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Abstract

Marine pollution is a major concern but one that has to date been largely overlooked; thus, for 

example, it was not accounted for in the Paris agreement on climate change. Maritime fuel 

combustion currently contributes 3% of the annual global greenhouse gas emissions. Nearly 

all shipping-related emissions occur within 400 km of land, and cause death and morbidity to 

millions of people. The initial greenhouse gas strategy on the reduction of carbon emissions to 

at least half of its 2008 levels by 2050, adopted by the International Maritime Organization, 

has the potential to spur innovations and alternative fuel, enabling the shipping industry to 

adapt to future challenges. Some zero-emission options such as the use of hydrogen and bio-

fuels are considered potential strategies, but they lack the infrastructure capacity needed to 

meet the world’s shipping demand. Liquefied natural gas (LNG) has gained substantial interest 
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as a marine fuel because it can comply with the strictest environmental regulations currently in 

force, and it is often regarded as a future fuel as most newly constructed ships are built to run 

on it. Although the use of LNG leads to lower CO2 emissions compared to traditional heavy 

fuel oils (HFOs), there is still a need to consider further reduction. A solution which can be 

implemented is the use of an on-board capture system on ships, also known as ship-based 

carbon capture. 

In this study, a process and economic evaluation was carried out on a solvent-based post-

combustion capture process for the energy system of a CO2 carrier. A rate-based model was 

developed, validated and scaled up to process the flue gas from a Wartsila 9L46 DF marine 

diesel engine. Different modes of operation with respect to engine load and capture rate were 

analysed in this study and the capture cost was estimated. The cost of CO2 capture was used as 

an economic index for this study. It was observed via a sensitivity analysis that at 90% capture 

rate, the cost of capture was at least $117/t. The effect of exhaust gas recycle was also explored 

and this resulted in a considerable reduction in the capture cost. The exhaust gas waste heat 

was utilised and was adequate to supply the required energy needed by the reboiler at each 

capture rate examined. Also, for LNG-fuelled CO2 ships, the cold energy obtained while 

converting the LNG to gas was utilised to liquefy the captured CO2 from the flue gas. 



Nomenclature

BOG Boil-off Gas

CAPEX Capital Expenditure

CCC Cost of Carbon Capture

CCS Carbon Capture and Storage

CRF Capital Recovery Factor

DCC Direct Contact Cooler

EGR Exhaust Gas Recirculation

FCI Fixed Capital Investment

FOPEX Fixed Operating Expenditure

GHG Greenhouse Gas

IMO International Maritime Organisation

LNG Liquefied Natural Gas

LPG Liquefied Petroleum Gas

MEA Monoethanolamine

PM Particulate Matter

TAC Total Annual Cost

TDPC Total Direct Plant Cost

TEC Total Equipment Cost

TIPC Total Indirect Plant Cost

VOPEX Variable Operating Expenditure

WHRS Waste Heat Recovery System
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1. INTRODUCTION

Carbon dioxide emissions from shipping activities contribute approximately 3% (1.1 Gt) of 

global greenhouse gas (GHG) emissions per year 1 and this represents a growing concern, as it 

was not included in the Paris Agreement on Climate Change. The International Maritime 

Organisation (IMO) introduced two measures to address GHG emissions in 2008, the Energy 

Efficiency Design Index (EEDI) and Ship Energy Efficiency Management Plan (SEEMP). The 

latter is directed to all ships, and the former is a set of design standards for new ships 

manufactured after 01 January 2013.2 Despite the adoption of these measures, at the EU level, 

CO2 emissions are expected to rise above 1990 levels by 86% in 2050 if nothing else is done.3 

Consequently, the European Union Monitoring, Verification, and Reporting (EU MVR) 

regulation was adopted in 2015 to report annual fuel oil consumption and CO2 emissions for 

all ships from and around the EU area.3,4 This is expected to cut down the level of CO2 

emissions from each journey by 2%.5 Additionally, in 2016, the IMO CO2 Data Collection 

System (IMO DCS) was also adopted to cover shipping emissions globally, and the fuel 

consumption data collection has started in 2019. The EU MVR and IMO DCS represent steps 

to reduce GHG emissions from ships. The IMO decided to place a cap on global GHG 

emissions, limiting them to at most 50% of 2008 levels by 2050.6 The capacity at which major 

banks (Citi, Societé Generale, Danish Ship Finance, Danske Bank, etc.) lend to shipping 

companies is also now influenced by their technology cleanliness and environmental 

consequences with reference to climate change.7

The initial IMO GHG strategy and the banks’ new policy can be seen as giant steps for the 

shipping industry in terms of cutting down carbon emissions, bringing them closer in line with 

