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ABSTRACT
In a recent paper, we derived expressions for determining the rate-dependent response spectra directly from parallel superposition rheometry
data for the case of a certain Lodge-type integral constitutive model. It was shown that, within the confines of linear Yamamoto perturbation
theory, the corresponding parallel superposition moduli satisfy the classical Kramers-Kronig relations. Special bases were presented to convert
parallel superposition moduli to orthogonal superposition moduli. In the current paper, we obtain similar results for the integral models
of Wagner I and, more generally, K-BKZ. These results facilitate the physical interpretation of parallel superposition moduli and direct
model-based comparison of parallel and orthogonal superposition moduli in the study of weak nonlinear response.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5133885., s

I. INTRODUCTION
Superposition rheometry is a technique for exploring the non-

linear rheological properties of complex fluids,1,2 which involves
superposition of a small amplitude oscillatory perturbation, of
amplitude γ0 and angular frequency ω, upon a unidirectional flow
with a constant strain-rate γ̇. Two kinds of perturbations may be
applied: the first in parallel with the bulk flow and termed par-
allel superposition rheometry (PSR) and the second orthogonal
to the bulk flow and termed orthogonal superposition rheometry
(OSR). Following Yamamoto,3 we express the kinematics of the two
techniques as follows:

x1(t) = x1(t′) + [γ̇(t − t′) + a(eiωt − eiωt
′
)]x2(t′),

x2(t) = x2(t′),

x3(t) = x3(t′) + b(eiωt − eiωt
′
)x2(t′),

(1)

where a = γ0 and b = 0 for PSR, while for OSR a = 0 and b = γ0. The
oscillatory parts of the stress and strain waveforms generated by the
kinematics may be used to define a superposition complex modulus
G∗
∥
(ω, γ̇) or G∗�(ω, γ̇) (in PSR and OSR, respectively). The subscripts

∥ and � serve to distinguish the superposition moduli from each
other and the linear complex modulus G∗(ω).4

In linear viscoelasticity, the complex modulus may be written
in terms of a memory kernel, m(s), where s = t − t′ denotes the time
lapse, or in terms of a relaxation spectrum, H(τ), where τ denotes
the relaxation time. Thus,

G∗(ω) = ∫
∞

0
m(s)(1 − e−iωs)ds (2)

or

G∗(ω) = ∫
∞

0

iωτ
1 + iωτ

H(τ)dτ
τ

, (3)

where G∗(ω) = G′(ω) + iG′′(ω). The relaxation spectrum, H(τ), is
the inverse Laplace transform of the memory kernel, with the con-
vention that the forward Laplace transform is taken with respect to
the reciprocal relaxation time τ−1, i.e.,

H(τ) = L−1[m(s)](τ), m(s) = −∫
∞

0
H(τ)e−sτ

−1

d(τ−1). (4)

Bernstein’s theorem5 tells us that the spectrum H(τ) is non-negative
if and only if the memory kernel is completely monotonic, i.e., as
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we go back in time (s increasing), m(s) is monotonically decreas-
ing, its first derivative ṁ(s) is monotonically increasing, its second
derivative m̈(s) is monotonically decreasing, and so on, in alternat-
ing mode, for all higher derivatives. The linear moduli G′(ω) and
G′′(ω) are non-negative, with G′(ω) being a monotonically increas-
ing function of frequency. The two moduli are not independent and
are related via the Kramers-Kronig relations.6,7

In this paper, we shall be concerned with the response spectra
in both OSR and PSR. For the incompressible K-BKZ constitutive
model,8,9 these spectra are analogous to the linear relaxation spec-
trum in Eq. (4) in a weakly nonlinear setting. In OSR, there is a
well-defined memory kernel which takes on a functional depen-
dence on shear-rates γ̇, as well as time. This functional depen-
dence is expressed in terms of invariants of the motion. When an
appropriate linear perturbation is performed, an associated response
spectrum H�(τ, γ̇) can be defined as the inverse Laplace transform
of a rate-dependent kernel m(γ̇s, s), in exactly the same way as
in Eq. (4),

H�(τ, γ̇) = L−1[m(γ̇s, s)](τ). (5)

The situation in PSR is more complicated. In particular, the
interpretation of G∗

∥
must allow for coupling of the unidirectional

and oscillatory components. As γ̇ increases away from zero, negative
values of G∥′ are often reported in the literature (e.g., Refs. 1, 2, and
10–13), thus preventing the conventional interpretation of G∥′ and
G′′
∥

in terms of intracycle energy storage and dissipation, as per their
quiescent counterparts. It is also commonly stated that the real and
imaginary parts of G∗

∥
do not satisfy the Kramers-Kronig relations,

even for small amplitude oscillations.
In OSR, the components of G∗� appear to retain the same phys-

ical meaning as those of G∗ for small perturbation amplitudes.14,15

Consequently, despite the ease of implementing PSR experiments
on commercial rheometers, OSR has (for the past 20 years) been
the preferred methodology. However, such experiments require spe-
cific hardware, e.g., the TA Instruments Orthogonal Superposition
accessory, which employs the rheometer’s normal force transducer
to generate the oscillatory component,16 and the availability of rela-
tively large quantities of materials (approximately 50 ml). Further-
more, a recent study of flow induced anisotropy in colloidal gels
employed the ratio of G′ measured in orthogonal directions as a
measure of anisotropy.15 In that study, in order to avoid “the prob-
lems associated with parallel superposition experiments,” materials
for which microstructural recovery was relatively slow were studied
such that small amplitude oscillatory shear experiments probing the
anisotropic rheology could be performed following cessation of the
unidirectional flow.15 There is hence clearly a need for further study
of superposition moduli to (i) allow for physical interpretation of G∗

∥

and (ii) facilitate the development of a quantitative interpretation of
flow induced anisotropy probed by superposition rheometry.17

In Ref. 18, it was shown that, for certain Lodge-type consti-
tutive models, under the constraint of oscillatory perturbations of
small amplitude, (i) the real and imaginary parts of G∗� and G∗

∥
sat-

isfy the Kramers-Kronig relations and (ii) the relationships between
the superposition moduli can be derived that may be used as a basis
for a quantitative comparison of PSR and OSR data. In the current
paper, we show that the same is true for incompressible K-BKZ inte-
gral constitutive models. The Wagner I model,19 studied by Vermant

et al.,14 merits a separate study as a special case of K-BKZ, and we
begin with this model.

