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I. Introduction

A IRBORNE target tracking is a key enabling technology inmany

civilian andmilitary applications, including situation awareness

[1–3], vehicle monitoring [4,5], public surveillance [6], and traffic

management [7]. However, reliable target tracking becomes

challenging when dealing with highly complex multitarget tracking

(MTT) problem. The objective of MTT is to simultaneously estimate

the number of targets and their states. InMTT, except for the fact that

the number of targets varies randomly in time, the received

measurements are also subject to a certain degree of uncertainties:

unknown source origin, miss detections, and false alarms. There are

several elegant solutions available in the literature to address the

measurement uncertainty problem in MTT: nearest neighbor (NN)

filter [8], probabilistic data association (PDA) filter [9], joint

probabilistic data association (JPDA) filter [10,11], and multiple

hypothesis tracking (MHT) [12–14]. ThisNote adapts the JPDA filter

as the baseline multitarget tracker because of its balance between

estimation accuracy and computational cost.
It is known that the estimation accuracy depends not only on the

filter performance but also on the relative geometry between the

unmanned aerial vehicle (UAV) and the targets [15–17]. For this

reason, trajectory optimization or path planning that directly

or indirectly minimizes the estimation error has beenwidely studied

in the literature. Optimal UAV trajectories that minimize the

estimation error are generated in [18–21] using numerical

optimizations bymaximizing the determinant of Fisher information

matrix (FIM) over a finite time horizon. The rationale of using FIM

for a cost function lies in that the inverse of FIM prescribes a lower

bound, also known as posterior Cramer–Rao bound (PCRB), of the

estimation error covariance of an unbiased filter [22]. By

maximizing the approximate lower bound of FIM, an optimal

variable deviated pursuit guidance algorithm that improves the

cooperative estimation performancewas proposed in [23] for aUAV

rendezvous mission. Several trajectory optimization algorithms for

spacecraft rendezvous were reported in [24–26] to improve the

estimation quality. An algorithm for active localization of stationary

targets using ground robots was suggested in [27,28] by leveraging

the trace of error covariance matrix as the cost function.
Although the aforementioned algorithms can bring significant

benefits in target tracking, they are mainly limited to single target

tracking (STT) scenarios. The aim of thisNote is, therefore, to propose

a newoptimization framework for a fixed-wingUAV to find its optimal

trajectory that improves theMTTestimation performance. In trajectory

optimization, it is known that formulating a suitable cost function,

or objective function, is of significant importance. The difficulty in

formulating a simple yet pertinent cost function for MTT, however,

naturally arises in the inevitable data association uncertainty and the
random number of targets. To simplify the problem formulation, the

authors in [4,29,30] leveraged theFIM, analogous to the approachused

in STT, to formulate the cost function in trajectory optimization for

MTT: the objective function is defined as the summation of all FIMs

from all existing targets. This simple cost function, however, ignores

the inherent data association uncertainty inMTTand thus cannot really

reflect the estimation performance of the tracker. Instead of using FIM,
the Rényi information divergence between the posterior and prior

distributions was used in [31] for sensor scheduling to track multiple

targets. However, calculating the information-theoretic Rényi infor-

mation divergence for a Gaussian mixture requires computationally

expensive Monte-Carlo techniques. The authors in [32] derived the

MTT PCRB by taking into account data association uncertainty.

Although this performance metric could be an ideal candidate

objective function in trajectory optimization for MTT, calculating the
MTT PCRB requires computationally expensive Monte-Carlo

integration. Therefore, these optimization frameworks might not be

suitable for online implementation.
Unlike STT, the objective of an MTT algorithm is to simul-

taneously estimate the number of targets and their states. The cost

function, therefore, should be a balance between cardinality esti-

mation performance and target localization performance. Taking this
factor into account, this Note formulates an analytical cost function

for MTT by leveraging the properties of the JPDA filter. The cost

function developed is a weighted sum of multitarget estimation

variance and cardinality estimation variance. By minimizing the cost

function, we can therefore increase the confidence level of JPDA

filter, thus indirectly improving the estimation performance. As

discussed later, themultitarget estimationvariance can also beviewed
as the data association uncertainty. This means that the proposed

cost function also provides the possibility to improve the quality

of data association. Incorporating the objective function formulated

with physical constraints, for example, turning rate limit, a con-

strained trajectory optimization framework for MTT is proposed.

Because the objective function is nonconvex in general, an

approximate solution is obtained by the control input discretization.

The resultant solution, given as heading angle input command, is
simple to be implemented in practice through an onboard heading

tracking control system.
Realistic scenarios are simulated to illustrate and evaluate the

performance of the proposed algorithm, and the results clearly

demonstrate that the proposed approach can significantly improve

the MTT estimation performance, especially when the detection

probability is time varying.
The rest of the Note is organized as follows. Section II presents

some mathematical models used in this study. Section III gives

a brief review of JPDA filter, and Sec. IV provides the details of the

proposed cost function, followed by the trajectory optimization

solution shown in Sec. V. Finally, some numerical simulations are

demonstrated.
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II. Mathematical Models

This section provides necessary preliminaries of several important
mathematical models to facilitate the analysis in the following
sections.

