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Machine learning driven non-invasive 
approach of water content estimation in living 
plant leaves using terahertz waves
Adnan Zahid1 , Hasan T. Abbas1, Aifeng Ren1,2, Ahmed Zoha1, Hadi Heidari1, Syed A. Shah1, 
Muhammad A. Imran1, Akram Alomainy3 and Qammer H. Abbasi1*

Abstract 

Background: The demand for effective use of water resources has increased because of ongoing global climate 
transformations in the agriculture science sector. Cost-effective and timely distributions of the appropriate amount 
of water are vital not only to maintain a healthy status of plants leaves but to drive the productivity of the crops and 
achieve economic benefits. In this regard, employing a terahertz (THz) technology can be more reliable and progres-
sive technique due to its distinctive features. This paper presents a novel, and non-invasive machine learning (ML) 
driven approach using terahertz waves with a swissto12 material characterization kit (MCK) in the frequency range of 
0.75 to 1.1 THz in real-life digital agriculture interventions, aiming to develop a feasible and viable technique for the 
precise estimation of water content (WC) in plants leaves for 4 days. For this purpose, using measurements obser-
vations data, multi-domain features are extracted from frequency, time, time–frequency domains to incorporate 
three different machine learning algorithms such as support vector machine (SVM), K-nearest neighbour (KNN) and 
decision-tree (D-Tree).

Results: The results demonstrated SVM outperformed other classifiers using tenfold and leave-one-observations-
out cross-validation for different days classification with an overall accuracy of 98.8%, 97.15%, and 96.82% for Coffee, 
pea shoot, and baby spinach leaves respectively. In addition, using SFS technique, coffee leaf showed a significant 
improvement of 15%, 11.9%, 6.5% in computational time for SVM, KNN and D-tree. For pea-shoot, 21.28%, 10.01%, and 
8.53% of improvement was noticed in operating time for SVM, KNN and D-Tree classifiers, respectively. Lastly, baby 
spinach leaf exhibited a further improvement of 21.28% in SVM, 10.01% in KNN, and 8.53% in D-tree in overall operat-
ing time for classifiers. These improvements in classifiers produced significant advancements in classification accuracy, 
indicating a more precise quantification of WC in leaves.

Conclusion: Thus, the proposed method incorporating ML using terahertz waves can be beneficial for precise esti-
mation of WC in leaves and can provide prolific recommendations and insights for growers to take proactive actions 
in relations to plants health monitoring.
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Background
The growing consciousness of fruits and vegetable qual-
ity in recent years, while utilizing natural resources such 
as water consumption [1], strongly demand viable and 

feasible techniques to detect early symptoms of plants 
drought stresses [1, 2]. The recent climate transforma-
tions and growing deficiency of water resources have 
posed enormous challenges, particularly in the applied 
plant biology sector [3, 4]. In this regard, much efforts 
have been geared by researchers, horticulturists, and 
plant physiologists at various levels in the plant sci-
ence sector, towards developing feasible strategies for 
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non-invasive techniques [5–9] in monitoring the health 
status, and biological traits of leaves to sustain crops pro-
ductivity. Hence, a precise estimation of water content 
(WC) at a cellular level in plants leaves is of high-impor-
tance to growers, and cultivators to take appropriate and 
efficient measures by facilitating them with appropriate 
amounts of resources inputs, i.e. water and nutrients to 
maintain healthy physiology [3–9].

In recent years, many conventional techniques [6–13] 
have been suggested for accurate estimation of WC in 
leaves and studied the morphological structure of leaves 
in detail. These methods including magnetic resonance 
imaging (MRI), near-infrared spectroscopy (NIRS), 
hyper-spectral imaging [8–13] have offered better reli-
ability but have been suffered by some limitations and 
considered as time-consuming, and unsuitable for long-
term studies due to disparaging nature [9–13]. Besides, 
some others non-destructive techniques such as thermal 
imaging [12–16] have been proposed, and yet they too 
are littered with limited resolution and sensitivity issues, 
and transpired as inappropriate for detecting monitoring 
information on water dynamics and diminutive changes 
at the cellular level [13–16]. Consequently, the evolv-
ing applications of terahertz time-domain spectroscopy 
(THz-TDS) technology, which is considered as non-
intrusive, has been deployed in the field of plant physi-
ology to detect anomalies proactively and investigate the 
structural behaviour and complex traits of leaves under 
the particular environment [16–18]. This technique is 
proven to be more effective and reliable compared to 
other approaches. However, it is a costly technique, and 
on-site access is limited [16–18].

