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Highlights: 

 For the first time, the comprehensive wave propagation analysis of 2D-FG rotating 

nanobeams with porosity is considered 

 

 General nonlocal theory is used to establish the governing equation which exhibits 

softening and hardening behavior 

 

 Reddy’s beam theory is applied to model the effects of the higher-order transverse shear 

strains on the wave propagation 

 

 The effects of material variation, porosity, and the length to thickness ratio on the wave 

propagation are discussed 
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Abstract 

This paper studies the wave propagation of two-dimensional functionally graded (2D-FG) 

porous rotating nano-beams for the first time. The rotating nano-beams are made of two 

different materials, and the material properties of the nano-beams alter both in the thickness and 

length directions. The general nonlocal theory (GNT) in conjunction with Reddy’s beam model 

are employed to formulate the size-dependent model. The GNT efficiently models the 

dispersions of acoustic waves when two independent nonlocal fields are modelled for the 

longitudinal and transverse acoustic waves. The governing equations of motion for the 2D-FG 

porous rotating nano-beams are established using Hamilton’s principle as a function of the axial 

force due to centrifugal stiffening and displacement.  The analytic solution is applied to obtain 

the results and solve the governing equations. The effect of the features of different parameters 

such as functionally graded power indexes, porosity, angular velocity, and material variation on 

the wave propagation characteristics of the rotating nano-beams are discussed in detail.   

 

Keywords: Wave Propagation; General Nonlocal Theory; Reddy’s Beam Model; 2D-FG Beam; 

Rotating Nano-Beam 
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1. Introduction 

Nanostructures and nanotechnologies have been progressively employed in 

nano-electro-mechanical systems (NEMS) owing to their exceptional mechanical and 

physical features, and the investigation of nanostructures has been the subject of much 

research. The efficiency of nano-beams is one of the key characteristics of nano/micro 

structures.  

Continuum mechanics (CM) has been shown to be a consistent and suitable 

method to explore the mechanical performance of structures at numerous length and 

time scales. Eringen’s nonlocal theory (ENT) is the widely employed CM theory that 

considers size effects with exceptional accuracy to simulate size-dependent structures. 

ENT has been extensively employed to study nanostructures.  Reddy [1] expressed the 

Euler–Bernoulli, Timoshenko, Reddy and Levinson beam models by applying ENT. Wang and 

Liew [2] studied the static behaviour of small-scale structures corresponding to nonlocal 

CM considering Euler–Bernoulli (EBT) and Timoshenko (TBT) beam models.  

Strain gradient theory (SGT) is a CM theory that is also used to study nano-

beams. Sourki and Hosseini [3] proposed the vibrational model of a nano-beam 

containing surface effects. Karami et al. [4] employed the nonlocal SGT model to 

investigate hydrothermal wave propagation in viscoelastic graphene and nano-plate 

porous heterogeneous materials under magnetic fields. She et al. [5] applied the 

nonlocal SGT model to study wave propagation in nano-tubes. Lu et al. [6, 7] used a 

new beam model to study the vibration and buckling of nano-beams. Moreover, Li et al. 

[8] examined the vibrational performances of nano-beam. 

Functionally graded materials (FGMs) are composed of metal and ceramic and 

have a continuous material variation from one surface to the other which is designed to 

attain desirable and feasible features. In recent decades, applications of FGMs have 

significantly increased and have been considered by many researchers. Specifically, the 

mechanical behaviour of micro/nano structures made of FGMs, such as bending, 

buckling, vibration, and wave propagation, have been assessed by many scientists. 

Ebrahimi and Barati considered the vibrational behaviour of functionally graded (FG) 

nano-beams [9] in thermal environments. Al-Basyouni et al. [10] employed modified 

couple stress (MCS) theory to consider the bending and vibrational behaviour of FG 

micro-beams. Mehralian and Beni [11] presented the vibrational behaviour of bimorph 
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functionally graded piezoelectric nano-shells based on nonlocal strain gradient theory. 

