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Abstract  

Rapid demographic expansion along with increasing urbanization has aggravated the problem  

of solid waste management. Therefore, scientists are seeking waste management methods that  

are eco-friendly, cost effective and produce immediate results. In the developing world,  

municipal solid waste (MSW) contains mostly organic substances, therefore vermicomposting  

could be a better and cost-effective option for waste management. In this study,  

vermicomposting of organic portion of MSW with cow dung (additive) was performed using  

Eisenia fetida. The results showed significant (p<0.001) decline in pH (13.17%), TOC  

(21.70%), C: N (62.53%) and C: P (57.66%) ratios, whilst total N (108.9%), P (84.89%) and  

K (21.85%) content increased (p<0.001) in matured vermicompost. Different enzymatic  

activities declined during termination phase of vermicomposting experiments with maximum  

decrease of 41.72 (p=0.002) and 39.56% (p=0.001) in protease and β-glucosidase, respectively.  

FT-IR, TGA, DSC and SEM studies suggested that final vermicompost was more stabilized as  

compared to initial waste mixture, characterized by reduced levels of aliphatic materials,  

carbohydrates and increase in aromatic groups possibly due to biosynthesis of humic  

substances. Both, the conventional (physicochemical and enzyme activity) and advanced  

techniques depict maturity and stability of the ready vermicompost. However, FT-IR, TGA,  

DSC and SEM were proved to be more promising, fast and reliable techniques over  

conventional analyses.  
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Prodigious population growth and urbanization along with techno-economic development are  

responsible for continuing expansion of cities. It has put additional pressure on infrastructural  

services and food security across the globe (Srivastava et al., 2015). These factors affect the  

consumption pattern of the society that has been accompanied by high amount of solid waste  

generation and its compositional changes (Khan et al., 2016). As stated in the World Bank  

report (2018), the annual rate of municipal solid waste (MSW) generation were 2,010 million  

tonnes in 2016, which is projected to reach 3,400 million tonnes by 2050. A huge quantum of  

global waste (33%) usually finds its way to open dumping sites which is still the preferable  

method for waste disposal in low income countries (93%). About 75% of the solid waste is  

open dumped in South Asia, followed by Sub-Saharan Africa (69%) and Middle East and North  

Africa (52.7%).  In low- and middle-income countries, the quantum of organic fraction of waste  

is exceeds 50% which upon degradation produces various noxious gases (e.g. CH4, CO2, and  

H2S) and leachate at dumpsites that poses serious environmental and health hazards (Goel et  

al., 2017; Sharma et al., 2018). Therefore, it is imperative to identify simple techniques for  

solid waste reduction and stabilization with low operational and maintenance cost that would  

also help in achieving the environmental and public health standards (Srivastava et al., 2016;  

Goel et al., 2017). Additionally, segregation of organic fractions will lead to less amount of  

waste reaching dump sites.   

Nowadays, agricultural application of organic waste is getting recognition across the globe due  

to high proportion of organic matter and nutrient rich profile, which also reduces dependency  

over inorganic fertilizer (Srivastava et al., 2016). However, processing of these organic wastes  

is obligatory prior to its agricultural utilization (Srivastava et al., 2018). Recently,  

vermicomposting of organic waste has received research attention globally and is considered  

as promising and sustainable technology to reuse organic wastes. Vermicomposting is a non- 

thermophilic exercise which transform complex organic materials into a nutrient rich stabilized  

product through bio-oxidation (Srivastava et al., 2015; Lim et al., 2016). In vermicomposting,  

degradation of organic waste materializes through gut microbes of earthworm and results in a  

stable and mature vermicompost (Lim and Wu 2015; Lim et al., 2016). Stable vermicompost  

is humus like material, having nutrient rich profile and plant growth hormones which can  

augment soil physico-chemical and microbial properties and enhance plant growth (Srivastava  

et al., 2016; Bhat et al., 2017).   

The agricultural use of organic waste manure produced through vermicomposting is one of the  

possible approaches to restore soil productiveness and organic waste management (Ostos et al.,  

2008; Bhat et al., 2016). However, it is essential to determine vermicompost stability before its  

  1. Introduction
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agricultural applications that may otherwise cause phytotoxicity (Aamir et al., 2010). Stability  

is directly linked to biological activity of vermicompost and is dependent on degree of  

biodegradation achieved during vermicomposting process, while maturity is associated to  

phytotoxin free final vermicompost (Wang et al., 2004). In addition to the  alterations in  

physico-chemical and enzymatic activities, the stability and maturity of vermicompost can also  

be determined by spectroscopic and thermogravimetric methods (i.e. fourier transform infrared  

(FT-IR) spectroscopy, differential scanning calorimetry (DSC) and scanning electron  

microscopy (SEM)) ( Amir et al., 2010; Ravindran et al., 2013; Hussain et al., 2015; Lim and  

Wu, 2016; Soobhany et al., 2017; Khatua et al., 2018). Previous studies have shown that FTIR,  

TG and DSC analyses are among the most promising, fast and reliable techniques for  

characterizing heterogeneous organic material, which provide a complete information on  

compositional, functional and behavioral properties of samples (Kumar et al., 2013; Ouaqoudi  

et al., 2015; Soobhany et al., 2017). Likewise, SEM analysis gives information on  

morphological structure of vermicompost that validates maturity and stability of product  

(Rajpal et al., 2014; Bhat et al., 2015; Hussain et al., 2016).  

