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A B S T R A C T

The concept of the soil catena was first explicitly formalised by Geoffrey Milne and his colleagues in East Africa
in the 1930s. It has been widely adopted and applied in soil survey and continues to be of great value in soil and
other field sciences The concept characterises widespread patterns in which distinctive associations of soils and
vegetation are consistently located in specific slope positions. The formalisation of the concept in an area well
outside the mainstream of soil research appears to have been due to the combination of highly visible recurrent
patterns of red slope soils overlooking dark valley clays in East Africa’s extensive savannahs, together with a
group of receptive and collaborative soil scientists working in a supportive institutional environment. The
concept is often attributed to Geoffrey Milne, the group’s coordinator, but we show that several colleagues and
friends also contributed. We summarise some of the early soil catenas characterised by Milne and his colleagues
in Uganda, Kenya and Tanganyika Territory (now Tanzania). Even at the beginning, it was appreciated that the
catena was not universally applicable and that heterogeneity of parent materials can override catenary patterns.
The catena was quickly and widely adopted in soil science, and this diffusion has led to some broadening of the
definition, and several types of soil pattern are now designated as catenas. The concept has also spread beyond
soil science and is used by ecologists, geomorphologists and hydrologists amongst others. It continues to be a
paradigm of great explicative and educational power in soil science and ecology.

1. Introduction

Few concepts have proved more useful in tropical soil science than
the soil catena, as formalised in the 1930s by Geoffrey Milne and his
colleagues in East Africa. Spatial associations between soils and topo-
graphic position have long been recognised intuitively by farmers, land
managers, and also by the early pioneers in modern soil survey and
pedology. The explicit formalisation of these relationships in the soil
‘catena’ (=chain in Latin; plural strictly catenae but more commonly
‘catenas) clarified many aspects of the spatial distribution of soils in
savannahs and other biomes. We trace the origins and early applica-
tions of the concept in East Africa, and outline some of the inevitable
broadening in its definition that followed from its global diffusion.

2. Precursors of the catena

In some indigenous systems of land assessment, topographic posi-
tion is rated above soil sensu stricto (Krasilnikov and Tabor, 2003). Even
where soils predominate, topography is often an important criterion,
and it figures prominently in about half of the 62 ethno-pedological
classification systems reviewed by Barrera-Bassols and Zinck (2003).

The ethno-pedotaxonomy of the Sukuma people of north-western
Tanzania incorporates topographic position (Morison and Wright,
1952; Peat and Prentice, 1949).

The importance of topographic associations was recognised in early
studies of East African soils. The visually striking patterns of red soils on
slopes over black cracking clays in valleys were identified by agri-
cultural scientists and extension workers in German East Africa, espe-
cially Vageler. They noted associations of soil colour, drainage and base
status with topographic position during the early years of the 20th
century (Phillips, 1929).

Topographic position has been taken as an indicator of soil change
and used as an aid to mapping since the beginnings of modern soil
survey (Bonsteel et al., 1906; Hall and Russell, 1911).

3. Overview and definition of the catena concept

The term catena sensu stricto (Young, 1976) is used for a sequence of
distinct but pedogenically related soils that are consistently located on
specific facets down a slope, giving recurrent topographically asso-
ciated soil patterns (Milne, 1936b; 1947). Visible features in most ca-
tenas in the East African savannahs include: freely drained, reddish soils
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on long, gentle upper and middle slopes; imperfectly drained, dull co-
loured soils with variegated mottling and blackish ferrimanganiferous
concretions on gently concave lower slopes; and dark poorly drained
soils in the valleys (Fig. 1). Textural patterns vary considerably but the
valley soils are often heavy smectitic clays with higher pH values and
base saturations than the red soils upslope. Catena interfluves vary from
wide and smooth with deep reddish soils to steep and rocky with
shallow greyish soils. The different soils down a catena are associated
with floristically and structurally distinct types of vegetation and land
management characteristics.