Also, Mehralian et al. [11, 12] illustrated buckling analysis of functionally graded 

piezoelectric cylindrical nano shells on the basis of a new modified couple stress theory. 

Zeighampour and Beni [13] studied the vibrational behaviour of axially 

functionally graded nano-beams resting on elastic foundations employing the strain 

gradient theory with the Euler–Bernoulli beam model.  

Ebrahimi et al. [14] investigated wave propagation in inhomogeneous FG nano-

beams via SGT and higher order beam models considering the effects of the thermal 

environment. Li et al. [15] applied nonlocal SGT and Euler-Bernoulli beam theory to 

investigate the wave propagation in FG nano-beams. Moreover Nejad and Hadi [16], 

studied the free vibration of FG Euler–Bernoulli nano-beams. Ma et al. [17] presented 

wave propagation in magneto-electro-elastic nano-beams based on Timoshenko beam 

theory. Khorshidi and Shariati [18] used MCS and Reddy’s beam theories to model 

bending wave propagation in nano-beams. Arefi and Zenkour [19, 20] considered  the 

wave propagation in FG and FG magneto-electro-elastic material nano-beams using the 

Timoshenko beam model. Zeighampour et al. [21] investigated the wave propagation 

problem in viscoelastic single walled carbon nanotubes. The considered simultaneous 

effects of the material length scale parameter and the nonlocal coefficient. They 

employed the nonlocal strain gradient and shell theory to establish the model. They also 

reported wave propagation analysis of composite laminated cylindrical micro-shells and 

considered the effect of the fibre angle in the layers on the phase velocity [22]. 

Various and extensive engineering applications of porous materials are due to 

their distinguishing properties such as low electrical and thermal conductivity, low 

specific weight and impressive energy dissipation capacity. Some important 

applications of porous materials are reported in the water and oil industries, biomedical 

materials, and aerospace, automotive, railway and marine structural components [23, 

24]. 

Renault et al. [25] used the frequency response functions of a free–free bending 

beam to estimate the visco-elastic parameters of damped porous materials. Barati [26, 

27] established a general bi-Helmholtz nonlocal strain gradient (SG) model to study 

wave propagation in porous nano-beams.  

The combination of porous materials with FGMs is a creative and effective topic 

that has attracted original research in recent years. According to the literature survey, 

there are some investigations on FG porous materials, although most current studies 
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consider only static behaviours such as bending or buckling analysis. One of the most 

important applications of FG porous materials is related to their outstanding capability 

in energy absorption [28, 29]. Hence, consideration of the dynamical response, such as 

the vibration and wave propagation behaviour, of FG porous materials should be 

investigated. 

Chen et al. [30] studied the free and forced vibrational behaviour of FG porous 

Timoshenko beams.  Shafiei et al. [31] presented the vibration analysis of 2D-FG 

nano/micro beams with two different kinds of porous materials. They used Eringen’s 

and the modified couple stress theories with the Timoshenko beam model. Mirjavadi et 

al. [32, 33] investigated the thermal vibrational behaviour of 2D-FG porous 

Timoshenko micro and nano beams using MCST and ENT. 

Jouneghani et al. [34] studied the bending behaviour of FG porous nano-beams 

under hygro-thermo-mechanical loading. They used Eringen’s theory to extract the 

model. Eltaher et al. [35] analysed the mechanical vibration and bending of FG porous 

nano-beams by applying nonlocal continuum theory and a modified porosity model. 

They used Euler beam theory to extract the model and the finite element method (FEM) 

to solve the problem. Liu et al. [36] presented the vibration analysis of FG porous 

magneto-electro-viscoelastic nano-beams on the basis of nonlocal Timoshenko beam 

theory and the Kelvin-Voigt viscoelastic model. She et al. [37] utilized nonlocal SG and 

Reddy’s beam theories to evaluate the wave propagation performance of FG porous 

nano-beams. More recently, Karami and Janghorban [38] reported the free vibration 

analysis of porous nanotubes using the Timoshenko beam model and nonlocal strain 

gradient theory. Ebrahimi-Nejad et al. [39] investigated the vibrational behaviour of 2D-

FG porous nano-beams subjected to hygro-thermo-mechanical loading on the basis of 

the Euler-Bernoulli beam model and Eringen’s theory. Recently, Ebrahimi et al. [40-42] 

performed an extensive study on the wave dispersion in FG porous nano-beams 

considering the coupling effects between density and Young’s modulus in porous 

materials, employing a new two-step porosity-dependent homogenization scheme and 

nonlocal strain gradient inhomogeneous nano-beams. 

