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Abstract

Information analysis often involves heterogeneous sources expressed as logical

sentences, numerical models, sensor data, etc. Each of these has its own way to

describe uncertainty or error; e.g., frequency analysis, algorithmic truncation,

floating point roundoff, Gaussian distributions, etc. A unifying framework is

proposed here to represent this information as logical sentences with associated

probabilities in order to allow the inference of the probability of a query sentence.

Given such a knowledge base in Conjunctive Normal Form (CNF) for use

by an intelligent agent, with probabilities assigned to the conjuncts, the proba-

bility of any new query sentence can be determined by solving the Probabilistic

Satisfiability Problem (PSAT). This involves finding a consistent probability

distribution over the atoms (if they are independent) or complete conjunction

set of the atoms. For each sentence in the knowledge base, we propose to pro-

duce an equation in terms of atoms and conditional probabilities. This system

of equations is then solved numerically to get a solution consistent with the sen-

tence probabilities. Finding such a solution is called the Probabilistic Sentence

Satisfiability (PS-SAT) problem. In particular, findings include:

1. For independent logical variables:

(a) atom probabilities which solve PS-SAT also provide a PSAT solution.
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(b) numerical experiments demonstrate a q-superlinear convergence rate

for most test cases.

(c) problems with up to 1,000 variables and 300 sentences are solved.

2. For general knowledge bases (i.e., variables not independent):

(a) both atom and a subset of conditional probabilities must be found,

(b) a solution to PS-SAT does not guarantee a solution to PSAT, but

most empirical results provide such a solution.

(c) The convergence rate for equations with non-independent variables

also appears q-superlinear.
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1. Introduction

A major motivation for the work presented here is to provide a framework

for uncertainty quantification in geospatial intelligence systems as exemplified

by BRECCIA [1] which receives information from humans (as logical state-

ments), simulations (e.g., weather or platform physics), and sensors (e.g., cam-5

eras, weather instruments , microphones, etc.), where each piece of information

has an associated certainty. BRECCIA then provides coherent responses to user

queries concerning UAV flight missions based on the PS-SAT methods described

here. Example information (expressed as logical sentences) might include:

Sentence 1: Raven 1 Platform Available [0.93]10

Sentence 2: Wind Less Than 17 Knots [0.87]

Sentence 3: Smoke Obscures BLDG 21 [0.70]

Each of these sentences has an associated probability (shown in square brackets

after the sentence) based in this case on: (1) maintenance history, (2) sensor er-

ror model, and (3) human determination. The PS-SAT approach presented here15

is particularly well-suited to this probabilistic knowledge base formulation, and

moreover, allows the determination of the best allocation of information acqui-

sition resources to increase certainty in a given query. Moreover, it is possible

to validate both knowledge base clause probabilities, as well as probabilities
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assigned to queries by measuring the appropriate uncertainties related to the20

query variables.

The paper is presented as follows. First, the background information re-

quired to technically define the problem is given. Next, related work is discussed

as well as how the proposed method differs from current approaches. Next, the

proposed method is described in terms of systems of equations that are gen-25

erated from the probabilistic knowledge base (including the difference between

handling independent variables and non-independent variables), and numerical

techniques are provided to solve these systems of equations It is shown that

the method is Fixed-Parameter Tractable (FPT) (e.g., is polynomial once the

maximum clause length is fixed; see [2]). Experiments are then described which30

characterize the performance of the methods, and it is demonstrated that they

outperform the most related works (e.g., that of Hansen and Perron [3]). Finally,

future work is described and includes: (1) a deeper examination of numerical

methods for solving the equations, (2) discovery of better initial starting points,

and (3) the incorporation of a more technical argumentation framework.35

2. Background

The effective and efficient confluence of logic and probability has long been

a goal of mathematics and artificial intelligence; e.g., see [4] for an early study

that undergirds most modern approaches. Here we follow Bacchus’ development

of defining probabilities on propositions (for details see [5]). First, it is necessary40

to define a suitable algebraic structure so that probabilities may be correctly

defined.

Define a collection of sets, F , as a field of sets if:

1. F contains a universal set V ∋ ∀S ∈ F , S ⊆ V ,

2. H ∈ F implies H ∈ F , i.e., the complement of H wrt V is in F , and45

3. H,G ∈ F implies H ∪G ∈ F .

Given such an F , a probability function, P , may be defined over F :
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1. Total Probability: P (V ) = 1 where V is the universal set in F ,

2. Positivity: P (H) ≥ 0, if H ∈ F , and

3. Additivity: H ∩G = ∅ implies P (H ∪G) = P (H) + P (G).50

Next, propositional logic is defined as a set of atomic variables (atoms), A =

{A1, A2, . . . , An}, and a set of logical connectives or operators, C = {¬,∨,∧}.

