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Abstract: Secondary flows in turbomachinery highly affect the overall efficiency and rotor
stability. A prime example of such a phenomenon are leakage flows. Despite their complexity,
they can often be estimated with simple semi-empirical formulae, solved with hand calculations.
Such an approach is much more cost and time effective during the design process. The formulae
consists of a carry-over coefficient and a discharge coefficient elements. To evaluate the leakage
properly, an adequate model of the carry-over coefficient has to be developed. This paper presents
how the flow conditions and the cavity geometry changes in a straight through labyrinth seal
affect the amount of leakage. The effect of the number of teeth, the gap size, the Reynolds
number and the pressure ratio are considered. The data to validate the results was obtained
from an in-house experiment, where a vast number of cases was tested. Additionally, the
study was supported by a two-dimensional steady-state CFD study. Eleven analytical models,
Including both very simple as well as more sophisticated methods, were solved according to
the experimental case and compared. Six different seal configurations were examined. They
included straight through seals with two and three straight knives for various gap sizes.
The comparison highlighted differences in the results for models – a certain group presented
underestimated results. However, another group of models – presented an excellent agreement
with the experimental data. Based on this study, a group of models representing the results
within the 10% uncertainty band was selected.
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Symbols
𝐴 surface area (m2)
𝑏 width of the labyrinth seal fin at the tip (m)
𝑐 velocity (m ⋅ s−1)
𝐶𝐷 discharge coefficient (—)
ℎ fin height (m)/specific enthalpy (J ⋅ kg−1)
𝜅 isentropic exponent (—)
𝑚 mass rate (kg ⋅ s−1)
Ma Mach number (—)
𝑝 pressure (Pa)
𝜋 pressure ratio (—)
𝑅 individual gas constant (J ⋅ kg−1 ⋅ K−1)
𝑠 gap size (m)/specific entropy (J ⋅ kg−1 ⋅ K−1)
𝑇 temperature (K)
𝑡 fin pitch (—)
𝑣 specific volume (m3 ⋅−1kg−1)
𝑧 fins number, (—)
𝑥𝑐 distance between fins (m)

Index
0 total parameter
𝑖𝑛 inlet
𝑜𝑢𝑡 outlet
𝑠 isentropic parameter

1. Introduction
An accurate prediction of the amount of gas flowing through the labyrinth

seals is of utmost importance for the efficiency and rotor dynamics analysis of
turbomachinery. Three methods can be used to evaluate the leakage flow in
labyrinth seals or narrow ducts. They are experimental tests, CFD calculations
and analytical methods. Historically, analytical methods were the first to predict
the secondary flows, as early as in the 1920s. In details, the labyrinth seals working
principle is as follows: the air expands adiabatically in consecutive gaps, causing
a pressure and enthalpy loss, together with a kinetic energy increase (line 0–1′

in Figure 1). In the cavity between fins, the kinetic energy is recovered back
to the thermal energy (line 1′–1). These processes repeat in following stages of
a sealing. In the case of a labyrinth seal with a constant tip gap cross-section area
the dependency of the mass flow on the velocity 𝑐 and fluid volume 𝑣 is described
with the Fanno curve:

𝑐
𝑣

= �̇�
𝐴

= idem (1)

Equation (1) describes the so-called Fanno curve which on the ℎ–𝑠 diagram
(Figure 1) represents endpoints of the expansion line in successive constrictions.