A. UAV Kinematics Model

This work assumes that the UAV is equipped with a high-
performance low-level flight control system that provides roll, pitch,
and yaw stability as well as velocity tracking, heading, and altitude
hold functions. This study aims to design guidance input, for
example, heading angle command, and feed this to the low-level
controller for multiple targets localization and is constrained to the
two-dimensional (2-D) motions. The UAV’s kinematics in a 2-D
environment is given by

ṗu
x � Vu cosψu

ṗu
y � Vu sinψu (1)

where �pu
x; p

u
y� stands for the UAV position in an inertial coordinate.

ψu is the UAV heading angle, and Vu denotes the UAV speed. For
simplicity, the following general assumption is made.
Assumption 1: The speed of UAV is assumed to be constant. Note

that the UAV speed is often predefined for operational reasons, for
example, endurance and mission objectives.
In practice, the heading change of a fixed-wing UAV between two

consecutive time steps is constrained due to physical turning rate
limitation as

jψu;k − ψu;k−1j ≤ ψmax ≜ ψ̇maxTs (2)

where ψu;k represents the heading angle at time step k, ψ̇max the
maximum permissible turning rate of the UAV, and Ts the
sampling time.

B. Multitarget State and Measurement Model

Suppose that there are Nk targets andMk sensor measurements at
scan k. A multitarget state Xk and a multitarget measurement Zk are
then defined as

Xk � fx1k; : : : ; xNk

k g Zk � fz0k; z1k; : : : ; zMk

k g (3)

where xik denotes the ith target at scan k, zjk�j ≠ 0� the jth mea-
surement received at scan k, and z0k the dummy measurement for
convenient representation of miss detection.
Consider the following dynamical system of target:

xik � fik−1�xik−1� � wi
k−1

zik � hik�xik� � vik (4)

where xik ∈ Rn and zik ∈ Rm denote the system state and the
corresponding measurement of the ith target at time step k. The
nonlinear functions fik�xik� and hik�xik� correspond to the system state
evolution and measurement equations, respectively. The signals wi

k
and vik are process noise and measurement noise, which are assumed
to be zero-mean Gaussian with covariances Qi

k and Ri
k. For

convenience, we make the following general assumptions, which are
widely accepted in MTT problems.
Assumption 2: Each target can generate at most one measurement,

and each measurement can originate from at most one target. Each
target-generated measurement is independent of each other and is
detectedwith probabilityPD. Notice that the detection probability, by
default, depends on the relative geometry between the UAVand the
target and therefore is usually a time-varying variable.
Assumption 3: The clutter distribution is assumed to be unknown a

priori and is thus considered as Poisson distribution. Clutters or false
alarms are modeled by a local Poisson point process with intensity
λFA � NFA∕Vs, with NFA being the average number of false alarms
received at each scan and Vs being the sensor volume.

C. Target Existence Model

In MTT, there is no prior information on the source of received
measurements. That is, each measurement may be spurious, for
example, false alarm, or fromone existing/new target. For this reason,
both true tracks, representing real targets, and false tracks are
generated and updated. The number of targets at time instant k is also
a random variable in an MTT problem: one target might suddenly
disappear or appear in the sensor’s field of view. Because of these
facts, a track confirmation and deletion logic is essential in MTT to
confirm the majority of true tracks and terminates most false tracks.
In this Note, each track is confirmed or terminated using

thresholding based on target existence probability ρik ≜ p�χikjZk�,
with χik being the event of existence of the ith target at scan k. If ρ

i
k is

larger than a upper threshold α1, then the ith track is confirmed; once
ρik is below a certain lower bound α2, the ith track is immediately
deleted. For the casewhereα2 ≤ ρik ≤ α1, the ith track is tentative and
requires more information to confirm or delete. The time evolution of
χik can be formulated by

p�χikjZk−1� � PSp�χik−1jZk−1� (5)

where PS denotes the surviving probability. For target birth, the
following general assumption is used in this Note.
Assumption 4: The number of new targets is assumed to be

unknown a priori and is thus considered as Poisson distribution.
New targets are modeled by a local Poisson point process with
intensity λB � NB∕Vs, with NB being the average number of new
targets.
Remark 1:Note that anMTTalgorithm creates a new track for each

measurement received at every scan. This means that the number of
tracks grows exponentially as time goes. To maintain computational
feasibility, we use a thresholding-based track deletion logic to
remove unreliable tracks. Therefore, the tracks kept at each scan
include confirmed tracks and tentative tracks.