II. THE WAGNER I MODEL
Consider an integral constitutive model for which the stress

tensor takes the form

σ = ∫
t

−∞

m(t − t′)h(I1, I2)C−1(t, t′)dt′, (6)

where m is the zero shear-rate memory function, C−1(t, t′) is the rel-
ative Finger strain tensor, and h is a damping function depending on
the first and second invariants, I1 and I2, of C−1(t, t′). In the Wagner
I model, h is a single exponential function of the form

h(I1, I2) = e−n
√

I−3, I = αI1 + (1 − α)I2, (7)

where n > 0 and α are constants. In both OSR and PSR, the first and
second invariants are equal. In particular, expanding about γ0 = 0,
one finds

I = I1 = I2 = 3 + γ̇2(t − t′)2 + 2a[γ0γ̇(t − t′)(eiωt − eiωt
′
)] + O(γ2

0),
(8)

where a = 0 in the case of OSR, with a = 1 for PSR (cf. Bernstein20).
In this section, we show that there exist orthogonal and paral-

lel response spectra for the Wagner I model, which can be written
explicitly in terms of the linear relaxation spectrum H(τ). To this
end, we use expressions for the orthogonal superposition modu-
lus, G∗�(ω, γ̇), derived by Vermant et al.14 The parallel superposition
modulus, G∗

∥
(ω, γ̇), can then be derived from a result in Bernstein.20

We also show that, for both OSR and PSR, these superposition
moduli satisfy the Kramers-Kronig relations.

A. Orthogonal superposition
In OSR, expanding to first order, the damping function is

independent of γ0 and takes the form

h(I1, I2) = e−nγ̇(t−t
′
). (9)

The superposition moduli can be expressed in the form (cf. Vermant
et al.14)

G′�(ω, γ̇) = ∫
∞

0

ω2τ2H(τ)
(1 + nγ̇τ)[(1 + nγ̇τ)2 + ω2τ2]

dτ
τ

, (10)

G′′�(ω, γ̇) = ∫
∞

0

ωτH(τ)
[(1 + nγ̇τ)2 + ω2τ2]

dτ
τ

. (11)

To show that these moduli satisfy the Kramers-Kronig rela-
tions, we introduce the reduced relaxation time, λ, defined by

λ = τ
1 + nγ̇τ

. (12)

This relaxation time enjoys the following properties:

● λ is a monotonically increasing function of the linear relax-
ation time τ;

● λ→ (nγ̇)−1 as τ →∞;
● λ decreases monotonically as the shear-rate increases; and
● the linear relaxation time is recovered (λ→ τ) as γ̇→ 0.
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Noting that τ = λ(1 − nγ̇λ)−1, we may write H(τ) as a function
of λ. We adopt the notation

H(τ) = H�(λ), 0 ≤ λ < (nγ̇)−1 (13)

and will show that H�(λ) is the rate-dependent response spectrum
under OSR. First, it is convenient to extend the function H�(λ) to
the full interval 0 ≤ λ <∞. Define

H�(λ) = {
H(λ(1 − nγ̇λ)−1), 0 ≤ λ < (nγ̇)−1,
0, (nγ̇)−1 ≤ λ < ∞.

(14)

Since H(τ) → 0 as τ → ∞, the function defined by (14) is continu-
ous at the joint λ = (nγ̇)−1. The extension also applies to integrals.
Let f (λ) be any function such that f (λ)H�(λ) is integrable over the
interval 0 ≤ λ < (nγ̇)−1. Then, (14) implies

∫
(nγ̇)−1

0
f (λ)H�(λ) = ∫

∞

0
f (λ)H�(λ). (15)

We continue the argument by differentiating (12). Let nγ̇ be a
fixed parameter. Then,

dτ
(1 + nγ̇τ)2 = dλ, (16)

and hence,
dτ

(1 + nγ̇τ)2 + ω2τ2 =
dλ

1 + ω2λ2 . (17)

Changing the variable from τ to λ in (10) and (11), and making use
of (15), we find

G′�(ω, γ̇) = ∫
∞

0

ω2λ2

1 + ω2λ2 H�(λ)
dλ
λ

, (18)

G′′�(ω, γ̇) = ∫
∞

0

ωλ
1 + ω2λ2 H�(λ)

dλ
λ

. (19)

Equations (18) and (19) hold for every value of the parameter nγ̇ ≥ 0.
They may be combined to form the complex modulus

G∗�(ω, γ̇) = G′�(ω, γ̇) + iG′′�(ω, γ̇) = ∫
∞

0

iωλ
1 + iωλ

H�(λ)
dλ
λ

. (20)

The real and imaginary parts of G∗� satisfy the Kramers-Kronig
relations since G∗� is analytic in the open right-hand half of the com-
plex frequency plane, Re ω > 0. A sufficient condition for the analyt-
icity is that ∫∞0 λ−1H�(λ)dλ < ∞. This is equivalent to demanding
that the plateau modulus G′�(∞, γ̇) has a finite value. That this is the
case follows from (10) since

G′�(∞, γ̇) = lim
ω→∞

G′�(ω, γ̇)

