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Lay Summary 

Outdoor air pollution is estimated to cause 3.7 million premature deaths worldwide 

in 2012 and also contributes to a range of adverse health effects. To study the effects 

of air pollution on human health, researchers examine the relationship between 

adverse health outcomes and people’s exposure to ambient air pollution. The 

concentrations of air pollutants to which people are exposed can be assessed using air 

quality measurements and modelling. Both approaches are subject to uncertainties in 

estimating an individual’s true exposure. Accurate exposure assessment is, however, 

vital to the quantification of overall health effects associated with air pollution. The 

aim of this thesis is to investigate how different measurement and modelling 

techniques can improve currently applied exposure assessment methods. 

Emerging low-cost portable air quality monitors have the potential to provide 

detailed exposure assessment at personal level. However, the data produced by these 

monitors are sometimes questionable and not directly comparable with those 

produced by more sophisticated instruments that are accepted as the reference 

method. In this thesis three types of low-cost air quality monitors that measure three 

different air pollutants – the gases nitrogen dioxide (NO2) and ozone (O3), and the 

‘respirable’ fraction of particles suspended in the air (called PM2.5) – are evaluated 

against their respective reference instruments. Data produced from all three types of 

monitors investigated here required substantial post-processing in order to compare 

with the reference measurements.  

Another advantage of a portable air quality monitor is its capability to study the 

local-scale spatial variability of air pollution that is not achievable by the fixed-site 

monitoring stations that constitute the present approach to determining levels of air 

pollution.  Mobile measurements utilising three ways of characterising the amount of 

particulate matter (PM) in the air – the mass concentration, the number concentration 

and the amount of ‘soot’-like particles – were conducted in different urban 

environments in Edinburgh. It was found that local traffic emissions strongly 

influenced the number and ‘soot’-like particles concentrations, but the mass 
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concentration was dominated by long-range transported sources. The varying 

contributions from different sources resulted in varying spatial variabilities of the 

three types PM concentrations in the urban environment. 

Two modelling methods that are used to simulate pollutant concentrations at 

relatively high spatial resolution within urban areas are dispersion models and land-

use regression (LUR) models. The former type of model aims to simulate the 

processes that link the emissions of pollutants from individual sources and their 

atmospheric dispersion and transport. The uncertainties in these models mainly 

derive from their need for very detailed emissions and meteorological input data. The 

effect of using different input data on the output of a dispersion model applied to 

Edinburgh was investigated and validated against measurements. The dispersion 

model simulated well the general spatial and temporal trends of air pollution but 

failed to capture variation caused by very local effects such as queueing traffic and 

road junctions. 

LUR models, on the other hand, are empirical models that rely on existing 

measurements to derive the statistical relationship between pollutant concentrations 

at a given location and local predictor variables related to the emission and 

dispersion of air pollutants (for example, local population density and distance to 

nearest major road). The quality of LUR models depends on the choice of 

measurement data and the selection of predictor variables. The effect of the choice of 

measurement data on a series of LUR models’ capabilities at estimating NO2 

concentrations at residential addresses in Edinburgh was investigated with the help of 

a dispersion model. LUR models developed from NO2 concentrations at highly 

populated areas and roadside locations better estimated the residential NO2 

concentrations. 

In the final part of the thesis, the findings and limitations from the measurement and 

modelling studies undertaken in this work are discussed in the context of current air 

pollution exposure assessment studies. The challenges for the development of a more 

comprehensive exposure assessment framework are discussed. 
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Abstract 

Outdoor air pollution is a major contributor to adverse health effects of citizens, in 

particular those living in urban environments. Air quality monitoring networks are 

set up to measure air quality in different environments in compliance with national 

and European legislation. Generally, only a few fixed monitoring sites are located 

within a city and thus cannot represent air pollutant concentrations in urban areas 

accurately enough to allow for a detailed human exposure assessment. Other 

approaches to derive detailed urban air pollutant concentration estimates exist, such 

as dispersion models and land-use regression (LUR) models. Low-cost portable air 

quality monitors are also emerging, which have the potential to add value to existing 

monitoring networks by providing measurements at greater spatial resolution and 

also to provide individual-level exposure assessment. The aim of this thesis is to 

demonstrate how measurements and modelling in combination allow detailed 

investigations of the variability of air pollutants in space and time in urban area, and 

in turn improve on the current exposure assessment methods.  

Three types of low-cost portable monitors measuring NO2, O3 (Aeroqual monitors) 

and PM2.5 (microPEM monitor) were evaluated against their respective reference 

instruments. The Aeroqual O3 monitor showed very good correlation (r2 > 0.9) with 

the respective reference instruments, but biases in the slope and intercept coefficients 

indicated that calibration of Aeroqual O3 monitor was needed. The Aeroqual NO2 

monitor was subject to cross-sensitivity from O3, which, as demonstrated, can be 

effectively corrected by making O3 and NO2 measurements in tandem. Correlation 

between the microPEM monitor and its reference instrument was poor (r2 < 0.1) 

when PM2.5 concentrations were low (< 10 µg m-3), but significantly improved (r2 > 

0.69) during periods with elevated PM2.5 concentrations. Relative humidity was not 

found to affect the raw results of PM2.5 measurements in a consistent manner. All 

three types of monitors cannot be used as equivalent or indicative methods instead of 

reference methods in studies that require quantification of absolute pollutant 

concentrations. However, the generally good correlations with reference instruments 

reassure their application in studies of relative trends of air pollution. 
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Concentrations of PM2.5, ultrafine particles (UFP) and black carbon (BC) were 

quantified using portable monitors through a combination of mobile and static 

measurements in the city of Edinburgh, UK. The spatial variability of UFP and BC 

was large, of similar magnitude and about 3 times higher than the spatial variability 

of PM2.5. Elevated concentrations of UFP and BC were observed along streets with 

high traffic volumes whereas PM2.5 showed less variation between streets and a 

footpath without road traffic. Both BC and UFP significantly correlated with traffic 

counts, while no significant correlation between PM2.5 and traffic counts was 

observed. The relationships between UFP, NO2 and inorganic components of PM2.5 

were further investigated through long-term measurements at roadside, urban 

background and rural sites. UFP moderately correlated with NOx (NO2 + NO) and 

showed varying relationships with NOx depending on the particle size distribution. 

Principal component analysis and air-mass back trajectory analysis revealed that 

PM2.5 concentrations were dominated by long-range transport of secondary inorganic 

aerosols, whereas UFP were mainly related to varying local emissions and 

meteorological conditions. These findings imply the need for different policies for 

managing human exposure to these different particle components: control of much 

BC and UFP appears to be manageable at local scale by restricting traffic emissions; 

however, abatement of PM2.5 requires a more strategic approach, in cooperation with 

other regions and countries on emissions control to curb long-range transport of 

PM2.5 precursors. 

A dispersion model (ADMS-Urban) was used to simulate high resolution NO2 and 

O3 concentrations in Edinburgh. The effects of different emission and meteorological 

input datasets on the resulting modelled NO2 concentrations were investigated. The 

modelled NO2 and O3 concentrations using the optimal model setup were validated 

against reference instrument and diffusion tube measurements. Temporal variability 

of NO2 was predicted well at locations that were not heavily influenced by local 

effects, such as road junctions and bus stops. Temporal variability of O3 was 

predicted better than for NO2. Long-term spatial variability of NO2 was found to 

correlate well with diffusion tube measurements, while modelled spatial variability 

of O3 in ADMS-Urban compared poorly with diffusion tube measurements. 
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However, it was found that the O3 diffusion tube measurements may be subject to 

some unidentified biases affecting their accuracy.  

Land-use regression (LUR) models are widely used to estimate exposure to air 

pollution in urban areas. An appropriately sized and designed monitoring network is 

an important component for the development of a robust LUR model. Concentrations 

of NO2 were simulated by ADMS-Urban at ‘virtual’ monitoring sites in 54 different 

network designs of varying numbers and types of site, using a 25 km2 area including 

much of the Edinburgh city area. Separate LUR models were developed for each 

network. These LUR models were then used to estimate ambient NO2 concentrations 

at all residential addresses, which were evaluated against the ADMS-Urban modelled 

concentration at these addresses. The improvement in predictive capability of the 

LUR models was insignificant above ~30 monitoring sites, although more sites 

tended to yield more precise LUR models. Monitoring networks containing sites 

located within highly populated areas better estimated NO2 concentrations across all 

residential locations. LUR models constructed from networks containing more 

roadside sites better characterised the high end of residential NO2 concentrations but 

had increased errors when considering the whole range of concentrations. No 

particular composition of monitoring network resulted in good estimation 

simultaneously across all residential NO2 concentration and of the highest NO2 levels 

implying a lack of spatial contrast in LUR-modelled pollution surface compared with 

the dispersion model. 

Finally, the results from the measurement and modelling studies presented in thesis 

are synthesised in the context of current exposure assessment studies. Low-cost air-

quality monitors currently do not possess and are unlikely in the near future to 

provide the robustness and accuracy to replace the existing routine monitoring 

network. Development of the low-cost air-quality should be aiming at upgrading 

them as the indicative method as defined in the data quality objective in the EU 

directive. The monitoring sites used to build LUR models should capture well the 

population distribution in the study area as opposed to capturing the greatest 

pollution contrast. The traditional methods of evaluating LUR models are also 

ineffective in characterising the models’ capability at estimating pollutant 
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concentration at residential address. Given that the dispersion models are also subject 

to the availability and uncertainties in the input data, future air quality model 

development should endeavour to incorporate both dispersion and land-use 

regression models, where the uncertainty in the input data can be reduced by using 

LUR models built on actual measurements, and the limitation in the statistical 

modelling can be replaced by adopting the deterministic approach used in the 

dispersion model.  
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Chapter 1 Introduction 

Air pollution can cause harm to human health, agricultural production, and the 

natural or built environment, and also contribute to climate change. Some common 

air pollutants, which are regulated by national and international legislation, include 

carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), sulphur dioxide (SO2) 

and particulate matter (PM). The World Health Organisation (WHO) has 

recommended limits for ambient concentrations of a number of pollutants for the 

protection of human health (WHO, 2006). Based on these guidelines, and 

consideration of other evidence, limit values are set in the EU Directives (EC, 2008), 

to which member states are legally bound. Table 1.1 summarises the limit values for 

different pollutants set in the Directive 2008/50/EC. 

Table 1.1 Limit values for the ambient concentration of different air pollutants set in the 

Directive 2008/50/EC. Note that the concentrations for O3 and PM2.5 are target values, 

which means a level to be attained where possible, but that is not legally binding. 

Pollutant Measured as Limit or target 

concentration 

Maximum number of 

exceedances allowed 

CO Maximum 

daily running 

8-hour mean 

10 mg/m3  

NO2 Annual mean 40 µg/m3  

Hourly mean 200 µg/m3 Not to be exceeded more 

than 18 hours a year 

O3 Maximum 

daily running 

8-hour mean 

120 µg/m3 Not to be exceeded more 

than 25 days a year 

SO2 Daily mean 125 µg/m3 Not to be exceeded more 

than 24 days a year 

Hourly mean 350 µg/m3 Not to be exceeded more 

than 3 hours a year 

PM2.5 Annual mean 25 µg/m3  

PM10 Annual mean 40 µg/m3  

Daily mean 50 µg/m3 Not to be exceeded more 

than 35 days a year 
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Member states transpose the detail of the EU Directives into their national laws. In 

addition, member states can set more stringent Air Quality Directives (AQD) than 

that specified in the EU Directives. To comply with the AQD, governments need to 

demonstrate that the ambient concentrations of the air pollutants are below the limit 

values by using measurement or modelling. Currently in the UK there are 156 air 

quality monitoring stations in operation for compliance reporting against the AQD, 

and these constitute the Automatic Urban and Rural Network (AURN). In addition to 

these national government-operated monitoring stations, many local authorities may 

also set up additional monitoring sites within towns and cities for local air quality 

management. These often form regional monitoring networks [e.g. the Scottish Air 

Quality Network (SAQN) or the London Air Quality Network (LAQN)]. The 

monitoring stations provide real-time (hourly) measurements of a range of regulated 

air pollutants, but the majority of monitoring stations only measure a subset, 

sometimes only one, of the regulated air pollutants. The instruments are subject to 

rigorous and consistent quality assurance methodologies. However due to the cost 

and labour-intensive maintenance of the instruments, generally only a few of these 

monitoring stations are distributed across a city therefore providing limited 

information on the spatial variation of air pollution.  

Many epidemiological studies, which focus on the relationship between air pollution 

and human health, utilise the data from these stations to estimate population 

exposure. Due to the spatial scarcity of the measurement data, researchers either have 

to make the assumption that the pollutant of interest is homogenously distributed in 

the study area or have to use some form of modelling to estimate pollutant 

concentrations at un-sampled locations. This may introduce one of the major 

uncertainties in epidemiological studies – exposure misclassification (Özkaynak et 

al., 2013; Sheppard et al., 2012).  

To eliminate exposure misclassification, it is important to understand how different 

air pollutants vary in space and time in the urban environment. In this introduction, 

the measurement techniques and variability of different air pollutants in the urban 

environment are discussed first, followed by a brief overview of the existing 

evidence on the adverse health impacts of different air pollutants. Exposure 
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assessment methods used in these health studies and their limitations are then 

reviewed. Current efforts in improving exposure assessment facilitated by the 

development of low-cost sensors, computation and communication technologies are 

discussed later. Finally, the aims of this thesis are outlined. 

 Measurement techniques and spatiotemporal 
variability of urban air pollution 

The Directive 2008/50/EC specifies the reference measurement methods that 

member states shall apply to measure the regulated air pollutants. Also specified in 

Directive 2008/50/EC are the data quality objectives that the reference methods are 

required to meet. The data quality objectives include the uncertainties of 

measurement in the region of the limit/target values for each pollutant, time coverage 

of the measurements in relation to the reference period of the limit/target value, and 

the effective measurement time. Other measurement methods may be used if 

equivalent results can be demonstrated. The principles and methodologies to be used 

for demonstration of equivalent method are published by the European Commission 

(EC, 2008). This section describes the reference or reference-equivalent methods 

used in the routine monitoring networks (e.g. AURN, SAQN and LAQN) for 

measurement of NO2, O3 and PM2.5, followed by an overview of the major sources 

and distribution characteristics of NO2, O3, PM2.5, ultrafine particles (UFP) and black 

carbon (BC) in the urban environment. 

1.1.1 Nitrogen dioxide 

During any combustion process nitrogen and oxygen in the air combine at high 

temperature to produce nitric oxide (NO). NO transforms to NO2 on reaction with 

atmospheric oxidants such as O3. Together, NO and NO2 are referred to as NOx. The 

reference measurement method for NO2 is the chemiluminescence analyser. In this 

method light at visible and near infrared wavelengths resulting from the fluorescence 

of electronically excited NO2 formed in the NO + O3 reaction is measured (Dunlea et 

al., 2007). The intensity of the light is proportional to the NO2 concentration formed 

through this reaction, and therefore also to the initial NO concertation in the air 

sample if excess O3 is present. Excess O3 is usually generated within a separate air 
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stream into the chemiluminescence analyser via corona discharge. The NO2 

concentration in the air sample is determined by diverting the incoming air through 

an NO2 to NO converter (usually a heated molybdenum oxide catalyst) every few 

minutes so that the chemiluminescence intensity is then proportional to NOx. The 

NO2 concentration is obtained from the difference between NOx and NO. Calibration 

of the chemiluminescence analyser is required, which involves sampling of a known 

NO standard to determine the absolute response of the instrument.  

Anthropogenic emission is the major source of NOx in the atmosphere. Sources 

include the combustion of fossil fuels for heating, power generation (including for 

industry) and transportation (Vardoulakis et al., 2010). The majority of the NOx 

emissions are in the form of NO. However, given enough time and enough O3 to 

react with, most NO is converted to NO2. In the urban environment, the variability of 

NO2 concentrations is closely related to combustion processes, primarily traffic 

emissions. Higher NO2 concentrations are expected near roads as a result of a 

proportion of the NOx emission from traffic exhaust being emitted directly as 

primary NO2 and also the fast reaction between NO and ambient O3. Concentrations 

of NO2 usually decrease rapidly away from road sources due to dispersion. Hence 

considerable spatial variation in NO2 concentration is observed in the urban 

environment, associated with distance from roads (Cyrys et al., 2012; Lin et al., 

2016; Vardoulakis et al., 2009). 

1.1.2 Ozone 

Ozone is a secondary pollutant formed through chemical reactions between precursor 

gases including volatile organic compounds (VOCs), CO and NOx. The reference 

measurement method for measuring O3 is the UV absorbance spectrometer. This 

method relies on the UV absorbing property of O3 (AQEG, 2009). An air sample 

passing through a tubular cell of length (l) causes attenuation of UV light at 254 nm 

(I1) due to the presence of O3. The intensity of the light (I0) in the absence of O3 is 

also measured by alternately passing the air sample through an O3 scrubber before it 

enters the absorption cell. The concentration of O3 (c) is quantified by Beer-Lambert 

law: 
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𝐼1 = 𝐼0𝑒−𝜎𝑙𝑐 

where  = O3 absorption coefficient at 254 nm.  

While O3 in the stratosphere protects humans from the adverse effects of UV 

radiation, it is harmful to human health, agricultural crops and vegetation at ground 

level. Ambient concentration of O3 is determined by a series of complex chemical 

reactions between NOx, VOCs and hydrogen oxide radicals (HOx = H + OH + HO2). 

Figure 1.1 shows a schematic of tropospheric O3 chemistry (The Royal Society, 

2008). The production and destruction of O3 start with photolysis of O3 itself. OH 

radicals play an important role in O3 chemistry as they react with VOCs to initiate 

reaction cycles that produce and remove O3. In moderately polluted areas (e.g. rural 

areas in most industrialised countries, NOx < 1 ppb), O3 is characterised by net 

formation. Peroxy radicals (exemplified by CH3O2 and HO2 in Figure 1.1) oxidise 

NO to NO2, which, through the latter’s photolysis, produces O3, forming part of the 

free-radical-propagated (FRP) O3-forming cycle (blue box in Figure 1.1). Increased 

NOx in these areas (while still below around 1 ppb) allows a greater number of FRP 

O3-forming cycles to occur, generally outcompeting the radical termination reactions 

that result in O3 destruction (green boxes in Figure 1.1). Hence O3 concentrations 

increase. The O3 formation as a result of VOC oxidation takes a long time (hours, 

days or even longer), which typically happens at a regional scale usually many 

kilometres downwind of its precursor emissions  (AQEG, 2009). Further increases in 

NOx concentration (NOx > 1 ppb) leads to another radical termination reaction (OH + 

NO2, orange box in Figure 1.1) becoming more dominant and this can interrupt the 

FRP O3-formation cycle. This results in lower O3 concentrations in more polluted 

urban environments. Within the urban environment the destruction of O3 via reaction 

with NO also strongly influences the O3 concentration locally (i.e. near road source). 

This is another pathway for O3 removal other than the radical termination that forms 

nitric acid (HNO3) (orange box in Figure 1.1). Occasionally, significant O3 formation 

may also occur in urban areas during summer when the solar intensity is high due to 

NO2 photolysis although the concentrations of VOCs are low (Jenkin, 2008). At the 

regional scale (100 – 1000 km), dry deposition of O3 to the terrestrial surface also 

plays an important role on determining O3 concentrations (The Royal Society, 2008). 
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O3 dry deposition depends on the nature of the surface (e.g. vegetation/non-

vegetation) and meteorological conditions that determine the magnitude of vertical 

flux. 

Overall, as a secondary pollutant, with a lag in production following precursor 

emissions, O3 is generally considered to be more spatially homogeneous than other 

primary pollutants. However, limited studies have shown considerable intra-urban 

spatial variation of O3 due to local destruction of ozone near sources of high NO (Lin 

et al., 2016; Malmqvist et al., 2014; McConnell et al., 2006).  

 

Figure 1.1 Schematic representation of O3 production and loss processes during the free-

radical mediated atmospheric oxidation of Methane (CH4) and CO. CH4 is used here as a 

surrogate of VOCs. (Source: The Royal Society (2008)) 

 

1.1.3 Particulate matter 

PM2.5 is defined as the mass concentration of particles with aerodynamic diameter 

less than 2.5 µm. The aerodynamic diameter differs from the physical diameter of 

particles and is related to the sampling technique of the particulate matter. The 

trajectory of particles in an air steam is determined by inertia (keeping particles on a 

straight line), pressure gradient (keeping particles along the air stream) and viscosity 
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(slowing down the movement). Smaller (lighter) particles tend to follow the air 

steam, while larger (heavier) particles impact on the object that the air stream 

encounters. Based on this principle cascade impactor or cyclone are designed so that 

particles smaller than the specified transmission curve stay with the air stream whilst 

larger particles impact on to a surface due to inertia (Heal et al., 2012). The reference 

method for quantifying the mass of PM2.5 involves drawing air sample through an 

impactor or cyclone inlet, to separate the relevant particle sizes, and then through a 

filter that is weighed before and after the sampling under specified temperature and 

relative humidity conditions (Heal et al., 2012). The sampling period is typically 

24 h. Since this method is labour intensive and only provides relatively long time-

averaged data, UK monitoring stations use the reference-equivalent method 

implemented in the TEOM-FDMS (Tapered Element Oscillating Microbalance-Filter 

Dynamics Measurement System) to measure hourly PM2.5 concentrations. The 

TEOM method indirectly measures the mass of PM by measuring the change in 

oscillation frequency of the filter resulting from the accumulation of sampled PM 

(Heal et al., 2012). As ambient PM typically contains a range of chemical 

components with different volatility, the mass of PM changes according to the 

partition of volatile or semi-volatile components in the gas and condensed phase 

under different environmental conditions. To control the variability in measurement 

caused by the volatility of PM components, the FDMS improves on the TEOM 

method by taking extra measures that better estimate the volatile component of PM 

and the volatilisation and condensation processes taking place on the filter during the 

weighing (Heal et al., 2012).  

Ambient particular matter consists of solid and/or liquid particles that vary in size, 

shape and chemical compositions. The diverse physical and chemical properties of 

ambient PM mean that PM can be classified and characterised in different ways. 

Considering the different processes of particle formation, ambient particles can be 

classified into four modes: nucleation (1 – 30 nm), Aitken (20 – 100 nm), 

accumulation (30 – 1000 nm) and coarse (> 1 µm) (Heal et al., 2012). For particle 

size characterisation, however, the first two modes are usually considered together, 

giving the following size classifications: ultrafine particles (UFPs) (particles with 

diameter less than 100 nm), PM2.5 (particles with aerodynamic diameter less than 2.5 
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µm) and PM10 (particles with aerodynamic diameter less than 10 µm). Particles in 

different size fractions exhibit different characteristics in terms of particle number, 

surface area and mass (Figure 1.2). Most importantly Figure 1.2 shows that the 

majority of particle number concentration is contributed by the UFPs, whereas the 

majority of particle mass comes from the accumulation and coarse mode particles. 

For this reason, UFPs are usually quantified by the number concentration, whilst 

PM2.5 and PM10 are quantified by the mass concentration. 

 

Figure 1.2 A typical ambient particle distribution as a function of particle size expressed by 

particle number, surface area, and volume. The latter is equivalent to a mass distribution 

when variation in particle density is small. Vertical scaling is individual to each panel. 

(Source: Heal et al. (2012)) 
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  Fine particles (PM2.5) 

Ambient PM2.5 generally consists of a vast array of constituents including ions (SO4
2-

, NO3
-, NH4

+, Na+ and Cl-), elemental carbon, organic carbon, mineral material and 

water (Heal et al., 2012). Each constituent generally comes from a different source, 

thus PM2.5 compositions will vary at different locations because of varying 

contributions from different sources. For example, in maritime areas Na+ and Cl- 

might predominate due to primary emissions of sea-salt particles, whereas in farming 

areas agricultural emissions contribute most to the NH4
+ component. In the urban 

environment, especially near roadside, elemental carbon and organic carbon are the 

components of most interest since they directly come from exhaust emission. These 

carbonaceous particles are initially produced in the nucleation mode by 

homogeneous, heterogeneous or reactive condensation in the exhaust emissions 

(Heal et al., 2012). The nucleation mode particles have a short lifetime as they 

coagulate or adsorb water and organic vapour to grow into accumulation mode 

particles (Kittelson et al., 2004) which remain stable in the atmosphere for several 

days (Hinds, 1999). NOx emission from transport or other combustion sources can be 

oxidised to HNO3 over time, which reacts with NH3 from agriculture contributing to 

the NO3
- component.  Stringent exhaust emission standards and upgraded technology 

have decreased the contribution of tailpipe emissions to the total PM concentration, 

therefore increasing the relative contribution of non-exhaust traffic emissions 

(Kumar et al., 2013; Pant and Harrison, 2013). Non-exhaust emissions generally 

comprise tyre wear, brake wear, road dust and road surface abrasion which 

contribute to particles mostly larger than 1 µm (Pant and Harrison, 2013).  

A number of factors affecting PM2.5 variability in the urban environment were 

summarised by Pinto et al. (Pinto et al., 2004). These include: 1) local sources of 

primary PM; 2) topography; 3) transient emissions events; 4) meteorological 

phenomena; and 5) differences in the behaviour of semi-volatile components. Several 

studies have investigated the extent to which different factors affect PM2.5 variability. 

A positive relationship was observed between PM2.5 and traffic volume in London 

and Madrid, and elevated PM2.5 concentrations during the cold season due to higher 

atmospheric stability and reduced mixing height (Kassomenos et al., 2014). Road 
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traffic can substantially elevate PM2.5 concentration at immediate kerbside, but not a 

few metres from the kerb (AQEG, 2012). In the UK high PM2.5 concentrations are 

frequently associated with air transported from continental Europe accompanied with 

high secondary inorganic components (AQEG, 2012). On the whole, PM2.5 

variability is not only governed by local emissions but also by the synoptic-scale 

meteorological phenomena which affects both the dispersion and deposition 

characteristics of the PM and the extent of long-range transport from regional 

sources.  

  Ultrafine particles 

There is no reference method or standard metric to quantify UFP. As mentioned 

above, particle number concentration (UFPNC) is perhaps the most straightforward 

metric to measure UFP. One common method to count particle number is by 

measuring the light scattered by the particles as they pass through a laser beam. 

Scattered light is directly proportional to the number concentration of particles for a 

given particle size (Ramachandran et al., 2003). For UFPs in particular, this involves 

enlarging the particles by condensation of vapour (usually butanol or water) prior to 

the detection as particles smaller than ~300 nm are insensitive to optical scattering 

(Heal et al., 2012). Instrumentation using this technique is referred to as 

condensation particle counter (CPC), and is most widely used in studies quantifying 

UFP (Peters et al., 2014; Reche et al., 2011; Wallace and Ott, 2011).  

The main source of UFP in the urban environment is road traffic which contributes 

about 90% of the total number concentration (Heal et al., 2012). Contributions from 

other anthropogenic sources, such as ship exhausts, cooking, biomass burning and 

aircraft emission are considered to be moderate compared with road traffic emission 

(Kumar et al., 2013). The UFP size fraction consists of nucleation and Aitken modes 

particles. Vehicle exhaust contributes to the nucleation mode particles via 

condensation and nucleation of vapour in the exhaust gases consisting of sulphates, 

nitrates and organic compounds (Heal et al., 2012). Formation of UFP from this 

route has diminished over the last decade due to reduction in the sulphur content of 

diesel fuel (Jones et al., 2012). Aitken mode particles are mainly made of a soot/ash 

core and formed through growth and coagulation of nucleation mode particles, and 
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are also from primary vehicle exhausts (Heal et al., 2012). Rapid transformation 

processes, including nucleation, coagulation, evaporation, condensation and 

deposition, happen within seconds after the emission of exhaust and continuously 

change the number concentration as the particles disperse (Kumar et al., 2011). 

Given the short lifetime of UFP, sharp concentration gradients are found with 

distance to the road traffic (HEI, 2010). Street canyons, which are common in the 

densely populated urban environments, introduce complex flow and dispersion 

characteristics that further increase the spatial variability. It has been reported that 

UFPNC in street canyons can be 27 times higher than the average background level 

not directly affected by near-source anthropogenic emissions; an even higher ratio 

was found in road tunnels (64 times higher than the background level) (Morawska et 

al., 2009). High-intensity secondary particle formation resulting in bursts in number 

concentration was also observed when traffic emissions were relatively low in the 

midday (Reche et al., 2011). These kind of nucleation episodes often result from 

intensive photochemical reactions accompanied with high O3 levels. 

  Black carbon 

Although not regulated in UK or EU legislation, the darkness of ambient particles, 

has been measured in the UK for many decades, originally in the form of the black 

smoke metric and latterly as the black carbon (BC) metric. BC is considered to be an 

important component of PM2.5 for being a marker of combustion sources and its 

impact on human health (WHO, 2012).  BC refers to the light-absorbing 

carbonaceous particles that have strong absorption across a wide spectrum of visible 

wavelengths (Bond and Bergstrom, 2006). Based on this property, BC is quantified 

by the absorption of light by PM collected on a filter, which is then converted to the 

mass concentration. Although in theory the Beer-Lambert law predicts a linear 

relationship between light absorbance and BC concentration, in reality this 

relationship can be non-linear especially when excessive BC are collected on the 

filter, which is known as the loading effect (Virkkula et al., 2007). The mass 

extinction coefficient used to derive BC concentration has been shown to vary with 

the composition mix of the particles and the type of filters, which both add 
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uncertainties into calculating BC concentration through this method   (Davy et al., 

2017). 