Evaluation of Leakage through Labyrinth Seals with Analytical Models 63

Figure 1. Fanno curve in labyrinth seal, with 𝑛 number of constrictions

This paper presents a number of selected analytical models used for leakage
flow estimation in a straight-through labyrinth seal (Figure 2). Analytical methods
were compared with in-house CFD calculations and experimental studies for
selected seal configurations and parameters. For the purpose of a comparative
study, the analytical models were divided into two types: direct and indirect. In
the direct models, the labyrinth seal is treated as a single component, regardless
of the number of fins for which the mass flow is determined. In this approach, the
result is obtained in one simple step, without iterations. Indirect methods require
iterative determination of the pressure in the chambers between the fins and thus
the leakage flow over each constriction separately. By definition, some indirect
models take into account more details concerning geometry which can be essential
in complex structures, as stepped seals, or seals with various cavity geometry. To
the knowledge of the authors, none of the analytical models presented in the open
literature takes into account the honeycomb structure, the rotational velocity of
the rotor or a fin inclination angle. Some of the models take into account a different
shape of consecutive cavities what brings up their accuracy.

The models investigated in this paper base on one of the following formulae:
St. Venat, Martin or Neumann [1–3]. Each existing model is a combination of any
of them, with various carry-over coefficient modeling.

Figure 2. Scheme of straight-through type labyrinth seal used in analysis
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2. Analytical models
2.1. Direct models
2.1.1. Stodola equation

The Stodola model [4] is a semi-empirical equation intended for labyrinth
seals evaluation. It is one of the first models applied in the design of turbomachi-
nery seals. It originates from the first design considerations of steam turbines in
the early 1920s. The carry-over coefficient is defined as 𝜇 (by Milne-Thomson [5]):

𝜇 = 𝜋
(𝜋+2)

(2)

where 𝜋 = 𝑝0
𝑝𝑠

is the pressure ratio defined as a total pressure ahead of the seal
over the static pressure behind the seal.

In his approach, the leakage depends on the inlet total parameters, the
pressure ratio, the cross-section area and the number of fins – cavities. It does
not take into account the geometry. In practice, this model is relevant for
straight-through seals with a relatively high number of fins (usually more than 6).
In other configurations, it underestimates the results, as presented in [6].

�̇� = 𝜇 𝐴√
𝑧

⋅ 𝑝0in

√𝑇0in
⋅√ 1

𝑅
(1− 1

𝜋2 ) (3)

2.1.2. Martin equation
Historically, Martin [2] published the first model intended solely for laby-

rinth seals. The Martin equation bases on the approach to determine the number
of cavities to release a certain pressure drop. The pressure loss is then related to
the work done for the pressure change. The work done can be then translated to
the kinetic energy of the fluid. The formula assumes the incompressible flow of
an ideal gas through the constant gap. The formula to solve the mass flow takes
into account only the number of fins – 𝑧. The model does not take into account
the carry-over coefficient.

�̇� = 𝐴⋅𝑝0in

√𝑅⋅𝑇0in
⋅√

1−(𝑝𝑠out/𝑝0in)2

𝑧 + ln(𝑝𝑠out/𝑝0in)
(4)

2.1.3. Egli equation
The Egli model [7] is based on the Martin equation with the empirical factor

𝜇, combining the correction and the carry-over coefficient. With the factor 𝜇 = 1,
the equation produces the same results as the Martin model. In the presented
test, the factor is 𝜇 = 0.85. The 𝜇 factor is based on the assumption that the real
flow area to be included in the model is lower than the gap size and higher than
vena contracta. It is assumed that 𝐴 is the cross section of the jet of the fluid
after the air passes through the constriction. This assumption is based on the fact
that shortly after it had passed the gap, air enters the cavity with a certain static
pressure value.
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The definition of the flow physics in labyrinth seals assumes the need for
using the carry-over coefficient. The stream entering a labyrinth seal expands in
every cavity. After each throttling, a small part of the kinetic energy of the stream
jet will be reconverted into the pressure energy, the majority of it will be dissipated
into heat and the remaining amount will enter the following section of the seal. The
carry-over coefficient itself represents the portion of energy carried from one cavity
to the next one. The jet increases with the increasing axial distance, the amount
of kinetic energy carried forward drops with an increase in the spacing between
fins or with a decrease in the gap. The Egli model defines a global correlation
between the number of fins and the mass flow and can be defined as �̇� ≈ 𝑐 ⋅𝑧1/2.