Meanwhile, terahertz (THz) technology has been widely 
used in diverse field applications such as diagnostic appli-
cations of dental and skin-care [4, 19, 20], unseen hazard 
items [5], material characterizations [4, 5], and telecom-
munications [5, 20]. However, researchers from plants 
science sector are of the strong view that its potential to 
disseminate through plants sector is still to be thoroughly 
revealed, considering it as a new source of vital improve-
ments for the agricultural sector [4, 21]. The aforesaid pre-
vailing challenges in exploring the spectral analysis of WC 
in leaves using THz have immensely engaged numerous 
scientists and captivated researchers from diverse fields. 
Moreover, evidence from multi-disciplinary agri-technol-
ogy studies show that reliable and early detection of WC 
in plants leaves at a cellular level can drive agricultural 
productivity and optimize the economic benefits [10–12]. 
For this purpose, machine learning (ML) applications cre-
ate an innovative opportunity to unravel, quantify, and 
understand data-intensive processes in agricultural opera-
tional environments [22]. In recent time, the applications 
of ML have been immensely used in various scientific 

fields [22] such as healthcare sector, food security, mete-
orology, medicine, meteorology, economic sciences [22]. 
Furthermore, researchers are very keen to discover its 
possibilities, specifically in modern digital agriculture 
systems to develop intelligent management of plants by 
applying the water distribution effectively [22].

Considering the sensory characteristics of plants leaves, 
water is essential to the overall growth, transpiration, and 
nutritional process of plants leaves [10]. Therefore, timely 
delivery of the appropriate amount of resource inputs such 
as water and its precise quantification can be very benefi-
cial to drive and sustain overall crops productivity in an 
advanced agricultural system [10]. This paper presents a 
state-of-the-art method to closely monitoring the water 
dynamics in leaves using the scattering parameters of THz 
pulse waves through ML. In our study, we demonstrated 
that there is a clear relationship between the parameters 
of the pulse wave and the plants WC within a frequency 
range from 0.75 to 1.1 THz. We have performed in-lab 
experiments using three different plant leaves, including 
coffee, pea-shoot, and spinach for four consecutive days. 
Subsequently, the data is pre-processed for feature extrac-
tion and is fed to our proposed ML algorithm for auto-
mated classification of WC on different days.

The overarching aim of this study is to estimate and 
predict the future trends of WC in plants’ leaves in an 
automated fashion using THz pulse waves, which is 
indicative of the health status of the plants. For this pur-
pose, we have extracted time and frequency domain-fea-
tures of THz pulse wave and use it to train ML models 
to monitor WC in coffee, pea-shoot and spinach more 
precisely. By performing the leave-one-observation-
out cross-validation, we strongly feel that our proposed 
model has the capability to monitor the WC future trend 
proactively. Hence, it can save crops from stresses by tak-
ing timely action, which will ultimately help to increase 
yield production and optimize economic benefits. The 
rest of the paper is structured as follows: “Methods” pre-
sents methods and the implemented methodology for 
data collection and pre-processing, along with an initial 
classification accuracy of primary data. This is followed 
by the description of the feature extraction technique in 
“Results”. Section VI describes the proposed classification 
algorithms and optimal parameter selection method. In 
“Conclusion” and VI, the feature section and analysis of 
three classifiers results are discussed, respectively. Finally, 
the conclusion is drawn out in section VI.

Methods
Experimental setup
In this setup, a THz Swissto12 Material Characteriza-
tion Kit (MCK) [23] was employed to obtain the scat-
tering parameters of three plant leaves. The MCK was 
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connected to a Virginia Diodes Analyzer (VNA) extender 
WM-250 (WR1.0) which operated in the frequency range 
of 0.75 THz to 1.1 THz. The structural integrity and con-
figuration of leaves were also considered by employing 
two Polytetrafluoroethylene (PTFE) caps which were fit-
ted internally to the waveguide and could provide a con-
sistent compression to samples, as shown in Fig. 1. Prior 
to any measurements, the setup was calibrated using the 
two-port short-open-load-thru (SOLT) calibration tech-
nique to confiscate any unwanted errors or noicse that 
may have occurred while performing measurements.

Sample
Three various kinds of plants leaves were used for meas-
urements are coffee-arabica, pea-shoot and baby-spinach. 
In this study, these fresh leaves were detached from plants, 
which were fully grown and nurtured in Rouken Glen 
Farm, East Renfrewshire, Glasgow. According to the sta-
tus of these plants, these leaves grew well with no pests or 
disease and were kept in the laboratory under the environ-
ment temperature of 18 °C ± 0.1 °C, and the humidity was 
between 20% ± 2%. The thickness and weight of the leaves 
were continuously monitored for four consecutive days 
using the Vernier calliper and electronic scale, respectively. 
The thickness of leaves appeared to decrease substantially 
due to leaf dehydration. Hence, variations in WC of leaves 
was the key factor that caused spectral variation in meas-
urements, as shown in Fig. 1. In addition, all leaves’ thick-
ness and weight were measured at three various locations 
after every 120 min during the natural evaporation of WC 
to analyse the unevenness in the surface of leaves.