In the urban environment BC mainly originates from incomplete combustion of 

diesel fuels and wood burning from domestic heating. Contrary to UFP, BC is 

relatively inert and not likely degraded under atmospheric conditions so may 

transport over long distances (Venkatachari et al., 2006). A study in southern 

Scotland showed BC lifetime varied between 4 to 12 days depending on the 

precipitation which acts as a major removal process (Cape et al., 2012). High 

temporal variability was shown in the urban environment between days (Peters et al., 

2014; Viidanoja et al., 2002) and within a day (Fruin et al., 2008; Peters et al., 2014), 

which was attributed to the wind speed, mixing height, background concentration 

fluctuation and diesel traffic density. Large spatial variability was also reported from 

measurements at 27 sites in New York (Maciejczyk et al., 2004) and mobile cycling 

measurements in Belgium (Peters et al., 2014). Significant difference was shown in 

BC concentration between streets (Peters et al., 2014), and the authors concluded that 

traffic density, street topology and distance between receptor and traffic sources had 

dominant effects on the spatial variation. 

 Health studies on air pollution 

Evidence for adverse health effects of air pollution from both epidemiological and 

toxicological studies have been well documented in the past few decades. 

Epidemiological studies examine both short-term and long-term effects of exposure 

to air pollutants. The usual study design for investigating short-term effects of air 

pollution is time-series analysis, which regresses hourly or daily population exposure 

against disease data typically for a whole city (Moolgavkar et al., 2013). The long-

term effects of air pollution are determined from cohort or spatial ecological studies, 

which regress annual exposure to air pollution against variation in diseases between 

urban areas or within a single urban area at smaller spatial units such as the addresses 

in the cohort (Schikowski et al., 2014) or the electoral wards (Haining et al., 2010). 

This section gives an overview of existing evidence on the short-term and long-term 
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effects of air pollution and different exposure assessment methods used in 

epidemiological studies. 

1.2.1 Evidence on health effects of air pollution 

A wide range of adverse health effects are associated with exposure to ambient air 

pollution. WHO periodically reviews the evidence on health aspects of air pollution 

to update its air quality guidelines. The most recent review on health aspects of air 

pollution (REVIHAAP) was published in 2013 (WHO, 2013). The following 

summary is mainly based on the content of this report unless specified otherwise.  

A number of time-series studies have found associations between hourly and daily 

NO2 concentrations and mortality. Studies have also shown associations of long-term 

NO2 exposures with respiratory and cardiovascular mortality. Associations between 

adverse effects and NO2 concentrations below the current EU limit values (both 

hourly and annual average) have been discovered in many studies, which suggests 

that lower guideline values for NO2 are required. However, the question remains as 

to whether NO2 is responsible for the adverse health outcomes on its own. In many 

studies the association between NO2
 and short-term health effects remained robust 

after adjustments for PM2.5, PM10 and sometimes black smoke. It is particularly 

difficult to separate the independent effect of NO2 from other traffic-related air 

pollutants because the correlations among these pollutants are usually high. 

Proximity to roads (i.e. traffic-related air pollutants) were associated with adverse 

effects on health after adjusting for socioeconomic status and noise. Available 

evidence does not discern any individual or combinations of traffic-related air 

pollutants to be related to different health outcomes. However, based on the 

consistent epidemiological evidence on short-term and long-term effects of NO2 and 

some mechanistic insights from toxicological studies, especially for respiratory 

effects, it is reasonable to infer that ambient exposure to NO2 has some direct effects 

on human health. 

Many epidemiological studies have assessed the effects of short-term exposure to O3. 

Association was found between daily O3 levels (maximum 1-hour or maximum 

rolling 8-hour mean) with all-cause, cardiovascular and respiratory mortality. 
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Adverse effects of short-term exposure to O3 on both respiratory and cardiovascular 

hospital admissions have also been reported after adjustment for the effects of PM10. 

There are fewer epidemiological studies on the long-term effects of O3 on human 

health, but existing studies showed association between long-term exposure to O3 

and respiratory and cardiorespiratory mortality (Atkinson et al., 2016). Due to 

insufficient studies on the long-term health effect of O3, a threshold for the long-term 

guideline for O3 cannot be identified.  

The adverse effects of PM are especially well documented. Accumulating evidence 

has suggested effects of both short-term and long-term exposure to PM2.5 on 

mortality and morbidity. No evidence was found for a safe level of PM2.5 below 

which no adverse health effects occur. There was also little evidence that one 

particular property of PM was responsible for the adverse health outcomes. Based on 

the results from health studies on PM comprising varying fractions and types, it is 

likely that both chemical composition and physical properties of particle are 

responsible for the observed health effects. For example, evidence has shown 

association between the BC component of PM with cardiovascular health effects and 

premature mortality for both short-term (daily) and long-term (annual) exposures, 

even after adjustment of PM2.5 mass. Evidence on the association between short-term 

exposures to UFP and cardiorespiratory health has been emerging in recent years. 

Due to their small size toxicological studies suggested that UFPs act through 

mechanisms not shared with larger particles (e.g. PM2.5 and PM10) that dominate PM 

mass. Up to 2013 there have been no studies on the long-term effect of UFP, mainly 

due to the limited UFP monitoring in time and space that are essential for long-term 

exposure assessment (HEI, 2013).  

1.2.2 Exposure assessment methods 

Health studies investigating the short-term and long-term effects of air pollution use 

different exposure assessment methods. Studies of short-term effects of air pollution 

typically assign the pollutant concentration at the background fixed monitoring site 

as the population exposure. This will result in larger exposure estimate errors for 

pollutants with high spatial variability (e.g. NO2 and UFP) than for pollutants with 

less spatial variability (PM2.5) and PM10). However, in time-series studies temporal 
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exposure contrast is the variable regressed against health data. It may be plausible to 

use fixed site monitoring data as the measure of exposure if the monitoring data can 

represent the temporal variability of the pollution over the study area even if large 

spatial contrast exists. Nevertheless, it is important in time-series studies to assess the 

suitability of the reliance on a fixed monitoring site to represent the temporal 

variability of the studied pollutant. 

Studies of long-term effects of air pollution usually require pollutant concentration at 

much finer scale, which cannot be provided by the routine monitoring network. 

Therefore, different types of modelling methods are used to estimate pollutant 

concentration at the desired spatial scale. Three common types of models used in 

exposure assessment of ambient air pollution are reviewed here. 

Interpolation models estimate the pollutant concentration at the desired locations 

from a set of monitoring sites distributed in the study area based on geostatistical 

techniques. The most common technique of this kind is the Kriging method (Jerrett 

et al., 2005). The Kriging method exploits spatial dependence in the measured 

pollutant concentration to estimate a continuous pollution field. Beyond the random 

error in the data, the spatial dependence is considered to be determined by two 

effects. The first effect is a measure of the broad trend in the pollutant concentration 

over the entire study area. The second effect is a measure of local variations as a 

function of distance between measurement points (Jerrett et al., 2005). A major 

advantage of the Kriging method compared with other geostatistical technique is the 

ability to quantify the degree of uncertainty in the predicted values. However, a 

major drawback of Kriging is the requirement of a reasonably dense monitoring 

network in order to obtain desired errors in estimates. 

Land-use regression (LUR) models compute the relationship between pollutant 

concentration measured at a certain site and surrounding land use and traffic 

characteristics using regression analysis. The relationship is then applied to un-

sampled locations to extrapolate the pollutant concentration. LUR models have been 

increasingly used in recent epidemiological studies of long-term exposure to ambient 

air pollution because they are relatively inexpensive to implement and can provide 

reliable estimates of pollutant concentration, especially for traffic-related air 
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pollutants (Hoek et al., 2008). However, as with other empirical models, the major 

limitation of LUR models is the transferability of models to other locations and time 

periods. Models developed in different areas usually differ in the terms in their 

regression equations, which is partly due to different contributions from different 

sources but is also related to the selection of monitoring sites and predictor variables 

to build the model (Hoek et al., 2008). The measurement data used to build LUR 

models typically come from passive samplers for NOx or active samplers for PM, 

both of which only give long-term average (weekly or monthly) pollutant 

concentration. Therefore, the LUR models developed from a set of measurements 

may only represent well the period when the measurements were taken. Hence 

temporal stability of the air pollution determines the capability of using LUR models 

to extrapolate pollutant concentrations in time. As an empirical model, the quality of 

a LUR model heavily depends on size and range of the measurement data (Hoek et 

al., 2008). While the effect of number of monitoring sites has been investigated 

before in a few studies (Wang et al., 2012), the effect of the distribution of 

monitoring sites on LUR models has not been explored. Chapter 5 of the thesis 

addresses this question and recommends ideal monitoring strategies for building 

LUR models and model validation process. 

Dispersion models used in epidemiological studies for exposure assessment generally 

rely on Gaussian plume equations (Jerrett et al., 2005). The plume emitted from a 

constant stream of source can be mathematically proven to follow Gaussian 

distribution in lateral and vertical directions when the wind speed, wind direction and 

the propensity of atmosphere to disperse pollutant are considered to be constant (De 

Visscher, 2014). Although in reality none of these assumptions is fulfilled, the hourly 

average concentration is very close to the Gaussian profile in many cases (De 

Visscher, 2014). As a deterministic model, dispersion models estimate the pollutant 

concentration based on fundamental processes governing the emission and dispersion 

of air pollutants. Therefore, extensive data on emissions, meteorology and 

topography are required for dispersion models to carry out the calculation. Typically, 

there are three main aspects of data feeding into dispersion models: background 

concentration, meteorological data and emission data. Background data are usually 

obtained from routine monitoring sites at rural or urban background locations, or 
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larger scale model results. Meteorological data should include information on wind 

speed, wind direction, ambient temperature, solar radiation and cloud cover in order 

to estimate the atmospheric stability. Traffic emissions are usually estimated from 

traffic counts and emission factors. For point emissions (i.e. industrial sources), a 

number of parameters are required such as the height and diameter of the stack, 

temperature and exit velocity of the plume. Emissions data are usually reported on an 

annual basis. Therefore, to model pollutant concentration at high temporal resolution 

requires applying appropriate time-varying emissions factors to the emissions data. 

Dispersion models have distinct advantages over the previous two methods in 

providing high spatiotemporal pollution estimates and transferability. However, the 

performance of dispersion models depends on the availability and quality of the large 

amount of input data. These aspects often limit the application of dispersion models 

in wider areas. For this reason, a dispersion model (ADMS-Urban) is evaluated using 

UK-wide available emission and meteorological data to investigate the dispersion-

modelling capability if a nationwide exposure assessment is required. Being a 

commercial dispersion model, different modules of the ADMS-Urban have been 

tested and validated in various case studies (CERC, 2016). However, the 

performance of ADMS-Urban in a general UK city context using national level input 

data has not been reported in literature. This is investigated in Chapter 4 of the thesis. 

 The changing paradigm of exposure assessment 

The previous section has summarised different methods used in health studies to 

estimate human exposure. In fact, it is more accurate to describe them as methods to 

estimate pollution concentrations rather than human exposure. It is important to 

differentiate between the concepts of concentration and exposure, because exposure 

has a further meaning indicating whether interactions between environment and 

human exist. Once the intersection of air pollution and human is established, it may 

be also required to know the amount of pollutant that is actually inhaled and retained 

in the body to better understand the exposure-response relationship of air pollution. 

However, due to various technical and practical challenges current epidemiological 

studies are only capable of assigning the pollutant concentration as the exposure 

metric. Recent exposure assessment studies are starting to take account of the effect 
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of the time-activity pattern on population exposure (Dhondt et al., 2012; Smith et al., 

2016). Although people spend only a small proportion of time (~ 5%) commuting, it 

was found that a much larger proportion (11 – 30%, depending on the pollutant) of 

the daily pollution exposure occurred in transit(de Nazelle et al., 2013; Dons et al., 

2012, 2011). These studies highlight the importance of considering population 

mobility in the exposure assessment. It was suggested by the Health Effects Institute 

(HEI, 2010) that a hybrid exposure model, combining space-time-activity data, air 

quality model and personal measurement, would come closest to a “best” estimate of 

human exposure. 

Traditional fixed-site measurements may be adequate to validate models predicting 

pollution concentrations at fixed points. Validating the hybrid models requires the air 

quality measurements to incorporate the population mobility as well. Personal 

exposure measurement is the ultimate link between ambient air pollution and human 

health effects and the ideal approach to validate the hybrid models. Due to the rapid 

development of lower-cost and portable air pollution monitors, personal exposure 

studies have been increasing in recent years and have shown varying levels of 

exposure to ambient air pollution in different micro-environments (Bekö et al., 2015; 

Wallace and Ott, 2011). Despite the promising future of personal exposure 

measurements, there remain a number of practical and technical challenges facing 

this emerging area of science, namely the development of robust low-cost sensors 

that produce high quality data, a rigorous evaluation method against reference 

instrument for the personal monitors, integration of data of different quality from 

various sources (e.g. reference instruments and low-cost sensors), and the scalability 

to a population level (Snyder et al., 2013; Steinle et al., 2013). It should be noted that 

the measurement principles of most personal monitors differ from that of their 

associated reference instrument. Therefore, assessment of their compatibility with 

reference instruments must be conducted before any application. 

Research on the performance of low-cost air quality monitors has only become 

popular recently. There is no clear definition on what can be classified as an ‘low-

cost’ air quality monitor. A great variety of commercial air quality monitors are 

emerging on the market. While they are considerably cheaper than the reference 
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instrument used in the routine monitoring networks, their prices range from a few 

hundred dollars to a few thousand dollars. The AQ-SPEC program is one of the first 

attempts aiming to provide a test centre for the ‘low-cost’ air quality monitors and to 

establish performance standards by which the air monitors are evaluated 

(http://www.aqmd.gov/aq-spec/home). So far a wide range of PM and gas air quality 

monitors have been evaluated in the AQ-SPEC program. In general, monitors that 

measure gaseous species, especially NO2, performed worse than PM monitors. It is 

therefore of more interest to further investigate the reason causing the poor 

performance. 

The REVIHAAP report also identified as a critical gap in current health studies 

which is the assessment of air pollution as multiple independent pollutants rather 

than as a mixture (WHO, 2013). Understanding the relationship between different 

pollutants and characterisation of the pollution mix would improve the assessment of 

independent and/or synergistic effects of ambient air pollutants (Dominici et al., 

2010). Emerging low-cost portable monitors may be a solution to this problem as it 

may become practical to measure several pollutants simultaneously at wider spatial 

coverage. This is demonstrated in Chapter 3. 

 Aims and structure of this thesis 

The aims of this thesis are in line with the future direction of exposure assessment 

identified in the previous section, namely investigating the capability and limitation 

of using personal monitors to improve human exposure assessment, understanding 

the relationship between different pollutant metrics and demonstrating how the 

current exposure assessment method can be improved by integration of high-

resolution air quality modelling. The structure of this thesis is as follows. 

Chapter 2 evaluates the performance of three types of low-cost portable monitors that 

measure NO2, O3 and PM2.5, respectively. Special considerations regarding using 

these monitors in short-term monitoring campaigns or long-term personal monitoring 

are discussed. Chapter 3 demonstrates how short-term measurements with portable 

monitors can be used in conjunction with the data from fixed monitoring station to 

study the spatiotemporal variability and interrelationship between BC, UFP and 

http://www.aqmd.gov/aq-spec/home
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PM2.5 in an urban area.  Detailed relationships between UFP, NO2 and inorganic 

components of PM2.5 are investigated through longer-term measurements at roadside, 

urban background and rural sites. Chapter 4 describes the application of an 

atmospheric dispersion model (ADMS-Urban) in simulating high resolution pollutant 

concentrations in Edinburgh and its performance is evaluated with respect to the 

choices of different available input data. Chapter 5 presents a novel method to build 

and validate LUR models with the help of the dispersion model. Finally, Chapter 6 

summaries the main results from previous chapters and their implications for 

exposure assessment. Challenges facing the evolution of exposure assessment are 

discussed in the context of findings from previous chapters. 
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Chapter 2 Evaluation of low-cost portable air 
quality monitors 

 Introduction 

Air pollutant concentrations are monitored by national governments, agencies or 

local authorities to assess compliance with air quality legislation. The common 

monitoring strategy adopted by governments has been to make measurements with 

reference or reference-equivalent method at a small number of locations notionally 

representative of urban or rural environments. These monitoring data typically have 

high temporal resolution and are widely used in epidemiological studies to 

investigate short-term health impacts of air pollution (Samoli et al., 2016). Studies of 

long-term effects of air pollution require more spatially resolved data which usually 

come from a monitoring network purposely designed by the researchers. In these 

studies, gaseous pollutants such as NOx and VOCs are generally measured with 

passive samplers, whereas PM is measured through active sampling onto a filter 

followed by weighing. These measurement techniques are relatively low-cost but can 

only give long-term averaged (weekly or monthly) pollutant concentrations. 

Advancing the current exposure assessment method requires integration of individual 

human mobility, which demands the measurements to have both great spatial and 

temporal resolution that the two monitoring strategies discussed above do not 

possess.   

Research utilising portable ‘low-cost’ air quality monitors that measure real-time 

pollutant concentrations have been increasing in recent years, driven by the incentive 

to achieve more detailed source attribution (Heimann et al., 2015) and better 

estimation of personal exposure (Steinle et al., 2015). The extensive measurements in 

space and time achievable by these air quality monitors are attractive to researchers 

in many aspects including better human exposure assessment and insight into high-

resolution model performance. It is recognised from the outset that these sensors are 

unlikely to replace current monitoring networks or to provide equivalent 

measurements in terms of the robustness, precision and accuracy. However the 
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capability of these sensors should still be scrutinised and classifications should be 

made to inform potential users whether the sensors produce indicative data or only 

qualitative data for educational use (Lewis and Edwards, 2016).  

A protocol for the calibration and evaluation of low-cost gas sensors has been 

published by the European Commission (Spinelle et al., 2013). This document 

detailed the evaluation procedures for determination of whether a monitor can be 

accepted as an indicative method as defined in the Directive 2008/50/EC (2008). An 

indicative method is defined as that the relative expanded uncertainty of a method is 

within the acceptable uncertainty set out in the Directive, which are 30% for O3, 25% 

for NO2 and 50% for PM2.5 at their respective limit or target value (EC, 2008). The 

evaluation procedures involve the development of gas sensors in laboratory testing, 

to select important sensor parameters to convert to air pollutant concentration, and 

field testing which compares sensor’s output with the reference method. The 

commercial monitors evaluated in this chapter can be classified as ‘black box’ 

monitors, which means that they directly output a pollutant concentration whilst the 

internal algorithms converting the sensor’s raw response to a pollutant concentration 

are unknown to the user. It is therefore only possible to evaluate the monitor’s 

performance in field testing, which includes calculation of the regression between the 

monitor and reference measurements and the comparison of uncertainty of the 

monitor with the data quality objective (DQO) for the indicative method defined in 

the Directive 2008/50/EC. In reality there are many other aspects of the monitor’s 

performance that need to be considered in addition to complying with the DQO such 

as the extent of agreement between duplicate monitors, the stability of the monitor’s 

response over time, limits of detection and sensitivity to potential confounding 

variables such as temperature or other pollutants.  

This chapter evaluates three types of relatively low-cost portable air quality monitors 

that measure NO2, O3 and PM2.5. These monitors are Aeroqual series 500 O3 and 

NO2 portable monitors (~$500) and RTI microPEM PM2.5 monitor ($2,000). The 

Aeroqual O3 and microPEM monitors have previously been tested in the AQ-PEC 

program and had R2 of 0.65 – 0.90 and 0.85, respectively, with their respective 

reference instruments (http://www.aqmd.gov/aq-spec/evaluations/summary). This 
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result compared favourably with other ‘low-cost’ monitors, and therefore set the 

benchmark for other air quality monitors. The evaluation of these monitors in this 

chapter follows the protocol published by Spinelle et al. (2013), but also extend to 

the field usability of the monitors. Capabilities and limitations on their application in 

exposure assessment studies are discussed. 

 Evaluation of Aeroqual Series 500 portable 
monitors 

2.2.1 Introduction 

Aeroqual series 500 monitors use electrochemical and metal oxide semiconductor 

(MOS) sensors to measure NO2 and O3, respectively (Aeroqual, 2016). An 

electrochemical sensor converts current resulting from a redox reaction of the 

selected gas on the working electrode to the gas concentration (Mead et al., 2013). A 

MOS sensor relies on detecting the conductivity changes of heated semiconducting 

oxide induced by the presence of reactive gases (Williams et al., 2009). Cross 

interference with O3 has been shown to be a significant issue for the NO2 

electrochemical sensor (Mead et al., 2013). Cross-sensitivity to other gases including 

chlorine (Cl2) and hydrogen sulphide (H2S) are also significant for O3 MOS sensor 

(Williams et al., 2009). However due to the extremely low concentrations of these 

gases in the ambient atmosphere, the MOS ozone sensor is essentially free from 

interference under ambient conditions. Electrochemical and MOS sensors are in 

general sensitive to change in relative humidity and temperature (Snyder et al., 

2013). It is therefore important to maintain constancy of these environmental 

variables inside the monitors during operation.  

2.2.2 Method 

To compare the performance of the Aeroqual monitors against their respective 

reference instruments, Aeroqual NO2 and O3 monitors were deployed at the 

Edinburgh St Leonards monitoring station during the summer of 2015. The St 

Leonards monitoring station is part of the UK national network (AURN) that 

provides hourly averaged measurements of NO2, O3 and PM2.5. The deployment 

schedule is summarised in Table 2.1. The logging interval was 1 min during most 
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deployments, which allowed continuous monitoring of ~6 days’ worth of data before 

memory capacity was reached. During the last deployment, a 5 min logging interval 

was used to expand the continuous monitoring to 13 days. The analysis was 

conducted on hourly averaged data with a data capture requirement per hour of 75%. 

A portable weather sensor Kestrel 4500 (http://www.r-p-r.co.uk/kestrel/k4500.php) 

was co-located with the Aeroqual monitors to measure temperature and relative 

humidity. The measurement frequency of the Kestrel 4500 was 5 min. Hourly 

averaged data were calculated for the analysis of the effect of temperature and 

relative humidity on the Aeroqual monitors’ performance. 

Table 2.1 Summary of Aeroqual S500 monitor deployment periods in 2015 at the Edinburgh 

St Leonards AURN site. 

Deployment 

period 

Start date End date No. of days Logging 

interval 

P1 06-09 06-15 6 1 min 

P2 07-21 07-28 7 1 min 

P3 07-28 08-03 6 1 min 

P4 08-05 08-11 6 1 min 

P5 08-21 08-27 6 1 min 

P6 08-27 09-09 13 5 min 

 

2.2.3 Performance of the Aeroqual Series 500 O3 monitor 

Figure 2.1 shows the scatter plot and the major axis (MA) regression results 

comparing the Aeroqual O3 monitor and reference O3 measurement for each 

deployment period. Details on the MA regression method are explained in Appendix 

I. Correlation between Aeroqual O3 monitor and reference instrument was very high 

during each deployment period (r2 > 0.90). The gradients calculated from the 

regression analysis for each period were similar, but the intercept showed a generally 

decreasing trend. This suggests that the baseline of the Aeroqual O3 monitor may 

have drifted between deployments. Further investigation did not find this drift of 

baseline to be related to ambient temperature (T) or relative humidity (RH). As it is 

not technically feasible for the user to correct the Aeroqual O3 baseline, the best 

practice for using the Aeroqual to measure O3 in field measurements would be to 
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time the calibration of the Aeroqual monitor as close to the actual measurement 

period as possible to reduce the impact of potential sensor drift on the observed 

concentrations. In addition, different calibration equations may be required for the 

Aeroqual O3 measurements if field measurements span an extensive period of time in 

order to account for potential sensor drift. 

 

Figure 2.1 Scatter plot of O3 concentrations measured by Aeroqual monitor and reference 

instrument for different deployment periods. MA regression equations for each deployment 

period are shown in the top-left of the graph. 95% confidence interval of the regression 

coefficients are summarised in Appendix II Table 1. The black line shows the 1:1 line. 

To investigate the sensor’s performance after calibration with the reference analyser, 

P2 and P5 were selected as calibration periods, from which the resulting calibration 

equations were applied to the data in P3 and P6, respectively. P2/P3 and P5/P6 are 

two pairs of consecutive deployment periods that represent the situation where the 

sensor calibration is undertaken close in time to the actual measurements. Figure 2.2 
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shows the scatter plots of calibrated Aeroqual O3 data against the reference 

instrument for the two periods. The statistics assessing the agreement are shown in 

Table 2.2. 

(a) 

 
(b) 

 

Figure 2.2 Scatter plots of hourly-averaged calibrated Aeroqual O3 vs reference O3. (a) 

Data for P3 calibrated using data from P2. (b) Data for P6 calibrated using data from P5. 

The red line shows linear relationship between the two variables calculated from MA 

regression analysis with the grey lines showing the 95% confidence interval. Solid black line 

shows the 1:1 line, and dashed lines show the 1:2 and 2:1 lines. 
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Table 2.2 Summaries of pairwise statistics between hourly-averaged calibrated Aeroqual O3 

and reference O3. RMSE is root mean squared error. FAC2 is the percentage of the ratios of 

the paired data that are within 0.5 to 2. The definitions of all the evaluation statistics are 

given in Appendix I.  

Calibration 

period 

Validation 

period 

N FAC2 Mean Bias 

(g m-3) 

RMSE 

(g m-3) 

r2 

P2 P3 131 92% 9.4 10.1 0.92 

P5 P6 259 99% 2.3 4.7 0.94 

Figure 2.2 shows that the calibration equation derived from P2 was not suitable for 

the data in P3 as indicated by the scatter points being systematically under the 1:1 

line. This observation suggests that even between two consecutive deployment 

periods the Aeroqual O3 monitor may still be affected by a significant amount of 

baseline drift. This drift appeared to be consistent in direction, but by an inconsistent 

rate (Figure 2.1). As a result, comparison between Aeroqual O3 monitor and 

reference instrument before and after field measurement is necessary to examine if 

significant drift in baseline occurs. 

2.2.4 Performance of the Aeroqual series 500 NO2 monitor 

The Aeroqual NO2 monitor has previously been identified to be subject to O3 cross 

sensitivity (Lin et al., 2015). NO2 measured directly by the Aeroqual monitor 

correlated poorly with the reference instrument, however the difference between NO2 

measured by Aeroqual and NO2 measured by reference instrument (ΔNO2) was 

found to correlate well with O3 concentration (Lin et al., 2015). This allows the 

calibration of Aeroqual NO2 measurements if simultaneous O3 measurements are 

also present. Lin et al. (2015) regressed ΔNO2 against O3 measurements, which is 

equivalent to regressing NO2 measured by Aeroqual [NO2(Aq)] against NO2 

measured by reference analyser [NO2(ref)] and O3 measured by Aeroqual [O3(aq)] 

with the coefficient of NO2(ref) fixed to 1 (Fit1 in Table 2.3). The Lin et al. equation 

assumes that one unit change in the reference NO2 will result in one unit change in 

the Aeroqual NO2, keeping O3 constant. However, it is likely that the response in the 

Aeroqual signal solely due to NO2 may not be 1:1 to the response of reference NO2. 

Hence a multiple linear relationship of Aeroqual NO2 against reference NO2 and 
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Aeroqual O3 (shown as Fit2 in Table 2.3) is also plausible and has not been 

investigated before. 

Table 2.3 The equation used to calibration Aeroqual NO2 measurements in Lin et al. (2015) 

and the   two variations of regression equations used in this study to calibrate Aeroqual NO2 

measurements. Fit1 has the same underlying algebraic form as the Lin et al. (2015) 

approach. 

Lin et al. (2015) ΔNO2 [NO2(Aq) −  NO2(ref)] = 𝑎 ∙ O3(Aq) + 𝑏 

Fit1 NO2(Aq) = NO2(ref) + 𝑎 ∙ O3(Aq) + 𝑏 

Fit2 NO2(Aq) = 𝑎1 ∙ NO2(ref) + 𝑎2 ∙ O3(Aq) + 𝑏 

 

Figure 2.3 shows the variation in NO2(Aq) (r2) explained by the two regression 

models for each deployment period. For most of the deployment periods, r2 values 

calculated by the two regression models were similar. However ANOVA analysis 

suggested that the sum of squared residuals (SSR) for Fit2 was significantly smaller 

(P < 0.05) than the SSR for Fit1 for all deployment periods except P2, suggesting 

that Fit2 may be the better model to calibrate NO2(Aq).  

 

 

Figure 2.3 r2 values of the two regression models in Table 2.3 for different deployment 

periods. 
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Regression coefficients for NO2(ref) and O3(Aq) and the intercepts for the two 

regression models are summarised in Figure 2.4. Apart from the second deployment 

period (P2), regression coefficients were significantly different between the two 

models. The coefficient for NO2(ref) was relatively consistent among P2-P5 at 

around 0.8 for Fit2. The coefficients for O3(Aq) varied to a larger extent between 

deployment periods for both models, which may be due to the sensor drift observed 

in section 2.2.3 Performance of the Aeroqual Series 500 O3 monitor. 

It is noted that in Fit2 P1 and P6 were associated with relatively low coefficients for 

NO2(ref) and O3(Aq) and relatively large intercepts, suggesting that Aeroqual NO2 

measurements during these periods were largely dominated by the monitor’s baseline 

concentration. To investigative whether this was caused by building the model using 

the uncorrected (for baseline drift) O3(Aq) measurements, O3(ref) measurements 

were used instead of O3(Aq) to calibrate NO2(Aq). Although in practice it is unlikely 

to use reference O3 measurements to calibrate Aeroqual NO2 monitor at locations 

other than the reference monitoring station, for testing purpose, using O3(ref) can 

largely eliminate uncertainties in the O3 measurements, therefore allowing better 

understanding of the factors influencing the Aeroqual NO2 measurements. 