= ∫
∞

0

H(τ)
1 + nγ̇τ

dτ
τ
≤ ∫

∞

0
H(τ)dτ

τ
= G′(∞). (21)

Vermant et al.14 have shown that, for the Wagner I model, the
shear viscosity is given by

η(γ̇) = ∫
∞

0

H(τ)dτ
(1 + nγ̇τ)2 . (22)

This may be rewritten as

η(γ̇) = ∫
∞

0
H�(λ)dλ. (23)

Equations (18), (19), and (23) establish the function H�(λ) as a rate-
dependent response spectrum for OSR. Thus, we may write H�(λ)
= H�(τ, γ̇), where

H�(τ, γ̇) =
⎧⎪⎪⎨⎪⎪⎩

H(τ(1 − nγ̇τ)−1), 0 ≤ τ < (nγ̇)−1,

0, (nγ̇)−1 ≤ τ < ∞.
(24)

For the Wagner I model, we have therefore obtained the
following:

Result II.1. There exists an orthogonal response spectrum
which is a simple recalibration of the linear relaxation spectrum
given by (24).

Result II.2. The orthogonal spectrum has no relaxation time
greater than (nγ̇)−1.

Result II.3. The orthogonal superposition moduli derived by
Vermant et al.14 satisfy the Kramers-Kronig relations.

B. Parallel superposition
Bernstein20 derives a relation between the parallel and orthog-

onal complex moduli, G∗
∥
(ω, γ̇) and G∗�(ω, γ̇), for a general K-BKZ

model. Since the Wagner I model is a special case of the K-BKZ
model, Bernstein’s result may be used to derive G∗

∥
(ω, γ̇) for the

Wagner I model. The expression so obtained for the modulus
G′′
∥
(ω, γ̇) agrees exactly with the expression obtained by Vermant

et al. [Ref. 14, Eq. (35)], but the expression obtained from Bernstein’s
formula for the modulusG′

∥
(ω, γ̇) does not agree with the expression

obtained by Vermant et al. [Ref. 14, Eq. (34)]. The moduli obtained
by Vermant et al. do not satisfy the Kramers-Kronig relations, but
we shall show that the moduli obtained from Bernstein’s formula do
satisfy these relations.

Bernstein’s formula may be stated as

G∗
∥
(ω, γ̇) = G∗�(ω, γ̇) + γ̇

∂

∂γ̇
G∗�(ω, γ̇) (25)

and is valid when the memory function and its invariants are
expanded to first order in γ0. Bernstein shows that the result does not
necessarily hold outside the K-BKZ class of models. More recently,
in Ref. 18, we have shown that a different differential relationship
holds for certain Lodge-type models. In theory, the solution of the
differential equation (25) gives a formula for converting G∗

∥
(ω, γ̇) to

G∗�(ω, γ̇) for any K-BKZ model,

G∗�(ω, γ̇) = γ̇−1 ∫
γ̇

0
G∗
∥
(ω, x)dx. (26)

This formula is best implemented by means of a spectral representa-
tion for G∗

∥
(see Sec. III B).

Equation (25) enables a straightforward validation of the
Kramers-Kronig relations for the parallel superposition moduli of
the Wagner I model. To this end, write (20) in the form

G∗�(ω, γ̇) = ∫
∞

0

iωτ
1 + iωτ

H�(τ, γ̇)dτ
τ

, (27)
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where H� is defined in (24). The functional dependence of G∗�(ω, γ̇)
on γ̇ is made clearer if (27) is rewritten as

G∗�(ω, γ̇) = ∫
(nγ̇)−1

0

iωτ
1 + iωτ

H(ρ)dτ
τ

, (28)

where H is the linear relaxation spectrum and

ρ = ρ(τ, γ̇) = τ(1 − nγ̇τ)−1. (29)

Now, H(ρ) → 0 as τ → (nγ̇)−1. Substituting (28) into (25) and
applying Liebniz rule for integrals then give

G∗
∥
(ω, γ̇) = ∫

(nγ̇)−1

0

iωτ
1 + iωτ

[H(ρ) + γ̇
∂

∂γ̇
H(ρ)]dτ

τ
. (30)

It is easily shown that ∂ρ
∂γ̇ = nρ

2. Hence, we conclude that

G∗
∥
(ω, γ̇) = ∫

∞

0

iωτ
1 + iωτ

H∥(τ, γ̇)dτ
τ

, (31)

where H∥(τ, γ̇) is the parallel response spectrum for the Wagner I
model, given by

H∥(τ, γ̇) = {H(ρ) + nγ̇ρ2H′(ρ), 0 ≤ τ < (nγ̇)−1,
0, (nγ̇)−1 ≤ τ < ∞.

(32)

Here, H′(ρ) denotes the derivative with respect to the single variable
ρ. We shall refer to Eqs. (27) and (31) as spectral representations of
the superposition moduli.

From (31), we see that the real and imaginary parts of G∗
∥

sat-
isfy the Kramers-Kronig relations since G∗

∥
is analytic in the open

right-hand half of the complex frequency plane, exactly in a simi-
lar fashion to (20). A sufficient condition for the analyticity is that
∫∞0 τ−1H∥(τ, γ̇)dτ < ∞. This can be deduced from the two standard
constraints on the linear spectrum H given by

∫
∞

0
τ−1H(τ)dτ < ∞ and ∫

∞

0
H(τ)dτ < ∞. (33)

To summarize, for the Wagner I model, we have established the
following:

Result II.4. There exists a parallel response spectrum which
may be expressed in terms of the linear relaxation spectrum and its
first derivative [Eq. (32)].

Result II.5. Like the orthogonal spectrum, the parallel spec-
trum has no relaxation time greater than (nγ̇)−1.

Result II.6. The real and imaginary parts of the parallel com-
plex modulus derived from Bernstein’s formula satisfy the Kramers-
Kronig relations.