Procedure for data collection and pre‑processing
We used Matlab R2019a for preprcoessing of the data as 
well as classification in the form of supervised learning. 
The measurements data for all three fresh plant leaves 

were obtained in the Radio Frequency Laboratory at the 
University of Glasgow for four consecutive days. For each 
observation, all distinct leaves were placed between the 
two waveguides, and observations were recorded. Both 
the transmission coefficients  (S12,  S21) and reflection 
 (S11,  S22) were determined from the measurements. The 
overall experimental setup for measuring the WC of all 
fresh plants’ leaves is shown in Fig.  1. In this work, the 
focus was mainly to consider the transmission response 
as features for all three leaves and is shown in Fig.  2. 
Every day, the duration of measuring the THz trans-
mission response was approximately 9–10  h to observe 
various degree of WC in all three leaves was, and meas-
urements were recorded after every 120  min. This pro-
cess was repeated for four consecutive days. Hence, the 
total number of observations collected for coffee, pea-
shoot and baby-spinach for continuous 4 days are listed 
in Table  1. Table  1 shows the difference in the number 
of observations of leaves which indicates that each leaf 
had a variable degradation in WC during the 4  days of 
measurements. On each day, 10 rounds of weight meas-
urements were recorded over the span of 4 days and con-
verted into WC using (1) [17, 21, 24].

Upon close analysis of Fig.  2, it was depicted that 
coffee, pea-shoot and baby-spinach leaves exhibited 
distinct responses on all 4 days. On day 1, the transmis-
sion response for all leaves was significantly low due to 
the presence of high volumetric WC in leaves. Notably, 
pea-shoot revealed a response in the range of −  40  dB 
to − 45 dB reflecting a distinct characteristic from other 
leaves. The difference in transmission response also high-
lighted a physiological process, affecting the variability of 
the water dynamics in these leaves.

Feature extraction methods
During the THz experimental campaign of measuring 
the transmission response of leaves, the observations 
spawned by Swissto12 (MCK) were erratic (exhibiting 
unwanted excessive variations), especially at both ends 
of frequency range from 0.75 to 0.80 THz and 1.05 to 
1.1 THz as shown in Fig. 2 [25]. The effect of this unde-
sired noise could be crucial and may have produced 
false observations about the WC in leaves in rest of the 
frequency region. Inevitably, it would have produced 
counterfeit classification results by classifiers about the 
quantification of WC in leaves. Furthermore, any erro-
neous estimation of WC in leaves would ultimately 
affect their overall biological and physiological process 
of growth. Hence, it was significant to discover the sen-
sitive frequency region (SFR) with the minimum effects 

(1)WC =
Wtime −Wdry

Wfresh
× 100%

WR 250 1.0 (750 
– 1100) GHz Rectangular 

Waveguide Swissto12 MCK 

Network 
Analyser 

 
 

Leaf Sample 

Measurements 
Display 

Circular 
Waveguide 

Fig. 1 Experimental setup of Swissto12 MCK system used for 
measurements of leaves in the frequency range from 0.75 to 1.1 THz
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of any unwanted errors in the overall observation data. 
Therefore, the target response region (TRR) was estab-
lished where observations could be visibly distinguished 
without any overlap for leaves on all different days. The 
TRR for coffee leaf was selected in the range of 0.82 to 
1.05 THz, as shown in Fig. 3. Furthermore, useful obser-
vations would also have a fruitful impact on overall clas-
sification outcome.

Researchers have suggested and applied many features 
extraction techniques to execute the classification accu-
racy [26]. In this work, observations recorded were in 
the frequency domain had to be converted into time and 
time–frequency domain to further minutely observe the 
behaviour of WC in various leaves by analysing statisti-
cal features. Hybrid combinations of multi-dimension 
features domain would have a favourable response in 
classification accuracy by reducing overall dimensions 
of initial features [26]. The frequency-domain was con-
verted into the time domain and time–frequency domain 
by applying Inverse Fast Fourier Transform (IFFT) and 

a  

b

c
Fig. 2 Transmission response of coffee, pea-shoot, and spinach 
leaves observed on four different days in the frequency range of 0.75 
to 1.1 THz. a Coffee. b Pea-shoot. c Baby spinach

Table 1 Observations collected for  three leaves for  four 
consecutive days

Leaves Number 
of observations

Coffea arabica 127

Pea shoot 76

Baby spinach 54

1.01 THz at 
index 150

0.92 THz at 
index 100

0.82 THz 
at index 50

Target Response Region

w1      w2       w3        w4        w5

Fig. 3 Identification of target response region (TRR) to consider only 
relevant and important features for the feature extraction process
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Short-Time Fourier Transform (STFT) respectively [26]. 
The list of different domains is summarised in Table  2. 
Hence, out of 201 features, only 25 significant features 
were considered which comprised of 11, 10, and 5 in the 
time-domain, frequency domain, and time–frequency 
domain respectively as indicated in Table  2. The block 
diagram of the proposed classification system for dif-
ferent days based on multi-domain features extraction 
approach is shown in Fig. 4.

Evaluation of frequency features extraction
Since the data obtained from VNA was in the frequency 
domain, it was significant to focus mainly on the region 
that gives the maximum and the accurate information 
about the existence of WC in all three leaves. For this 
purpose, as mentioned earlier, TRR was mainly required. 
In this regard, five windows bins with a width of 20 were 
initiated in the middle region (0.92 THz at index = 100) 
and symmetrically expanded to both sides of the fre-
quency region. From Fig. 3, the data under the observa-
tion of the selected area can be seen, and was applied to 
the rest of two leaves as well. In addition, the frequency 
domain features included a cross-power spectral density 
and variance of power spectral density and is given by the 
Eqs. (2) and (3) [27] respectively. From the Eq. (2), Y n

l (a) 
represents the transmission response of the reference 
signal. In Eq. (3), T (a) implies the transmission response 
of l-th leaf on an nth day. Here, ‘w’ is considered as the 
width of the frequency window as depicted in Fig. 3.