Regression coefficients for the two regression models (Fit1 and Fit2) using O3(ref) 

instead of O3(Aq) are summarised in Figure 2.5. Significant variation in the 

coefficients for NO2(ref) and O3(ref) and intercept between deployment periods was 

retained for both models, suggesting that the Aeroqual NO2 monitor in fact 

responded to NO2 and O3 concentrations to varying extents in different deployment 

periods.  
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(a) (b) 

  
(c)  

 

 

Figure 2.4 Regression coefficients for (a) NO2(ref), (b) O3(aq) and (c) intercept calculated 

from the two regression models Fit1 and Fit2 given in Table 2.3. The error bar indicates the 

95% confidence interval associated with the coefficient.  
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(a) (b) 

  
(c)  

 

 

Figure 2.5 Regression coefficients for (a) NO2(ref), (b) O3(ref) and (c) intercept calculated 

from the two regression models Fit1 and Fit2 given in Table 2.3. The error bar indicates the 

95% confidence interval associated with the coefficient. 

It is evident in this study and the previous study (Lin et al., 2015) that the Aeroqual 

NO2 monitors suffer from significant cross-interference from O3. In practice the 

calibration of Aeroqual NO2 measurements require simultaneous O3 measurements 

(mostly likely from another Aeroqual O3 monitor). The reliability of applying a 

calibration equation derived from one period to another depends not only on how 
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stable the response to NO2 and O3 is for the Aeroqual NO2 monitor but also on how 

stable the Aeroqual O3 monitor is. Although the response to NO2 and O3 from the 

Aeroqual NO2 monitor was relatively consistent for most deployment periods 

(regression coefficients for Fit2 during periods P2-P5 in Figure 2.5), significant 

variations in the regression coefficients for NO2 and O3 were observed during other 

periods without apparent reasons. This implies that calibration of Aeroqual NO2 

monitors benefits from extended deployment periods in order to ascertain the stable 

calibration equation and that frequent calibrations before, after and even during a 

field measurement campaign are necessary. 

2.2.5 Effect of temperature and RH on Aeroqual Series 500 
NO2 monitor  

Temperature and relative humidity are known in principle to affect an 

electrochemical sensor’s sensitivity and baseline (Mead et al., 2013). It was recently 

found that T and RH had a more pronounced effect on NO sensors than on NO2 

electrochemical sensors (Popoola et al., 2016). In this study the effect of T and RH 

on NO2(Aq) in addition to NO2(ref) and O3(Aq) was investigated by adding T and 

RH to the linear regression (Table 2.4). One caveat of adding RH and T to the linear 

regression is that sometimes RH and T may correlate well with each other and with 

O3, which makes it difficult to distinguish the independent effect of each variable. 

This multicollinearity issue in each model was examined with variance inflation 

factor (VIF). VIF describes the inflation of the confidence interval for a variable’s 

regression coefficient relative to a model with uncorrelated variables. Generally a 

variable with VIF > 4 is considered to have a multicollinearity issue (Kabacoff, 

2011). In this study RH was frequently found to have a multicollinearity issue with T 

(P1, 2 and 4). T was not found to have multicollinearity issue with O3(Aq) or 

NO2(ref) for all periods.  

The two regression models also considering T and RH (Fit3 and Fit4) are compared 

with the model excluding T and RH (Fit2), and the effectiveness of the different 

models was evaluated using the Akaike Information Criterion (AIC) (Figure 2.6). 

The AIC index evaluates a model’s statistical fit and the number of variables 

included to achieve this fit. Smaller AIC value of a model indicates an adequate fit 
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with fewer predictor variables and therefore is preferred (Kabacoff, 2011). AIC 

values suggest that Fit3 and Fit4 improved on the Fit2 only in P1 and P4 and by a 

very small amount (Figure 2.6). Considering the multicollinearity issue for RH, Fit3 

might be the better model to correct NO2(Aq). However the effect of T on NO2(Aq) 

was inconsistent and weak if contribution of T is assumed to be linear to the response 

of NO2(aq) as described in Fit3, consistent with the findings by Lin et al. (2015). 

Table 2.4 Linear regression models used to calibrate Aeroqual NO2 monitor measurements 

including T or T and RH. 

Fit3 NO2(Aq) = 𝑎1 ∙ NO2(ref) + 𝑎2 ∙ O3(Aq) + 𝑎3 ∙ 𝑇 + 𝑏 

Fit4 NO2(Aq) = 𝑎1 ∙ NO2(ref) + 𝑎2 ∙ O3(Aq) + 𝑎3 ∙ 𝑇 +  𝑎4 ∙ 𝑅𝐻 + 𝑏 

 

 

Figure 2.6 AIC values of three regression models for calibrating NO2(Aq) for different 

deployment periods. Data in P5 were not included in the analysis due to lack of T and RH 

measurements.  
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 Evaluation of RTI microPEM personal PM2.5 
monitors 

2.3.1 Introduction 

The microPEM (micro personal exposure monitor) monitor designed by RTI 

international (RTI, 2016) measures particles using the light scattering technique. Air 

samples are drawn by a miniaturised pump at a flowrate of 0.5 L per minute through 

dual impactor stages that select particles with aerodynamic diameter less than 2.5 µm 

before reaching the testing chamber. Light scattered by the particles passing through 

the laser beam shinning across the testing chamber is detected by a photodiode. The 

light intensity is converted into a voltage which is in turn proportional to the mass 

concentration of PM2.5. The intensity of light scattered depends on particle size, the 

index of refraction and light-absorbing characteristics of the particles (TSI, 2012). 

Without knowing the properties of the particle samples, the conversion between the 

voltage and PM2.5 mass concentration relies on a constant conversion factor obtained 

from calibration with known mass concentration of test aerosol that has a wide size 

distribution and is intended to be representative of a wide variety of ambient 

aerosols. It is assumed that the wide range of particle sizes averages the effect of 

particle size dependence on the measured signal (TSI, 2012). However any given 

ambient particle mixture may have properties that differ from the test aerosols on 

which the conversion factor is based. This contributes intrinsic (and unquantifiable) 

uncertainty to the monitors measuring PM mass concentration based on light 

scattering technique. In addition many studies have also found that relative humidity 

can affect the PM concentrations measured by the optical method compared to the 

gravimetric method (Fischer and Koshland, 2007; Soneja et al., 2014).  

2.3.2 Method 

Duplicate microPEM monitors (S/N: 586N and 618N) were deployed at St Leonards 

monitoring station in different seasons of 2014 and 2015 (Table 2.5). Data were 

recorded at 10-second intervals. In the subsequent analysis the 10-second data were 

first averaged to one minute and then to hourly data based on the one-minute data 

with a 75% data capture threshold per hour. The default PM2.5 mass concentrations 
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output by the microPEM monitor has already been corrected for relative humidity 

using the method developed by (Chakrabarti et al., 2004). To investigate the 

effectiveness of this correction method, uncorrected PM2.5 data and RH data recorded 

internally by the microPEM monitor were also extracted and analysed. In the 2015 

deployment, a weather monitor (Kestrel 4500) was deployed on-site with the 

microPEM monitors to record ambient temperature and RH. Correction of the 

microPEM PM2.5 data using RH recorded by the Kestrel was explored to investigate 

whether the precision and accuracy of the PM2.5 data could be improved.  

It is recommended in the operation manual that the nephelometer in the microPEM 

monitor should be zeroed frequently. This was done by adjusting the zero offset 

value for each microPEM monitor with a HEPA filter attached at the beginning of 

each deployment. Although the reading of the nephelometer stayed at zero for a few 

minutes when the HEPA filter was attached, it was discovered that in some instances 

the nephelometer zero reading drifted by ~3 µg m-3 after the deployment, suggesting 

that such fluctuation in baseline might also occur during the measurements. As a 

result the zero offset values for each microPEM monitor were not consistent between 

the deployment periods (Table 2.5). Considering the zero offset values from the past 

several deployments, it appears that offset values of 47 and 56 for the 586N and 

618N units were mostly used, suggesting that these are the stable settings for each 

microPEM monitor and should be used throughout.  
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Table 2.5 Summary of the deployment periods and baseline settings of the duplicate 

microPEM monitors (586N and 618N) at Edinburgh St Leonards AURN station. 

Deployment period Start/End date Zero offset (586N, 

618N) 

Summer 

2014 

P1.1 2014-07-30 ~ 2014-08-01 (47, 56) 

P1.2 2014-08-08 ~ 2014-08-14 (47, 56) 

P1.3 2014-08-25 ~ 2017-09-09 (46, 56) 

Spring 2015 P2.1 2015-03-11 ~ 2015-03-16 (47, 56) 

P2.2 2015-03-23 ~ 2015-03-26 (47, 57) 

Summer 

2015 

P3.1 2015-07-15 ~ 2015-07-21 (47, 56) 

P3.2 2015-07-21 ~ 2015-08-03 (47, 56) 

P3.3 2015-08-03 ~ 2015-08-27 (47, 56) 

 

2.3.3 Precision of the microPEM monitors 

The precisions of the three outputs (RH-corrected PM2.5, RH-uncorrected PM2.5 and 

RH) between duplicate microPEM monitors were assessed by MA regression 

analysis. The results for the 2014 summer deployment are shown in Figure 2.7. The 

correlation coefficients for all three parameters were high (r2 > 0.99) during each 

measurement period. However the gradient from the regression analysis for both RH-

corrected and RH-uncorrected PM2.5 was significantly different from unity. The 

gradient of the RH-corrected PM2.5 for all three periods was similar, but the intercept 

for the period P1.3 was roughly 3 µg m-3 lower than the intercept for periods P1.1 

and P1.2, coinciding with the amount of drift in baseline that was observed in 

zeroing. The cause of the difference in intercept was likely use of an incorrect zero 

offset value for microPEM 586N during P1.3.  
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(a) (b) 

  
(c)  

 

 

Figure 2.7 Scatter plots for the summer 2014 measurements of the hourly average (a) RH-

corrected PM2.5, (b) RH-uncorrected PM2.5 and (c) RH recorded by the duplicate microPEM 

monitors. Due to the loss of raw measurement files for periods P1.1 and P1.2, it is not 

possible to extract the RH-uncorrected PM2.5 data for these two periods. 95% confidence 

interval of the regression coefficients are summarised in Appendix II Table 2. 

 

  



Chapter 2 Evaluation of low-cost air quality monitors 

44 

 

Similar to the deployment in 2014, correlations between duplicate microPEM 

monitors were high for RH-corrected PM2.5, RH-uncorrected PM2.5 and RH 

measurements in spring 2015 (Figure 2.8). However the relationships between 

duplicate RH and uncorrected PM2.5 measurements were noticeably different for the 

two separate periods. Interestingly the relationship between duplicated RH-corrected 

PM2.5 measurement was similar between the two periods. Applying the RH 

correction method on the uncorrected PM data using the RH recorded by the Kestrel 

weather monitor should eliminate any errors due to inconsistent response of the 

microPEM internal RH sensors (Figure 2.8d). The RH recorded by the Kestrel 4500 

(min: 44%; mean: 82%; max: 100%) had a wider range and was generally higher 

than the RH recorded by the microPEM monitors (min: 27%; mean: 51%; max: 

68%). The resulting corrected PM2.5 concentrations based on RH data from the 

Kestrel weather monitor were therefore generally lower (Figure 2.8d).  
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(a) (b) 

  
(c) (d) 

  

Figure 2.8 Scatter plots for the spring 2015 measurements of the (a) RH-corrected PM2.5, (b) 

RH-uncorrected PM2.5, (c) RH and (d) RH-corrected PM2.5 based on RH data from the 

Kestrel weather monitor. 95% confidence interval of the regression coefficients are 

summarised in Appendix II Table 2. 

In the summer 2015 deployment, RH recorded by the duplicate microPEM monitors 

again showed varying relationships between different periods (Figure 2.9c). The 

variation of relationship was also evident even within the same continuous period 

(P3.2 and P3.3).  This resulted in reduced r2 values of RH-corrected PM2.5 compared 

to uncorrected PM2.5 for P3.2 and P3.3. Despite using the RH data, correction of 

PM2.5 concentrations using RH measurements from the Kestrel weather monitor did 
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not consistently improve the precision of the microPEM monitors (Figure 2.9d), 

suggesting that the correction method used as default in the microPEM monitors may 

not be appropriate in this setting. Both 2015 deployments showed that although 

different responses between duplicate microPEM measurements of RH and 

uncorrected PM2.5 were evident, the corrected PM2.5 measured by microPEM 

monitors was more consistent between deployment periods. 
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(a) (b) 
 

  

(c) (d) 

  

Figure 2.9 Scatter plots for the summer 2015 measurements of the (a) RH-corrected PM2.5, 

(b) RH-uncorrected PM2.5, (c) RH and (d) RH-corrected PM2.5 based on RH data from the 

Kestrel weather monitor. 95% confidence interval of the regression coefficients are 

summarised in Appendix II Table 2. 
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2.3.4 Accuracy of the microPEM monitors 

Since the comparisons between duplicate microPEM monitors have shown good 

correlations in both RH-corrected and uncorrected PM2.5 values, the evaluation of the 

accuracy focuses only on the comparison between 586N and TEOM-FDMS. The 

total PM2.5 mass concentration measured by TEOM-FDMS is used for comparison, 

which is the sum of volatile and non-volatile components of PM2.5 that are measured 

independently during two separate cycles (AQEG, 2012). Figure 2.10 shows the 

scatter plots of RH-corrected and uncorrected PM2.5 against TEOM-FDMS 

measurements for each deployment period. Correlations of TEOM-FDMS 

measurements with RH-corrected and uncorrected microPEM measurements were 

similar. Good correlations between microPEM and TEOM-FDMS measurements (R2 

> 0.6) were observed in most periods with the exception of P1.2, P3.1 and P3.2 

where the correlation was poor (r2 < 0.1). Comparing the PM2.5 observed in different 

periods showed that during these periods average PM2.5 was only around 5 µg m-3 

and the range of variation was small (Figure 2.11). At such low concentration the 

noise in the microPEM values (e.g. fluctuation of the baseline) would have more 

impact on the measurement data therefore affecting the accuracy. In addition the 

TEOM-FDMS measurements of such low PM2.5 concentrations may also be subject 

to greater uncertainties (AQEG, 2012).  

Table 2.6 shows the statistics of the comparison of RH-corrected and uncorrected 

MicroPEM PM2.5 measurements with TEOM-FDMS measurements. In the periods 

when there was significant correlation between microPEM and TEOM-FDMS 

measurements, the mean bias (MB) and normalised mean bias (NMB) for the RH-

corrected PM2.5 measurements were not consistently lower than the uncorrected 

measurements. However, in some instances (P2.1, P3.1 and P3.2) the uncorrected 

data showed almost twice the error of the RH-corrected data. The RH-corrected 

measurements also showed consistent improvement in the root mean squared error 

(RMSE). Without calibration the RH-corrected microPEM measurements were on 

average between 20% – 47% of the TEOM-FDMS for the periods when PM2.5 

concentrations were low (P1.2, P3.1 and P3.2) and between 11% – 43% for the rest 

of the periods. 
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RH-corrected PM2.5 RH-uncorrected PM2.5 

  

  

  

Figure 2.10 Scatter plots for each measurement period of RH-corrected and uncorrected 

PM2.5 measured by microPEM 586N against PM2.5 measured by TEOM-FDMS. 95% 

confidence interval of the regression coefficients are summarised in Appendix II Table 3. 
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Figure 2.11 Boxplot of the hourly PM2.5 concentrations measured by TEOM-FDMS during 

the different deployment periods. The whiskers extend to the values that are within 1.5 times 

the IQR on each side of the median. 

 

Table 2.6 Statistics for the RH corrected (uncorrected) microPEM measurements against 

TEOM-FDMS measurements. The grey shading highlights the periods when there was no 

correlation between microPEM and TEOM-FDMS measurements. The definitions of all the 

evaluation statistics are included in Appendix I. 

Period FAC2 MB (µg m-3) NMB RMSE (µg m-3) r2 

P1.1 0.96 (NA) -0.37 (NA) -0.05 (NA) 1.76 (NA) 0.73 (NA) 

P1.2 0.93 (NA) -1.15 (NA) -0.2 (NA) 2.08 (NA) 0.07 (NA) 

P1.3 0.99 (0.99) -0.85 (-0.5) -0.08 (-0.05) 2.54 (2.35) 0.84 (0.84) 

P2.1 0.81 (0.73) 3.45 (5.75) 0.43 (0.71) 4.81 (7.78) 0.85 (0.83) 

P2.2 0.82 (0.82) 0.85 (1.30) 0.16 (0.24) 2.29 (2.62) 0.70 (0.70) 

P3.1 0.68 (0.51) 1.57 (2.99) 0.47 (0.90) 2.48 (3.68) 0.09 (0.09) 

P3.2 0.69 (0.58) 1.05 (2.33) 0.30 (0.68) 2.27 (3.55) 0.03 (0.01) 

P3.3 0.74 (0.73) -0.72 (0.12) -0.11 (0.02) 3.21 (4.00) 0.69 (0.62) 

 

  



Chapter 2 Evaluation of low-cost air quality monitors 

51 

 

2.3.5 Investigation of the RH dependence of the microPEM 
monitor 

The default PM2.5 output from the microPEM monitor is corrected for the potential 

issue that high RH may cause the nephelometer to overestimate the particle 

concentration. The precision between duplicate microPEM monitors for RH-

corrected PM2.5 therefore also depends on the precision of the RH sensors between 

the two units. In several deployment periods in 2015 there was noticeable difference 

in the response of the RH sensors in the two units. However, the RH-corrected PM2.5 

concentrations appeared not to be significantly affected by the inconsistency of RH 

measurements, possibly because the RH recorded by microPEM monitors was 

generally lower and did not significantly influence the corrected values. Although in 

theory the uncorrected data should be more reliable in terms of precision, the 

analysis did not show a significant improvement in the precision of RH-uncorrected 

data over the RH-corrected data. The algorithm applied by the microPEM monitor to 

correct potential overestimation at high RH was investigated by plotting the ratio of 

uncorrected PM2.5 to reference PM2.5 against RH (Figure 2.12). No clear pattern was 

found in the bias of uncorrected PM2.5 as a function of RH recorded either by the 

Kestrel weather monitor or the microPEM monitor. The RH-correction method 

adopted by microPEM monitors did not account well for the overestimation of the 

uncorrected PM2.5. This explains the findings that the RH-correction did not 

significantly improve the correlation between RH-corrected and TEOM-FDMS 

measurements compared to the uncorrected data (Table 2.6). However, there was 

evidence that RH-corrected data reduced the error (RMSE) comparing to the TEOM-

FDMS measurements and also effectively reduced the occasional large 

overestimations if no correction was made. The RH-corrected microPEM 

measurement also requires calibration due to the occasional large NMB observed 

(e.g. P2.1). However, the varying regression coefficients between the deployments 

mean that erroneously applying the calibration equation derived from one period to 

another may introduce greater error than the un-calibrated data (Figure 2.13). Given 

that in many occasions the slope of regression analysis between microPEM and 

TEOM-FDMS measurements was not significantly different from unity and the 

intercept was only around 1 g m-3, it is plausible to use the un-calibrated microPEM 
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measurement if the uncertainties (MB, NMB and RMSE) compared to reference 

instrument are also clearly stated.  

(a) (b) 

  

Figure 2.12 Ratio of uncorrected PM2.5 measured by microPEM 586N to reference PM2.5 

measurement as a function of RH recorded by (a) the Kestrel weather monitor and (b) the 

microPEM monitor for all the deployment periods. The red curve shows the RH-correction 

function used by the microPEM monitor. 
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(a) (b) 

  

Figure 2.13 Slope and intercept coefficients (with 95% confidence interval indicated by 

error bar) of the MA regression between RH-corrected microPEM 586N measurements and 

TEOM-FDMS measurements for the periods when there was significant correlation between 

the two. 

 

 Discussion 

The performances of Aeroqual O3 and NO2 and microPEM PM2.5 monitors were 

evaluated against respective reference instruments through a series of co-location 

deployments spanning a few months. The Aeroqual O3 monitor tested here showed 

very good correlation (r2 > 0.90) with the reference instrument. This compares 

favourably than the results published in AQ-SPEC (r2
 ~ 0.85) and is generally higher 

than other portable O3 monitors (http://www.aqmd.gov/aq-

spec/evaluations/summary). Yet there were biases in the slope and intercept 

coefficients that needed correction. The baseline of the Aeroqual O3 changed 

between different deployment periods, suggesting that the correction equation 

derived in the calibration period may not be suitable for a separate measurement 

period. Therefore, calibration between Aeroqual O3 monitor and reference instrument 

before and after the measurement period is essential to determine if baseline drift 

occurs. Consistent with previous findings, the Aeroqual NO2 monitor is subject to 

http://www.aqmd.gov/aq-spec/evaluations/summary
http://www.aqmd.gov/aq-spec/evaluations/summary
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cross-sensitivity from O3. Temperature and relative humidity were not found to have 

significant impacts on the performance of Aeroqual NO2 and O3 monitors. Aeroqual 

NO2 measurement can be effectively calibrated using reference NO2 and Aeroqual O3 

measurements. However, in practice the calibrated NO2 data may be associated with 

greater uncertainties contributed by the instability of both O3 and NO2 monitors. The 

Aeroqual O3 monitor can provide very comparable measurement with reference 

analyser if frequent calibration and quality control processes are carried out. 

Aeroqual NO2 monitor measurements have to be accompanied by contemporaneous 

O3 measurements to allow calibration of raw Aeroqual NO2 data. 

The analysis of the inter-comparison between duplicate microPEM monitors 

uncovered a few practical and technical considerations for its field application. First, 

an optimal zero offset setting for each microPEM monitor should be determined 

before the measurements. Although the baseline might fluctuate between 

deployments, it is advantageous to keep the same setting in order to ensure 

comparability of measurements in different periods. The response of the internal RH 

sensor in duplicate microPEM monitors was inconsistent between deployments. 

However, since the absolute values of RH were low (< 80%) in both microPEM 

monitors, the resulting RH-corrected data reported by duplicate microPEM monitors 

were not significantly affected and were relatively consistent between different 

periods. Correlation between microPEM monitor and reference instrument was good 

(r2 = 0.69 – 0.85) compared to other monitors tested in AQ-SPEC in most testing 

periods, but was poor (r2 < 0.1) when the concentration was low (< 10 µg m-3) and 

the range of concentration was small. This could be due to increased uncertainties in 

both microPEM and TEOM-FDMS measurements. Calibration of microPEM 

monitor against reference analyser should cover the range of concentrations that 

might be encountered in the actual measurements whenever possible. The RH-

corrected PM2.5 measurements slightly improved on the un-corrected data in terms of 

RMSE and NMB. Although occasionally large overestimation (43%) was observed 

in microPEM versus TEOM-FDMS measurements, the measurement error (NMB) 

was small (11% ~ 16%) for the rest of comparisons (excluding the periods when 

PM2.5 concentrations were less than 10 µg m-3). Caution should be taken when using 

the microPEM monitor to measure PM2.5 at very low concentrations due to the poor 
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correlation with TEOM-FDMS and greater measurement error. Calibration of 

microPEM monitor against reference analyser should cover the range of 

concentrations that might be encountered in the actual measurements whenever 

possible. The RH-corrected PM2.5 measurements slightly improved on the un-

corrected data in terms of RMSE and NMB. Although occasionally large 

overestimation (43%) was observed in microPEM versus TEOM-FDMS 

measurements, the measurement error (NMB) was small (11% ~ 16%) for the rest 

of comparisons (excluding the periods when PM2.5 concentrations were less than 10 

µg m-3). Caution should be taken when using the microPEM monitor to measure 

PM2.5 at very low concentrations due to the poor correlation with TEOM-FDMS and 

greater measurement error 

It is acknowledged that the small number of each type of monitors tested here has 

limitation on the generalisability of the results. However, many findings in this 

chapter, such as the instability of the monitor’s regression coefficient and the cross-

interference to O3 concentration for Aeroqual NO2 monitor, are consistent with other 

studies (Masey et al., 2017; Lin et al., 2016) conducted in different locations and 

seasons, suggesting that these are common issues for the Aeroqual monitors. The 

choice of a single St. Leonard background monitoring site as the location of 

evaluation may fail to test the monitors’ performance at relatively high pollution 

level. Exposure studies intending to use these monitors to quantify human exposure 

in commuting therefore requires further evaluation of these monitors at a roadside 

monitoring station. The evaluation of Aeroqual monitors in this chapter was only 

conducted in the summer period. Seasonality has a bigger impact on the O3 

concentration, where higher O3 concentrations are expected in the summer than in 

winter. A wide range of O3 concentration was observed during this evaluation, and 

therefore the effect of seasonality should have minimal effect on the monitor’s 

performance in different concentration ranges. However, the low ambient 

temperature during winter may also affect the response of the Aeroqual O3 monitors, 

which is more difficult to quantify given the instability of monitor’s response with 

time. 
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To determine whether an air quality monitor can be accepted as an indicative method 

requires the relative expanded uncertainty of the method (both from laboratory and 

field testing) calculated in the way specified by EC (2010) to be within the 

acceptable uncertainty set in the DQOs, which are 30% for O3, 25% for NO2 and 

50% for PM2.5 at their respective limit or target value. The protocol drafted by 

Spinelle et al. (2013) for evaluation of gas sensors also detailed a series of steps 

leading up to the compliance testing with the DQO, one of which is to demonstrate 

that the slope and intercept coefficients from the orthogonal regression analysis 

between the monitor and reference method are not significantly different from 1 and 

0, respectively. In many cases the comparison of Aeroqual O3 and microPEM 

monitors with their respective reference methods showed significant biases in slope 

and intercept coefficients. Although appropriate calibration of the data from the 

monitors may resolve this issue, the inconsistent calibration equations derived from 

different periods complicates the choice of the correct calibration equation to use for 

a certain measurement period. For this reason, none of the monitors evaluated here 

can be accepted as an indicative method. However, their general high correlation 

with the reference methods and their portability show usefulness in complementing 

the existing air quality monitoring framework. 

 Conclusions 

In general, the three types of battery-operated portable monitors investigated here are 

relatively easy to use with minimal maintenance required. However, there are many 

caveats limiting the immediate usability of the data recorded. The time and resources 

required for finding a stable parameter in the monitors’ settings, post-processing of 

the monitors’ raw data and the frequent calibration with reference instruments are not 

trivial undertakings and also offset some of their “low-cost” advantage against more 

expensive reference instruments. It should be recognised that any calibration exercise 

carried out in the field by comparison to reference measurements is valid only under 

some specific conditions such as a particular pollution mix, a particular range of 

environment variables and a particular setting for the monitor. It is impossible to 

evaluate and calibrate a portable monitor with respect to the reference measurement 

whilst on the move. Therefore, it should not be expected that the portable monitors 
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can provide data to the same level of quality as provided by the reference instrument. 

The portable monitors investigated here cannot be used as an equivalent or even 

indicative method to a reference measurement in circumstances where absolute 

quantification is needed, hence they cannot replace the existing monitoring network. 

Nevertheless, good correlation with reference instrument can reassure the confidence 

in relative trends within a set of mobile measurements made by the portable 

monitors, which is demonstrated to be useful in Chapter 3 to study the spatial 

variability of air pollutants in urban environment using short-term mobile 

measurements. 
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Chapter 3 Identifying drivers for the intra-
urban variability of air pollutants 
and their interrelationships through 
mobile and fixed-site measurements  

Section 3.2 of this chapter ‘Study of the variability and interrelationships of different PM 

metrics through mobile short-term measurements’ is based on a research paper published in 

‘Atmospheric Environment’ (Wu, H., Reis, S., Lin, C., Beverland, I.J., Heal, M.R., 2015. 

Identifying drivers for the intra-urban spatial variability of airborne particulate matter 

components and their interrelationships. Atmos. Environ. 112, 306–316. 

doi:10.1016/j.atmosenv.2015.04.059). I undertook the experiment, data analysis and drafting 

of the manuscript. Dr Mathew Heal, Dr Stefan Reis and Dr Iain Beverland gave advice on 

the methodology, presentation of results and manuscript editing. Dr Chun Lin helped with 

the field measurements and methodology of the experiment. 

 

 Introduction 

Evidence continues to accumulate of the adverse health impacts of PM2.5, the mass 

concentration of airborne particulate matter (PM) with an aerodynamic diameter of 

less than 2.5 µm (WHO, 2013). However, other components of ambient PM, 

including ultrafine particles (UFP, particles of diameter <100 nm) and black carbon 

(BC) concentrations, are emerging as important in terms of their association with 

health effects (Heal et al., 2012). UFPs are usually quantified by particle number 

concentration (UFPNC), since smaller particles dominate the number concentration, 

while contributing only a minor fraction to particle mass concentrations. Lung 

deposited surface area (LDSA) is another metric to quantify UFP, given the high 

surface area to mass ratio for UFPs and its toxicological significance in term of its 

direct physical interaction with cells (Oberdörster et al., 2005).  

High variability of air pollutant concentrations are shown in urban environments due 

to the dynamics of emissions and urban topographies (Van den Bossche et al., 2015). 

Street canyons, which are ubiquitous in many urban environments, introduce 

complex dispersion characteristics that increase the spatial variability of BC and UFP 
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(Peters et al., 2014; Rakowska et al., 2014). A relevant issue is the extent to which 

UFP and BC concentrations vary within populated areas, since a shortcoming in 

many epidemiological studies is assumption of homogenous exposure within the 

study area. This assumption might be plausible for pollutants with less spatial 

variability but could result in significant bias in exposure-response relationships for 

highly spatially variable pollutants (Hoek et al., 2002). In this context, variables 

related to the contribution of emissions from road sources (e.g. traffic intensity, or 

distance to the road) are commonly identified as significant predictors for a range of 

traffic-related air pollutants in many studies applying land-use regression models 

(Hoek et al., 2008), the validity of which might be influenced by the underlying 

causes of the variability of different pollutants. Thus one of the aims of this work 

was to evaluate the extent to which potential factors affect the spatiotemporal 

variability of ambient BC, UFP and PM2.5 in an urban area. These factors include 

local traffic, street topography and synoptic meteorology which, although recognised 

in the literature, have rarely been compared in terms of their influences on different 

metrics. 