C. Wagner I superposition moduli and the response
spectra

Unlike the Lodge-type model studied in Ref. 18, the Wag-
ner I model allows for easy interconversion between parallel and
orthogonal superposition moduli. Once the damping parameter, n,
and the linear relaxation spectrum, H, have been determined, there
are explicit expressions available for calculating these moduli. The
calculated moduli can then be compared with either PSR or OSR

measurements to evaluate the model as a means of predicting the
dynamics of the material being studied. The orthogonal superposi-
tion moduli are given by (10) and (11), while the parallel moduli are
readily calculated by substituting these expressions into Bernstein’s
formula. Thus, we obtain

G′
∥
= ∫

∞

0
H(τ)ω2τ2[ 1

N(N2 + ω2τ2) −
nγ̇τ

N2(N2 + ω2τ2)

− 2nγ̇τ
(N2 + ω2τ2)2 ]

dτ
τ

, (34)

G′′
∥
= ∫

∞

0
H(τ)ωτ[ 1

(N2 + ω2τ2) −
2nγ̇τN

(N2 + ω2τ2)2 ]
dτ
τ

, (35)

where N = 1 + nγ̇τ.
These two moduli satisfy the Kramers-Kronig relations since,

writing τ = λ(1 − nγ̇λ)−1, they may be combined into the complex
form

G∗
∥
(ω, γ̇) = ∫

∞

0

iωλ
1 + iωλ

χ(λ)[H(τ) + nγ̇τ2H′(τ)]dλ
λ

,

χ(λ) = {1, 0 ≤ λ < (nγ̇)−1,
0, λ ≥ (nγ̇)−1,

(36)

with the requisite analyticity properties. As mentioned earlier,
Eq. (35) agrees with the expression derived by Vermant et al. for
G′′
∥

. Their expression for G∥′, however, differs from (34).
Useful results can also be deduced from the response spectra.

Result II.7. Since the linear spectrum H(τ) is always non-
negative, so is the orthogonal response spectrum H�(τ, γ̇).

This result follows immediately from (24). The implication is
that the orthogonal moduli given by (10) and (11) have the same
interpretation in terms of energy storage and loss as do the linear
moduli.

Result II.8. Let H(τ) and H′(τ) be continuous functions of τ.
Provided τ−2H(τ) remains finite as τ → 0, the parallel response
spectrum H∥(τ, γ̇) always has negative parts for sufficiently high
shear-rates γ̇.

The proof of this result is as follows. From Eq. (32), we infer
that

H∥(τ, γ̇) < 0 when H′(ρ) < −(nγ̇)−1ρ−2H(ρ). (37)

If τ−2H(τ) remains finite as τ → 0, then ρ−2H(ρ) has a supremum,
M, say. But H(ρ)→ 0 as ρ→∞. Thus, H′(ρ) has a negative infimum,
−L, say. The inequality in (37) is satisfied for a range of ρ values, if
L > (nγ̇)−1M. Since L and M are constants, independent of γ̇, the
latter inequality will be satisfied for sufficiently large shear-rates.

The implication of Result II.8 is that G′
∥
(ω, γ̇) and G′′

∥
(ω, γ̇)

may become negative at higher shear-rates. There are many reports
of the negativity of G′

∥
(ω, γ̇) in the literature.

III. THE K-BKZ MODEL
The Wagner I model was originally proposed as a special

case of the general K-BKZ model with a separable memory kernel.
Some of the results derived in Sec. II emerge because of the simple
form of the Wagner I memory kernel. For example, the upper limit
on relaxation times observed in the response spectra arises from the
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exponential damping function and may not arise for other damp-
ing functions. Again, the relationship between the response spectra
and the linear relaxation spectrum arises from the separability of the
memory kernel. However, some of the results on the Wagner I model
also hold for the general K-BKZ model. Working to first order in γ0,
it is fairly easy to show that, under weak conditions on the mem-
ory kernel, the Kramers-Kronig relations hold in the general case for
both OSR and PSR.

A. Fourier representation of the superposition moduli
The stress tensor for the incompressible K-BKZ model may be

written as follows:

σ = ∫
t

−∞

[∂U
∂I1

C−1(t, t′) − ∂U
∂I2

C(t, t′)]dt′, (38)

where U is an elastic energy kernel with time-dependence

U = U(I1(t, t′), I2(t, t′), t − t′)

and, as previously, I1 and I2 are the first and second invariants of the
Finger strain tensor C−1(t, t′).

For OSR, working to first order in γ0, Tanner and Williams21

have derived expressions for the superposition moduli, which in
complex form may be written as

G∗�(ω, γ̇) = ∫
∞

0
[∂U
∂I1

+
∂U
∂I2
](1 − e−iωs)ds, (39)

where s = t − t′ denotes the time lapse. Bernstein20 argues that there
exists a function of two variables w∗ = w∗(γ, s), γ arbitrary, such that
in both OSR and PSR,

∂U
∂I1

+
∂U
∂I2
= −w∗(

√
I − 3, s), (40)

where I is given by (8).
The function −w∗ is a non-negative, nonlinear memory func-

tion. We will use the more familiar notation

m(γ, s) = −w∗(γ, s) ≥ 0. (41)

Under constraint (8), we have

m(
√
I − 3, s) = [∂U

∂I1
+
∂U
∂I2
](I1, I2, s). (42)

The function m has the property m(0, s) = m(s), where m(s) is the
linear memory function.

Working to first order in γ0, Bernstein20 derives expressions for
the complex superposition moduli in OSR and PSR. In terms of m,
these take the form

G∗�(ω, γ̇) = ∫
∞

0
m(γ̇s, s)(1 − e−iωs)ds, (43)

G∗
∥
(ω, γ̇) = ∫

∞

0
[m(γ̇s, s) + γ̇

∂

∂γ̇
m(γ̇s, s)](1 − e−iωs)ds. (44)

Expanding to first order in γ0, for OSR, we have m(
√
I − 3, s) =

m(γ̇s, s), and so Eq. (43) agrees with (39). We shall refer to Eqs. (43)
and (44) as Fourier representations of the superposition moduli.