Earlier studies on vermi-stabilization of different organic wastes focused on changes in  

physico-chemical properties ( Suthar et al., 2015; Hussain et al., 2016; Arora and Kaur, 2019),  

enzyme dynamics (Yadav et al., 2015; Villar et al., 2016; Sudkolai and Nourbakhsh, 2017) and  

evaluation of vermicompost as soil organic amendments ( Lakhdar et al., 2012; Weber et al.,  

2014; Srivastava et al., 2018). To date very limited studies are present which include both  

traditional and advance techniques to evaluate stability and maturity of organic waste through  

vermicomposting. Also, the information of the appropriateness of vermitechnology for  

transmuting organic portion of MSW into humic substances and qualitative analysis of  

vermicompost is still in its infancy. Therefore, in this study multiple techniques were used to  

evaluate stability and maturity of vermicompost with following objectives: (a) analysis of the  

physico-chemical changes during vermicomposting process of organic portion of MSW mixed  

with cow dung; (b) evaluation of enzymatic dynamics in initial feed material and final  

vermicompost; (c) compositional, functional and structural changes in initial feed material and  

final vermicompost using FTIR, TGA, DSC and SEM.   

2. Material and methods  

2.1. Experimental setup, vermicomposting of municipal solid waste, and quality control  
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The experiment was carried out at the test site of Institute of Environment and Sustainable  

Development (IESD), Banaras Hindu University, Varanasi, during October to December 2016.  

The mean monthly maximum temperatures ranged between 21.2 to 32.2°C and mean monthly  

minimum temperatures between 11.3 to 21.0°C during the study period. Total precipitation  

was recorded to 5.4 mm while mean monthly maximum and minimum relative humidities  

varied from 76.4 to 93.2% and 45.0 to 68.0 %, respectively. The substrate was prepared by  

mixing dried chopped organic portion of municipal solid waste (OPMSW) (containing  

vegetable, paper, flower, leaf litter etc.) and cow dung (CD) in ratio of 60: 40 (w/w). The  

OPMSW is heterogenous and complex in nature having various components with different  

physico-chemical properties. Moreover, microbial activation is essential to initiate  

biodegradation of OPMSW. Many previous studies suggest that CD is a suitable bulking  

material for making a microbially active substrate with different organic waste components  

during the vermicomposting process (Paul et al., 2011; Suthar et al., 2015; Srivastava et al.,  

2018). Apart from that, CD addition is well known to improve the stabilization process of  

different waste stuffs and increase of the earthworms’ survival rate (Lim et al., 2016; Yuvaraj  

et al., 2018). Therefore, CD appeared to be a suitable bulking material with OPMSW for  

preparing the substrate. Substrate material was pre-decomposed for 3 weeks and thorough  

turning was performed after each week. The moisture level was maintained by spraying water  

during this period. Pre-decomposition was performed to attain thermal stability and the removal  

of volatile toxic substances (Srivastava et al., 2015; Arora and Kaur, 2019; Sharma and Garg,  

2019). Also, it helps in making the substrate material palatable to the earthworms and breaking  

oily and fatty substances in the feed material prior to the earthworm inoculation (Sharma and  

Garg, 2019). The physico-chemical characteristics of pre-decomposed CD, OPMSW and waste  

mixture are presented in Table 1. After pre-decomposition; healthy, equal sized and non- 

clitellated 25 earthworms (Eisenia fetida) were hosted in plastic containers of 2 litre capacity  

containing 1000 gm of mixed substrate. The setup was established in triplicate. The moisture  

level in the substrate was kept at 70-80% by sprinkling fresh water on alternate days. The  

samples were collected from all the three established vermicomposting units in triplicate. These  

sub-samples from all three vermicomposting units (total 9 nos.) were mixed to form single  

composite sample to maintain homogeneity and to make a representative sample. The  

representative sample was divided into three parts (for initial and final sampling). The first part  

was air-dried in shade at room temperature till stable mass was achieved. This was followed  

by physico-chemical analyses. Second part was air dried for 3-4 hours in shade at room  

temperature to remove excess moisture content attained during vermicomposting and  
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refrigerated in the plastic vials below 4°C to keep samples stable until further instrumental  

analyses (Ernesto et al., 2009; Wu et al., 2011; Kumar et al., 2015). The third part was not air- 

dried and directly kept in plastic vials at 4°C for different enzyme analyses. The physico- 

chemical analyses were performed at every two-week interval throughout the vermicomposting  

operation, while different instrumental, and enzyme activity were measured in initial substrate  

and final vermicompost samples.   

Quality control was assured by the use of analytical grades (AR) chemicals, standard protocols  

and operating procedures, and calibration with standards. IBM Statistical Package for the  

Social Sciences (SPSS) version 16 (Illinois, USA) was applied for all the statistical analyses.   

Sigma Plot version 10 software was used for all the graphs related to different enzyme analysis,  

while Origin 9.1 software was used to plot the graphs for spectroscopic and thermal analyses.  