Given the increasing evidence for the harmfulness of UFP (WHO, 2013) with its 

ability to penetrate deep into the airways (Knibbs et al., 2011), investigation on the 

relationship between UFP and other regulated pollutants (e.g. PM2.5 and NO2) can 

provide insight on the extent to which current policy can effectively protect human 

health. Understanding the relationship between UFPs and other pollutants is also 

critical for the assessment of their independent effects on human health. Another of 

the aims of this work was to investigate the inter-relationships between the different 

metrics of PM and NO2. 

Traditional fixed-site monitoring stations are rarely sufficient in number to enable 

detailed study of intra-urban variability of air pollutants. One way to monitor 

pollutant concentrations at high spatial resolution is by use of portable monitoring 

instruments, which also has good prospects for wider application in the assessment of 

human exposure to air pollution in the future (Steinle et al., 2013). 

In this chapter, analyses of two separate sets of measurement data are presented. In 

the first set of analyses, pairs of portable instruments were used to measure PNC0.5-2.5 
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(used here as a measure of PM2.5), UFPNC and BC concentrations within the city of 

Edinburgh (Scotland) in two series of measurement campaigns in winter and in 

spring. Analyses of data from a combination of mobile and stationary measurements 

were used to evaluate possible causes of the spatial and temporal variations in the 

concentrations of the different PM metrics. In the second set of analyses, continuous 

stationary measurements of UFPNC, LDSA and mean particle size were taken at 

background and roadside sites.  Their relationships with NO2, PM2.5 and inorganic 

components of PM2.5 were investigated to understand different drivers for their 

variation.  

 Study of the variability and interrelationships of 
different PM metrics through mobile short-term 
measurements 

3.2.1 Methods 

  Study design 

BC, UFPNC and PNC0.5-2.5 concentrations were measured across the south of the city 

of Edinburgh, UK (55.9 N, 3.2 W, population ~480,000) in two separate 

campaigns using duplicate units of the following instruments: microAeth AE51 

(AE51), TSI 3007 Condensation Particle Counter (CPC) and Dylos Corp. DC1700 

(Dylos). 

In the winter campaign, between December 2013 and January 2014, the 

measurements were conducted three times on Mondays and once on Sunday 

primarily near roads by walking between and pausing at designated sites (Figure 

3.1a). The sites were selected to cover potential hotspots, urban background and 

different street topographies (open or built-up) over an area of about 6 km2. In a 

typical walk, the measurements started at around 10:00 a.m. and proceeded through 

the designated sites to the final location roughly in the order from south to north and 

from east to west (Figure 3.1a). At each site a 5-min static measurement was 

conducted, during which the number and type of vehicles (car, van, heavy goods 

vehicle and bus) passing the observer were recorded. Throughout each walk, 

measurements for each pollutant were taken in parallel (with duplicate instruments) 
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on both sides of the road. To evaluate the duplicate precision, inter-comparison 

between the pairs of instruments was conducted in a separate trial on Mon 3rd Feb 

2014 from 10:00 a.m. to 12:00 p.m. by walking through the same route but with the 

duplicate instruments carried by one person. The weather conditions on this day were 

similar to other measurement days (Table 3.1). Traffic characteristics are assumed to 

be similar to other Monday measurements. 
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(a) (b) 

  

Figure 3.1 (a) Location and classification of the static measurement sites. Streets with buildings on both sides are classified as built-up. Streets with buildings 

on only one side or no buildings on either side are classified as open. Background sites are at least 130 m away from the nearest major road. (b) Mobile 

measurement route and location of the contemporaneous static background measurements. Segments of the mobile route are labelled from 0 to 4. Base map 

from Edina Digimap®.  
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Table 3.1 Summary of meteorological data measured on the rooftop of a seven storey 

building located ~3 km to the south of the Meadows (55.92 N, 3.17 W) during each 

measurement period and during the instrument inter-comparison period in the winter 

campaign. 

Date rainfall 

(mm) 

wind 

speed 

(m/s) 

wind 

direction 

() 

surface 

temperature 

(C) 

Relative 

humidity 

(%) 

solar 

flux 

(kW/m2) 

Winter Campaign 
Mon 2nd Dec 13 0 3.6 215 7.3 82 0.04 

Mon 9th Dec 13 0 4.9 223 10.4 79 0.04 

Sun 19th Jan 14 1.2 1.7 180 6.3 81 0.07 

Mon 27th Jan 14 0.6 1.6 147 5.3 80 0.06 

Winter instrument inter-comparison 
Mon 3rd Feb 2014 0 3.1 132 5.9 72 0.22 

Spring Campaign 
Sun 6th Apr 14 0.4 5.4 163 13.0 83 0.31 

Thu 10th Apr 14 0 4.9 252 9.9 60 0.45 

Fri 18th Apr 14 0 0.5 47 8.8 46 0.57 

Wed 23rd Apr 14 0 1.4 52 10.9 86 0.30 

Wed 30th Apr 14 0 1.1 53 7.0 100 0.03 

Wed 7th May 14 0.4 6.1 234 9.6 72 0.36 

 

In the spring campaign, between April and May 2014, measurements were taken 

around a park area (~ 1 km2), referred to locally as ‘the Meadows’, focusing on 

understanding the contributions from traffic-related sources and local background 

sources to BC, UFPNC and PNC0.5-2.5 concentrations on typical urban streets (Figure 

3.1b). The road on the south edge of the Meadows had an annual average daily flow 

of 13,272 vehicles in 2013 (DfT, 2015). The pollution level associated with traffic 

was monitored by walking along a route surrounding the Meadows. To measure 

temporal variation in the background concentrations, a duplicate set of instruments 

was located at a static site inside the route circuit during the collection of the mobile 

measurements. This background location had perpendicular distance between 160 – 

480 m to the three sides of the triangle route (Figure 3.1b). The measurements were 

conducted on one Sunday and five weekdays. On each day the mobile measurements 

started together with the static measurements at the background site and proceeded in 

the directions indicated in Figure 3.1b. Two trips were carried out in the morning (~ 

9–10 am) and early afternoon (~ 1–2 pm) during each day, except for adverse 

weather conditions on one of the weekday afternoons. Other incomplete sets of 
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measurements during each day were due to instrument failure. The route of the 

mobile measurements was divided into five segments with different street 

topographies and traffic densities, as labelled on Figure 3.1b. The total traffic passing 

the observer in the direction of the route was counted for each segment. Traffic flow 

in the opposite direction of the route is assumed to be similar. The duplicate 

instruments were compared against each other during the last four measurement days 

by co-location for at least 20 min either at the static background site or near a busy 

roadside (Figure 3.1b). The inclusion of both background and roadside sites was to 

cover a range of concentrations for the evaluation of duplicate instrument precision. 

  Instrumentation 

The AE51 determines BC concentration from absorption of 880 nm laser light by 

particles continuously collected on a glass-fibre filter. The CPC measures UFP of 

particles between 0.01 and 1 µm in diameter by using laser light scattering after 

condensing particles with super-saturated isopropanol vapour. Although UFP is 

usually defined as particles smaller than 100 nm, since the number concentration is 

dominated by ultrafine particles the measurement from the CPC can be considered to 

represent UFP number concentration. The Dylos measures the particle number 

concentration using a laser light scattering technique in two size ranges, >0.5 and 

>2.5 µm. Only particles between 0.5 and 2.5 µm in diameter were included in this 

study and are thus referred to as PNC0.5-2.5. The use of the terminology PM2.5 

elsewhere in this paper refers to the mass of all particles <2.5 µm as defined for air 

quality standards. 

In the winter campaign the measurement intervals for the AE51, CPC and Dylos 

monitors were 1 min, 1 s and 1 min, respectively. Because of the shorter duration of 

a trip in the spring campaign the resolution for the AE51 was increased to 30 s to 

ensure sufficient data points for each segment. The Optimised Noise-reduction 

Averaging (ONA) algorithm was used to reduce the noise in the data recorded by the 

AE51 (Hagler et al., 2011). The ONA algorithm conducts adaptive time-averaging of 

the BC data, with the incremental light attenuation (∆ATN) through the instrument’s 

internal filter determining the time window of averaging. The ∆ATN thresholds were 

set at 0.01 and 0.05 for winter and spring measurements, respectively, as a result of 
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the different proportions of clean background areas and sampling resolutions in two 

campaigns. Negative values recorded after the smoothing were omitted from further 

analyses (consisting of ~5% of the whole data set), which mostly occurred when the 

measured concentrations were <100 ng/m3
. 

Major axis (MA) regression analysis was carried out to test the equivalence between 

duplicate instruments, assuming that the uncertainties in the duplicate instruments are 

similar (Warton et al., 2006). A statistical summary of instrument inter-comparison 

results is given in Table 3.2. Correlations between duplicate instruments were highly 

significant; however, the 95% confidence interval of the slopes between the pairs of 

AE51 and CPC instruments in the spring campaign, and the pair of Dylos 

instruments in both campaigns, did not encompass unity. Therefore, corrections 

based on the slope and intercept from the MA regression analyses were applied to the 

corresponding instruments to allow comparison between duplicate instruments. It is 

noted that the slope coefficient for duplicate Dylos instruments derived at the end of 

the winter campaign (3rd Feb 2014) was significantly different from that derived 

during a 3-day comparison in an urban background environment at the beginning of 

the winter campaign (3rd – 5th Dec 2013) (Table 3.2). The regression results derived 

on 3rd Feb 2014 was used to correct Dylos data in the winter campaign. The effect of 

using a single equation to correct Dylos data in the winter campaign are discussed in 

the results section. 
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Table 3.2 Statistical summary of major axis regression analyses for the instrument inter-comparisons. ** indicates correlation at >99% significance. 

UFPNC data from CPC were 1 min averaged in winter campaign, while in the spring campaign UFPNC data were measured every second, consistent 

with other analyses in 3.2.2 Results and discussion. The correction applied to Dylos data in the winter campaign was based on the regression results on 

3rd Feb 2014. 

Winter campaign 

Instrument Location Date Correlation 

coefficient 

(r) 

Slope (95% 

confidence 

interval) 

Intercept (95% 

confidence interval) 

Number of 

data points 

Dylos 
Urban 

background  

3rd Dec 

2014 
0.97** 0.60 (0.58 – 0.61) -0.07 (-0.13 – -0.02) 447 

4th Dec 

2014 
0.98** 0.77 (0.76 – 0.77) -0.11 (-0.14 – -0.08) 1,440 

5th Dec 

2014 
0.99** 0.76 (0.75 – 0.77) -0.04 (-0.09 – 0.01) 633 

AE51 Mobile 

route in 

winter 

campaign 

3rd Feb 

2014 

0.97** 0.97 (0.93 – 1.02) 65 (-42 – 168) 111 

CPC 0.99** 0.98 (0.96 – 1.00) 78 (-240 – 391) 107 

Dylos 0.90** 0.44 (0.40 – 0.47) 1.6 (1.4 – 1.8) 113 

Spring campaign 

AE51 Background 

and 

roadside 

sites in 

spring 

campaign 

18th, 23rd 

,30th Apr 

& 7th 

May 

2014 

0.80** 1.1 (1.03 – 1.21) -20 (-137 – 87) 354 

CPC 0.99** 1.35 (1.35 – 1.35) -317 (-389 – -246) 8,302 

Dylos 0.99** 0.48 (0.47 – 0.49) 1.49 (1.35 – 1.62) 177 
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  Additional data 

The average PM2.5 concentrations measured by a TEOM-FDMS instrument at the St. 

Leonards AURN station (55.945589 N, 3.182186 W) located 600 m to the east of 

the Meadows during each set of measurements are summarised in Figure 3.2. The 

TEOM-FDMS is a reference-equivalent instrument for quantifying gravimetric PM2.5 

for statutory purposes. Meteorological data for the period of measurement for each 

day in both campaigns and for the period when instrument inter-comparisons were 

carried out in the winter campaign were obtained from a weather station on the 

rooftop of a seven storey building (JCMB) located ~3 km to the south of the 

Meadows (55.92 N, 3.17 W) and are summarised in Table 3.1. 

 

Figure 3.2 Summary of average PM2.5 mass concentration measured by TEOM-FDMS at the 

Edinburgh St. Leonards network monitor and PNC0.5-2.5 measured by Dylos at static 

background site for spring period and the same Dylos for winter period. 

 

  Data analyses 

Reduced major axis (RMA) regression analysis was used to investigate the 

correlation between different pollutants, since the magnitudes of the data values and 
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their uncertainties are not the same for different instruments (Ayers, 2001). 

Difference between RMA and MA regression analysis is discussed in detail in 

Appendix I. Given the skewed nature of pollutant distributions, the non-parametric 

Mann-Whitney U test and the Kruskal-Wallis test were used to determine whether 

median concentrations differed significantly between two, and more than two 

samples, respectively. Data analyses were performed using R software (R Core 

Team, 2015). Air-mass back trajectory data was imported from pre-calculated 

trajectory data using the HYSPLIT trajectory model via the ‘importTraj’ function in 

openair (Carslaw and Ropkins, 2012), an R package for air quality data analysis. 

 

3.2.2 Results and discussion 

  Spatiotemporal variability of BC, UFPNC and PNC0.5-2.5 

Distributions of BC, UFPNC and PNC0.5-2.5 concentrations in the winter 

measurements are summarised in Figure 3.3. The distributions of pollutant 

concentrations are highly skewed, especially for BC and UFPNC, so the interquartile 

range (IQR) is used to illustrate the variation in distribution. Statistical summaries of 

the median and IQR for measurements on both sides of the road are listed in Table 

3.3a. BC and UFPNC concentrations in the spring campaign and PNC0.5-2.5 

concentrations in both campaigns were corrected according to the MA regression 

analyses results in Table 3.2 to allow comparison between duplicate instruments. The 

ratio between IQR and median is used here as a metric of the spatiotemporal 

variability of each pollutant during each measurement trip. Table 3.3a shows that BC 

had the highest variability in the winter campaign (average IQR/median ratio of 

1.34), which is about twice as high as for the metric with lowest variability, PNC0.5-

2.5 (average IQR/median ratio of 0.56). PNC0.5-2.5 showed noticeable difference in 

distributions between two sides of the road. This is likely due to the use of a single 

linear equation to correct the Dylos data. Due to lack of inter-comparison between 

the Dylos instruments during each measurement day in winter campaign, it is 

difficult to quantify the genuine difference in PNC0.5-2.5 concentrations between the 

two sides of road in Figure 3.3c. This also demonstrated that great caution needs to 
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be taken to compare absolute results from different ‘low-cost’ monitors. The 

discrepancies in the relationship between duplicate CPC and AE51 units on different 

days were considered to be less significant than for the Dylos units, since the 

correlation coefficients between CPC and AE51 units (r > 0.97) in the mobile winter 

inter-comparison were much higher and the gradients (0.98 and 0.97, respectively) 

were much closer to unity than the Dylos equivalents (r = 0.90, gradient = 0.44) 

(Table 3.2). 
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(a)  (b) (c) 

   

Figure 3.3 Distributions of (a) BC, (b) UFPNC and (c) PNC0.5-2.5 concentrations measured on both sides of the road during each week in the winter campaign. 

The bold horizontal line denotes the median, and the box demarcates the interquartile range. The whiskers extend to the values within 1.5 times the IQR on 

each side of the median. The PNC0.5-2.5 concentration measured by one of the Dylos instruments was corrected based on the statistics from MA regression 

analysis of instrument co-deployment during the winter campaign (Table 3.2). Side of road is defined with respect to the walking direction in the mobile 

measurements. The UFPNC concentrations in (b) are 1 min averages of the raw 1 s data. 
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Table 3.3  The median, IQR and ratio between IQR and median on each day for BC, UFPNC and PNC0.5-2.5 for (a) winter and (b) summer campaign. Left and 

right side of the road is defined with respect to the walking direction in the mobile measurements. Adjustment derived from MA regression analyses of 

instrument co-deployments (Table 3.2) was applied to one set of PNC0.5-2.5 data in both campaigns, and one set of BC and UFP data in the spring campaign. 

(a) Winter campaign 

 BC [Right (Left)] 

Date Median (ng m-3) IQR (ng m-3) IQR/Median 

Mon 2nd Dec 13 1,481 (1,668) 1,540 (2,112) 1.04 (1.27) 

Mon 9th Dec 13 1,210 (1,105) 1,521 (1,336) 1.26 (1.21) 

Sun 19th Jan 14 1,195 (951) 1,664 (1,571) 1.39 (1.65) 

Mon 27th Jan 14 2,155 (1,842) 2,900 (2,834) 1.35 (1.54) 

UFPNC [Right (Left)] 

Date Median (cm-3) IQR (cm-3) IQR/Median 

Mon 2nd Dec 13 15,251 (13,971) 14,132 (15,870) 0.93 (1.14) 

Mon 9th Dec 13 10,664 (9,481) 11,412 (10,759) 1.07 (1.13) 

Sun 19th Jan 14 9,649 (10,916) 14,030 (16,715) 1.45 (1.53) 

Mon 27th Jan 14 19,890 (22,502) 22,349 (23,490) 1.12 (1.04) 

PNC0.5-2.5 [Right (Left)]] 

Date Median (cm-3) IQR (cm-3) IQR/Median 

Mon 2nd Dec 13 2.3 (3.74) 1.07 (1.04) 0.46 (0.28) 

Mon 9th Dec 13 4.06 (4.18) 1.13 (2.05) 0.28 (0.49) 

Sun 19th Jan 14 1.18 (2.8) 1.91 (1.98) 1.62 (0.71) 

Mon 27th Jan 14 6.05 (5.29) 2.6 (1.29) 0.43 (0.24) 
 

(b) Spring campaign 

 BC [Mobile (Static)] 

Date Median (ng m-3) IQR (ng m-3) IQR/Median 

Sun 6th Apr 14 251 (23) 282 (3) 1.12 (0.14) 

Thu 10th Apr 14 955 (276) 1,027 (470) 1.08 (1.7) 

Fri 18th Apr 14 1,035 (540) 6,54 (391) 0.63 (0.72) 

Wed 23rd Apr 14 2,124 (1,779) 2,208 (594) 1.04 (0.33) 

Wed 30th Apr 14 1,672 (1,154) 1,850 (288) 1.11 (0.25) 

Wed 7th May 14 926 (217) 1,208 (635) 1.3 (2.92) 

UFPNC [Mobile (Static)] 

Date Median (cm-3) IQR (cm-3) IQR/Median 

Sun 6th Apr 14 1,757 (624) 1,891 (509) 1.08 (0.82) 

Thu 10th Apr 14 10,276 (6,081) 8,824 (6,560) 0.86 (1.08) 

Fri 18th Apr 14 38,009 (30,128) 24,034 (22,487) 0.63 (0.75) 

Wed 23rd Apr 14 11,370 (1,6115) 8,674 (15,642) 0.76 (0.97) 

Wed 30th Apr 14 9,633 (4,547) 17,816 (2,172) 1.85 (0.48) 

Wed 7th May 14 6,431 (3,286) 8,353 (8,66) 1.3 (0.26) 

PNC0.5-2.5 [Mobile (Static)] 

Date Median (cm-3) IQR (cm-3) IQR/Median 

Sun 6th Apr 14 0.61 (1.87) 0.42 (0.21) 0.69 (0.11) 

Thu 10th Apr 14 3.7 (3.46) 0.51 (0.22) 0.14 (0.06) 

Fri 18th Apr 14 4.64 (4.41) 0.47 (0.43) 0.1 (0.1) 

Wed 23rd Apr 14 19.46 (18.23) 3.67 (5.99) 0.19 (0.33) 

Wed 30th Apr 14 15.31 (16.42) 3.49 (3.05) 0.23 (0.19) 

Wed 7th May 14 2 (2.49) 0.75 (0.44) 0.38 (0.18) 
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Distributions of BC, UFPNC and PNC0.5-2.5 concentrations in the spring 

measurements are summarised in Figure 3.4. Jittered points are plotted for UFPNC to 

reveal the overlapping of large numbers of data points. In order to discern the details 

of the boxes in Figure 3.4a and b, BC and UFPNC concentrations greater than 15,000 

ng/m3 and 100,000 cm-3, respectively, are not included. However, extremely high 

concentrations were observed, extending to 50,000 ng/m3 for BC and 400,000 cm-3 

for UFPNC. Elevated BC concentrations were observed on streets with traffic (route 

segments 1 to 4) compared with the footpath through an area of urban park (route 

segment 0). The median concentrations for each route segment also varied between 

different times of a day. Only on Thu 10th Apr 2014 were BC concentrations not 

significantly different between morning and noon sessions (Mann-Whitney U test). 

BC concentration on Sun 6th Apr 2014 (median = 251 ng/m3) was significantly lower 

than on weekdays (median = 1281 ng/m3) (one-tailed Mann-Whitney U test, P < 

0.01), which is similar to findings in the winter measurements. 

The large range of outliers in the UFPNC distributions (Figure 3.4b) implied that 

UFPNC was greatly influenced by the emissions of nearby traffic. Despite the fact 

that the outlier measurements on each street were usually a factor 3 higher than their 

median, the difference in the medians between streets was relatively small, 

suggesting that elevated levels due to occurrence of exhaust plumes only transiently 

affected the UFPNC. Using ratios between median concentrations on streets and on 

the footpath it was calculated that, on average, a pedestrian was exposed to 1.8 times 

higher concentration on streets than on the footpath for UFPNC, and 2.3 times higher 

for BC. The markedly high UFPNC level on Fri 18th Apr 2014 at noon was 

associated with the lowest wind speed, highest solar flux (Table 3.1) and relatively 

high O3 concentration of ~70 µg/m3 (recorded at the St. Leonards AURN monitoring 

station) compared to other days. All these conditions are likely to have promoted 

secondary particle formation from photochemical reactions (Reche et al., 2011). 

The distribution of PNC0.5-2.5 concentrations (Figure 3.4c) exhibited a different 

pattern compared with BC and UFP concentrations. The range of concentration on 

each street was smaller, and the relative variation in medians between streets within 

the same day was lower. Only on Sunday and Wednesday 1 were PNC0.5-2.5 
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concentrations highly significantly different between footpath and the streets (Mann-

Whitney U test, P < 0.01), indicating that local traffic is frequently not a dominant 

contributor to PNC0.5-2.5 concentrations in the locations where measurements were 

made. Significant variation in PNC0.5-2.5 concentrations was noticed between all 

spring working day samples (Kruskal-Wallis test, χ2 = 297, df = 3, P < 0.01), which 

implies that PNC0.5-2.5 is more influenced by regional sources and meteorological 

conditions on a particular day rather than local traffic (primary) emissions. This is 

consistent with observations in other cities; e.g. relatively low contribution (13%) to 

PM2.5 from local traffic was also found in Paris (Skyllakou et al., 2014). Despite the 

Dylos instrument not measuring particles smaller than 0.5 µm, PNC0.5-2.5 variation 

between days was in very good relative agreement with that of the PM2.5 

concentration measured by TEOM-FDMS at the St Leonard’s national network 

urban background site (Figure 3.2), i.e. highest PM2.5 levels on Mon 27th Jan 2014 in 

winter, and on Wed 23rd Apr 2014 and Wed 30th Apr 2014 in spring, and lower on 

Sundays in both campaigns. 
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(c)  

 

Figure 3.4 Box plots for (a) BC, (b) UFPNC and (c) PNC0.5-2.5 concentrations grouped by 

different days and sessions in the spring campaign. Data visualisations as defined in Figure 

3.3. Jitter points are plotted in Figure 3.4b to reveal the extent of data in the outliers. 

 

Assuming that UFPNC represents contribution from local traffic sources, the ratio 

between median UFPNC and PNC0.5-2.5 approximates the relative contribution of 

local sources to PM2.5 concentration during that day. However, caution should be 

taken regarding this interpretation since any photochemical new particle formation 

(e.g. Fri 18th Apr 2014 in the spring campaign) may lead to overestimation of the 

relative level of local contribution compared to days when conditions are 

unfavourable to such formation occurring. In the winter measurements, the highest 

UFPNC/PNC0.5-2.5 ratio (3,999), was associated with relatively low PM2.5 

concentration (8 µg/m3) on Sunday (Figure 3.5). In the spring measurements, the 

highest ratio was on Fri 18th Apr 2014 (3,715), which was about ten times the ratio 

on Wed 23rd Apr 2014 (349), despite the fact the PM2.5 concentration on Fri 18th Apr 

2014 (~9 µg/m3) was only a third of that on Wed 23rd Apr 2014 (~27 µg/m3). It is 
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noted that in both campaigns highest local contributions did not coincide with the 

highest PM2.5 concentrations. This observation again indicates a strong regional 

component in PM2.5 observed in urban areas, as also noted by AQEG (2012). 

 

Figure 3.5 Ratios between median UFPNC and PNC0.5-2.5 concentrations and average PM2.5 

concentration measured by TEOM-FDMS on each day. The ratios in the spring campaign 

were calculated from the static measurements. The same instruments were used to calculate 

the ratios in the winter campaign for the purpose of comparison between the ratios in the 

two campaigns. 

 

Four-day air-mass back trajectories arriving at Edinburgh at 09:00 a.m. and 12:00 

p.m. on each measurement day are plotted in Figure 3.6. The trajectories associated 

with the highest PM2.5 concentrations in the winter and spring campaigns originated 

from North America and northern continental Europe, respectively. The highest 

PM2.5 concentrations in winter coincided with a relatively large contribution from 

local sources (i.e. large UFPNC/PNC0.5-2.5 ratio of 2,682). In contrast, the south-

easterly trajectory originating from northern continental Europe (Figure 3.6) was 

associated with high PM2.5 concentrations and low local contributions. It was noted 

that the PM2.5 concentrations on the days associated with relatively high local 

emissions were close to the Scottish annual air quality objective threshold 

concentration for PM2.5 of 12 µg/m3 to be achieved by 2020 (AQEG, 2012), and that 
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the two days with PM2.5 concentrations breaching the limit (Weds 23rd and 30th Apr 

2014 in spring, Figure 3.2) had the largest regional contribution. In the UK context, 

transboundary import of inorganic aerosol components resulting in high particle 

concentrations was reported in a modelling study (Vieno et al., 2014). 

 

Figure 3.6 Four-day air-mass back trajectories arriving in Edinburgh at 0900 and 1200 

(GMT for winter and BST for spring) for each measurement day, coloured by the PM2.5 mass 

concentration (µg/m3) measured by the TEOM-FDMS instrument at Edinburgh St. Leonards 

at 0900 and 1200 (GMT for winter and BST for spring). 

 

The evidence presented here highlights that the effective management of ambient 

PM2.5 concentrations in the UK may require international-scale cooperation in the 

control of emission sources contributing precursors of secondary particle formation 

and long-range transport. The good agreement between Dylos and TEOM-FDMS 

measurements, together with the above analysis on the potential sources of high 
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PM2.5 episodes during each campaign, confirm that the Dylos instrument is capable 

of measuring elevated PM2.5 arising from both regional and local influences (Steinle 

et al., 2015). However, this analysis does not reveal the contribution from local 

traffic emission at street level. This is in line with the findings of Price et al. (Price et 

al., 2014) who showed that number concentration of particles larger than 262 nm was 

more closely related to meteorological conditions whilst UFPs was more closely 

associated with traffic variables. Nevertheless this work presents a novel approach to 

apportioning PM2.5 to local and regional sources by comparing the relationship 

between UFPNC and PM2.5 with the help of back-trajectory analysis. 

The IQR/median ratio was used to represent the variability of each pollutant in the 

spring measurements (Table 3.3b), in which the IQR/median ratio from the static 

measurements quantifies only the temporal variation between different times of a 

day, and the ratio in the mobile measurement reflects both spatial and temporal 

variation between different streets (with the former expected to be greater than the 

latter). Consistent with the observations in the winter measurements, the spatial 

variations of BC and UFPNC (average mobile IQR/median ratios of 1.05 and 1.08, 

respectively) were much larger than spatial variations of PNC0.5-2.5 (average mobile 

IQR/median ratio of 0.29). The within-day variations of BC and UFPNC (range of 

static IQR/median ratios 0.14 – 2.92 and 0.26 – 1.08, respectively) were also 

generally larger than equivalent within-day variations of PNC0.5-2.5 (range of static 

IQR/median ratios 0.06 – 0.33) but were of varying magnitudes. This implies that 

changes in local traffic counts and atmospheric conditions within a day have more 

pronounced effects on variations in BC and UFPNC than on variations in PNC0.5-2.5. 

However PNC0.5-2.5 varied more between days (static IQR/median ratio for the whole 

spring campaign of 3.27) than BC and UFPNC (equivalent ratios of 1.77 and 2.19, 

respectively). Collectively this evidence suggests that the variability of all three PM 

metrics is subject to the varying background concentrations. For BC and UFP in 

particular, the geographical locations, namely proximity to trafficked roads, also 

contribute a significant part of the spatial variability. Contrary to another study 

(Sullivan and Pryor, 2014), which found that the spatial variability of PM2.5 (defined 

as the relative standard deviation for the mobile measurements on different routes) 

was 2 – 3 times greater than the sub-daily temporal variability (defined as the RSD 
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for the measurements when stationary), results from this study suggest that the 

spatial variability of PNC0.5-2.5 was of similar magnitude to the sub-daily temporal 

variability. Possible explanations of this discrepancy include the larger geographical 

area in the former study, and the potential for bias from a few extremely high 

concentrations when using RSD rather than IQR as an indicator for variability. 

 

  Pollutant concentration in relation to street 
topography and traffic counts 

To understand the relationship between traffic counts and the pollutant concentration, 

reduced major axis (RMA) regression analyses were conducted between the mean of 

the concentrations on both sides of the road at each spot measurement in the winter 

campaign and traffic counts. Figure 3.7 shows the scatter plots of BC and UFPNC 

against traffic counts grouped by the classification of each site. Correlations of 5-min 

average BC and UFP concentrations with traffic counts were moderate and highly 

significant (r = 0.56 and 0.39, respectively, P < 0.01, n = 72). PNC0.5-2.5 was not 

significantly correlated with traffic counts (r = 0.17, n = 72). 
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(a) (b) 

 
 

Figure 3.7 Scatter plots of 5-min averaged (a) BC and (b) UFPNC vs. traffic counts at each 

measurement site in the winter campaign. 

