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ABSTRACT
Sb was frequently used as a raw material, both in ancient glass-making (as an opacifier and
decolouriser) and metallurgy (either as an alloying element or as a pure metal). Despite this
ubiquity, antimony production has only occasionally been studied and questions concerning
its provenance are still not satisfactorily answered. This study evaluates the suitability of Sb
isotope analysis for provenance determination purposes, as experiments under lab
conditions have revealed fractionation occurring during redox processes in oxidising stibnites
and in making opacified glasses. The results of this paper help to evaluate the possible
influence of the pyrotechnological processes on the antimony isotope composition of glass
artefacts. This paper focuses on the Caucasus as case study by applying mineralogical,
geochemical and isotopic analysis to Georgian ores (mainly from the Racha-Lechkumi
district) and Late Bronze Age (LBA; 15th–10th century BCE) metallic Sb objects found at the
sites of Brili and Chalpiragorebi.
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Introduction

Sb in the archaeometallurgical record

Finds of antimony in the archaeological record show a
long history of use. First, in metallurgy, Sb appears
mostly as antimonial copper (see Figure 1). In the
southern Levant, Cu-based metals with variable levels
of As and/or Sb, ranging in content between 1 and
20%, and traces of Ag, Bi and Ni, appear during the
Chalcolithic period (5500–3300 BCE) (Shalev and

Northover 1993; Carmi, Epstein, and Segal 1995;
Hauptmann and Gambaschidze 2001; Golden 2014).
In Central Italy, these kind of Cu-As-Sb alloys also
appear from the early or mid-4th millennium BCE
(Chalcolithic period) at various sites (Dolfini 2010).
The objects, archaeologically assigned to the Rinaldone
culture, are similar in composition to the Levantine Sb-
rich alloys with 1–20% Sb and/or As and traces of Ag,
Bi & Ni (De Marinis 2006; Grazzi et al. 2012; Petitti,
Persiani, and Pallecchi 2012). In the region of the
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Caucasus, at the end of the Early Bronze Age (EBA;
3300–2100 BCE) or definitely from the Middle Bronze
Age (MBA; 2100–1550 BCE) onwards, Cu-Sb alloys
with 1–20% Sb and sometimes with a similarly high
As content are found (Hauptmann and Gambaschidze
2001). They are mainly assigned to the Caucasian cul-
tures of Bedeni (2500–2200 BCE), Sachkhere (2600–
2000 BCE) and Trialeti (2000–1700 BCE) (Chernykh
1992) and characterised by traces of S (Pike 2002). In
this aspect they differ from the previously mentioned
Chalcolithic Levantine and Italian Sb-rich alloys.
During the LBA (1500–1150 BCE) the use of Sb-rich
alloys became even more widespread in the Caucasian
region, especially in the northern Koban area (Pike
2002). New complex alloys such as Cu-Sb-Pb and
Pb-Sb are also found (Meliksetian and Pernicka
2003). At Hasanlu, Iran, Sb-rich alloys have been dis-
covered, securely dated to Iron II or Hasanlu IVB
(around 800 BCE) (Fleming, Nash, and Swann 2011).

In the case of metallic Sb objects, the same region in
Central Italy during the Chalcolithic period is of inter-
est (see Figure 1). At the sites of Ponte San Pietro
(Tombs 21 and 22) (Dolfini 2014) , Selvicciola
(Tombs 21, 23, and 35) (Grazzi et al. 2012; Petitti, Per-
siani, and Pallecchi 2012), Grotta del Fontino (Zanini
2002) and Montebradoni (Cambi and Cremascoli
1957) multiple Sb beads and buttons have been

found. These pieces of evidence combined with the
finds of antimonial copper consistently indicate that
the working of antimony began in this region during
the Early Chalcolithic period (Pallecchi, Pecchioli,
and Tocci 2002; Dolfini 2010). In Mesopotamia, Sb
objects are reported from the 3rd millennium BCE
(e.g. at Tello, Tell Leilan, Jerablus Tahtani) (Shortland
2002; Moorey 1999), and later from the 1st millennium
BCE in Egypt at Lahun (Petrie 1891), in Anatolia at
Yoncatepe (Belli and Konyar 2001), and in Iran at
Hasanlu (Fleming, Nash, and Swann 2011). In the Cau-
casus, metallic Sb objects are abundant. Their first use-
age is identified in the middle of the 3rd millennium
BCE, becomes even more prominent during the 2nd
millennium and runs far into the LBA and Early Iron
Age (EIA; 1200–1000 BCE). Examples are known
from sites in Armenia, e.g. at the MBA and LBA levels
of the Lchashen and Artik settlements, and in burial
contexts at Metsamor (LBA–EIA) (Meliksetian and
Pernicka 2003), Redkin Lager (LBA) (Lindsay and
Smith 2006), Chesmanis (LBA–EIA), Chambarak
(ninth century BCE) (Tite 2002; Meliksetian et al.
2011), Bjini (EIA–MIA) (Meliksetian et al. 2011), in
Georgia in burial contexts at Brili, Treli, Kvasatali,
Tsaghvli, Chalpiragorebi, Kvatskhelebi, etc. dating
between the 16thand 12th centuries BCE (Hauptmann
and Gambaschidze 2001), and in Dagestan small Sb

Figure 1. Dispersal of Sb-rich alloys and Sb metallic objects during the Chalcolithic period, Early Bronze Age (EBA), Middle Bronze
Age (MBA), Late Bronze Age (LBA) and Early Iron Age (EIA).
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ornaments were also cast in the Kayakent–Khorochoi
culture (2nd millennium BCE) at Mamai-Koutan, Kor-
ochoi (Burial 2) and Kayakent (Burial 16) (Chernykh
1992). Interestingly, there is archaeological evidence
for Sb mining in the Racha–Lechkumi area (Georgia)
at the Sagebi and Zopkhito mines, possibly from the
19th century BCE but definitely from the 17th century
onwards (Chernykh 1992).

Sb as opacifier and decolouriser in glass
production

Sb was not only used in metallurgy, but was also widely
used in glass production, either as an opacifier (Sb con-
tent usually >1%) in coloured glass from the LBA
onwards, or as decolouriser (around 0.5% Sb) from
the Hellenistic period (fourth century BCE) onwards.