The language, L, is the set of all well-formed formulas and is defined recursively

as:

1. (Ai), where Ai ∈ A,55

2. (¬σ), where σ ∈ L,

3. (σ1 ∨ σ2), where σ1, σ2 ∈ L,

4. (σ1 ∧ σ2), where σ1, σ2 ∈ L,

L is the closure of the atomic variables using these connectives to generate

formulas.60

Atoms are assigned truth values, i.e., v(Ai)← true or false, and the standard

truth value functions are given for the logical connectives. Given a logical

sentence σ ∈ L, then v(σ) is defined using the connective truth functions applied

to the atomic truth assignments. Ω is defined as the set of complete conjunctions

(CC), i.e., all possible truth assignments to the atoms; although this is a set, we65

will consider it in the order of the elements as binary numbers. The truth value

of formula σ given a truth assignment ω ∈ Ω is denoted by v(σ, ω). If τ is a

tautology, then v(τ, ω) is true for all ω ∈ Ω. A contradiction is the negation of a

tautology. An equivalence class, E , is the set of all formulas such that σ1, σ2 ∈ E

implies that ∀ω ∈ Ω v(σ1, ω) = v(σ2, ω).70

Bacchus showed that a Boolean algebra may be defined over the set of equiva-

lence classes using the logical connectives as operators. If [0] denotes the smallest

element in the algebra (i.e., contradictions), and [1] denotes the largest element

(tautologies), then a probability function, µ, can be defined as follows:

1. µ([1]) = 1, and75

2. if [σ1 ∧ σ2] ≡ [0], then

µ([σ1 ∨ σ2]) = µ([σ1]) + µ([σ2])
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Then given a logical language, its associated Boolean algebra (in this case, the

Lindenbaum-Tarksi algebra), and a probability function, the probability of any

formula may be determined.

Several initial observations are in order. The logical language and the struc-

tures necessary to assign probabilities to formulas are now in place, but as80

Bacchus points out, the probabilities are given at the semantic level, and not at

the syntactic level. That is, the language cannot use these probabilities. Bac-

chus goes on to describe an extension of Halpern’s probability logic [6] which

includes the power to represent and make inferences over the probabilities of

sentences. That is not the goal in the current work.85

Consider a knowledge base, K, from propositional calculus expressed in Con-

junctive Normal Form (CNF) over n logical variables:

K = C1 ∧ C2 ∧ . . . ∧ Cm

where Ci, i = 1 . . .m is a conjunct. and:

Ci = Li,1 ∨ Li,2 ∨ . . . ∨ Li,ki

where Li,j is a literal, i.e., either a logical atom (variable) or its negation. This

is a sublanguage of that defined above.

The Satisfiability Problem (SAT) is to determine if there exists a truth as-

signment, ω, to the n atoms such that K is true; if so, we say that ω satisfies

K (denoted ω |= K). A simple method to solve SAT is to generate and test90

all 2n truth assignments; i.e., the complete conjunction set. This approach is

guaranteed to find a solution if it exists, but has O(2n) complexity.

Each conjunct in K is called a clause or sentence. K is consistent if K has

a SAT solution; otherwise, it is inconsistent. For example, A∨¬A is consistent,

while A ∧ ¬A is inconsistent. We note that SAT solvers are very efficient, and95

large formulas can be solved, even though SAT is NP-complete.

Suppose that a probability is assigned to each conjunct. That is:

K = C1[p1] ∧ C2[p2] ∧ . . . ∧ Cm[pm]

5



where pi is the probability of Ci.

Definition: A function π̄ : Ω → [0, 1] is a consistent probability distribution

with respect to K for Ω iff:

1. ∀i, 0 ≤ π̄(ωi) ≤ 1100

2.
∑2n−1

i=0 π̄(ωi) = 1.

3. pi =
∑

ωk∈Ω,ωk|=Ci
π̄(ωk).

Definition: The Probabilistic Satisfiability (PSAT) Problem is to determine if

for a given knowledge base, K, there exists a consistent probability distribution

for Ω with respect to K.105

Nilsson [7] proposed methods to find a consistent assignment of probabilities

to logical clauses (essentially rediscovering Boole’s method – also analyzed by

Hailperin [8, 9]). Georgakopoulos [10] showed this problem to be NP-complete

and exponential in n. Nilsson posed this problem in terms of probabilities over

the possible worlds as follows: givenK, determine whether there exists anm×2n

binary matrix A and a probability distribution function π̄ such that:

Aπ̄ = p̄

where p̄ = [p1, p2, . . . , pm]T from K, and A is defined as:

A(i, j) =







1 if ωj satisfies Ci

0 otherwise

Note that the probabilities of the complete conjunction set form a basis for

probabilities of the set of clauses as follows: for any clause, Ci:

P (Ci) =
∑

ωk|=Ci

π̄(ωk)

This is true because the complete conjunction set forms a partition of the event

space, and the probability of any clause is the sum of the probabilities of the

complete conjunctions that satisfy the clause.