the Paris Agreement and capable of spurring new and innovative methods for emission 

reduction.6 Various efforts are already in force on the reduction of carbon emissions, such as: 
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speed reduction, energy efficiency, low-carbon fuels use, and renewable energy sources,5,8–13 

but limited work has been carried out on on-board carbon capture. On-board capture systems 

can be seen as a transition plan to lower carbon emissions in the maritime industry, giving 

sufficient time for zero-emission technologies to be fully developed.4 Although there are 

different available methods (pre-, oxy- and post-combustion capture processes) for capture, a 

viable process is dependent on limited parasitic load permissible for the ship’s energy system 

and its space capacity.14,15 The post-combustion process requires limited transformation of the 

internal combustion engine, compared to pre- and oxy-combustion, favouring the constraint of 

space.15 Process System Enterprise (PSE) and Det Norske Veritas (DNV) concluded a concept 

design for on-board capture using a post-combustion process, the results estimating that the 

process is feasible and capable of reducing maritime CO2 emissions by 65%.16 A solidification 

method was developed for CO2 storage on-board for separating CO2 emissions from the 

exhaust gas. The CO2 emitted after reaction exists as precipitated calcium carbonate, and can 

be stored safely on-board or unloaded at any appropriate destination.14 Luo and Wang17 

recently developed a solvent-based capture process to capture CO2 from the energy system in 

a typical cargo ship. The capture rate of 73% was achieved without additional supply of heat 

or electricity. A study was carried out on a Liquefied Natural Gas- (LNG)-fuelled vessel; CO2 

was captured from the exhaust gases on-board, and the reference vessel was re-designed to 

accommodate the capture equipment.18 The combined capture of CO2 and SO2 was evaluated 

for on-board use, utilising aqueous ammonia to avoid space constraints and meeting current 

and future regulations.19 Feenstra et al.4 evaluated the feasibility of adapting CO2 capture for 

natural gas- and diesel-fuelled carriers using different solvents (monoethanolamine (MEA) and 

aqueous piperazine) at different desorption pressures. 

Carbon Capture and Storage (CCS), amongst others, was listed among the technologies needed 

to limit the global temperature rise to below 2 ⁰C. 20 Most of these consist of capture from large 
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point sources to a secure storage location. The storage of CO2 from single or multiple point 

sources is incomplete without an efficient transportation system. This can be accomplished by 

the use of trucks, train, pipelines or ships. However, ship-based transport can be a better option 

because it offers more flexibility with regard to location of source and sink, and can deal with 

smaller CO2 quantities, longer distances and shorter project durations.21,22 Elementenergy22  

compared the cost of transporting 1Mt CO2/a by ship and pipeline over a distance of 600 km 

for 20 years, and found that cost reductions for ship transport are less dominated by necessary 

capital expenditure.

The gas carriers available for ship transport of CO2 are generally of small capacities (800 - 

1200 m3) as compared to that needed for other commodities.21 Semi-pressurised vessels are 

viable for large-scale transport of CO2 at conditions near the triple point.21,23,24 A combined 

Liquefied Petroleum Gas (LPG)/CO2 semi-refrigerated ship was chosen for a complete 

transport chain analysis of CO2 between capture and storage, with a storage capacity of 20,000 

m3 at -52 °C and 6.5 bar.21 A LPG carrier retrofitted for CO2 use was also considered for on-

board capture of CO2 and SO2 emissions at conditions close to the triple point.19 The cost 

effectiveness of large-scale ship transport has been examined in the literature 23,25–28 and it is 

generally concluded that this can be a cost-effective option.

Some zero-emission options include the use of hydrogen and biofuels as alternatives to fuels 

of diesel quality (HFOs, low-sulphur heavy fuel oil), but such fuels lack the infrastructure 

capacity needed to meet the world’s shipping demand, although biofuels have been identified 

as having lower life-cycle CO2 emissions compared to conventional HFOs.8,29  By contrast, 

LNG has garnered substantial interest as a marine fuel because it can comply with the strictest 

environmental regulations currently in force. It is often regarded as a future fuel as most newly 

constructed ships are built to run on it. LNG consists mainly of methane, with a negligible 

sulphur content and higher hydrogen-to-carbon ratio compared to the traditional HFOs, 
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resulting in 20-30% lower CO2 emissions on combustion.30 Although these carbon reductions 

are beneficial, they offer no guarantee against future stricter regulations. Therefore, a solution 

that can be adapted to offer deep emissions reductions is needed—ship-based carbon capture 

and storage.