As far as opacifying agents are concerned, the early
history of glass mainly sees the use of calcium and lead
antimonates for the production of opaque white (Ca2-
Sb2O7 or CaSb2O6) and yellow (Pb2Sb2O7) glasses. A
process of making a precursor is proposed for the
LBA Egyptian yellow glasses (Shortland 2002). Apart
from calcium and lead antimonate, which have been
found to be the predominant opacifiers used in the
LBA glasses, sodium antimonite crystals (brizziite,
NaSbO3) have been reported associated with lead anti-
monate and calcium antimonate as the white opacifier
used in the Iron Age glasses from Hasanlu (Stapleton
2011). These Sb-based opacifiers continued to be
used in the Roman world (Shortland 2012). Similarily
to the LBA yellow glasses, it was suggested that roasted
stibnite (i.e. antimony oxide), rather than calcium anti-
monate, was added to Roman colourless and blue glass
to make these glasses opaque white and opaque blue
(Freestone and Stapleton 2015). For the Roman yellow
and green opaque glasses antimonial litharge or a pre-
cursor lead-antimony-silicate (“anime”) was proposed
as the antimony source added to the soda-lime-silica
glasses (Mass, Wypyski, and Stone 2002; Freestone
and Stapleton 2015). These antimonates are not only
present in the earliest glasses, Sb opacified-coloured
glass is also by far the most common glass used,
accounting for at least 90% by weight (Shortland 2012).

Since small amounts of Fe2O3 are usually uninten-
tionally present as impurities in the sand raw material
which results in a green–blue tint of the glass, a deco-
louriser is needed to obtain colourless glass. The colour
can be neutralised by the addition of Mn or Sb by the
oxidation of the Fe2+ to the practically colourless or
weak yellowish Fe3+ (Sayre 1963; Schreurs and Brill
1984). Antimony levels in sand are typically at the
ppm (or sub-ppm) level (Brems 2012; Brems and
Degryse 2014), and greater concentrations in glass
indicate the deliberate addition of an antimony-bearing
ingredient (Freestone and Stapleton 2015). The tech-
nology of use and provenance of the raw materials of

antimonates are therefore vital to the understanding
of the history of glass.

Objectives

Despite the long-term and widespread use of anti-
mony, many questions remain concerning its origin.
What is the primary origin of the Sb raw materials
used? How was this Sb distributed, by processes of
trade, exchange or tribute? What was the nature of
its adoption in several technological processes?

For the Levantine antimonial copper alloys, an ore
of the tetrahedrite-tennantite solid solution (s.s.) (in
roughly equal proportions) with accessory nickel min-
erals is suggested by Tadmor et al. (1995). Depositis
with such a signature in the Caucasus are likely sources
(Tadmor et al. 1995). One likely origin of the antimony
used as an opacifier in ancient glass making throughout
the Near East also lies in the Caucasus (Shortland
2002). Hence, this paper aims at provenancing the Sb
raw materials used in the early Caucasian Sb metal-
lurgy industry, and investigate possible links to glass
making. Metallic Sb beads from the Racha-Lechkumi
region (Georgia) are investigated using mineralogical,
geochemical and isotopic techniques to have a better
understanding of the technology and provenance of
the Sb raw materials used in the Caucasian LBA–EIA
metal production.

The second objective of this paper is to evaluate the
potential for provenancing of high Sb content materials
(>10 wt%) using Sb isotopic analysis. To use isotopes or
trace elements for provenancing purposes the signature
(i.e. isotope ratio, trace element composition) has to
stay unaltered between the source and the product, or
change in a predictable way. In the case of isotope
ratios one possible source of changes is fractionation.
Fractionation encompasses all the ways the isotopic
ratio can change during processing. During most
steps of ancient metallurgy and glass working heat is
applied, which can be accompanied by partial evapor-
ation and/or oxidation of some elements, which in turn
can induce fractionation. This has been studied in
detail for Cu (Asael et al. 2007; Mathur et al. 2009),
Cd (Wombacher et al. 2003), Sn (Berger et al. 2018),
Ni (Ratié et al. 2016) and Zn (Mattielli et al. 2009)
where fractionation occurs and must be accounted
for, and for Pb, where fractionation is within the exper-
imental error of the analysis tools used and much smal-
ler than the natural variation within one ore field,
hence not influencing provenance issues (Cui, Wu,
and Huang 2011). In other metals, such as Fe, the
metal phase did not indicate any isotope fractionation
relative to the starting material during smelting. Sb
fractionation has not yet been studied in archaeological
context, and very little in chemical-geological studies.
Therefore, three fractionation experiments have been
set up to test the hypotheses whether fractionation
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takes place due to a change in oxidation state during
digestion of the samples in laboratory study (hypoth-
esis 1) and whether fractionation occurs in redox reac-
tions during pyrotechnological processing in ancient
metallurgy and glass making (hypothesis 2). Only
thereafter Sb isotope ratio analysis comparing ores to
early metals and glass can be performed.

Materials and methods

Archaeological & geological context

A collection of Sb-rich ores (n = 90) from various
regions across the world was analysed with XRD and
ICP-OES (n = 42) to obtain mineralogical and chemical
characteristics. Furthermore, under the auspices of the
Georgian National Museum in Tbilisi, 27 samples of
Sb-rich materials were obtained for mineralogical, geo-
chemical and isotopic analysis: 9 ores from the Racha-
Lechkumi region of which 8 stibnites and 1 tetrahe-
drite-tennantite s.s., and 18 metallic Sb objects from
the LBA cemeteries of Brili and Chalpirogrebi. The
list of samples studied can be found in Appendix I.

