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ABSTRACT

Recently there has been a growing interest in substituting traditional synthetic polymers

with natural polymers for different applications. However, natural polymers such as cellulose

suffer from few drawbacks. To become viable potential alternatives of synthetic polymers,

cellulosic polymers must have comparable physico-chemical properties to that of synthetic

polymers. So in the present work, cellulose polymer has been modified by a series of

mercerization and silane functionalization to optimize the reaction conditions. Structural, thermal

and morphological characterization of the cellulose has been done using FTIR, TGA and SEM,

techniques. Surface modified cellulose polymers were further subjected to evaluation of their

properties like swelling and chemical resistance behavior.

Key Words: Natural cellulose; surface modification; thermal; morphological and physico-

chemical properties.
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1. Introduction

Synthetic polymers have been found to play an important role in a number of

applications(Zhou et al., 2013)(Ding et al., 2013)(Chen & Gao, 2007b). These polymer have been

used as diferent components in the energy storage systems starting form electrolyte to dielectric

capacitors for energy storage applications(Chen & Gao, 2007a)(Lin & Lee, 2013)(Lin, Thakur,

Tan, & Lee, 2011a). However, during the last few decades, environmental friendly natural

polymers have attracted greater attention all over the world due to the increasing environmental

awareness as well as the depletion of petroleum based resources (Banerjee et al., 2013)(Bharti,

Mishra, & Sen, 2013)( Thakur, Thakur, & Gupta, 2014)( Thakur, Thakur, & Gupta, 2013a). Due

to their inherent properties such as renewable nature, biodegradability, economic/ low cost, easy

availability, natural polymers are emerging as viable alternatives to traditional petroleum-based

materials (G. U. Rani, Mishra, Sen, & Jha, 2012)( Thakur, Thakur, & Gupta, 2013c)(Basta, El-

Saied, El-Hadi, & El-Dewiny, 2013). Among various types of natural polymers, cellulose based

polymers are the most abundant natural materials available in earth(Mishra, Rani, & Sen, 2012)(

Thakur, Thakur, & Gupta, 2013b). Different types of biopolymers ranging from algae to natural

cellulosic fibers can be the best option to serve the current energy needs (Banerjee et al.,

2013)(Jawaid & Khalil, 2011)(Sabo, Basta, & Winandy, 2013). The effective use of

biorenewable cellulosic polymers, which have been shown to have some promising properties

comparable to traditionally used synthetic polymers can successfully reduce the use of petroleum

resources(P. Rani, Sen, Mishra, & Jha, 2012)(Dhakal, Zhang, Guthrie, MacMullen, & Bennett,

2013)(Thakur, Singha, & Thakur, 2011). Natural cellulosic polymers such as cellulosic fibers are

typically derived from different types of plants, grasses and
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various other resources(Thakur, Singha, & Thakur, 2013a). Cellulose fibers exhibit the potential

to replace traditional synthetic fibers as reinforcement in the production of cellulose-fiber-

reinforced green composites(Khoathane, Vorster, & Sadiku, 2008)(Thakur, Singha, & Thakur,

2013b)(Thakur, Singha, & Thakur, 2012). These cellulosic composites are being envisioned as

one of the growing sectors in the composites industry due to their lower density, high specific

modulus/ strength, and low economic cost than synthetic fibers reinforced composites(Dhakal,

Zhang, Reis, Surip, & Bennett, 2012)(Khalil et al., 2013).

Among various cellulosic fibers Eulaliopsis binata fibers possess a strong potential to be

used as reinforcement in composites(Thakur, Thakur, & Gupta, 2013c)(Thakur, Thakur, &

Gupta, 2013e) (Thakur, Thakur, & Gupta, 2013f). These fibers can be used to prepare

lightweight composites and in many other applications. However, the hydrophilic nature of these

cellulosic fibers limits their applications as it results in poor chemical as well as moisture

absorption resistance (Thakur, Thakur, & Gupta, 2013c). These properties in the long term, affect

the overall properties of the composite materials. So in this preliminary work, we have performed

the surface modification of cellulosic Eulaliopsis binata fibers through a series of mercerization

and silane functionalization.
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2. EXPERIMENTAL