The most widely accessible early definition was by Milne (1947); “A
regular repetition of soil profiles in association with a certain topography”
and that “a distinctive word is needed in referring to this phenomenon” and
he proposed “catena”.

4. Context of the formalisation of the catena concept in East Africa

The formalisation and naming of the concept arose out of the work
of a group of East African soil specialists in the 1930s. A feature of their
working environment was the freedom to collaborate across territorial
borders, largely as an outcome of the Imperial Agricultural Research
Congress in 1927. Modern soil survey was then still in its infancy, and
the British colonial authorities had only just begun to realise its po-
tential value. The conference passed a resolution to strengthen agri-
cultural research through inter-territorial cooperation in the organisa-
tion of soil surveys (Ministry of Agriculture and Fisheries, 1928). This
authorised collaboration between the Soil Chemists in the East African
territories, i.e. Dr W.S. Martin and G. Griffith in Uganda; V.A. Beckley
and G.H. Gethin Jones in Kenya; L.W. Raymond in Zanzibar and the yet-
to-be appointed Soil Chemist for Tanganyika Territory (Fig. 2). The

chemists were involved in agricultural extension and research in their
separate territories, but their remits now included liaison on regional
soil characterisation and mapping (Milne et al., 1936).

Geoffrey Milne was appointed as the Soil Chemist to the re-
habilitated East African Agricultural Research Station at Amani in
Tanganyika (Fig. 2) in 1928 (Nature, 1942). The research programme
there included “Surveys: the study of the basic types of East African soils,
their characteristics, formation, distribution and verification in relation to
climate and other influences. The work to be contributory to and correlated
with the projects African soil survey” (Nowell, 1930). Milne became the
coordinator and inspirational leader for regional soil studies in East
Africa.

As well as the soil chemists, others who collaborated with Milne in
the mapping and conceptual work included his wife Kathleen, a qua-
lified geographer, and two friends, Clement Gillman and Bernard Burtt.
Gillman was an engineer on the Tanganyika Railway for about four
decades, but he was also a wide-ranging polymath with a geological
background and a keen interest in the geomorphology, ecology
(Gillman, 1949) and all aspects of the Tanganyikan landscape (Hoyle,
1987). Burtt was a botanist in the Tanganyikan government service
and, like Milne and Gillman, he was an observant, widely travelled and
collaborative field scientist (Burtt and Welch, 1957).

The first traceable written identification of catenary patterns in East
Africa was by W.S. Martin, who observed and reported repeated slope
soil sequences as a landscape feature around the Bukalasa Research
Station in Central Uganda (Fig. 2) (Brown et al., 2004). In a letter to
Milne prior to the first meeting of the soil chemists at Amani he wrote:
“In connection with the distribution of soils found in this rolling type of
country that we have in Uganda such as the Bukalasa samples, it is obvious
that all profiles may be found in one geological formation that the differences
arise through topography, soil, climate, etc.” He also noted that: “Over
large areas of Uganda where local variation in topography were regularly
repeated, a given colour on any map finally produced (on any but an im-
practicably large-scale) would have to be interpreted as indicating the oc-
currence not of a single soil but of a sequence of soils occurring generally
over the area to be worked out on the actual ground in each instance ac-
cording to topography and other local influences” (Martin, 1932). In 1932
he collected a set of soil monoliths and exhibited these at the first Soil
Chemists meeting in Amani to show the sequence at Bukalasa
(Grunwald, 2005). The sequence he identified on the Basement Com-
plex around Bukalasa was later designated as the Buganda catena
(Figs. 2 and 3a). It is typical of many East African catenas with a rocky
crest, deep reddish soils on the long midslope; and black cracking clay
in the valley.

Buwekalu is another extensive catena in Uganda (Figs. 2 and 3b).
This is similar to Buganda, but the relief is greater, there are more rock
outcrops on the crest and upper slopes, and the soil textures are coarser,
particularly on the lower slopes (Radwanski and Ollier, 1959).