 

Ratios between mobile and static measurements in the spring campaign were 

calculated for each timestamp to represent the elevation in the pollutant 

concentration due to traffic. The distribution of the ratios for BC and UFPNC were 

grouped by streets and plotted in Figure 3.8. Only ratios in the range 0 to 30 are 

shown in Figure 3.8 to avoid extreme values skewing the plots. Median mobile/static 

ratios are higher on Sun 6th Apr, Thu 10th Apr and Wed 7th May 2014 than on other 

days, an observation more pronounced for BC than for UFPNC. These days coincide 

with the days with higher wind speed (Table 3.1), which explains the greater contrast 

between roadside and background concentrations as the high wind speed facilitates 

the mixing of clean air at the background site while the immediate roadside 

concentration still stays at relatively high level. A summary of the median values of 

the mobile/static measurement ratio for each street and the traffic density on each 

street are tabulated in Table 3.4. The data show a common pattern in the 

mobile/static ratios for BC and UFPNC: streets 2 and 3 had the highest median 
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mobile/static ratios. Considering that the traffic density in streets 2 and 3 were not 

the highest among all the streets, the difference in street topography is the most likely 

explanation of the greater mobile/static ratios. Streets 2 and 3 are mostly 

characterised by street canyons with aspect ratios in the range of 0.6 – 1.3, whereas 

streets 1 and 4 are beside the Meadows urban park with an open terrain. As a result, 

dispersion in streets 2 and 3 is likely to be reduced compared to dispersion in streets 

1 and 4. Similar results were reported in a study in Hong Kong characterised by 

high-rise buildings, where notably elevated BC and UFPNC concentrations were 

observed in deep street canyons compared to an open road although the traffic flow 

were significantly lower in street canyons (Rakowska et al., 2014). 
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(a) 

 
(b) 

 

Figure 3.8 Distributions of mobile/static measurement ratios in different streets for (a) BC, 

and (b) UFPNC, in the winter campaign. Solid red lines denote the median mobile/static 

measurement ratio for each day. The dashed blue line denotes a ratio of one to highlight the 

elevated concentrations on streets. Measurements at the static background were corrected 

based on the MA regression analyses results in Table 3.2. 
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Table 3.4 Median ratios of mobile/static measurements in each street and the traffic density 

for each street. 

Street Median of the mobile/static ratios for all the 

days (range of medians for each day) 

Mean traffic density (range 

of traffic density for each 

session) (traffic km-1) BC UFPNC 

0 1.1 (0.9 – 5.6) 1.1 (1.0 – 2.2) 0 

1 1.4 (0.9 – 8.3) 1.4 (0.7 – 3.4) 27 (16 – 38) 

2 3.0 (1.2 – 7.8) 2.0 (1.2 – 3.5) 33 (24 – 42) 

3 4.2 (2.4 – 15.8) 2.8 (0.9 – 7.0) 27 (18 – 35) 

4 1.8 (1.4 – 13.2) 1.8 (0.6 – 4.7) 39 (28 – 48) 

 

The correlation of averaged BC and UFPNC concentration with traffic counts for 

each route segment was calculated in the spring campaign. BC was again 

significantly correlated with traffic counts (r = 0.45, P < 0.01, n = 50), but UFPNC 

was not (r = 0.25, n = 48, P = 0.09). The lower correlation in spring compared to 

results of the winter campaign could be attributed to the fact that traffic counting on 

one side of the street in spring campaign may not have represented total traffic 

composition adequately. The low correlation between traffic count and UFPNC may 

have been caused by the secondary particle formation mentioned in Section 3.1. This 

interpretation was supported by the increased correlation when the data from Friday 

was excluded (r = 0.66, P < 0.01, n = 39). Despite the moderate to high correlation 

coefficients of BC and UFPNC with traffic counts found in this study, mixed 

conclusions have been drawn in the literature for the relationships between traffic 

and BC or UFP as a result of  characteristics of specific measurement sites, the 

consistency of traffic flow and the formation/transformation of particles governed by 

environmental conditions (Kumar et al., 2008; Peters et al., 2014; Price et al., 2014; 

Rakowska et al., 2014). Further investigation of relationships between BC, UFPNC 

and traffic would provide beneficial information to inform the potential use of nearby 

traffic flow data to predict BC and UFPNC. Street topography effects on BC and 

UFPNC are similarly important for further investigation. 
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  Correlation between BC and UFPNC 

The correlations between BC and UFPNC were evaluated using RMA regression. 

The results summarised in Table 3.5 were calculated from 1-min averaged 

concentrations with BC as the y variable and UFPNC as the x variable. 

The correlations between BC and UFPNC during each week ranged between 0.49  

0.77 and in all cases were significant (P <0.01). During working and non-working 

days, slope coefficients were not significantly different between measurements taken 

on different sides of the road in the winter campaign or between mobile and static 

measurements in the spring campaign. The agreement of the BC/UFPNC relationship 

between roadsides or between busy roads and local background suggests that BC and 

UFPNC vary similarly as they disperse away from traffic sources. The slopes on 

non-working days were significantly lower than the slopes on working days, 

indicating a decrease in BC/UFPNC ratios on non-work days. This variation in the 

BC/UFPNC ratios was not only observed in the measurements taken near road but 

also in the static background measurements during the spring campaign. The reason 

for this variation in BC/UFPNC relationship is likely due to the decrease in heavy 

goods vehicles (HGV) on the road during the weekend as HGV had the lowest share 

on weekends (3.2%) compared with weekdays (~6.8%). This observation suggests 

that HGV contribute relatively more to BC than to UFPNC. Therefore a policy 

targeting reduction of UFPNC may not be effective if it only focuses on restricting 

HGV. On the other hand policies aimed at reduction of BC should focus on 

controlling HGV emissions, which has direct implications for instance for the design 

and implementation of Low Emission Zones in urban areas. Considering that recent 

epidemiological studies suggest that BC was more strongly associated with adverse 

health effects than was the PM2.5 mass (Grahame et al., 2014; WHO, 2013), traffic 

control strategies targeting HGVs may effectively contribute to alleviation of 

population health burdens arising from urban air pollution. 
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Table 3.5 RMA regression analyses for 1-min averaged BC and UFPNC. The shading in the 

table represents the data collection period (grey: working days; white: non-working days). 

Left and right side of the road is defined with respect to the walking direction in the mobile 

measurements. ** indicates correlation at >99% significance. 

Winter campaign 

Left side of road Right side of road 

r Slope 

(ng × 10-6) 

Intercept 

(ng/m-3) 

Number of 

data 

points 

 

r Slope  

(ng × 10-6) 

Intercept 

(ng/m-3) 

Number of 

data 

points 

 

0.66** 0.15 (0.14 

– 0.16) 

-575 (-726 – -

432) 

833 0.65** 0.16 (0.15 

– 0.17) 

-737 (-900 – 

-583) 

822 

0.58** 0.08 (0.07 

– 0.09) 

149 (-1 – 283) 223 0.58** 0.11 (0.09 

– 0.12) 

137 (-43 – 

298) 

225 

Spring campaign 

Mobile Static 

r Slope 

(ng × 10-6) 

Intercept 

(ng/m-3) 

Number of 

data 

points 

 

r Slope  

(ng × 10-6) 

Intercept 

(ng/m-3) 

Number of 

data 

points 

 

0.49** 0.13 (0.12 

– 0.14) 

-102 (-289 – 69) 319 0.50** 0.11 (0.10 

– 0.13) 

148 (61 – 

226) 

270 

0.62** 0.05 (0.04 

– 0.06) 

-48 (-158 – 50) 166 0.77** 0.04 (0.03 

– 0.04) 

-15 (-46 – 

13) 

181 
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 Study of the correlation and drivers of UFP and 
other pollutants through fixed-site long-term 
measurements 

3.3.1 Methods 

  Instrumentation 

Continuous monitoring of UFPNC, LDSA, mean particle size and PM2.5 were 

conducted at St Leonards and Gorgie automatic monitoring sites in 2015. The St 

Leonards monitoring site is classified as an urban background site within the AURN 

network and provides hourly measurements of NOx, O3 and PM2.5. Gorgie 

monitoring station is a roadside site within the SAQN and provides hourly 

measurements of NOx. The instruments used to monitor UFPNC, LDSA, mean 

particle size and PM2.5 are described below. 

UFPNC, LDSA and mean particle size were measured by the miniature diffusion size 

classifier (DiSCmini, matter Aerosol AG, Switzerland). The device operates by 

polarising particles using a diffusion charger (10 nA, 3 – 5 kV) followed by detection 

of currents due to the charged particles at two stages: a diffusion stage (id) and a 

filtration stage (if) (Bau et al., 2012). The mean particle size is expected to be 

proportional to if/id. UFPNC and LDSA are related to the sum of two currents (id + 

if). The range of particle size detectable by DiSCmini is approximately 10 – 700 nm 

and the range of UFPNC quantifiable is 103  106 cm-3 (Fierz et al., 2011). In this 

analysis, 1-minute average data were exported from the DiSCmini. Measurements 

associated with errors (mostly flow rate error) were filtered out. Additionally, 

spurious measurements (i.e. UFPNC < 103 or > 106 particles cm-3; mean size < 10 or 

 300 nm) were also discarded. The resulting 1-min-average data were averaged by 

hour using a 75% data capture threshold. 

PM2.5 was measured by reference analyser (TEOM-FDMS) at St Leonards and by 

microPEM monitor at both St Leonards and Gorgie. The microPEM monitor 

recorded data every 10 seconds. Due to the instability of the baseline some 

measurements were negative. These values were set to 0 which comprised 0.07% and 

1.2% of total data recorded by the microPEM 586N and 618N units at St Leonards 
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and 0.3% by the microPEM 618N unit at Gorgie. Raw 10 s data were averaged to 1 

min and then to hourly data using a 75% data capture threshold.  

Additional measurements of 8 inorganic ions in the PM2.5 fraction at the 

Auchencorth Moss monitoring site (18 km South of Edinburgh) were included in this 

analysis. The 8 inorganic ions were measured by a MARGA instrument 

(Measurement of Aerosols and Reactive Gases Analyser, Metrohm Applikon B.V., 

NL) utilising ion chromatography. The MARGA instrument is operated and 

maintained by the Centre for Ecology & Hydrology (CEH) (Twigg et al., 2015). 

These inorganic ions include the secondary inorganic aerosol (SIA) components: 

nitrate (NO3
-), ammonium (NH4

+) and sulphate (SO4
2-), which are formed through 

reactions of gaseous pollutants NOx, NH3 and SO2 (Vieno et al., 2014). The other 

inorganic ions are chloride (Cl-), sodium (Na+), magnesium (Mg2+) (components of 

sea salt), calcium (Ca2+) (part of crustal source), and potassium (K+) (an indicator of 

biomass combustion) (Viana et al., 2008). 

Hourly meteorological data, including wind speed/direction, temperature (T) and 

relative humidity (RH), are available at Gogarbank, a rural area west of the 

Edinburgh conurbation (more details in section ). Hourly solar radiation data were 

downloaded from the JCMB weather station already described in section 3.2.1.3  

Additional data. 

  QA/QC procedures 

Summaries of the data from the deployment periods of duplicate DiSCminis (DM2, 

DM3 and DM5) at St Leonards and Gorgie are shown in Figure 3.9. Monitoring at St 

Leonards was undertaken from March to September 2015 by different DiSCmini 

instruments. Measurements at the Gorgie monitoring site were intermittent due to 

instrument malfunction but covered a total period of around 2 months. Since DM5 

had the longest co-location with both DM2 and DM3, it is considered as the 

reference instrument, against which the other two DiSCminis were calibrated. 

UFPNC and LDSA measured by duplicate DiSCminis appeared to follow a linear 

relationship. Mean particle size appeared to be described well by fitting a quadratic 

relationship (Figure 3.10). Hence calibration equations for UFPNC and LDSA were 
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calculated using MA regression analysis and mean particle size was calculated using 

2nd-order polynomial regression. The co-location periods between DM3 and DM5 

were separated by a few months (Figure 3.9a). There was a clear deviation in the 

calibration equations between the two periods (Figure 3.10). Therefore DM3 

measurements before July were corrected using the Mar/Apr calibration equation, 

and measurements after July were corrected using the Aug calibration equation. Co-

location between DM2 and DM5 was mostly continuous without long-term 

separation in-between (Figure 3.9a). The relationship between DM2 and DM5 did 

not show significant change during the co-location period (Figure 3.11). Therefore 

the equations derived in Figure 3.11 were applied to all the DM2 measurements.  
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(a) 

 
(b) 

 

Figure 3.9 Summary of data from the deployment periods for different DiSCmini units at 

(a)St Leonards and (b) Gorgie. 
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(a) (b) 

  
(c)  

 

 

Figure 3.10 Inter-comparison and calibration equations for DiSCmini units DM5 and DM3. 
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(a) (b) 

  
(c)  

 

 

Figure 3.11 Inter-comparison and calibration equations for DiSCmini units DM5 and DM2. 
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Measurements from the deployment periods for microPEM units at both sites are 

summarised in Figure 3.12. Precision between duplicate microPEM units was 

discussed in detail in Chapter 2. MA regression analysis was conducted on all the co-

location data in 2015 (Figure 3.13). The derived equation was used to correct 

microPEM 618N. 

(a) 

 
(b) 

 

Figure 3.12 Summary of the deployment periods for duplicate microPEM units at (a) St 

Leonards and (b) Gorgie. 
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Figure 3.13 Inter-comparison and calibration equations for duplicate microPEM units. 
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3.3.2 Results and discussion 

  Correlations of UFPs and other pollutants   

Pairwise Pearson correlation coefficients among all the pollutants measured at St 

Leonards and Gorgie, PM component measurements at Auchencoth and other 

meteorological variables (wind speed, T and RH) are summarised in Figure 3.14. The 

correlation matrix revealed three groups of highly correlated pollutants or 

meteorological variables at both sites (i.e. three separate rectangular triangles with 

correlation coefficient values visualised by dark orange and red colours).  

One group corresponded to the pollutants related to traffic emissions including 

UFPNC, LDSA and NOx. In this group UFPNC had the highest correlation with 

LDSA (r > 0.8), which may be partly due to the measuring principles of these two 

metrics by the DiSCmini instrument both relying on the sum of id and if (see 3.3.1.1  

Instrumentation). However, it is also generally assumed that UFPNC is a good proxy 

for particle surface area, since smaller particles have much larger total surface area 

than larger particles for a give mass and smaller particles dominate the UFPNC. 

Correlation between UFPNC and NOx was generally high (r > 0.67) at both 

locations. NO2 correlated more strongly with UFPNC at St Leonards than at Gorgie, 

and vice versa for NO. This observation confirms that UFPNC is strongly linked to 

traffic emissions since a greater proportion of NOx is in the form of NO at roadside.  

Another group included mean particle size, PM2.5, NH4
+, SO4

2-, NO3
- and K+. Mean 

particle size showed moderate correlation with PM2.5 concentration (r ~ 0.50) at both 

sites and with secondary inorganic PM2.5 components measured at Auchencoth 

(NH4
+, SO4

2- and NO3
-).  

The last group included the sea-salt components of PM2.5 (Na+, Cl- and Mg2+), which 

weakly correlated with pollutants from the other groups. It is evident from the 

correlation matrix that UFPNC and LDSA are dominated by local traffic emissions 

whereas mean particle size is related to SIA originated from regional sources.  
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(a) 
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(b) 

 

Figure 3.14 Correlation coefficients for hourly average concentrations of various pollutants 

at (a) St Leonards and (b) Gorgie.  
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  Air-mass back trajectory analysis 

To understand the geographic origins of different pollutants, 4-day air-mass back 

trajectories arriving at hourly intervals at Edinburgh were calculated for 2015. Six 

trajectory clusters were calculated based on the similarity of the angles from 

trajectory points to the trajectory origin using the trajCluster function in openair 

(Figure 3.15) (Carslaw, 2016). The determination of the number of trajectory clusters 

is a subjective opinion, which in reality is a balance between too few clusters that 

cannot uncover the distinct origins of air masses and too many clusters that 

unnecessarily differentiate very similar air masses. In this analysis, six trajectory 

clusters were found to be sufficient to separate distinct air masses but not overly 

complicated. Three of the trajectory clusters spent most of the time over marine 

locations (C2, C4 and C5), which are referred as ‘Marine’ clusters. Of the other three 

clusters, one had trajectories originating from the Atlantic and passing through 

Ireland before arriving at Edinburgh (C3), one had trajectories originating from 

northern Europe (C6), and the third had trajectories originating from western Europe 

and passing across the UK before arriving at Edinburgh (C1). These three clusters 

are referred as ‘Marine-IRE’, ‘N/Europe’ and ‘UK-W/Europe’ in the later discussion.  

Boxplots of UFPNC, PM2.5 and mean particle size corresponding to the six back-

trajectory clusters at both St Leonards and Gorgie are summarised in Figure 3.16. 

PM2.5 and mean particle size showed notable difference between different trajectory 

clusters. The ‘UK-W/Europe’ cluster was associated with significantly higher PM2.5 

concentration and mean particle size than the other clusters. Previous studies also 

showed that high PM2.5 concentrations were associated with air masses from 

continental Europe carrying a large proportion of SIA (Harrison et al., 2012; Vieno et 

al., 2014). UFPNC did not show any correlation with respect to trajectory clusters 

but significantly higher concentrations were observed at the roadside than at the 

background site. PM2.5 concentrations at the roadside were also consistently higher 

than at the background site but to a lesser extent than the UFPNC. Difference in 

mean particle size between roadside and background sites was inconsistent. In many 

instances mean particle size at roadside were higher than at the background site, 

which contradicts the expectation that roadside particles are dominated by freshly 



Chapter 3 Measurements of air pollutants in urban environments 

101 

 

emitted smaller nucleation particles. However, non-exhaust emissions from brake, 

tyre wear and road abrasion generate larger accumulation particles, which may also 

explain the elevation of mean particle size at Gorgie (Thorpe and Harrison, 2008). 

Overall, the air-mass back trajectories revealed that regional sources had greater 

influence than local sources on PM2.5 concentration and mean particle size, whereas 

UFPNC was dominated by local traffic emissions. 

 

 

Figure 3.15 Four-day air-mass back trajectories arriving at Edinburgh in 2015 clustered 

according to the similarity of the angles from trajectory points to the trajectory origin. The 

coloured lines show the average back trajectory for the trajectories contributing to that 

cluster and the percentage value is the contribution of all back trajectories to that cluster. 
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(a) 

 
(b) 
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(c) 

 

Figure 3.16 Boxplots of (a) PM2.5 measured by microPEM units and (b) UFPNC and (c) 

mean particle size for different back trajectory clusters. The number below each box shows 

the number of data points (hourly concentrations) contributing to each box. 
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  Relationship between UFPNC and NOx in relation to 
particle size 

Given the strong association between UFPNC and traffic emissions, the relationship 

between UFPNC and NOx was further investigated to determine if NOx can be 

considered as a proxy to the UFPNC in epidemiological studies. Once emitted from 

exhaust, unlike NOx, UFPs undergo a series of complex transformations that alter 

both the number and the size of the particles (Kumar et al., 2010). Typically, fresh 

nucleation particles (< 50 nm) almost completely evolve into larger accumulation 

mode particles (> 50 nm) and drastically decrease in number concentration after 

dispersing a few hundreds of metres from the sources (HEI, 2013). Therefore, 

UFPNC in different size ranges may have different relationships with NOx despite 

both being governed by similar dispersion processes. Scatter plots and RMA 

regression analysis between UFPNC and NOx in different mean particle size ranges 

at both sites are shown in Figure 3.17. Correlation between UFPNC and NOx 

decreased with decreasing mean particle size at St Leonards but no trend was found 

at Gorgie. Regression coefficients were significantly different between different 

mean particle size ranges. Slopes were generally lower for large particle sizes than 

for the small particle sizes. Different atmospheric conditions and emission activities 

lead to varying particle number-size distribution in air arriving at the monitoring 

sites. Deriving a quantitative relationship between NOx and UFPNC was shown in 

Figure 3.17 to be not robust if a broad size range of particles (10 – 700 nm as 

measured by DiSCmini) was considered.  

At St Leonards anomalously high UFPNC coincided with small mean particle size 

and high solar radiation (top left panel of Figure 3.17a). These conditions suggested a 

potential new particle formation (NPF) event, as observed in many previous studies 

(Charron et al., 2007; Dall’Osto et al., 2013; Ma and Birmili, 2015). NPF events, as a 

result of gas-to-particle conversion due to build-up of gaseous precursors, generally 

occur at a large regional scale (Dall’Osto et al., 2013). However UFPNC at Gorgie 

was not found to be anomalously high during the same hours as the potential NPF 

event occurred at St Leonards.  
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(a) 
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(b) 

 

Figure 3.17 (a) Scatterplot of hourly UFPNC against NOx concentration at (a) St Leonards 

and (b) Gorgie grouped by quartile ranges of mean particle size and coloured by solar 

radiation. 
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  Principal component analysis 

Principal component analysis (PCA) was performed on the PM2.5 component 

measurements at Auchencoth, gaseous pollutants and DiSCmini measurements at St 

Leonards and Gorgie and other meteorological variables to understand how different 

PM metrics are related to long and short-range sources. PCA is a data-reduction 

technique that reduces a dataset with a large number of potential correlated variables 

to a small number of uncorrelated variables (principal components) while retaining 

as much information from the original dataset as possible (Kabacoff, 2011). The 

number of principal components (PC) to calculate is usually determined by the 

eigenvalues associated with each PC. Typically, components with an eigenvalue 

greater than one are considered as principal components. The output of PCA gives a 

matrix of loadings of each variable for each PC. The loadings indicate the correlation 

(anti-correlation) of the each variable with a particular PC.  

Four principal components with eigenvalues greater than one were calculated for 

both the St Leonards and Gorgie datasets. To aid the interpretation of the 

components Varimax rotation was applied to the loading matrix to ensure each 

component has a few variables with high loadings and many variables with small 

loadings. The loadings of each variable for each rotated principal components (RC) 

are summarised in Figure 3.18. The first RC in both datasets was highly correlated 

with SIA, PM2.5 at St Leonards and mean particle size at the respective sites. RC1 

can be interpreted as contribution from long-range transport sources. Despite being 

located close to traffic sources, mean particle size at Gorgie was still highly 

correlated with RC1, suggesting that long-range transport PM carrying large particles 

in the accumulation mode significantly influences the mean particle size across the 

city more than the impact from the local traffic. The second RC at both sites 

explained the variation in the sea-salt components of PM, which weakly correlated 

with other pollutants but moderately correlated with wind speed. The third RC 

explained the variation in the traffic related air pollutants measured locally at each 

site. UFPNC and LDSA strongly correlated with RC3 together with NO2 and NOx. 

PM2.5 measured at St Leonards also had notable correlation (r ~ 0.4) with RC3 

comparing with other PM components or mean particle size, indicating a small 
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contribution to PM2.5 from local traffic emissions. The last RC in both datasets 

mainly explained the variance in various meteorological variables.  

Consistent with the results in the previous back-trajectory analysis, the PCA results 

highlight the distinct sources governing the variability of different PM metrics. 

UFPNC and LDSA are solely related to local traffic emissions, whereas mean 

particle size is governed by PM2.5 episodes associated with large contribution from 

long-range transported SIA.  
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(a) 

 
  



Chapter 3 Measurements of air pollutants in urban environments 

110 

 

(b) 

 

Figure 3.18 Loadings of each pollutant and environment variables from the PCA analysis. 

The NOx and UFP measurements were made at (a) St Leonards and (b) Gorgie. The PM2.5 

concentrations used at both locations were measurement at St Leonards by TEOM-FMDS. 
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  Correlation of UFPs between different sites 

Despite the large spatial variation in UFPNC in an urban environment, temporal 

variation of UFPNC at different locations in a city might be influenced by similar 

diurnal emission patterns and meteorological conditions. Consequently, high 

temporal correlation in UFPNC between monitoring sites may be observed, which 

reassures the use of a fixed monitoring site for estimation of population exposure to 

examine short-term effect of UFPNC. Pearson correlation coefficients for hourly and 

daily average PM2.5, UFPNC, LDSA and mean particle size between St Leonards and 

Gorgie are shown in Figure 3.19. High correlations were found in hourly PM2.5 and 

mean particle size between St Leonards and Gorgie (r > 0.86). Correlations in hourly 

UFPNC and LDSA between the two sites were moderate (r = 0.66 and 0.74, 

respectively). Correlations of daily average concentration between the sites improved 

for all pollutants, reaching r = 0.76 for UFPNC. The daily average is the usual 

averaging period used in many epidemiological studies (Atkinson et al., 2010; 

Breitner et al., 2009). Some previous studies demonstrated high temporal correlations 

of daily UFPNC (median correlation range 0.67 – 0.76) among central site and home 

addresses in four European cities (Puustinen et al., 2007). High correlations (r > 0.8) 

were also reported for hourly UFPNC concentration among four traffic sites in 

Germany (Cyrys et al., 2008). However, a range of modest correlations (median 

hourly correlation range 0.3 – 0.56) were found among 14 various types monitoring 

sites in Los Angeles (Moore et al., 2009). Overall it is demonstrated that high 

correlation of UFPNC can be found among certain monitoring sites within a city. 

However, the variability in the results highlights that these correlations are site-

specific. Therefore, direct evaluation at each study location is needed by examining 

UFPNC measurements at multiple locations if one fixed monitoring site is used to 

estimate population exposure to UFPNC. 
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(a) 

 
(b) 

 

Figure 3.19 Correlation plots between different PM metrics measured at St Leonards and 

Gorgie at the temporal resolutions of (a) hourly average and (b) daily average.  
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 Conclusions 

In section 3.2, mobile measurements confirmed the literature that BC and UFPNC 

exhibited much higher (~ 3 times greater) spatial variability than PM2.5 in the urban 

environment. Both BC and UFPNC were highly correlated with traffic counts, but 

not for the PNC0.5-2.5. This suggests that concentrations of BC, UFP and NOx can be 

modelled effectively using local sources and meteorological variables. On the other 

hand, PM2.5 concentrations cannot be modelled adequately using only local sources. 

Statistically significant difference was found between the slopes of BC vs. UFPNC 

regression analyses between working days and non-working days. During non-

working days the reduction of HGV flows resulted in a decrease in the BC/UFPNC 

ratio, suggesting that HGV may contribute more to BC than to UFP concentrations. 

Therefore, control of HGVs may be effective in reducing the negative health effects 

associated with BC.  

In section 3.3, long term stationary measurements revealed the temporal correlation 

of UFP with NOx and PM2.5 and their dominating sources. Hourly concentrations of 

UFPNC and LDSA were highly correlated at both background and roadside. Both 

also moderately correlated with NOx, but to a varying degree with NO2 or NO 

depending the site type. PCA revealed the distinct sources of UFP and PM2.5. This 

study adds to the literature that mean particles size also behaves similarly to the 

PM2.5 concentrations, which are mainly governed by long-range transport of SIA 

mostly originated from continental Europe and England, whereas both UFPNC and 

LDSA were related to varying local emissions and meteorological conditions. 

Despite the strong linkage between UFPNC and NOx, quantifying the total UFPNC 

of a broad size range can be challenging since the variation of the particle size 

distribution result in varying UFPNC vs NOx regression statistics. Good daily 

correlations were observed for UFPNC and LDSA (r = 0.76 and 0.86, respectively) 

measured at a background and roadside site, which reassures the use of measurement 

from a fixed monitoring site in the study of short-term effect of UFP. However, 

given the highly locally-dependent nature of UFP, it is likely these high temporal 

correlations across sites may not be observe throughout a city. Therefore, 
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examination of the temporal variation of UFP at multiple locations directly in a 

health study area is necessary.  
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Chapter 4 Modelling of NO2 and O3 
concentrations with ADMS-Urban 

 Introduction 

Assessing population exposure to pollutants with high spatial variability such as NO2 

requires knowledge of the pollutant concentration at fine scales. Air quality 

measurements alone cannot provide the spatial resolution needed in health studies. 

Thus air quality models are being increasingly used to quantify human exposure to 

outdoor air pollution (Cai et al., 2014; Laurent et al., 2008; Maheswaran et al., 2010). 

These models can be roughly categorised into statistical and deterministic dispersion 

models. A statistical model relies on measurement data from a number of monitoring 

sites, upon which an algorithm is derived to characterise the spatial pattern of the 

pollution observed. Among the different statistical models, land-use regression 

(LUR) models have gained increasing popularity for the assessment of long-term 

exposure to air pollution (Hoek et al., 2008). A deterministic dispersion model 

describes the fundamental physical-chemical processes taking placing in the 

atmosphere by solving mathematical equations. The comprehensive coverage of 

dispersion models in space and time enables the incorporation of human time-activity 

data potentially providing more accurate personal exposure assessment that may 

significantly reduce exposure misclassification (Smith et al., 2016).  

In this work a Gaussian dispersion model (ADMS-Urban) is used to model NO2 and 

O3 concentrations in Edinburgh. ADMS-Urban is an air quality modelling software 

developed by Cambridge Environmental Research Consultants (CERC) and is widely 

used in Europe for regulatory applications (CERC, 2016a). Although being a 

proprietary model, details of the dispersion calculation algorithms can be found on 

the CERC website (CERC, 2016b) and have been validated in various publications 

(CERC, 2016c). However, the performance of dispersion models in a particular area 

can be affected by uncertainties from a number of sources, most importantly from 

input data such as emission, meteorology and topology, but also from the model 

settings configured by the user. In this chapter available emission and meteorological 
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data for Edinburgh are discussed and their influences on ADMS-Urban output are 

investigated. Validation of the ADMS-Urban model for Edinburgh is based on both 

passive diffusion tube (PDT) and reference analyser data from automatic monitoring 

networks. The aim of this chapter is to determine the optimal setup of ADMS-Urban 

for modelling NO2 and O3 in Edinburgh (and possible for other UK cities) and to 

provide a basis for subsequent application of ADMS-Urban for the purpose of 

improving exposure assessment methodology, as shown in Chapter 5. 