III. Joint Probabilistic Data Association Filter

In a general MTT mission, the relationship between targets and
measurements is unknown and the number of targets is also a random
variable. The challenge is that each target can appear and disappear at
any place and any time. Data association is a widely accepted and
plausible solution to resolve the problem of measurement origin

uncertainty. This technique discerns target-generated measurements
from clutters and finds the mappings between targets and
measurements, and therefore is the key in MTT.
JPDA is a well-established single-scan data association approach

based on probabilistic reasoning [10,11]. This approach associates
the measurements to the targets under the assumption that the
relationship between targets and measurements satisfies: 1) each
measurement (except for the dummy one) is assigned to at most one
target, and 2) each target is uniquely assigned to a measurement.
Based on the assumption, the approach uses the joint association
hypothesis that is denoted as Θk � fθikg, i ∈ f1; 2; : : : ; Nkjk−1�
Mkg. The joint association hypothesis and corresponding probability
measures play a key role in the data association filter. For each pre-
existed target i ∈ f1; 2; : : : ; Nkjk−1g, define θik ∈ f0; 1; : : : ;Mkg as
the association hypothesis, where Nkjk−1 stands for the predicted

number of targets at scan k. Aswe have no information on target birth/
death at scan k before receiving the measurements, Nkjk−1 is
determined as Nkjk−1 � Nk−1jk−1. The single association event
θik � j refers to the fact that the jth measurement originates from the
ith target and θik � 0 representsmiss detection.We create a new track
for each measurement j ∈ f1; 2; : : : ;Mkg at scan k, and the asso-
ciation event for these new targets are defined by θ

Nkjk−1�j

k ∈
fNkjk−1 � 1; : : : ; Nkjk−1 �Mkg. That is, if target Nkjk−1 � j is
associated with the jth measurement, then θ

Nkjk−1�j

k � Nkjk−1 � j.
Under the assumption that each single association event is
independent, theminimum-mean-squared-error (MMSE) estimate of

each target is given by
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p�xikjχik; Zk� �
X
θi
k

p�xikjθik; χik; Zk�p�θikjχik; Zk� (6)

In practice, propagation of mixture is computationally intractable

due to the explosion of mixture terms. JPDA approximates mixture

(6) by a single probability density function based on simple moment-

preserving approach.More specifically, the state correction xikjk of the
ith target and its corresponding covariance Pi

kjk are obtained as

xikjk �
XMk

j�0

βijx
i;j
kjk

Pi
kjk �

XMk

j�0

βijfPi;j
kjk � �xi;jkjk − xikjk��xi;jkjk − xikjk�Tg (7)

where xi;jkjk denotes the target estimation by associating the jth
measurement to the ith target,Pi;j

kjk the corresponding covariance, and
βij � p�θik � jjχik; Zk� the existence-conditioned marginal associa-

tion probability that the jth measurement is associated with the ith
target. Note that the hypothesis-conditioned estimation �xi;jkjk; Pi;j

kjk�
can be calculated with a standardKalman filter algorithm. Notice that

if an existing target is miss detected at one scan, its posterior

estimation is constrained as its corresponding prediction, that is,

�xi;jkjk; Pi;j
kjk� � �xikjk−1; Pi

kjk−1�, in track update.
According to Bayesian theory, the existence-conditionedmarginal

association probability p�θikjχik; Zk� is determined by

p�θikjχik; Zk� �
p�θik; χikjZk�
p�χikjZk�

� p�χikjθik; Zk�p�θikjZk�
p�χikjZk�

(8)

where the hypothesis-conditioned existence probability p�χikjθik; Zk�
is determined as

p�χikjθik; Zk�

∝

8>>>>>><
>>>>>>:

p�χikjZk−1��1−PD�
1− p�χikjZk−1� �p�χikjZk−1��1−PD�

; θik � 0

1; θik � j

PDλBp�zjkjxb�
λFA �PDλBp�zjkjxb�

; θNk−1�j
k � Nk−1 � j

(9)

and the posterior existence probability is given by

p�χikjZk� �
X
θi
k

p�θik; χikjZk� (10)

with

p�θik; χikjZk� � p�χikjθik; Zk�p�θkjZk� (11)

According to the law of total probability, p�θikjZk� can be

theoretically calculated by enumerating all possible joint hypotheses as

p�θik � jjZk� �
X

θi
k
�∈Θk��j

p�ΘkjZk� (12)

where the posterior distribution of the joint association eventp�ΘkjZk�
is given by

p�ΘkjZk� ∝
� Y
i∈�Nkjk−1 �;θik�0

1 − PDp�χikjZk−1�
�

×
� Y
i∈�Nkjk−1 �;θik�j

PDp�χikjZk−1�p�zjkjxikjk−1�
�

×
� Y
θ
Nkjk−1�j

k
�Nkjk−1�j

λFA � PDλBp�zjkjxb�
�

(13)

where xb denotes the candidate states of new born targets.
In summary, each track in JPDA is updated through Eqs. (7–12).

The outputs of JPDA at each time instant are the posterior existence

probability p�χikjZk� and posterior state estimate �xikjk; Pj
kjk�. Note

that the number of targets can be easily estimated by counting the

confirmed tracks. Therefore, JPDA provides a complete framework

for MTT and track management.

IV. Cost Function Formulation

For UAV trajectory optimization, formulating a pertinent cost

function is of paramount importance. JPDA filter provides sequential

estimation of the target states as well as the number of targets.