Table1 Initial physico-chemical properties of pre-decomposed CD, OPMSW and waste  

mixture (mean ± SE, n = 3)  

  

2.2. Physico-chemical analyses of vermicompost  

Measurements of electrical conductivity (EC, Model 303, Systronics, India) and pH (Model  

802, Systronics, India) were achieved with suspension of vermicompost in distill water (ratio  

of 1:10 (w/v)) that has been mixed thoroughly for 30 min with subsequent filtration via filter  

paper (Whatman No. 1). The total organic carbon (TOC) was estimated by ‘dry combustion  

method’ as described by Nelson and Sommers (1982) (Appendix S1). Total nitrogen (N)  

content of samples was ascertained using automatic N analyzer (Model KEL PLUS, India) by  

applying Kjeldahl method (Jackson, 1975). Total phosphorus (P) was worked out using  

procedure prescribed by Allen et al. (1974), and potassium (K) content was deduced by using  

flame photometric method. Analysis of variance (ANOVA) was implemented to decide the  

significant differences between different time intervals for the observed physico-chemical  

characteristics of vermicompost using Duncan’s multiple range test (DMRT) post hoc test.  

Parameters Pre-decomposed material (3 weeks) 

CD OPMSW Waste mixture 

pH 7.71± 0.003 8.58± 0.003 8.35±0.01 

EC (mS cm-1) 1.43± 0.01 1.29± 0.01 1.27±0.01 

TOC (g Kg-1) 425.1± 0.50 509.8± 4.10 465.9±0.99 

TKN (g Kg-1) 6.24± 0.12 10.54± 0.17 8.06±0.12 

Total P (g Kg-1) 5.41± 0.25 8.86± 0.12 7.81±0.12 

Total K (g Kg-1) 10.06± 0.29 13.89± 0.01 13.27±0.12 

C/N ratio 68.16±1.41 48.40±0.94 57.81±0.95 

C/P ratio 78.97±3.80 57.54±0.72 59.69±0.83 
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2.3. Enzyme activities 

The urease enzyme activity was ascertained by ammonium released. Measurement were 

conducted after nurturing the samples (5 g fresh weight) with urea solution (0.08 M) for 2 hours 

at 37 °C along with KCl solution (1N KCl in 0.01 N HCl), at 690 nm (Kandeler and Gerber, 

1988). The acidic phosphomonoesterases activity was assessed by the release of p-Nitrophenol 

(PNP). For this purpose, samples (1 g fresh weight) were incubated (1 h @ 37 °C) in presence 

of p-nitrophenyl phosphate (0.025 M) and measurement at 400 nm (Eivazi and Tabatabai, 

1972). The dehydrogenase enzyme activity was inferred by evaluation of the rate of decrease 

of triphenyl tetrazolium chloride (TTC) (3%) to triphenyl formazan (TPF). Quantification was 

done at 485 nm after incubation at 37 °C for 24 hours (Casida et al., 1964). Estimation of 

protease activity was accomplished by measuring tyrosine extricated. For this, samples (1 g 

fresh weight) were incubated (2 hrs @ 50 °C) in presence of sodium caseinate (2%) and with 

Folin–Ciocalteu reagent, at 700 nm. The β-Glucosidase activity was analyzed by determining 

p-Nitrophenol (PNP). This was determined by incubating (1 hour @ 37 °C) samples (1 g fresh 

weight) using p-Nitrophenyl β-D-glucopyranoside (PNG, 0.025 M), at 400 nm (Eivazi and 

Tabatabai, 1988). Paired Student’s t-tests were employed to find the significant change among 

enzymatic activities in initial waste mixture and final vermicompost. 

2.4. Fourier transform infrared (FT-IR) analysis 

The Fourier transform infrared (FT-IR) study was performed on a NicoletTM5700 spectrometer. 

2 mg of each samples were assorted with 400 mg KBr and pressed under vacuum to make 

potassium bromide (KBr) pellets. Both samples and KBr were dehydrated discretely at 105ºC 

to remove moisture before production of the pellets. The bands measured were ranged from 

400 to 4000 cm-1 with interval of 4 cm-1. Baseline corrections were made in spectra and 

absorbance was normalized for unity of presentation and analysis.  

2.5. Thermogravimetric (TGA) analysis  

Thermogravimetric analysis (TGA) was accomplished using a simultaneous thermal analyzer 

(PerkinElmer STA 600, USA). The samples were grounded (15-25 mg) and sieved to 0.2 mm 

particle size. The analysis was completed on a dry basis by means of aluminum crucibles 

(60µL) under synthetic air atmosphere (flow rate maintained at 100 ml min-1). Temperature 

ranged from 20 – 800 ºC and heating rate of 10 ºC min-1 was used with pressure sustained at 

101 kPa.  
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2.6. Differential scanning calorimetry (DSC) analysis 

Differential scanning calorimetry (DSC, Metller Toledo 822E, India) was carried out on finely 

ground samples. Covered aluminum crucibles were used for weighing samples (8 - 10 mg). 

Thermal analysis was accomplished in reduced nitrogen atmosphere (temperature range: 0–

220 oC, heating rate 10 oC/min). 