 Input data for modelling 

The availability and consistency of input data (traffic flow, emission inventory and 

meteorology) have been a major limiting factor for the application of dispersion 

models among different cities in health studies (ESCAPE, 2010). Although this 

section only discusses the available emission and meteorological data in Edinburgh, 

the general data availability is similar for most UK cities. 

4.2.1 Emissions 

The Department for Transport (DfT) provides annual average daily flow (AADF) of 

traffic in different categories for all the major roads in UK cities (DfT, 2015). This 

enables the calculation of emissions on the major roads provided that the average 

vehicle speed is known. The National Atmospheric Emission Inventory (NAEI) 

provides aggregated emissions for traffic and other sources at 1 km2 grid resolution 

for the whole UK (NAEI, 2015). For the emissions from major roads, NAEI values 

are also based on traffic data from DfT (Defra, 2015). Traffic flow data are only 

available for a few minor roads in a city. Where these data are available, the minor 

road emission for that particular road link is calculated in NAEI. For the majority of 

minor roads, traffic flows are modelled based on average regional flows and fleet 

mix (Defra, 2015). Regional average flows are available from DfT by vehicle types. 

NAEI assign different vehicle types to different minor roads – B and C roads or 

unclassified roads. Applying NAEI emissions to model road sources requires 

disaggregating the gridded emissions and attributing them to the road segments, 

which results in all the emissions for the same road type (major or minor) being the 

same inside a grid. Although this method of calculating road emissions may be less 
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accurate than a bottom-up method based on traffic flows and emission factors, the 

emissions from the minor roads can at least be modelled as road sources rather than 

as a 1 km2 grid source. The following sensitivity studies discuss the difference in the 

model outputs based on the two different road emission setups and some practical 

considerations in using each method. 

4.2.2 Meteorology 

Surface meteorological observations are provided by NOAA Integrated Surface 

Database (ISD) across the globe (NOAA, 2016). The comprehensive coverage of 

ISD stations in the UK ensures almost every city has a meteorological station nearby. 

The closest station to Edinburgh is located at Gogarbank (55° 55' 58.8" N, 3° 21' 

00.0" W), a rural area west of the conurbation. As the wind measured at this site 

approaches the built-up urban area, wind speed will reduce within the building 

canopy. ADMS-Urban takes account of the change of wind speed by considering the 

mean height of the buildings in a neighbourhood (CERC, 2016a). However, the wind 

direction is unchanged at the dispersion site from the input meteorological 

measurements. The measurement at Gogarbank may represent the general weather 

condition of the whole city but may be less representative for a specific site within 

the city. For comparison, a pocket weather sensor Kestrel 4500 was mounted on the 

roof of the St Leonards AURN monitoring station to measure local wind speed and 

direction. The St Leonards station is located in a small urban park, with the closest 

road 35 m to the east (Figure 4.1). There are no high-rise buildings in the vicinity of 

the station.  

In the following analysis, modelled NO2 concentrations based on Gogarbank or St 

Leonards weather data are compared with measured NO2 at St Leonards to assess 

whether using local meteorological measurements can improve the model 

performance.  
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Figure 4.1 Siting of the St Leonards station with respect to the surrounding environment. 

 

 Sensitivity tests 

4.3.1 Major road emissions – NAEI gridded emission vs DfT 
traffic data 

Major road emissions can be calculated by using the NAEI 1 km2 gridded emission 

(top-down approach) or from traffic data provided by DfT (bottom-up approach). In 

this test the emissions from major roads resulting from the application of the two 

methods were compared. 

In the top-down approach, NOx emission for each 1 km2 grid cell from the major 

road sector in 2012 was divided by the total length of major roads in each grid to 

give major road emissions in g/m/s. In the bottom-up approach, major roads with 

traffic data were imported to the EMIT software where the emissions were calculated 

based on the NAEI 2012 emission inventory. The traffic data and emission inventory 

should be the same in both approaches. However, there are discrepancies in the 

vehicle classification and average vehicle speed between the two emissions 

St Leonards 

station 
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calculation methods. In the NAEI gridded emissions, traffic data are classified into 6 

categories (cars, LGVs, buses, motorcycles, rigid HGVs and articulated HGVs) as 

opposed to 3 categories used in EMIT (LGVs, HGVs and motorcycles). The average 

speed used in EMIT was taken as the speed limit (48 km/h), whereas the NAEI 

gridded emission assigned different vehicle speeds to different road types (Defra, 

2015). The discrepancy in the resulting major road emissions is therefore likely due 

to the combination of these two differences.  

Figure 4.2 shows the difference in NOx emissions for the major roads estimated by 

the top-down and bottom-up approaches. There was great spatial heterogeneity in the 

difference of NOx emissions especially within a grid cell where roads with varying 

traffic flows intersected. This is anticipated since the traffic data do not have gridded 

resolution. However even within grids with only one road segment, the NOx 

emissions estimated by the top-down approach were generally higher than the 

bottom-up approach using an average vehicle speed of 48 km/h (Figure 4.2a). 

Adjusting the average speed used in EMIT to 32 km/h increased the NOx emissions 

estimated by the bottom-up approach and gave better agreement with the NAEI 

gridded NOx emissions (Figure 4.2b). 
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(a) (b) 

  

Figure 4.2 Differences between NOx emissions estimated by the top-down and bottom-up 

approaches with average vehicle speed for the latter fixed at either 48 km/h (a) or 32 km/h 

(b). The difference was expressed as (top-down emission – bottom-up emission)/top-down 

emission. 

The effect of using different major road emission calculation methods on the 

modelled NOx concentrations was compared in Figure 4.3. Receptor points were 

regularly spaced at 200 m and also along the edge of the major roads and at distances 

from the road centreline two times the width of the road. Although the difference in 

the major road emissions calculated from the two methods is large for some road 

segments (over 30%, Figure 4.2a), the resulting modelled concentration difference 

reflects the emissions difference only at locations very close to the road sources 

(Figure 4.3). For the majority of the locations away from major roads (> 50 m), the 

difference in the modelled NOx was small (on average 6%, 1% and 15% for 5th and 

95th percentile respectively). Despite the discrepancy in the major road emissions 

calculated based on these two methods, the difference in modelled pollutant 

concentrations will be most pronounced at short distance from the major roads.  
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Figure 4.3 Difference in modelled NOx concentrations between top-down and bottom-up 

major road emission calculation methods. The difference was expressed as (top-down – 

bottom-up)/top-down. In the bottom-up method an average speed of 48 km/h was applied to 

all traffic. 

 

4.3.2 Minor road emissions – Modelled as grid source vs road 
source 

Traffic data on minor roads are not available in most UK cities. Modelling emissions 

from minor roads can either rely on the 1 km2 gridded emission from NAEI or using 

traffic models to assign regional average traffic flow to the minor roads. Without 

accessing a traffic model, the former approach is investigated here. Figure 4.4 shows 

the ratio of NOx emission from minor roads to major roads for each 1 km2 grid in 

Edinburgh. Within the city boundary the emissions from minor roads can be twice as 

high or comparable to the emissions from major roads for many 1 km2 grids. This 

indicates the importance of including minor road emissions in the model. ADMS-

Urban allows such aggregated emission to be modelled as a grid source. However, a 

more accurate way is to disaggregate the gridded minor road emissions to the minor 

roads and to model as a road source. Despite being more representative of reality 

there is a caveat with this approach. The minor roads defined in NAEI not only 

include the relatively busy B roads but also the less busy residential streets (Figure 
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4.5). Due to the limitation on the number of roads that can be modelled explicitly in 

ADMS-Urban only the B roads and the major roads can be modelled as a road 

source. Emission on B roads were calculated by dividing the total minor road 

emission in a grid by the total length of minor roads (B roads + residential streets) in 

that grid under the assumption that B roads have the same emission per unit length as 

the residential streets. As a result, the emissions on the B roads were likely to be 

underestimated. However, modelling minor roads as a road source add more spatial 

variability in the emissions as opposed to modelling them as a grid source.  

 

 

Figure 4.4 Ratio of minor road to major road NOx emissions in 1 km2 grids. Grids without a 

colour means that there are no major roads in that grid. 
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Figure 4.5 Definition of major and minor roads in the NAEI and in this model study. The 

major road definition is the same between NAEI and this study. The minor roads modelled in 

this study only include B roads (orange), whereas in NAEI the minor roads not only include 

B roads but also most residential streets (blue).   
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The differences in NO2 concentrations resulting from the different modelling 

methods for minor roads are shown in Figure 4.6a. As expected, modelling minor 

roads explicitly resulted in higher concentrations near minor roads. However at most 

locations NO2 concentrations were lower when minor roads were modelled as a road 

source because all the minor road emission dispersed as an area source in the grid 

source method. The difference in the modelled NO2 concentration can be small 

between the two methods if the total minor road emission in a grid is relatively low. 

Large discrepancies can be expected between the two methods when the total minor 

road emission in a grid is high, as illustrated in the top-left grid of the output area 

(Figure 4.6). 
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(a) 

 
(b) 

 

Figure 4.6 (a) Differences in NO2 concentrations between the two minor road modelling 

methods. The difference was expressed as NO2[minor roads as road source] – NO2[minor 

roads as grid source]. (b) The minor road NOx emissions for the four 1 km2 grids 

corresponding to the output area in Figure 5a.  
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4.3.3 Meteorological data – Gogarbank vs local 
measurements 

It is standard practice to use meteorological data from a station close to, but outside, 

the urban area to represent the city-scale meteorology. However meteorological 

measurements at the dispersion site might be more suitable for modelling at a 

specific location. This test compares NO2 concentrations at St Leonards modelled 

with wind speed and direction measured at St Leonards and at Gogarbank, which is 

situated in a rural area 10 km west of St Leonards.  

In the model using Gogarbank meteorological data, urban canopy flow was enabled 

in order to better estimate the change of wind speed at surface relative to the 

measurement height at 10 m. In the model using meteorological data from St 

Leonards, urban canopy flow was disabled to ensure the meteorological conditions 

considered by the model at the receptor site were the same as the input data. Figure 

4.7 compares the distributions of hourly wind speed and direction profiles from 

2015-06-09 to 2015-08-21 measured with the Kestrel wind monitor at St Leonards 

and that simulated by ADMS-Urban based on measurements at the fixed-site 

automated weather station at Gogarbank. 
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(a) (b) 

  

Figure 4.7 Comparison of hourly wind profiles from 2015-06-09 to 2015-08-21 at St 

Leonards from direct measurement by portable Kestrel wind monitor (a) and from 

processing by ADMS-Urban based on measurements by automatic weather station at 

Gogarbank (b). 

 

Wind direction at Gogarbank was predominately from the southwest, whereas the 

local wind direction at St Leonards also had a strong component from the northwest. 

Despite the fact that ADMS-Urban takes into account the decreased wind speed at 

surface level, the wind speed estimated by the model was still on average higher than 

the measurements at St Leonards. A great proportion of wind speed measurements at 

St Leonards were below the threshold that ADMS-Urban requires for dispersion 

calculation. As a result wind speed below 0.75 m/s at 10 m (equivalent to 0.43 m/s at 

3 m) was set to 0.75 m/s and the wind direction was set to the previous hour’s, which 

comprised 40% of the data. The effect of these contrasting wind profiles on the 

modelled NO2 concentrations at St Leonards are compared in Figure 4.8. As 

suggested in Figure 4.7, the generally lower measured wind speed at St Leonards 

resulted in a great number of modelled NO2 concentrations higher than those 

modelled with Gogarbank wind data. Wind direction was not as influential as wind 

speed in the modelled NO2 concentration at St Leonards background site. However it 
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is anticipated that the influence of wind direction could be larger when the receptor is 

closer to the road source.  

 

Figure 4.8 Scatter plot of hourly NO2 concentrations at St Leonards modelled with 

meteorological data measured at St Leonards and with meteorological data measured at 

Gogarbank. The two panels split the data according to whether wind direction in the two 

approaches was similar or different and the data points are coloured by the difference in 

wind speed. Similar wind direction refers to a difference in wind direction of less than 22.5⁰. 

The wind speed difference was calculated as the wind speed estimated from Gogarbank 

minus the wind speed measured at St Leonards. The solid line in each panel is the 1:1 line 

and the dashed lines are the 2:1 and 1:2 lines. 

 

To investigate whether using local meteorological data improves the accuracy of 

modelled concentration, modelled NO2 concentrations using Gogarbank and St 

Leonards meteorological data are compared with measurements in Figure 4.9. The 

model using Gogarbank data captured well the variation in daily-average NO2 due to 

varying meteorological conditions. However the model using local St Leonards data 

systematically overestimated NO2 concentration as a result of the frequently 

measured low wind speed. The reason for the poor model performance using St 

Leonards meteorological data may be explained by the wind measurements not being 

representative of the local-scale climate. The wind sensor was mounted right on top 
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of the monitoring station about 3 m above ground, which was likely affected by the 

disturbance induced by the bulk of the station. Given that the St Leonards station was 

at a background location, wind measurements representing more general local-scale 

conditions may be more beneficial for the dispersion calculation. The results here 

suggest that careful selection of meteorological measurement site in the urban 

environment is essential for dispersion modelling. The World Meteorological 

Organisation has recommended measurement of wind speed/direction above the 

roughness sublayer (typically on tall towers) to monitor the urban local scale climate 

(Oke, 2006). 
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(a) 

 
(b) 

 

Figure 4.9 Daily average NO2 concentrations at St Leonards modelled with Gogarbank (a) 

and St Leonards (b) meteorological data compared with the St Leonards reference NO2 

measurements for the period 2015-06-09 ~ 2015-08-21. The red and grey lines show the 

linear fit and 95% confidence interval. The solid black line shows the 1:1 relationship and 

the dashed lines show 1:2 and 2:1 relationship.  
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 ADMS-Urban model validation 

4.4.1 Model setup 

Based on the results from the above sensitivity studies, the following model setups 

were adopted and illustrated in Figure 4.10 as the base model for the subsequent 

model validation: 

- A and B roads were explicitly modelled as road sources; 

- emissions for the road sources were calculated from the NAEI 2012 

gridded emissions; 

- the remainder emissions were modelled as 1 km2 grid sources; 

- meteorological data were taken from Gogarbank measurements; 

- background concentrations were taken from measurements at Bush 

Estate. 

 

Figure 4.10 Map of the modelling domain (12 km ×12 km) for Edinburgh showing the 

explicitly modelled road sources and grid sources, and the locations of the meteorological 

measurement station, the rural background monitoring station (Bush Estate) and the 

automatic monitoring stations (EDx). ED3 is the St Leonards AURN monitoring site. 
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4.4.2 Validation against reference instruments 

There are 6 automatic monitoring stations measuring NOx in Edinburgh, only one of 

which also measures O3 (the St Leonards AURN station marked as ED3 in Figure 

4.10). The measurement of real-time air pollutant concentrations from these stations 

allows the validation of ADMS-Urban on hourly or daily basis. Validation of 

modelled hourly concentration can be challenging, since hourly modelled 

concentrations are subject to uncertainty in the time-varying emissions and also to 

uncertainty in the hourly meteorological data. Validation of daily average 

concentration may rely less on the exact timing of emissions and reflects more of the 

temporal aspect of the model capability driven by the varying meteorology. Daily 

average concentration is also the metric used in most time-series studies quantifying 

the short-term effect of air pollution (Moolgavkar et al., 2013; Samoli et al., 2016). 

In this study, modelled daily and monthly average NO2 and O3 concentrations were 

compared with the measurement at the automatic monitoring sites for 2012. Detailed 

descriptions of the monitoring sites are summarised in Table 4.1. 
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Table 4.1 Characteristics of the automatic monitoring sites used in model validation. The 

locations of these sites are marked on Figure 4.10. ED3 is the St Leonards AURN 

monitoring site. 

Site Type Distance to 

nearest 

road (m) 

Pollutant(s) 

measured 

Comments 

ED1 Kerbside 0.5 NO2 and NOx Inside a street 

canyon, at the 

intersection of a 

busy T junction. 

ED3 Background 35 NO2, NOx and 

O3 

In a small urban 

park. 

ED5 Roadside 1.5 NO2 and NOx South of a busy A 

road. Buildings on 

the north and 

southwest sides of 

the station. 

ED7 Roadside 4.5 NO2 and NOx North of a busy B 

road. Buildings on 

the northwest and 

south sides of the 

station. 

ED8 Roadside 1.5 NO2 and NOx South of an A road 

near a junction. 

Buildings on the 

south side and a 

wall on the north 

side of the station. 

ED9 Roadside 1 NO2 and NOx South of an arterial 

road and next to a 

bus stop. Terraced 

houses on the south 

and north sides of 

the station. 
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Commonly-used model evaluation statistics for the daily and monthly concentrations 

are summarised in Table 4.2 and Table 4.3. Definitions of these statistics can be 

found in Appendix I. 

The model predicted well the daily average NO2 concentration at the background site 

(ED3) with the smallest error (NMB: 3%) and high correlation coefficient (Table 

4.2).  At the roadside locations ED5, ED7 and ED8 the model generally 

underestimated NO2, although not by much (NMB values of 9%, 2% and 15%, 

respectively) and had slightly smaller r values (0.70, 0.71 and 0.66, respectively). 

However, the model performed particularly poorly at ED1 and ED9 shown by the 

significant underestimation (NMB: ~ 50%) and large RMSE. The correlation 

coefficient at ED1 was poor but was high at ED9. The large negative bias suggested 

great underestimation in the emission, possibly caused by the unique movement of 

traffic at the junction for ED1 and the additional bus emission at ED9. However the 

good correlation at ED9 suggested that the dispersion processes were simulated well 

at ED9 but poorly at ED1 due to the local street canyon. O3 measurement data were 

only available at ED3. The model simulated well urban background O3 both in the 

daily temporal variation (high r) and in the absolute values (Table 4.2).  

Validation results for the monthly average concentration were similar to the daily 

average but with slight improvement in the estimation errors since the uncertainties 

in the emissions were further smoothed out (Table 4.3).  
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Table 4.2 Model evaluation statistics for daily average NO2 and O3 concentrations for 2012. 

NO2 

Site N FAC2 MB (g m-3) NMB RMSE (g m-3) r 

ED1 362 0.42 32.37 0.56 41.77 0.42 

ED3 365 0.87 0.72 0.03 9.73 0.77 

ED5 365 0.78 3.66 0.09 15.47 0.70 

ED7 358 0.81 0.43 0.02 11.60 0.71 

ED8 364 0.65 4.62 0.15 15.06 0.66 

ED9 346 0.40 25.98 0.50 28.46 0.86 

O3 

ED3 345 0.96 3.75 0.08 10.43 0.86 

 

 

Table 4.3 Model evaluation statistics for monthly average NO2 and O3 concentrations for 

2012. 

NO2 

Site N FAC2 MB (g m-3) NMB RMSE (g m-3) r 

ED1 12 0.50 32.37 0.56 35.65 0.37 

ED3 12 1.00 0.68 0.03 4.15 0.79 

ED5 12 1.00 3.83 0.10 6.49 0.67 

ED7 12 1.00 0.63 0.02 5.92 0.68 

ED8 12 1.00 4.70 0.16 9.05 0.66 

ED9 10 0.60 25.56 0.49 25.69 0.93 

O3 

ED3 10 1.00 4.01 0.08 6.46 0.96 
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4.4.3 Validation against PDT measurements 

Although the regulatory monitoring network provides real-time measurements, it is 

insufficient in number to capture the high spatial variability in NO2 concentrations. 

Validation of the spatial aspect of the AMDS-Urban model output needs 

measurements with high spatial coverage. Passive diffusion tubes (PDTs) provide a 

low-cost alternative to the reference monitoring techniques in providing long-term 

average concentration at higher spatial resolution. Two available PDT datasets were 

used to validate ADMS-Urban. One was a network of 30 PDT sampling sites 

covering an area of ~7  km2 in south Edinburgh (Lin et al., 2016). The other was 

more localised to a busy major road and along a perpendicular residential street 

(Kenagy et al., 2015). A basic summary of both datasets is shown in Table 4.4. 

Detail of the site locations can be found in (Lin et al., 2016) and (Kenagy et al., 

2015). 

 

Table 4.4 Summary of the PDT datasets used for ADMS-Urban model validation. 

South Edinburgh 

Pollutants 

measured 

Deployment 

period 

Deployment 

interval 

Number of sites 

NO2 and O3 

Summer (2nd 

August – 13th 

September 2013) 
Weekly for NO2 

and bi-weekly for 

O3 

30 
Winter (2nd 

December 2013 – 

13th January 2014) 

Craigmillar Park Road – Wilton road 

NO2 
12th September – 

17th October 2014 
Weekly 

16 (two heights at 

0.8 and 2 m at 

each site) 

 

Seasonal average concentration (i.e. mean of 6 weekly average NO2 concentrations) 

was compared with ADMS-Urban output in the south Edinburgh dataset. Locations 

of the PDT in this dataset are shown in Figure 4.11. Sites containing more than one 
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missing weekly NO2 or one bi-weekly O3 were excluded from the model evaluation. 

Some PDTs were located next to a bus stop or at a traffic junction, where additional 

emissions from buses and traffic queueing are considered to be great but not 

modelled in the current model setup. Measurements at these sites therefore do not 

reflect the general predictive ability of the ADMS-Urban model and were also 

excluded from the evaluation. Figure 4.12 shows the relationship between modelled 

and measured NO2 concentrations during different seasons. Overall the model 

underestimated NO2 concentrations compared to the PDT measurements. However 

the spatial variation in the measured NO2 was explained well by the model (R2 = 

73% and 77% for summer and winter, respectively) and was comparable to a 

previous ADMS-Urban model evaluation study (Dėdelė and Miškinytė, 2014). This 

indicates that although there is bias between modelled and PDT-measured NO2 

concentration the spatial pattern predicted by the model is consistent with the 

measurements. The bias could result from both the errors in the model and the errors 

in the PDT measurements. Large discrepancy (55% for summer and 82% for winter) 

between PDT measurement and reference analyser was observed during the 

deployment period at the ED3 co-location site. This partly explains the general 

underestimation in the modelled NO2 compared to the PDT measurements. The 

positive bias in PDT measurement due to wind turbulence is well known in the 

literature (Heal et al., 2000). Assuming that this bias is systematic across all PDT 

sites, Figure 4.13 compares modelled NO2 with PDT measurements corrected by the 

factor observed at the co-located reference analyser. The model performance 

significantly improved when comparing with the corrected PDT data in terms of 

estimation error. RMSE decreased from 12 g m-3
 to 5 g m-3

 and from 15 g m-3 to 

4 g m-3 for summer and winter, respectively. 
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Figure 4.11 Locations of the PDT sites in central-south Edinburgh. Site 8 is the AURN St. 

Leonards monitoring station. (Source: Lin et al. (2016)) 
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(a) (b) 

  

Figure 4.12 Modelled and measured seasonal average NO2 concentration for summer (a) 

and winter (b). Open triangle markers denote the measurements from reference analysers 

shown in Figure 4.10. Site 8 PDTs were co-located with reference analyser at ED3. The red 

and grey lines show the linear fit and 95% confidence interval. The solid black line shows 

the 1:1 relationship. 

 

(a) (b) 

  

Figure 4.13 Comparison of model and corrected PDT measurements for seasonal average 

NO2 concentration for summer (a) and winter (b). The red and grey lines show the linear fit 

and 95% confidence interval. The solid black line shows the 1:1 relationship. 
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In contrast to NO2, correlation between measured and modelled O3 concentrations 

was low, indicating that the spatial variability of O3 was not well predicted (Figure 

4.14). More importantly the range of O3 concentration predicted by the model was 

much smaller than those measured by the PDTs. Positive bias may also have affected 

O3 PDTs as indicated by the discrepancy between PDT and reference analyser at the 

co-located site 8 (Figure 4.14). Figure 4.15 shows the comparison between model 

and corrected O3 PDT measurements. The correction eliminated some large 

underestimation by the model for the winter period (Figure 4.14b). However, the 

correlation and the spatial contrast (slope) between the model and measurement were 

roughly unchanged after the correction. 
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(a) (b) 

  

Figure 4.14 Modelled and measured seasonal average O3 concentration for summer (a) and 

winter (b). Site 8 PDTs were co-located with reference analyser at ED3. The red and grey 

lines show the linear fit and 95% confidence interval. The solid black line shows the 1:1 

relationship. 

(a) (b) 

  

Figure 4.15 Comparison of model and corrected PDT measurements for seasonal average 

O3 concentration for summer (a) and winter (b). The red and grey lines show the linear fit 

and 95% confidence interval. The solid black line shows the 1:1 relationship. 
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In the ADMS-Urban model the spatial variation of O3 is mainly determined by its 

depletion through reaction with NO. On the other hand, spatial variation in NO2 is 

determined not only by its generation in the NO + O3 reaction but also from primary 

NO2 emissions. In theory, at any given PDT site the increase in NO2 (ΔNO2) 

compared to background concentration should always be equal to or larger than the 

decrease in O3 (ΔO3) at the same site. Therefore, the difference between ΔNO2 and 

ΔO3 should reflect the contribution of primary NO2 at that site, which is expected to 

be larger closer to roads and smaller away from direct emissions. Examining the 

ΔNO2  ΔO3 quantity at a certain PDT site is equivalent to taking the difference 

between Ox at the PDT site and Ox at the background site, where Ox is the sum of 

NO2 and O3. This method has been previously used to estimate the primary NO2 

emission at traffic sites (Carslaw and Beevers, 2004). Here the ΔNO2  ΔO3 values 

were examined for both PDT measurements and model outputs to compare the 

modelled and measured primary NO2 emissions, thus giving insight into whether the 

relatively narrower range of modelled O3 concentrations was caused by incorrect 

roadside NO concentration assumed. Measurement at Bush Estate was considered as 

the background concentration in the calculation of ΔNO2  ΔO3. Bush Estate is 

roughly upwind of the prevailing wind with respect to the city of Edinburgh therefore 

giving a good representation of unpolluted city background. 

Figure 4.16 shows the ΔNO2  ΔO3 values for the model and for the corrected PDT 

measurements, with species concentrations converted to volume mixing ratios. As 

expected, modelled ΔNO2  ΔO3 values were higher near A-roads reflecting 

significant contribution from primary NO2 but gradually decreased at less busy roads. 

However, ΔNO2  ΔO3 values calculated from PDT measurements were mostly 

negative even at A-roads and did not show a particular pattern between different 

sites. Negative values suggest the change in O3 concentrations were larger than the 

change in NO2 concentrations which contradicts the stoichiometry of the NO + O3 

reaction. Acknowledging that there are uncertainties in PDT measurements, ΔNO2  

ΔO3 values were also examined using reference measurement data. Figure 4.17 

shows a selection of London Air Quality Network (LAQN) sites that provide both 

NO2 and O3 measurements and the ΔNO2  ΔO3 values calculated from these sites. 
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Consistent with the modelled results and expectation, kerbside sites generally had 

higher ΔNO2  ΔO3 values than urban background sites. ΔNO2  ΔO3 values were 

consistently positive regardless of the site types. The unexpected large range of O3 

concentrations measured by PDTs in Edinburgh therefore cannot be explained by NO 

+ O3 chemistry. It is difficult to know whether this was caused by unknown biases in 

PDT measurements or by additional important O3 depletion processes such as 

deposition onto concrete surfaces as observed by (Weissert et al., 2017). 

 

(a) (b) 

  

Figure 4.16 Modelled and measured ΔNO2  ΔO3 at different types of sites for summer 

averages (a) and winter averages (b). 
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(a) 

 
(b) 

 

Figure 4.17 Location of London reference monitoring stations (a) and the ΔNO2  ΔO3 

calculated using data from RI2 as the background site (b). ΔNO2  ΔO3 at each site was 

calculated based on monthly average concentration in 2013. 

Validation of modelled NO2 was also conducted at a very local scale where the 

emission was dominated by a major road source. The locations of PDT sites with 

respect to the major road under investigation are shown in Figure 4.18. Since 

Craigmillar Park road is the only major source of NO2 in this small area, this study 

gives insights into the road emissions used in the model. Figure 4.19 shows the 
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modelled and measured weekly average NO2 concentrations at all the PDT sites. 

Figure 4.19a suggests underestimation by the model at sites closer to roads but 

generally good prediction at sites on the side road. This pattern can be explained by 

underestimation of primary NO2 (NO2/NOx ratio by volume) in the model. The 

effect of increasing primary NO2 ratios on the modelled NO2 concentrations was 

investigated. Figure 4.19b-d suggest increasing primary NO2 increased roadside NO2 

concentrations while the concentrations on the side road remained the same. As a 

result model performance improved, both in terms of R2 and slope coefficients, with 

increasing primary NO2 ratios. However the roadside concentrations still tend to be 

underestimated even with 50% NO2/NOx ratio applied in the model. 

 

 

Figure 4.18 Locations (and site labels) of the dual-height NO2 measurements on Craigmillar 

Park (CMP) road and Wilton (W) road. At each site PDTs were deployed at 0.8 m (low) and 

2 m (high) above the ground. 
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(a) 

 
(b) 
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(c) 

 
(d) 

 

Figure 4.19 Modelled and measured weekly average NO2 concentrations. Points are colour 

coded by distance between PDT location and the edge of Craigmillar Park (CMP) road. The 

left and right plot in each row are for PDTs located at 2.2 m (high) and 0.8 m (low) above 

the ground, respectively. The different rows show the results of assuming different ratios of 

primary NO2 to NOx for the modelled traffic emissions (a) 23.8%, (b) 30%, (c) 40% and (d) 

50%. 
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So what is the appropriate primary NO2 to use in the model? The default value the 

AMDS-Urban model uses for the primary NO2 from road emission is 23.8% 

suggested by the 2013 NAEI estimate for ‘All UK traffic’ (based on 2014 traffic fleet 

projection) (NAEI, 2013). Since then there has been an update in COPERT resulting 

in an increase in the primary NO2 to 26.2% for ‘All UK traffic’ in the 2015 NAEI 

estimate. COPERT is a software NAEI uses to calculate the emission factors that 

form the basis of the UK emission inventory (Defra, 2015). As shown in Figure 4.20 

the update in 2015 estimates had notable changes in primary NO2 for cars and LGVs. 