Because both target states and number of targets are typically time

varying in MTT, the cost function should, therefore, provide an

overall evaluation to quantify the performance of both cardinality and

state estimations. The optimal subpattern assignment (OSPA)

distance, proposed in [33], provides an overall evaluation of

cardinality and position estimation performance for MTT. However,

calculating this metric requires the knowledge of ground truth, which

is obviously not available to the UAV. For this reason, this Note will

formulate an alternative cost function, which is defined based on the

average expected estimation variances of multitarget state and target

number, for UAV trajectory optimization. More specifically, the

proposed cost function J is defined as

J � ωJs � �1 − ω�Jn (14)

where Js is related to the one-step expected estimation variance of

multitarget state; Jn quantifies the one-step expected estimation

variance of target number; and ω ∈ �0; 1� is a weighting factor. Note
that, in order to enforce the balance between multitarget state

estimation variance and target number estimation variance in cost

function J, both Js and Jn are normalized to be dimensionless.
The reason behind choosing this cost function is clear: minimizing

the estimation variance can increase the confidence of the tracker,

thus indirectly improving the estimation accuracy. Obviously,

increasing the value of ω enforces more penalty on the performance

of multitarget state estimation. It is clear that the cost function J at

time instant k is a function of UAV’s heading angle ψu;k, and

calculating the cost function J requires running JPDA to get the

predicted or expected performance. To this end, we manually

generate one-step predicted measurement set �Zk using currently

confirmed targets and available environmental information, that is,

PD, λFA, and λB. These virtual measurements are then used to run

JPDA for computing the cost function.

A. Calculation of Js

In target tracking or localization, the primary interest is to accurately

estimate the positions of targets. For this reason, we calculate Js based
on multitarget position estimation variance. From Eq. (6), we know

that the originalMMSEestimate of the ith target is given by aGaussian
mixture

PMk

j�0 β
i
jN �⋅; xi;jkjk; Pi;j

kjk� due to the nature of data association
uncertainty. Let us definepi;j

k � �pi;j
x;k; p

i;j
y;k�T as the position estimation

vector of the ith target extracted from xi;jkjk. Then, the variance ofp
i;j
k of

the ith target can be readily calculated as

Article in Advance / ENGINEERING NOTES 3

D
ow

nl
oa

de
d 

by
 C

ra
nf

ie
ld

 U
ni

ve
rs

ity
 (

D
E

FE
N

C
E

 A
C

A
D

E
M

Y
 O

F 
T

H
E

 U
K

) 
on

 D
ec

em
be

r 
3,

 2
01

9 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
42

49
 



Var�pi;j
k � �

�
E��pi;j

x;k−E�pi;j
x;k��2� E��pi;j

x;k−E�pi;j
x;k���pi;j

y;k−E�pi;j
y;k���

E��pi;j
y;k−E�pi;j

y;k���pi;j
x;k−E�pi;j

x;k��� E��pi;j
y;k−E�pi;j

y;k��2�
�

�
�
Var�pi;j

x;k� E��pi;j
x;k−E�pi;j

x;k���pi;j
y;k−E�pi;j

y;k���
E��pi;j

y;k−E�pi;j
y;k���pi;j

x;k−E�pi;j
x;k��� Var�pi;j

y;k�
�

(15)

where

Var�pi;j
x;k� � E��pi;j

x;k − E�pi;j
x;k��2� � E��pi;j

x;k�2� − E�pi;j
x;k�2

�
XMk

j�0

βij�pi;j
x;k�2 −

�XMk

j�0

βij�pi;j
x;k�

�2

(16)

and

Var�pi;j
y;k� �

XMk

j�0

βij�pi;j
y;k�2 −

�XMk

j�0

βij�pi;j
y;k�

�2

(17)

As it would be beneficial to consider a scalar objective function
instead of amatrix form for the trajectory optimization,we leverage the
trace of Var�pi;j

k �, denoted as σip, to quantify the position estimation
uncertainty of the ith target as

σip � Trace�Var�pi;j
k �� � Var�pi;j

x;k� � Var�pi;j
y;k� (18)

Note that JPDA approximates the posterior Gaussian mixturePMk

j�0 β
i
jN �⋅; xi;jkjk; Pi;j

kjk� by a single Gaussian usingmomentmatching

to reduce the computational burden. The approximation error of this
simplemoment-preserving approach increaseswith highermodality of
the Gaussian mixture. Because the modality of Gaussian mixturePMk

j�0 β
i
jN �⋅; xi;jkjk; Pi;j

kjk� can be characterized by the variances of xi;jkjk,
minimizingVar�pi;j

k � provides the possibility to improve the quality of
data association in JPDA. This is clearly helpful in improving the
multitarget state estimation performance. FromEqs. (16) and (17), it is
easy to verify that the position estimation variances of the ith target are

minimized as Var�pi;j
x;k� � 0 and Var�pi;j

y;k� � 0 if and only if there

exists one j 0 such that βij 0 � 1 and βij � 0, ∀j ≠ j 0. This obviously
coincides with the ideal case with no data association uncertainty.