The continued relevance of the catena concept in its area of origin is
shown by the study of Rehm and Grashey-Jansen (2016) in the Masaka
district of Uganda (Fig. 2). The catena they describe is similar to Mar-
tin’s Buganda for the soils in the valley and on the slopes, although their
slope soils appear to have more iron concretions and plinthite. The
main difference is that their catena has a broad and gently convex crest
with deep reddish loams (Fig. 3c), in contrast to the steep and rocky
crest with shallow soils of Martin’s Buganda. The difference is probably
due to the lower altitude and more subdued relief of their study area
compared to Bukalasa. They designated their catena as Buganda, but in
Fig. 3c we call it Masaka, to avoid confusion.

Although Milne visited Kenya, Uganda and Zanzibar, his own
fieldwork concentrated on Tanganyika. He identified and mapped a
number of catenas (at locations 4, 5 and 9 in Fig. 2), the best char-
acterised of which was at the Ukiriguru Research Station in the
northwest of the territory (Fig. 4a). He used it as his type catena in a
short note in Nature on the role of erosion in pedogenesis, and in his
suggestions for soil classification and mapping in East Africa (Milne,

Fig. 1. Main soils of low relief catena, Embu, Kenya: (a) Red fine loam on upper
slope; (b) Dark clay loam on lower slope. (Photos by S. H. Hallett).
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1935b; 1936a).
Although it has a simple topographic profile, this catena is quite

complex. Downslope from the shallow stony soils between the tors on
the hill crests, the soils on the upper and middle slopes are deep, red-
dish, leached, and non-calcareous loams of low to moderate nutrient
fertility (Peat and Prentice, 1949; Le Mare, 1972; Szilas et al., 2005).
Exchangeable base status increases downslope in the greyish soils on
the lower slopes, and is considerably higher in the dark valley clays.
Another of Milne’s (1947) catenas is the Unyanyembe (Fig. 2), which is
developed from more siliceous rocks of the Basement Complex, and has
coarse textures (Fig. 4b).

The majority of Milne’s catenas were in savannah plains with low to
moderate relief. He also used the concept in more rugged terrain below
the escarpment of the Usumbara Mountains (Milne, 1944). Unlike the
transects for relatively undissected slopes in Figs. 3 and 4, he depicted
the Usumbara catena in a schematic plan. This enabled him to show
localised wash and fan alluvial deposits in dissected parts of the slopes
(Fig. 5).

The plan shows that red earths of fairly heavy, though sometimes
gritty, textures occupy most of the ridges and their slopes on the un-
dissected slopes. There are dark grey to black clays in the swampy
valleys, and a concave intermediate zone of variable width with dull
brown to yellow-brown soils, which are sandy at the surface but heavier
below and which have a greyish mottled subsoil with some iron con-
cretions. Where the slopes are dissected by low order streams, Milne
named most of the young, imperfectly drained and intermittently

flooded alluvial soils on the fans as Kitivo (Fig. 4), after a local village
(Mugogo et al., 1987).

Milne summarised his territorial findings and conclusions in a
government report on a pedo-ecological tour of Tanganyika in 1936
(Milne,1936b). They did not become widely available until published in
a comprehensive posthumous paper in the Journal of Ecology (Milne,
1947), which was prepared by Gillman.

Milne and his colleagues used catenas when mapping generalised
soil patterns over large areas, but they recognised that the concept was
not universally applicable. Their provisional soil map of East Africa
(Milne et al., 1936) showed catenary patterns as predominant in
southern Uganda and northwestern Tanganyika. Although catenas were
identified elsewhere, they were not dominant (Fig. 2).