It is now a simple matter to establish that the real and imagi-
nary parts of (43) satisfy the Kramers-Kronig relations. The theory

of Fourier integrals (see, e.g., Dym and McKean22) tells us that, in
(43), G∗�(ω, γ̇) is analytic in the open lower half of the complex fre-
quency plane, Im ω < 0, and is the limit of the analytic function as
Im ω → 0. This means that G∗�(ω, γ̇) may be expressed as a Cauchy
integral

G∗�(ω, γ̇) = 1
2πi ∫Γ

G∗�(z, γ̇)
z − ω dz, Imω < 0. (45)

Choosing an appropriate indented contour, Γ, taking limits, and
then comparing real and imaginary parts lead to the Kramers-
Kronig relations. The same argument establishes these relations for
G∗
∥
(ω, γ̇) in (44), provided that the memory kernel is absolutely

integrable. A sufficient condition is ∫∞0 ∣ ∂∂γ̇m(γ̇s, s)∣ds < ∞.

B. Spectral representation of the superposition
moduli

In Sec. II, we saw that the Wagner I model admits spectral rep-
resentation of its orthogonal and parallel superposition moduli. We
begin this section by asking whether the general K-BKZ model also
admits such representations. This question may be answered imme-
diately in the same way as it is answered for the linear superposition
moduli.

Result III.1. A sufficient condition for the existence of the
orthogonal and parallel response spectra is that the nonlinear mem-
ory function m(γ̇s, s) is completely monotonic. We may then write

G∗�(ω, γ̇) = ∫
∞

0

iωτ
1 + iωτ

H�(τ, γ̇)dτ
τ

, (46)

G∗
∥
(ω, γ̇) = ∫

∞

0

iωτ
1 + iωτ

H∥(τ, γ̇)dτ
τ

, (47)

where
H∥(τ, γ̇) = H�(τ, γ̇) + γ̇

∂

∂γ̇
H�(τ, γ̇), (48)

which may be inverted to give

H�(τ, γ̇) = γ̇−1 ∫
γ̇

0
H∥(τ, x)dx. (49)

Result III.1 follows from Bernstein’s theorem. Since m(γ̇s, s)
is completely monotonic, there is a non-negative function H�(τ, γ̇)
such that m may be written in the form

m(γ̇s, s) = ∫
∞

0

1
τ
H�(τ, γ̇) exp(− s

τ
)dτ
τ

. (50)

Substituting (50) into (43) and (44) gives the required spectral
representations.

It is instructive to examine the relationship between spectral
and Fourier representations more fully. Having found two represen-
tations for G∗�(ω, γ̇), it is natural to write

∫
∞

0

iωτ
1 + iωτ

H�(τ, γ̇)dτ
τ
= ∫

∞

0
m(γ̇s, s)(1 − e−iωs)ds. (51)

This equation must be treated with care. It is valid for all real val-
ues of the frequency ω, but it is not valid everywhere in the complex
frequency plane. The spectral representation on the left is analytic
in the open right-hand half plane, while the Fourier representation
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on the right is analytic in the open lower half plane. The equation is
therefore valid in the lower right quadrant of the complex frequency
plane. However, since the domain of analyticity of the two analytic
functions intersects, we have the elegant result that the integral on
the left of Eq. (51) is the analytic continuation of the Fourier rep-
resentation into the upper right quadrant, while the integral on the
right is the analytic continuation of the spectral representation into
the lower left quadrant. The same is true for the representations of
G∗
∥
(ω, γ̇).

The above result illustrates the fact that there is usually more
than one way of establishing the Kramers-Kronig relations. More
details may be found in the book by King (Ref. 23, Chap. 19).

IV. RESPONSE SPECTRA AND INTERCONVERSION
For the Wagner I model, interconversion between parallel

and orthogonal superposition moduli is a straightforward exercise
because of the explicit forms derivable for each modulus. For the
general K-BKZ model, interconversion is not so straightforward
unless the functional dependence of G∗

∥
(ω, γ̇) on γ̇ is known. In

this section, we propose one approach to introducing a functional
dependence on γ̇, which was also studied in Ref. 18 The functional
dependence is introduced via the response spectra.

A. Locally exact solutions
We shall find local solutions of Eq. (48) for H� in terms of H∥

by restricting attention to a local range of shear-rates 0 < γ̇a < γ̇ <
γ̇b < ∞, which we denote by Γab = (γ̇a, γ̇b). We anticipate that Γab
covers part of the measurable range of shear-rates in PSR. Without
loss of generality, we may write

H∥(τ, γ̇) = λH(τ) + H̄∥(τ, γ̇), (52)

H�(τ, γ̇) = λH(τ) + H̄�(τ, γ̇), (53)

where H(τ) denotes the linear relaxation spectrum and λ is a con-
stant. In (52) and (53), it is to be assumed that H and ∫τ0 H� are
non-negative, but no such assumption is made regarding H∥, H̄� or
H̄∥. The shear viscosity is given by

η(γ̇) = ∫
∞

0
H�(τ, γ̇)dτ = λη0 + η(γ̇),

where
η̄(γ̇) = ∫

∞

0
H̄�(τ, γ̇)dτ, (54)

where η0 denotes the zero shear-rate viscosity. The constant λ is
chosen to ensure

η(γ̇) = η̄(γ̇) + λη0 ≥ 0, γ̇a < γ̇ < γ̇b. (55)

We shall require that H̄�(τ, γ̇) is piecewise continuously differ-
entiable with respect to both the variables τ and γ̇. This enables the
following:

(i) H̄∥(τ, γ̇) can be represented by a rate-dependent discrete
spectrum and

(ii) if Γab is a shear-thinning range, and η̄ > 0, we have

λ < 1 and
d
dγ̇

η̄(γ̇) = ∫
∞

0

∂H̄
∂γ̇
(τ, γ̇)dτ < 0, γ̇a < γ̇ < γ̇b. (56)

On the other hand, if η̄ < 0, at least one of the inequalities in Eq. (56)
is reversed.