�̇� = 𝜇⋅ 𝐴⋅𝑝0in

√𝑅⋅𝑇0in
⋅√

1−(𝑝𝑠out/𝑝0in)2

𝑧 + ln(𝑝𝑠out/𝑝0in)
(5)

2.1.4. Hodkinson equation
The Hodkinson equation [8] is a modified Egli equation, with a developed

carry-over coefficient. While Egli assumes a constant carry-over coefficient, defined
experimentally, it is a semi-empirical function of the seal geometry in the Hodkin-
son model. Hodkinson developed this expression assuming the gas jet geometry –
the jet expands conically at a small angle from the tip of the fin, and only some
portion of air carries on undisturbed into the next cavity. The Hodkinson model
bases on Egli’s experimental data. However, the Egli equation in its method did
not take into account the high velocity above the last fin. Egli derived a carry-over
coefficient based on a linear increase in the pressure drop with each constriction,
ignoring the vena contracta effects. Hodkinson has pointed out that the carry-over
coefficient plays a more important role at pressure ratios significantly lower than
critical.

Experimental data [8] shows that the expansion angle of the jet with
a tangent of 0.02 best fits the data, therefore, this was assumed as a constant
in the model. The model takes into account the number of fins, the gap size and
the cavity width. The model does not predict pressure distribution in cavities
between fins.

�̇� = 𝜇𝑖 ⋅ 𝐴⋅𝑝0in

√𝑅⋅𝑇0in
⋅√

1−(𝑝𝑠out/𝑝0in)2

𝑧 + ln(𝑝𝑠out/𝑝0in)
(6)

𝜇𝑖 =
√√√
⎷

1

1−( 𝑧−1
𝑧 )⋅( (𝑠𝑖/(𝑥𝑐𝑖)

(𝑠𝑖/(𝑥𝑐𝑖))+0.02 )
(7)

2.1.5. Vermes equation
The Vermes model origins from the Martin equation [9], although it

proposes a new carry-over coefficient, based on the boundary layer theory. It
takes into account the number of fins, the gap and the cavity size.

�̇� = 𝜇𝑖 ⋅ 𝐴⋅𝑝0in

√𝑅⋅𝑇0in
⋅√

1−(𝑝𝑠out/𝑝0in)2

𝑧 + ln(𝑝𝑠out/𝑝0in)
(8)
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𝜇𝑖 = √ 1
(1−𝛼𝑖)

(9)

𝛼𝑖 = 8.52
𝑡𝑖−𝑏𝑖

𝑠𝑖
+7.23

(10)

2.2. Indirect models (iterative models)
2.2.1. St. Venant equation

The St. Venant equation [1] is derived from an energy balance on a one-di-
mensional flow of a portion of fluid obtained from the Euler equation. Assuming
the isentropic and compressible flow, the following equation was obtained. The
full derivation of the presented equation can be found in [10] and [11]. Shultz [11]
was the first to use this equation to evaluate the flow leakage through a turbine
shaft. Similarly to the Martin model, the geometry is not taken into account.

�̇�𝑖 = 𝐴⋅𝑝0in

√𝜅⋅𝑅⋅𝑇0in
⋅
√√√
⎷

2⋅𝜅2

𝜅−1
[(

𝑝𝑖+1
𝑝𝑖

)
2/𝜅

−(
𝑝𝑖+1
𝑝𝑖

)
(𝜅+1)/𝜅

] (11)

2.2.2. Neumann equation
Neumann developed an empirical flow equation proposed by Childs [3]. The

formula uses a semi-empirical flow coefficient 𝐶𝑓 and a carry-over coefficient 𝜇.
The former is defined with the Chaplygin equation (15), defined by Gurevich [12].
According to this approach, the most important parameter is the relative gap
(𝑠𝑖/𝑡𝑖) size of consecutive cavities.