Rotating nanostructures, including molecular bearings, nanogears, nanoturbines 

and multiple-gear systems, are the subject of much research. Their accurate design 

requires the examination of the vibration and wave propagation of nano-machines.  

Recently, Mohammadi et al. [43] studied the vibrational behaviour of a rotating nano-

beam embedded in a Pasternak elastic medium with thermal effects.  Ebrahimi and 
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Shafei [44] used Eringen’s nonlocal theory to study the vibrational behaviour of rotating 

FG nano-beams. Ebrahimi and Haghi [45] studied the wave propagation performance of 

rotating FG temperature-dependent nanoscale beams under thermal loading based on a 

nonlocal SG stress field.  

Based on this literature review, the investigation of wave propagation in FG 

nano-beams and rotating nano-beams have only considered transverse and longitudinal 

waves and have used Eringen’s nonlocal theory (ENT), strain gradient (SG) theory, and 

couple stress (CS) theory. Moreover, there are no studies on the wave propagation in bi-

directional functionally graded (2D-FG) porous nano-beams and rotating nano-beams 

and GNT.  

Recently, Shaat [46, 47] has revealed that ENT has some serious limitations for 

materials with different nonlocal transverse and longitudinal behaviours. Hence, the 

GNT was proposed by Shaat [46, 47]. The GNT is established on the basis of the 

difference between the shear and normal strains in the nonlocal fields. The transverse 

and the longitudinal acoustic dispersions of materials can be considered simultaneously 

in GNT. Also, GNT can model the effect of Poisson’s ratio on the mechanical 

behaviour of different materials [48]. 

The literature review also highlights that there are no studies on the wave 

propagation behaviour of a rotating nano-beam made of two dimensional functionally 

graded (2D-FG) porous materials. Therefore, in this paper, the wave propagation 

behaviour of 2D-FG rotating nano-beams with porosities is considered on the basis of 

GNT and Reddy’s beam model for the first time. For this purpose, GNT is used to 

model the interatomic interactions. The 2D-FG porous material model is considered due 

to the porosity of the material which includes the effects of FG power indexes along the 

thickness (nz) and the length (nx) directions. An analytical approach is used to solve the 

governing equation and to extract the results. Finally, a parametric study is performed to 

investigate the effects of the properties of many parameters, such as porosity and 2D-

FG power indexes, on the wave propagation in 2D rotating nano-beams. 

 

2. Governing Equations 

2.1. 2D-FG Materials 

The 2D-FG rotating nano-beam consists of ceramic and metal with changing material 

volume fraction along the z and x directions, as shown in Fig. 1, where the material 
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configuration alters along both the axis and the thickness directions. Therefore, the 

mechanical properties of the nano-beam, such as Lame’s constants, alter along 

longitudinal (x-axis) and thickness (z-axis) directions.  

 

 

Fig. 1. Schematic of the material distribution 

 

Although the porous 2D-FG nano-beam can be assumed to have even and 

uneven porosity distributions across thickness of the beam, in present study only even 

porosity distributions is considered. Lame’s constants and the mass density for the even 

distribution of porosities inside the material are given by [31]: 
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The ( )  and ( )  subscripts denote the metal and ceramic properties respectively.  

   and    denote the power law indexes and   is the porosity volume fraction. The 

material of the beam is 100% ceramic when    ,      and      . 