The implication of this change on the modelled road emission depends on the traffic 

composition of the modelled road. Figure 4.21 shows the difference in primary NO2 

between 2013 and 2015 NAEI estimates calculated based on 2014 traffic counts in 

Edinburgh. Since the traffic fleet was dominated by cars and a large increase in 

primary NO2 for cars was estimated in NAEI 2015, the primary NO2 on most roads 

increased from 20-25% to 25-30%. The primary NO2 on different major roads was 

similar, supporting the use of a single value for the city-scale modelling, with an 

exception for Princes Street where the majority of the traffic was buses. The updated 

NAEI estimates and Figure 4.19b-d suggest a higher primary NO2 ratio should be 

used than the ADMS-Urban default value. However, a recent study (Carslaw et al., 

2016) suggested the opposite, reporting evidence on decreasing primary NO2 from a 

peak of around 25% in 2010 to about 15% at the end of 2014 in London.  Remote 

sensing data also revealed that primary NO2/NOx ratio might be too high in the 

COPERT emission factors especially for Euro 4 and 5 vehicles, where remote 

sensing data estimated ~26% compared with 46% in COPERT (Carslaw et al., 2016). 

The introduction of the congestion charging zone and low emission zone in London 

dramatically changes the distribution of actual vehicle standards in the fleet, which is 

a caveat in comparing results from studies in London with other UK cities. 

Nevertheless, there are clearly inconsistencies in the inventory-based and 

measurement-based primary NO2 ratios. However, the uncertainty in primary NO2 

will only affect immediate roadside NO2 concentrations but will have little effect at 

locations away from road sources where there is sufficient dispersion time for NO + 

O3 reaction to reach equilibrium.  
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Figure 4.20 NAEI estimates of primary NO2 to NOx ratios based on 2014 fleet composition. 

 

 

Figure 4.21 Primary NO2 to NOx ratios estimated at traffic counting points in Edinburgh 

using NAEI 2013 and 2015 emissions factors and the traffic count data for 2014. 
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  Conclusions 

Various combinations of emissions and meteorological input datasets have been 

tested for modelling NO2 concentration in Edinburgh. Differences in emissions from 

major roads calculated based on bottom-up and top-down approaches were noted as a 

result of inconsistent vehicle speed used and different emission resolutions (road 

links or grid cells). The discrepancy in the major road emissions will most likely 

affect the modelled concentrations at/near roadside but less so at locations away from 

the road. Minor road emissions were found to be comparable or higher than major 

road emissions in many urban areas. Modelling minor roads as gridded area sources 

may falsely increase the background concentration at areas where minor road 

emissions are dominant local source. It is therefore preferable to model both major 

and minor roads explicitly as road sources. Without sufficient roadside 

measurements, it is difficult to assess which particular emission setup gives more 

accurate estimation. However, using NAEI emission data ensures consistency 

between major and minor road emissions and is practically easier than preparing DfT 

data in ADMS-Urban input format.  

Selecting the location to measure meteorological parameters representing the urban 

environment requires great caution. As shown in this study, meteorological data 

measured simply at a receptor location may be affected by micro-scale climate and 

may not be suitable to use in the dispersion modelling.  

The model setup based on NAEI emissions and Gogarbank meteorological 

measurements was used in the model validation against reference analyser and PDT 

measurements. Temporal variability (daily and monthly) of NO2 was predicted well 

at monitoring sites that were not heavily affected by local effects such as road 

junctions and bus stops. Temporal variability of O3 was predicted more accurately 

than for NO2 although only one monitoring site was available for this evaluation. 

Long-term (seasonal average) spatial variability of modelled NO2 was found to be in 

good agreement with PDT measurements. Modelled O3 concentrations compared 

poorly with PDT measurements. However, it was found that the O3 PDT 

measurement in this study may be affected by non-systematic biases affecting its 
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accuracy. Validation of modelled NO2 concentrations at a number of locations close 

to a major road source uncovered that the default primary NO2 to NOx ratio used in 

ADMS-Urban might be too low for modelling traffic emissions in 2014. There is no 

guidance from current literature on what the correct primary NO2 ratio is. However, 

the uncertainties regarding primary NO2 emissions will only likely affect the 

immediate roadside concentrations but have little effect on locations a few or tens 

metres away from the road. 

Given the good performance of the ADMS-Urban model at high spatiotemporal 

resolution, it serves as a useful tool for planning the time-consuming and costly real-

world measurements for developing empirical air quality models. One of the 

challenges in developing and validating the empirical air quality models is the 

limited monitoring sites. ADMS-Urban is proven to be able to provide a realistic 

continuous pollution field, where many possible monitoring strategies can be tested 

and evaluated. The monitoring strategy for building one of the statistical air quality 

models, land-use regression model, is investigated in Chapter 5. 
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Chapter 5 Evaluation of Land Use Regression 
Models for Estimating Residential 
NO2 Concentration 

This chapter is based on a research paper published in ‘Atmospheric Environment’ (Wu, H., 

Reis, S., Lin, C., Heal, M.R., 2017. Effect of monitoring network design on land use 

regression models for estimating residential NO2 concentration. Atmos. Environ. 149, 24–

33. doi:10.1016/j.atmosenv.2016.11.014). I undertook the experimental design, data analysis 

and drafting of the manuscript. Dr Mathew Heal and Dr Stefan Reis gave advice on the 

presentation of results and manuscript editing. Dr Chun Lin undertook the passive diffusion 

tube measurements which were used for model validation. 

 

 Introduction 

The assessment of long-term exposure to air pollution for epidemiological and health 

burden studies has been a challenge because of the high spatial variation of pollutant 

concentration in the urban environment, particularly NO2 (Briggs, 2005; Jerrett et al., 

2005). Over the years, land use regression (LUR) modelling has demonstrated better 

or equivalent performance to other geostatistical methods (Hoek et al., 2008), and 

therefore has become popular in health studies to estimate long-term exposure to 

ambient NO2 (Beelen et al., 2014; Jerrett et al., 2009). LUR modelling is a stepwise 

multiple regression method that regresses the pollutant concentration at the 

measurement sites against the land-use variables within buffer areas around the 

measurement sites (Jerrett et al., 2007). The derived empirical relationship between 

pollutant concentration and surrounding land use is then applied to un-sampled 

locations to provide a spatially-resolved seasonal or annual average pollution field. 

The selection of monitoring sites to build the LUR model has been identified as one 

of the factors affecting the quality of the LUR model, but a rigorous method to 

determine the number and distribution of monitoring sites is lacking (Hoek et al., 

2008). One study (Kanaroglou et al., 2005) aimed to develop a formal method to 

locate air quality monitors for LUR model development. However, the method has 

been rarely applied due to its complexity and the extensive prior knowledge required 
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on the population and pollutant distributions. A few studies (Basagaña et al., 2012; 

Johnson et al., 2010; Wang et al., 2012) evaluated the effect of number of monitoring 

sites on LUR model performance, but the effect of the distribution of monitoring 

sites remains to be investigated. 

Validation of an LUR model has always been limited to the measurements available 

in a monitoring campaign (Hoek et al., 2008). The ultimate goal of exposure 

assessment is to accurately predict the exposure of hundreds or thousands of study 

subjects, but validation of an LUR model at this level through measurements is 

practically impossible. However, with the use of a dispersion model it is possible to 

simulate a pseudo-measured concentration at every residential address, which can 

then be compared with an LUR-model estimated concentration to assess the validity 

of the latter. 

The aim of this study was to evaluate a large suite of LUR models built from 

different monitoring network designs and to validate the LUR models using 

dispersion modelled concentration at each home address. This modelling study used 

as its basis the city of Edinburgh (population ~460,000) in the east of Scotland, UK 

(55.94° N, 3.18° W). The outcome of the evaluation is to recommend sampling 

strategies and to highlight how particular monitoring network designs may lead to 

potential exposure misclassification.  
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 Method 

The evaluation of the performance of the LUR models constructed from different 

monitoring networks was carried out in four stages. An overview of the methodology 

is presented first, with details described in subsequent sub-sections. A schematic of 

the overall workflow is shown in Figure 5.1. 

 

 

Figure 5.1 Workflow for evaluating the performance of the LUR models by using dispersion 

model output. 

 

The ADMS-Urban model v3.4 (CERC, 2016) was used to simulate NO2 

concentrations for each of the population home addresses (centre points of residential 

buildings) in a 5 km × 5 km study area in Edinburgh (Figure 5.2). This area covers 

the commercial (city centre) and residential areas of the city and encompasses 7,445 

residential buildings housing a total population of 144,715. The dispersion modelled 
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NO2 concentration is considered to be the reference, on which the subsequent LUR 

model development and validation are based. Next, three different types of 

monitoring networks were designed (comprising different numbers of monitoring 

sites) based on household density and proximity to road. The NO2 concentration at 

each monitoring site was modelled with ADMS-Urban using the same setup as the 

modelling of residential NO2 concentration. The third stage was to develop a separate 

LUR model for each monitoring network, which was then applied to residential 

address to provide an LUR-model estimate. Finally, the LUR-model-estimated 

residential concentration was compared with the dispersion modelled residential 

concentration. The extent of agreement between the two indicates the performance of 

the LUR model and, in turn, the performance of the monitoring network from which 

the LUR model was constructed. 
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Figure 5.2 The modelling domain for the city of Edinburgh. The inset map shows the 

locations of all potential monitoring sites. The underlying contour plot shows the monthly 

average dispersion model concentration of NO2 for April 2012. 
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5.2.1 Stage 1 – Dispersion modelling of residential NO2 
concentration 

  Data preparation 

All the Geographic Information System (GIS) data, including buildings and road 

networks  for the City of Edinburgh, were obtained from EDINA Digimap Ordnance 

Survey Service (Ordnance Survey, 2015). Annual average daily flow (AADF) of 

traffic for the major roads in 2013 were downloaded from the Department for 

Transport (DfT, 2015). The population of each postcode area for the 2011 census 

was distributed to the buildings within the polygon area based on the volume of the 

building (building polygon area × building height). The centre of the building 

polygon with assigned population was used as the home address.  

  ADMS-Urban setup 

The model domain (12 km × 12 km) covered most of the City of Edinburgh in which 

all the emissions of NOx and NMVOC (non-methane volatile organic compound) 

were modelled (Figure 5.2). Within this larger domain, a 5 km × 5 km subset was 

chosen to output the concentration at each home address. To allow the receptors on 

the edges of the inner domain to be modelled smoothly, a 1 km buffer zone was 

added around the 5 km × 5 km output area. Within the buffer zone all the major and 

minor roads were explicitly modelled as road sources, whereas emissions outside the 

buffer zone were modelled as a 1 km × 1 km gridded area source. NOx and NMVOC 

emissions were downloaded from the UK National Atmospheric Emissions Inventory 

(NAEI) for 2012 (NAEI, 2015) with a resolution of 1 km2. Road emissions were 

calculated by dividing the total emissions for the major or minor road subsector by 

the total length of the corresponding roads within each 1 km2 grid. For grids in which 

road emissions were explicitly modelled, the road emissions were subtracted from 

the grid total emission. Measured meteorological data for the model, including wind 

speed/direction, cloud cover and temperature, were obtained from a WMO station to 

the west of the model domain (Gogarbank: 55.93 N, 3.35 W) (Met Office, 2012). 

An urban canopy file was prepared to account for the variation in the vertical profiles 

of wind speed and turbulence caused by the presence of buildings. Background 

concentrations of hourly-average NO2, NOx and O3 were obtained from a rural 
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national-network monitoring station to the south of the model domain (Bush Estate: 

55.86 N, 3.21 W). For 2012, 0.8% and 23% of O3 and NOx measurements, 

respectively, were missing. These were replaced by the average concentration for 

that particular hour over the whole year. Monthly average concentration was 

calculated at each receptor in ADMS-Urban, from which the annual-average 

concentration was calculated as the metric in the subsequent analysis.  

5.2.2 Stage 2 – Sampling network design 

Three different types of sampling networks were investigated. The aim in the 

selection of monitoring sites was to investigate how network selection criteria and 

number of sites influence the representation of the spatial variation of NO2 at the 

residential home addresses. Specifically, the exposure study area was first 

disaggregated into 25 m × 25 m grid cells. The following GIS variables were then 

calculated for the centroid of each grid cell: total home addresses within a 100 m 

buffer (HH100) and distance to major/minor road edge (MJRDDIST/MNRDDIST). 

Three types of monitoring sites were then defined: 

 High household density sites (HH sites): centroid of the cells with HH100 

falling in the top 10% of all the 25 m grid cells;  

 Roadside sites: centroid of the cells with MJRDDIST between 0 – 5 m; 

 Background sites: centroid of the cells with both MJRDDIST and 

MNRDDIST > 200 m.  

A subset of each of the total set of HH and roadside sites was then randomly 

selected, subject to a minimum distance of 300 m between any pair of sites, to form 

two pools of potential HH and roadside monitoring sites to be used in the sampling 

networks. The locations of these sets of monitoring sites are shown in Figure 5.2. 

The purpose of adding a minimum distance constraint to the random selection was to 

ensure that potential network sites were distributed across the range of localities in 

the study area. A third subset of sites was randomly selected from the total set of 

background sites, but with a minimum distance constraint of 500 m, since the 

background concentrations in this modelling study are mainly determined by the 

gridded emissions which have a resolution of 1 km2 rather than by the road network 
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which has a finer resolution. Due to the minimum distance constraint added to the 

random selection, the number of monitoring sites of each type from which a 

monitoring network could subsequently be selected comprised 54, 70 and 50 for 

roadside, HH and background sites, respectively (Figure 5.2). 

From these potential monitoring sites, the following three types of sampling 

networks were designed by randomly selecting different numbers of sites from each 

type of monitoring site.  

 Household density based network (HH network): randomly selecting from the 

HH sites only; 

 Proximity to road based network (Road network): randomly selecting equal 

numbers of roadside sites and background sites; 

 Mixed network: randomly selecting equal numbers of roadside sites and HH 

sites.  

Eleven different numbers of monitoring sites were tested for each type of network 

design ranging from 10 to 60 (in steps of N = 5). Random sampling of each number 

of monitoring sites was repeated 30 times to obtain a statistical distribution of a 

particular network configuration, resulting in 990 unique networks (3 network 

designs × 11 network sizes × 30 random replications). Table 5.1 summarises the 

configurations of all the networks examined. As a further network sensitivity test, 

different proportions of roadside and HH sites within the Mixed network were 

investigated to evaluate the effect of network composition in estimating residential 

NO2 concentration. Table 5.2 summarises the different network compositions 

investigated.  
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Table 5.1 Summary of the configurations of the different networks evaluated. Each 

combination of type and size of network comprised sites randomly selected from the pool of 

potential monitoring sites of that designation, whose locations are shown in Figure 5.2. The 

random selection for each combination was repeated 30 times to give 990 unique networks 

evaluated in total. 

Total 

number of 

monitoring 

sites in 

each 

network 

 

HH 

network 

Road network Mixed network 

High 

Household 

density 

sites 

Roadside 

sites 

Background 

sites 

Roadside 

sites 

High 

Household 

density 

sites 

10 10 5 5 5 5 

15 15 8 7 8 7 

20 20 10 10 10 10 

25 25 13 12 13 12 

30 30 15 15 15 15 

35 35 18 17 18 17 

40 40 20 20 20 20 

45 45 23 22 23 22 

50 50 25 25 25 25 

55 55 28 27 28 27 

60 60 30 30 30 30 

 

Table 5.2 Summary of the configurations of Mixed networks constructed from different 

proportions of roadside (Rd) and high household density (HH) sites. Each combination of 

type and size of the Mixed network comprised sites randomly selected from the pool of 

potential Rd and HH monitoring sites. The random selection for each combination was 

repeated 30 times to provide statistics on the variability associated with a particular network 

configuration. 

Percentage of 

Roadside sites 

in the mixed 

network (%) 

Network size = 20 Network size = 30 Network size = 40 

Rd sites HH 

sites 

Rd sites HH sites Rd sites HH sites 

0 0 20 0 30 0 40 

10 2 18 3 27 4 36 

30 6 14 9 21 12 28 

50 10 10 15 15 20 20 

70 14 6 21 9 28 12 

90 18 2 27 3 36 4 

100 20 0 0 30 40 0 
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The HH networks were designed in the anticipation that such networks would more 

accurately estimate concentrations at most residential addresses. However this 

sampling design might under-predict concentrations for a small fraction of 

population who live close to roads. The Road networks, being a mixture of roadside 

and background sites, should capture the greatest NO2 variation in the study area; 

this is the network site selection design used in many monitoring campaigns (Beelen 

et al., 2013). The Mixed networks of roadside and HH sites aimed to capture similar 

spatial variation of NO2 as the Road network, but also to represent where most of the 

population live. This sampling design resembles the concept of a formal 

methodology for locating monitoring sites (Kanaroglou et al., 2005), namely locating 

monitors where the expected pollution spatial variability and density of the study 

subjects are high. Unlike the formal methodology, however, the sampling design 

here does not require prior knowledge of the pollutant concentration surface, 

therefore the application of this sampling design is less restricted. 

5.2.3 Stage 3 – LUR modelling 

  Predictor variables 

A total of 15 predictor variables were selected for model development (Table 5.3). 

These variables were chosen based on prior knowledge that they may correlate with 

the input emissions in ADMS-Urban and their inclusion in previous LUR models for 

NO2 (Beelen et al., 2013). As shown in Figure 5.3, NOx emissions for each of the 1 

km2 grids in the study area are mostly dominated by road transport and combustion 

in commercial/residential sectors. The total road length, population counts and 

building plan area within a buffer radius are considered to reflect these emissions. In 

addition, in some areas, NOx emissions from ‘other’ transport (most likely resulting 

from railways) are also significant. Therefore total railway length within a buffer was 

also included as a predictor variable. Since the emissions apart from major roads and 

some minor roads were modelled as 1 km2 grid sources in ADMS-Urban, the buffer 

radii for the relevant predictor variables were chosen to be comparable with the 

resolution of input emissions, namely 0.5 and 1 km (Table 5.3). The rest of the 

predictor variables attempt to account for the increase in NO2 concentration close to 

road sources (Table 5.3).  
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Table 5.3 Predictor variables with buffer sizes and a priori defined directions of effect on 

NO2 concentration. 

Predictor 

variables 

Abbreviation Unit Buffer radius 

(m) 

Direction 

of effect 

Population counts POP n 500, 1000 + 

Building plan area BA m2 500, 1000 + 

Total major and 

minor road length 
RDLEN m 500, 1000 + 

Total railway 

length 
RAILLEN m 500, 1000 + 

Distance to the 

nearest major road 

(inverse distance 

and inverse 

distance squared) 

INVMJRDDIST, 

INVMJRDDIST2 
m-1, m-2 NA + 

Distance to the 

nearest road 

(inverse distance 

and inverse 

distance squared) 

INVDIST, 

INVDIST2 
m-1, m-2 NA + 

Traffic volume on 

nearest major road 
ALLTRAF veh.day-1 NA + 

Product of traffic 

intensity on 

nearest major road 

and inverse 

distance to the 

nearest major road 

and inverse 

distance squared 

TRAFDIST, 

TRAFDIST2 

veh.day-1 m-1, 

m-2 
NA + 
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Figure 5.3 Annual NOx emissions for the twenty-five 1 km× 1 km grids in the study area 

apportioned by source. The grid ID count goes left to right from top left to bottom right in 

Figure 5.2. 

 

  LUR model development and diagnostics 

The development of the LUR models followed the method used in the ESCAPE 

project (Beelen et al., 2013). The method is a supervised forward stepwise procedure 

which aims to maximise the adjusted R2 of the model while also ensuring that the 

included variables are associated with coefficients with pre-defined directions (Table 

5.3).  

First, all variables were individually regressed against the NO2 concentrations in that 

monitoring network. The variable with the highest adjusted R2
 and a coefficient with 

pre-defined direction formed the initial model. Second, the remaining variables were 
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successively added to the start model and the change in adjusted R2 recorded. The 

variable resulting in the highest increase in adjusted R2
 was added to the model if: (i) 

the increase in adjusted R2 was greater than 1%; and (ii) the coefficients of this 

variable and the variables already in the model conformed to the pre-defined 

direction. The selection process was continued until no variable fulfilled the above 

criteria. At the final step, variables with p-value greater than 0.1 were subsequently 

removed from the model starting from the variable with the highest p-value. 

Diagnostic tests were performed on the final model. Multicollinearity in the variables 

was checked using Variance Inflation Factor (VIF). Predictors with high VIF value 

(> 3) were excluded from the model one at a time starting with the variable with the 

highest VIF. Potential influential observations were investigated using Cook’s D 

value. An influential observation (indicated by a Cook’s D > 1) was generally caused 

by including a variable with extreme values or many zero values. A sensitivity test 

was therefore conducted on a model with an influential observation problem by 

fitting a new model without using the observation with Cook’s D > 1. If the change 

in the coefficient for that variable was large (over 100% of the coefficient derived 

from using all the observations), a new LUR model was developed following the 

above procedure but excluding that specific variable from the outset.  

For the LUR model validation, leave-one-out-cross-validation (LOOCV) was used to 

assess the generalisability of the LUR model. LOOCV uses the variables in the final 

model to develop a regression model using N – 1 observations (N = total number of 

observations in a monitoring network), which was then applied to the leave-out site. 

The procedure was repeated N times at which point all the predicted concentrations 

are compared with the observations to test the validity of the model within the 

dataset. Values of R2 and Root Mean Squared Error (RMSE) calculated from 

LOOCV were used to assess the LUR model’s capability to predict the 

concentrations within a monitoring network. 
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5.2.4 Stage 4 – Evaluation of LUR model’s capability at 
estimating simulated NO2 concentrations at residential 
addresses  

This aspect of LUR model evaluation compares the LUR modelled concentration at 

residential address with that modelled by ADMS-Urban. In essence this is similar to 

the concept of hold-out validation (HV) in a regression model validation, where the 

training data and testing data are completely independent. However, the validation 

dataset is based on ADMS-Urban output and is of constant size and much larger 

(7,445 residential addresses) than the traditional HV validations based on 

measurement data. In this context, the evaluation results not only reflect the 

performance of the LUR model but also indicate the relative effectiveness of the 

underlying monitoring sites used to build the LUR model. R2, RMSE and Mean Bias 

(MB) were used here to evaluate the LUR modelled concentration for all population 

addresses and for different concentration ranges.  

All GIS calculations were conducted in the Feature Manipulation Engine (FME) 

(Safe Software Inc., 2015). Statistical analyses were conducted in R software (R 

Core Team, 2015).  

 

 Results 

5.3.1 ADMS-Urban model validation 

ADMS-Urban was evaluated against measurements taken by both reference 

chemiluminescence analyser and passive diffusion tube (PDT). Comparison between 

the modelled annual average concentration of 2012 and the measurement by 

reference analyser at three monitoring stations in the study area showed that the bias 

was small at urban background (ED3) and minor roadside (ED7) (Table 5.4). The 

relatively large underestimation at major roadside (ED5) could be associated with the 

known issue of under-reporting of NOx from diesel vehicles (Carslaw and Rhys-

Tyler, 2013).  
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Table 5.4 Dispersion model versus measured annual average NO2 concentration in 2012. 

ED3, ED5 and ED7 are three real-time monitoring stations (shown in Figure 5.2) located at 

urban background, major roadside and minor roadside, respectively. 

 Modelled NO2 (µg m-3) Measured NO2 (µg m-3) Model bias 

ED3 24.8 24.1 2.8% 

ED5 35.4 39.1 9.5% 

ED7 27.5 28.1 2.0% 

 

A network of 30 PDT sampling sites covering a range of urban topographies (e.g. 

urban background, roadside, street canyon and traffic junction) within this study area 

were deployed weekly for 6 weeks during summer and winter periods of 2013/2014. 

Details of the site locations and characteristics can be found in (Lin et al., 2016). 

Seasonal average concentration (i.e. mean of 6 weekly average NO2 concentrations) 

was compared with ADMS-Urban output. Sites containing more than one week’s 

missing weekly NO2 were excluded from the model evaluation. Some PDTs were 

located next to bus stops or at road junctions, where additional emissions from buses 

and queueing traffic are considered to be great but not modelled in the current model 

setup. These sites therefore do not reflect the general predictive ability of the ADMS-

Urban model and were also excluded from the evaluation. Figure 5.4 shows the 

relationship between modelled and PDT-measured NO2 concentrations during 

different seasons. Overall the model underestimated NO2 concentrations compared to 

the PDT measurements. However the spatial variation in the measured NO2 was 

explained very well by the model (R2 = 73% and 77% for summer and winter, 

respectively) and was comparable to a previous ADMS model evaluation study 

(Dėdelė and Miškinytė, 2014). This indicates that although there is bias between 

modelled and PDT-measured NO2 concentration the spatial pattern predicted by the 

model is consistent with the measurements. The bias could result from both the 

errors in the model and the errors in the PDT measurements. Large discrepancy (55% 

for summer and 82% for winter) between PDT measurement and reference analyser 

was observed during the deployment period at one co-location site (Table 5.5). This 

partly explains the general underestimation in the modelled NO2 compared to the 

PDT measurements.  
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(a) 

 
(b) 

 

Figure 5.4 Comparison of modelled and measured NO2 concentration for summer (a) and 

winter (b) seasons. The cross markers denote the sites excluded from regression analysis due 

to special local effects as described in the text. Site 8 PDTs were co-located with reference 

analyser at ED3 marked by the red triangle. This site is also marked on Figure 5.2. The red 

and grey lines represent the linear fit and 95% confidence interval. The solid black line 

shows the 1:1 relationship. 
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Table 5.5 Comparison of seasonal average NO2 concentrations measured by reference 

analyser and passive diffusion tubes (PDTs). 

Summer seasonal mean (µg m-3) 

Reference 

measured 

PDT measured PDT overestimation 

19.9 30.9 55% 

Winter seasonal mean (µg m-3) 

16.8 30.5 82% 

 

Given the good agreement between the model and real-time analyser measurements 

at the urban background and minor roadside monitor locations, and the very good 

capture of spatial pattern indicated by the dense PDT network, it can be deduced that 

the dispersion model here fulfils the purpose of this study; that is, to simulate a 

realistic pollution surface of NO2 for the evaluation of the LUR model validity and of 

the monitoring sites used to build the LUR model. 

5.3.2 Evaluation of the LUR models constructed from 
different monitoring networks 

The distributions of NO2 concentrations at the locations of each type of monitoring 

site, and at all the population addresses, are summarised in Figure 5.5. Consistent 

with the expectations underpinning the network design principles, Figure 5.5 shows 

that a Road network (roadside sites + background sites) is likely to cover the whole 

range of concentration across the modelled domain, whereas a HH network (only HH 

sites) matches most closely the interquartile range of residential NO2 concentration.  
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Figure 5.5 Distributions of annual average NO2 concentrations for the different types of 

potential monitoring sites and for all the population addresses. The length of the box denotes 

the inter-quartile range (IQR). The upper and lower whisker extend to the highest and lowest 

concentrations that are still within 1.5 × IQR of the upper and lower quartile. The number of 

data points contributing to each summary is shown beneath each box plot. 

 

Figure 5.6 summarises the following statistics evaluating LUR model performance as 

a function of network design and size: (i) the percentage of variance explained within 

the data used to build the LUR model (LUR R2); (ii) the ability of the LUR model to 

predict the observed concentrations at the virtual monitoring sites (LOOCV R2 and 

LOOCV RMSE); and (iii) the effectiveness of the monitoring networks at predicting 

concentrations at all the residential addresses (Residential R2 and Residential 

RMSE). Figure 5.6 shows that LUR R2 and LOOCV R2 slightly decreased with 

increasing network size, while LOOCV RMSE slightly increased. In contrast, the 

effectiveness of the monitoring networks at predicting residential NO2 concentration 

improved with increasing network size as shown by the increasing Residential R2 and 

decreasing Residential RMSE (Figure 5.6). The improvement in the prediction of 

residential concentration (Residential R2 and RMSE) was, however, insignificant 

between LUR models constructed with >30 monitoring sites, as indicated by the 

overlap of inter-quartile range of the statistic calculated from 30 random repetition. 
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The fact that the LOOCV R2 was significantly higher than the Residential R2 across 

the network size for Road and Mixed networks (Figure 5.6a) suggests that using 

LOOCV to evaluate the LUR model’s predictive ability might be overly optimistic. 

The contrast between the performance of the LUR model and its ability to predict 

residential NO2 concentration was especially large for the Road network design 

(comprising a mixture of roadside and background sites), and for the other network 

designs when there were only 10 or 15 monitoring sites (Figure 5.6a). The most 

effective type of monitoring network was the Mixed network, as indicated by the 

highest Residential R2 limit and lowest Residential RMSE limit. The variability of 

Residential R2 and RMSE in the 30 random repetitions of each network configuration 

(whiskers in Figure 5.6) decreased with increasing network size, suggesting that 

larger number of monitoring sites better capture the actual relationship between 

predictor variables and NO2 concentration, hence less between-LUR-model 

variabilities. 
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(a) (b) 

  

Figure 5.6 Diagnostic statistics for LUR models as a function of network design and size for 

simulating network site concentrations (LUR R2 and LOOCV R2 shown in (a), LOOCV 

RMSE shown in (b)); and for predicting residential NO2 concentration (Residential R2 in (a); 

Residential RMSE in(b)). The points represent the median of the statistics for the 30 random 

repetitions of each network configuration. The whiskers extend to 25th and 75th percentiles of 

the statistics for the 30 random repetitions of each network configuration. The horizontal 

dashed lines denote the Residential R2 and RMSE if all the potential monitoring sites (70, 

104 and 124 for HH, Road and Mixed networks, respectively) are used for calculation. 

