-sized lignite-grade coal (�CL�) was recovered
from the bedload, which can be used to determine the metamorphic/diagenetic grade attained by organic
matter within these formations after deposition (Beyssac et al., 2002a; Lah�d et al., 2010; Sparkes et al.,
2013).

The Gaoping River connects to the Gaoping Canyon, immediately o�shore. The canyon is a sinuous
erosive feature within the 45 km wide continental shelf, through which material is transferred to the deep
ocean basin of the South China Sea. During and after typhoon Morakot, turbidity currents, which are
frequently observed following storm events in Taiwan (Liu et al., 2012, 2013), transported sediment to long-
term storage in the Manila Trench, hundreds of kilometres from the sediment source (Carter et al., 2014).
Samples were collected by box coring of canyon (�CN�) and shelf (�SH�) sediments following the typhoon
(cruise OR1-915). These samples are dominated by terrestrial sediment, especially in the canyon but also
the core-top of the shelf sediments (Sparkes et al., 2015). Based on elemental and isotopic characterisation,
the major component of their organic carbon load was OCpetro, likely from the Laonung River (Sparkes
et al., 2015).

Figure 1 shows the proportion of each lithology group in the catchments above each sample location.
Proportions were calculated based on the 2D area fraction of a digital geological map situated within each
catchment (Chen et al., 2000). Multiple lithologies were grouped together to form the larger units, see
Figure 1 for the groupings. Further sampling details, and lithological area calculation results, are in the
supporting information.

3.2. Raman spectroscopy

The physical changes that occur during graphitization could signi�cantly increase the resilience of OCpetro

during erosion and transport. Raman spectroscopy has been used to interrogate the crystal structure of
OCpetro within rocks and sediments ((e.g. Beyssac et al., 2002b, 2003, 2007; Nibourel et al., 2015; Sparkes
et al., 2013). Spectra were collected from ground and homogenized powders, analyzed using automated
routines and classi�ed into four groups using peak area and width parameters (Sparkes et al., 2013, ; see
Figure 2 for example spectra; see the supporting information for full method details). These groups are
Disordered, Intermediate Grade, Mildly Graphitized, and Highly Graphitized OCpetro.

4. Results

194 spectra were collected from 19 samples. Each spectrum was classi�ed using the spectral parameters
described above, and the results are shown per catchment group in Figure 3. These spectra cover a wide
range, from extremely disordered OCpetro to perfectly crystalline graphite. With heterogeneous mixtures
like these, it is di�cult to collect enough Raman spectra for full quantitative analysis of each spectral group.
Moreover, total OC concentrations in our sample materials are relatively low, meaning that the number of
spectra collected per sample do not allow statistical treatment of the dataset. Therefore, we are restricted
to documenting the presence or absence of each spectral group. There are OCpetro classes that are notably
present or absent in samples from particular locations.
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Figure 2: Examples of Raman spectra from a range of OCpetro analyzed in a single sedimentary sample. Sum of peak widths
(G + D1 + D2) is plotted against metamorphic temperature (Beyssac et al., 2002a; Lah�d et al., 2010). Spectral classes used
in this study are labelled and shown using colored boxes (red = Disordered, blue = Intermediate Grade, light gray Mildly
Graphitized, dark gray = Highly graphitized) Spectra a) through to f) demonstrate a reduction in peak width and an increase
in inferred temperature, denoting an increase in crystallinity during the transition from amorphous carbon into graphite.

The Gaoping Canyon (CN) and Shelf (SH) contain all four classes of OCpetro, particularly the Interme-
diate Grade. Mildly and Highly graphitized OCpetro are present in both of these sample groups. Onshore,
the Laonung River (LN) contains mostly Intermediate Grade OCpetro, with one spectrum classed as Mildly
Graphitized. The Chenyoulan River (CY) samples also contained mostly Intermediate Grade OCpetro, with
some Mildly Graphitized OCpetro (at the Intermediate Grade end of this class) and minor amounts of Dis-
ordered OCpetro. The Grass Lake Creek sediment (SED) contained all four classes of spectra, but the two
extreme categories (Highly Graphitized and Disordered OCpetro) are more abundant. The coal clast (CL)
collected from Grass Lake Creek produced only spectra in the Disordered class, with extremely wide Raman
peaks and very little inter-spectra variation.