This work evaluates the process performance of a capture system on LNG-fuelled CO2 ships 

at different engine loads. The capture system was designed using aqueous ammonia solution, 

varying concentration to ascertain its effect on the reboiler duty, hence, the thermal energy 

demand. The choice of an NH3-based process over MEA is made here primarily because of the 

total energy requirement for such a process.  Thus, it was estimated that the NH3-based process 

needed only 27% of the energy requirement of the MEA-based process.31–34 In addition, using 

aqueous ammonia offers some benefits in comparison to MEA: no corrosion problems, higher 

loading capacity, multi-pollutant capture and production of value-added products such as 

ammonium sulphate, ammonium nitrate, and ammonium bicarbonate.34 However, the 

drawbacks of using NH3 in place of MEA can be seen in terms of its slow kinetics for 

absorption, and volatility requiring larger-capacity equipment and abatement systems.32,35,36 

However, exhaust gas recirculation (EGR) can increase the concentration of CO2 and the 

overall performance of the capture system. In this study, the exhaust gas serves as a heat source 

available to provide energy for the reboiler duty. The capture system is operated at a high 

pressure, decreasing the energy required for compression and liquefaction of the captured CO2. 

The cold energy from the LNG can also act as a heat sink to provide cooling capacity for the 

captured CO2.4

Cost evaluations were carried out for the reference ship type, LPG/CO2 retrofit. The calculated 

cost of captured CO2 was compared and observed to be dependent on the engine size, the 

capture rate adopted and the choice of technology. Different modes of operation were 

considered at a percentage of full engine power: sailing, manoeuvring and hoteling at 85%, 

ACS Paragon Plus Environment
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75% and 50%, respectively. However, the mode of operation feasible for normal operation of 

the capture system is 85% load, whilst sailing. In future, an added  IMO GHG strategy could 

include a carbon tax for CO2 shipping emissions 4; this was also evaluated as a possible scenario 

to encourage ship owners to adopt new technology such as ship-based carbon capture.  

Industrial & Engineering Chemistry Research



9

2. METHODOLOGY 

The integrated ship model consists of the ship energy system and the capture plant installed 

on-board as shown in Figure 1. The model involves the flue gas stream going into the waste 

heat recovery system (WHRS); the retrieved heat is used to supply thermal energy for heating, 

if needed, then the flue gas goes into the post-combustion capture process. All NOX and 

particulate matter (PM) are assumed to be removed upstream of the absorber. Considering the 

type of fuel used (natural gas - composition as shown Table S1), there are no SOX emissions. 

The flue gas contacts the solvent counter-currently in the absorber, the CO2-depleted stream is 

released to the top of the absorber, and then the CO2-rich stream is pumped to the stripper 

column for regeneration. To store CO2 on-board a ship, it must be stored as a liquid to minimise 

space used for storage tanks. The LNG vaporisation unit on-board LNG-fuelled vessels can 

serve as a heat sink for the liquefaction of CO2, thus avoiding the need for a refrigeration unit.4

2.1  Ship energy system

The ship energy system provides the necessary power required for propulsion and electricity 

generation on the ship. It consists of a propulsion system, auxiliary generators and a WHRS 

for energy efficiency. The main engine, which is the primary source for propulsion and 

auxiliary power generation on-board, is modelled by Luo and Wang17 . The engine selected for 

all cases was the Wartsila 9L46DF, a 4-stroke dual-fuel engine that can run on either natural 

gas, HFO or marine gas oil. For validation purposes, the model was compared to the Wartsila 

9L46DF engine handbook performance data37 and the results obtained appear to be in good 

Diesel engine Auxiliary engine

WHR Capture/liquefaction
n

Figure 1: Schematic of the integrated ship model
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agreement as shown in Table 1. The reference case is a LPG vessel that can be retrofitted for 

CO2 use at different loads.19 The additional power requirement for capture, storage and 

liquefaction of the captured carbon emissions was assumed to be 1 MWe and the new reference 

exhaust gas data at varying loads are shown in Table S2. The exit temperature of the exhaust 

gas from the main engine at respective loads selected was taken to be 362 °C. Thereafter, the 

gas passes through the WHRS and is then further cooled in a direct-contact cooler (DCC). In 

the DCC the flue gas is cooled down as a result of direct contact with cooling water.  As the 

cooling process employs water condensation, the flue gas at the exit of the DCC has a reduced 

water content.38 In the integrated ship model, it is assumed that all the NOX and particulate 

matter are removed upstream of the absorber and the direct contact cooler is further used to 

reduce the flue gas temperature to 20 °C.