Catenary patterns figured less in early accounts of Kenya’s soils, and
there is no reference to catenas in Kenya in the text of Soils of East
Africa (Milne et al.,1936). However, the map shows predominantly
catenary patterns in southwestern Kenya, adjacent to Lake Victoria, and
Milne records that “Mr Gethin Jones has described to me well-marked
examples from the formations adjoining the east coast of Lake Victoria”
(Gethin-Jones,1934; Milne, 1935a). V.A. Beckley noted regular patterns
of different soils on the long slopes around Mount Kenya (Milne,
1935a), but there are considerable altitudinal and climatic trends
within these patterns, and they appear to be climosequences, rather
than topographically determined catenas. Fig. 1 shows the soils of an
unambiguous Kenyan catena in an area of low-moderate relief to the
southeast of Mount Kenya.

Fig. 2. Soil Association Locations referred to in the text with predominantly catenary soil patterns (shaded) in Provisional Soil Map of East Africa. 1 Bukalasa; 2
Buwekalu; 3 Masaka; 4 Ukiriguru; 5 Unyanyembe; 6 Kitivo; 7 Amani, 8 Muheza; 9 Kongwa; 10 Mbeya; 11 Mbozi; 12 Nachingwea, 13 Embu.
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It is clear that Milne himself recognised that catenas are not ap-
propriate in some areas. In what must have been his near-ultimate field
trip in Tanganyika, he examined the soils of sisal estates along the
Central Railway. He identified 32 soil types and associated them with
different landscape positions, but he did not mention catenas. He des-
ignates some soils as ‘fossil’ to indicate that they appear to have

developed in old regoliths, and possibly experienced moister paleocli-
mates than at present. This report is also notable in that his soil suit-
ability classification for sisal includes the forthright “Class I. Soils too
good for sisal” (Milne, 1941).

5. Post-Milne applications of the catena in East Africa

Post-Milne soil surveyors in Tanganyika/Tanzania were also selec-
tive in their application of the catena concept. The 1968–69 survey of
Tanzania recognised catenary patterns as predominant only in the
northwestern part of the country (Wengell et al., 1969). Brian Anderson
described some soil distributions as catenary in his studies at Kongwa
and Nachingwea (Fig. 2), but noted that parent materials and landscape
history also determined soil patterns (Anderson, 1957; Muir et al.,
1957). He later noted that “The catena was a bit of an oversimplification.
Some high ground in Tanzania is a relic of very ancient erosion cycles (mid
tertiary?) so the soils are palaeosols, while the valleys are younger, so the
conditions are not uniform over wide areas” (B. Anderson, p.c., 2001).
Baker (1970) believed that “.. no simple catena is evident in most parts of
the country, Ukiriguru which provides the classic catena, and the sur-
rounding country being an exception. In general the soils are more closely
associated with the underlying rocks or parent material than with any to-
pographic sequence”.

Gordon Anderson (1962) mapped soils around Muheza (Fig. 2),
including the Kitivo area, at reconnaissance scale using a mixture of
catenary and non-catenary mapping units. At Mbozi in southwestern
Tanganyika (Fig. 2), Spurr (1955) designated some soil patterns as
catenary. He attributed them partly to differences in the age of soil
parent materials in areas where lower younger erosion surfaces in the
valleys have encroached on to, and stripped off the deep and intensively
weathered regolith of the older Jurassic interfluves.

Although catenary patterns were not shown as predominant in
Zanzibar on the 1936 map, the reddish soils of western Zanzibar were
later described as catenary (Calton et al., 1955). However, the concept
is less applicable elsewhere on the island, as lithological differences

Fig. 3. Schematic transects of Ugandan catenas: (a) Buganda catena (based on
Rehm and Grashey-Jansen, 2016): 1 Shallow stony dark grey loam; 2 Deep red
earth; 3 Brownish ‘clinker’ soil, with many Fe concretions; 4 Brownish grey
loam; 5 Heavy black clay. (b) Buwekalu catena (based on Radwanski and
Ollier,1959): 6 Shallow loamy sand; 7 Deep red sandy clay loam with Fe con-
cretions in subsoil; 8 Deep brown sandy clay loam with Fe concretions in
subsoil; 9 Yellowish brown coarse sand with gleyed subsoil; 10 Grey gleyed
coarse sand. (c) Masaka catena (based on Rehm and Grashey-Jansen, 2016): 11
Red earth; 12 Red earth with soft Fe concretions; 13 Brownish loam with
outcrops of ferricrete; 14 Grey gleyed loam.