�̇�𝑖 = 𝐶𝑓𝑖 ⋅𝜇𝑖 ⋅𝐴⋅√
𝑝2

𝑖 −𝑝2
𝑖+1

𝑅⋅𝑇0in
(12)

𝐶𝑓𝑖 = 3.1415
3.1415+2−5⋅𝛽𝑖 +2⋅𝛽2

𝑖
(13)

𝛽𝑖 = ( 𝑝𝑖
𝑝𝑖+1

)
(𝜅−1)/𝜅

−1 (14)

𝜇𝑖 = √
𝑧

𝑧 ⋅(1−𝛼𝑖)+𝛼𝑖
(15)

𝛼𝑖 = 1− 1

(1+16.6 ⋅ 𝑠𝑖
𝑡𝑖

)
2 (16)

2.2.3. Scharrer equation
Childs and Scharrer [13, 14] developed their model treating the cavities

between fins as a control volume, using the Neumann equation (16). Furthermore,
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Scharrer presented his model using the Neumann and Vermes equations to
evaluate the carry-over coefficient.

�̇�𝑖 = 𝐶𝑓𝑖 ⋅𝜇𝑖 ⋅𝐴⋅√
𝑝2

𝑖 −𝑝2
𝑖+1

𝑅⋅𝑇0in
(17)

𝐶𝑓𝑖 = 3.1415
3.1415+2−5⋅𝛽𝑖 +2⋅𝛽2

𝑖
(18)

𝜇𝑖 = √ 1
(1−𝛼𝑖)

(19)

𝛼𝑖 = 8.52
𝑡𝑖−𝑏𝑖

𝑠𝑖
+7.23

(20)

2.2.4. Esser and Kazakia equation
Esser and Kazakia [15] also deployed the Neumann equation (12) as a base

of their model. Instead of the Chaplygin 𝐶𝑓 coefficient, they assumed a constant
value, 𝐶𝑓 = 0.716, based on the detailed CFD study of the steam flow through
the planar constriction-like shaped fin of a labyrinth seal. As a result of the
calculation, they assumed new constant 𝐶𝑓 value is more accurate than the
Chaplygin formula [15].

�̇�𝑖 = 𝐶𝑓𝑖 ⋅𝜇𝑖 ⋅𝐴⋅√
𝑝2

𝑖 −𝑝2
𝑖+1

𝑅⋅𝑇0in
(21)

𝐶𝑓𝑖 = 0.716 (22)

𝜇𝑖 = √
𝑧

𝑧 ⋅(1−𝛼𝑖)+𝛼𝑖
(23)

𝛼𝑖 = 1− 1

(1+16.6 ⋅ 𝑠𝑖
𝑡𝑖

)
2 (24)

2.3. Kurohashi equation
The motivation behind the Kurohashi model [16] development was the

calculation of the circumferential and axial pressure distribution in the seal, in case
of the journal displacement. It bases on the Neumann equation with a modified
carry-over coefficient 𝜇. Coefficient 𝛼, related to the flow coefficient 𝐶𝑓𝑖, assumes
the jet expansion angle (optically measured as 6°) and geometrical parameters of
sealing.

�̇�𝑖 = 𝐶𝑓𝑖 ⋅𝜇𝑖 ⋅𝐴⋅√
𝑝2

𝑖 −𝑝2
𝑖+1

𝑅⋅𝑇0in
(25)

𝐶𝑓𝑖 = 3.1415
3.1415+2−5⋅𝛽𝑖 +2⋅𝛽2

𝑖
(26)

𝜇𝑖 =
⎧{
⎨{⎩

√ 1
1−𝛼𝑖+𝛼2

𝑖
for 𝑖 = 1

√ 1
1−2⋅𝛼𝑖+𝛼2

𝑖
for 𝑖 > 1

(27)
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𝛼𝑖 =
𝑠

𝑡−𝑏

( 𝑠
𝑡−𝑏 )⋅𝐶𝑓𝑖 +tan6°

(28)

3. Geometries of investigated seals
The subject of the research were two labyrinth seal configurations: with

two and three straight fins. The cross sections and dimensions are presented in
Figure 3 and Table 1. For clarity, we also show relative dimensions, helping to
place given results among those seen in the literature, where specific parameters
are often neglected. The adopted fin height and spacing dimensions are typical
for low-pressure gas turbine/aero-engine expander stages (where the diameter is
roughly 1000–1400 mm). The relative clearance size in this study is between s/b
= 0.625–1.875, while the most common range for turbomachinery applications is
0.5–2 [17].