2.1 Materials and methods

Natural Cellulosic Eulaliopsis binata fibers used in this preliminary work were obtained

from local resources of Himalayan region. Prior to use, these fibers were purified as per standard

method(Thakur, Thakur, & Gupta, 2013c)(Thakur, Thakur, & Gupta, 2013e). In brief, these

fibers were initially soaked in a detergent solution for specific time intervals and subsequently

extensively washed with tap water. Chemicals namely, ethanol, acetone, sodium hydroxide

(NaOH), and vinyltrimethoxysilane were used as received.

The surface modification of the Eulaliopsis binata fibers was initiated by first carrying

out the mercerization of these fibers(Singha et al., 2009). Mercerization is frequently referred as

the pretreatment process in the modification of biopolymers(Singha & Thakur, 2009a). In the

mercerization process, cellulosic Eulaliopsis binata fibers were immersed in pre-demined (2%)

concentration of NaOH solution for series of time intervals at room temperature for the

optimization of time. Subsequently, these fibers were thoroughly washed with distilled water for

removal of any NaOH content, followed by neutralization with 2 % acetic acid and excess

washing with water(Singha & Thakur, 2009b). After the completion of this reaction step, these

fibers were dried in an oven at 70 oC to a constant weight. After the optimization of time, the

effect of different concentration of NaOH solutions (2-14%) at the optimized time period was

also studied. The optimization of time and concentration of NaOH ensures that cellulosic fibers

are ready for modification with silane treatment(Thakur, Singha, Kaur, Nagarajarao, & Liping,

2010).
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Surface functionalization of the Eulaliopsis binata fibers was done using

vinyltrimethoxysilane as the coupling agent. The mercerized Eulaliopsis binata fibers were

dipped in an ethanol/water mixture in the ratio (60:40) with optimized concentration (5 %) of the

coupling agent for 2 h. In order to ensure efficient coating of vinyltrimethoxysilane coupling

agent on the fibers, the pH of the solution was maintained between 3.5 and 4, using the

METREPAK Phydrion buffers(Singha et al., 2009) (Singha & Thakur, 2009a) (Singha & Thakur,

2009b). After the predetermined time interval, the ethanol/water mixture was drained out. The

Eulaliopsis binata fibers fibres were then dried in air and then in an oven at 70 oC to a constant

weight(Singha et al., 2009) (Singha & Thakur, 2009a) (Singha & Thakur, 2009b).

2.2 Structural and physico-chemical characterization

FT-IR spectra of the pristine and vinyltrimethoxysilane treated Eulaliopsis binata fibers

taken using KBr pellets on PERKIN ELMER RXI Spectrophotometer in the range of 400-4000

cm-1. The surface morphology of the pristine/ silane treated Eulaliopsis binata fibers was studied

Scanning electron microscopic (SEM), while the thermal (TGA) behaviors was were studied with

the help of a thermal analyzer (Perkin Elmer) at a heating rate of 10 0C/ min by taking 10mg

weight for each sample in nitrogen atmosphere(Singha et al., 2009) (Singha & Thakur, 2009a)

(Singha & Thakur, 2009b). The effect of silane coupling agent on the swelling/ water uptake

behavior of the pristine/ silane treated Eulaliopsis binata fibers was studied using the standard

method in different solvents e.g. water, methanol, and isobutanol(Singha et al., 2009) (Singha &

Thakur, 2009a) (Singha & Thakur, 2009b). The percent swelling behaviors of the pristine/

vinyltrimethoxysilane treated Eulaliopsis binata fibers was determined in the following

manner(Singha et al., 2009) (Singha & Thakur, 2009a) (Singha & Thakur, 2009b):
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Where Wf =Final weight of the Eulaliopsis binata fibers