The Zemo (Upper) Racha ridge, situated in the dis-
trict of Racha-Lechkumi in the Republic of Georgia, is
rich in mineral deposits. Geologically, the Racha-Lech-
kumi region is centred in an area of Jurassic rocks. It
occurs as a narrow slate belt that follows the general
WNW-strike of the Greater Caucasus. The slates are
distinguished by anomalously high concentrations of
As, Sb, Cu, Zn and Au, likely defining a broad region
of hydrothermal alteration. In addition, narrow hor-
izons of diagenetic pyrite are also present and this

early pyrite is enriched in As, Au and Sb, which
could be a source for some of the younger epigenetic
metal enrichments (Kekelia et al. 2008). The Sb depos-
its of Sagebi (W–Sb–Au), Kairobi (Mo–Sb), Sanarts-
khia (Sb–Au), Kvardzakehti (Sb–Au), Zopkhito (Au–
Sb) and to the west, the Guli Sb deposit, are situated
in this district (https://www.mindat.org/min-3782.
html, last visited on 20/06/2018).

The region also contains a dense concentration of
prehistoric sites associated with early metallurgy.
About a hundred locations have been discovered at
which copper, as well as antimony and arsenic ores
were worked (Chernykh 1992). There are also several
major deposits of antimony which were exploited in
prehistoric times, including: Gona, Zopkhito and
Sagebi (Inanishvili, Maisuradze, and Gobejishvili
2010). During the 10–12th of September 2016 an
expedition was carried out by P. Leeming and the
Georgian National Museum (GNM) to collect some
of this Rachan material. During the expedition the
site “Chkornali 1” was visited (N 42° 49′ 21.6′′; E 43°
32′ 51.5′′; 2429 m elevation). Although the mine itself
is flooded, three samples were collected from spoil
between 5 and 15 m from the entrance. The source of
the samples is shown in Figure 2. “Georgia 1” was col-
lected close to the Zopkhito Sb-deposit, where traces of
antimony smelting have been found near the ore body
(Chernykh 1992). Samples Georgia 2–5 also come from
ancient mines (sloping galleries and pit faces) in this
part of the Racha-Lechkumi district.

Fifteen beads found at the site of Brili, excavated
from Grave 32 (11 beads studied), Grave 33 (1 bead)
and Grave 1 (3 beads studied) were analysed. The

Figure 2. Plan of the mine showing sampling points 1–3, which, respectively are samples Georgia 2, 3 and 4 (after Maisuradze and
Gobejishvili 2001 ).
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beads of Grave 32 are part of three different necklaces
(see Appendix I): necklaces A and B are bi-lobed beads
consisting of two spherical bodies that share a common
flat bottom (typical grave goods in the tombs of Brili,
Nuli and Kvasatali (Shida Kartli)) (Hauptmann and
Gambaschidze 2001); necklace C is tri-lobed, consist-
ing of three spherical bodies.

Brili is a multi-period cemetery in the region of
Racha-Lechkumi, situated to the west of the area of
Gona. The site was excavated in nine seasons between
1939–1961 under the leadership of Germane Gobejish-
vili (Gobejishvili 1977, 1952). Even though the ceme-
tery has not been completely excavated, more than
200 graves have been opened. Local communities
used the cemetery intermittently as a burial ground
for about 2000 years from the early 2nd millennium
BCE (MBA) to the fourth century CE. They are charac-
terised by a diversity of belief systems and mortuary
practices – earthen pit graves, stone cists, and crema-
tion platforms (Sagona 2017). The site is only dated
by relative chronologies and is being analysed burial
by burial with thus far limited publication (e.g. Pants-
khava, Maisuradze, and Gobejishvili 1939). This lack of
absolute dating is common in the Bronze Age of Geor-
gia as a whole, where programmes of 14C dating are still
in their infancy.

From the Chalpiragorebi cemetery in Tbilisi, in use
during multiple periods, spanning the 2nd and 1st mil-
lennium BCE, 5 beads from five different graves were
analysed: “CHPG 1” from Grave 15 belongs to a com-
posite spacer-plate necklace of over 80 beads, of which
an axe-head shaped bead (like a so-called Central
Transcaucasian battle axe) was analysed; “CHPG 2”
from Grave 75 is a flattened truncated bicone or
lozenge bead; “CHPG 4” are broken fragments from
a necklace found in Grave 3; the accession numbers
of the two other samples “CHPG 5” and “CHPG 6”
are currently being investigated and the site is being
prepared for full publication by one of the authors,
M. Abramishvili. Unfortunately, not much contextual
information in English has been published so far.

Fractionation experiments

The outline of the fractionation experiments can be
found in Table 1.

Fractionation experiment 1
Originally, Sb isotope analysis of low Sb content
materials was developed by Lobo et al. (2012) isolat-
ing Sb using a combination of cation exchange
chromatography with Dowex resin and anion
exchange chromatography using Amberlite resin
(Lobo et al. 2012, 2013, 2014; Degryse et al. 2015).
This procedure was altered for high Sb content
materials due to the creation of viscous gels instead
of clear solutions when preparing such samples.
The first fractionation experiment (see Table 1) starts
off with a stibnite “China 3” from the ore collection
(F1). The crushed ore was heated at 400°C in order
to obtain Sb2O3. Then this roasted stibnite (F2) was
heated with C at 500°C during 4 h to Sb2O4 (F3a).
This was repeated with the same conditions for
complete oxidation of the ore to Sb2O5 (F3b). A
frit composed of SiO2-Na2O-CaO (74.5:18:7.5),
which is close to average composition of Roman
glass and at a eutectic point in the ternary phase dia-
gram was created by heating the raw materials at
1200°C for 4 h (F4). The Sb2O5 (95:5) was added
to this frit and fired at 800°C for 4 h (F6a). Samples
F1–4 were digested according to Procedure 2: the
samples were weighed to 0.1 g after which 1.5 ml
12 M HCl was added. The beakers were closed and
placed on the hotplate overnight followed by evapor-
ation at 80°C on a hotplate. Then Aqua Regia (AR)
was added, 0.8 ml 14 M HNO3 with 2.4 ml 12 M
HCl. The beakers were closed and heated again over-
night at 90°C before they were opened to evaporate.
Samples F5 and F6a were digested by the same
procedure, with the additional step of adding 3 ml
of 22 M HF with 2 ml of 14 M HNO3 after evapor-
ating the Aqua Regia. The closed beakers were heated
for two hours before they were opened to evaporate.
Finally, 10 ml of 0.14 M HF was added to samples
F1–F6a to redissolve the samples for Sb isolation
before MC-ICP-MS analysis.

