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Abstract

Esmaeil Habib Zadeh

Modelling and Quantitative Analysis of Performance vs Security Trade-offs in Com-

puter Networks

An investigation into the modelling and discrete-event simulation analysis of perfor-

mance vs security trade-offs in computer networks, based on combined metrics and

stochastic activity networks (SANs)

Keywords: Performance, security, trade-off, modelling, simulation, petri nets,

stochastic activity networks

Performance modelling and evaluation has long been considered of paramount

importance to computer networks from design through development, tuning and

upgrading. These networks, however, have evolved significantly since their first in-

troduction a few decades ago. The Ubiquitous Web in particular with fast-emerging

unprecedented services has become an integral part of everyday life. However, this

all is coming at the cost of substantially increased security risks. Hence cybercrime is

now a pervasive threat for today’s internet-dependent societies. Given the frequency

and variety of attacks as well as the threat of new, more sophisticated and destruc-

tive future attacks, security has become more prevalent and mounting concern in

the design and management of computer networks. Therefore equally important if

not more so is security.

Unfortunately, there is no one-size-fits-all solution to security challenges. One se-

curity defence system can only help to battle against a certain class of security
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threats. For overall security, a holistic approach including both reactive and proac-

tive security measures is commonly suggested. As such, network security may have

to combine multiple layers of defence at the edge and in the network and in its

constituent individual nodes.

Performance and security, however, are inextricably intertwined as security measures

require considerable amounts of computational resources to execute. Moreover, in

the absence of appropriate security measures, frequent security failures are likely

to occur, which may catastrophically affect network performance, not to mention

serious data breaches among many other security related risks.

In this thesis, we study optimisation problems for the trade-offs between perfor-

mance and security as they exist between performance and dependability. While

performance metrics are widely studied and well-established, those of security are

rarely defined in a strict mathematical sense. We therefore aim to conceptualise and

formulate security by analogy with dependability so that, like performance, it can

be modelled and quantified.

Having employed a stochastic modelling formalism, we propose a new model for a

single node of a generic computer network that is subject to various security threats.

We believe this nodal model captures both performance and security aspects of a

computer node more realistically, in particular the intertwinements between them.

We adopt a simulation-based modelling approach in order to identify, on the basis

of combined metrics, optimal trade-offs between performance and security and fa-

cilitate more sophisticated trade-off optimisation studies in the field.

We realise that system parameters can be found that optimise these abstract com-

bined metrics, while they are optimal neither for performance nor for security indi-

vidually. Based on the proposed simulation modelling framework, credible numerical

experiments are carried out, indicating the scope for further work extensions for a

systematic performance vs security tuning of computer networks.
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Chapter 1

Introduction

In this opening chapter, we provide a brief overview about the two crucially im-

portant aspects of computer networks - performance and security. Our discussions

in particular concentrate on the interrelationships between performance and secu-

rity and the legitimate requirements for model-based analysis of trade-offs between

them. We then review the motivations for this thesis and restate the problems we

aim to address through this research study. At the end, we provide a brief list of

contributions of this thesis as well as its structure.

1.1 Performance in Computer Networks

Computer networks are always designed with required Quality-of-Service (QoS) pa-

rameters, also known as Service Level Agreements (SLAs), that may well be ex-

pressed in terms of some commonly used performance metrics such as throughput,

end-to-end delay, packet loss probability and utilisation of certain components, just

to name a few. Performance modelling and evaluation plays an important role in

the design and management of computer networks providing flexible and depend-

able tools which can for instance be utilised for capacity planning, optimisation and

prediction analysis. Such tools allow for early assessment of critical components

and/or potential issues so as to guarantee the best cost-performant systems [40, 50,

85, 86].

Nevertheless, it is not uncommon to conduct such performance evaluations near
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completion of the systems. At that late stage, it might be necessary to undertake

a major redesign to correct serious performance problems, which may lead to ex-

pensive, inefficient, time consuming and professionally irresponsible system designs

[65].

There are three basic techniques which can be employed to conduct performance

evaluation in computer networks: analytical modelling, simulation, and measure-

ment [11, 40]. Depending on certain consideration factors, one of these might be

the most preferable and/or the only feasible technique to be adopted. Jain [40]

provides a list of such considerations (from most to least important) which may

help decide when to use which technique(s) as follows: stage, time required, tools,

accuracy, trade-off evaluation, cost and saleability.

For instance, analytical modelling and simulation would be the only methods to be

considered if the network did not exist in the first place, or if the system existed but

it would be enormously costly to interrupt it in order to take some required mea-

surements. In general, however, any analytical modelling or simulation would be

more convincing if they were carried out based on some previously captured actual

measurements [40].

In the context of this thesis, accuracy too is of considerable importance; with this in

mind, below comes a brief comparison between analytical modelling and simulation

solutions.

Analytical modelling is to represent the formal system description as some mathe-

matical formulas which may provide exact or approximate solutions. While analyti-

cal models are quite fast and cost-effective, there are no feasible analytical solutions

for many real-life systems [12, 85]. Abstracting such complex systems would require

too much simplification with unrealistic assumptions, potentially leading to models

that at best will not generalise well.

Simulations, on the other hand, require much less underlying assumptions and can

flexibly mimic any behaviour of the system under consideration in various levels
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of details as appropriate [85]. Hence simulation methods, as expected, provide re-

sults much closer to reality. This may, however, come at significant cost in terms of

increased run times and higher difficulty levels in optimisation studies [12, 40].

1.2 Security in Computer Networks

The Ubiquitous Web with fast-emerging unprecedented services has, unfortunately,

come at substantially increased security risks, potentially affecting every individual

regardless. Cybercrime is now a pervasive threat for today’s internet-dependent so-

cieties [84]. Given the frequency and variety of attacks as well as the threat of new,

more sophisticated and destructive future attacks, network security has become a

central topic [50]. Data privacy in particular has gained a lot of attention.

To battle against all these security threats, network security has developed remark-

ably. It involves any activity, in terms of both hardware and software, designed

to protect the usability and integrity of the network and the data. It may include

various solutions each of which aiming to protect against a certain class of threats.

Network security therefore may combine multiple layers of defence at the edge and

in the network and in its constituent individual nodes, where each layer implements

certain policies and controls to grant access to authorized users but, at the same

time, deny any access to malicious actors [27]. The ultimate goal of security, as

widely agreed, [45, 50, 52], is to protect three unique attributes of data - confiden-

tiality, integrity and availability.

More specifically, confidentiality is about ensuring that data can only be accessed

or understood by authorised persons, which necessarily requires the employment of

cryptographic techniques (encryption/decryption) to prevent unauthorised access.

Integrity concerns about the maintenance of data over its life-cycle and that data

cannot be altered by unauthorised parties, either maliciously or by accident. And

equally important is availability that ensures data being readily accessible to autho-

rised users when needed.
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To enforce these attributes, it is not uncommon to recommend taking a holistic

approach including both reactive(e.g. vulnerability patching) and proactive (e.g.

cryptography, firewalls) security measures1. However, performance and security are

inextricably intertwined as security measures require significant amounts of com-

putational resources to execute. Moreover, in the absence of appropriate security

measures, frequent security failures are likely to occur, which may potentially lead to

catastrophic network performance degradation as well as serious data breaches. Be-

low is, by no means an exhaustive list but, just to give an indication of some security

measures widely employed together with their potential impact on performance.

• As the first line of defence, organisations usually have firewalls installed which,

if properly configured, can carefully scrutinise any access to the network re-

sources. Although, from security perspective, this may be a highly effective

solution, firewalls can become serious bottlenecks, leading to significant per-

formance degradation in the networks [50, 57, 87].