A ship run on natural gas emits only half the CO2 emissions of one using conventional fuel, 

HFO. For instance, CO2 concentration in flue gas from a natural gas combined cycle power 

plant is about 3.5 - 4.5 mol% while from a coal-fired power plant, it is 11-13 mol%.39 A low 

concentration of CO2 results in low absorption efficiency and exhaust gas recirculation is an 

effective solution.40,41 In this study, the flue gas was split into two streams, one linked to the 

post-combustion capture process, and the other recirculated to be mixed with fresh air. The 

EGR ratio was varied from 10-30% as calculated by Eq. (1), thus the flow rate of fresh air 

intake is reduced, respectively (Table S3). Consequently, the flowrate of the flue gas going into 

the capture process decreases, whilst the CO2 concentration increases as shown in Figure 2.

 =EGR ratio Mass flow of recirculated exhaust gas 
Mass flow of exhaust gas                           (𝟏)

Page 10 of 32Industrial & Engineering Chemistry Research
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Figure 2: Impact of EGR on O2 and CO2 concentration in the exhaust gas at 85% load

      2.2 Capture system

In this study, the ammonia capture system was validated with the Munmorah pilot plant 

data,42,43 as detailed elsewhere.19 Figure 3 shows the Aspen® flowsheet of the post-combustion 

capture. All columns were modelled with the rate-based approach and packed with pall rings. 

The main parameters characterising the developed full-scale capture process can been seen in 

the supporting information (Table S4 and Table S5). Since the engine is fuelled by LNG, there 

is no need for SOX scrubbers. The exhaust is passed through an integrated heat exchanger for 

thermal energy generation, and is further cooled down. For the capture process, the flue gas 

from the ship energy system is fed to a blower into the bottom of the absorption column. The 

CO2-depleted flue gas flows out to the atmosphere, after passing through the wash column. The 

CO2-rich ammonia solvent flows into the regeneration tower where ammonia is separated from 

the CO2 by the heat supplied by the reboiler. The regenerated lean solvent returns to the 

absorption tower after passing through the heat exchanger and cooler. Washing water is 

sprayed at the top of the absorption and regeneration columns to recover ammonia, and the 

wastewater is sent to the treatment plant on-board the ship for ammonia recovery, which is kept 

in storage tanks and used for the subsequent make-ups required by the capture process. The 
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ammonia loss in the process of recovery from the waste water was assumed to be 10% and this 

was made up by fresh ammonia solvent.

Table 1: Validation of the Aspen® Plus Diesel Engine Model Performance 37

Load 
(%)

Fuel 
flowrate 
(kg/s)

Air 
flowrate 
(kg/s)  

Engine output 
(kW)

Flue gas 
flowrate 
(kg/s)

100 0.450 16.6 Handbook 10305 17

   Model 10292.76 17.05

   Difference 0.0012 -0.003

85 0.384 14.11 Handbook 8759.25 14.45

   Model 8748.57822 14.494

   Difference 0.0012 -0.003

75 0.343 12.45 Handbook 7728.75 12.75

   Model 7718.6 12.793

   Difference 0.0013 -0.003

50 0.241 8.3 Handbook 5152.5 8.5

   Model 5143.55 8.541

Difference 0.0017 -0.005

The ammonia concentration was varied between 4 and 10 wt% to evaluate the effect on the 

capture process parameters. The impact of EGR on the energy demand for the absorption 

process for this case study, applied to the ship model, was investigated at 4 wt% ammonia 

concentration. Simulations showed that as the concentration of CO2 increased, the specific 

reboiler duty decreased (10.5 MJ/kg-CO2 to 7.5 MJ/kg-CO2) due to the higher CO2 partial 

pressure and, hence, favouring the capture reaction (Figure 4). Therefore, the higher the CO2 

concentration in the flue gas, the more efficient the stripping process becomes. The reduced 

exhaust gas flow into the absorber due to EGR causes a substantial decrease in capital 

expenditure of the capture system as compared to that without EGR.  Since at approximately 
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11 wt% CO2 concentration (30% EGR), the least energy consumed was observed, for further 

analysis in this work, 30% EGR was used. 

Figure 3: Aspen® (V10) flowsheet of the post-combustion CO2 capture unit

7.5 8 8.5 9 9.5 10 10.5 11
7

7.5

8

8.5

9

9.5

10

10.5

11

CO2 concentration (wt%)

Re
bo

ile
r d

ut
y 

(M
J/

kg
 C

O
2) NH3 4 wt%

Capture level; 90%

Figure 4: Effect of CO2 concentration on reboiler duty at different capture level