5. Discussion

The collected Raman spectra, combined with geological maps and tectonic, sedimentary and �uvial in-
formation about Taiwan and China, allow us to attempt the following: identify the likely source litholog(ies)
for each class of Raman spectra; track the movement of OCpetro through one or more erosion - burial -
exhumation cycles; propose a source of Highly Graphitized OCpetro found in Taiwanese sediments, and infer
the consequences for the carbon cycle of graphite exhumation and erosion.

5.1. Source lithologies of di�erent OCpetro types

Combining geological maps with Raman data allows the source lithologies of each OCpetro class to be
inferred.

5.1.1. Source of Highly Graphtized OCpetro

The Central Range, Hsuehshan Range and Early-Mid Miocene Western Foothills contain formations
with highest metamorphic grade in the study area, making up the major proportion of the Laonung (LN
samples) and Chenyoulan (CY samples) river catchments (Figures 1 and 4). OCpetro with the highest
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Figure 3: Distribution of spectral properties for all samples, grouped by catchment. Sum of peak widths plotted against
metamorphic temperature and classi�ed as in Figure 2. Presence of absence of spectra from each class was used to determine
sediment provenance.

degree of crystallinity would be expected to come from these formations, and be seen in samples LN and
CY. However, Highly Graphitized OCpetro was not found in these samples. Highly Graphitized OCpetro was
only found in the Gaoping Canyon, Gaoping Shelf and the Plio-Pleistocene Grass Lake Creek sediments
(CN, SH, SED; see Figures 3 and 4). Formations younger than the Mid Miocene forms only 3 % of the
Laonung catchment area, but 41 % of the remainder of the Gaoping River catchment. Paradoxically, the
source of Highly Graphitized OCpetro to the Gaoping Canyon and Shelf appears to be the formations that
are present exclusively in the lower Gaoping River basin, namely Mid Pliocene to Pleistocene sediments
with low or no metamorphism.

5.1.2. Source of Mildly Graphtized and Disordered OCpetro

This pattern repeats for Mildly Graphitized spectra, which are found in the o�shore (CN, SH) and SED
samples, but form only a minor component of the LN and CY samples. Similarly, Disordered grade OCpetro

is present in the CN and SH samples, but not in the LN samples and only represents a minor component in
the CY samples (see Figures 3 and 4). SED samples are dominated by Disordered OCpetro, and CL is entirely
Disordered (Figure 3). This suggests that the Cholan and Tuokoshan formations, exposed in the Grass Lake
Creek catchment and the lower part of the Gaoping River catchment, are the source of Disordered OCpetro.
A large coal clast within �ner sediments is highly unlikely to be detrital, so we assume that it records the
maximum diagenetic conditions in the surrounding rocks, which Raman geothermometers constrain to <180
°C (Lah�d et al., 2010). The lack of Disordered OCpetro in the LN samples, and its paucity in CY sediments,
would suggest that the Late Miocene - Pleistocene formations within the lower Gaoping River catchment
are also the principal source of the Disordered OCpetro found o�shore.

5.1.3. Source of Intermediate Grade OCpetro

Conversely, there is plentiful Intermediate Grade OCpetro found in the samples sourced from the more
internal parts of the mountain belt (CN, SH, LN and CY), but there is relatively less of this in the SED
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Figure 4: Venn diagram showing which lithology groups and OCpetro classes are present in each catchment (CN = Gaoping
Canyon, SH = Gaoping Shelf, LN = Laonung, CY = Chenyoulan, SED = Grass Lake Creek. Colored circles (a = youngest, h
= oldest) match the lithological groups identi�ed in Figure 1. Larger circles show lithologies that contribute a larger area to
the total catchment size (all four catchments combined). Diamonds show which OCpetro classes are present in each catchment,
colors match Figures 2 and 3. DIS = Disordered, INT = Intermediate Grade, MG = Mildly Graphitized, HG = Highly
Graphitized. Circles/diamonds overlapping the edge of a catchment shows that the lithology or OCpetro class is a minor
contributor to that catchment.

samples (see Figure 3). The Hsuehshan and Central range units are more metamorphosed than the Western
Foothills, and are the likely source of Intermediate Grade OCpetro to the Gaoping Canyon (Beyssac et al.,
2007; Chen et al., 1983; Yui and Chu, 2000).