Fractionation experiment 2
The same experiment outline (Table 1) as in fraction-
ation experiment 1 was followed, except for the adding
of Sb. This time Sb2S3 (F1) was added to the base glass
(F4) and heated first at 800°C, then at 1200°C for twice
4 h (F6b). In this fractionation experiment Procedure 3,

Table 1. Fractionation experiment outline. Stibnite “China 3” was selected. The crushed ore was heated at 400°C in order to obtain
Sb2O3. Then the roasted stibnite was heated with C at 500°C during 4 h. This was repeated with the same conditions for complete
oxidation of the ore to Sb2O5. (F1–F3b were analysed by XRD). A frit composed of SiO2-Na2O-CaO (74.5:18:7.5), which is close to
average composition of Roman glass and at a eutectic point in the ternary phase diagram is created by heating the raw materials at
1200°C for 4 h. Either a frit of Sb205 (95:5) is added and fired at 800°C for 4 h (F6a) or Sb2S3 is added to the base glass and heated
first at 800°C, then at 1200°C for twice 4 h (F6b).

F1/L1 F2/L2 F3a F3b F4 F5/L5 F6a/L6a F6b/L6b

Raw
material

Stibnite Roasted
stibnite

Oxidised
stibnite

Oxidised
stibnite

Raw materials
glass

Glass
frit

Opacified Sb glass by
adding Sb205

Opacified Sb glass by
adding Sb2S3

T 400°C 500°C 500°C 1200°C 800°C 800–1200°C
T 12–16 h 4 h 4 h 4 h 4 h 4–4 h
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offering total digestion for elemental analysis, was used.
To closely monitor any change in oxidation state
during the digestion procedure, every step of Procedure
3 was sampled. Firstly, all samples were weighed to 50–
70 mg in Savillex beakers to which 10 ml of AR was
added (2.5 ml of 14 M HNO3 + 7.5 ml of 12 M HCl).
The samples were heated overnight at 120°C. Then,
two times 1 ml and one time 2 ml was taken out
(=4 ml in total) to respectively use for titration, ICP-
OES analysis and Sb isotope analysis. The remaining
6 ml was evaporated at 150°C. 10 ml 22 M HF was
added and heated overnight at the same temperature.
Again, 4 ml was taken out for the analysis as described
above. The remaining 6 ml was evaporated at 150°C
and brought into solution again with 7 ml of 3%
HNO3.

In this experiment stibnite “China 3” (F1) and an
additional ore “Georgia 6” were digested with two
different procedures in order to evaluate the influence
between digestion procedures on the Sb isotopic com-
position. Procedure 1 (Lobo et al. 2012) and Procedure
3 were chosen. Procedure 1 goes as follows: a mixture
of 4: 1: 1 HNO3: H2O2: HF was made (4 ml 14 M
HNO3 + 1 ml 10 M H2O2 + 1 ml 22 M HF), of which
1.5 ml was added to the samples and evaporated at
40°C. Then 2.5 ml of AR was added. The beakers
were closed and put on the hotplate to heat overnight
at 90°C. Afterwards, the beakers were opened and
evaporated at the same temperature. The residue was
redissolved in 10 ml of 0.14 M HF.

Fractionation experiment 3
This fractionation experiment copies the outline of
experiment 1 (F1–F6a). A glass opacified by the adding
of Sb2S3, as in experiment 2, was created as well (F6b).
These samples (F1–F6a/b) were digested with Pro-
cedure 2, as described for experiment 1. Around
65 mg was taken from each samples, except for F3, of
which 36 mg remained.

Additionally, these samples were also digested with
Procedure 1, as described for experiment 2, and here
labelled as L1 (stibnite) and L2 (roasted stibnite). The
glass samples (L5 and L6a/b) had an additional
addition of a mixture of 3 ml 22M HF and 2 ml 14M
HNO3.

Methods

XRD
The ores were crushed in an agate mortar and placed
on the XRD holder using silica gel. Powders were
measured using a Phillips PW1830 diffractometer
with a Bragg/Brentano θ–2θ setup and Cu Kα radiation
at 45 kV and 30 mA. Angles from 5 to 75° 2θ were
scanned with a step size of 0.02° 2θ and 1s per step.
ConvX software was used for file conversion, mineral
identification was performed using DiffracPlus (EVA).

SEM-EDS/ESEM
A Hitachi 3500U Environmental Scanning Electron
Microsocope (ESEM) at Cranfield University was
used to obtain the major and minor element chemical
composition of 10 jewellery samples, mainly beads
found at the sites of Brili and Chalpiragorebi and 8
ores obtained in the Racha-Lechkumi region. The
samples were mounted on carbon-coated stubs and
analysed with 20 kV accelerating voltage, an intensity
of 89 μA, 30s live time and 10 mm working distance.
The Octane Plus EDS detector (EDAX – AMTETEK
Inc.) was used with a standardless approach. The
measured intensities have been quantified using eZAF
Smart Quant Results. Raw data were corrected with
ZAF correction procedure to process for matrix
effect. Multiple spots were analysed to calculate a
mean value. The samples are given as elements with
some exception presented as oxides. The results are
presented with oxygen content included to indicate
the corrosion condition of the metal.

ICP-OES
The major and minor elemental compositions of the
ore collection samples were obtained by Inductively
Coupled Plasma Optical Emission Spectrometry
(ICP-OES) analyses with a Varian 720-ES instrument
(simultaneous ICP-OES with axially viewed plasma).
Firstly, 42 ore samples were qualitatively analysed
(only partial dissolution). Since they were similar in
their major and minor elemental composition, sub-
sequently only 19 ore samples were quantitatively ana-
lysed. These 19 ore samples are discussed in the paper.
70 mg of ore was powdered. The powdered samples
were subjected to digestion in Teflon beakers. Pro-
cedure 3 was used to dissolve the samples (4 ml AR,
3 ml HF, 3 ml HNO3). The digest was transferred
into a larger tube (15 ml), and diluted to 8 ml using
1M HNO3. 5 ml of the 8 ml solution was transferred
back into Teflon beakers to be used for Sb isotope
analysis (see below), while the remaining 3 ml was
retained for chemical analysis by ICP-OES.