(a) Two-finned labyrinth seal (b) Three-finned labyrinth seal

Figure 3. Cross sections of investigated labyrinths

Table 1. Dimensions of investigated specimens

ℎ 10mm ℎ/𝑏 12.5
𝑠 0.5–1.5mm 𝑠/𝑏 0.625–1.875
𝑡 15mm 𝑡/𝑏 18.75
𝑏 0.8mm

𝑥𝑝𝑚 30mm

The parameter 𝑥𝑝𝑚 describes the distance between the last fin and the point
of the static pressure measurement. It was constant for every configuration. In the
case of CFD calculations, the pressure ratio was determined in the same manner –
the stagnation pressure at the inlet was related to the pressure at the point 30mm
downstream of the last fin. More details on the experimental setup and the CFD
approach can be found in the previous works [18, 19].

4. Comparative study
The main contribution of this paper is a comparison of the experimental

and CFD results with analytical methods. To this end, the characteristics of the
discharge coefficient 𝐶𝐷 versus the pressure ratio 𝜋 were employed. The discharge
coefficient is a ratio of the mass rate through a sealing (measured or calculated
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by means of e.g. empirical relations) over an ideal mass rate resulting from the
isentropic expansion in the nozzle with the same cross-section.

𝐶𝐷 = �̇�
�̇�id

(29)

Where:

�̇�id = 𝑝0𝐴
√𝑇0

√√√
⎷

2𝜅
𝑅(𝜅−1)

[( 1
𝜋

)
2/𝜅

−( 1
𝜋

)
(𝜅+1)/𝜅

] (30)

For a validation process of the given analytical models, the results for six different
geometrical cases were compiled – labyrinth seals with two and three fins, for gaps
𝑠/𝑏 = 0.625, 1.25 and 1.875. In addition, the results of the analytical models were
compared with the in-house CFD calculations and experiment. All the obtained
characteristics were linearly increasing as a function of the pressure ratio – which
is not entirely evident in the case of the results observed in the literature [20].
Figure 4 summarizes the obtained characteristics for the case with two and three
fins, with the gap 𝑠/𝑏 = 0.625. Importantly, none of the models provides for taking
into account the rotational speed of the rotor (the seal structure movement is
omitted). Few of them allowed taking into account the geometrical parameters
of the seal in calculations, which are of great importance for the flow structure.
As expected, the most effective models were indirect models, requiring the use
of iterative calculations, as well as models including sealing dimensions in their
relations. Apart from the three relatively simple models (Stodola, Hodkinson and
Vermes), for which the results significantly differed from the others, all the results
were in the range of 𝐶𝐷 = 0.5–0.8.

(a) Two straight fins (b) Three straight fins

Figure 4. Comparison of results from analytical models, CFD calculations and experiment
for aseal in a configuration with a smooth wall, gap 𝑠/𝑏 = 0.625

It is also worth noting that the results of the CFD calculations best
reflected the flow through the seal, much better than any of the presented models
(Δ𝐶𝐷 < 3%).
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Six cases were selected for further analysis, described in more details in
Table 2. For each of them, the relative average mass flow rate difference – 𝛿,
between the result obtained on the basis of a given model and the measurement
is presented. (Figure 5).