The displacement field at any point of the beam can be written on the basis of 

the third-order shear deformation beam theory (Reddy) as: 
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where   ,    and   represent the longitudinal displacement, transverse displacement 

and rotation of the cross section at x, respectively. The strains of the Reddy beam model 

are defined as follows: 
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Hamilton’s principle is employed to establish the governing equations and is 

given by: 

 ∫  (     )    
 

 
 (4) 

where   and   are the kinetic and strain energies, respectively. Also,   indicates the 

work done by the external forces. Now, the variation of strain energy can be computed 

as: 
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where  ̃    
 

    ,   ̃    
 

     and  ( ) is the external applied axial force due 

to the rotation and   and   indicate the transverse and axial distributed loads. The axial 

force due to centrifugal stiffening due to rotation is given as 
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where   is the mass density, A is the beam cross-section area and   is the rotation 

speed. The variation of the virtual kinetic energy for the homogeneous nano-beam can 

be expressed as:  
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where                 and    are the mass inertias and calculated as: 
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Substituting Eqs. (6), (8) and (10) into Eq. (4) and setting the coefficients of 

   ,    and    to zero, the subsequent Euler–Lagrange equation can be obtained as:  
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2.2. Review of General Nonlocal Theory 

A novel nonlocal theory named GNT was proposed by Shaat et al.  [46, 47] which was 

developed on the basis of the difference between the shear and normal strains in the 

nonlocal fields. They introduced new insights in the applicability of Eringen’s nonlocal 

theory. They showed that conventional ENT cannot simultaneously fit shear 

(transverse) and longitudinal acoustic dispersion in materials. Therefore, they developed 

the general nonlocal theory that compensate  o  e  ehtot ohe eseh sro  s conventional 

ENT and can reflect both hardening and softening behaviours of the material. 

Accordingly, the best theory to illustrate the wave propagation behaviour of materials in 

this study is GNT. 

 

Unlike Eringen’s nonlocal theory (ENT), the general nonlocal theory (GNT) utilizes 

two different nonlocal factors. Based on the GNT [47], the nonlocal stress field at each 

point in the Equilibrium equation can be expressed in the following form: 

     (   )    (   )   
    (   )

   
 (13) 

with the constitutive equations: 
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    denotes the nonlocal stress field that is expressed in terms of the two different 

nonlocal factors,   (| 
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(         ) defines the 

nonlocal strain field and    is the displacement field.    is the body force,   is the mass 

density, and   is the time.  

According to the GNT, to create the differential form of the constitutive 

equations of the nonlocal theory, two differential operators are applied as follows [47]: 
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where   is the Dirac-delta, and    and    are differential operators, for example 
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 ), where the Laplacian gradient operator is 

   
  

   , and    and    denote the constant nonlocal coefficients which are dependent 

on the lattice constant. 

Accordingly, the differential equation for the general nonlocal model is 

represented as [47]: 
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(     
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where   and   are Lame’s constants of the material. According to the constitutive 

equations represented in Eq. (16), the transverse and longitudinal acoustic dispersions of 

the material can be considered simultaneously in GNT and it demonstrates the 

superiority of GNT versus Eringen’s nonlocal theory [46, 47]. GNT can also reflect 

both the softening and hardening performances of materials due to the explanation of 

the nonlocal parameters. Here, the GNT is used to investigate the effects of the long-

range interatomic interactions on the dispersion of acoustic waves of porous rotating 

nano-beams.  

According to the GNT, the following constitutive relations are attained: 
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3. Solution Procedure 

The analytical solution of governing equations for wave propagation in the 2D-FG 

nano-beam is established in this section. Using the harmonic method, the displacement 

fields for the wave propagation is defined as: 

0

0

0

( , ) exp[ ( )]

( , ) exp[ ( )]

( , ) exp[ ( )]

u x t u i Kx t

x t i Kx t

w x t w i Kx t



  



   
   

    
      

                    (27) 

where, K  and   indicate the wave number and circular frequency, respectively. 

0 0 0( , , )u w  are the wave amplitudes and 1i   . Because the present study 

considers wave propagation in unbounded elastic domains, it is not necessary to 

consider the boundary conditions [22, 49-53].  