Exact instrumental setup can be found in Brems
et al. (2012). The operating conditions and instrumen-
tal parameters are summarised in Table 2.

MC-ICP-MS
Samples were weighed (around 50 mg, or less in case of
a small sample) in Savillex beakers and digested
according to Procedure 3 (4 ml AR, 3 ml HF), and
eventually diluted in 3% HNO3 for Sb concentration
check and isotope ratio measurement.

The concentration of Sb in the solutions was deter-
mined using a PerkinElmer SCIEX Elan 5000 ICP–MS
instrument. An internal standard (Ru) was used to cor-
rect for matrix effects, signal drift and instrument
instability, and Sb stock was used to calibrate. Sb iso-
tope ratios were determined using a Thermo Scientific
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Neptune multi-collector inductively coupled plasma –
mass spectrometer (MC–ICP–MS), equipped with a
micro-flow PFA-50 Teflon nebulizer and a double
spray chamber, consisting of a cyclonic and a Scott-

type sub-unit for sample introduction, and running
in static multi-collection mode, at the University of
Ghent (Belgium). It was operated with a constant
flow of 3% HNO3 at 100. The ion signal intensities of
121Sb and 123Sb were detected simultaneously by mul-
tiple Faraday cups (see Table 3 for operating con-
ditions) using 113In and 115In for the correction of
the instrumental mass discrimination.

Revised Russell’s law using Indium (In) as internal
standard was chosen as method of correction for
instrumental mass discrimination (Baxter et al. 2006),
as it was shown by Lobo et al. (2013) that the latter
method leads to improved precision and is reproduci-
ble, in contrast to the sample-standard bracketing
method. Sb isotopic results are reported in 123ε units.
These ε values express the isotopic composition of Sb
as a relative difference or deviation with respect to an
in-house standard (SPC Science), measured in a stan-
dard-sample-standard bracketing sequence with a
1000 ppb Sb standard solution and 150 ppb In as an
internal standard (Lobo et al. 2012, 2013, 2014).

Results

Fractionation experiments

Figure 3 shows the results of the three fractionation
experiments combined. A shift in isotopic composition
of the different phases in the experiments is revealed,

Table 3. Operating conditions for the Faraday cups and data
acquisition.

Thermo Scientific Neptune multi-collector ICP-mass spectrometer

Cup configuration
L2 C H2 H3
113In 115In 121Sb 123Sb
Data acquisition parameters
Number of blocks 7
Number of cycles per block 5
Integration time (s) 4

Figure 3. Overview of the Sb isotopic composition of the fractionation experiments. Procedure 1 is denoted with triangles, Pro-
cedure 2 with dots and Procedure 3 with diamonds. Experiment 1 is denoted in black colour, experiment 2 in pink and experiment
3 in red (if opacified by Sb2O5; F/L6a) and green (if opacified by Sb2S3/Sb2O3; F/L6b).

Table 2. ICP-OES instrumental settings.
Parameters VARIAN 720-ES: conditions used by all lines

Power kW 1.30
Plasma flow L/min 15.0
Auxiliary flow L/min 1.50
Nebulizer flow L/min 0.75
Replicate read time (s) 3.00
Instrumental stabilisation delay (s) 15
Sample introduction settings
Sample uptake delay (s) 60
Pump rate (rpm) 15
Rinse time (s) 5
Standards
Standards quantitative
% slope deviation 10
No of standards 15
Correlation coefficient 0.995000
Curve type Quadratic & linear
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except for the samples digested with Procedure 3 in
experiment 2. The newly produced opacified glass of
experiment 1 has a Sb isotope ratio which is around
3.0 123ε units lower than the unprocessed ore. No sig-
nificant change occurs between the unprocessed (F1)
[Sb2S3] and roasted stibnite (F2) [Sb2O3]. After partial
oxidation (F3a) [Sb2O4] the isotopic values drop
around 1.5 123ε. After adding the oxidised Sb (F3b) to
the glass (F4), an opacified glass (F6a) is obtained. Its
isotopic composition is again another 1.5–2.5 123ε
lower compared to the previous step. The same trend
can be observed in both procedures (1 & 2) used in
experiment 3, i.e. no shift occurs between the ore (F/
L1) and the roasted ore (F/L2), but does occur between
the oxidised ore (F/L3) and the opacified glasses (F/
L6a/b). The shift is however larger for the samples
digested with Procedure 2, i.e. between around 1.5
and 3.0 123ε value, while for the samples digested
with Procedure 1 the shift ranges between barely a
difference (0.0) and 2.2 123ε. For the opacified glasses
it is noted that more negative Sb isotopic values are
found in the glasses opacified with the Sb oxide (F/
L6a) in comparison to the glasses opacified with stib-
nite (F/L6b).

As can be seen in Figure 4, no fractionation
between the different technological steps is observed
in experiment 2. Neither is any significant fraction-
ation occurring between the different steps of the
digestion procedure (Procedure 3), nor when using
HCl as first step. Figure 5 shows a discrepancy in
123ε Sb values between this Procedure 3 and Pro-
cedure 1. Samples digested with Procedure 3 have
more negative values compared to samples digested
with Procedure 1. A difference of 1.15 123ε is noted
for “Georgia 6” and 1.97 123ε for “China 3.” Since
both samples were run without the isolation prep-
aration, there is no impact at all possible of an event-
ual on column fractionation. Likewise in experiment
3, the samples digested with Procedure 1 have a
more negative Sb isotopic value than the ones
digested with Procedure 2.

Ore collection

XRD and ICP-OES results
A summary of the results are shown in Tables 4 and 5.
Data can be found in Appendix I (XRD) and Appendix
II (elemental composition). Table 4 shows that the
sulfide, stibnite [Sb2S3], was identified the most. The
two other most common minerals identified in the col-
lection were tetrahedrite-tennantite s.s. [(Cu,Fe)12Sb4-
S13] and boulangerite [Pb5Sb4S11]. Geochemical
analysis shows that these stibnites contain on average
c. 75% Sb and c. 27% of S, indicating these stibnites
occur without any significant content in any other
major element. In only a few cases were As, Fe, Pb
and Zn detected. Therefore, when used in ancient pro-
cesses, stibnite would not influence in a major way an
artefact’s composition other than for its Sb content.
The tetrahedrite-tennantite s.s. has a different S – Sb
ratio and an association with As, Fe, Zn and mainly
Cu can be seen. In the case of the use of boulangerite,
Pb is present in significant amounts (see Table 5).