[7] solves for π̄, the probabilities of the complete conjunction set, and shows

how probabilistic inference can be performed for an arbitrary query, so that the
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probability of any clause over the n variables can be computed. However, for a

given K, PSAT, just like SAT, may have more than one solution, and may in

fact, have an uncountable number of solutions. To see this, consider Nilsson’s

example (Modus Ponens):

K = P [0.7] ∧ (¬P ∨Q)[0.7]

Then:

Ω = {¬A ∧ ¬B,¬A ∧B,A ∧ ¬B,A ∧B}

p̄ = [0.7, 0.7]T

A =





0 0 1 1

1 1 0 1





π̄ = [0, 0.3, 0.3, 0.4]T

where π̄ is found using least squares methods. (Note that an extra row of 1’s

is added to A as is an extra row with 1 to the p̄ vector so as to force the sum

of the elements of π̄ to be 1.) It turns out that π̄ = [0.3, 0, 0.3, 0.4]T is also a

solution for this problem. In fact, if we define:

π̄(0, 0) ∈ [0, 0.3]

π̄(0, 1) = 0.3− π̄(0, 0)

π̄(1, 0) = 0.3

π̄(1, 1) = 0.4

then these equations describe an uncountable set of solutions for this problem.

Bacchus [5] states that Nilsson’s method is equivalent to the algebraic field110

of sets approach described above where in this case the probability distribution

is defined over the field of sets of possible worlds (complete conjunctions) of

the language. The possible world semantics provides a standard denotational

semantics, and a probabilistic knowledge base is just a set of constraints on

possible world probabilities.115
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Definition: A knowledge base K is probabilistically consistent if there exists a

consistent probability distribution π̄ for the Ω arising from K. Otherwise, K is

probabilistically inconsistent.

Consider:

K = P [0.7] ∧ (¬P ∨Q)[0.7] ∧Q[0.2]

Then K is probabilistically inconsistent (as shown by Nilsson). Nilsson also

considered a geometric approach in the sentence probability space where a query120

clause was added as a last dimension to the clause set. For more detailed

discussion of this approach, including the geometric approach, see [11]. This

method produces a matrix A that is exponential size in the number of variables.

3. Related Work

For broader discussions of this problem and approaches to solving it, see125

[5, 12, 13, 14, 15, 16]. Adams early work focused on the probability of condi-

tionals and its relation to measurement uncertainty. Hailperin proposed a way

to allow the expression of statistical knowledge as well as constraints on the

probability of the truthfulness of formulas in a formal first order logical frame-

work. Unfortunately, the “set of valid formulas of the logic with probabilities on130

possible worlds is not recursively enumerable” (see [17]). Thus, it is not possible

to find a finitary axiomatization. Belle and Lakemeyer have recently extended

the work of Bacchus et al. [18] to DS (Degrees of belief in the Situational cal-

culus) which “captures a family of only knowing logics” [19]. We note that Belle

gives as future directions the implementation (possibly) of a propositional ver-135

sion of DS as well as a way to “allow both discrete and continuous probabilities,

although it is not clear how this can be achieved.”

The results achieved in probabilistic first-order logic have been exploited

to extend logic programming environments to include probabilities. For exam-

ple, ProbLog is one Prolog-based language [20]. Such languages are interesting,140

but face some serious challenges, including: (1) a need for efficient inference

methods for broader language feature support, (2) an analysis of their relative
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computational complexity, and (3) how to learn probabilistic programs (cur-

rently learned from entailment, although some attempts have been made to

learn from interpretations).145

Chavira and Darwiche [21] consider the problem of probabilistic inference in

terms of weighted model counting on a propositional knowledge base. A given

Bayesian network (and consequently a known full joint probability distribution)

is converted to Conjunctive Normal Form, and the network probabilities are

used to assign weights to the CNF variables. These are then used to obtain

weights on the models. Finally, the evidence is used to select consistent models

and sum their weights. This approach assumes model probabilities are available,

i.e., Pr(x1, x2, . . . , xn) =
∏

Pr(xi | ui). Another approach based on Bayesian

networks (Bayesian Logic – BLOG) is described by Milch and Russell [22, 23],

wherein the PSAT solution is assumed. Chakraborty et al. [24] have proposed

distribution-aware sampling to achieve weighted model counting, and assume

an NP-oracle (they use a SAT solver as the black box oracle for weights of truth

assignments – i.e., possible world probabilities). The PS-SAT approach does not

require a PSAT solution as input, and does not involve any explicit representa-

tion of such a solution (either as a function or set of probabilities). Moreover,