2.3  Compression and liquefaction system

Considering the limitations of space on-board ships, the captured CO2 must be conditioned to 

be stored as a liquid. The volume of liquefied CO2 is about 1/600 that of gaseous CO2 and, 

hence, larger quantities can be stored on board. The condition of -50 °C and 7 bar near the 

triple point was selected for this work. Re-liquefaction of the boil-off gas (BOG) and the 

captured CO2 is considered for liquefaction into the cargo tank. The BOG rate is assumed for 
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this work to be 0.2% per day and is calculated via the method used by Yoo44  and Awoyomi et 

al.19  With the ammonia case adopted, desorption pressure at 6 bar was considered for all cases, 

and one compressor only is enough to attain the desired pressure of 7 bar. In attaining the 

required temperature, a cross-heat exchanger was added to provide the cooling duty necessary 

for liquefying CO2 as shown in Figure 5. The cooling duty can be attained from the already 

stored LNG, upon entering the engine for combustion. The simulation results are shown in 

Table S6. The cold side integration is the exchange of cold energy that could have been left 

unused when vaporising the liquefied natural gas for engine combustion. The amount of LNG 

vaporised determines the energy capacity or cold energy available for liquefaction. 

Figure 5:  Aspen® flowsheet for compression and liquefaction of the captured CO2

Industrial & Engineering Chemistry Research
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3. RESULTS AND DISCUSSION

        3.1. Thermal performance of the integrated system

Table 2 summarises the thermal performance for the three cases considered in this study. In the 

reference case, the propulsion as well as the electrical power generated from the main engine 

is 8.8 MW. Some thermal energy is also generated on-board from the WHR unit if required 

and it is approximately 3.5 MWth. In both Case 1 and 2, extra power of 1 MWe is supplied to 

accommodate the power consumed due to the installation of CCS. In Case 1, the carbon capture 

level can reach 90% with the same thermal energy provided on-board as in the reference case. 

With the accommodation of EGR, the flue gas flowrate reduces, but the carbon capture level 

achieved can reach 90%.   

Table 2: Thermal performance of the ship energy system with/without the EGR system

Description Reference 
case

Case 1: With 
CCS + no 
EGR

Case 2: With 
CCS + EGR

LNG consumption (kg/s) 0.384 0.45 0.45

Propulsion/Electrical power 
output (MW)

8.8 8.8 8.8

Extra electric power output 
(MWe)

- 1 1

Auxiliary electric power 
consumption in capture process 
(MWe)

- 0.1 0.07

Electric power consumption of 
CO2 compression and 
liquefaction MWe)

- 0.4 0.25

Stripper reboiler duty (MWth) - 3.4 2.7

WHR thermal energy output 
(MWth)

3.5 3.5 2.8

Capture level (%) - 90 90
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           3.2 Process analysis

1. Effect of NH3 concentration

The most important parameters affecting the performance of a capture system are the solvent 

recirculation rate and the reboiler duty. The performance of the model in the form of capture 

efficiency was determined by varying the solvent circulation rate at different ammonia 

concentrations whilst keeping the composition of flue gas, lean loading and stripper pressure 

constant: CO2 concentration in the flue gas 11 wt%, stripper pressure 7 bar, NH3 concentration 

varied from 4 – 10 wt%. The purity of the CO2 captured was at 99% after exiting the water 

wash column for ammonia removal and other impurities were in negligible amounts. The 

results plotted in Figure 6 show the reboiler duty against the capture efficiency at different NH3 

concentrations. The changing energy demand of the reboiler duty is attributed to a number of 

components, specifically: sensible heat, latent heat, heat of reaction and the heat of 

dissolution.36 These represent the summation of the energy required for solvent regeneration in 

the stripper. The solvent recirculation flow was varied to attain the required capture rate for 

each concentration as shown in Figure 7. As can be observed from both Figure 6 and Figure 7, 

at 10 wt% NH3 concentration the lowest reboiler duty and solvent recirculation flow were 

obtained compared to the rest. Increasing the solvent concentration reduces the solvent 

flowrate, thereby reducing the sensible heat required. As the solvent concentration increases, 

the water fraction reduces, which reduces the heat of vaporisation of water. 

Although with the increase of solvent concentration, there is the benefit of minimising the 

reboiler duty, the quantity of pure ammonia required increases co-currently, hence, leading to 

an increase in ammonia emissions. As the concentration increased, the amount of NH3 emitted 

from the absorber column increased but this was avoided using an NH3 abatement system, a 

wash column, to guarantee levels less than 50 ppm. Given the choice of NH3 concentration, a 
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trade-off would need to be determined based on its effect on the capture process or the added 

or extra NH3 abatement system.45
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Figure 6: Effect of NH3 concentration on reboiler duty at different capture rates

2. Effect of EGR

In this study, the effect of EGR was observed at the operating engine capacity of 85% load. 