Fig. 4. Schematic transects of Tanganyikan catenas (Based on Milne, 1947): (a)
Ukiriguru catena: 1 Granite tors with shallow grey coarse loam; 2 Brownish red
loam over granite; 3 Brownish red loam with soft iron concretions; 4 Grey sand
with iron concretions; 5 Non-calcareous hard pan soil; 6 Calcareous black sandy
clay; 7 Heavy black clay. (b) Unyanyembe catena: 8 stony grey loam & bare
rock; 9 Bright red earth; 10 Dull red earth; 11 Slightly reddish grey sand; 12
Yellowish grey sand; 13 Drab sand; 14 Mottled grey sandy clay.

Fig. 5. Schematic plan of Usumbara catena (Based on Milne, 1944): 1 Red earth
on upper slope below scarp; 2 Intermediate brown soil on midslope; 3 Hard-
setting yellowish brown sandy clay; 4 Greyish black gritty clay; 5 Heavy black
clay; 6 Dark greyish clay in wash in minor gully; 7 Imperfectly drained alluvial
Kitivo soil; 8 Well drained alluvial soil.
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between parent materials are the dominant influences on soil formation
and distribution. Similarly, catenary patterns were not strongly ap-
parent in the soils of the island of Mafia (Fig. 2), where the variability of
parent materials is the predominant pedogenic factor (AHT, 1980).

6. Diffusion of the catena

The formalised catena concept clearly fulfilled a widely-felt need,
and was swiftly adopted by soil scientists beyond East Africa to struc-
ture their analyses, characterisation and mapping of soil-topography
associations. It was soon widely used in soil studies throughout sub-
Saharan Africa (Greene, 1947; Morison et al., 1948; Nye, 1954). Beyond
Africa, Milne collaborated in its application to the soils of Indiana
(Bushnell, 1943) and catenas have been, and still are, widely used to
characterise soil distributions in the United States (Jauss et al., 2015;
Nettleton et al., 1968; Sommer et al., 2000).

This diffusion means that that the term has been applied to a range
of soil landscapes, and this has inevitably led to some broadening in its
definition (Table 1). The catena is sometimes used just as a descriptor to
indicate spatial patterns of soil/vegetation combinations that are con-
sistently located in specific topographic positions. Used thus, it is more
or less synonymous with ‘toposequence’. The designation of a topose-
quence as a catena usually implies that the soils are not only spatially
associated, but also pedologically linked (Young, 1976).

A crucial factor in the linkage is the movement of water (Greene,
1947). Incoming precipitation is partitioned between rapid evapora-
tion, surface runoff, lateral subsurface throughflow, and vertical per-
colation to recharge groundwater. The seasonally poor drainage and
high water-tables in the valley soils results from lateral run-on from
upslope, and the intermediate soils on the lower slopes are imperfectly
drained. This creates different weathering and leaching conditions in
different parts of the slope, and can generate consistent topo-
graphically-related soil patterns. These are equivalent to the transfor-
mational catenas of Sommer and Schlichting (1997).

The redistributed water is rarely pure, and usually carries a load of
dissolved and suspended materials that are translocated downslope
(Greene, 1947; Khomo et al., 2013). The cations in the run-on water
raise the pH and base saturation in the valley soils, which favours the
development and stability of 2:1 smectitic clay minerals. In contrast,
the loss of cations from the upslope soils tends to reduce pH and base
saturation, which promotes desilication and the development of 1:1
kanditic aluminosilicates and reddish free sesquioxides. This accounts
for the widespread ‘dystric red slope over eutric black valley’ soil pat-
terns.