Sb isotope analysis
The Sb isotope composition of stibnites in the ore col-
lection (n = 63, including remeasured ores) could be
determined with a good repeatability (internal pre-
cision; the variation arising when all efforts are made
to keep conditions constant by using the same method
on the identical test items in the same laboratory by the
same operator using the same equipment within short
intervals of time) of 0.48 123ε (2RSD), comparable to
precisions reported in literature (e.g. similar to the

Table 4. Minerals identified by XRD.

Mineral
N =
90 Associated minerals

Stibnite (Sb2S3) 64 Stibiconite, berthierite,
chalcopyrite, galena, sphalerite

Tetrahedrite-tennantite s.s.
((Cu,Fe)12Sb4S13)

4 Galena, pyrite, sphalerite,
chalcopyrite

Boulangerite [Pb5Sb4S11] 4 Falkmanite, galena, sphalerite
Other Sb-rich minerals 18

Figure 4. Isotopic composition of “China 3” (ore) during differ-
ent digestion steps in experiment 2.

Figure 5. Isotopic composition of the final digestion phase of
Procedure 1 and Procedure 3 for the ore samples “China 3” and
“Georgia 6.”
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reported 0.4 123ε by Lobo et al. (2012)). However, the
reproducibility (obtained on replicates during the
same run of the instrument) for high Sb materials
(>10 wt% Sb) was bad, replicate measurements on stib-
nites yielding a difference of up to 5 123ε units. In prac-
tice, comparing values in the same batch was possible,
but comparing between batches proved unreliable.
Therefore, for high Sb content samples the preparation
procedure for isotope measurements had to be re-
developed. Recoveries were checked in elution profiles,
which is the process of extracting one material from
another by running a solvent, called an “eluent”,
through loaded ion-exchange resins in columns to
remove captured ions. After the solvent molecules dis-
place the analyte (i.e. the isolation), the analyte can be
carried out of the column for analysis.

A major loss of Sb was observed in elution profiles,
especially after the second isolation step (see “elution
2e” in Figure 6). This loss can be ascribed to Sb that
is retained in the resin on the column. Since geochem-
ical analysis showed that not many associated elements
are to be expected, chromatography was entirely

eliminated from the preparation procedure of the
high-Sb archaeolgocial samples and from fractionation
experiment 2, and high Sb content solutions were
directly loaded for isotopic measurements.

Metallic Sb samples of the Racha – Lechkumi
area

SEM-EDS and EPMA results
Six metal beads from the Brili site were analysed. Five
beads were identified as metallic Sb and one ("Bead
1") as a Cu–Sn alloy (see Appendix II). On average
the metallic Sb beads contain 69.0 wt% Sb. However,
less corroded zones and original cores reveal that the
original Sb content was much higher, e.g. 86.9 wt% in
"bead 56". For Bead 1 an increase of Sn towards the
outer zones due to the phenomenon of decuprification
is observed (Figueiredo et al. 2010; Oudbashi, Hasan-
pour, and Davami 2016). Three metal samples from
Chalpiragorebi were measured. SEM analysis reveal
that they are made of metallic Sb, with contents up to
95.0 wt%, e.g. the metallic core in "CHPG 11". Cu is

Table 5. Average major and minor elements identified by ICP–OES.
Stibnite (n = 16)

Major (mean–median) (%) Traces (in few cases) (max) (%) Gangue material (in few cases) (max) (%)

Sb S Total As Fe Pb Zn Al Ca K
67.89 ± 16.88 25.13 ± 5.8 93.70 ± 47
74.0 27.1 101 0.699 0.536 0.518 0.149 2.06 1.69 0.101
Tetrahedrite-tennantite s.s. (n = 1)
Major (%) Traces (%) Gangue material (%) Total (%)
As Cu Fe Sb S Zn Bi Ca Mg
8.69 39.1 2.33 14.5 24.8 3.95 0.139 0.491 0.275 94.4
Boulangerite (n = 1)
Major (%) Traces (%) Gangue material (%) Total (%)
Pb Sb S As Fe Ca Mg Mn
6.49 25.4 5.60 1.00 0.647 0.509 0.287 0.107 40.2

Figure 6. Sb recovery after digestion, of the elution after the cation isolation (1st elution) and of the elution after the anion isolation
(2nd elution). AMIS0366 is a standard, Spain 24 is a stibnite ore.
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attested only in the Brili beads, as 4 out of 5 samples
yielded a Cu content of at least 1.00 wt%, and one
even has almost 6 wt% Cu.

Sb isotope analysis
Sb isotope analysis has been carried out on the Geor-
gian ore and metallic Sb samples in two runs. Data
are listed in Appendix III. Figure 7 shows the isotopic
ratios for the samples analysed. Six of the Georgian
ores plot above the 0.00 123ε value, while only one
has a negative value (“G17”). On the contrary, all
archaeological samples plot below the 0.00 123ε value
except for Bead 10 (G32), which has a positive value.

Discussion

Fractionation during analysis (hypothesis 1)

In Procedure 3 no shift in isotopic composition is
observed. This can be explained by the fact that Sb is
already present as Sb (+V) in the ore digests (as
shown by titration) through the use of AR as strong
oxidising agent in the digestion procedure. In this
case, the digestion causes the transition in oxidation
state, changing the Sb isotope composition of the orig-
inal, roasted and oxidised ore. The risk of inducing
fractionation in the digestion procedure is thus real
(hypothesis 1).

Fractionation during pyrotechnological processes
(hypothesis 2)
Our experiments revealed that fractionation does occur
in making Sb opacified glass, altering the Sb isotopic

ratio to a lighter isotopic composition and hence
more negative values.