With EGR, the engine power output was maintained to be similar to that without EGR in order 

not to compromise the availability of ship power on-board, as can be seen in Table 3.  The 

effect can be seen in the reduced flue gas flow and increased concentration of CO2, resulting 

in an increased efficiency of the capture process. The capture solvent flow quantity was lower 

for handling the reduced amount of flue gas and the reboiler duty decreased co-currently at 

different capture rates, as can be seen in Figure 8. 

       3.3 Cost calculations

In this work, the cost estimation is based on European Best Practice Guidelines for Assessment 

of CO2 capture technology. 46,47 The cost of CO2 captured was evaluated and used as a measure 

for the economic index, using the stated parameters in Table 4. The cost of CO2 captured was 

calculated taking into consideration the capital expenditure (CAPEX), the fixed operational 

expenditure (FOPEX), and the variable operational expenditure (VOPEX) and the total amount 
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captured annually. This was done for varying engine load values and different capture rates. A 

sensitivity analysis was also carried out to determine the effect of the quantity of captured CO2 

on the cost of capture.  
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Figure 7: Effect of NH3 concentration on solvent flow at different capture rates.

Table 3: 85% engine load with and without EGR

Parameter Without 
EGR

With EGR

Recycled flow (kg/s) - 5.22

Fresh air flow (kg/s) 15.9 11.85

Flue gas (kg/s) 16.35 12.20

CO2 conc (%wt) 0.07 0.11

Power 9855.37 9856.70

1. CAPEX

The CAPEX includes the total equipment cost (TEC), the total direct plant cost (TDPC), the 

indirect plant cost (TIPC), and the fixed capital investment (FCI). The Aspen® Plus (V10) 

Economic Analyser was used to determine the TEC (latest cost basis available, dated first 
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quarter of 2016). In this work, the TEC is used to estimate the costs of construction of both the 

capture and liquefaction processes. Direct construction costs include instrumentation and 

controls, piping, electrical equipment and materials, civil works, erection, steel structures and 

painting. For the purposes of this study, the civil works are assumed to be the increased new-

build cost of the ship. Indirect construction costs include the yard improvements, service 

facilities, engineering, supervision and construction. Eqs. (2) - (5) show how the TDPC, TIPC, 

FCI and the CAPEX were estimated. 47

𝑇𝐷𝑃𝐶 = 2.10 ∗ 𝑇𝐸𝐶 (2)

𝑇𝐼𝑃𝐶 =  0.14 ∗ 𝑇𝐷𝑃𝐶 (3)

𝐹𝐶𝐼 = 𝑇𝐷𝑃𝐶 + 𝑇𝐼𝑃𝐶 (4)

𝐶𝐴𝑃𝐸𝑋 =  
𝐹𝐶𝐼
0.8

(5)

The annualised CAPEX is the total CAPEX multiplied by the capital recovery factor (CRF), 

Eq.                                                                (6), and it can estimated from Eq.                                                                

(7)                                                               (6) below, as Eq. (7). The assumed project lifetime 

is 25 years  and the interest rate is 8% .  (𝑛) (𝑖)

𝐶𝑅𝐹 =
𝑖(𝑖 + 1)𝑛

(𝑖 + 1)𝑛 ― 1
                                                               (6)

𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝐶𝐴𝑃𝐸𝑋 = 𝐶𝐴𝑃𝐸𝑋 ∗ 𝐶𝑅𝐹                                                                (7)
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Figure 8: Effect of EGR on the capture process at varying capture rates

Table 4: General input for economic model

Parameter Units Value Source

NH3 price $/tonne 451 [48]

LNG fuel price $/tonne 
(£/tonne)

358.35 (282) [22]

Sailing operational profile per 
year

% 0.57 [18]

Lifetime of the ship years 25 [17]

Interest rate /year 0.08 [17]

LNG consumption power kg/kWh 0.151 [18]

Average time per crossing 
(round trip)

h 120 (240) -

Number of round trips per 
year 

- 30 -
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2. FOPEX

This refers to the operating costs that are fixed for the plant irrespective of the engine load, and 

they include long-term service arrangement costs, overhead costs, operating and maintenance 

cost, etc.17 They are generally related to the maintenance and labour cost. 47 This can be simply 

calculated from Eq.                                                                (8).

𝐹𝑂𝑃𝐸𝑋 = 0.03 ∗ 𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑠𝑒𝑑 𝐶𝐴𝑃𝐸𝑋                                                                (8)

3. VOPEX

The VOPEX is related to the usage of raw materials and the electricity demand of the capture 

plant. It was assumed that an additional I MWe was provided on-board to meet the electrical 

demand for both the capture and liquefaction plants. The cost for extra fuel consumption was 

calculated based on this assumption. The solvent make-up cost was calculated by multiplying 

the unit price by the results obtained from the Aspen® Plus simulations for each case. Finally, 

the cost of captured CO2 (CCC) was calculated by dividing the total annual cost (TAC) (Eq. 