Introduce a stretched variable ξ = τγ̇α, where α is a constant.
We then seek solutions of Eq. (48) in the form

H̄�(τ, γ̇) = H̄�(ξ), with H̄∥(τ, γ̇) = H̄∥(ξ), ξ = τγ̇α. (57)

In the local range of shear-rates Γab, the shear viscosity has the form

η(γ̇) = λη0 + κγ̇−α, γ̇a < γ̇ < γ̇b, (58)

where κ = ∫∞0 H̄�(ξ)dξ is a constant. The constants α and κ have the
same sign if the viscosity over the range Γab is shear-thinning but are
of opposite sign if the viscosity over this range is shear-thickening.

If the range of shear-rates, Γab, is sufficiently narrow, any con-
tinuous flow curve can be approximated to arbitrary accuracy by
the form (58), with its three free parameters λ, κ, and α. By way of
illustration, consider a single mode Wagner-type viscosity,

η0

(1 + nγ̇τ1)2 ≈ λη0 + κγ̇−α, γ̇a < γ̇ < γ̇b. (59)

Fitting by point collocation yields the following values for the
parameters:

Range 1. γ̇a = 1
4(nτ1)−1, γ̇b = 1

2(nτ1)−1:

λ = 1.804, κ = −1.588η0(nτ1)−α, α = −0.224.

The maximum error in this range is approximately 10−4η0.

Range 2. γ̇a = (nτ1)−1, γ̇b = 3(nτ1)−1:

λ = −0.046, κ = 0.296η0(nτ1)−α, α = 0.915.

The maximum error in this range is approximately 10−3η0. The error
can be reduced by narrowing the range of γ̇, with a corresponding
variation in parameter values.

In Range 1, κ and α are both negative, whereas in Range 2 they
are both positive. In any given range, κ and α must have the same
sign in shear-thinning. If the single mode viscosity is changed to a
multimode viscosity, the parameter values will also change.

In terms of the stretched variable ξ, Eq. (48) reduces to the first-
order ordinary differential equation:

H̄�(ξ) + αξH̄′�(ξ) = H̄∥(ξ), (60)

where the symbol prime (′) denotes differentiation with respect to ξ.
This has the solution

H̄�(ξ) = β∫
ξ
(x
ξ
)
β
H̄∥(x)

dx
x

, with β = 1/α, (61)

= β∫
ln ξ

exp[β(ln x − ln ξ)]H̄∥(x)d(ln x). (62)

The boundary conditions on H̄�, which are necessary conditions for
the viscosity to remain finite, are as follows:

H̄�(0) = 0 and lim
ξ→∞

H̄�(ξ) = 0. (63)

The same conditions will be asked for H̄∥. Finally, to ensure regular-
ity in Eq. (60), we impose

lim
ξ→∞

ξH̄′�(ξ) = 0. (64)
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We now establish a result which is complementary to Result II.8
for the Wagner I model.

Result IV.1. In a shear-thinning region, H̄∥(ξ)must be negative
for some values of the relaxation time τ.

To prove Result IV.1, it is enough to consider the case α >
0, otherwise κ must be negative, and so H̄∥ must be negative for
some values of the relaxation time. Using Liebniz rule for integrals
to differentiate (62), we find

H̄′�(ξ) − ξ−1H̄∥(ξ) = −β2ξ−1∫
ln ξ

exp[β(ln x − ln ξ)]H̄∥(x)d(ln x).

(65)

It is clear that if H̄∥ is everywhere positive, then ξH̄′�(ξ) − H̄∥(ξ) is
everywhere negative. Furthermore, H̄∥(ξ) → 0 as ξ → ∞. So, there
exists either a finite constant −C < 0 such that ξH̄′�(ξ) → −C as
ξ → ∞ or ξH̄′�(ξ) → −∞ as ξ → ∞. In either case, condition (64)
cannot hold, and so Result IV.1 follows immediately.

B. Discrete and piecewise continuous response
spectra

We may infer from (47) that, as in the case of the linear relax-
ation spectrum, H̄∥ is representable as a discrete spectrum. However,
this spectrum does not share the properties of a linear relaxation
spectrum. Result IV.1 informs us that at least one of the discrete
modes must carry a negative coefficient. Complete monotonicity of
the associated nonlinear memory function in PSR is thus lost. On the
other hand, complete monotonicity is retained by the corresponding
OSR memory function. In this section, we explore the nature of a dis-
crete spectral representation for H̄∥ and the corresponding spectral
representation for H̄�.

Following Ref. 18, we first examine the spectral representation
for H̄� resulting from a single constituent mode in H̄∥. Consider

H̄∥(ξ) = c1δ(ξ − ξ1), (66)

where δ(⋅) is the Dirac point impulse function and c1 and ξ1 are
constants, with ξ1 > 0. The rate-dependence becomes clear by asso-
ciating with ξ1 the rate-dependent relaxation time τ1 = ξ1γ̇−α.
Equation (66) may then be written as

H̄∥(ξ) = c1γ̇−αδ(τ − τ1), (67)

From (61), we deduce

H̄�(ξ) = βc1ξ−1
1 (

ξ1

ξ
)βH (ξ − ξ1) = βc1ξ−1

1 (
τ1

τ
)βH (τ − τ1), (68)

where H (.) denotes the Heaviside unit step function.
If 0 < α < 1 (β > 1), then H̄�(ξ) is integrable and is compliant

with a finite viscosity. However, if α < 0 (β < 0), then ∣H̄�(ξ)∣ → ∞ as
ξ→∞ and is not compliant with a finite viscosity. This situation can
easily be rectified by taking a pair of Dirac functions with coefficients
of opposite sign.