2.7. Scanning electron microscopy (SEM) analysis 

Scanning electron microscopy (SEM) of vermicompost samples was conducted through a 

scanning electron microscope (Nova NanoSEM 450, Czech Republic). The samples prepared 

with glutaraldehyde were attached on specimen holder. The mounts were dried under a high 

vacuum and coating was performed. Scrutiny of these specimens was made at 4000X 

magnifications. 

 

3. Result and Discussion 

3.1.Changes in physico-chemical properties 

In this study, the final vermicompost was more stabilized and having nutrient rich profile than 

initial substrate (Table 2). The physico-chemical properties of final vermicompost were found 

to differ considerably as equated to initial substrate. The pH of the substrate decreased 

significantly (ANOVA; F=3,098, p<0.001) through progression of vermicomposting process 

and it was 7.25 in final vermicompost as compared to 8.35 in initial substrate. The decline in 

pH may be credited to the production of carbon dioxide (CO2), ammonia (NH3), nitrates (NO3-

), orthophosphates (PO4-3) and organic acids during bioconversion process (Sharma and Garg, 

2017, 2019; Yuvaraj et al., 2018; Karmegam et al., 2019). During the vermicomposting 

process, carboxylic and phenolic groups of humic acids (HAs) were neutralized by intestinal 

Ca and NH3 secreted by earthworms (Sharma and Garg, 2017, 2018). Consequently, the pH of 

final vermicompost tended toward neutral range. In the present study, lowering of pH during 

vermicomposting process assisted to conserve nitrogen in final vermicompost (Sharma and 

Garg, 2017; Arora and Kaur, 2019). The electrical conductivity (EC) increased significantly 

(ANOVA; F=4,725, p<0.001) from 1.27 to 2.79 mS cm-1 in initial substrate and final 

vermicompost, respectively. The rise in EC was due to degradation of organic matter and 

elevated levels of soluble mineral salts in available forms during vermicomposting (Lim et al., 

2011; Sharma and Garg, 2017, 2018; Karmegam et al., 2019). Total organic carbon (TOC) 

significantly decreased by 21.70% in final vermicompost in comparison to initial waste mixture 
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(Table 2) (ANOVA; F=177.76, p<0.001). This trend of TOC loss can be ascribed to the organic  

matter degradation and mineralization. Also, respiratory activity and assimilation of carbon by  

microbial population and earthworms led to decrease in organic carbon (Sharma and Garg,  

2017, 2018; Karmegam et al., 2019). The low level of TOC in final vermicompost showed  

humic acid richness indicating stabilization of the final product (Goswami et al., 2016; Sharma  

and Garg, 2017). Furthermore, increased level of total Kjeldahl nitrogen was noticed in the  

final vermicompost (16.84 g Kg-1) i.e. 108.9% as compared to initial waste mixture (8.06 g Kg- 

1) (ANOVA; F=414.71, p<0.001) (Table 2).   Rise in TKN value may be ascribed to the  

mineralization of nitrogenous organic substrate (mainly proteins) and activity of N-fixers and  

microorganisms (Gómez-Brandón et al., 2013; Sharma and Garg, 2019). Further, excretory  

substances of earthworms such as body fluids, coelomic fluids (mucus), growth stimulating  

hormones, enzymes and dead earthworms augmented total nitrogen of final vermicompost  

(Arumugam et al., 2017; Sharma and Garg, 2017, 2018, 2019). Likewise, a significant increase  

of 84.89% was noticed in total phosphorus (TP) of final vermicompost (ANOVA; F=325.72,  

p<0.001) (Table 2). The increase in TP may be attributed to the mineralization of phosphorus  

by the activity of gut and faecal phosphatases, which were further complemented by P- 

solubilizing microbes during vermicomposting (Hanc and Pliva, 2013; Suthar et al., 2015;  

Sharma and Garg, 2017, 2018, 2019). Potassium (K) was also found to be higher during  

vermicomposting process and was increased from 13.27 to 16.17 g Kg-1 in the initial substrate  

and final vermicompost respectively (ANOVA; F=52.03, p<0.001). Mineralization of K  

mainly occurs in the gut of earthworms through endo or exogenic enzymes (Yadav et al., 2013;  

Sharma and Garg, 2017, 2018, 2019). The C/N ratio shows the stability and maturity levels of  

compost/ vermicompost. In the present study C/N ratio significantly decreased by 62.53%  

(21.66) in final vermicompost as compared to initial substrate (ANOVA; F=583.90, p<0.001)  

(Table 2). The degradation and mineralization of organic matter and loss of carbon in  

respiratory activity and N enrichment through progression of vermicomposting process led to  

decreased C/N ratio in final vermicompost (Malafaia et al., 2015; Sharma and Garg, 2017,  

2018, 2019). Also, increase in humification rate and decomposition of complex substances  

such as lignin, cellulose and hemicellulose resulted in reduced C/N ratio (Das et al., 2016;  

Sharma and Garg, 2017). As C/N ratio below 20 is a good indicator of vermicompost maturity  

(Morais and Queda, 2003), therefore vermicompost produced in the present (21.66) study could  

be considered as mature and stable. The C/P ratio of final vermicompost decreased by 57.66%  

and was found to be 25.27 as compared to 59.69 in initial substrate (ANOVA; F=781.91,  

p<0.001). The loss of carbon and increase in phosphorus content during vermicomposting  
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operation led to reduced C/P ratio in vermicomposted material (Sharma and Garg, 2017; 