Wi=Initial weight of the Eulaliopsis binata fibers

The effect of silane coupling agent on the chemical resistance behavior of the pristine/ silane

treated Eulaliopsis binata fibers was studied as per the method standard method in the following

manner(Singha et al., 2009) (Singha & Thakur, 2009a) (Singha & Thakur, 2009b):
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Where wT = total weight of the Eulaliopsis binata fibers

aciW = weight after certain interval Eulaliopsis binata fibers

3. Results and Discussion

Surface modification of materials procured from different natural and synthetic resources

through different treatments is one of the facile method to obtain the materials with desired

properties(Dhakal, Zhang, & Bennett, 2012)(Lin, Thakur, Tan, & Lee, 2011b)(Pilla, Gong,

O’Neill, Rowell, & Krzysik, 2008). There is some existing literature available on the effect of

surface treatment on the mechanical properties of polymer composites but limited information is

available on the thorough study of effect of vinyltrimethoxysilane treatment on the
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physicochemical properties of the Eulaliopsis binata fibers(Pilla, Gong, O’Neill, Yang, &

Rowell, 2009)(Maheswari, Reddy, Muzenda, Shukla, & Rajulu, 2013). So in this work we have

studied the effect of vinyltrimethoxysilane treatment on the physico-chemical properties such as

water absorption, water uptake and chemical resistance of the Eulaliopsis binata fibers. The

hydroxy groups present in Eulaliopsis binata fibers backbone have been found to responsible for

the water/ moisture absorption (Thakur, Thakur, & Gupta, 2013c)(Thakur, Thakur, & Gupta,

2013e). These functional groups also play a key role in the surface modification of Eulaliopsis

binata fibers as these are  consist of linear glucan chains with repeating (1→4) ß-glucopyranose

units (Pinto, Chalivendra, Kim, & Lewis, 2014)(Pinto, Chalivendra, Kim, & Lewis, 2013)

(Thakur, Thakur, & Gupta, 2013c)(Thakur, Thakur, & Gupta, 2013e). Mercerization is one of the

best method to remove some of the impurities from the surface of the natural cellulosic fibers. In

the present work, the activation of functional groups on Eulaliopsis binata fibers have been

carried out using mercerization of these fibers with different concentration of NaOH for selected

time intervals using the standard method reported in the literature (Singha et al., 2009) (Singha &

Thakur, 2009a) (Singha & Thakur, 2009b). These mercerized Eulaliopsis binata fibers were

subsequently subjected to surface functionalization with the vinyl silane coupling agent.

3.1 Effect of reaction time on mercerization of Eulaliopsis binata fibers

The effect of reaction time in the mercerization of Eulaliopsis binata fibers was studied in terms

of percentage weight loss using the standard method(Singha et al., 2009) (Singha & Thakur,

2009a) (Singha & Thakur, 2009b). Figure 1 shows the effect of the mercerization (selected % of

NaOH was used in all the experiments). The maximum mercerization of Eulaliopsis binata

fibers was found to occur at 270 minutes and after which it nearly saturates due to the trapping of
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sodium ions and other side reactions as these did not favor the further weight loss in the

Eulaliopsis binata fibers. The mercerization of Eulaliopsis binata fibers facilitates the removal

of impurities as well as definite amount of wax and lignin. After the optimization of time,

mercerization of Eulaliopsis binata fibers was done using different concentration of NaOH

starting from 3-15 %. The concentration of NaOH was varied in the range of 3-15 % because

Eulaliopsis binata fibers are full of cellulose, hemicellulose and lignin along with various other

constituents. These different components are strongly associated with each other and are difficult

to separate/ remove using mild concentration of NaOH. An appropriate amount of NaOH helps in

the removal of undesired components from the cellulosic fibers and facilitates the modification

through silane treatment/ graft copolymerization. In this work the concentration was carried using

different % of NaOH and was optimized by studying the % swelling behavior of Eulaliopsis

binata fibers in different solvents; % water uptake behavior of Eulaliopsis binata fibers and %

weight loss (in different chemicals) after treatment with fixed amount of silane as discussed in

the following section.