 

The performances of the LUR models in estimating residential concentration within 

three separate ranges of NO2 concentration are compared in Figure 5.7. At the low 

end of NO2 concentration (<20 µg m-3), RMSE was similar between Mixed and HH 

networks, but both HH and Road networks significantly overestimated (MB) the 

overall residential NO2 concentration. For NO2 concentrations between 20 and 30 µg 

m-3, the HH networks generally underestimated the residential concentration (Figure 

5.7b). The most distinctive difference between the three network designs was 

observed at the high end of NO2 concentration (> 30 µg m-3). For these NO2 

concentrations, the prediction errors (RMSE) and the extent of overall 

underestimation (MB) were significantly higher for the HH networks (Figure 5.7). 
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Mixed and Road networks performed similarly at high NO2 concentration, although 

they both still, on average, underestimated (Figure 5.7b). Similar to the statistics in 

Figure 5.6, the variability of estimation errors also reduced with increasing network 

size. Overall, considering the results shown in Figure 5.6 and Figure 5.7 together, the 

Mixed networks were most effective in estimating residential NO2 concentration 

when considering both all residential addresses together and subsets of addresses in 

different ranges of NO2 concentrations. 

 

(a) (b) 

  

Figure 5.7 Summary statistics of (a) RMSE and (b) MB in estimating residential 

concentration for different ranges in NO2 concentration. The whiskers extend to 25th and 75th 

percentiles of the statistics for the 30 repetitions of each network configuration. 

 

Figure 5.8 shows the results of the investigation of the different proportions of HH 

sites and roadside sites within the Mixed network on the LUR model predictions of 

residential NO2 concentrations. There was no significant trend in the R2 values across 

the different proportions of roadside sites in the Mixed network (Figure 5.8a). The 

prediction error (RMSE) increased with increasing proportions of roadside sites 
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(Figure 5.8b). The variability of the RMSE resulting from networks consisting only 

of roadside sites was the largest, whereas the LUR models derived from networks 

with more HH sites were relatively more precise (Figure 5.8b). 

 

(a) (b) 

  

Figure 5.8 Summary statistics of (a) R2 and (b) RMSE for Mixed networks containing 

different proportions of roadside sites in predicting residential NO2 concentration. The 

whiskers extend to 25th and 75th percentiles of the statistics for the 30 repetitions of each 

network configuration. 
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The performance of networks containing different percentages of roadside sites at 

different NO2 concentration ranges are compared in Figure 5.9. For NO2 

concentration <30 µg m-3, the RMSE increased with increasing percentage of 

roadside sites (Figure 5.9a) and the MB suggested overestimation for networks with 

high roadside site composition (Figure 5.9b). However, at NO2 concentration >30 µg 

m-3, the RMSE decreased with increasing percentage of roadside sites (Figure 5.9a) 

and higher roadside site composition led to reduced bias (Figure 5.9b). Figure 5.9a 

shows that LUR models constructed with only roadside sites resulted in high 

variabilities in the RMSE at NO2 concentration <30 µg m-3, whereas LUR models 

constructed with all HH sites resulted in high variabilities in the RMSE at high level 

of NO2 concentrations (>30 µg m-3). 

 

(a) (b) 

  

Figure 5.9 Summary statistics of (a) RMSE and (b) MB in estimating residential 

concentration in different NO2 concentration ranges for Mixed networks containing different 

proportions of roadside sites. The whiskers extend to 25th and 75th percentiles of the statistics 

for the 30 repetitions of each network configuration. 
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 Discussion 

In most LUR studies, LOOCV and/or hold-out validation (dividing monitoring sites 

into two independent sets for model development and validation) have been used to 

validate the LUR models. LOOCV tests how well the LUR model predicts the 

observation within the training dataset. Hold-out validation evaluates the predictive 

ability of the LUR model at locations that were not used in model development. The 

latter evaluation is of more interest for an LUR model; in practice, however, there is 

always a trade-off between building a more robust LUR model using a larger training 

dataset and giving more power to the validation using a larger validation dataset. A 

limited number of monitoring sites in many studies makes the division of the dataset 

even more difficult. Evaluation of LUR models on all potential exposure subjects has 

been unfeasible in reality. However, this can be achieved by using a dispersion 

model to provide a realistic spatial field of urban ambient NO2 concentration. 

Although there may be uncertainties in the dispersion-modelled concentrations, the 

nature of the errors should be similar at the virtual monitoring sites and at the 

residential addresses. 

As expected, more monitoring sites yielded better estimation of residential NO2 

concentration by the LUR model (Figure 5.6). For all three network types, however, 

the improvement in the estimation was insignificant for networks with more than ~30 

monitoring sites. Although the improvement was insignificant, higher number of 

monitoring sites increased the stability of the developed LUR models as shown by 

the very small inter-quartile range for the statistics at larger network sizes in Figure 

5.6 and Figure 5.7. As the number of monitoring sites increased, the number of 

unique variables appearing in the LUR models decreased (Table 5.6), indicating that 

a greater number of monitoring sites was more effective at eliminating insignificant 

predictor variables. This is consistent with the findings of Basagaña et al. (Basagaña 

et al., 2012) using actual NO2 measurements. In this work, it was found that ~30 

observations are sufficient to capture the spatial variation of the residential NO2 

concentrations in a dispersion modelled pollution surface of an urban area of 25 km2, 

but this number is expected to be larger in reality due to local effects (e.g. street 

canyon effect and traffic queueing) that were not modelled by ADMS-Urban and for 
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larger areas than simulated in this study. Basagaña et al. (2012) showed that the 

improvement of R2 in hold-out validation was minor after ~60 monitoring sites in a 

study area of 45.7 km2. In a national-wide study in the Netherlands, LUR models 

constructed with over ~90 monitoring sites seemed to result in similar prediction 

ability. Collectively these results suggest that a minimum optimal number of 

monitoring exists but depends on the actual study area. 

 

Table 5.6 Frequency of the predictor variables appearing in the final LUR models developed 

from Mixed networks with varying number of monitoring sties. Definitions of the variable 

abbreviations can be found in Table 5.3. NA indicates not appearing. 

Variable Name % Appearance  

(N = 20) 

% Appearance  

(N = 40) 

% Appearance  

(N = 60) 

BA1000 57 80 93 

INVMJRDDIST 40 70 77 

RAILLEN1000 50 60 57 

RAILLEN500 27 37 43 

TRAFDIST 20 13 20 

RDLEN1000 33 17 7 

RDLEN500 7 3 3 

TRAFDIST2 17 NA 3 

INVDIST 17 3 NA 

INVDIST2 7 NA NA 

INVMJRDDIST2 3 13 NA 

POP500 7 3 NA 

 

In the ESCAPE study (Beelen et al., 2013) and many other LUR studies (Aguilera et 

al., 2008; Madsen et al., 2007), urban background sites were selected in conjunction 

with roadside sites to build the LUR model. Urban background sites are usually 

defined with respect to the distance to road source or traffic activity within a certain 

buffer, irrespective of the distribution of the exposure study subjects, as was 

represented by the Road network design in this study. Figure 5.6a shows that LUR 

models derived from such networks were generally poorer at estimating NO2 

concentration at residential addresses than LUR models derived from networks with 

sites selected on the basis of household density. LUR models derived from Mixed 

networks were better at estimating residential NO2 concentration than those derived 
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from Road networks (Figure 5.6) and also gave comparable errors to Road network-

derived LUR models for estimating concentrations at the high end of the distribution 

(Figure 5.7). This observation emphasises the importance of characterising both the 

concentration and population distribution in the study area when designing a 

monitoring network. 

The composition of different types of measurement sites in most monitoring 

networks used to construct LUR models to date has been rather arbitrary. Some 

researchers (Cyrys et al., 2012) followed the principle of over-representing the 

roadside sites with respect to the fraction of addresses close to the roads, as this 

captures the spatial variation of NO2. In this work, LUR models constructed from 

networks containing 0 – 30% of roadside sites (compared with 0.2% of addresses 

within 10 m to the roads in the study area) showed lower estimation errors (Figure 

5.8b) compared to other network compositions for all three network sizes tested. 

When examining the estimated residential concentrations at different NO2 levels, 

LUR models constructed from networks containing 0 – 30% of roadside sites 

resulted in larger errors at high NO2 concentrations compared to networks containing 

higher proportions of roadside sites (Figure 5.9). The results here suggest that a 

greater proportion of roadside sites in a monitoring network yielded LUR models 

that better characterised the higher end of the residential NO2 concentration (Figure 

5.9) but also introduced greater prediction error considering the population as a 

whole (Figure 5.8), and vice versa for LUR models derived from networks 

containing a greater proportion of HH sites. No particular network composition was 

simultaneously able to provide an LUR model capable of good overall estimation of 

the residential NO2 concentrations and a good estimation of the higher end 

concentration. This illustrates the limitation of LUR models to capture the spatial 

contrast in residential NO2 concentration predicted by the dispersion model. 

As a common LUR model evaluation method, the LOOCV R2 statistic was found to 

overestimate the LUR predictive ability, consistent with the limited number of other 

studies on the same topic (Basagaña et al., 2012; Johnson et al., 2010; Wang et al., 

2012). Collectively, the results from these studies highlight the limited predictability 

of empirical NO2 LUR models that are highly dependent on the measurement sites. 
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Dispersion modelling, as demonstrated in this study, is a potentially useful tool to 

design an effective monitoring network and to better evaluate the LUR models in a 

way that is otherwise unfeasible in reality. 

It is acknowledged that the area of the domain in this study (25 km2) is smaller than 

in some LUR studies (Aguilera et al., 2008; Fernández-Somoano et al., 2011). This 

choice was mainly limited by the intensive computational requirement of the 

dispersion model to calculate concentration at the large number of residential 

addresses. Clustering addresses with similar characteristics would reduce the 

calculation time and facilitate dispersion modelling over a larger area. In this study, a 

dispersion model provided the NO2 concentrations for development of the LUR 

models and for evaluation of their predictive capabilities. Whilst accepting potential 

discrepancies between dispersion model and real measurements, this work shows that 

more comprehensive evaluation of LUR models and their underpinning monitoring 

networks is needed. Although the LUR models were only evaluated for NO2, results 

for the effect of number and type of monitoring sites on LUR model performance 

should be transferable to other traffic-related air pollutants such as black carbon and 

ultrafine particle number, given their mutual high correlations.  

 Conclusions 

Using a greater number of sites to build an LUR model improved its ability to 

estimate residential NO2 concentrations. However, improvement in LUR model 

predictive capability was not significant beyond a certain number of monitoring sites: 

the predictive capability achieved using ~30 monitoring sites was similar to that 

achieved using 70 – 100 monitoring sites, but a greater number of monitoring sites 

tended to decrease imprecision. LUR models constructed from a network design 

incorporating both high household density areas and roadside sites better 

characterised the full range of residential concentrations and specifically those with 

highest concentrations. It is therefore recommended to incorporate monitoring sites 

representing most of the study subjects when designing of a monitoring network 

aimed at studying the health effects of air pollutants. The more roadside sites 

included in a monitoring network used to construct LUR model, the larger the RMSE 
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for the estimation of residential NO2 concentrations, but the lower the estimation 

error for high NO2 concentrations. The fact that no particular proportion of roadside 

sites within the network design estimated well both the overall residential 

concentration and higher level of NO2 concentrations suggested a lack of spatial 

contrast in LUR modelled pollution surface. A dispersion model has been shown to 

be a useful tool for both designing a monitoring network for LUR models and for the 

evaluation of the LUR models. As a common LUR model evaluation method, the 

LOOCV R2 statistic was overly optimistic on describing the LUR predictive ability. 
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Chapter 6 Conclusions and future work 

 Conclusions 

The aims of this thesis were to explore various measurement and modelling 

techniques that have proven to be promising for improving current exposure 

assessment and to demonstrate their use in an urban setting. A number of portable air 

quality monitors were used to study the intra-urban variability of ultrafine particles 

(UFP), black carbon (BC) and PM2.5 through a series of short-term measurements. 

Three types of low-cost portable monitors were evaluated in detail against reference 

instruments. High resolution modelling of NO2 and O3 concentrations in Edinburgh 

was investigated using ADMS-Urban, making use of UK-wide available input 

datasets. ADMS-Urban was then used as the basis for the development and 

evaluation of land-use regression (LUR) modelling which is commonly used in 

health studies as the exposure assessment method. This chapter integrates and 

broadens out the key conclusions from each chapter to discuss the capabilities and 

limitations of the application of the various techniques investigated here on human 

exposure assessment.  

6.1.1 Implication for exposure assessment from 
measurement studies 

Any analytical measurement is subject to some sources of uncertainties that include 

variable response (i.e. variability between duplicate instruments or long-term drift of 

the same instrument), bias to the true value, interference from other variables and 

increasing uncertainty when operating close to limit of detection. It needs to be 

recognised that eliminating or controlling these and other potential sources of errors 

requires resource and effort. Due to the low-cost nature of emerging portable 

monitors, such resources and efforts will by design be limited. Therefore, it should 

be expected that lower-cost monitors are likely to have greater problems and be 

subject to greater uncertainties than the reference instruments that have high capital 

and on-going operational costs. A framework for testing and benchmarking the 
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commercial air-quality monitors against the most accurate monitors is essential to 

assure fair use of monitors of varying capabilities.  

This thesis uncovered some technical and practical challenges facing the evaluation 

of three types of commercial air quality monitors. These monitors include Aeroqual 

S500 NO2 and O3 monitors and RTI microPEM monitor for measuring PM2.5. None 

of the three monitor types yielded data immediately comparable to their respective 

reference instruments. Therefore, some form of calibration is required if the outputs 

from these monitors are intended to be compared with reference analyser 

concentrations. The relationship between all three monitor types and their respective 

reference instruments varies to different degrees with time, which lessens the 

confidence in applying the calibration equation derived from one deployment to 

another. Due to the uncertainty in deriving a stable calibration equation to correct the 

data from the monitors tested here, by definition they cannot be accepted as an 

“indicative” method (Spinelle et al., 2013). 

The portability of these monitors means that they can be used in a mobile fashion, 

which potentially adds to instability of the measurement by physically moving about. 

Strictly speaking, evaluation of the data from a portable monitor during a mobile 

measurement requires comparison with its respective reference instrument whilst on 

the move, which is, in practice, not feasible. Exposure studies utilising mobile 

measurements from portable monitors therefore should focus on demonstrating that 

the relative trend in a given set of mobile measurements is reliable and that the 

relationship between duplicate monitors is consistent. On this matter, the three types 

of monitors evaluated in this study are shown to be useful due to their generally good 

correlation with the reference measurements and relatively stable relationship 

between duplicate units. 

Short-term mobile measurements with portable monitors revealed high intra-urban 

variability of UFP number concentrations and BC concentrations. Both UFP and BC 

were highly correlated with traffic counts, which supports the use of traffic variables 

to explain UFP and BC concentrations in the land-use regression (LUR) models. 

However, PM2.5 mass concentration and particle number concentration in the 0.5 – 

2.5 µm size range were mainly driven by synoptic meteorological events that 
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governed the transport of regional sources. Local traffic also contributed to the PM2.5 

concentrations, but to a much lesser extent than long-range transport of secondary 

aerosols. This results in greater temporal variability but a more spatially 

homogeneous distribution of PM2.5 concentrations. Since LUR models are usually 

derived from a series of weekly or monthly average concentrations to represent the 

annual average concentration, it is especially important for PM2.5 that the 

representativeness of measurement periods selected to calculate the annual average is 

checked against available continuous monitoring data.  

Particle number concentration (UFPNC) and surface area correlated well with NOx at 

both background and roadside localities, but to a varying degree with NO2 because 

the partition of NO2 in NOx varies in relation to the distance to traffic source. 

Although both UFPNC and NOx can be a good proxy for traffic-related air pollution, 

the relationship between UFPNC and NOx varied depending on the particle size 

distribution. Despite the high traffic-dependency of UFPNC, the daily averages of 

UFPNC showed good correlation between an urban background site and a roadside 

site. This suggests that the measurement at the urban background site adequately 

represents the variation of daily averages of UFPNC at other urban environments, 

although it may misrepresent the absolute value at locations closer to road sources. 

This justifies the use of measurement from a fixed monitoring site in time-series 

studies even for a pollutant with high spatial variability such as UFP.  

6.1.2 Implications for exposure assessment from modelling 
studies 

ADMS-Urban modelled daily and monthly average NO2 and O3 concentrations 

showed good correlation with reference measurements using UK-wide available 

emission and meteorological data at monitoring sites that were not subject to specific 

local effects, such as queueing traffic or bus stops. Additional measures should be 

taken to incorporate such local effects for the assessment of local air pollution. Given 

the large contribution or regional/long-range transport of aerosols to local PM2.5 

concentrations, it is anticipated that ADMS-Urban, which only uses emissions 

locally from a study area, will not accurately model the temporal variation of PM2.5 
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concentrations. Modelling of PM2.5 particularly requires nesting a local dispersion 

model in a regional chemical transport model.  

The capability of ADMS-Urban at modelling the long-term spatial pattern of NO2 

was demonstrated in a comparison against data from a network of diffusion tube 

measurements. This capability indicates that the ADMS-Urban model can be an 

effective and economical tool for planning time consuming and costly real-world 

measurement ahead of time. An example was demonstrated by using ADMS-Urban 

to design an optimal monitoring network for the development of a LUR model. The 

results of this study highlighted that the design of a monitoring network should be 

tailored for the purpose of the LUR model, which can be for compliance purpose (i.e. 

to quantify pollutant concentrations at roadside where it is most likely to breach the 

air quality standards) or for exposure assessment purpose (i.e. to quantify pollutant 

concentrations at the available health data units). It was found that LUR models 

developed from a monitoring network consisting of monitoring sites located at 

densely populated areas and roadside sites resulted in better estimation of NO2 

concentrations at residential addresses. No particular proportion of roadside sites 

within the network design estimated well both the overall residential concentration 

and higher level of NO2 concentrations, suggesting a lack of spatial contrast in the 

LUR-modelled pollution surface. In addition, the development of LUR models is 

usually more costly because of the extensive measurement data required. Whilst the 

dispersion model can provide higher temporal resolution estimate of pollutant 

concentration than the LUR models and at a lower cost, it is still unlikely to provide 

detailed personal exposure assessment due to the large uncertainties in the emission 

data at the resolution relevant to human activity (both in spatial and temporal 

aspects). In comparison, personal exposure monitoring perhaps is still the best way to 

quantify individual’s exposure although it is limited by the practicality of obtaining 

measurements from a large enough cohort of individuals for statistical power in 

health studies. 
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 Future work 

Assessment of human exposure to ambient air pollution over the last decade has 

mainly been limited to assigning the outdoor concentration to the individuals’ home 

addresses. This largely ignores the role of human activity in the determination of a 

person’s exposure. The reason for the rather crude exposure assessment method in 

the past was mainly due to the lack of population mobility data and the imperfect 

high spatiotemporal resolution modelling. Future exposure assessment is moving 

towards a more dynamic approach than assigning exposure to the concentration at 

some fixed locations. Improving the exposure assessment not only relies on 

accurately quantifying the pollutant concentration at a given space and time but also 

on knowing when and where the interaction of air pollution with the person occurs.  

Attempts have been made to couple local-scale atmospheric dispersion models with 

regional-scale atmospheric chemical transport models (Beevers et al., 2012; Pepe et 

al., 2016; Smith et al., 2016). The coupled model is a realistic way to simulate 

detailed pollutant concentrations within densely populated cities and also to provide 

pollutant concentrations at peripheral areas of the city at a coarser resolution. In 

theory a coupled model also has advantage over a local dispersion model by 

accounting for the contribution from regional sources, which are especially important 

for modelling O3 and PM2.5 concentrations. A few exposure assessment studies that 

take account of individual travel behaviour have also been emerging in recent years 

(Dhondt et al., 2012; Smith et al., 2016). These latter studies have shown a 

significant difference between an exposure assessment assuming that people are 

always at their home address and an exposure assessment considering population 

mobility. Since people spend over 90% of their time indoors, an exposure model 

should also accurately estimate the outdoor to indoor transmission factors for a given 

air pollutant and take account of significant indoor sources (Smith et al., 2016). 

Validating an exposure model that incorporates an individual’s activity requires 

personal exposure monitoring. Considering the large amount of time people spend 

indoors and the challenges in making mobile measurements with the portable 

monitors discussed above, it suggests that a monitoring strategy designed with 
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predominately indoor measurements at participants’ homes and workplaces, 

complemented by targeted measurements in the transport micro-environment, may 

be preferable and more economical to attempting 24/7 exposure monitoring of study 

participants. 
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Appendix I 

Regression analysis of bivariate data 

A topic that is frequently mentioned in this thesis is the regression analysis of 

bivariate data. A common regression method, ordinary least squares (OLS) 

regression, is widely used as the default regression method, such as in Microsoft 

Excel. This method finds the best linear fit in the bivariate data by minimising the 

sum of squares of residuals in the y direction (Appendix I Figure 1a), assuming that 

there is error only in the y variable (Warton et al., 2006). This method is most 

suitable in the calibration context (e.g. determination of the relationship between 

concentration and absorbance using UV spectroscopy) where the error in the 

standards is anticipated to be much smaller than the error in the instrument response. 

However applying the OLS regression in data where there are comparable errors in 

both x and y data may result in underestimation of the slope and overestimation of 

the intercept (Davis, 2011).  

A method that takes into account the uncertainty in both sets of paired data is the 

major axis (MA) regression (also known as orthogonal regression). This method 

finds the best linear fit by minimising the sum of squares of residuals perpendicular 

to the line (Appendix I Figure 1b) (Warton et al., 2006). This method assumes that 

the uncertainty in the x and y variables is similar, which is reasonable when 

considering two variables on the same scales. This is also the method specified by 

EC (2010) for testing of equivalent methods for ambient air monitoring.  

Regression analysis for bivariate data with different scales is better conducted with 

standardised major axis (SMA) [also known as reduced major axis (RMA)] 

regression. The SMA regression standardises the data first, which ensures the 

variables in x and y directions are on the same scales. The MA regression is 

calculated on standardised data, then rescaled to the original axes (Warton et al., 

2006). The direction of the residual in SMA is measured as best fit line reflected 

about the y axis, as shown in Appendix I Figure 1c.  
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Appropriate method is used in this thesis for deriving linear relationship between 

bivariate datasets based on the suitability of each regression analysis method 

discussed above. For example the calibration between duplicate instruments or 

between portable air quality monitors and reference instruments is conducted with 

MA regression. The relationships between UFP and BC or NOx are investigated with 

RMA regression. 

 

 

Appendix I Figure 1 The direction in which residuals are measured is (A) vertical for linear 

regression (B) perpendicular to the line for major axis estimation (C) the fitted line reflected 

about the Y axis for standardised major axis estimation. Axes are plotted on the same scale. 

The broken lines indicate residuals, and the arrows represent the fitted and residual axes, 

which are useful for understanding methods of estimation and inference about these lines. 

(Source: Warton et al. (2006)) 

 

Evaluation statistics for pairwise data 

This section details the most relevant statistics used throughout the thesis for 

evaluation of the correlation and agreement between two sets of data. In the 

following equations, n represents the number of data points, Yi and Xi represent the 

ith pair of data values, 𝑌̅ and 𝑋̅ are the means of the two variables, and 𝜎𝑌 and 𝜎𝑋 are 

the standard deviations of the two variables. 
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Correlation coefficient (r) 

The Pearson correlation coefficient r measures the strength of the linear relationship 

between two variables and is defined as: 

𝑟 =  
1

𝑛 − 1
∑ (

𝑌𝑖  − 𝑌̅

𝜎𝑌
)

𝑛

𝑖=1

(
𝑋𝑖  −  𝑋̅

𝜎𝑋
) 

For a perfect positive linear relationship between two variables, r = 1. For a perfect 

negative linear relationship between two variables, r = 1. If there is no linear 

relationship between the variables, r = 0. 

Fraction of paired data within a factor of two (FAC2) 

FAC2 quantifies the fraction of paired data that satisfy: 

0.5 ≤  
𝑌𝑖

𝑋𝑖
≤ 2.0 

 

Mean Bias (MB) 

Mean bias provides an indication of the mean absolute difference between the two 

variables and is defined as: 

𝑀𝐵 =  
1

𝑛
∑ 𝑌𝑖  −  𝑋𝑖

𝑛

𝑖=1

 

Normalised Mean Bias (NMB) 

Normalised mean bias is useful to compare between two sets of paired data of 

different scales on a relative basis and is defined as: 

𝑁𝑀𝐵 =  
∑ 𝑌𝑖 −  𝑋𝑖

𝑛
𝑖=1

∑ 𝑋𝑖
𝑛
𝑖=1
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Root Mean Squared Error (RMSE) 

Root mean squared error quantifies overall how close the magnitudes of two 

variables are on a pairwise basis and is defined as: 

𝑅𝑀𝑆𝐸 = (
∑ (𝑌𝑖 −  𝑋𝑖)

2𝑛
𝑖=1

𝑛
)

1
2
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Appendix II 

Appendix II Table 1 Summary of regression coefficients (with 95% confidence interval) 

between Aeroqual O3 monitor and reference analyser. 

Period Intercept (95% confidence interval) Slope (95% confidence 

interval) 

P1 3.1 (0.68, 5.42) 1.22 (1.18, 1.26) 

P2 13.97 (11.42, 16.37) 1.13 (1.07, 1.19) 

P3 5.9 (3.5, 8.17) 1.07 (1.01, 1.13) 

P4 -12.29 (-14.98, -9.76) 1.23 (1.17, 1.29) 

P5 -12.2 (-13.38, -11.05) 1.1 (1.07, 1.12) 

P6 -20.76 (-22.46, -19.12) 1.24 (1.2, 1.28) 
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Appendix II Table 2 Summary of regression coefficients (with 95% confidence interval) 

between duplicate microPEMs. 

Period Intercept (95% 

confidence interval) 

Slope (95% 

confidence 

interval) 

RH-corrected microPEM 

P1.1 0.036 (-0.24,0.30) 1.23 (1.20, 1.27) 

P1.2 0.16 (0.025, 0.29) 1.15 (1.13, 1.18) 

P1.3 -2.64 (-2.78, -2.51) 1.19 (1.18, 1.21) 

P2.1 0.90 (0.71, 1.10) 1.11 (1.10, 1.13) 

P2.2 -0.43 (-0.94, 0.038) 1.28 (1.21, 1.36) 

P3.1 -3.94 (-4.57, -3.37) 1.42 (1.30, 1.55) 

P3.2 -2.23 (-2.52, -1.96) 1.22 (1.16, 1.29) 

P3.3 -0.37 (-0.47, -0.27) 1.04 (1.02, 1.06) 

RH-uncorrected microPEM 

P1.3 -2.74 (-2.88, -2.61) 1.2 (1.19, 1.22) 

P2.1 1.47 (1.25, 1.69) 0.99 (0.98, 1.01) 

P2.2 -0.69 (-1.31, -0.12) 1.4 (1.32, 1.49) 

P3.1 -3.97 (-4.95, -3.12) 1.21 (1.08, 1.36) 

P3.2 -1.57 (-1.75, -1.41) 0.93 (0.9, 0.96) 

P3.3 -0.62 (-0.71, -0.52) 1.15 (1.13, 1.16) 

RH measured by microPEMs 

P1.1 3.8 (2.73, 4.84) 0.94 (0.91, 0.96) 

P1.2 0.94 (0.29, 1.57) 1.01 (0.99, 1.02) 

P1.3 1.14 (0.74, 1.54) 1.03 (1.02, 1.04) 

P2.1 2.25 (1.22, 3.26) 0.79 (0.77, 0.81) 

P2.2 -3.25 (-6.04, -0.62) 1.27 (1.2, 1.33) 

P3.1 0.69 (0.26, 1.12) 0.93 (0.92, 0.94) 

P3.2 0.5 (-0.75, 1.72) 0.85 (0.83, 0.87) 

P3.3 1.12 (0.39, 1.83) 1.14 (1.12, 1.15) 
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Appendix II Table 3 Summary of regression coefficients (with 95% confidence interval) 

between microPEM 586N and TEOM-FDMS. 

Period Intercept (95% 

confidence interval) 

Slope (95% 

confidence 

interval) 

RH-corrected microPEM vs TEOM-FDMS 

P1.1 -1.12 (-2.8, 0.26) 1.1 (0.91, 1.33) 

P1.2 3.35 (2.08, 4.51) 0.24 (0.04, 0.45) 

P1.3 1.48 (1.1, 1.86) 0.78 (0.74, 0.82) 

P2.1 0.87 (0.01, 1.66) 1.32 (1.22, 1.42) 

P2.2 1.06 (0.08, 1.88) 0.96 (0.81, 1.14) 

P3.1 4 (3.49, 4.47) 0.27 (0.13, 0.42) 

P3.2 3.71 (3.08, 4.3) 0.23 (0.06, 0.41) 

P3.3 -0.22 (-0.65, 0.2) 0.93 (0.86, 0.99) 

RH-uncorrected microPEM vs TEOM-FDMS 

P1.3 1.04 (0.61, 1.44) 0.85 (0.82, 0.89) 

P2.1 -0.13 (-1.33, 0.93) 1.73 (1.59, 1.87) 

P2.2 0.64 (-0.49, 1.58) 1.12 (0.95, 1.33) 

P3.1 4.12 (2.69, 5.15) 0.66 (0.35, 1.09) 

P3.2 -9.23 (31.41, 0.58) 4.35 (1.51, -7.44) 

P3.3 -1.46 (-2.15, -0.84) 1.24 (1.14, 1.34) 
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