(2)Var{Yll(a)} =
1

w
E [{Y n

l (a) ∗ .Y
n
l (a)}]

(3)max{Ylm(a)} = max

(

1

w
E{(T (a) ∗ .Y n

l (a))}

)

Evaluation of time features extraction
For statistical features, the transmission response of 
time-series of THz pulse was observed from days 1 to 4, 

Table 2 Feature extraction technique for all three leaves

Time domain (statistical 
features)

Serial no. Frequency domain 
features

Serial no. Time–frequency domain Serial no.

No. of features 11 No. of features 10 No. of features (4)

Mean 1 CPSD (D = 20) 12 Subband1 22

Variance 2 CPSD (D = 40) 13 Subband2 23

(MAD) 3 CPSD (D = 60) 14 Subband3 24

Skewness 4 CPSD (D = 80) 15 Subband4 25

Kurtosis 5 CPSD(D = 100) 16

Standard deviation 6 PSD (D = 20) 17

MAV 7 PSD (D = 40) 18

75th  (Q3) 8 PSD (D = 60) 19

25th  (Q1) 9 PSD (D = 80) 20

PCC 10 PSD (D = 100) 21

IQR 11

Fig. 4 The flowchart of the proposed algorithm implementation 
process
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indicating any possibilities of WC in leaves. Therefore, it 
was required to convert frequency domain data into the 
time-domain features to observe meaningful THz pulse. 
For this purpose, 11 time domain features were employed 
and they are mean, median, mean of absolute value (MAV), 
standard deviation (STD), mean of absolute deviation 
(MAD), skewness and kurtosis, Pearson correlation coef-
ficient (PCC) [28], 25th percentile (Q1), 75th percentile 
(Q3), and Interquartile Range (IQR) [29]. In which, mean 
and standard deviation were particularly useful to pro-
vide significant information about the distribution of data 
[25]. Skewness produced meaningful information about 
the irregularities of the examined area and its distribution 
around its mean [29, 30]. Moreover, kurtosis presented 
a measure of evenness relative to a standard distribution 
[29]. Q3 and Q1 showed how the observation data were 
dispersed in the two sides of the median. PCC was used to 
measure the linear relationship between the time-domain 
waveforms of the sample and the reference signal [29]. IQR 
was also used to measure the variability of the dataset and 
shows the difference between Q3 and Q1 while measuring 
the data distribution set. This information was also helpful 
in terms of excluding irrelevant data [29].

Evaluation of time–frequency features extraction
The demand for considering time–frequency tech-
nique such as Short-Time-Fourier-Transform (STFT) 
and Wavelet Transform (WT) was mainly to obtain the 
detailed information of THz pulses in this domain [31] 
The WT technique was more appropriate to analyse 
short-term THz pulse produced because of any diminu-
tive variations occurred at the cellular level, reflecting an 
information of WC in leaves. After the de-noising pro-
cess, the wavelet spectrum features were extracted by 
considering the power of various sub-bands at different 
levels as defined in Eq.  (4) to extract the time-domain 
features [32, 33].

In the above equation, j denotes the level of wavelet 
decomposition and ith indicates as the sub-band and ‘N’ 
is the number of wavelet coefficients. Pk(j, i) is basically 
the wavelet coefficient vector of ith sub-band in the jth 
level. Hence, E(j, i) denotes the average power value of ith 
sub-band at the jth level. Table 2 summarised the features 
extracted from time, frequency, and time–frequency 
domains. Each feature is assigned one serial number 
from 1 to 25, in which, 1-11, 12-11 and 22-25, were the 
serial numbers of time-domain, frequency-domain, and 
time–frequency domain features, respectively.

(4)E(j, i) =
1

N

N
∑

k=1

[Pk(j, i)]
2

Proposed classification algorithm and parameters 
selection
In this section, the significant of optimum parameters 
were determined for three classifiers including SVM, 
KNN, and D-Tree. In addition, on the basis of suitable 
parameters selection, classification algorithm was devel-
oped, and its performance was evaluated for precise esti-
mation of WC in leaves.

Selection of optimal parameters values
In order to develop an algorithm for three classifiers vari-
ous parameters were considered. For accurate classifica-
tion results, it was significant to have optimal parameters 
for classifiers. Here, three classifiers which include SVM, 
KNN and D-Tree were considered for precise estimation 
of WC in three leaves from day 1 to 4. For each classi-
fier, a series of values for tuning the process with optimal 
parameters were determined to achieve the highest 
overall classification accuracy and performance of clas-
sifiers were also analysed. For SVM, two parameters i.e. 
the optimum parameters of cost (C) and kernel width 
parameter (ϒ) are required to be set when applying the 
SVM classifier with radial basis function (RBF) kernel 
to achieve the optimized SVM algorithm [34]. The ‘C’ 
parameters helped to decide the actual size of misclas-
sification permitted for non-separable training data and 
adjusted the rigidity of the training data [35]. Larger val-
ues might lead to an over-fitting model and vice versa. 
The kernel width parameter (ϒ) facilitated the shape of 
the class-dividing hyperplane, and increasing or decreas-
ing the value of (ϒ) could influence the shape of the 
class-dividing hyperplane, and it eventually disturbed the 
classification accuracy. For this purpose, a series of values 
were assessed and to establish the most suitable value for 
‘C’ for available data, and finally “1” was chosen for ‘C’, 
and “0.38” was selected for (ϒ).