The movement of solids downslope as detached particles in surface
wash, gradual whole-solum creep, or in intermittent whole-regolith
mass movements contributes to the development of soil textural

patterns in many translocational catenas (Milne, 1935b; Young, 1976).
The complex textures of the Ukiriguru catena (Calton, 1963) may be
partly due to vigorous surface wash, with coarser entrained particles
from upslope deposited on the lower slope and finer clay particles on
the valley floor.

Some catenary patterns do not depend directly on downslope water
movement. Stream systems can dissect old stable land surfaces and strip
off deep and intensely weathered regolith and soils when incising new
valleys. The valley soils therefore develop in younger and less leached
regoliths than those on the undissected upper slopes and crests (Spurr,
1955). Also, the older soils may have experienced paleoclimates that
were moister than the present (Anderson, 2001; Milne, 1941).

All of the above factors and scenarios for catena development were
recognised by the early soil scientists in East Africa. However, they
appear to have identified catenas only on more or less lithologically
homogeneous parent materials. Geological or compound catenas
(Young, 1976) can develop where distinctly different parent materials
are systematically associated with different slope positions (Table 1).
The patterns are often due to differences in erodibility, with harder
rocks persisting as interfluves and more erodible rocks flooring valleys.
Compound catenas can be very complex. Thus, Neufeldt et al. (1999)
characterised a catena in cerrado savannah in Brazil, with argillitic
sedimentary rocks on the upper slope, sandy sedimentaries on the
midslopes, basalts on the lower slopes, and mica schist in the valleys.

Most catenas derive from interactions of several processes and fac-
tors. Mass movements can modify the distribution of soil parent ma-
terials and make compound sequences appear less obviously catenary.
In Tigray, Ethiopia, there are compound catenas where basalt outcrops
upslope of limestone. This pattern generates lithologically hetero-
geneous compound catenas, but some of these are masked by large and
laterally discontinuous mass movement lobes. Basaltic materials have
slumped almost to the valley floor in places, effectively homogenising
the regolith of the whole slope (Van de Wauw et al., 2008).

7. Catenas in non-savannah landscapes

Catenas develop best in savannah climates because the precipitation
provides sufficient water to drive the translocation processes but does
not flush the cations and sediments completely out of the landscape.
However, catenas have also been identified in climates that are cooler,
more arid or more humid than those of the savannahs.

The low rainfall in deserts leads to low leaching intensities, and
cations are less readily moved laterally downslope (Yair, 1990). How-
ever, there appears to be some translocation, and the depths, size and
forms of secondary carbonates may vary consistently with topographic
position. Although total precipitations are low, the intensities of the
rare rainfall events can be very high. Combined with low organic matter

Table 1
Glossary of topographically related soil patterns.

Toposequence Consistent sequence of soils on specific land facets downslope. Toposequence in which the soils are pedogenically linked, often by downslope
transfers of material

Compound catena Catena in which the topographic differentiation of soils is partly due a consistent sequence of different parent materials downslope
Transformational catena Catena in which the topographic differentiation of soils is mainly due to a consistent pattern of different weathering and leaching regimes

downslope
Translocational catena Catena in which the topographic differentiation of soils is due to the lateral transfer of water, solutes and solids downslope, usually by surface

runoff subsurface throughflow, soil creep or mass movement
Recurrent landscape pattern Topographically recurrent soil pattern. Similar to toposequence
Hydrosequence Catena in which the topographic differentiation of soils is due to the lateral transfer of water downslope, giving consistent pattern of different

weathering and leaching regimes. Similar to transformational catena
Association Hydrosequence used as a composite soil mapping unit by the Soil Survey of Scotland to encompass patterns of soils with different topgraphically-

related drainage regimes on similar parent materials.
(NB ‘Association’ is used as a mapping unit by the Soil Survey of England and Wales for soils with similar morphologies and drainage regimes on
similar parent materials.)