By inserting Eq. (27) and its derivatives into Eqs. (22), (24) and (26), the 

characteristic equation is extracted as: 

2( ) 0 K M X                                             (28) 
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where 
0 0 0( , , )u wX  is the eigenvector. M  and K  are the mass and stiffness 

matrices, respectively, and include complex terms. Also, the phase velocity of waves 

can be easily computed by /c K . 

It should be noted that the material properties change along beam, and here the 

Chebyshev–Gauss–Lobatto distribution is employed to discretize the length of the nano-

beam, as  

1 1
1 cos( ) 1,2,...,

2 1
N

N
x N

 
    

       (29) 

where Nx is the x coordinate of the 
thN  node along the nano-beam. 27   is the 

number of discrete nodes assumed along the x direction of the nano-beam (see Fig. 2). It 

should be noted that this discretization is only used to specify the material properties; 

the choice of  only depends on material distribution, and does not affect the numerical 

convergence of the results. Hence Eq. (28) is used to calculate the eigenvalues at only 

one point with its specific mechanical properties. The modelled nano-beam is assumed 

to have a square cross section ( )h b . 

 

Fig. 2. Domain discretization by the Chebyshev–Gauss–Lobatto distribution along 

the nano-beam 
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4. Numerical Results and Discussions 

In this section, the numerical results are extracted and discussed for the wave 

propagation of the rotating 2D-FG nano-beam by considering the variation of five 

parameters, namely , , , , /nx nz L h  . Also, the effects of the power law indexes, 

,nx nz , the porosity volume fraction  , the dimensionless beam rotating velocity   

and the ratio of length to thickness of the nano-beam, /L h , are shown. For this 

purpose, we fix four out of the five parameters at each step, and change the remaining 

parameter to investigate the effects. The material properties of the 2D nano-beam are 

given in Table 1. 

 

Table 1: Material properties of the FGM [47] 
 

Material ( )GPa  ( )GPa  2

1 ( )nm  2

1 ( )nm  ( )a nm  3( / )kg m  

Copper (Cu) 25 78 20.17a  20.03a  0.3597 8960 

Barium Oxide (BaO) 48.1 38.8 20.15a  20.045a  0.5537 5720 

 

 

4.1. Model Validation 

To validate the present model and to verify of the accuracy of results, the 

numerical results from the present model with the materials of Ref. [54] are compared 

with the results in Ref. [54]. Thus, we reduced our 2D-FG model to a 1D-FG nano-

beam by setting 0nx  . Also, by assuming 1 2    , the GNT is reduced to 

Eringen’s nonlocal theory which was used in Ref. [54]. Table 2 gives the results for 

various values of nonlocal parameter .  The comparison of the results in Table 2 shows 

a good agreement between the results of the present method and the results of Ref. [54] 

and verifies the accuracy of our model. 

 

Table 2: Comparison of the frequency for FG nano-beam 1; 1( / )zn Grad s    

1 2     
11 ( )K nm   110 ( )K nm   

Ref. [54] Present Ref. [54] Present 

1 ( )nm  0.5371 0.5304 0.7546 0.7487 

2 ( )nm  0.4298 0.4253 0.5382 0.5342 

3 ( )nm  0.3978 0.3951 0.4138 0.4102 
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4.2. The Effects of      and      

The effects of the power law indexes,    and   , on the frequency for the longitudinal 

(LA), transverse (TA) and torsional (TO) wave propagation are illustrated in Figs. 3, 4 

and 5, respectively.  Based on the variation of   , each of the figures includes 2 

different types of graphs. In the first type, which is denoted by the caption (…-1),    

varies from 0.1 to 1 in 4 steps. In the second type, with caption (…-2), the results are 

presented for     , where    varies from 1.25 to 2 in 4 steps. On the other hand, for 

each subfigure the values of    is varied from 0 to 5 in 9 steps, denoted by captions (a-

…) to (i-…). Therefore, each of Figs. 3, 4 and 5 includes 18 separate graphs. Figures 3, 

4 and 5 are plotted for 23N   and / 100, 0, 0L h     .  