Fractionation is known to happen in the transition
of oxidation state (cfr. parallel to the redox reactions
suggested by Ratié et al. (2016) for Ni isotopes)
from +III to +V, which occurs when roasted stibnite
(F2) is oxidised to Sb2O4 (F3a) or Sb2O5 (F3b) to add
as antimony source to the glass batch, or which occurs
when Sb2S3/Sb2O3(+III) is added to the glass batch to
form Ca2Sb2O6/7 (+V). It is put forward here that the
more Sb (+III) is present in the final glass, the closer
the Sb isotopic value will be to the roasted and/or
unprocessed ore. The more Sb (+V) is present, the
more negative the Sb isotopic ratio will be due to
fractionation.

First, in the process of roasting stibnite no difference
in Sb isotopic ratio is seen (<SD) (Table 6) between
unprocessed and roasted ore, thus no fractionation
occurs in this procedure. In oxidised ore, no significant
shift (i.e. around SD) is observed when Sb2O3 is
obtained, but a difference of 1.39 123ε is seen when
Sb2O4 is obtained, due to the mixed valence in the lat-
ter. The opposite trends (i.e. higher Sb isotope ratio
compared to the roasted ore) for the oxidised ores
[Sb2O4, cervantite] in Procedure 2 of experiment 1
can be explained by the uncontrolled parameters in
this experiment (see Figure 3), such as oxygen fugacity
or partial pressure during heating in the oven. Hence,
the ratio of Sb3+/Sb5+ in these cervantites will vary,
and oxidised ores with more Sb(+III) still present will
have a Sb isotopic ratio closer to the roasted ore. If
more Sb (+V) will be present, then the Sb isotopic

Figure 7. Sb isotopic data of Georgian stibnites and Sb-rich jewellery.

10 S. DILLIS ET AL.



ratio will be more negative and hence closer to the iso-
topic composition of the opacified glasses.

Finally, in the process of making an opacified
glass, and thus theoretically going completely to a +
V valence, differentiation is seen among the different
digestion procedures. While for Procedure 3 no frac-
tionation seems to occur (0.13 123ε value <SD), Pro-
cedure 2 shows that fractionation from a stibnite to a
Sb oxide opacified glass gives a shift in Sb isotopic
value of around 2.5 123ε value. Interestingly, a lower
shift is observed when stibnite was used directly in
the opacification process (1.63 123ε). For Procedure
1, a shift from stibnite to the Sb oxide opacified
glass of 2.11 123ε is noted, whereas for the glass opa-
cified with the stibnite this is only 0.55 123ε value. In
this case, it seems that not all Sb (+III) was oxidised
to Sb (+V) during the in-situ opacification process.
Hence, the oxidation state of the Sb in the glass
matrix stays mainly the same as the Sb source.
These findings are in line with the observations
made by Lahlil et al. (2008), who states that if Sb
(+III) is the predominant species in the glass matrix
and if it is known that the glass has been made under
conditions below 1200°C, the sources of Sb poten-
tially used are compounds of the type Sb2O3 or
Sb2S3 (Lahlil et al. 2008). From our experiments it
can be concluded that the transition in oxidation
stage from +III to +V during the technological pro-
cess of using stibnite in glass making leads to a
drop in the Sb isotopic ratio of c. 2.5 123ε. This frac-
tionation factor (0.25‰) can be used to interpret any
further Sb isotopic data from archaeological data.

Therefore, the assumption that there is a direct
relationship between mineral raw minerals and the
artefacts, so that the geological signature is not trans-
formed physically or chemically during the manufac-
turing process (Ixer 1999), is not fulfilled. The goal of
using Sb isotopic compositions for the determination
of provenance can only be aimed for when Sb stays
as Sb (+III) (e.g. Lobo et al. 2012) or when a fraction-
ation factor is taken into account. Moreover, since this
fractionation happens during technological processing,
and since we can control the digestion procedures used
in measuring Sb isotopes, this method can be of use
with regard to technological issues in antiquity. Since
different technological processes can determine
whether Sb enters the glass batch in Sb(+III) or as Sb
(+V), it might give us some insight in the production

of antimonates. Previous study by Degryse et al.
(2015) (Figure 8) suggested that the Sb used in LBA
glass making has a distinct source from later Sb used
in Greco-Roman times as a decoulouriser, and that
the LBA glass has a signature similar only to remains
of early Sb metallurgy, developed in the Caucasus. Met-
allic or mineral Sb was used to opacify glass, and fac-
tories in Mesopotamia and Egypt seem to have used
the same source of the material (Degryse et al. 2015).
It can indeed be observed (see the red line on Figure
8) that the LBA glass has a negative Sb isotopic compo-
sition, while the Roman glasses show higher Sb isotopic
compositions. Since fractionation is occurring in the
oxidising phase, this difference in isotopic composition
can no longer only be explained by a different Sb
source, but also by a different technological process.

Using the principle of Occam’s razor, a schematic
overview for the mass-dependent Sb fractionation as
partially deduced experimentally is presented in Figure
9. Since the most straightforward procedure to make
metallic Sb starts with roasting stibnite (+III to +III/
+V) and consequently reducing it in closed moulds,
the same fractionation factor for metallic Sb beads is
proposed, as it would induce redox reactions as well.
However, the oxidation state of the metallic beads
remains difficult to predict. The roasting of the stibnite
renders either Sb2O3 (+III) or Sb2O4 (+III/+V). While a
oxidation state of a metal is always (0), this is not
necessarily the case when we are dealing with artefacts
that are not a full 100% metallic Sb. In that case, redu-
cing might turn it (partially) into +III and/or Sb(0).