• The employment of encryption/decryption mechanisms in order to protect

data against outsider attacks is also a most-favoured solution. Despite proven

costly from computational standpoint [51, 57, 64, 65], these procedures are

implemented such that several network security protocols with large degrees

of overlap may in fact happen to be running simultaneously. As a result, en-

cryption/decryption may impose considerable delays on data communications

across the networks.

• As computer networks are becoming ever more complex, there are always ex-

ploitable weaknesses such as design and programming errors as well as various

socially engineered penetration techniques [114]. It is, therefore, widely ac-

cepted that prevention mechanisms alone are no longer sufficient to provide

the desired protection for threatened networks. It is essential to also consider

Intrusion Detection System (IDS)2 as yet another line of defence.
1Security measures are defined as measures taken as a precaution against theft or espionage

or sabotage etc. More specifically, security measures here refer to such countermeasures as anti-
viruses, Intrusion Detection and Response Systems (IDRSs), Encryption/Decryption mechanisms,
etc. that can be employed to battle against security attacks.

2In this thesis, the terms IDS, Intrusion Detection and Prevention System (IDPS) and Intrusion
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IDS are designed so that they can help with early detection of malicious ac-

tivities and, therefore, properly respond to remedy or mitigate the potential

damages intended [24, 60, 114]. Furthermore, IDS may be used in the net-

work level and/or in the host level, respectively called Network-based Intrusion

Detection System (NIDS) and Host-based Intrusion Detection System (HIDS).

• Despite substantial advances in security countermeasures, attacks and intru-

sions continue to occur, hence the inefficacy of reactive and proactive tech-

niques [1, 2]. Recent developments in data storage, computation and analytics

are now inspiring the security research community to adopt the next genera-

tion of security defence tools by seriously considering the Intrusion Prediction

System (IPS) [1].

As expected, such security measures as IPS and IDS involve far more in depth inspec-

tion and analysis of traffic, user profile/activity. While these exhibit more effective

and promising solutions to the future security threats [1, 2, 91], they are computa-

tionally expensive and highly likely to pose significant implications on performance

of the networks.

1.3 Performance vs Security Trade-off

A trade-off is a balance between two opposing things, where to achieve one thing

we would have to pay in terms of the other. Recall that security measures are em-

ployed to improve security; however, they come at the cost of performance. Lifting

security measures should supposedly result in some boosts in performance, but in

reality this can lead to less secure systems and hence more prone to security failures.

Such systems are likely to incur catastrophic performance degradation, let alone the

implications for security such as data breaches. Therefore, trade-off studies can help

identify optimal system parameters that ensure best balance between performance

and security.

Detection and Response System (IDRS) are interchangeably used to refer to a class of security
measures that have the capability to detect, fix and respond to security threats.
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Trade-off analysis, for instance, is extensively carried out in security key distribution

centres [117, 118] to optimise new key generation intervals with respect to the cost

incurred by the network. According to Stallings [98], "The more frequently session

keys are exchanged, the more secure they are, because the opponent has less cipher-

text to work with for any given session key. On the other hand, the distribution

of session keys delays the start of any exchange and places a burden on network

capacity. A security manager must try to balance these competing considerations in

determining the lifetime of a particular session key."

Nevertheless, it is well-understood that different systems would have different perfor-

mance and security requirements to ensure best cost-performant designs. Sometimes

there exist extremes with respect to either performance or security where the so-

lution of choosing between them might seem obvious. For instance, in embedded

systems with low computational power, strict energy constraints and little outside

interaction, security would be of little concern and the focus, thus, typically should

lie on performance and energy-efficiency. At the other end are enterprise systems

with extremely high security requirements as well as the need for sufficient com-

puting facilities. Here, higher security levels are mostly favoured and the cost in

terms of performance is readily accepted, although this is usually compensated for

by provision of more (powerful) resources.

For systems between these extremes, however, the choice of optimum may not be

so apparent where a model-based approach can be useful [112]. The adoption of a

model-based approach can allow the analysts to a) obtain useful insights into the sys-

tem from the early phases of a system design, and b) perform "what-if" analyses in

order to estimate the impact deriving from architectural changes [72]. Miskeen et al.

[70, 71] recommend that an optimal performance and security trade-offs modelling

and evaluation approach should be considered through the design, development,

tuning and upgrading of computer networks in order to prove most effective.
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1.4 Research Motivation and Problem Statement

We realise that performance and security are closely interrelated and that there

often exist trade-offs between them to be achieved. Most existing work, however,

only focuses on either performance or security, without paying much attention to

the profound implications one may have for the other.

We also note that while qualitative security has been quite widely investigated, only

little attention has been paid for quantification of security, of which mostly is done

by analogy with dependability. For instance, analogous to availability in the world

of dependable computing is the probability of the network being secure; or similar

to the Mean Time Between Failures (MTBF) metric in reliability is the Mean Time

To Security Failure (MTTSF) [18, 43, 61, 75, 106, 112]. Nevertheless, model-based

quantitative techniques are still rare and in their infancy. We are, therefore, moti-

vated to develop stochastic quantitative modelling techniques to investigate optimal

trade-offs between performance and security.

However, any attempt at performance vs security trade-off analysis implies that

both performance and security can be quantitatively measured. While performance

metrics have been extensively studied and are well-established, that is not quite the

case for security.

Analogous to dependability, we therefore aim to conceptualise and formulate secu-

rity so that, like performance, it can be modelled and quantified. We then wish to

formalise the optimisation problems for the trade-offs between performance and se-

curity as they exist between performance and dependability. We adopt a simulation-

based modelling approach, for its generality and flexibility, in order to identify op-

timal trade-offs between performance and security for a single node of a generic

computer network, subject to a number of security threats. Based on a stochastic

modelling formalism, we propose a new nodal model which can capture more real-

istically both performance and security aspects, in particular the intertwinements

between them.
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Our empirical approach, we believe, utilises optimal combined metrics of both per-

formance and security and facilitates more sophisticated optimisation studies in the

field. We note that system parameters can be found that optimise these abstract

measures, while they do not optimise performance nor security individually. Based

on the proposed simulation modelling framework, credible numerical experiments

are carried out, indicating the scope for further work extensions for a systematic

performance vs security tuning of computer networks.

1.5 Research Contributions

We aim to study optimisation problems for the trade-offs between performance and

security as they exist between performance and dependability. By analogy with per-

formability modelling, where one combines a performance model and a dependability

model with the goal of jointly evaluating performance and dependability as well as

the dependencies between parameters controlling either, here we aim at jointly mod-

elling and evaluating performance and security, in particular their intertwinments

as well as the implications of one for the other.

It is fair to claim that all chapters of this research thesis could be seen, in one way

or another, as a contribution to the research community.

As seen, Chapter 1 sets the scene and describes the importance of performance

and security and the interrelationships between them in today’s Internet dependent

societies. In this chapter, we also attempt to explain the requirements for optimi-

sation of trade-offs between performance and security, in particular why utilisation

of model-based quantitative approaches should be considered.

In Chapter 2, we provide a summary of our extensive exploration of the existing

work with regard to the thesis topic. The performance implications of both security

threats and security measures have been our main focus during this thorough search.

More specifically, we summarise, based on literature, how security measures are com-

putationally expensive, hence they are highly likely to impose significant overheads
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on the networks. We also review the literature for the existing approaches about

modelling and quantification of security and the challenges ahead, where we compare

and contrast the existing methodologies. More importantly, we critically review and

evaluate the trade-off studies, in particular those of performance vs security. We

realise that there is little amount of work which concerns model-based quantitative

analysis of trade-offs. We discuss and summarise the advantages and disadvantages

of these approaches as opposed to our approach exercised in this research work.