Figure 3 shows the variation of the LA wave frequency versus the wave number. 

It can be easily observed that the variation of    affects the frequency and the variation 

of    affects both the amplitude and the trend of the frequency graphs.  

 

   

(a-1) (b-1) (c-1) 

 

   

(a-2) (b-2) (c-2) 
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(d-1) (e-1) (f-1) 

 

   

(d-2) (e-2) (f-2) 

 

   

(g-1) (h-1) (i-1) 

 

   

(g-2) (h-2) (i-2) 

 

Fig. 3: The effects of     and     on the longitudinal wave propagation 

( 23; / 100; 0; 0)N L h      
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For constant   , the LA frequency increases with increasing   . However, the 

effect of the variation of    is more complicated. For    from 0 to 1.2 the LA frequency 

graph contains two parts, before and after the convergence point, where the frequency is 

zero. Increasing    from 0 to 1.2 not only moves the convergence point to the left (i.e. a 

lower wave number) but also decreases the frequency for the wave numbers lower than 

the convergence point. However, the frequency for wave numbers higher than the 

convergence point increases with increasing   . For values of    higher than 1.2, the 

convergence point vanishes and the frequency increases with increasing   . 

 
 

Figures 4 and 5 show the relation of the TA and TO frequencies versus the wave 

number (K) for  various    and   . Similar to Fig. 3, the TA and TO frequencies 

increase with increasing   . However, the variation with respect to    is opposite for a 

given value of    which is described below. 

 

   

(a-1) (b-1) (c-1) 

 

   

(a-2) (b-2) (c-2) 

 

                  



 
20 

   

(d-1) (e-1) (f-1) 

 

   

(d-2) (e-2) (f-2) 

 

   

(g-1) (h-1) (i-1) 

 

   

(g-2) (h-2) (i-2) 

Fig. 4: The effects of     and     on the transverse wave propagation 

( 23; / 100; 0; 0)N L h      
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In Fig. 4, for      and       the frequency increases with increasing wave 

number. But, for      and      the graphs an increasing and then descending trend 

with increasing wave number from 0 to 10 (nm)
-1

. Although, for some cases, such as 

Figs. (4)-(h-1) and (4)-(i-1), this trend is not observed for 0 10K  (nm)
-1

. Also, for 

     increasing    from 0 to 1 decreases the frequency and increasing    above 1 

increases the frequency. 

On the other hand, in Fig. 4 and for       the graphs include 2 parts; before 

and after the 2nd zero frequency. The second zero frequency can be seen clearly in 

figures (4)-(a-2) and (4)-(i-2) and occur for 2K  (nm)
-1

. Also, increasing    decreases 

the frequency for the first part and increases the frequency for the second part. 

 

   

(a-1) (b-1) (c-1) 

 

   

(a-2) (b-2) (c-2) 
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(d-1) (e-1) (f-1) 

 

   

(d-2) (e-2) (f-2) 

 

   

(g-1) (h-1) (i-1) 

 

   

(g-2) (h-2) (i-2) 

 

Fig. 5: The effects of     and     on the torsional wave propagation 

( 23; / 100; 0; 0)N L h      

 

Figure 5 shows that the TO frequency generally decreases as    increases. Also, 

for all    and       the trend of graphs is strictly increasing frequency with wave 

number. But, for     , illustrated in Figs. (5)-(g-1) to (5)-(i-2), the trend of the graphs 

changes and a local maximum frequency occurs. The value of this maximum increases 

with increasing    above 2. 
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Clearly from Figs. 3 to 5, the TA, LA and TO frequencies are strongly affected 

by the variation of    and   , which motivates their investigation in this current 

research. 

 

4.3. The Effects of     

Figure 6 shows the effects of the dimensionless beam rotating velocity,  , on the 

frequency of TA wave propagation. The dimensionless beam rotating velocity changes 

from 4 to 16 in 4 steps, and is defined as: 

2 c

c

A
L

E I


           (36) 

where , , ,L A I  are the rotating velocity, length, area and second moment of area for 

nano-beam, respectively. Also, 
c  is the mass density and 

cE  is the Young's modulus 

for the pure ceramic part of the FGM.  