Definition. Let ξ1 and ξ2 be two positive constants with 0 < ξ1
< ξ2. We define a compliant Dirac pair as a pair of the form

D(ξ; ξ1, ξ2) = c1δ(ξ − ξ1) + c2δ(ξ − ξ2), (69)

where the coefficients c1 and c2 are chosen in the ratio

c1

c2
= −( ξ1

ξ2
)
β
= −( τ1

τ2
)
β
. (70)

For modeling purposes, each pair has three free parameters: c1, ξ1,
ξ2, or c1, τ1, τ2, with β fixed for the range of shear-rates Γab.

With coefficients in the ratio (70), it follows from (61) that

Result IV.2. The compliant Dirac pair (69) has a correspond-
ing orthogonal response spectrum E(ξ; ξ1, ξ2), which is a hyperbolic
spline of order 1, with knots ξ1 and ξ2. Specifically, E takes the form

E(ξ; ξ1, ξ2) = βc1ξ−1
1 (

ξ1

ξ
)
β
[H (ξ − ξ1) −H (ξ − ξ2)], (71)

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, 0 ≤ ξ ≤ ξ1,

βc1ξ−1
1 ( ξ1

ξ )
β
, ξ1 ≤ ξ ≤ ξ2,

0, ξ > ξ2.
(72)

The two functions D and E form a basis for interconversion between
parallel and orthogonal response spectra. E is piecewise continu-
ously differentiable and is integrable for all nonzero values of α
and β.

C. Interconversion
Under the splitting (52) and (53), one has a corresponding

splitting of the superposition moduli:

G∗
∥
(ω, γ̇) = λG∗(ω) + Ḡ∗

∥
(ω, γ̇), (73)

G∗�(ω, γ̇) = λG∗(ω) + Ḡ∗�(ω, γ̇), (74)

where G∗(ω) is the linear complex modulus. If H̄∥ is the Dirac pair
in (69), the corresponding expressions for Ḡ∥′ and Ḡ′′

∥
are as follows:

Ḡ′
∥
(ω, γ̇; c1, ξ1, ξ2) = c1[

ω2ξ1

γ̇2α + ω2ξ2
1
− ( ξ2

ξ1
)
β ω2ξ2

γ̇2α + ω2ξ2
2
], (75)

Ḡ′′
∥
(ω, γ̇; c1, ξ1, ξ2) = c1γ̇α[

ω
γ̇2α + ω2ξ2

1
− ( ξ2

ξ1
)
β ω
γ̇2α + ω2ξ2

2
]. (76)

The corresponding expressions for Ḡ�′ and Ḡ′′� are as follows:

Ḡ′�(ω, γ̇; c1, ξ1, ξ2) = c1βξ−1
1 ∫

ξ2

ξ1

( ξ1

ξ
)β ω2ξ

γ̇2α + ω2ξ2 dξ, (77)

Ḡ′′�(ω, γ̇; c1, ξ1, ξ2) = c1βξ−1
1 γ̇α ∫

ξ2

ξ1

( ξ1

ξ
)β ω

γ̇2α + ω2ξ2 dξ. (78)

In terms of unknown parameters {c2j−1, ξ2j−1, ξ2j, j = 1⋯n}, the
models for the parallel and orthogonal moduli are then given by

G′
∥
(ω, γ̇) = λG′(ω) +

n

∑
j=1

Ḡ′
∥
(ω, γ̇; c2j−1, ξ2j−1, ξ2j), (79)

G′′
∥
(ω, γ̇) = λG′′(ω) +

n

∑
j=1

Ḡ′
∥
(ω, γ̇; c2j−1, ξ2j−1, ξ2j), (80)

G′�(ω, γ̇) = λG′(ω) +
n

∑
j=1

Ḡ′�(ω, γ̇; c2j−1, ξ2j−1, ξ2j), (81)
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G′′�(ω, γ̇) = λG′′(ω) +
n

∑
j=1

Ḡ′′�(ω, γ̇; c2j−1, ξ2j−1, ξ2j), (82)

and the process of converting parallel data to orthogonal moduli can
be described as follows:

● Obtain measurements of the linear moduli over a range of
frequencies.

● Obtain a flow curve and hence estimate the parameters λ and
β for a suitable range of shear-rates, Γab.

● Select one value of γ̇ in Γab and determine the unknown
parameters {c2j−1, ξ2j−1, ξ2j, j = 1⋯n} by fitting models (79)
and (80) to parallel data for this value of γ̇.

● Using (81) and (82), calculate the orthogonal moduli for
this value of γ̇ over the same range of frequencies as for the
parallel data.