Karmegam et al., 2019).  Based on the nutrient profile, cow dung spiked organic portion of 

MSW could be recommended for the production of vermicompost, however it relies on the 

physico-chemical properties of organic waste. It is well known fact that NPK are essential 

nutrients that augment plant growth and productivity. Therefore, the nutrient rich profile of 

MSW vermicompost, proved its appropriateness for agricultural application. Hence, it can be 

stated that vermicomposting of OPMSW has immense potential for recycling and recovery of 

plant nutrients from wastes. 
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Table 2 Physico-chemical properties of substrate material at different time-intervals during vermicomposting (mean ± SE, n = 3)  

  

Parameters 0 days 14th day  28th day 42nd day 56th day 70th day 84th day 

pH 8.35± 0.01a 8.12± 0.00b 7.96± 0.01c 7.63± 0.01d 7.45± 0.01e 7.37± 0.00f 7.25± 0.01g 

EC (mS cm-1) 1.27± 0.01g 1.41± 0.01f 1.65± 0.01e 1.79± 0.01d 2.28± 0.01c 2.50± 0.01b 2.79± 0.01a 

TOC (g Kg-1) 465.9± 0.99a 420.9± 3.90b 411.2± 2.41b 388.0± 2.27c 378.6± 1.74cd 375.0± 2.25cd 364.8± 3.62d 

TKN (g Kg-1) 8.06± 0.12g 9.46± 0.20f 10.44± 0.17e 12.13± 0.17d 13.76± 0.17c 15.30± 0.12b 16.84± 0.12a 

Total P (g Kg-1) 7.81± 0.12e 8.53± 0.04e 9.91± 0.12d 10.44± 0.03d 11.41± 0.08c 13.24± 0.29b 14.44± 0.06a 

Total K (g Kg-1) 13.27± 0.12c 13.52± 0.13c 13.60± 0.14c 13.75± 0.20bc 14.09± 0.19bc 14.55± 0.05b 16.17± 0.08a 

C/N ratio 57.81± 0.95a 44.50± 0.67b 39.39± 0.54c 32.01± 0.40d 27.53± 0.34e 24.51± 0.15ef 21.66± 0.13f 

C/P ratio 59.69± 0.83a 49.35± 0.24b 41.51± 0.30c 37.18± 0.25d 33.17± 0.19e 28.35± 0.56f 25.27± 0.27g 

  

Different alphabetical letters in each parameter during vermicomposting represent statistically significant difference at p <0.001 by   

Duncan's Multiple Range Test (DMRT)  

https://www.statisticshowto.datasciencecentral.com/duncans-multiple-range-test/
https://www.statisticshowto.datasciencecentral.com/duncans-multiple-range-test/
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3.2. Enzymatic activities  

Several enzyme activities were estimated in pre-composted waste mixture and final  

vermicompost to determine organic matter decomposition during microbial driven  

vermicomposting process. The variations in the enzyme activities of urease, dehydrogenase,  

phosphatase, protease and β-glucosidase (main enzymes tangled in urea and aerobic oxidative  

metabolism, and also breakdown of phosphate esters, polypeptides and polysaccharides, in that  

order) at two-time intervals are depicted in Fig. 1.   

The  urease activity, which catalyzes hydrolysis of urea (CH4N2O), yielding CO2 and NH4+,  

decreased by 22.46% in final vermicompost (t rest; t=4.14, p=0.054) (Fig. 1), probably due to  

elevated levels of NH4+-N in the substrate during last phase of the experimental period, which  

might be responsible for its suppressed activity ( Ros et al., 2006; Jurado et al., 2014; Sudkolai  

and Nourbakhsh, 2017). Also, decreased activity of urease can be ascribed to the reduction of  

N-substrates, which apparently favor microbial activity (Benitez et al., 1999). Our findings  

were in accordance to Wu et al., (2017) and Sudkolai and Nourbakhsh (2017), who found  

similar results for the urease activity. Similarly, the phosphomonoesterases hydrolyzes organic  

phosphomonoesters to inorganic P (orthophosphate), which inhibits its activity at higher  

concentration in the substrate (Aira et al., 2007; Fernández-Gómez et al., 2010, 2013). In the  

present study, acid phosphatase was found to be negatively correlated with available P and a  

decrease of 22.31% was noticed in final vermicompost (t test; t = 6.17, p=0.025) (Fig. 1). This  

result is in consistence to Benıtez et al., (2005), who noticed an initial increase and subsequent  

decrease in phosphatase activity while vermicomposting of lignocellulosic olive waste by  

employing Eisenia andrei. The dehydrogenase enzyme plays significant role in biological  

oxidation of organic compounds and transfers hydrogen from substrates to the acceptor  

molecules (Page, 1982). Dehydrogenase activity determines overall microbial activity and  

stabilization of organic substrate during vermicomposting. It was recorded as 2.50 mgTPF.g- 

1dw.h-1 in pre-composted waste mixture, which was decreased by 25.20% in final  

vermicompost (t test; t=30.30, p=0.001) (Fig. 1). The decrease of dehydrogenase activity in  

final vermicompost can be attributed to deprivation and diminution of organic matters,  

indicating stabilization of the initial waste mixture (Alidadi et al., 2016).   