The basic theory behind the KNN was to discover a 
group of ‘k’ samples that appeared to be nearest to the 
unknown samples [34]. From k-samples, the label of 
unknown samples could be determined by evaluating the 
average values for class-attributes [34, 35]. Thus, tuning 
this fundamental parameter of k-sample played a signifi-
cant role in achieving the ultimate performance of this 
classifier. For this purpose, a different range of values was 
established, and finally, it was settled in the range from 
1 to 5 to recognize the optimal ‘k-value’ for all training 
sample sets. For D-tree, again the various range of num-
bers for splits in D-test was analysed for the available 
data to identify the optimum parameter. Eventually, it 
was set to 5, and the rest of the settings were retained as 
default values for this classifier.
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Results
Classification accuracy and features selection
In this study, the performance of proposed classifiers 
including SVM, KNN, and D-Tree was assessed on raw 
data and on individual domain features. Furthermore, 
all classifiers showed distinct performances on indi-
vidual domain features. Henceforward, classification 
accuracy for a hybrid combination of all three domains 
was also obtained. Towards the end, features selec-
tion was illustrated using the various state-of-the-art 
techniques.

Assessment of classifiers on raw data
Before processing the classification accuracy of raw 
data, the frequency range of 0.75 to 1.1 THz was con-
sidered for executing classifications. Also, all observa-
tions were taken as separate features and performance of 
the classifiers were tested on all features. The main aim 
here was to evaluate the classifier response by examin-
ing all observations of three leaves at different days at 
every frequency point. Hence, three classifiers, includ-
ing SVM, KNN, and D-tree performances were tested to 
estimate the WC in leaves more accurately and precisely. 
The classifiers were trained and validated using a k-fold 
and feature set was partitioned into 10 “folds” randomly. 
The observations data was partitioned into 70% and 30% 
training and testing data, respectively. Table  3 listed 
the average classification accuracy results of all three 
classifiers.

By close investigations of results in Fig. 5 and Table 3, 
it was depicted that classification accuracy for all 
leaves found in the range of 70–75%. This low accu-
racy reflected some redundant or irrelevant features in 
the overall 201 features points, which badly affected the 
classification accuracy. Therefore, the performance of all 
three proposed classifiers could be improved by reduc-
ing undesired features and selecting more meaningful 
and informative features to produce an accurate esti-
mation of WC in all three leaves. Thus, the purpose of 
observing the performance of the classifiers on raw data 
was mainly to explore the TRR, as explained in the pre-
vious section.

Table 3 Raw data classification results for three leaves

Accuracy (%) Coffee Peashoot Baby spinach

SVM 80.22 76.26 75.78

KNN 75.1 72.95 74.98

DTree 76.24 69.58 76.93

a

c

b

Fig. 5 Classification performance of raw data for coffee, pea shoots 
and spinach leaves considering all features from 0.75 to 1.1 THz. a 
Coffee. b Pea shoot. c Baby spinach
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Assessment of classifiers for individual and hybrid 
combination features
Once the parameters were set for all classifiers, its per-
formance was investigated on different domain features 
individually and a hybrid combination of all three domain 
features. So, its performance accuracy was accomplished, 
and Tables  4, 5 and 6 demonstrated the classification 
accuracy results for coffee, pea-shoot and baby spinach, 
respectively. The classification accuracy results were 
obtained for 25 extracted features. These 25 features 
were comprised of time domain, frequency domain and 
time–frequency domain features. Upon close analysis, 
the classifiers performed relatively better for coffee leaf 
compared to pea shoot and baby spinach for set param-
eters, which were selected before the classifier model was 
produced.

Moreover, it also showed that the precise estimation of 
WC presence in coffee leaf from day 1 to day 4 had been 
substantially improved compared to other leaves. Since 
the content of water is vital indicator for explaining the 
plants overall vitality and growth processes, therefore, 
timely detection of any deficiency in WC plays a signi-
fication role in monitoring the health status of leaves 
effectively. After the individual performance of three fea-
tures domain, another attempt was made to assess the 

performance of the classifier for hybrid combinations of 
all three domain features collectively. Table  7 displayed 
the classification accuracy of all three classifiers for all 
three leaves. In this condition, classifiers were trained 
and cross-validated by applying k = tenfolds, and the per-
formance of all three classifiers was obtained. These clas-
sifiers, including SVM with RBF kernel, KNN with k = 5 
and D-Tree, were trained and cross-validated by applying 
k = tenfolds. The observations data was partitioned into 
70% and 30% training and testing data, respectively. By 
comparing the results of hybrid combinations with indi-
vidual classification performance, it was discovered that 
the combination of features produced an improvement 
in classification accuracy for all three leaves. Previously, 
individual classification only enhanced the coffee leaf, 
whereas the combination of all three domain collectively 
improved the performance for other leaves, including pea 
shoot and baby spinach.