In Chapter 3, we attempt to conceptualise and formulate security so that, like per-

formance, it can be modelled and quantified. Our contribution to this chapter is

three-fold:

• While most of our work for the state transition diagram introduced in this

chapter is derived from the existing work, we propose a security state tran-

sition diagram which forms the basis for a combined complementary security

solutions. More specifically, we are determined to explicitly incorporate both

false positive (FP) and false negative (FN) alarm signals in our model. This

not only helps provide a more realistic representation of the system under

consideration, but it also enhances capability of the model so that further per-

formance and security metrics that used to be hidden can now be monitored

and collected. As a result, our model can be used to investigate the costs in

terms of performance and security associated with each of these alarm signals.

It is worth mentioning that false alarms are considered inherent characteristics

of security measures, where FN signals can lead to serious data breaches and

FP signals can affect the availability and performance of the systems.

• We also conceptualise and formulate the behaviours of the attackers and those

of the security measures so that their implications for performance can be

modelled and quantified.

• To measure and report security quantitatively, we review the literature and put

together a standardised list of security metrics which are utilised throughout

this thesis.
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In Chapter 4, comes the main contribution of this research work. Here, we propose a

stochastic model-based approach that enables quantitative analysis of combined per-

formance and security so that optimisation studies can be carried out for trade-offs

between them. Due to our generic and modular approach in design, the proposed

model may be employed to study a range of computer nodes with varying security

concerns and/or mission priorities. In particular, it allows for various modules to

be dynamically added or removed to suit different application areas where either

security, performance, energy or combinations of these are of concern. We further

discuss how different modules could be combined to provide an integrated model

solution facilitating quantitative analysis of real life systems. In addition, we intro-

duce and describe some combined abstract measures that are used to analyse and

optimise the trade-offs between performance and security. We realise that system

parameters can be found so as to optimise these combined metrics, while such pa-

rameters would optimise neither performance nor security individually.

In Chapter 5, we discuss the results obtained from some numerical experiments and

provide physical interpretations. Through various simulation scenarios, we aim at

highlighting security related implications for performance. More specifically, we in-

vestigate the impacts of different security key lengths on performance, security and

the trade-offs between them. We realise that system performance can be dramati-

cally affected if we chose very short or very long security keys, although for different

reasons. As discussed in Chapter 4, such optimal trade-offs between performance

and security are achieved for certain system parameters. Moreover, we conduct sim-

ilar simulation runs to demonstrate the significance of false alarm signals and their

relation with periodic inspection intervals of security measures such as anti-viruses

and/or Intrusion Detection Systems (IDSs). Unlike the common belief that secu-

rity measures should be executed as often as possible, we find that they should be

performed at optimal rates to enhance overall system security. This is due to the

fact that having non-zero false alarm rates is an inherent characteristic of security

measures.
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Last but not least, in Chapter 6, we summaries possible extensions to this work

together with some open questions and challenges that we have identified through-

out the whole study. In particular, the preliminary analysis of cost and energy

submodels has been indeed intriguing in spite of the fact that we did not manage

to complete our intended work with regard to the Cost Functions and Energy

Consumption sections due to time constraints. We therefore plan to carry out the

work on this in the hope that we can further contribute to the field. Other possible

directions for future work are also listed and explained in reasonable details.

1.6 Thesis Structure

The rest of this thesis is organised as follows.

Chapter 2 extensively explores the literature for a series of relevant topic areas; in

particular three classes of commonly employed security attacks and their respective

security measures are reviewed with the focus on whether and how these security

related tasks could have any significant impact on performance of computer net-

works. We also investigate the existing methodologies with the focus on stochastic

model-based approaches, where attempts are made to quantitatively examine se-

curity aspects of computer networks. More importantly, we examine the trade-off

studies where performance and security are traded off against each other.

In Chapter 3, we make attempts to conceptualise and formulate security. We propose

a security state transition diagram model which we later transform into a stochastic

model that helps quantify the security aspects in an individual node. Moreover,

we formulate behaviour of attackers and security defence systems. The tasks ini-

tiated by security measures are translated into and reflected as implications for

performance. In order to measure security in a more consistent manner, we collect

and explain in brief a list of security metrics, we use a standardised list of metrics

throughout this research for consistency.

In Chapter 4, we propose a stochastic model-based design that enables quantitative
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analyse of not only performance and security individually, but also the interrelation-

ships between them; due to its generic and modular approach, the model may be

employed to study a range of computer nodes with varying security concerns and/or

mission priorities. More specifically, the model can be tailor-made to be used in ap-

plication areas where either security, performance, energy or combinations of these

are of concern. We further discuss various modules that are combined to provide

an integrated model solution facilitating quantitative analysis of real life systems.

The chapter also introduces some combined abstract measures that can be used in

trade-offs between performance and security.

In Chapter 5, for the sake of demonstration, we briefly visualise and conduct pre-

liminary analysis of some numerical experiments conducted. We provide physical

interpretations for the results obtained. More specifically, we look into the effects

of different security key lengths on trade-offs between performance and security. In

addition, the impacts of False Alarm (FA) and the time interval between two suc-

cessive executions of security measures on various measures are investigated.

Chapter 6 summarises our research thesis and outlines some future directions and

research areas that could be extended on the basis of the findings of the current

thesis.
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Chapter 2

Literature Review

Various aspects of security and performance have been extensively studied in lit-

erature. In this chapter, we survey the work most relevant to the modelling and

quantification of both security and performance, in particular the trade-offs be-

tween them. In Section 2.1, we briefly review the existing work with regard to some

typical security attacks and the most common practices employed to confront them.

The focus of this review is mainly on performance implications of security measures.

In Section 2.2, we draw the attention to the complexities with regard to quanti-

tative analysis of security. We provide an overview of existing work that involves

security modelling and quantification and the challenges ahead. Section 2.3 explores

literature to summarise the state of the art in trade-off analysis and optimisation

involving both performance and security. We compare and contrast these methods

and briefly highlight the contributions made by our research work.

2.1 Performance Implications of Security Measures

In this section, we survey the existing research with regard to security measures

and the profound implications they pose for performance. An exhaustive review of

security attacks and their respective countermeasures is beyond the scope of this

thesis. Here we only consider three different categories of security threats. More

specifically, we focus our attention on the attacks originated by malware, the insiders

and the outsiders and explore the common practices for mitigating their destructive

impacts. Moreover, the overall performance implications of such remedial measures
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are reviewed.

Computer networks are susceptible to malicious attacks which may take various

forms each of which acting in their own unique ways [47]. To ensure effective and

holistic defence strategy, a combination of security measures are required to be in

place [44] based on which, a security process may be well-grouped into three distinct

phases: prevention, detection and response [24, 52].

2.1.1 Preventative Approach

Deployment of firewalls, encryption and decryption mechanisms, and anti-malware

applications are most common preventative approaches to secure computer networks

in the first place. Below we discuss each in further details as follows.

Firewalls

As the first line of defence, firewalls are installed so that any access to the network

resources can be carefully scrutinised. A firewall may be a piece of software, hard-

ware or combination of both that isolates an organization’s internal network from

the outside world. Firewalls, usually rule-based, are responsible to security-check,

log, drop or forward any traffic flow to/from the networks. It is, therefore, crucial

that they themselves are immune to penetration as otherwise they can be compro-

mised, thereby providing only a false sense of security [50]. Depending on security

policies and, thus, level of inspections, firewalls may become a serious bottleneck,

leading to significant performance implications in the network [50, 57, 87].