Table 2. Description of analyzed geometries

Geometry gap 𝑠, (mm) Relative gap 𝑠/𝑏, (—) Case name
0.5 0.625 (a)

2 fins 1 0.9375 (b)
1.5 1.875 (c)
0.5 0.625 (d)

3 fins 1 0.9375 (e)
1.5 1.875 (f)

Different trends in the characteristics of different conditions were observed.
Based on the performed study, the four most representative analytical models were
selected, which showed the best mapping of the flow characteristics (Table 3).
These were the Esser and Kazakia, Neumann, Scharrer and Martin models.
On average they presented a relatively low error margin. However, some methods
presented individual discrepancies much higher than the average, for instance –
the Esser and Kazakia models for the labyrinth with three fins or the Martin
model for the low gap sizes.

Table 3. List of most efficient analytical models, with indication of average error

Gap Relative Esser and Neumann Scharrer Martin
𝑠, mm gap, 𝑠/𝑏 Kazakia, % % % %

0.5 0.625 6.9 4.9 8.3 17.7
1 0.9375 5.4 6.2 5.4 7.9

2 fins
1.5 1.875 3.4 7.9 0.6 2.1
Average for 2 fins 5.2 6.3 4.8 9.2
0.5 0.625 12.7 1.2 11.5 17.6
1 0.9375 15.1 1 9.5 6.9

3 fins
1.5 1.875 8.4 4.9 11.1 5.4
Average for 3 fins 12 2.4 10.7 10

Average 8.6 4.4 7.8 9.6

5. Conclusions
The testing of labyrinth seals with a relatively low number of fins showed

that the results obtained on the basis of most models differed significantly from
the actual values. According to the dependencies presented by Egli [7], the
relationship between the mass flow and the number of fins has the nature of
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case (a) case (d)

case (b) case (e)

case (c) case (f)

Figure 5. Relative mass flow rate difference – in-house measurement and analytical models

a square root function, and the greatest differences are noted with a small number
of fins (2)–(4). For example, the leakage flow obtained on the basis of the Stodola
equation is strongly underestimated, although according to other authors, is often
sufficient for investigating seals with more fins [6]. Very promising results were
obtained using the Egli model, especially for low gap sizes – with discrepancies
up to 10%. However, in the case of larger gaps (in the order of 𝑠/𝑏 ≈ 2), the error
increases – this is due to the assumption of a constant value of the carry-over
coefficient which is, in fact, a function of the sealing geometry. For the Hodkinson
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and Vermes models, the results in each case were highly overestimated (an error of
30–50%). The Kurohashi model was sufficient for low gaps (𝑠/𝑏 = 0.625), but with
larger values, it overestimated the leakage by about 20–40%. The only indirect
model, which is not among the top four of the best models, is the St. Venant
model. The results from this model were significantly overstated, particularly for
the small gap (difference of 20–30%). Interestingly, the relatively simple direct
Martin model, despite the overestimation of the result in the range of low gap
sizes (on the order of a dozen or so per cent), was found in the four most accurate
analytical models, with a satisfactory leakage flow value at high sizes of the gap.

The indirect Esser & Kazakia and Scharrer equations, based on the Neu-
mann equation, also proved to be accurate, in particular for geometries with two
fins, but in the remaining cases, they showed an error of 10–12%.

The Neumann model proved to be the most accurate for the case with
three fins (mean error of 2.4%), while for the geometry with two fins it showed
results with an average error of 6.3%, which was a result similar to the other
considered methods (Esser and Kazakia – 5.2%, Scharrer – 4.8%). This model
showed a satisfactory accuracy for a wide range of gaps, but for a larger gap, the
error increased up to 7.9% with two fins and up to 4.9% with three fins. Further,
a detailed analysis of this model showed that some discrepancy could be observed
at low-pressure ratios, whereas with 𝜋 > 1.3 this model was almost identical with
the measurements.

A final conclusion is that for the labyrinth configurations with a relatively
low number of fins (two and three) it is possible to find an analytical model
to adequately predict the leakage. However, if some additional features are
considered, such as the fin inclination towards the flow, or introduction of a step
in the geometry, additional tests and validation would be necessary.
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