Optimization and feature selection
In this work, the aim was to remove any redundant or 
irrelevant features through the feature selection tech-
nique to enhance the classification performance by 
lessening the computational cost for deployment. The 
methods for feature selection contain filtering methods 
which were based on the evaluation of the relevance of 
features, and other wrapper methods were based on a 
strong search of a different set of features [36]. We con-
sidered three feature selection algorithms named as 
sequential forward selection (SFS), sequential backward 
selection (SBS) and Relief based selection algorithm 
(Relief-F) to execute the feature selection process [37]. 
Out of these three algorithms, SFS and SBS were consid-
ered the two most empirical selection algorithms [37]. 
SFS begins with an empty set and integrates the most 
suitable feature in every step, and exhibiting a high accu-
racy by employing a classifier until the pre-defined fea-
tures are tallied up [37].

On the contrary, SBS operates opposite to the SFS 
and begins with full occupied features and disposed of 
unmatched features in every step by specific criterion 
function till the pre-defined features are permitted [38]. 
Intriguingly, Relief-F can propose a more efficient tech-
nique compared to SFS and SBS and comprehend the 

Table 4 Classification results for coffee leaf

Classification 
accuracy (%)

Time domain 
features (11), 
%

Frequency 
domain features 
(10), %

Time–frequency 
domain features 
(4), %

SVM 92.6 93.0 91.6

KNN 90.0 91.8 89.4

Decision tree 91.2 90.7 91.2

Table 5 Classification results for pea shoot leaf

Classification 
accuracy (%)

Time domain 
features (11), 
%

Frequency 
domain features 
(10), %

Time–frequency 
domain features 
(4), %

SVM 86.6 79.2 80.6

KNN 79.0 78.8 81.4

Decision tree 81.2 81.7 82.2

Table 6 Classification results for baby spinach leaf

Classification 
accuracy (%)

Time domain 
features (11), 
%

Frequency 
domain features 
(10), %

Time–frequency 
domain features 
(4), %

SVM 82.6 81.1 84.6

KNN 81.0 78.8 81.4

Decision Tree 78.2 79.7 82.2

Table 7 Classification results of  hybrid combination 
features for all leaves

Classification accuracy 
of three leaves

SVM, % KNN, % D‑Tree, %

Coffee 94.46 93.76 91.15

Pea shoot 93.42 91.62 90.64

Baby spinach 91.13 90.38 89.01
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relations of features to compute the weights of the fea-
tures for accurate ranking and selection irrespective of any 
dependency on specific classifiers [39]. Figure 6 depicted 
the performance of SFS features selection for coffee, pea-
shoot and baby spinach leaves using three classifiers.

From Fig. 6, it was noticed that SVM performed con-
siderably better for all leaves compared to other classifiers 
using different selection techniques. In addition, Tables 8, 
9, and 10 displayed the classification accuracies for cof-
fee, pea shoot and baby spinach leaves, respectively, using 
various features selection techniques with the required 
number of features. By applying a features selection 
algorithm to classifiers, they produced an improvement 
of 4%, 3% and 6% for coffee, pea-shoot, and baby spin-
ach leaves using SVM classifiers through SFS technique. 
The performance of KNN for coffee, pea-shoot, and baby 
spinach leaves also presented progress in results by 3%, 
4%, and 5% correspondingly. These tables indicated the 
different combinations of features including frequency, 
time-domain, and time–frequency domain features for 
classification accuracy.

As explained in the previous section, it was aimed at 
reducing the computational time using feature selection 
techniques. So, in this study, Table 11 presented the over-
all execution time taken by three classifiers for generat-
ing results using various feature selection techniques. It 
was established that execution time taken by classifiers for 
selected features by performing tenfold, cross-validation 
showed considerable enhancement compared to extract 
features. For example, coffee leaf exhibited an improvement 
of 15%, 11.9% and 6.5% in computation time for SVM, 
KNN and D-Tree, respectively, using SFS technique. For 
pea-shoot, an upgrade of 21.28%, 10.01%, and 8.53% was 
noticed in operating time for SVM, KNN and D-Tree clas-
sifiers, respectively. Lastly, in baby spinach leaf, considering 
SFS technique, SVM showed an upgrade of 21.28% in SVM, 
10.01% in KNN, and 8.53% in D-Tree operating times. 
These outcomes indicated that selecting the most relevant 
and vital features not only enhanced the overall operation 
time for classifiers but also improved the classification as 
confirmed with Tables 8, 9 and 10. Hence, Table 11 is sig-
nificant for finding the performance of classifiers with less 
computation time for execution of classification accuracy. 
In this work, the core purpose was not only to achieve less 
computation time but also to select relevant features with 
maximum information using various feature selection tech-
niques. In addition, it could utilize less time and produce 
maximum accuracy for estimation of WC in plants leaves 
to maintain a healthy physiological status.