Furthermore, one can also imply that bothVar�pi;j
x;k� andVar�pi;j

y;k� take
their maximum values once all candidate association pairs of the ith
target are equally possible, that is, βij � 1∕�Mk � 1�. This condition
corresponds to the largest data association uncertainty and the highest

modality of Gaussian mixture
PMk

j�0 β
i
jN �⋅; xi;jkjk; Pi;j

kjk�, in which all

Gaussian terms are equally important. The maximum values of

Var�pi;j
x;k� and Var�pi;j

y;k� are, respectively, determined as

maxfVar�pi;j
x;k�g �

Mk

�Mk � 1�2
XMk

j�0

�pi;j
x;k�2

maxfVar�pi;j
y;k�g �

Mk

�Mk � 1�2
XMk

j�0

�pi;j
y;k�2 (19)

For all confirmed tracks, the position estimation variance is
normalized to be dimensionless as

σi�p � σip
maxfσipg

(20)

where the denominator finds the maximum individual variance from

all σip.
Notice that each track has its corresponding existence probability

ρik. Therefore, it is natural to enforce more penalty on the track that
has higher existence probability. With this in mind, Js is defined as a
weighted arithmetic mean of σi�p as

Js �
PNkjk

i�1 ρ
i
kσ

i
�pPNkjk

i�1 ρ
i
k

(21)

It follows from Eq. (21) that tracks with a high existence
probability contribute more to the weighted mean than tracks with a
low existence probability. Therefore, minimizing Js also provides the
possibility to improve the quality of track management:
discriminating real targets from false alarms.
Remark 2: Although Pi;j

kjk characterizes the estimation accuracy of
the ith target conditioned on the jth measurement, leveragingPMk

j�0 β
i
jtrace�Pi;j

kjk� as the performance measure for the ith target in
trajectory optimization is not meaningful for MTT, because there
only exists at most onemeasurement that comes from the ith target in
reality. Instead, minimizing σip, shown in Eq. (18), can reduce the
multimodality of Gaussian mixture

PMk

j�0 β
i
jN �⋅; xi;jkjk; Pi;j

kjk�, thus
improving data association quality.

B. Calculation of Jn

AnMTTalgorithm also needs to estimate the number of targetsNk.
To this end, Jn will be defined based on the variance of cardinality
estimation, which directly indicates the cardinality estimation
accuracy. Recall that the outputs of JPDA filter are multitarget state

estimates xikjk aswell as their corresponding existence probabilities ρ
i
k

and denoteNi
kjk as the cardinality estimate of the ith track. Then, one

can easily verify that Ni
kjk satisfies a Bernoulli distribution as

p�Ni
kjk� �

�
ρik if Ni

kjk � 1;

1 − ρik if Ni
kjk � 0

(22)

From the property of Bernoulli distribution, one can conclude that

the expectation and variance of Ni
kjk are, respectively, given by

E�Ni
kjk� � ρik (23)

Var�Ni
kjk� � E��Ni

kjk�2� − E�Ni
kjk�2 � ρik�1 − ρik� (24)

Notice that, in JPDA filter derivations, the estimations of all tracks
are assumed to be independent. Then, according to Bienayme
formula, the variance of target number estimation Var�Nkjk� can be

readily obtained as

Var�Nkjk� � Var

�XNkjk

i�1

Ni
kjk

�
�

XNkjk

i�1

�Var�Ni
kjk��

�
XNkjk

i�1

ρik�1 − ρik� (25)

Clearly, Var�Nkjk� achieves the minimum value zero at either

ρik � 1 or ρik � 0, which corresponds to target always being

existence or nonexistence. When ρik � 0.5, Var�Nkjk� takes its

maximum value Nkjk∕4. This means that, when the posterior target

existence probability equals 0.5, JPDA filter has the least confidence
in its cardinality estimation, leading to the increase of cardinality
estimation error.
To provide a linear combination of Js and Jn in cost function J, we

define Jn as the normalized version of Var�Nkjk� as

Jn �
PNkjk

i�1 ρ
i
k�1 − ρik�

maxfρik�1 − ρik�g
(26)

where the denominator finds the maximum individual variance from
all Var�Ni

kjk�.
From the aforementioned derivations, we know that the cardinality

estimation performance related term Jn depends only on existence
probability, whereas the multitarget state estimation performance
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related term Js depends on both state estimates and existence
probability.