(9)) by CO2 captured annually, expressed in Eq. (10).

𝑇𝐴𝐶 = 𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑠𝑒𝑑 𝐶𝐴𝑃𝐸𝑋 + 𝐹𝑂𝑃𝐸𝑋 + 𝑉𝑂𝑃𝐸𝑋 (9)

𝐶𝐶𝐶 =  
𝑇𝐴𝐶

𝐶𝑂2 𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑑 𝑎𝑛𝑛𝑢𝑎𝑙𝑙𝑦
(10)

3.3.1 Sensitivity analysis

1. Variation of capture rate

In this study, the effect of varying the capture rate was observed at the operating engine 

capacity of 85% load. Cost estimation was carried out for this case with and without EGR; with 

the EGR, the capture rate was varied from 60-90%, respectively. The cost of carbon capture 

obtained was higher for the case without EGR due to the higher flow of flue gas into the capture 

process as seen in Table 5. Figure 9 shows the total annual cost in terms of capture rates. It can 
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be observed that the total cost (M$/a) varies linearly with CO2 capture rate. As the capture rate 

increases, the amount of solvent required to meet the target increases, resulting in the increment 

of the variable cost. The cost of capture decreases as the capture rate is increased showing the 

effect of scale. It was found that at 60% capture rate (with EGR), the cost of capture obtained 

was $149/t, which is higher than at 90% capture rate (with EGR), $117/t. 

Table 5: Economic estimation results 

Description No EGR With EGR 

CO2 captured (tonne/a) 17380 16372

Annualised CAPEX 
(M$/a) 1.413 1.194

Fixed OPEX (M$/a) 0.043 0.036

Variable OPEX (M$/a) 0.804 0.679

Total (M$/a) 2.26 1.909

CCC ($/tonne CO2) 130 117
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Figure 9: Total annual cost including the capital and operating cost with EGR, different 

capture rates
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2. Variation of engine load (capacity)

Three different engine loads were analysed for this study; it was assumed to operate at 85%, 

75% and 50% of engine full capacity while sailing, manoeuvring and hoteling, respectively. 

Detailed cost estimation was carried out at 85% load and then adapted for other conditions. At 

decreasing engine capacity other than full load, the amount of fuel reduces, thereby decreasing 

the total amount of CO2 that can be captured. In this work, the CAPEX and FOPEX were kept 

constant at the base scenario, 85% load, but the VOPEX changes (fuel cost and solvent make-

up rate) depending on the different engine capacity per time. All other parameters remained 

constant. The running VOPEX at 75% and 50% engine load decreased and was approximately 

90% and 70% of the variable operating cost at 85% load, respectively. It was also observed 

that the cost of CO2 capture increased at 75% and 50% load to $149/t and $217/t; therefore, the 

system is more efficient at 85% load, for which it was designed. In essence, determining the 

engine capacity at which the ship operates most often is important, and the capture system 

should be sized for that capacity to avoid increased costs.

3. Variation of fuel cost

The price of fuel is very important in the determination of the cost of capture. This case was 

analysed at the same basis as the variation of engine load case. The price of LNG for the base 

case scenario was chosen to be $358/t (£282/t) and converted using an exchange rate of 

1.27(£/US$).22 The cost was varied from $100-1000/t to observe the effect on the cost of 

capture. It can be observed that at the price of $1000/t, the cost of capture increased by 

approximately 21% compared to the base scenario of 50% load as seen in 

Figure 10. The increase in the LNG price results in the cost of capture increasing and vice 

versa. 
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4. Variation of solvent cost

The solvent cost is a key parameter that affects the economics of the capture process. This is 

important because the loss of solvent frequently occurs as a result of volatility, degradation and 

fugitive emissions. Therefore, feeding fresh solvent is required to make up for all the losses 

and, as a result, can increase or decrease the cost of capture. For this case, all parameters 

remained constant as in the variation of engine load case, apart from the cost of NH3. The cost 

of NH3 was varied between $100-900/t, and it was observed that the cost of capture ($/a) varies 

linearly with the price of NH3 as shown in Figure 11. 
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Figure 10: Effect of fuel cost on the cost of capture

3.4 Storage tank capacity

In this work, it was assumed that the captured CO2 after liquefaction was injected into the CO2 

cargo tanks. If it is a non-CO2 carrier, an additional storage tank must be provided on-board. 