Fig. 6 Classification performance of classifiers using feature selection 
technique SFS for coffee, pea shoot and baby spinach leaves
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Discussion
In this section, the performance of three proposed clas-
sifiers were assessed by employing two commonly qual-
ity metrics such as sensitivity or recall (also known as 
true-positive rate) and specificity (also called false-pos-
itive rate) [29, 40]. Here, sensitivity values indicated the 
possibility of correct identification of labelled class from 

the remaining target classes [29]. In contrast, specificity 
showed the probability of appropriate classification as 
non-target classes from the remaining un-aimed classes 
[40]. The purpose of utilizing these two widely accepted 
metrices [29, 40] was mainly to detect any misclassifica-
tion that could occur, leading to inaccurate information 
about WC in leaves for four consecutive days.

Table 8 Classification performance for coffee leaf by applying tenfold validation using proposed algorithm with selected 
features

Feature selection methods Classifiers Serial num. of features Total no of features Accuracy (%)

SFS SVM 24 1–19, 21–25 98.5

KNN 22 1–6, 8–11, 13–21, 23–25 97.2

D-Tree 24 1–23, 24 96.5

SBS SVM 24 1–19, 21–25 98.6

KNN 24 1–21, 23–25 97.6

D-Tree 24 1–23, 25 96.2

Relief-F SVM 10 2, 4, 10, 11, 17–21, 25 97.1

KNN 95.9

D-Tree 96.8

Table 9 Classification performance for  pea shoot leaf by  applying tenfold validation using proposed algorithm 
with selected features

Feature selection methods Classifiers Serial num. of features No of selected features Accuracy (%)

SFS SVM 18 1–6, 8–14, 17, 19, 20, 22, 25 97.2

KNN 13 1–5, 9–11, 18–20, 23, 25 94.4

D-Tree 7 2, 4, 5, 6, 17, 18, 19 93.1

SBS SVM 3 13, 19, 22 96.8

KNN 5 7, 12, 17, 19, 20 94.9

D-Tree 2 8, 20 92.3

Relief-F SVM 12 2, 4, 10, 11, 17–21, 23–25 98.6

KNN 99.1

D-Tree 95.5

Table 10 Classification performance for  baby spinach by  applying tenfold validation using proposed algorithm 
with selected features

Feature selection methods Classifiers Serial num. of features Total no of features Accuracy (%)

SFS SVM 24 1–12, 14–25 97.9

KNN 23 1–14, 17–25 96.4

D-Tree 5 3, 5, 17, 20, 21 96.1

SBS SVM 23 1–11, 13, 15–25 96.8

KNN 24 1–13, 15–25 94.5

D-Tree 5 7, 8, 9, 11, 15 93.2

Relief-F SVM 17 2, 4–7, 10, 11, 15–21, 23–25 98.6

KNN 99.1

D-Tree 95.5
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These two-quality metrices depicted the perfor-
mance of classifiers ranging values from 0 to 1 on 
days 1 to 4, indicating the presence of WC in all three 
leaves. Table  12 illustrated the performance of all clas-
sifiers using a feature selection method and showed the 
WC presence in all three leaves from day 1 to 4. From 
Table 12, it was also perceived that SVM outperformed 
other classifiers for a coffee leaf on different days. More-
over, the assessment of quality metrics for a coffee leaf 
on days 1 and 4 performed noticeably better, revealing 
the freshness and staleness of leaf. These results also 
discovered that the presence of WC on day 1 was high 
and low on day 4, which helped the classifier to execute 
the improved performance. Furthermore, it was worth 
noting that the classification accuracy for all leaves on 
days 2 and 3 was slightly challenging when the presence 
of WC in leaves was found in the range of 20% to 50% 
approximately.

Considering the real-life scenario, the proposed meth-
odology can be substantial by observing the perfor-
mance of the classifiers for leave-one-observation-out 
cross-validation method to achieve different days classi-
fications accuracy and for accurate estimation of WC in 
leaves. This proposed method evaluated the actual per-
formance of the classifier model by randomly selecting 
each observation from the dataset considered as a vali-
dation set, while the remaining observations were taken 

as the training set. This process continued until all obser-
vations from the dataset were nominated for the valida-
tion set for at least one attempt. Table 12 illustrated the 
accuracy of the classifications of all leaves for each day by 
applying the leave-one-observation-out cross-validation 
technique.