Protease enzyme catalyzes breakdown of proteins to peptides and amino acids (Geisseler and  

Horwath, 2008; Villar et al., 2016). It’s activity results in depolymerization of dissolved  

organic nitrogen from nitrogenous compounds, which is supposed to be very important in  

nitrogen cycle, as complex forms are not readily available to the micro-organisms (Schimel  
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and Bennet, 2004; Aira et al., 2007). The protease activity depends on substrate availability, 303 

therefore, could be useful in analyzing the decomposition rates of organic matter (Aira et al., 304 

2007). In the present study, protease activity decreased by 41.72% in final vermicompost 305 

(33.15 µg tyrosine. g-1dw. 2h-1) as compared to pre-composted waste mixture (56.88 µg 306 

tyrosine. g-1dw. 2h-1) (t test; t=21.52, p=0.002) (Fig. 1). The diminution in protease activity can 307 

be ascribed to low availability of substrate material during terminal phase of the experimental 308 

period, indicating that final product is more stabilized as compared to initial waste mixture. 309 

Similar result was reported by Villar et al. (2016), who confirmed significant reductions in 310 

protease activity during progression of vermicomposting experiment with sewage sludge. 311 

Likewise, β-glucosidase is involved in carbon cycle, which catalyzes the breakdown of 312 

glucosides to glucose and therefore associated with the turnover of carbon (Sinsabaugh and 313 

Moorhead,1994; Alef and Nannipieri, 1995). Its activity can be induced by the substrate 314 

therefore depends on substrate availability (Alef and Nannipieri, 1995). During 315 

vermicomposting process, β-glucosidase is synthesized and released presumably due to the 316 

breakdown of organic wastes and/or increase in microbial growth and activation of their 317 

metabolism (Eivazi and Tabatabai, 1990; Aira et al., 2007). In this study, β-glucosidase activity 318 

declined by 39.56% in final vermicompost and was found to be 2.75 mg PNP. g-1dw.h-1 as 319 

compared to 4.55 mg PNP. g-1dw.h-1 in pre-composted waste mixture (t test; t=34.08, p=0.001) 320 

(Fig. 1). The decline in β-glucosidase activity can be credited to depletion of organic substrate 321 

in older layers (Aira et al., 2007). The substantial presence and maintenance of extracellular 322 

enzyme activities during end phase of experimental period could be attributed to the 323 

development of complexes between extracellular enzymes and humic substances that gets 324 

protected from denaturation and degradation processes (Jurado et al., 2014; Villar et al., 2016). 325 

 326 

 327 
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Level of statistically important difference at p < 0.05 (*), p < 0.01 (**), p < 0.001 (***) and  

NS (non- significant) by Paired Student’s t-test  

Fig. 1. Changes in enzymatic activities of pre-composted waste mixture and final  

vermicompost   

3.3. Fourier transform infrared analysis   

The fourier transform infrared (FT-IR) spectroscopy facilitates identification of chemical  

functional groups of a matter where the absorbance intensity change is used to assess  

vermicompost stability (Lim and Wu, 2015). In Fig. 2, the relevant spectral bands of initial  

waste mixture and final vermicompost are presented. The assignment of infrared (IR)  

absorptions ascribed to specific functional groups is summarized in Appendix S2.   

In comparison to initial waste mixture, the FT-IR spectra of final vermicompost presented  

significant lessening in the peak intensity at 3387.8 cm-1 reflecting decomposition of phenols  

and carbohydrates due to reduction in OH and CH2 structures. Lim and Wu (2015), found that  
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decreased peak intensity at 3328 cm-1 showed degradation of carbohydrates in palm oil mill  

effluent (POME) vermicompost.  Likewise, Hussain et al. (2015) stated significant reduction  

in the peak intensity at 3448 cm-1 depicting reduction in phenolic content. Gupta and Garg  

(2009) reported reduced band height at around 3100-3600 cm-1 in the cow dung vermicompost  

in comparison to initial substrate. The reduction in peak intensity at 2924.8 and 2834.5 cm-1 in  

final vermicompost suggested degradation of lipid and carbohydrates due to decrease in  

aliphatic structures. Droussi et al. (2009), observed decrease of methylene bands (C-H stretch)  

at 2920 and 2850 cm-1 during progression of composting of olive-mill residues. Comparable  

outcomes were noticed by Gupta and Garg (2009) and Makni et al. (2010) while maturation  

study of organic waste compost. No obvious change of intensity was noticed in C≡N stretching  

vibrations of nitriles at 2342.3 cm-1. Soobhany et al. (2017), observed C≡N vibrations of nitriles  

at 2329 cm-1 in compost and vermicompost of paper waste. A prominent increase in the band  

intensity at 1644.8 cm-1 was noticed in final vermicompost as compared to initial waste  

mixture. This change could have been attributed to increase in aromatic groups during  

vermicomposting. Droussi et al. (2009) found increase in band intensity at 1650-1640 cm-1 due  

to aromatic C=C stretching in compost produced from olive mill residues. Similar result was  

observed by Makni et al. (2010) whilst studying maturity of organic waste composts. Soobhany  

et al. (2017) observed prominent shoulder around 1635 and 1630 cm-1 due to N-H bending  

vibrations correspond to Amide I species and C=C stretching of aromatic compounds in  

compost and vermicompost samples. No remarkable change was found at peak intensity of  