Figure 4 summarizes these �ndings in a Venn-style diagram. Four large overlapping circles de�ne areas
that are unique to particular catchments, or shared by two or more. Formations (colored circles) and
OCpetro classes (diamonds) are plotted in the area corresponding to the catchments in which they are found.
The youngest, weakest, rocks of the Western Foothillls contain Highly Graphtized, Mildly Graphitized and
Disordered OCpetro, while the more metamorphosed formations in the main mountain range contain mostly
Intermediate Grade OCpetro. Since erosion in Taiwan is linked to lithology strength (Dadson et al., 2003), the
small exposure of Western Foothills formations in the lower reaches of the Gaoping River may be contributing
a large proportion of the OCpetro to the CN and SH samples, hence the o�shore sediments deposited following
Typhoon Morakot are dominated by material eroded from the �oodplain, not the mountain belt.

5.2. OCpetro survival through an erosion - burial - exhumation cycle

Studies of the transport and erosion of OCpetro have shown that while disordered or semi-ordered material
may be lost during long-distance �uvial transfer, crystalline graphite can survive erosion and transfer over
thousands of kilometres (Bouchez et al., 2010; Galy et al., 2008; Scheingross et al., 2019). However, little
is known about the resilience of OCpetro during sedimentary burial and subsequent tectonic and erosional
exhumation. Given the presence of autochthonous Disordered OCpetro in the mono-lithological Grass Lake
Creek catchment, any Intermediate Grade, Mildly Graphitized and Highly Graphitized OCpetro in these
samples must be detrital, transported in following formation elsewhere. OCpetro in these higher grade
classes, therefore, has survived a longer pathway involving at the least OCbiosphere burial, CM formation,
exhumation, erosion, reburial, and re-exhumation.
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5.3. OCpetro survival during exhumation and erosion in a large catchment

Since the Gaoping River catchment receives sediment from many formations, a range of autochthonous
OCpetro could be sourced directly. Late Miocene - Pleistocene material of the Western Foothills outcrops
in the lower reaches of the Gaoping River. Erosion from these low-grade units would deliver Disordered
OCpetro o�shore after one cycle of OCbiosphere burial - CM formation - exhumation - erosion. Beyssac et al.
(2007) measured maximum metamorphic temperatures of 516 ± 8 °C, in the Tananao Schist complex of
the Pre-Tertiary Central Range, but the majority of their Hueshuan and Central Range samples produced
temperatures of 350 - 450 °C, corresponding to Mildly Graphitized OCpetro at most (Figure 2). Therefore
erosion of these formations by the Laonung River could supply autochthonous Intermediate Grade and
Mildly Graphitized OCpetro to the Gaoping Canyon and Shelf system from just one cycle of OCbiosphere

burial - CM formation - exhumation - erosion. Figure 3 suggests that this could be the case, although these
OCpetro classes are also present in SED, so erosion of Western Foothills formations by the lower branch of
the Gaoping River could also supply detrital Intermediate Grade and Mildly Graphitized OCpetro to samples
CN and SH.

However, there is no evidence of metamorphism capable of creating Highly Graphitized OCpetro within
Taiwan (Beyssac et al., 2007; Chen et al., 1983; Yui and Chu, 2000). Therefore, the Highly graphitized
OCpetro found in CN and SH must be detrital. We propose that it is sourced from erosion of young, weakly
lithi�ed rocks in the lower reaches of the Gaoping (e.g. Cholan and Tuokoshan formations, shown by SED
to contain Highly Graphitized OCpetro). As in the Grass Lake Creek catchment, these particles of Highly
Graphitized OCpetro have survived OCbiosphere burial - graphite formation - exhumation - erosion - burial -
exhumation before being eroded by Typhoon Morakot.