3.2 Silane treatment on mercerized Eulaliopsis binata fibers

Vinyltrimethoxysilane treatment of different mercerized Eulaliopsis binata fibers was

done as per the method reported in experimental section. Vinyltrimethoxysilane induced

functionalization of Eulaliopsis binata fibers is a facile route to alter the surface characteristics of

the raw fibers. However it is not as much effective as the graft copolymerization techniques

where hydrophobic polymers are grafted onto the cellulosic fibers(Thakur, Singha, & Thakur,

2014)(Thakur, Thakur, & Singha, 2013). Functionalization of Eulaliopsis binata fibers with

vinyltrimethoxysilane involves hydrolysis, condensation and bond formation stages, similar to
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the one reported for other natural cellulosic fibers with the difference in the structure of the silane

coupling agent(Singha et al., 2009) (Singha & Thakur, 2009a) (Singha & Thakur, 2009b).

3.3 Physico - chemical properties of Silane functionalized Eulaliopsis binata fibers

Effect of vinyltrimethoxysilane treatment on the swelling behaviour, water uptake and

chemical resistance of the pristine and functionalized Eulaliopsis binata fibers has been shown in

the figure 2 to 5 respectively. It is obvious from the figure 2 that the raw Eulaliopsis binata fibers

follows the trend in the swelling as H2O >CH3OH > iso-BuOH. This trend in the swelling

behavior of raw fibers can be attributed the fact that raw cellulosic Eulaliopsis binata fibers

contain abundant hydroxyl (-OH) groups and water molecules have greater affinity for these

groups compared to the CH3OH & iso-BuOH. As a result of the greater affinity of water towards

the hydroxyl groups of Eulaliopsis binata fibers, there is more penetration of water into these

fibers rather than the other alcoholic solvents.

However after the silane functionalization, the Eulaliopsis binata fibers show less

swelling due to the blockade of active functional groups cited by the

vinyltrimethoxysilane(Singha et al., 2009) (Singha & Thakur, 2009a) (Singha & Thakur, 2009b).

It is also evident from the figure that the 12% mercerized Eulaliopsis binata fibers followed by

treatment with the vinyltrimethoxysilane show the lowest swelling behaviour. Similar behaviour

was also observed in case of water uptake demonstrating that 12% mercerized fibers are

most efficiently functionalized by vinyltrimethoxysilane coupling agents (figure 3). These

functionalized Eulaliopsis binata fibers were also subjected to the study of chemical resistance

behavior in the solutions of 1N HCl and 1N NaOH. The resistance of the Eulaliopsis binata

fibers towards chemicals was also found to be enhanced after silane functionalization (Figure 4-
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5). This behavior was also attributed to the blockage of active functional groups on the

Eulaliopsis binata fibers vulnerable to the chemical attacks(Singha et al., 2009) (Singha &

Thakur, 2009a) (Singha & Thakur, 2009b).

3.4 Characterization of raw and grafted Eulaliopsis binata fibers

The characterization of the Eulaliopsis binata fibers was carried out using FT-IR

Spectroscopy, SEM and TGA analysis to ascertain the vinyltrimethoxysilane induced surface

functionalization of these fibers. The FT-IR spectrum of the raw cellulosic Eulaliopsis binata

fibers and vinyltrimethoxysilane functionalized fibers are shown in the figure 6(a-b). Figure 6 a

shows the spectrum of raw Eulaliopsis binata fibers. The peaks at 3415 cm -1, 1746 cm -1 and

12 44 cm -1 in the spectrum of the Eulaliopsis binata fibers can be assigned to the bonded OH

groups and the C-O ring of lignin and carboxylic groups of pectin and hemicellulose(Thakur,

Thakur, & Gupta, 2013c)(Thakur, Thakur, & Gupta, 2013e). Several other peaks in the spectrum

of the Eulaliopsis binata fibers can be assigned to the basic constituents of any lignocellulosic

fibers. However, after the functionalization of the Eulaliopsis binata fibers, some of the basic

peaks of the fibers are disappeared while some due to silane groups are appeared. The peaks at