V. Trajectory Optimization Solution

The aim of the trajectory optimization is to determine UAV’s
optimal heading angle that minimizes the cost function (14) so as to
indirectly increase the estimation performance of JPDA filter. To
accomplish this goal, a discrete-time-constrained trajectory
optimization problem is formulated, which is denoted as CTO1.
CTO1: Find

ψ�
u;k � min

ψu;k

J�ψu;k� (27)

subject to

jψu;k − ψu;k−1j ≤ ψ̇maxTs (28)

Constraint (28) corresponds to the physical limit of turning rate, as
discussed in Sec. II.A. Note that although the proposed problem
considers only one-step-ahead optimization, the optimization
problem formulated can be easily extended to a multistep-ahead
optimization framework at the sacrifice of computational cost.
Because the objective function described by Eq. (14) is in general

nonconvex, the constrained trajectory optimization problemCTO1 is
generally not a convex program. As the operational environment
becomes more complicated, for example, the number of targets
increases, CTO1 becomes more complicated to be solved. This
implies that finding the exact solution of CTO1 in a polynomial time
is not likely feasible. Therefore, this Note attempts to find an
approximate solution of CTO1 to mitigate the computation issue
resulting from the nonconvexity. By approximation, it is expected
that the optimal solution of the approximated problem can be
obtained in a matter of a few seconds. The approximated constrained
trajectory optimization problem, denoted as CTO2, is:
CTO2: Find

ψ�
u;k � min

ψu;k∈Ψ
J�ψu;k� (29)

subject to

Ψ � fψ low;ψ low � Δψ ;ψ low � 2Δψ ; : : : ;ψ low � �L − 1�Δψg
(30)

where

ψ low � ψu;k−1 − ψ̇maxTs (31)

Δψ � 2ψ̇maxTs

L
(32)

As can be noticed, CTO2 is discretized to reduce computational
load in finding the solution of the trajectory optimization problem.By
defining an admissible heading angle command setΨ,CTO2 is set to
find the optimal commands from a set of L discretized heading
angles. Note that, with the definition of the feasible solution setΨ, the
obtained heading angle command automatically satisfies constraint
(28). Note that this approximation strategy is also accepted to relax
computational burden in other well-known algorithms such as the
methods proposed in [34,35].
The proposed algorithm of trajectory optimization for MTT using

JPDA filter is summarized in Algorithm 1.
Remark 3: Because the number of feasible heading angle

commands is constrained to be finite, the exact solution of CTO2 (or
the approximate solution of CTO1) can be easily found through
exhaustive search. Therefore, as the size of Ψ increases, the solution
of CTO2 is expected to become closer to the solution of CTO1 at the
expense of increased computational load.

VI. Numerical Simulations

In this section, the effectiveness of the proposed trajectory
optimization algorithm is demonstrated through Monte-Carlo
simulations in a cluttered environment. In addition, this section also
conducts the performance comparison of the proposed algorithm
against nonoptimized trajectories.

A. Simulation Setup

Our experiments explore a scenario that 1 UAV tracks 10 moving
targets with different birth times. The UAV is initially located at
�0 m;−3000 m�with heading angle ψu;1 � 90°. The velocity of the
UAV is Vu � 40 m∕s and the heading angle is constrained by
maximum permissible turning rate ψ̇max � 0.1415 rad∕s. This
corresponds to amaximumbank angle around 30°. For simplicity, the
well-known constant velocity model is used as the transition model
fik�xik� as

xik � Fkx
i
k � wi

k−1 (33)

with

Fk �
�
I2 TsI2
02 I2

�
(34)

where the notation 02 denotes a 2 × 2 zero matrix and I2 stands for a
2 × 2 identity matrix. The sampling time is given by Ts � 1 s. The
covariance matrix Qk of the process noise is defined as [36]

Algorithm 1: Trajectory optimization for MTT using JPDA filter at time
instant k

Input:Current estimation �xikjk; Pi
kjk�, maximum allowable turning rate ψ̇max, number

of admissible heading angles L, and previous heading angle ψu;k−1
Output: Optimal UAV heading angle ψ�

u;k
1: J←�∞; (initialize the cost function)
2: ψ low←ψu;k−1 − ψ̇maxTs

3: Δψ←�2ψ̇maxTs∕L�
4: Create the admissible heading angle set Ψ using Eq. (30)
5: for l � 0; 1; : : : ; L do
6: ψu;temp←ψ low � lΔψ
7: Calculate the one-step target position prediction using ψu;temp and Eq. (1)
8: Generate virtual measurement set �Zk

9: Run JPDA filter using virtual measurements �Zk

10: Calculate Js and Jn as discussed in Sec. IV
11: Jtemp←ωJs � �1 − ω�Jn
12: if Jtemp < J then
13: J←Jtemp

14: ψ�
u;k←ψu;temp

15: end if

16: end for
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Qk � σ2v

2
664
T4
s

4
I2

T3
s

2
I2

T3
s

2
I2 T2

sI2

3
775 (35)

where the standard deviation of the process noise is given

by σv � 15 m∕s2.
The UAV is equipped with an active sensor, which provides range

as well as bearing measurements. Therefore, each target-generated

measurement zik can be modeled by

zik �

2
664

��������������������������������������������������������������
�pi

x;k − pu
x;k�2 � �pi

y;k − pu
y;k�2

q
arctan

�
pi
y;k − pu

y;k

pi
x;k − pu

x;k

�
3
775� vk (36)

where vk ∼N �⋅; 0; Rk� is the Gaussian measurement noise with

Rk � diag�σ2r ; σ2θ�, σr � 5 m, and σθ � 1°. To accommodate the

nonlinear measurements, the well-known EKF is used in JPDA filter

for measurement update of each target.
The average number of false alarms at each scan is set as