Salah et al. [87] investigate the performance of a firewall under Distributed Denial of

Service (DDoS) attacks. They point out that poorly designed firewalls can jeopar-

dise the overall security and performance of a network. Using a queueing paradigm,

they develop an analytical model to study and compare performance of a firewall

in the absence/presence of DDoS attacks. Performance metrics of interest include

throughput, packet loss, packet delay and utilisation of the firewall; the overall per-

formance impact is shown to be significant, regardless. In addition, it is illustrated
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that, under specific rule settings, the firewall becomes unable (fully utilised) to di-

gest the introduced traffic, thereby leading to an unacceptable condition where over

80% of the arriving packets are lost! They use simulation and experimental mea-

surements to verify and validate the outcomes from the analytic models.

Xu and Su [113] conduct a similar performance-based study with the focus on com-

parisons of two mainstream firewall solutions, a hardware-based (Cisco ASA 5505)

and a software-based (Linux iptables). They consider three different types of traffic:

a) fixed packet length with no burst; b) random packet length with no burst; and c)

random packet length with burst. While the general trends are in agreement with

[87], the results also indicate that bursty traffic impacts on the performance more

than others, as expected. The paper concludes that the performance implication of

firewalls is not only determined by how advanced the hardware is, but also lies on

an optimised algorithm employed. The study provides interesting insights into the

two types of firewalls which are beyond the scope of this thesis.

Similar studies of firewalls and their impact on performance are conducted by Sheth

and Thakker [93] and Funke et al. [34]. Here firewalls are configured differently in

order to provide different levels of security. For given security levels, performance

implications are examined and visualised for comparison.

While the focus of these works is to compare and contrast the profound impact of

security measures (firewalls) on performance, they do not carry out any trade-offs

between them.

Encryption/Decryption

Data encryption/decryption has been the long-standing answer to security and au-

thentication concerns [96]. They are widely employed to reduce threats from outsider

attacks [24]. While encryption algorithms come in a variety of types and versions,

they are all very expensive from computational standpoint. They are likely to im-

pose major overheads on computer networks, regardless, although the amount of

overhead may well depend on various parameters such as the security key length
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and the rate at which packets are exchanged [64, 65].

Performance implications of encryption algorithms have been extensively investi-

gated [32, 51, 95, 104]. Security is not measured here but rather assumed to be an

indirect input that can be controlled by other input parameters such as input data

length, security key length, security mode, type of algorithm, etc. Given a security

level achieved for a certain set of security parameters, the resulting performance in

terms of encryption time, resource utilisation, memory usage and energy consump-

tion is measured and interpreted.

In the following, we briefly discuss the work by Lamprecht et al. [51] as it appears to

have covered a wider range of encryption algorithms and the techniques employing

them. It is worth mentioning, however, that while other researchers have as well

considered other metrics such as energy consumption, resource utilisation, mem-

ory usage [32], Lamprecht et al. [51] have solely looked into the encryption times;

nevertheless, that is not a major constraint since encryption times associated with

security key lengths are of most interest to our research in this thesis.

Lamprecht et al. [51] conduct a comprehensive research on the performance of en-

cryption algorithms. Their research involves well-known cryptographic techniques

including symmetric, asymmetric and hashing, which are widely employed in on-

line secure transactions to ensure message confidentiality, message integrity, non-

repudiation and sender authentication. The authors further consider the most

common cryptographic algorithms for each of these techniques to determine their

suitability for systems with real-time constraints. Lamprecht et al. carry out ex-

periments involving different combinations of encryption techniques and encryption

algorithms versus various message sizes, key lengths (modulus sizes), security modes

as well as implementations. As pointed out earlier, the time taken by encryption

algorithms is the only performance metric used to evaluate and compare these se-

curity algorithms.

Despite slight differences in scope, results and presentations, the overall outcome
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of all these studies is in agreement with the fact that encryption/decryption algo-

rithms are computationally intensive processes and may pose a considerable amount

of overhead. In addition, the results suggest that the time required for such processes

is directly proportional to the security key length; that is, the longer the security

key, the higher the encryption time, hence the higher the performance impact. Such

a relation between key lengths and run-times can be translated into the trade-offs

between security and performance which appears to be beyond the scope of these

studies.

Modelling performance and reliability of a secure electronic voting scheme is con-

sidered by Thomas [105], where encryption and decryption of data is a dominant

process. As argued in the paper, to satisfy security requirements of such voting

schemes, the network communications are dramatically increased. Insights from

modelling and numerical analysis of collected data confirm that the sheer increase

of encryption/decryption overhead with respect to the number of voters participated

lies at the root of substantially degraded performance.

Kouvatsos and Miskeen [49] investigate performance implications of theWired Equiv-

alent Privacy (WEP) security protocol in Robot Mobile Ad Hoc Network (RANET).

Simulation results clearly show that activation of the WEP protocol has an adverse

effect on performance of RANET, with both First Come First Served (FCFS) and

Head-of-Line (HOL) queueing disciplines. Further experimental analysis confirms

that performing encryption/decryption algorithms and associated computation it-

erations under WEP may cause an unacceptable increase in the overall packet delay

as well as excessive power consumption within RANET.

These findings can help to quantify the cost of security mechanisms, in particular

encryption/decryption, in terms of performance.

Anti-malware

Malware is a general term for various malicious code (malcode), most commonly used

in the forms of viruses and worms [26]. The level of damage caused by malware can
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range from minor irritation to stealing confidential information, to destroying data

[15, 26, 82].

Of important interest to this thesis is that tools are commonly designed to fight

one type of malware and they are usually unable to effectively eradicate threats of

other types despite similarities in features and characteristics. For instance, anti-

virus software may not be able to detect spyware or email worms [44, 82]. Reavis

[82] emphasises the importance of malware attacks and suggests a holistic approach.

While such an approach may help significantly improve security of the system under

consideration, it would not always be an acceptable solution due to its substantial

costs in terms of performance.

Uluski et al. [107] investigate the impact of anti-virus applications on performance.

They choose four commonly used anti-virus packages and try to characterise the

workloads and their respective overhead imposed on the system by individual execu-

tion of them through on-access scanning. The results provided show the significance

of performance implications.

It is well worth mentioning that a typical anti-virus program may also be scheduled

to work in an on-demand mode, where they are likely to demonstrate noticeably

different characteristics and overhead than those of the on-access scanning mode.

That said, while the ultimate level of overhead may well depend on the configu-

rations and user activity levels, the overall impacts of anti-viruses on performance

should not be underestimated.

Equally important is FA rate, one of inherent characteristics of all security measures,

in general, and anti-virus applications, in particular; that is, the rate at which they

are likely to issue false signals. In other words, how likely they are to falsely iden-

tify normal activities performed by legitimate users as a virus attack (False Positive

(FP)); or how often a typical anti-virus program may fail to detect actual virus

threats (False Negative (FN)). These rates may meaningfully affect both perfor-

mance (FP) and security (FN). It is therefore of great importance to investigate
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these inherent features of anti-virus tools as well when evaluating their effectiveness

and performance.

Anti-virus packages traditionally adopted a re-active (signature based) approach to

malicious code [77, 80, 101, 107] where signatures would be typically developed in

response to known threats. Although such approaches very often detect viruses

of known signatures quickly and accurately (with very low FP rates), they are

more prone to issue FN signals due to their lack of knowledge about newly gen-

erated/distributed viruses. The trend, however, appears to be changing as modern

approaches are increasingly utilising a combination of advanced heuristic [8] and

behavioural based technologies [111] in addition to non-heuristic (traditional) sig-

natures.

It goes without saying that modern anti-viruses utilising combined methods are

likely to demonstrate much improved overall detection rates as opposed to their

predecessors. However, the incurred cost in terms of performance is twofold: a)

they are highly likely to pose far more overhead due to increased computational

processes, and that b) they are equally prone to issue FP signals too, leading to

increased probability of the network being unavailable.

It is, once again, emphasised that anti-virus applications have potential to pro-

foundly impact on performance and security. To reflect and quantitatively analyse

such penalties, we propose a stochastic model to capture both the behaviour of virus

attacks and the excessive load generated by the execution of anti-virus programs.