direct comparison to their benchmark set is not possible if the knowledge bases

do not have independent logical variables. Moreover, approximately counting

the models of a CNF formula is known to be NP-hard [25]. Their algorithm

uses a SAT solver, and moreover, requires bounded tilt to succeed, where tilt

is ωmax/ωmin, the maximum and minimum probabilities of worlds making the

formula true. However, there are problem classes for which the tilt increases

exponentially with n. For instance, consider:

Fn = A1 ∨A2 ∨ . . . ∨An

and let:

ω(σ) = 2−s

where s is the number of true variables in σ; this weight function gives higher

weight when there are less true variables because it is easier to verify. Then

9



ωmax is 1
2 when just one variable is true, and ωmin is 1

2n so that tilt = 2n−1

and grows exponentially with n. Knowledge compilation may be used to allow

the application of these methods to a much larger range of Bayesian networks150

[26, 27].

Another approach is that of the Statistical Relational Learning (SRL) com-

munity [28] which extends graphical models (e.g., Bayesian or Markov networks,

see [29] for a detailed account of probabilistic graphical models) to allow rela-

tions and logical statements. The main goal is to develop models of object-

relational structures of data that has some amount of uncertainty. It is key to

build such models so as to allow efficient learning and inference. Current models

combine graphical, probability and logical structures. Markov Logic Networks

(MLN) [30, 31, 32] constitute one main SRL approach. A Markov network

models the joint probability distribution of a set of variables. A Markov Logic

Network (MLN) is a template for constructing a Markov network from a set of

logical formulas (clauses). Moreover, this representation allows the computation

of the probability of a possible world given a KB by simply assigning a weight

to each KB formula. There are however, some drawbacks to this approach.

First, Proposition 2.5 (p. 15) in [31] proves that propositional knowledge bases

can be handled by MLN’s, but requires a consistent probability distribution

(i.e., a PSAT solution) as the potential functions on the one maximal n-clique

with n variables. In general, the complexity of solving a query is exponential in

the number of cliques in the graph. e.g., consider the simple k-Modus Ponens

problem with:

K = {A1 ∧ (¬A1 ∨A2) ∧ . . . ∧ (¬Ak−1 ∨Ak)}

Then this KB has O(2n) maximal cliques. In addition, MLN’s take a maximum

entropy approach to the probabilities of the possible worlds, and it has been

shown that maximum entropy distributions are dependent on the representation

used [33], which means solutions are ambiguous.155

The method proposed here can also be viewed as a probabilistic form of

logical argumentation in that it finds a solution even though there may be
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probabilistic and logical inconsistencies in the knowledge base; i.e., is a form of

argumentation in that it finds a (perhaps locally minimal) solution (in terms of

minimal sentence probability error) which best fits the given data. Others have160

also explored inconsistencies in probabilistic knowledge bases [34, 35], but not

in this direction.

Finally, there has been some work in characterizing and improving linear

solver methods for the PSAT problem as posed by Nilsson. Hansen and Jaumard

[36] proposed the use of the column generation technique of linear programming165

in order to increase the effectiveness of their solvers. More recently, Hansen and

Perron [3] have given a merged local and global solver strategy for which KB’s

with up to 200 variables and 800 sentences have been solved. Others [37, 38]

have empirically studied the solution complexity distribution of the PSAT prob-

lem (number of solvable cases and time required as a function of m
n

where n is170

the number of variables and m is the number of sentences. There appears to

be a phase transition at about m
n
= 4.3. The notion of generalized probabilistic

satisfiability has also been recently proposed [39]; that is, “deciding the sat-

isfiability of linear inequalities involving probabilities of classical propositional

formulas” and is shown to be NP-complete.175

The in-depth relationship between the proposed method and existing meth-

ods is provided in Table 1. The following acronyms are used:

• NILS: method proposed here

• Nilsson: Nilsson’s linear system formulation

• DS: Bacchus’ Degrees of belief in Situational calculus180

• ProbLog: Fierens’ ProbLog system

• CD: Chavira-Darwiche weighted model counting

• BLOG: Bayesian Logic

• DA: Chakraborty’s distribution-aware method

• MLN: Markov Logic Networks185
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• HP: Hansen and Perron method (improvement of Nilsson)

Propositional Efficient Require Full Joint

Version Inference Prob Distribution

NILS Yes Yes No

Nilsson Yes No No

DS No No No

ProbLog Yes No Yes

CD Yes No Yes

BLOG Yes No Yes

DA Yes No Yes

MLN Yes No Yes

HP Yes Somewhat Yes

Table 1. Advantages and Disadvantages of Various Methods. The column

headings indicate: (col 1): each possible grounding of a first-order formula is

considered; (col 2): the underlying computational complexity is exponential or190

not; (col 3): the computation requires knowledge of the full joint probability

distribution.