NFA � 20. Gating is performed with a threshold such that the gating

probability is PG � 0.999 to reduce the computation burden of

JPDA. The surviving probability for propagating target existence

probability is set as PS � 0.99. A tentative track is confirmed if the

existence probability satisfies p�χikjZk� ≥ 0.8 and a confirmed track

is deleted immediately once p�χikjZk� ≤ 0.1. The number of Monte-

Carlo runs is set as 500 for all tested cases. Figure 1a shows a snapshot

of one sample of the considered scenario, where the dashed color

lines are target ground truth trajectories, and the solid red line is

the UAV trajectory obtained by the proposed algorithm. The time

histories of target ground truth trajectories and estimated trajectories

are presented in Fig. 1b.

B. Performance Metric

The OSPA distance metric [33] is considered here for overall

evaluation of performance, namely, cardinality and position

estimation errors. Let X and Y be the position estimation set and

true target position set, respectively. The cardinality of these two sets

arem and n, respectively. Then, for c > 0 and 1 ≤ p < ∞, the OSPA

distance dcp�X; Y� is given by the combination of the localization and

cardinality error as

dcp�X;Y�≜
(h

1
n

�
min
π∈Πn

P
m
i�1d

c�xi;yπ�i��p�cp�n−m�
	i

1∕p
; m≤ n

dcp�Y;X�; m>n

(37)

whereΠn denotes the set of all permutations on f1; 2; : : : ; ng for any
positive integer n. dc�xi; yπ�i�� � min�d�xi; yπ�i��; c� is the cutoff
Euclidean distance between two vectors, with d�xi; yπ�i�� being the
Euclidean distance. The order parameter p determines the sensitivity
of dcp�X; Y� in penalizing estimation outliers, whereas the cutoff
parameter c determines the relative weighting of the penalties
allocated to cardinality and localization errors. In all simulations,
these two parameters are set as p � 1, c � 100. It should be pointed
out that the OSPA distance reduces to the summation of localization
and cardinality estimation errors by choosing p � 1. With this in
mind, it is expected that the proposed cost function (14)withω � 0.5
would provide the best solution in terms of OSPA performance.
For the purpose of analyzing the characteristics of the proposed

algorithm, the localization and cardinality errors are also used as
performance metrics in the simulations. These two performance
metrics are defined as

dcp;loc�X; Y� ≜
8<
:
h
1
n

�
min
π∈Πn

P
m
i�1 d

c�xi; yπ�i��p
	i

1∕p
; m ≤ n

dcp;loc�Y; X�; m > n
(38)

dcp;card�X; Y� ≜
8<
:
h
1
n �cp�n −m��

i
1∕p

; m ≤ n

dcp;card�Y; X�; m > n
(39)

As expected, increasing the weighting factor ω in cost function
(14) will reduce the localisation error dcp;loc�X; Y� because more
penalty is enforced on the performance of target state estimation.
Similarly, the cardinality error dcp;card�X; Y� can be reduced by
decreasing the weight factor ω in cost function (14).

C. Characteristics of Proposed Approach

This subsection empirically analyzes the characteristics of the
proposed algorithm. For simplicity, we assume that each target is
detected with constant detection probability PD � 0.9 in this
subsection. We first investigate the characteristics of the proposed
algorithm with different weighting factor ω. The Monte-Carlo
simulation results of mean OSPA distance with respect to different
weighting factors ω � 0.2; 0.5; 0.8 are presented Fig. 2a. The
number of admissible heading angle commands at each time instant is
set asL � 10 in these simulation studies. As expected, increasing the
weighting factor ω in cost function (14) will reduce the localization
error dcp;loc�X; Y� because more penalty is enforced on the perfor-
mance of target state estimation. Similarly, the cardinality error
dcp;card�X; Y� can be reduced by decreasing theweight factorω in cost
function (14). Note that the peaks in this figure are resulted from track
initialization for new birth targets. The mean value and standard
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a) b)
Fig. 1 A snapshot of one sample of the considered scenario. a) Two-dimensional trajectories of the UAV and targets. The dashed color lines are target
ground truth trajectories, and the solid red line is the UAV trajectory obtained by the proposed algorithm. b) Time histories of target ground truth
trajectories and estimated trajectories.
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deviation (Std) of OSPA distance, localization error, and cardinality

error obtained from Monte-Carlo simulations are summarized in
Table 1. From Fig. 2a, it can be noted that, when ω < 0.5, increasing
the weighting constant generates significantly improved estimation
performance in terms ofOSPAdistance.When theweighting factorω
exceeds 0.5, the OSPA distance does not show much difference with
the variation of ω. This fact can be attributed to the fact that JPDA

filter ismore sensitive to localization error than cardinality error in the
considered scenario, as shown in Table 1. Also, one can observe that

the proposed trajectory optimization algorithm with ω � 0.5
provides the best overall performance in terms ofOSPAdistance. The
reason is that the OSPA distance reduces to the summation of