As mentioned earlier, different modes of scanning plus other characteristics of such

programs and attacks can partly be reflected in the relevant parameters of the model

to ensure more accurate representation of real systems.

2.1.2 Detection and Response Approach

It is always wise to deter and prevent than cure. A computer network that is contin-

ually observed, assessed and evolved (e.g. by regularly applying security patches),

can considerably shrink the attack surfaces [74, 103]. Regardless of what preventive
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measures are taken, a network can still become compromised given greater levels of

motivations and skills [52]. Therefore, timely detection and notification of affected

systems is crucially important. Nazareth and Choi [74] suggest that investing in

security detection tools has a higher payoff than does deterrence investment.

Insiders vs Outsiders

The Computer Emergency Response Team (CERT)1 Program’s definition of an in-

sider is an employee, a contractor or a business partner, either current or former,

who, a) has or had authorised access to an organisation’s network, systems or data;

and b) exploits vulnerabilities to gain unauthorised access to such systems or data

[94]. Due to growing reliance on technological infrastructures, organisations are

made increasingly vulnerable to threats from insiders. Rich et al. [83] suggest that

organisations would require both technical and behavioural controls to successfully

deal with such threats. An outsider, on the other hand, is an individual or a group

who seek to gain access to protected information from outside the organization,

which usually involves using hacking techniques to break security keys and pass-

words or just take advantage of potential vulnerabilities in such networks.

Despite significant advances in prevention and detection techniques and algorithms,

insiders are still to impose serious challenges on computer networks. There is no

simple way of detecting insider threats before the attacks begin [83]. Moreover, there

are too many known vulnerabilities for insiders to exploit; this is true due to their

easy access and familiarity with such targeted systems [83]. In this research study,

our proposed models assume smaller inter-vulnerability times for insider threats

to reflect more realistic and shorter learning phases associated with these types of

attacks.

Intrusion Detection and Response System (IDRS)

As computer networks are becoming ever more complex, there are always exploitable

weaknesses such as design and programming errors as well as various socially engi-
1http://www.cert.org/
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neered penetration techniques [114]. It is, therefore, widely accepted that prevention

mechanisms, e.g. firewalls and encryption/decryption as previously discussed, alone

are no longer sufficient to provide the desired protection for threatened networks. It

is essential to also consider IDRS as a complementary measure to ensure improved

security in computer networks.

IDRS involves capturing and auditing traffic and reasoning about it. The primary

assumptions about IDRS include a) users and program activities are observable, say

through network auditing mechanisms, and more importantly b) normal and intru-

sion activities have distinct behaviour [114]. IDRS can, therefore, be used to detect

a wider range of attacks including network mapping (emanating, for example, from

nmap), port scans, TCP stack scans, DoS bandwidth-flooding attacks, worms and

viruses, OS vulnerability attacks, and application vulnerability attacks [50]. IDRSs

are designed to help with early detection of malicious activities and properly respond

to remedy or minimise the potential damage [24, 60, 114].

A taxonomy of IDRSs is introduced by Stakhanova et al. [97] where responses are, at

the top level, classified by degree of automation and activity of triggered response.

The automatic responses are further classified by the ability to adjust, time of re-

sponse, cooperation ability or response selection methods. The authors also propose

a set of essential features that an ideal intrusion response system should possess. A

similar taxonomy can be found in [30].

There are two types of IDRSs, namely HIDS and NIDS. While HIDSs are pre-

installed on host machines performing locally to determine if the node has been

compromised, NIDSs are installed in the network level observing the traffic flowing

in/out of the network. Like with anti-viruses, the effectiveness and performance of

both HIDS and NIDS depends on the techniques and algorithms employed, e.g. mis-

use detection or anomaly detection, measured by their two inherent characteristics:

the FN and FP probabilities/rates.

Bowen et al. [13] investigate the necessity of combined approaches in tackling insider
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threats. The authors believe that standalone detection mechanisms are often easily

identified and avoided; therefore, a new design is proposed combining three comple-

mentary techniques, namely host-based user-event monitoring sensors, trap-based

decoys and remote network-based detectors, to act synergistically with the goal of

making it difficult for an adversary to avoid detection. The proposed prototype is

shown to have meaningfully improved detection rate and accuracy. We consider a

combined mechanism where the performance implications of the detection mech-

anisms is taken into account. In addition, our model provides different responses

depending on the system security state. Moreover, we explicitly model FA so as to

reflect their costly impact on performance and security of the real life systems.

In the event of a security incident, there must be an appropriate response process

to tackle the problem effectively and in a timely fashion; this would, however, well

depend on the types of application areas as well as the level of knowledge acquired

from prior phases with regard to the incidents. For instance, [22, 24, 25] investigate

secure group communication systems in Mobile Ad Hoc Network (MANET) where

the emphasis is placed on military applications. More specifically, the authors con-

sider types of network that are irrecoverable, implying that the whole system would

fail and cease the operation once a security failure occurred. Goševa-Popstojanova

et al. [35] and Madan et al. [60, 61], however, take a more generic and flexible ap-

proach to tackle security intrusions. They introduce a security-based model which

allows the system to tolerate intrusions and continue its operation albeit possibly

in a degraded mode. Their model presents a number of security states that a typ-

ical system may transition from one to another. Some of the states include Good,

Vulnerable, Attacked, Triage, Fail Secure and Failed. While we further discuss their

models in the following sections and chapters, it is worth mentioning here that their

work does not consider the performance implications of security measures.
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2.2 Security Modelling and Quantification

Adding more functionality to a system in the interest of security clearly requires

more execution time. However, it is not easy to quantify the benefits achieved from

any additional overhead. It is, therefore, very hard for performance engineers to

argue whether or not a particular performance target should take precedence over a

security goal [117, 118].

Littlewood et al. [56] and Brocklehurst et al. [14] intend to work towards operational

measures for computer security. They believe a measure of security should quanti-

tatively capture the intuitive notion of "the ability of the system to resist attacks",

rather than how extensively safeguards have been introduced to a system during its

design and development.

They propose that quantified security measures could involve expressions such as

"the rate of occurrence of security breaches", similar to "the rate of occurrence of

failures in reliability"; or "the probability that a specified mission can be accom-

plished without a security breach", by analogy with "the reliability function".

Authors of both papers, however, appear tentative in their conclusions due to some

subtle differences between security and reliability environments. In particular, they

are concerned with a) the presence of more variability in the threatening environ-

ments of security since security threats may be created randomly as well as deliber-

ately, and b) the fact that whether the exponential distribution for ’the time to the

next security breach’ could be a justifiable assumption. As such, their reasoning by

analogy approach is subjected to empirical investigation of several open questions

identified.

Verendel [108] expresses similar concerns about a large part of research on security

quantification methods. In his quite thorough survey of existing work, Verendel

questions validity of the assumptions underlying the attempts at quantification of

operational security. He argues that ’quantified security is a weak hypothesis’ due

to lack of validation and comparison between such methods against empirical data.
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The main cause of this issue, according to the paper, is the lack of security data

to validate the methods. While some risk factors associated with unreliable meth-

ods are emphasised, the paper makes suggestions to improve the knowledge about

quantitative security.

Nevertheless, simulation and theoretical modelling are acknowledged as two broad

approaches that can provide valid results with certain confidence levels providing

that the underlying assumptions are well-supported by empirical means. In other

words, it is clearly concluded that metrics and models need validation regardless.