Thus, it can be seen that NILS offers distinct advantages over the other methods

in terms of efficiency and not requiring the full joint probability distribution.

An empirical comparison is given between NILS and HP in the experiments195

section.

4. Method

The application here is a decision support system expressed in CNF form

where each sentence (clause) has an associated probability, and decision makers

pose queries in terms of variables in the knowledge base. The method proposed200

here, called NonlInear Probabilistic Logic Solver (NILS) involves conversion of

the probabilistic CNF to a set of equations (1)–(4) as described above, and

using numerical solvers. Having provided the context of the work in terms of
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languages and representations, the current approach may now be given. Using

the laws of probability structure described above, the probability of a disjunctive205

clause C = L1 ∨ L2 ∨ . . . ∨ Lk. can be expressed as:

P (C) = P (L1) + P (R)− P (L1 ∧R) (1)

P (C) = P (L1) + P (R)− P (L1 | R)P (R) (2)

P (C) = P (L1) + P (R)− P (R | L1)P (L1) (3)

P (C) = P (L1) + P (R)− P (L1)P (R) (4)

where R = L2 ∨ . . . ∨ Lk; note that the formula must be applied recursively

and will have 2k − 1 terms. Eqn (1) is the conjunction form and makes a

linear equation in the unknown probabilities. Eqns (2) and (3) are expressed

with conditional probabilities and are nonlinear. Eqn (4) assumes independent210

variables and is nonlinear. Then given a knowledge base, equations (1)–(4)

contain a set of unknown probabilities over atoms, conditions on atoms, or the

logical and of atoms.

Definition: The Probabilistic Sentence Satisfiability (PS-SAT) problem is to

find a set of values for the unknown probabilities in (1)–(4) which produce the215

given sentence (clause) probabilities on the left hand side.

Here we advance a new method based on converting the probabilistic knowl-

edge base into a set of nonlinear equations which are then solved using some

variant of gradient descent (e.g., Newton’s method). This is strictly speaking

an approximation method, and it aims to produce an assignment of probabili-220

ties to the logical expressions in the equations so as to obtain the given clause

probabilities. This may or may not lead to a consistent probability distribution.

For example, given a knowledge base (KB) with A[0.6] ∧ ¬A[0.6] which clearly

has no consistent probability, the solution produced is P(A) = 0.5. In solving

PS-SAT, the complexity is determined by the solution procedure and will, in225

general, be bounded by O(2k), where k is the maximum number of literals in a

sentence.

The NILS method consists then of the following steps:
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1. Convert K to a system of nonlinear equations expressing the clause prob-

abilities in terms of one of Equations (1) to (4).230

2. Solve numerically, constraining each unknown to be in the [0,1] interval.

Given a CNF clause of length k, the resulting formula will have 2k−1 terms.

In order to avoid this complexity, we assume that an arbitrary PSAT clause can

be converted to a 3PSAT set of clauses; otherwise, the complexity of the method

is O(2k), where k is the number of literals in the longest clause. At the present235

time, it is straightforward to transform a single clause of length four or more

to a 3PSAT KB which maintains the probability of the initial clause (i.e, when

queried); however, a general proof is not yet known. The value k provides a

parameterization of this problem, so that it is, in fact, fixed-parameter tractable

(see [40]). This means that to determine if (K, k) is in the PS-SAT language (K a240

probabilistic CNF knowledge base, and k as above) is decidable in f(k)· |x|O(1),

where f(k) = 2k, and, thus, is in class FPT (at least for independent variable

KB’s).

4.1. Independent Variables

Assuming the variables are independent allows use of Eqn (4). Thus, clauses

with one, two or three literals produce the following equations, respectively:

P (C) = P (L)

P (C) = P (L1) + P (L2)− P (L1)P (L2)

P (C) = P (L1) + P (L2)P (L3)− P (L1)P (L2)−

P (L1)P (L3)− P (L2)P (L3) + P (L1)P (L2)P (L3)

Disjunctions of length k will have 2k terms. Now consider Nilsson’s Modus

Ponens example on two variables:

K = A1[0.7] ∧ (¬A1 ∨A2)[0.7]

This gives rise to the following equations:245

0.7 = P (A1) (5)

0.7 = P (A1) + P (A2)− P (A1)P (A2) (6)
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Substituting the value for P (A1) from (5) into (6), we find that P (A2) = 0.571.