 

   

(a-1) (a-2) (a-3) 

 

   

(b-1) (b-2) (b-3) 
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(c-1) (c-2) (c-3) 

 

Fig. 6: The effects of   on the transverse wave propagation 

( 8; / 100; 0)N L h     

 

Figure 6 is plotted for the 8th node ( 8N  ) on the nano-beam for different 

values of , 0.8,1.5,5x zn n  . Thus, 9 separate graphs are given. Clearly, increasing the 

dimensionless beam rotating velocity, increases the TA frequency but the trend of 

graphs is significantly affected by    and   . Increasing    makes the graphs smoother 

and increasing    increases the frequency for the same wave number. 

Figures 7 and 8 show the effects of the dimensionless beam rotating velocity   

on the frequency of the TO and LA wave propagation, respectively. In Fig. 7 the LA 

frequency versus wave number is shown for 2 cases, 0.8x zn n   and 5x zn n  , and 

for 3 different nodes, 8,14,23N  . Clearly, the variation of   does not have any 

significant effect on the frequency of the LA and TO wave propagation. 

 

   

(a-1) (a-2) (a-3) 

Fig. 7: The effects of   on the torsional wave propagation ( / 100; 0)L h    
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(a-1) (a-2) (a-3) 

 

   

(b-1) (b-2) (b-3) 

Fig. 8: The effects of   on the longitudinal wave propagation ( / 100; 0)L h    

 

4.4. The Effects of     

Figure 9 shows the effects of the porosity volume fraction   on the LA, TA an TO 

frequencies of wave propagation. The graphs are given for 1x zn n  , 0  and 3 

different nodes along the nano-beam ( 8,14,23N  ). The changes of    from 0 to 0.4 has 

considerable effects on the frequencies for all of the wave propagation types. Although, 

the quality and intensity of these effects is also associated with the node position along 

the nano-beam. 

 

   

(a-1) (a-2) (a-3) 
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(b-1) (b-2) (b-3) 

 

   

(c-1) (c-2) (c-3) 

Fig. 9: The effects of   on the LA, TA and TO frequencies ( / 100)L h   

 

4.5. The Effects of      

The effects of the ratio of length to thickness for the nano-beam (L/h) on the LA, TA 

and TO frequencies of wave propagation are shown in Fig. 10. The results are plotted 

for the 14th node with 1x zn n   , 0  and 0  . Considering the results, the 

variation of the ratio L/h has opposite effects on the LA and TA frequencies, and has no 

significant effect on the TO frequency. Increasing L/h increases the LA frequency but 

decreases the TA frequency. Also, for / 20L h   the TO frequency decreases when 

L/h increases for large values of wave number but for / 20L h   there are no 

significant changes. 
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(a-1) (a-2) (a-3) 

Fig. 10: The Effects of /L h  on the LA, TA and TO frequencies 

 

4.6. Wave Propagation in a 2D Nano-Beam 

Figure 11 shows the LA, TA and TO frequencies for wave propagation versus the wave 

number at 4 different nodes along the nano beam, i.e. the 8th, 14th, 20th and 26th nodes 

along the nano-beam are selected. The results are extracted for 1; 1.5; 0x zn n     and 

2 cases of rotational speed, 0  and 20 . For all situations, the frequencies 

increase when the number of the node increases. This is confirmed by the results 

presented in Fig. 12. 

 

   

(a-1) (a-2) (a-3) 

 

   

(b-1) (b-2) (b-3) 

 

Fig. 11: The variation of the LA, TA and TO frequencies at different node locations 
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The variation of the LA, TA and TO frequencies along the nano-beam is 

displayed in Fig. 12. The results are plotted for different nodes along the nano-beam 

from 1 to 27 based on 4 different values of wave number from 15( )K nm   to 

110( )K nm  . Also, the graphs in Fig. 12 are drawn for 3 different values of    and   , 

that is 0.2; 0.5x zn n  , 1; 1.5x zn n   and 2; 5x zn n  . Due to the material property 

changes along the nano-beam, all types of waves propagation frequencies vary along the 

nano-beam. 