It is well worth clarifying though that Verendel’s critical analysis of security quan-

tification mostly involves security models represented using analytic methods, e.g.

sets of mathematical equations. As such, some of the concerns raised in the paper,

such as randomness of security events, may be valid and require further investiga-

tion. They might otherwise be of less concern if alternative approaches, e.g. discrete

event simulation (DES) techniques with more relaxed assumptions, are adopted. If

in a model, for instance, some sojourn times required non-exponential distribution

functions, using a simulation approach we could easily apply other best fit distri-

butions readily available, including customised functions; this is not quite the case

with analytic methods which strictly hold only for certain types under specific as-

sumptions.

Jonsson and Olovsson [42] used empirical data collected from intrusion experiments

to study a typical attacker behaviour. A hypothesis-based outcome suggests that

an attacking process can be split into three phases: learning phase, standard attack

phase, and innovative attack phase. While the probability for successful attacks

during the learning phase and innovative attack phase is expected to be quite small

- although for different reasons, this is expected to be considerably higher during

the standard attack phase. Moreover, the insights from the data demonstrate that

the breaches during the standard phase are statistically equivalent and that the time

intervals between consecutive breaches are exponentially distributed, implying that

traditional methods for reliability modelling could be applicable.
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Security has for long been assessed from a qualitative point of view, but this needs

to change [36, 60, 61, 109], and like reliability, security should be quantified in order

to facilitate respective decision-making processes. The authors argue that it is no

longer sufficient to prevent and/or even tolerate security intrusions; it is equally

important to treat security as a QoS attribute at par with, if not more important

than, other QoS attributes such as availability and performance.

Madan et al. [61], in particular, investigate various issues related to quantifying the

security attributes of the SITAR2, an intrusion tolerant system. Here a security

intrusion (the attacker) and the response of an intrusion tolerant system to the at-

tack are both modelled as random processes. Stochastic modelling techniques are

employed to capture the attacker behaviour as well as the respective response of the

system.

The security quantification analysis is first carried out for steady-state behaviour

leading to measures like steady-state availability. By transforming this model to a

model with absorbing states, similar to the models introduced in [18], they analyse

transient behaviour of the system so that security metrics such as MTTSF and/or

probabilities of security failure due to violations of different security attributes can

be obtained.

While the importance of parametrisation and accurate adoption of parameters is

emphasised, the focus is on methodology. Nevertheless, in the absence of exact val-

ues for the model parameters, a sensitivity analysis is conducted to help identify

how (rapidly) the model behaviour can change with respect to various parameters.

Almasizadeh and Azgomi [5] propose a stochastic model for an attack process in

order to obtain quantitative security metrics representing the security level of a sys-

tem. The focus of their work is on how to model the progression of an attack process

over time. They present an abstract state-transition diagram and transform it into

a state-based stochastic model by assigning time distributions to its transitions. By
2Scalable Intrusion-Tolerant Architecture for Distributed Services
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doing so, the attacker’s and/or the defender’s activities are implicitly considered in

the transitions of the model. In other words, different distributions can accommo-

date for different behaviours of the attackers and/or the defenders (security mecha-

nisms). The proposed state-based stochastic model has the Markov property where

non-exponential probability distributions can possibly be involved. As a result, the

model is considered as a Semi-Markov Chain (SMC) which is fully characterized if

and only if the distributions of its transitions are known and characterized.

2.3 Performance vs Security Trade-offs

Recall that different systems are usually designed with different performance and

security requirements in mind. We also realise that security mechanisms are likely

to introduce undue computational and network overheads that may prevent perfor-

mance goals from being met. As a result, trade-off analysis should be considered

to help dynamically and mutually adapt performance and security as appropriate

throughout a system life cycle.

Depending on the context and application requirements, either security or perfor-

mance might be of more concern in which cases we should trade one off for the

other. However, more often than not, we would like to achieve the best (optimum)

of both performance and security combined. A model-based quantitative analysis,

in particular, can provide system designers/administrators with a set of flexible tools

enabling them to configure system parameters such that certain requirements are

(will be) fulfilled. Such solutions may not necessarily be optimum for performance

nor for security, but for their combination.

Cho et al. [16, 18–25] propose and evaluate a class of QoS-aware protocols for Secure

Group Communication System (SGCS) in MANETs. The whole study is heavily

dominated by model-based quantitative analysis in order to examine the trade-offs

between security and performance and identify optimal design settings under which

application-specific QoS requirements can be best satisfied.
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Due to a mission-oriented design in mind, a distinctive characteristic of these sys-

tems and models is that they are considered irrecoverable, once failed. As a result,

the lifetime of such systems is determined by a security-induced failure. They use

an absorbing state3 to explicitly model and signify the occurrence of security failure.

Moreover, MTTSF, the average time to enter the absorbing state, is one of the main

security metrics used to quantitatively reflect the level of security for the mobile

groups under consideration.

They introduce a number of performance and security related input parameters

which are shown, through trade-off analysis, having mutual impacts on one another.

For instance, periodic batch rekeying is proposed as an efficient strategy to reduce

the overhead by trading secrecy violation off rekeying overheads. It is also shown

that an optimal batch rekey interval exists which minimises the cost per join/leave

operation while satisfying the constraints in terms of delay and secrecy violation.

Unlike the common belief that IDS should be executed as often as possible to cope

with insider attacks and prolong the system lifetime, it is shown that IDS should

actually be executed at an optimal rate in order to maximise the system lifetime.

We next review the model presented by Wang et al. [110]. Having employed a

queueing model, the authors study performance and security of an E-Mail system

composed of the user and the incoming mailbox together with some additional fil-

tering mechanisms. There exist three measures obtainable, the queue length, a pure

performance measure; the information leakage probability, a pure security measure;

and the mail system availability, also a security measure since the Denial of Service

(DoS) attack being considered here aims to disrupt the email service. The informa-

tion leakage probability gives the steady-state probability of a mail being affected by

an information gathering attack.

The system is modelled as though there existed four queueing systems each with its

own distinct server - one serving regular emails and the others serving respective

security related tasks. Such a model assumes no overhead on the email server im-
3A state, once entered, cannot be left.
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posed by security attacks and/or their countermeasures, which renders the model

less realistic. As a result, it appears that Wang et al.’s model in fact cannot be used

for performance and security trade-offs analysis since performance and security are

modelled as two independent aspects without mutually affecting each other. Never-

theless, the model may serve to explore the efficacy of different security-enhancing

approaches.

Wolter and Reinecke [112] provide, in a great detail, a review of existing approaches

in evaluation of performance and security. As acknowledged, there are no general

models established to study performance vs security trade-offs. Most existing ap-

proaches instead take either security or performance as given and investigate the

respective other. As a result, a simple yet reasonably generic model together with

some simulation results are provided to illustratively evaluate the effectiveness of

combined models.

The proposed model has two separate, possibly interlinked, submodels one of which

captures the performance aspects of the system and the other takes into consider-

ation the security related aspects. The approach allows for partially capturing the

interrelationships between performance and security. In addition, it helps formulate

some combined metrics between them. It is worth noting, however, that such a

combined model assumes that:

• The general idea of performability analysis can be applied to the joint evalu-

ation of performance and security. In performability modelling, one combines

a performance model and a dependability model of the system with the goal

of jointly evaluating performance and dependability, and the dependencies be-

tween parameters controlling either [68, 69]. Wolter and Reinecke, therefore,

have taken a similar approach where the security model replaces the depend-

ability model in a performability analysis.

• An encryption algorithm with longer security keys can provide better security

[51].

In other words, Wolter and Reinecke rely on the analogy between security and re-
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liability and make attempts to formulate optimisation problems for the trade-offs

between security and performance as they exist between dependability and perfor-

mance. It is, for instance, argued that software rejuvenation is used to increase

dependability; this, however, comes at a cost. System failures incur a cost too. The

optimisation problem then is to tune the rejuvenation interval in such a way that

the total cost, here the sum of the rejuvenation cost and the downtime cost, is min-

imised.