1425.3 cm-1, followed by emergence of a sharp peak at 1377.4 cm-1 due to N-O stretching of  

nitro group (Smidt et al. 2002; Hussain et al. 2015). Emergence of similar N-O stretching  

vibration was noticed by Hussain et al., (2015) and Rajiv et al. (2013) at peak intensity of 1384  

and 1381 cm-1 respectively in vermicompost samples. The peak intensity increased at 1045.35  

cm-1 due to elevated levels of aromatic ethers and polysaccharides. Droussi et al. (2009)  

observed large peak bandwidth around 1070-1030 cm-1 due to aromatic ethers and  

carbohydrates in compost.  Analogous results were described by Hussain et al. (2015) and Rajiv  

et al. (2013). An appreciable increase in peak intensities at 777.9, 680.2 and 460.7 cm-1 was  

observed in final vermicompost (Fig. 2). This result was in accordance to Makni et al. (2010),  

who noticed prominent increase in peak intensities at 873.4, 778.5 and 467.9 cm-1 due to  

increase of silicates (Si-O-Si), aromatic ethers and polysaccharides (C-H stretch) in ready  

compost samples. The peaks between 777.9 and 460.7 cm-1 with minor variations in final  

vermicompost can equally be ascribed to alkyl halides and polysulfide groups (Reusch, 2013).  

This finding was in consistent with Soobhany et al. (2017), who observed small differing peaks  
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between 875 and 456 cm-1 due to alkyl halides and polysulfide groups in compost and  

vermicompost and were more intense in vermicompost samples.    

The findings of FT-IR study revealed disappearance of polysaccharides, carbohydrates and  

aliphatic methylene from the initial waste mixture whilst aromatic compounds, nitro group and  

humic structures appeared in MSW vermicompost depicting its stability and maturity.  

  

  

Fig. 2. FT-IR spectra of the pre-composted waste mixture and final vermicompost  
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3.4. Thermogravimetric analysis  

Thermogravimetry (TG) is a thermal technique which is used to examine the changes in mass  

of a sample at increasing temperature and constant heating rate. TG analysis of substrate  

material at two-time intervals during vermicomposting revealed thermal stability of samples  

explained by mass loss due to dehydration, oxidation and degradation (Bhat et al., 2017; Khatua  

et al., 2018). The derivative thermogravimetric (DTG) curves were found from the first  

derivative of thermogravimetric profiles. The TG and DTG curves of the initial waste mixture  

and final vermicompost are presented in Fig. 3 a & b. Both the samples showed gradual  

decrease in mass under heating conditions. TG profiles showed higher percentage of mass loss  

in the initial waste mixture as compared to final vermicompost (Fig. 3a). Under atmospheric  

conditions, the total mass losses at 800 °C were 47.5 and 38% for initial waste and  

vermicompost, respectively (Fig. 3a). These changes in mass percentage could be ascribed to  

higher volatile solids in initial waste mixture (Lim et al., 2014). Consequently, vermicompost  

was comparatively more stabilized as it contained higher amount of heat resistant compounds 

due to increased molar complexity of carbohydrates and extent of aromaticity (Ravindran et 

al., 2013; Kahtua et al., 2018). The decrease in mass percentage up to 140 °C was owed to the 

dehydration or loss of residual water from the specimens that could have been seen in the first 

peak of DTG profile in the temperature ranged between 30-140 °C (DTG1) (Fig. 3b). Kahtua 

et al., (2018) and Soobhany et al., (2017) observed analogous results in the vermicompost 

samples of banana stem and MSW respectively. Following dehydration, a progressive decrease 

in mass percentage was noticed at ~155-350 °C (DTG2). This peak was ascribed to the 

decarboxylation reactions of easily degradable materials and thermal decomposition of 

carbonaceous biomass such as aliphatic compounds, carbohydrates, and carboxylic groups 

(Ravindran et al., 2013; Soobhany et al., 2017; Kahtua et al., 2018). The decay of cellulose, 

hemicellulose and microbial cell wall could have also been responsible for the appearance of 

this peak (Kaloustian et al., 1997; Lim and Wu 2015). The peak intensity of DTG2 declined 

significantly during the vermicomposting progression. The reduction in peak intensity can be 

ascribed to biochemical conversion of readily decomposable organic matter into more complex 

humic like substances (Gómez et al., 2007; Lim and Wu, 2015; Wu et al., 2011). The decrease 

in intensity was in confirmation with the FT-IR study (Fig. 2). A peak (DTG3) appeared at 

higher temperature range of ~400-550 °C was ascribed to the mass loss owing to the thermal 

dissociation and breakdown of extra stable and complex aromatic structures such as lignin (El 

Ouaqoudi et al., 2015; Soobhany et al., 2017; Kahtua et al., 2018). Thermal degradation of 
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aliphatic substances including long chain hydrocarbons and nitrogenous compounds was also  

supposed to be liable for mass loss above ~400 °C (Ravindran et al., 2013). The peak DTG3  

decreased and moved slightly towards higher temperature and found at 474 °C in final  

vermicompost as equated to 468 °C in initial waste mixture. The shift in peak towards higher  

temperature showed growth in molecular complexity and aromaticity in vermicompost  

depicting maturity and stability of sample (Smidt and Lechner, 2005). Eventually, the peak  

(DTG4) emerged at the temperature range of 650-750 °C was credited to thermal decay of  

carbonates (Wu et al., 2011) (Fig. 3b). Its intensity increased slightly with progression of  

vermicomposting depicting mineralization of organic matter.      