Table 11 Classification performance of  all classifiers 
by applying tenfold validation using proposed algorithms 
with selected features

Feature types and feature 
selection methods

Computation time (s)

SVM KNN Decision tree

Coffee leaf

 Extracted features 0.7282 0.5309 0.4021

 Selected features

  SFS 0.5706 0.4123 0.3371

  SBS 0.6456 0.4240 0.3202

  Relief-F 0.6252 0.4842 0.3582

 Baby spinach leaf

 Extracted features 0.8975 0.4265 0.4053

 Selected features

  SFS 0.6062 0.4128 0.1071

  SBS 0.4259 0.3576 0.3247

  Relief-F 0.4485 0.3875 0.3490

Peashoot leaf

 Extracted features 0.6825 0.4405 0.4196

 Selected features

  SFS 0.4699 0.3404 0.3343

  SBS 0.6504 0.1734 0.3149

  Relief-F 0.5088 0.3766 0.3759

Table 12 Classification performance of  all classifiers 
by  applying leave-one-observation-cross-validation 
techniques with selected features

Quality metrics Water 
content (%)

SVM KNN D‑Tree

Coffee leaf

 Day 1 82.84

  SENS 1 1 1

  SPEC 1 1 1

 Day 2 41.22

  SENS 1 0.929 0.976

  SPEC 0.988 0.965 1

 Day 3 12.34

  SENS 0.963 0.889 1

  SPEC 1 0.912 0.99

 Day 4 0.51

  SENS 1 1 1

  SPEC 1 1 1

Peashoot

 Day 1 76.84

  SENS 1 1 1

  SPEC 1 1 1

 Day 2 49.22

  SENS 1 0.892 1

  SPEC 0.962 0.982 0.971

 Day 3 18.91

  SENS 0.545 0.727 0.636

  SPEC 0.984 0.967 0.984

 Day 4 0.21

  SENS 0.919 0.85 0.833

  SPEC 0.987 0.85 0.933

Spinach

 Day1 71.14

  SENS 0.995 1 1

  SPEC 1 1 1

 Day2 34.22

  SENS 1 1 1

  SPEC 0.976 1 1

 Day3 10.34

  SENS 0.909 0.545 0.851

  SPEC 0.923 0.949 0.897

 Day4 0.10

  SENS 0.727 0.818 0.636

  SPEC 0.974 0.872 0.949
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From Table  13, it was perceived that SVM classifi-
cation accuracy outperformed other classifiers for all 
leaves by showing minimum variance. It also displayed 
that variability in WC of leaves over the course of four 
consecutive days. Furthermore, it was also noticed that 
for both days 1 and 4, classifiers produced maximum 
accuracy reflecting a high and low WC on days 1 and 
4, respectively. Whereas on days 2 and 3, SVM per-
formance stayed in the range from 92.6 to 100%, KNN 
yielded a range of 78.4 to 100%, and D-Tree produced 
a range of 74.2 to 100%. Hence, it was concluded that 
SVM achieved a better classification accuracy range 
on days 2 and 3 compared to other classifiers. Thus, 
the aim of applying leave-one-observation-out cross-
validation technique was to evaluate the consistency 
of classifiers by assessing all observations of different 
samples on different days as depicted in Table 13. It was 
also strongly aimed to assess the performance of the 
proposed ML algorithm with the incorporation of THz 
for real-time applications in monitoring any diminutive 
variations of WC in plants leaves to help in developing 
digital agricultural systems.

Conclusions
In this paper, a novel machine learning (ML) driven 
approach was proposed to accurately determine the 
health status of plants leaves terahertz (THz) waves. In 

this process, transmission response of leaves was meas-
ured for four consecutive days, where each of the 201 
frequency points were used as a feature. We performed 
feature selection to discard any irrelevant and spurious 
features that could give false observations about the water 
content (WC) in leaves. In this study, results showed that 
the performance of classifiers was drastically improved 
by identifying more relevant and important features that 
could can yield maximum information about WC in 
leaves, to maintain healthy physiological status of leaves. 
The selection of useful features also reduced the compu-
tation time for the execution of classifications by all three 
classifiers, which was also one of an ultimate objective. 
Moreover, the comprehensive cross-validation meth-
odology demonstrated that, in most cases, support vec-
tor machine SVM yielded highest classification accuracy 
compared to other classifiers. It was observed that SVM 
achieved relatively more reliable results for predicting the 
accurate WC estimation in three leaves for four consecu-
tive days.

This paper demonstrates the potential and establishes a 
notable integration of machine learning (ML) using tera-
hertz (THz) waves to assess the real-time information of 
WC in various plants’ leaves. In an era, where most of 
the farmlands around the globe are water-stressed, the 
outcomes of this study can help in the design and imple-
mentation of smart, sustainable digital agricultural tech-
nologies, which is of high importance to boost the overall 
crops productivity.
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Table 13 The confusion accuracy with  leave-one-
observations-out cross-validation method of  all leaves 
for  each day along  with  monitoring the  water content 
values for each day

Samples Classes Classifiers test accuracy 
performance (%)

Water 
content 
(%)

SVM KNN D‑Tree

Coffee leaf Day1 100 100 100 82.84

Day2 95.2 88.1 100 41.22

Day3 100 92.6 92.3 12.34

Day4 100 100 100 0.71

Variance 0.58 1.09 0.92

Peashoot leaf Day1 100 100 100 76.84

Day2 100 87.5 87.5 49.22

Day3 93.6 78.4 74.2 18.91

Day4 95.0 89.3 91.7 0.21

Variance 1.55 2.27 3.60

Baby spinach leaf Day1 100 100 100 71.14

Day2 100 100 100 34.22

Day3 92.6 88.6 75.5 10.34

Day4 94.7 89.7 91.3 0.10

Variance 1.76 2.90 4.60
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