Analogously, they formulate an optimisation problem for encryption. To improve

security, an encryption mechanism can be employed, which would come at a cost (of

further delays). At the same time, a security incident (system failure) has associated

costs due to increased downtime and/or probability of data breaches. As a result,

there should be an optimal encryption key length for which the total cost - of both

the encryption process and the security incident together - can be minimised. They

also consider the revenue achievable by operating the system. Here, the encryption

cost and, at a much higher degree, the time for recovery from a security incident

would result in a reduced revenue. In order to maximise the revenue, however, the

encryption key must be chosen such that the encryption cost is reasonably low and

the security incidents only occur very rarely.

Below is, for ease of access, the proposed model [112] redrawn in Figure 2.1. Us-

ing the Generalised Stochastic Petri Net (GSPN) paradigm, the model represents a

simplified communication system where each newly generated packet first needs to

be encrypted in order to be eligible for transmission. From security perspective, the

system can only be, at any given time, in either the Secure, Insecure or Restoring

state. An inhibitor arc freezes the encryption process while the system is recovering

from a security attack. Moreover, an abstract combined performance and security

measure together with cost and revenue metrics are formulated, which explicitly ex-

press the trade-offs between security and performance. It is also shown that system

parameters can be found that optimise those combined metrics; while such param-

eters are not optimal for performance nor for security, but for the combination of

29



both.

Figure 2.1: Combined performance and security model [112], using the GSPN
paradigm to represent a simplified communication system with an encryption pro-
cess. The performance submodel is connected to and affected by the security sub-
model using an inhibitor arc. In the event of a security attack, once detected, the
inhibitor arc freezes the encryption process preventing it from any further operation
until the system is fully recovered.

A research work with similar approach has recently been published by Meng et al.

[67] and Meng [66] who investigate the trade-offs between performance and security

in mobile offloading systems. While migration of complex computations from mobile

devices to more powerful servers on the cloud may significantly improve performance

and energy consumptions, there are security implications associated with increased

data transmissions over the network with potentially unknown threats.

Meng et al. [67] introduce a hybrid Continuous Time Markov Chain (CTMC) and

queueing model which takes into account the behaviour of both the system and the

attacker. Both steady-state and transient analyses of the CTMC model are carried

out, in analogy to dependability, which enables the quantitative assessment of per-

formance and security attributes of the mobile cloud offloading system subject to

timing attacks. Similar to previous studies, the MTTSF metric is used as the mea-

sure for quantifying the security of the offloading system. For the transient analysis

the compromised state of the CTMC model is transformed into an absorbing state,

as expected.

Under a timing attack scenario, the attacker continually sends jobs to the server and

measures the run times in an attempt to help guess the security keys. To improve

security, the server would need to rekey, from time to time, to generate new pairs of

keys (public/private) for encryption/decryption of the messages exchanged between
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the client and the server. However, Rekeying comes at a cost; at the same time, se-

curity breaches due to compromised keys cost too. As such, quantitative modelling

of performance and security is employed so as to help analyse and identify optimal

interval rekeying on the server to ensure high security and low performance cost.

Montecchi et al. [72] study the trade-offs between scalability and security on the

OPENNESS4, a web-based platform providing different kinds of services to different

groups of users. Since scalability is usually intended as a metric that links the size

of a system with its achievable performance [37, 58], the evaluation here, instead,

focuses on the performance metrics and their sensitivity with respect to the size of

the system. A stochastic modelling approach is adopted for quantitative analysis of

bottlenecks as well as performance implications of security countermeasures in the

target system.

As an experimental case study, a relatively large fictitious OPENNESS platform

with a reasonable number of services, actions, users and user profiles is designed.

The modelling activity is then carried out using the Stochastic Activity Network

(SAN) formalism, making full use of its characteristics of modularity, reusability

and maintainability. The analysis model is realized through the composition of a

set of predefined template models, which facilitates the construction of the overall

system model, and the evaluation of different configurations by composing them in

different ways. The methodology for design, implementation and parameterisation

of the model is presented in the paper in great detail.

The paper begins defining a reference scenario with default parameters, which is

meant to serve as the basis of comparisons. In the second scenario, they authors

aim at evaluating scalability of the system with respect to the number of users al-

though this can be done against any other system parameters too. Third scenario

employs two security countermeasures that are believed to have significant impacts

on system performance. Utilisation and Mean waiting time are used to evaluate the

steady-state performance of the OPENNESS platform across all scenarios above.
4OPEN Networked Enterprise Social Software suite
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The simulation scenarios together with the experimental results clearly demonstrate

the usefulness of this quantitative model when it comes evaluating such large enter-

prise platforms utilising a similar approach as ours. This can be particularly helpful

as it allows for scaling up any system parameter of interest so that one can analyse

and identify potential bottlenecks in the system ("what-if " analysis).

On the other hand, the model lacks the mutual interaction between performance and

security. As we have seen earlier in this thesis, not only higher security comes at a

cost, but very low security also can cause serious performance and security issues.

In Montecchi et al.’s model, the impact of security measures is only rendered as

further delays in service times. It does not, for instance, take into consideration the

possibility of data breaches and/or increased downtimes due to lower security levels

potentially leading to frequent security failures. As a result, it appears that the

proposed model, as is, cannot be used to carry out the analysis of optimal trade-offs

between scalability (performance) and security.
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Chapter 3

Formalisation of Security

In this chapter, without loss of generality, we remove our attention from a computer

network down to an individual computer node1, for which we aim to conceptualise

and formulate security so that it can be modelled and quantified. Measuring security

of an individual entity can then lead to measuring security of a computer network,

which simply consists of multiple entities [78]. We discuss security of a computer

network further in our future work.

Given that the node is subject to security threats, in Section 3.1, we briefly review

the existing work with respect to security formulation and modelling. In Section 3.2,

we introduce a state transition diagram which represents distinct security states,

where the node can be found at any given time, together with possible transitions

between them. In Section 3.3, we conceptualise and formulate typical behaviours

of security threats and their respective countermeasures. And Section 3.4 provides

brief definitions for some standardised security metrics that are used throughout

this thesis to measure security quantitatively in the context of an individual node.

3.1 Existing Models

The study of existing work reveals that the idea of investigating security in a similar

way as dependability has been around for a long time [9, 14, 18, 36, 41–43, 56, 61,

75, 106, 109, 119]; however, pragmatic studies are rare [112].
1In this thesis, we use interchangeably "computer entity", "computer node", "computer sys-

tem", "entity", "host", "node", "computer" or "system" to refer to a single computer entity.
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Goševa-Popstojanova et al. [35], Madan et al. [61] and Griffin et al. [36] collabora-

tively propose a generic security model that enables multiple mitigation strategies

to exist and supports mitigation of intrusions with different impacts. We note that

their model can in fact describe a class of different systems with varying features.

For instance, the model represents a system which is a) capable of, to some ex-

tent, tolerating intrusions and b) degradable and can maintain to meet the service

requirements (possibly limited services) even when the environment is hostile. If a

system lacked any of these presumed features, the model by all means would have to

be updated, e.g. by removing the respective states and transitions, so as to properly

reflect the missing functionality.

Their proposed state transition diagram in its general form, as depicted in Figure

3.1, encompasses the following list of states:

• G: the good (secure) state of the systems (by default in the beginning)

• V: the vulnerable state; during the vulnerability identification phases of an

attack

• A: the active attack state; damage may follow

• TR: the triage state; once in here, the system may be able to recover or limit

the (possible) damage (depending on the type of the attack)

• GD: the graceful degradation state where only essential services are maintained

• FS: the fail-secure state; stops functioning (depending on the type of attack)

• F: the failed state; if all existing strategies fail; once in here, an alarm is

signalled

• UC: the undetected compromised state

• MC: the masked compromised state

We note that the system is returned to state G from UC, F, FS or GD by going

through a restoration/reconfiguration/evolution process, implying that an appropri-

ate fix for the exploit is applied. [36].
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While the proposed security model is reasonably generic and can be flexibly adapted

to represent a large collection of real-life systems, it is viewed purely from security

perspective. In other words, whether/how each of these security states is going to

have any implications for performance appears beyond the scope of these studies.