  

  

a. 
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Fig. 3. a. Percentage mass loss and b. derivative thermogravimetry (DTG) curves from  

thermogravimetry exploration of the pre-composted waste mixture and final vermicompost  

3.5. Differential scanning calorimetry  

Differential scanning calorimetry (DSC) is a thermo-analytical procedure which is used to  

assess the physico-chemical changes during the composting and vermicomposting which  

exhibit exothermic reactions under heat capacity. The DSC curves of initial and final  

vermicompost are revealed in Fig. 4. DSC curve of initial feed mixture showed two energy  

requiring endothermic peaks at 94.4 °C and 171.1 °C respectively. These peaks were  

characterized by loss of residual water and peripheral polysaccharide chains (Critter and  

Airoldi, 2006; Soobhany et al., 2017). Analogous results were conveyed by Soobhany et al.  

(2017), who observed two endothermic peaks at 83.8 and 166.4°C. In the present study, a sharp  

low temperature endothermic peak was detected at 84.6 °C, shows higher maturity of  

vermicompost sample as compared to initial waste mixture (Provenzano et al., 2000; Soobhany  

et al., 2017) (Fig. 4). Likewise, second peak at 161.2 °C was in accordance to DTG2 (Fig. 3b)  

that can be attributed to the energy needed for bond breakage during degeneration of aliphatic  

b. 
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and carbohydrate compounds. Furthermore, molecular repositioning and orientation due to  

degradation of aliphatic, carbohydrates, peptides and other aromatic compounds might have  

also been responsible for the appearance of second peak (Fernández et al., 2012; Soobhany et  

al., 2017). The second endothermic peak at 161.2 °C appeared slightly flattened in final  

vermicompost due to reduced degradation of complex compounds (present in lesser amount)  

depicting stabilization and maturity of final vermicompost. This result was in accordance to  

Soobhany et al. (2017), who found virtually flattened endothermic peak at ~165°C in  

vermicompost sample as compared to compost. The DSC curves showed that vermicompost  

was more stabilized product as compared to the initial waste mixture depicted by reduced  

intensity of endothermic peaks up to 220 °C suggesting low availability of complex compounds  

in vermicompost sample.  

     

  

Fig. 4. Differential calorimetry curve of the initial feed mixture and final vermicompost  
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3.6. Scanning electron microscopy (SEM)  

 Snapshots obtained from SEM of initial waste mixture and final vermicompost are compared  

in Fig. 5. The study discovered that initial waste mixture was relatively compacted and flock  

like structure, whereas the vermicompost had more porous, fragmented and granular structure  

(Fig. 5a & b). During vermicomposting, the earthworms (Eisenia fetida) ingested and  

pulverized the initial waste mixture in the gizzard (Ali et al., 2015). Further disintegration of  

substrate material was assisted by different enzymes and enteric microbial activities mainly by  

hydrolytic bacteria present in the earthworm’s gut (Arancon et al., 2005; Bhat et al., 2017). Our  

results are in consistence with Unuofin and Mnkeni (2014), who observed fine granular  

structure of vermicomposts produced from cow dung and paper waste mixtures. Similar results  

were reported by various researchers who performed SEM exploration to elucidate changes in  

surface morphology of initial substrate and final vermicomposted mixtures (Kumar et al., 2014;  

Rajpal et al., 2014; Bhat et al., 2015; Hussain et al., 2016).   

   

                       

Fig. 5. Scanning electron microscopy (4000x) of a. pre-composted waste mixture and; b. final  

vermicompost  

4. Conclusion  

The OPMSW mixed with CD could be utilized in vermicomposting employing earthworm spp.   

Eisenia fetida. The enrichment of TKN, TP and TK contents, and decrease in TOC, C/N and  

C/P ratios depicted maturity and stability of the final product. Likewise, decline of urease,  

phosphatase, protease and β-glucosidase activities suggested decomposition of N-substrates,  

phosphate esters, polypeptides and polysaccharides, respectively in final vermicompost. The  

spectroscopic and thermal analyses further supported stability and maturity of the end product  

reflected by reductions in readily degradable polysaccharides and aliphatic compounds and  

increase in aromatic groups. Also, SEM micrographs revealed relatively larger surface areas  

a. b. 
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and much flakier structure of final vermicompost. In conclusion, these findings will contribute  

to better understanding of vermicompost stability and maturation study using different  

conventional and advanced instrumentation. The spectroscopic, thermal and structural analyses  

could easily be used to establish maturity and stability in compost science, which are  

comparatively less time consuming and more accurate over conventional analyses. The  

vermistabilzation of OPMSW could also help to develop an eco-friendly and alternative  

approach for nutrient recovery and waste management for a green and healthy environment.   
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