5.4. OCpetro survival through multiple erosion - burial - exhumation cycles

Highly Graphitized OCpetro requires intense metamorphic conditions to form, and we now attempt
to trace the sedimentary and tectonic history of our samples back to a plausible geological source. Highly
Graphitized OCpetro was observed in the Plio-Pleistocene Cholan and Tuokoshan formations (SED samples),
and in the Gaoping catchment samples downstream of these formations (CN and SH) but not in material
from the Hueshuan and Central ranges (CY amd LN). Beyssac et al. (2007) observed a few detrital graphite
grains in the Tachien Sandstone (Hueshuan Range), but these were not observed in LN or CY. The Tachien
Sandstone forms 14 % of the Chenyoulan catchment, and <1 % of the Laonung, so it is unlikely to be the
source of Highly Graphitized OCpetro in CN and SH.

The Plio-Pleistocene formations comprise terrestrial and shallow-marine sediments sourced from the
emerging Taiwan orogen (Chen et al., 2001). Careful �eld sampling campaigns across the core of the
mountain belt have not found any autochthonous Highly Graphitized OCpetro, or even high concentrations
of detrital graphite. Even the highest grade rocks exhumed on the island to date only contain Mildly
Graphitized OCpetro (Beyssac et al., 2007), and it would be unusual to completely erode a high-grade
metamorphic rock, leaving lower grade, stratigraphically higher, material behind. The original graphite
source must therefore be external to the island. Hence, this graphite must have experienced at least two
cycles of erosion - burial - exhumation prior to deposition in the Plio-Pleistocene foreland of west Taiwan.
We postulate that the graphite found in the Pliocene - Pleistocene units, and by extension the Gaoping
Canyon system, was originally sourced from erosion of mainland China, and deposited in a sedimentary unit
that was comprehensively excavated during the emergence of Taiwan.

5.5. Long-distance transport of Highly Graphitized OCpetro

If China is the source of the graphite in Taiwanese sediments, there should be both a viable supply of
eroding graphite on the mainland, and a plausible transport route. China contains the largest reserves of
crystalline graphite in the world (Wilde et al., 1999). Graphite formed by contact metamorphism is present
in south-eastern China, mined commercially in Hunan province (Zheng et al., 1996), drained by the Yangtze
River. Detrital Highly Graphitized OCpetro from the Yangtze Block basement has been characterised by
Raman (Ye et al., 2019). Currently the Yangtze �ows into the East China Sea, where north-�owing currents
take material away from Taiwan. However, the middle Yangtze region used to �ow southwest into the

8



120°E

26
°N

22
°N

Philippine
Sea Plate

Taiwan
Strait

Eurasian Plate

East China Sea

South China Sea

11

22

33

44

55

Taiwan

Erosion of graphite

Exhumation of graphite

km
0 100 200

4000 m0-7000 m TopographyBathymetry

Figure 5: The proposed path of Highly Graphitized OCpetro. Solid arrows represent erosional pathways, dashed arrows orogenic
movements. Following erosion on mainland China, graphite was transported to the South China Sea [1], uplifted as part of
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Red River, and was only captured for eastward �ow sometime between 36.5 and 23 Ma (Zheng et al.,
2013). Graphite from the Red River could have been delivered to the South China Sea continental shelf
until the late Eocene, or even late Oligocene, before the Yangtze changed direction. The lack of abundant
detrital graphite within the Central Range units (CY and LN), suggests that graphite delivery to the China
continental margin was not ubiquitous. Our proposed pathway involves a marine transport distance of
around 1500 km, in addition to up to 1000 km �uvial transport. These distances are shorter, but comparable
to, those observed by Galy et al. (2007) in the Ganges-Brahmaputra system. Over such distances, up to 50
% of detrital Highly Graphitized OCpetro can be preseved (Galy et al., 2008). If Highly Graphitized OCpetro

is able to survive physical damage and chemical oxidation during long-range transport (Scheingross et al.,
2019) then the transport across the South China Sea can take a considerable time without impacting our
proposed process.

We propose that graphite-bearing rocks were eroded in China and deposited as poorly-lithi�ed sediment
in the South China Sea, the �rst cycle of erosion and burial. This sediment was exhumed as Taiwan emerged
from the East China Sea (Chen et al., 2019). Since it had never been buried deeply, it was easily eroded
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and re-deposited in the Pliocene and Pleistocene-age units of the Western Foothills (SED), which were
the �rst to be sourced exclusively from terrestrial Taiwan (Chen et al., 2001). This is the second cycle of
graphite transport. The continuing uplift and erosion of Taiwan has led to a third recycling event for the
Highly Graphitized OCpetro particles, which have now been eroded from the western mountain front, via
the Gaoping River, to the Gaoping Submarine Canyon (CN, SH) and onwards towards the Manila Trench
(Figure 5).