This specific case requires no search, and unlike Nilsson’s method is not ex-

ponential. However, in general the complexity of the method is related to the

convergence properties of the numerical solver.

An important question is whether or not this solves PSAT for a given K.250

Suppose the method produces probabilities for the n atoms in K such that

the clause probabilities are produced. Then we can show that there exists a

consistent probability distribution for K which can be computed from the atom

probabilities. It is not necessary to generate these 2n values since the probability

of any clause can be computed just using the atom probabilities.255

Theorem. Given K with n independent logical atoms, and an assignment of

probabilities, ak, to the atoms such that the nonlinear equations produce the

sentence probabilities, p̄, then ∃π̄ : Ω → [0, 1] ∋ π̄ is a consistent probability

distribution.

Proof: By induction on n.260

Case n = 2: Consider the ωk ∈ Ω:

P (¬A ∧ ¬B) = P (¬A)P (¬B)

P (¬A ∧B) = P (¬A)P (B)

P (A ∧ ¬B) = P (A)P (¬B)

P (A ∧B) = P (A)P (B)

In the sum of these, the first and third yield P (¬B) while the second and fourth

result in P (B). These sum to 1.

Case n: Consider the ωk ∈ Ω; each has a counterpart:

P (ωk) = P (¬Ak ∧X) = P (¬Ak)P (X)

P (ωk+2n−1) = P (Ak ∧X) = P (Ak)P (X)

which sums to: P(X). Altogether these produce the sum of the complete con-

junction set of n− 1 variables, which by induction is 1. QED
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It would be great if all consistent knowledge bases had an independent vari-

able solution, but that is not the case. For example:

K = A1[0.7] ∧ (¬A1 ∨A2)[0.5] ∧ (¬A2 ∨A3)[0.5]

has a consistent probability distribution over Ω, but not for independent vari-

ables. This can be seen as follows: from the first clause, P (A1) = 0.7. Substi-

tuting that into the equation for the second clause yields: P (A2) = 0.2857. If

this value is substituted into the equation for the third clause, we get P (A3) =

−0.7501 which is not in [0,1]. On the other hand, the assignment

π = [0, 0, 0.2999, 0, 0.25, 0.25, 0.2001, 0]

is a consistent probability assignment, and P (A∧B) = 0.2001 while P (A)P (B) =265

0.7 · 0.5 = 0.35, so that P (A ∧B) 6= P (A)P (B). The question is then: if a con-

sistent probability distribution exists for a knowledge base with independent

variables, will the gradient descent method find it?

4.2. Non-Independent Variables

Consider variables which are not necessarily independent. In this case we

use the disjunction probability Eqn (2). Unlike the independent case where

only the atom probabilities were computed (or needed), now, there is a set of

conditional probabilities which expands the set of variables to be solved. E.g.:

K = (A1 ∨A2)[0.7]

gives rise to:

0.7 = x(1) + x(2)− x(3)x(2)

where x(1) is P (A1), x(2) is P (A2), and x(3) is P (A1 | A2), and which has

solution: x(1) = 0.4663, x(2) = 0.4834, and x(3) = 0.5166. However, now the

equations from the clauses do not include all the necessary constraints arising

from the conditional variables, and equations must be added to include these.

In particular, a conditional P (A1 | A2) gives rise to three additional constraints
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expressed in terms of the conditional and related variables:

P (A1 | A2) = 1− P (A1 | A2) (Complement rule) (7)

P (A1 | A2) =
P (A1 ∩A2)

P (A2)

=
P (A1)− P (A1 ∩A2)

P (A2)

=
P (A1)

P (A2)
−

P (A1 ∩A2)

P (A2)

=
P (A1)

1− P (A2)
−

P (A1 ∩A2)

1− P (A2)
.
P (A2)

P (A2)

=
P (A1)− P (A2)P (A1 | A2)

1− P (A2)

(8)

P (A1 | A2) :

Let A1 = C and use above

P (C | A2) =
P (C)− P (A2)P (C | A2)

1− P (A2)

=
1− P (A1)− P (A2)(1− P (A1 | A2)

1− P (A2)

(9)

Another issue that arises with non-independent variables is that the solution

may not allow the direct determination of the probability of a query. This

may happen if the query involves a conditional probability not included in the

original knowledge base. For example:

K = A[0.8] ∧B[0.9]

NILS produces P (A) = 0.8 and P (B) = 0.9 for K. Given the query A ∨B, the

equation to be solved is:

P (A ∨B) = P (A) + P (B)− P (A | B)P (B)

The result is the P (A ∨ B) ∈ [0.8, 1] with P (A | B) ∈ [0.7778, 1]. The Matlab270

function lsqlin returns the solution P (A ∨B) = 0.8885 and P (A|B) = 0.9 right

in the center of the interval. Thus, the determination of the probability of a

query generally requires solving a new system (using the known values for the

knowledge base).
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4.3. Numerical Solutions275

Given a set of nonlinear equations resulting from a CNF KB and the associ-

ated sentence probabilities, it is necessary to create the sentence error function,

find an initial guess at a solution, and then apply Newton’s method or some

other technique. We have applied two methods: (1) Newton’s method, and (2)

gradient descent using the Jacobian. The stability of these methods has been280

shown for solving nonlinear systems [41].