1746 cm -1 and 1244 cm -1 were found to be disappeared as a result of mercerization of these

fibers. However, some new peaks as a result of the silane incorporation onto the Eulaliopsis

binata fibers also appeared in the region from 750-1800 cm -1 further confirming the successful

functionalization of these fibers through silane treatment(Singha et al., 2009) (Singha & Thakur,

2009a) (Singha & Thakur, 2009b). The peaks at 1575 cm -1 and 1490 cm -1 strongly

demonstrated the presence of the silane functional groups on the Eulaliopsis binata fibers(Singha

et al., 2009) (Singha & Thakur, 2009a) (Singha & Thakur, 2009b).
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Figure 7 (a-b) shows the SEM images of the raw and vinyltrimethoxysilane functionalized

Eulaliopsis binata fibers. Both the images show the clear cut difference in the surface

morphology of the fibers. It is observed from these image that the fibers surface changes

significantly after the silane treatment and become almost rough. The changes in the morphology

can be attributed to the removal of the impurities, wax, hemicellulose etc. from these fibers as

well formation of silane coating the Eulaliopsis binata fibers surface.

Figure 8 (a-b) shows the thermograms of the raw and vinyltrimethoxysilane

functionalized Eulaliopsis binata fibers surface. It is evident from the thermograms that the

thermal degradation of Eulaliopsis binata fibers prior to and after silane functionalization covers

a wide range of temperatures. For the raw Eulaliopsis binata fibers, the initial decomposition

(IDT) temperature was found to be of 208 0C with a percent weight loss of 11 %. The final

decomposition temperature (FDT) for these fibers was found to be 480 0C with a percent weight

loss of 75 %. This thermal behaviour is similar to the other cellulosic fibers(Singha et al., 2009)

(Singha & Thakur, 2009a) (Singha & Thakur, 2009b). After silane functionalization the modified

fibers showed little variation in the thermal stability. The FDT of the vinyltrimethoxysilane

functionalized Eulaliopsis binata fibers was found to be 491 0C. Thus both the SEM and TGA

study further supports the FTIR data reconfirming the successful functionalization of the

Eulaliopsis binata fibers through vinyltrimethoxysilane coupling agent.

4. Conclusions

Eulaliopsis binata fibers are one of the unexplored lignocellulosic materials having huge

potential to be used in a number of applications. In this work, the surface functionalization of
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lignocellulosic Eulaliopsis binata fibers was carried out using mercerization followed by silane

treatment using vinyltrimethoxysilane as a coupling agent. Subsequently, the effect of silane

functionalization onto the physico-chemical behavior of the Eulaliopsis binata fibers was

studied. It was observed from the study that the vinyltrimethoxysilane induced functionalization

significantly affects the physico-chemical properties of the Eulaliopsis binata fibers. These

surface modified fibers can be subsequently used as one of the component in the preparation of

the green polymer composites.
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Figure 1- Effect of reaction time on mercerization of Cellulosic Eulaliopsis binata fibers



Figure 2 Effect of silane treatment on % swelling behavior of Eulaliopsis binata fibers in

different solvents



Figure 3 Effect of silane treatment on % water uptake behavior of Eulaliopsis binata fibers.



Figure 4 Effect of silane treatment on acid resistance behavior of raw and grafted Cellulosic

Eulaliopsis binata fibers in 1 N HCl at different time intervals



Figure 5 Effect of silane treatment on base resistance behavior of raw and grafted Cellulosic

Eulaliopsis binata fibers in 1 N NaOH at different time intervals.



Figure 6(a) FTIR spectrum of raw cellulosic Eulaliopsis binata fibers.



Figure 6 (b) FTIR spectrum of silane treated cellulosic Eulaliopsis binata fibers



(a)

(b)

Figure 7- Scanning electron micrographs of (a) raw cellulosic Eulaliopsis binata fibers (b)

silane treated cellulosic Eulaliopsis binata fibers.



Figure 8 (a) - Thermogravimetric analysis of raw cellulosic Eulaliopsis binata fibers



Figure 8 (b) - Thermogravimetric analysis of silane treated cellulosic Eulaliopsis binata fibers