 

   

(a-1) (a-2) (a-3) 

 

   

(b-1) (b-2) (b-3) 

 

   

(c-1) (c-2) (c-3) 
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Fig. 12: The variation of the LA, TA and TO frequencies along the nano-beam for different 

wave numbers 

4.7. The effect of size dependency 

Since, in 2D-FG nano beams, the material configuration alters along both the 

longitudinal and the thickness directions, the nonlocal coefficients    and    also alter 

along longitudinal (x-axis) and thickness (z-axis) directions, so that 
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where the ( )  and ( )  subscripts denote the metal and ceramic properties 

respectively.  

The effect of size dependency in a pure ceramic is shown by setting         and 

employing GNT. Some results are now extracted and discussed. 

   
(a-1) (b-1) (c-1) 

   
(a-2) (b-2) (c-2) 

Fig. 13: The effect of constant nonlocal coefficients on the LA, TA and TO frequencies at L/h=10  

 

Figure 13 illustrates the effect of the size dependency on predicted frequencies at 

L/h=10. To extract the results in a pure ceramic, we changed the values of    and    in 
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two different ways. First, we assumed that the value of    was constant and established 

the results by changing the value of   . The results are plotted in Fig. 13 (a-1), (b-1) and 

(c-1). Then, and for the same ratio of    to   , we fixed the value of    and changed the 

values of    to give the results plotted in Fig. 13 (a-2), (b-2) and (c-2). 

   
(a-1) (b-1) (c-1) 

   
(a-2) (b-2) (c-2) 

Fig. 14: The effect of constant nonlocal coefficients on the LA, TA and TO frequencies at L/h=50 

Also, the results are reported in Fig. 14 for L/h=50. The results show that, except for the 

LA frequencies with constant    (Figs. 13 (a-1) and 14 (a-1)), the frequencies decrease 

with an increase in the ratio of    to   . In contrast the LA frequencies increase with an 

increase in      . Although, for high values of L/h the variation of       has no 

significant effect on the LA frequencies. 

It should be noted that for         the GNT reduces to conventional ENT. Hence, 

employing the conventional ENT to materials with different    and   , cannot properly 

estimate the wave propagation behaviour of materials and this is the main advantage of 

GNT. 
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5. Conclusions:  

In this research paper, the wave propagation in two dimensional functionally graded 

rotating nano-beams is studied using a general nonlocal higher-order beam model. To 

this end, the dispersion relations for each wave mode are derived by solving the three 

degrees-of-freedom wave characteristic equation of the nano-beam. To illustrate the 

dispersive nature of the propagating waves, the GNT is used which includes two length-

scale parameters in the constitutive equations of the beam. Furthermore, to model the 

effects of the transverse shear strain on the wave propagation features, the beam is 

modelled using third-order shear deformation theory. The investigation shows a 

remarkable phenomenological influence of nonlocal fields in 2D-FG rotating nano-

beam on their wave propagation. Thus, the following main conclusions can be derived: 

1. The variation of    affects the LA frequency and the variation of    affects 

both the amplitude and the trend of LA frequency graphs. 

2. The TA and TO frequencies increase with increasing   . However, the 

variation of    has the opposite effect on the TA and TO frequencies based on the value 

of    which has been discussed extensively in results section. 

3. With increasing dimensionless beam rotating velocity, the TA frequency 

increases but the trend of graphs is influenced by    and   . Nevertheless, the variation 

of the dimensionless beam rotating velocity has no significant effect on the frequency of 

the LA and TO wave propagation. 

4. The change in the porosity significantly affects all types of frequencies for 

wave propagation. Although, the quality and intensity of these significant effects is 

associated with the node position along the nano-beam. 

5. The variation of the length to thickness ratio has the opposite effect on the LA 

and TA frequencies. However, it has no significant effect on the TO frequency. 
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