5.6. Impacts on the carbon cycle

Our study infers that the Highly graphitized OCpetro present in the Gaoping Canyon and Shelf o� south-
west Taiwan has survived at least three cycles of erosion, burial and exhumation. Hence, it is remarkably
resilient, resisting oxidation or degradation during repeated exposure to oxygenated conditions, potentially
accompanied by disruptive erosional processes, and also the e�ects of tectonic deformation, �uid-rock in-
teraction, and microbial activity. Whereas more labile OCpetro can degrade or be lost during weathering,
erosion and transport (Bouchez et al., 2010; Galy et al., 2007; Hilton et al., 2014), graphitization is clearly
able to stabilize carbon for millions of years, even in settings with active tectonic shortening. When con-
sidering the carbon cycle in the context of mountain building, the likelihood of eroded fossil carbon being
returned to the atmosphere by degradation to CO2 depends on the degree of graphitization. Major orogenic
events, causing moderate to high-grade metamorphism, are likely stabilizing carbon as graphite. Alongside
the weathering of silicate minerals with carbonic acid and biospheric OC burial, this mechanism adds to the
role of mountain building in scrubbing CO2 from the atmosphere.

Erosion in Taiwan delivers about 500 Mt y−1 of sediment to the ocean (Dadson et al., 2003). Bedrock
and river bedload samples from across Taiwan contain mean OCpetro concentrations of 0.24 and 0.27 wt%
respectively (Hilton et al., 2010). Therefore, approximately 1 Mt y−1 of OCpetro is delivered from the island,
a similar amount to the combined OCpetro discharge of the Beni and Madre de Dios Rivers in the Andes
(Clark et al., 2017). This is equivalent to an area-normalized OCpetro yield from Taiwan of approximately 30
t km−2 y−1, twice the that of the Andean rivers (Clark et al., 2017). The graphitic proportion of this OCpetro

is likely to be stable over long distances and geological timescales. The Grass Lake Creek sediments suggest
that lower grade OCpetro is likely to survive transport and reburial over short distances, even if longer range
transport leads to progressive loss of the more Disordered material (Bouchez et al., 2010; Clark et al., 2017;
Galy et al., 2008). Therefore, OCpetro oxidation in other erosive locations around the world should be a
slow process compared to degradation of biosphere-derived OC. In the Arctic Ocean, OCpetro erosion from
permafrost was tracked from the coastline across 500 km of continental shelf (Sparkes et al., 2018). The
Taiwanese case suggests that the OCpetro component of the shelf deposits should survive on the shelf for
thousands to millions of years, even if more labile biospheric OC is prone to degradation (Benner et al., 1997;
Bröder et al., 2016; Hedges et al., 1997; Prahl et al., 1994; Salvadó et al., 2017; Sparkes et al., 2016). When
calculating the likelihood of OC remineralization in erosive systems, care must be taken to di�erentiate
material based on lability and not to treat the entire OC pool as equally vulnerable to degradation.

Finally, this study suggests that graphite �akes, being resistant to physical, chemical and biological
degradation, can be used as geochemical tracers through extreme tectonic events, in a similar manner to e.g.
zircons. Coupled with the relative ease of Raman measurements, this would suggest that in many situations
graphite and other OCpetro can be excellent targets for studying erosional histories and tectonic events as a
complement to traditional techniques.

6. Conclusions

By analyzing Raman spectra from multiple catchments within a complex tectonic system, we have
shown that graphitic carbon can survive multiple orogenic cycles, being transported as microscopic �akes
within the sediment load. Young sedimentary rocks in the Western Foothills of Taiwan contain highly
crystalline graphite that must have experienced at least two erosional cycles. Sediments collected from the
Gaoping River and Canyon suggest that these formations have supplied graphite to the submarine canyon,
indicating a third cycle of erosion. Despite multiple sediment recycling events precluding permanent burial,
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graphitization of organic matter during orogenesis has led to a stabilization and sequestration of carbon over
geological timescales.
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