Case study: provenancing the metallic Sb beads
The elemental composition of the ores analysed, leads
us to conclude that the use of stibnite in ancient indus-
tries would not contribute many elements to the end
product other than Sb and S. Based on their ubiquity
in ore deposits, only the tetrahedrite-tennantite s.s.
and boulangerite are likely other ore minerals to be
used. When a tetrahedrite-tennantite s.s. is used, the
presence of As, Fe, Zn and mainly Cu as accompanying
elements is expected. In the case of boulangerite, Pb
would be a significant associated element. Given the
interesting geological and archaeological background
of the Caucasus, such patterns were investigated in
the composition of the metallic Sb samples. A first indi-
cation for the use of a different antimony source and/or
technology can be suggested: in the Brili beads the

Table 6. Average 123ε value of the stibnites and roasted ores for the different digestion procedures in the different experiments.
Stibnite Roasted Stibnite – roasted Oxidised Stibnite – oxidised Opacified Glass Stibnite – glass Oxide – glass

Exp 1/Pr. 2 −0.46 −0.38 −0.08 −1.85 1.39 Sb oxide −3.29 2.83 1.44
Exp 2/Pr. 3 −5.92 −6.08 0.16 stibnite −6.05 0.13
Exp 3/Pr. 2 −4.68 −4.57 −0.11 −4.18 −0.5 Sb oxide −7.01 2.33 2.83
Exp 3/Pr. 2 −4.68 −4.57 −0.11 −4.18 −0.5 stibnite −6.31 1.63 2.13
Exp 3/Pr. 1 −5.41 −5.65 0.24 Sb oxide −7.52 2.11
Exp 3/Pr. 1 −5.41 −5.65 0.24 stibnite −5.96 0.55

STAR: SCIENCE & TECHNOLOGY OF ARCHAEOLOGICAL RESEARCH 11



association of Sb and Cu hints at the use of tetrahe-
drite-tennantite s.s. ore, whereas the lack of associated
elements for the Chalpiragorebi beads suggests stibnite
instead.

Using the scheme for fractionation correction and in
view of the uniqueness of the Caucasian deposits and
the strong archaeological tie between these ores and
the very existence of Sb metallurgy, it is suggested
that the metallic Sb beads of Brili and Chalpiragorebi

are consistent with the local Sb sources of the Racha-
Lechkumi region.

In light of the redox processes and fractionation, the
negative value for “G17” is interesting (Figure 7).
“G17” was originally labelled as ore, found in grave
17 on the site of Brili. However, its XRD shows an
amorphous phase and an unattributable antimony
peak (Sb, Sb2O3, Sb2S3…). Chemically, “G17” contains
57.6 wt% Sb, 2.5 wt% Fe, and 1.3 wt% As. Therefore, it
is most likely evidence of the smelting practice, consid-
ering the amorphous phase and the high amounts of
Sb, Fe and As. In that case, the negative isotopic
value for “G17” can also be explained by the fraction-
ation occurring in the redox process during the metal-
lurgical processing, which seems to follow the same
pattern seen in the glass making process. An alternative
explanation, based on the redox process, to understand
the negative value is that the ore got oxidised under
burial circumstances similarly to the valentinite beads
at Selvicciola (Italy). Pallecchi, Pecchioli, and Tocci
(2002) consider the valentinite nature of the beads as
the result of postdepositional processes (oxidation of
Sb) due to their small size.

However, the experiments showed that the digestion
Procedure 3 also causes a shift of +III to +V in the stib-
nites. Since these samples have been digested with this
procedure, it should be expected that the stibnites have
shifted in oxidation state and hence give Sb isotopic
values that are 0.25‰ lower than if they would still

Figure 8. Blue arrows point out the difference between the 123ε values obtained for Spain 4, Italy 3 and the Jerablus bead and the
values obtained for these identical samples by Lobo et al. (2012); orange shapes show the correction with the fractionation factor
between the unprocessed ores of the Racha region and the metallic beads of Brili and Chalpiragorebi, and the red line indicates the
observation made by Degryse et al. (2015) that the Egyptian and Mesopotamian glasses have a lower value than the Roman glasses.
*Data obtained from Degryse et al. (2015).

Figure 9. Fractionation happening between the raw material
on the one hand and the pyrotechnological end product on
the other hand. This change in oxidation state during the pro-
cess of roasting the stibnite (+III) to a Sb oxide (+V) leads to a
lighter Sb isotope composition (decreasing 123ε value). This
fractionation can be accounted for when making archaeologi-
cal interpretations by correcting with 0.05–0.25‰ for opacified
glass.
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be in their original state +III. It remains unclear
whether the still highly positive values of the Rachan
ores mean that no redox reactions have occurred
during digestion or if/whether the metallic beads
were affected by this digestion procedure.

Conclusion

Sb as a raw material was frequently used, both as an
opacifier and decolouriser in ancient glasses, as well
as an alloying element or in its metallic phase in
metal production. Despite this ubiquity, antimony pro-
duction has only rarely been studied (for medieval
times and later, see Siebenschock 1996) and questions
concerning its provenance and origin remain
unanswered.

While this paper has presented evidence from a rela-
tively limited number of specific laboratory exper-
iments, the results have general significance for the
interpretation of Sb isotope compositions as a whole.
Firstly, the experiments revealed significant fraction-
ation of stable Sb isotopes during the conversion of
stibnite (Sb+III) into Sb oxide (Sb+V). The range of frac-
tionation appears to be around 123Δ Sb = 0.25‰. Since
the induced isotopic shifts can be explained by redox
processes, these isotopes can be largely corrected for
and being used as a fingerprint with the relation to
the source of the element. Hence, for provenancing
purposes, fractionation can be taken into account and
corrected for when looking for a consistent match
with a source, as the Caucasian case study has demon-
strated. Secondly, Sb isotopes can be used to differen-
tiate between natural and anthropogenic sources,
potentially revealing information about ancient anti-
mony smelting and production techniques. This
includes fractionation during technological processing.
These results also highlight the potential value of the
method to distinguish different technological processes
in ancient pyroindustries. Extended fractionation
experiments in future research should evaluate the
influence of fractionation on Sb-rich metal artefacts
(reduction) to model this potential shift quantitatively.
Future research should link these results with archaeo-
metallurgical and ancient glass making processes, and
look into the Caucasus. This region is of interest,
especially the Racha-Lechkumi district in Georgia.
Elemental and isotopic data of LBA metallic Sb objects
and stibnites from this region were obtained. They
suggested that both stibnite and tetrahedrite-tennantite
s.s. could have been used as a raw material. Based on
the fractionation scheme the Sb isotopic data of the
archaeological artefacts are consistent with the local
Sb sources. Unfortunately, the digestion procedure
used complicates the picture and more research is
needed on the link between fractionation and reducing
antimony before confident claims about provenance of
the metallic Sb jewellery found can be made.
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