Land system Catenary-based composite mapping unit that delineates topographically recurrent sequences of renewable natural resources, including soils,
vegetation and hydrology

Climosequence Large scale toposequence in which the differentiation of soils is due to significant differences in. altitude and climate between the upper and lower
members. Usually not perceived as a catena
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contents and weak topsoil structures, this can lead to episodic but
substantial surface wash and mass movements, which can result in
consistent topographically associated textural catenas.

In humid tropical forest climates cations are readily translocated but
the plentiful rainfall often leaches them right out of the local landscape
and into the stream network. Intra-catenary variations in pH and base
status are therefore usually less apparent than in savannahs. However
transformational, hydrological, and compound catenas (Table 1) may
develop. Steeply dipping alternating sedimentary strata in Central
Sarawak give rise to swarms of parallel, linear, and steeply homoclinal
ridges on hard sandstones, with more erodible shales flooring the val-
leys. The ridge soils are moderately deep and well drained coarse
loams. The shale soils on the lower slopes and in the valleys are shal-
lower, less freely drained, and finer textured. All of the soils have low
pH and exchangeable base contents (Scott, 1985). Catenas in temperate
forest climates are often transformational hydrosequences, with mark-
edly poorer soil drainage downslope, but without significant intra-ca-
tenary differentiation on base status (Glentworth and Dion, 1950).

8. Conclusions

The catena has greatly simplified soil mapping at medium and re-
connaissance scales, at which individual soil series are too intricately
distributed to be cartographically separable. Catenary distributions can
be used to define composite soil mapping units that consist of series
arrayed in systematic and consistent topographic patterns. Such units
have been designated as toposequences (Jien et al., 2016), hydro-se-
quences (Smeck et al., 2002), associations (Glentworth and Dion, 1950)
and recurrent landscape patterns (Webster and Beckett, 1970). The
most widely used are land systems, which are topographically-asso-
ciated mapping units that include other renewable natural resources as
well as soils. Land systems were first formulated and applied to large
underdeveloped areas of Australia (Christian et al., 1953). They were
further developed in South Africa (Brink et al., 1965), following on
from early applications of the catena in southern Africa (Watson, 1964;
Webster, 1965). They have since been used for the pre-development
resource mapping over large areas in Africa and elsewhere in the tro-
pics, including several large surveys in East Africa (Ollier et al., 1969;
King et al., 1982).

Although the catena was originally developed to clarify soil dis-
tributions at field scale, it has been most useful for small-scale mapping
of large areas. Many examples of these early studies, including those of
Milne and others consulted on for this paper are held in the WOSSAC
international soils archive (Hallett et al., 2017). More recently the Ca-
tena concept has also proved useful as a sampling frame for more de-
tailed isotope studies in tropical forests (Guédron et al., 2018).

The catena’s integration of topographic patterns and linkages has
led to its adoption beyond soil science. Catenas have been used for
dating moraines and other glacial features (Bäumler, 2004; Berry,
1987). Geo-archaeological comparisons of fresh deposits with under-
lying paleosols down a catena can indicate climatic and/or land use
changes (Beach et al., 2018). The emphasis on topographic linkage
makes the catena an especially useful concept in hydrological con-
nectivity studies (Francke et al., 2007). It has also been invoked in
discussions of the spatial distribution, and floristic and structural di-
versity at intermediate scales in tropical forests (Duivenvoorden, 1995;
Gentry, 1988).

The catena owes some of its continued relevance and durability to
the way it enables scientists working in unfamiliar landscapes to dis-
entangle what initially appear to be dauntingly complex patterns. The
catena is also an insightful teaching aid, as the instructor can use it to
explain the first steps in the analysis of soil landscapes. The simplicity,
appeal and longevity of the concept is shown by the foundation,
naming, and continuing impact of the international journal, ‘Catena’,
which focuses on interdisciplinary aspects of soil science, hydrology,
geomorphology, geoecology and landscape evolution.
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