The size of the vessel considered for this analysis was 20550 m3 with an ullage of 10%. The 

ship leaving port is considered to be not filled to the maximum to accommodate the injected 

CO2 on-board the ship as well as for safety and inspection purposes. For this case study, at 85% 

load without EGR, the liquefied CO2 would occupy 314 m3 (approximately 1.5%) of the cargo 
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tank capacity per round trip when sailing. The BOG was not considered in this case. Therefore, 

the maximum filling capacity of the cargo tank would be 85-88%. In the analysis stated, the 

tank volume required is 314 m3, but for safety reasons and assuming the ullage percentage, the 

storage capacity or volume can be increased by 20%. In a scenario where there is not enough 

space on-board the ship for CO2 storage, smaller tanks can be used and unloaded in 

intermediate ports and reloaded with empty tanks.
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Figure 11: Effect of solvent cost on the cost of capture

3.5 Carbon tax

It is reasonable to conclude that this is the right time to consider the implementation of an 

international maritime carbon price as there is no charge yet for marine GHG emissions, but 

there will be.49 A carbon price must be high enough to make renewables and low-carbon 

technologies competitive with fossil fuels.50 A carbon price as high as $250 per tonne of fuel 

would likely lead to complete decarbonisation by 2035.51 With the IMO 2050 target to cut CO2 

emissions, a carbon tax introduced for carbon-based fuels can promote positive behavioural 

measures such as improvements in operational and technical design efficiency, and also raise 

significant revenues.49 Although, the idea of carbon tax was rejected by the International 
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Chamber of Shipping when proposed by the Organisation for Economic Co-operation and 

Development to raise revenue for climate change mitigation in 2015. 52 Market distortions, 

negative impacts on the global maritime trade, and a possibility that the raised funds may not 

be used to reduce CO2 emissions from the maritime sector were cogent reasons stated for the 

rejection.52 In this work, a carbon tax of $30/t CO2 was assumed to be imposed, and at 85% 

load engine capacity, 17,380 t/a of CO2 was captured. With a carbon capture system installed 

on-board, at 90% capture rate, a shipping company could save $521,386 annually. Installing 

the process on-board a ship can save shipping companies or owners a substantial amount of 

money in the future even with uncertain regulations and policies. 
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4 CONCLUSIONS

This study presented the application of ammonia-based solvent for carbon capture technology 

on-board for LNG-fuelled CO2 ships. First, a dual-fuel ship energy system was modelled and 

validated. A hot-side heat integration consisting of the exchange of thermal energy between 

the exhaust gas, that would otherwise be wasted, and a reboiler were considered. Secondly, a 

rate-based model was developed for the capture process and validated with the Munmorah pilot 

plant data, obtaining very similar results, and then further scaled up to handle the flue gas from 

the ship energy system. Thirdly, the cold energy was used to re-liquefy the captured CO2 into 

the cargo tank. The fuel option discussed here is natural gas as compared to conventional fuels 

such as heavy fuel oil. The effect of EGR was also analysed on the cost of capture, and this 

was found cheaper than without the implementation of EGR. The implementation of EGR 

accounted for 10% reduction in the cost of capture and a significant reduction in the power 

requirement for the CCS system. The additional engine cost that could be incurred from the 

implementation of EGR was not taken into account for this study. 

In the integrated ship model performance, the cost of CO2 captured was used as an economic 

index in this study. It was analysed at different operating loads (50%, 75% and 85%) and 

capture rates (60-90%). It was found that for the ship on-board capture to be optimal, it must 

be performed at the design specification. The capture process was optimised by determining 

the optimum solvent concentration that could result in minimum reboiler duty, and was found 

to be at 10 wt% ammonia concentration based on the parameters chosen. At the capture level 

of 90%, the cost of capture ($117/t) was found to be cheaper than at 60% ($149/t); also, the 

cost of capture without EGR was higher than when compared with EGR. Other sensitivity 

analyses such as the variation of engine load, fuel cost and solvent cost were also considered. 

Storage analysis was also determined for liquefied CO2 injection into the cargo tanks for CO2 

carriers and into supplementary tanks for non-CO2 carriers.
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In general, increasing the capture rate and integrating EGR decreased the cost of capture for 

this case study. It can be concluded that the capture design rate should be as high as possible 

to reduce cost. In terms of the different engine loads, the operational profile of the specific ship 

must be studied before designing the ship-based capture system. For this study, it was varied 

at three engine loads, and an increase in the capture cost was observed as the load decreased. 

Finally, other dynamic capture process operations could be adapted in future by considering 

varying the engine load to reduce cost. The effect of the ship motion was not considered in this 

work, but again can be included in future studies. Membrane capture might also be of interest. 

Another potential cost reduction, specifically related to the space requirement on-board, is the 

application of process intensification concepts such as rotating packed beds. The cost of capture 

and size of the capture equipment could then be reduced significantly. 17
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