localization and cardinality estimation errors with p � 1. Clearly,
increasing the value of ω provides more accurate estimation of

multitarget state, as shown in Table 1, because the proposed cost

function gives more penalty on Js. Similarly, cardinality estimation
performance can be improved with smaller ω. Therefore, the
weighting factor ω provides the flexibility to balance between
localization error and cardinality error.
As the proposed algorithm finds an approximate solution to the

original problem by control input discretization, the size of the set of
admissible heading angle commands, for example, L, plays an
important role in governing the performance of the proposed
algorithm. For this reason, comparison simulations with different
L � 5; 10; 15 are carried out to analyze the sensitivity of the proposed
approach against L. The weighting factor ω is set as ω � 0.5 in the
simulations. The Monte-Carlo simulation results of mean OSPA
distance are presented in Fig. 2b. The mean value and standard
deviation (Std) of OSPA distance, localization error, and cardinality
error obtained from Monte-Carlo simulations are summarized in
Table 2. Unsurprisingly, increasing the value of L generates improved

Table 1 Comparison results ofMonte-Carlo simulationswith respect
to different ω

Scenario
OSPA distance,

m
Localization error,

m
Cardinality error,

m

ω � 0.2 Mean 31.9579 26.9209 5.0370
Std 9.5639 4.8196 12.9582

ω � 0.5 Mean 24.0348 18.0204 6.0144
Std 11.7160 5.4368 12.9318

ω � 0.8 Mean 24.0516 17.9289 6.1228
Std 11.7478 5.6255 12.9264
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Fig. 2 Mean OSPA distance comparisons.

Table 2 Comparison results ofMonte-Carlo simulationswith respect
to different L

Scenario
OSPA distance,

m
Localization error,

m
Cardinality error,

m

L � 5 Mean 24.0012 18.0218 6.1594
Std 11.8151 5.3620 12.9736

L � 10 Mean 23.9663 17.9757 6.0255
Std 11.8473 5.1969 12.9813

L � 15 Mean 23.7745 17.6151 5.9444
Std 11.8734 5.1950 12.9847
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Fig. 3 Mean OSPA distance comparisons.
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results as the approximated optimization problem CTO2 is closer to
the original problem CTO1, as discussed in Sec. V. However, this
benefit, in return, requires higher computational cost, which might not
be available for small-scale UAVs. From Fig. 2b, it can be easily
concluded that the estimation performance under the proposed
algorithm does not differ much with different values of L. This fact
confirms that the proposed algorithm is robust against the variation
of L.

D. Comparison with Nonoptimized Trajectory

To further show the effectiveness of the proposed trajectory
optimization algorithm, we compare the optimized trajectories with
trajectories without optimization for two different cases: 1) constant
detection probability PD � 0.9; 2) time-varying detection probability
PD � 0.9e−r

i
k
∕6000. The weighting factor ω is set as ω � 0.5, and the

discretization size is selected asL � 10 in the comparison studies. For
trajectories without optimization, we randomly pick one admissible
heading angle command fromΨ at every time instant. The comparison
results ofmeanOSPA distance for cases 1 and 2 obtained fromMonte-
Carlo simulations are provided in Figs. 3a and 3b, respectively. From
these two figures, one can note that the optimized UAV trajectory
significantly improves the overall estimation performance in both
cases. When the detection probability PD is high (i.e., case 1), the
improvement in performance almost starts at the initial point and an
approximate 25% improvement in steady-state estimation accuracy
has been achieved. For case 2, because the initial detection probability
is very low, below 0.5, the optimized trajectory does not show much
performance improvement over nonoptimized trajectory. However, as
the proposed algorithmguides theUAV toward the targets, as shown in
Fig. 1, the detection probabilityPD gradually increases. Therefore, the
optimized trajectory generated leads to significant improvements in
estimation performance after a certain period, as can be confirmed
from Fig. 3b. Compared with the nonoptimized trajectory, we can also
note from this figure that the proposed algorithm brings around 15%
improvement in the steady-state localization accuracy for case 2.

VII. Conclusions

A constrained trajectory optimization algorithm has been
proposed for a fixed-wing UAV to improve target localization
accuracy in trackingmultiple moving targets. The UAVis assumed to
use the JPDA filter as the baselinemultitarget tracker. A cost function
is first formulated based on the variance of multitarget state
estimation and the variance of cardinality estimation. Because the
cost function developed quantifies the confidence of the tracker,
improved estimation performance can be obtained byminimizing the
cost function. To approximate the practical situations at most, the
physical control limit is also considered in the proposed optimization
problem. The original nonconvex optimization problem is relaxed by
discretizing the admissible set of heading commands, and the
suboptimal heading angle is then obtained by exhaustive search.
Extensive numerical simulations clearly validate the effectiveness of
the proposed algorithm and demonstrate that the algorithmdeveloped
brings significant performance improvement, compared with
nonoptimized trajectory. Future study will consider extending the
proposed algorithm to multi-UAV MTT scenarios.
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