V. A MODEL EXAMPLE
When β is an integer, the integrals in (77) and (78) may

be evaluated in closed form, involving logarithmic or inverse tan-
gent functions. As an illustration of the above theory, we choose
a model example with α = 1

2 , β = 2, and 0 < κ = 2cηs < 2cη0,
0 < c < 1. The following parallel moduli satisfy the Kramers-Kronig
relations:

FIG. 1. Model data for parallel response spectra (column 1), parallel superposition moduli (column 2), and orthogonal superposition moduli (column 3), for three shear-rates
γ̇ = 1, 3, 9s−1. Parameter values: β = 2, λη0 = −0.1, ηs = 1, and c = 0.8. Real and imaginary parts of the superposition moduli are shown as red (thin) and blue (bold) lines,
respectively. Negative G′∥(ω, γ̇) are shown as red dashed (thin) lines.
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G′
∥
(ω, γ̇) = ηsω2(2ω2 − γ̇)

(γ̇ + ω2)(γ̇ + 4ω2) +
cηsω2

γ̇ + ω2 +
λη0ω2

1 + ω2 , (83)

G′′
∥
(ω, γ̇) =

3ηs
√
γ̇ω3

(γ̇ + ω2)(γ̇ + 4ω2) +
cηs
√
γ̇ω

γ̇ + ω2 +
λη0ω

1 + ω2 . (84)

The model is restricted to a range of shear-rates away from zero. We
choose 1 ≤ γ̇ < 10. The associated response spectrum is given by

H∥(τ, γ̇) = ηs√
γ̇

⎡⎢⎢⎢⎢⎣
(1 + c)δ

⎛
⎝
τ − 1√

γ̇
⎞
⎠
− δ
⎛
⎝
τ − 2√

γ̇
⎞
⎠

⎤⎥⎥⎥⎥⎦
+ λη0δ(τ − 1),

(85)

which has a negative part and is compliant with a finite shear vis-
cosity. Since the value of α lies in the integrable range 0 < α < 1,
it is not necessary that the coefficients in the Dirac pair are in the
ratio (70).

The rate-dependent part of G∥′ in (83) is negative for
frequencies

0 < ω <
¿
ÁÁÀ (1 − c)γ̇

2(1 + 2c) ,

whereas the corresponding part of G′′
∥

in (84) is positive for all fre-
quencies ω > 0. Figure 1 (column 1) shows plots of the parallel
response spectra for three values of the shear-rate: γ̇ = 1, 3, 9. Here,
λη0 = −0.1, c = 0.8, and ηs = 1. Figure 1 (column 2) shows the corre-
sponding plots of |G∥′| for frequencies in the range 0.1 < ω < 10. The
range of frequencies for which G∥′ is negative increases with increas-
ing shear-rate. The plateau moduli G′

∥
(∞, γ̇) have a value of 1.2,

independent of γ̇. Figure 1 (column 2) also shows the corresponding
plots for G′′

∥
.

Using the K-BKZ interconversion theory developed in Sec. IV,
the corresponding orthogonal moduli can be derived in the form

G′�(ω, γ̇) = (1 + c)ηsω
2

γ̇
ln(1 +

γ̇
ω2 ) −

2ηsω2

γ̇
ln(1 +

γ̇
4ω2 ) +

λη0ω2

1 + ω2 ,

(86)

G′′�(ω, γ̇) = 2ηsω2

γ̇

⎡⎢⎢⎢⎢⎣

(1− c)π
2

+ (1 + c) tan−1⎛
⎝

ω√
γ̇
⎞
⎠
− 2 tan−1⎛

⎝
2ω√
γ̇
⎞
⎠

⎤⎥⎥⎥⎥⎦

+
κω√
γ̇

+
λη0ω

1 + ω2 , κ = 2cηs. (87)

These orthogonal moduli satisfy the Kramers-Kronig relations
and are plotted in Fig. 1 (column 3). By expanding the argu-
ment of the logarithmic term in (86), as ω → ∞, it can be shown
that the plateau moduli G′�(∞, γ̇) have a value independent of γ̇,
which is equal to the value of the parallel plateau moduli. This
is a manifestation of the following general result for the K-BKZ
model:

Result V.1. If the parallel plateau modulus G′
∥
(∞, γ̇) =

∫∞0 H∥(τ, γ̇) dττ is independent of the shear-rate, then so is the orthog-
onal plateau modulus,G′�(∞, γ̇). Moreover, the two moduli have the
same value.

The result follows immediately from (26).

VI. CONCLUSIONS
In parallel superposition rheometry, the problem of how to

interpret and utilize dynamic moduli has been mainly unresolved.
It has been assumed many times in the rheological literature that
dynamic moduli associated with certain integral constitutive mod-
els do not satisfy the classical Kramers-Kronig relations, even within
the confines of linear perturbation theory. In this paper, we have
shown that, in the case of the Wagner I and, more generally,
K-BKZ models, the superposition moduli do satisfy the classi-
cal Kramers-Kronig relations. We have also shown how to inter-
pret the parallel response spectra for the general K-BKZ model by
relating them to their orthogonal counterparts. Special bases have
been introduced which enable the interconversion of parallel and
orthogonal response spectra and of parallel and orthogonal dynamic
moduli.

The K-BKZ model has several important special cases, for
example, the Doi-Edwards model [Ref. 24, Appendix B]. Our results
carry over to all such cases, whether the memory kernels are sepa-
rable or not. Interested readers may ask whether the results of this
paper hold for a wider class of Rivlin-Sawyer models, where the
elastic energy potential, U, is replaced by two independent scalar
functions of time-lapse and the invariants I1 and I2. Expanding to
first order in γ0, we would anticipate that the Kramers-Kronig rela-
tions hold for a wider class of models for both OSR and PSR. It may
be that, for some members of the wider class, the Bernstein formula
relating the parallel and orthogonal superposition moduli no longer
holds true. Should this be the case, a different method of proof would
be needed to establish the Kramers-Kronig relations.

Yamamoto3 derived the superposition moduli in OSR and PSR
mainly for the purpose of testing the response of a nonlinear inte-
gral constitutive model to small perturbations about shear flow.
Interconverting between the moduli on the basis of the model, and
comparing with experimental measurements, tests the potential
applicability of the model to different flow settings. The linear vis-
coelastic limit cannot, in general, shed light on the nonlinear aspects
of the response. The Wagner I model is an interesting special case
since the exponential damping function dictates that the orthogo-
nal response spectrum is a recalibration, or nonlinear contraction,
of relaxation times in the linear spectrum. The nonlinear response,
here, is imparted through this nonlinear contraction.
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