4.4. Sentence Error Function

Given a clause, Ci[pi], the i
th element of a sentence error function is defined

as:

E(i) = −pi + P (Ci)

where P (Ci) is formed from one of the disjunction probability equations. The

scalar sentence error is ‖E‖. A solution is found by choosing an initial solution

estimate, and then using the sentence error function to perform gradient descent.285

4.4.1. Newton’s Method

Given the vector function E defined above (a vector function of m elements),

Newton’s method iterates the following until within tolerance of a solution:

1. Produce next step vector

HE(x̄k)s̄ = ∇E290

2. Move toward solution

x̄k+1 = s̄+ x̄k

where HE is the Hessian matrix for E. The development of the Hessian is done

symbolically then solved numerically in Matlab. This imposes constraints of the

application of this method to larger problems. However, we give results below295

for reasonably large KB’s.
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4.4.2. Gradient Descent using the Jacobian

Gradient descent using the Jacobian should have q-quadratic convergence

when starting not too far from a solution, but may hit a local (non-solution)

minimum otherwise. The method iterates until within tolerance of a solution300

as follows:

1. Determine the Jacobian

J = ∇E

2. Move toward lower sentence error

x̄k+1 = α ∗ J(x̄k) + x̄k
305

Consider Nilsson’s Modus Ponens example:

K = A1[0.7] ∧ (¬A1 ∨A2)[0.7]

which gives rise to:

E(1) = −0.7 + x(1)

E(2) = −0.7 + (1− x(1)) + x(2)− (1− x(1))x(2)

Figure 1 shows the convergence path for some random initial values (all ending

at [0.7; 0.571]T for the atom probabilities).

Given a knowledge base and an assignment of probabilities to the set of atom

and conditional probability variables, its quality can be determined by the final310

sentence error. If it is low, say less than 0.01, then it is a useful approximation.

Of course, the gradient descent method can be run from several initial starting

vectors and the best result selected. Better methods for initial point selection

(other than random) are discussed below.

5. Experiments and Results315

We have tested this approach on sets of randomly generated knowledge bases.

This involves selecting a number of variables (n), specifying a maximum number

of sentences to generate, as well as the maximal length of any one sentence. A
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Figure 1: Convergence Tracks for 4 Random Starting Points for Modus Ponens; This Assumes

Independent Variables.

set of sentences is generated which satisfies these constraints, and then a set

of probabilities is produced for the compete conjunction set, and from these320

the sentence probabilities are computed. This ensures that there is a solution,

although it does not preclude the existence of other solutions (generally a non-

zero measure subset of the unit hypercube). We have applied this to both

independent and non-independent variable knowledge bases.

5.1. Independent Variables325

A set of 100 KB’s was generated with independent variables, with n = 5, the

maximum number of clauses 30, and the maximal clause length of 5. Figure 2

shows the number of iterations required by Newton’s method to solve PSAT; the

blue trace shows when initial points are far from the known solution, and red

when they are near (within 0.5 vector norm). The mean number of iterations is330

4.26 when starting near, and 12.63 when starting far. The method fails on 6 of

the 100 KB’s. As for gradient descent, Figure 3 shows the number of required
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iterations. Although a few KB’s require over 1000 iterations, the mean number

of iterations required when starting near a solution is 21.19, and when starting

far is 171.58. Note that the search is terminated when a sentence error of less335

than 0.01 is reached. We have also generated larger KB’s and run the method
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Figure 2: Newton’s Method Results for 100 KB’s.

on those and solved problems with up to 1000 variables and 300 sentences. These

are produced by generating a set of atom probabilities and computing clause

probabilities from those, then finding the independent solution and comparing

the atom probabilities. This avoids the necessity of producing a representation340

for the full PSAT probability distribution over possible worlds.

5.2. Non-Independent Variables

The equations must include variables for whatever conditional probabilities

arise from the sentences, and are thus a bit more complicated. Figure 4 shows

the number of iterations required for Newton’s method on 100 random general345

KB’s with the same parameters as above, except that lenmax = 3. In this

case, solutions were found for 75 of the 100 KB’s, and the mean number of

iterations was 3.91 when starting near the known solution (within 0.1 of any

atom probability), and 10.27 when starting far from it. Figure 5 shows the
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Figure 3: Gradient Descent Results for 100 KB’s.

results for gradient descent (which found solutions for all the KB’s) and had350

mean number of iterations 662.17 for far starting points and mean number of

iterations 638.61 for near points.
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Figure 4: Newton’s Method Results for 100 KB’s.

What these results indicate is that Newton’s method should be tried first

given the low iteration cost, and then gradient descent used if Newton’s Method

fails. Also, note that even though in the case of failure (i.e., local minimum355

found), the methods were allowed to re-start at new random initial locations.
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red and Far Starting Points in blue).

Gradient descent was re-started this way and then only tried 2 alternate points.

When Newton’s Method finds a solution is does so with the initial guess; when

it failed, it did so for both near and far initial starting points.

Finally, Figure 6 shows the maximal individual atom probability error com-360

paring the atom probabilities from the actual 100 general KB’s to the atom

probabilities found by the numerical solver. The mean of the max atom prob-

ability error for near starting points is 0.09, while for far starting points is

0.10. This is very promising in that the discovered solutions are near the actual

underlying solution for most KB’s.365

23



5.3. Trajectory Visualization and Finding Good Initial Guesses

As pointed out above, if the initial guess is too far from a solution, these

methods may not converge. Thus, it would help to be able to identify good

starting points. In order to get insight into the convergence sequence, we have

developed a visualization method which maps n-D points to 2-D points. Given

a point, ā, in n-D, define the corresponding 2-D coordinates as follows:

x =

n
∑

i=1

(aicos(
(i− 1)π

n
)) (10)

y =

n
∑

i=1

(aisin(
(i− 1)π

n
)) (11)

Figure 7 shows the convergence trajectories for four different initial points. The

q-convergence of the method can be estimated by determining the ck’s in the

following equation:
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| x̄k+1 − x̄∗ |≤ ck | x̄
k − x̄∗ | (12)
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Figure 8 shows these values for the 100 tracks for gradient descent on the general

KB’s. The plots indicate that the method is q-superlinear/quadratic.
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Figure 8: Convergence step ratio for 100 general KB’s using Gradient Descent.

Another interesting aspect of this visualization method is its use to find good

starting points. Given fixed x and y in the plane, we have have developed a370

method to obtain a unique point in the pre-image of Eqns (1) and (2). Each

equation defines a hyperplane in n-space; taken together they represent a hy-

perplane of dimension n− 2. One way to understand the map defined by Eqns

(1) and (2) is as an n-joint prismatic manipulator, where joint k translates in

the direction θ = (k−1)π
n

. The manipulator’s workspace is a 2n-gon (as shown in375

Figure 7). By uniformly sampling this workspace, and then finding pre-image

points in n-D, the sentence error can be found, and then the lowest such value

used to pick the initial point. Of course, since there is a potentially infinite

number of pre-image points for each x and y location, other methods can be

used to sample that subspace to find better starting points.380

6. Conclusions and Future Work

We propose a novel approach to solve PS-SAT which avoids the computa-

tional complexity of previous methods as well as the error introduced using MC-
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SAT methods. Instead we solve a system of nonlinear equations derived directly

from the meaning of the probability of the logical sentences. The experiments385

reported here show that solving these systems is possible and not overly complex

(evidence shows q-superlinear/quadratic convergence). The number of variables

and sentences used in these experiments is beyond current state-of-the-art work

on directly solving PSAT (e.g., [3]). Moreover, the method is Fixed-Parameter

Tractable, where the fixed-parameter k is the length of the longest clause, and390

the associated function is 2k.

Other future work includes the investigation of:

1. The problem encountered with Newton’s Method. It is possible that the

Hessian as computed does not remain positive definite which can cause

failure. It may be possible to address this with SVD methods.395

2. The discovery of good initial starting points. For this, the trajectory

visualization method will be studied; i.e., the inverse kinematics of the

planar n-joint prismatic manipulator.

3. The exploitation of the method to support a knowledge base providing

probabilistic logic and in the future, argumentation. Such a capability will400

provide decision makers and analysts a robust estimate of the confidence

of a statement or the consequences of an action. The application domain

for this is geospatial knowledge bases [1]. Given a query for a KB with

independent variables, the solution to any logical formula may be found

from the atom probabilities. However, for KB’s with non-independent405

variables, the equations resulting from the query may involve new con-

ditional probabilities, and thus, requires the use of a solver when there

is more than one unknown. Queries in the current version of NILS are

restricted to disjunctions with less than four literals.
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