Figure 3.1: A generic state transition diagram for a class of different intrusion toler-
ant systems [61]. The model represents systems with multiple mitigaton strategies
in place. Due to its high flexibility, it can be easily trimmed to represent systems of
varying features.

Recall that Cho et al. [19–21] also take a quantitative model-based approach to study

trade-offs between performance and security. While Cho et al. do not explicitly

propose any state transition diagram for security, they do introduce some similar

distinct security states. As shown in Figure 3.2, for instance, the Tm, UCm, DCm

and GF places, in Stochastic Petri Net (SPN) formalism, play similar roles as the

G, UC, (A and/or TR) and F states in Goševa-Popstojanova et al.’s more generic

state transition model, respectively.

It is worth mentioning, however, that Cho et al.’s models represent a specific class

of systems and applications, in particular SGCS in MANET with mission-critical
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applications. As such, there are differences in features and functionality too, as

expected; for instance, here

• the system is not repairable; once failed, it cannot be recovered. As a result,

the GF state is an absorbing state instead.

• The entities moving through states appear to be individual computer nodes

(members of the SGCS). This, however, suddenly changes in case of the GF

state, where the entity is now the whole group.

• While FNs are implicitly modelled, there is an explicit link to accommodate

FPs.

• Once in the DCm state, the recovery (eviction of compromised nodes) may be

delayed in an attempt to trade security off for better performance.

Figure 3.2: A Stochastic Petri Net (SPN) model which captures behaviours of a
mission-critical SGCS, instrumented with an IDS to deal with the insider attacks in
MANET [18]. The systems being modelled here are assumed irrepairable; that is,
once in GF, for whatever reason, there is no way out and the whole system comes
to a halt.

Yet another model for quantification of security is proposed by Wolter and Reinecke

[112]. Analogous to dependability, where a system is assumed to be either working

or failed, Wolter and Reinecke describe the security state of a system being in either

secure, insecure or recovery. As drawn in Figure 2.1, the secure state represents the

normal operating state of the system. The insecure state is reached when a security

incident occurs, which is by analogy with a failure in the world of dependability.

And the recovery state reflects the state of failure, where actions are required in or-

der to have the system cleaned and recovered from security attacks. Once recovered,
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the system is considered secure and can once again start operating as normal. The

authors specify the transitions between the states either by probabilities, continuous

random variables, or stochastic processes.

Wolter and Reinecke’s model is composed of two submodels: a) the security state

transition submodel and b) the packet transmission submodel. The security sub-

model can be seen as a simplified case of Goševa-Popstojanova et al.’s model rep-

resenting a system which, from security perspective, lacks some of the features dis-

cussed earlier. For instance, the system here is incapable to identify vulnerabilities;

nor does it possibly own any degradable modes. Instead, the model here introduces

a very useful link to interconnect the security and performance submodels so that

performance implications of security failures can be partially captured. An inhibitor

arc is used to freeze the encryption functionality when the system is in the recovery

state.

Vulnerability Window

Vulnerabilities appear to be playing an important role in the security state transition

cycle of any system. Below we briefly review the concept of Vulnerability Window

before we delve into the details of our contribution in this chapter.

Arbaugh et al. [6] propose a life-cycle model with distinct states that a vulnerabil-

ity can enter during its lifetime. More specifically, a vulnerability may transition

through the following states:

• Birth denotes the flaw’s creation; it usually occurs unintentionally during

development. However, if the birth is malicious and thus intentional, then

birth and discovery coincide.

• Discovery indicates the moment when someone discovers security or surviv-

ability implications in a product; it is only then the flaw becomes a vulnera-

bility.

• Disclosure takes place when the discoverer reveals details of a vulnerability

to a wider audience.
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• Correction takes place if a vulnerability is correctable and the vendor or

developer releases a software modification or configuration change that fixes

the underlying flaw.

• Publicity is when a vulnerability becomes publicly known via various news

channels.

• Scripting denotes the period when a cracker scripts the exploitation so that

anyone with little skills can compromise systems by exploiting the vulnerabil-

ity.

• Death takes place when a vulnerability dies; for instance, when the number

of systems it can exploit shrinks to insignificance.

We note that all these states are causally related and that they must always occur

in order, in particular the first three states - Birth, Discovery and Disclosure.

Figure 3.3 shows how the number of intrusions should be increasing once users

discover a vulnerability. Note that the rate continues to increase until the system

administrators release a patch or workaround. We realise that the life-cycle model

together with the detailed information about the intrusion rates (Figure 3.3) can

inform the respective system parameters such that the system can be, with respect

to vulnerability, configured and parametrised more realistically.

Figure 3.3: Intuitive life cycle of a system-security vulnerability [6], illustrating how
a vulnerability may transition through a number of states from Birth to Discovery,
Disclousure, Correction, Publicity, Scripting and Death.

Arbaugh et al. also suggest that security of an information system can be envis-

aged to transition between several distinct states, namely hardened, vulnerable, and
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compromised, during its lifetime. The model appears quite similar to what we have

explored thus far with regard to the security state transition model. Here, a system

can be considered

• hardened if all vulnerability patches have been installed

• vulnerable when there is at least one security-related correction that has not

yet been applied

• compromised if one or more vulnerabilities have been successfully exploited

A system typically oscillates between hardened and vulnerable states (Figure 3.4).

As a system design factor, one should make efforts to reduce the time the system

spends in the vulnerable and compromised states [6].

Figure 3.4: Host life cycle [6], showing how security of a typical system moves from
its secure (Hardened) state through a vulnerable state and then becomes insecure
(Compromised). The horizontal timeline illustrates the time a system spends in
the vulnerability and/or compromised states and how the security can possibly be
improved.

3.2 Security State Transition Diagram (SSTD)

In this section, we aim at formulating the concept of security for a single computer

entity, which is part of and connected to a generic computer network. Let us assume

that the node is

• subject to three different types of security threats, namely viruses, insiders

and outsiders.

• well-equipped with three security countermeasures of anti-virus programs, IDS

and encryption mechanisms, respectively.
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• repairable; that is, it is capable of being restored to a fully operational condi-

tion [73], provided a (security) failure is detected by, at least, one of its security

countermeasures.

• not degradable nor are there any redundant resources available; that is, the

node is unable to tolerate security intrusions, neither fully nor partially (where

system services could be flexibly downscaled).

We propose a Security State Transition Diagram (SSTD) model on the basis of the

complementary security quantification solutions that we have just reviewed above

from the existing work. It inclusively accommodates for four tangible2 states [62],

together with all possible transitions between them. More specifically, as illustrated

in Figure 3.5, the four distinct, mutually exclusive states that the computer node

can possibly sojourn in include Secure, Vulnerable, Insecure and Restoring states.

Recall that this research thesis is mainly concerned with model-based analysis of

trade-offs between performance and security, in which the performance implications

of security and vice versa are of paramount importance. We therefore make slight

amendments to the solution to ensure that we can in addition capture a) explicitly,

the respective FA signals of the security measures in place, and b) fully, the impli-

cations of each security state for performance. Below comes a description of each of

these security states in greater details as follows.

The Secure State is the default state indicating that the system is perfectly se-

cure and that there are no vulnerabilities known, as yet. While in here, there are

two possible trajectories for the system to move to. It can transition to either the

Vulnerable state, in the event of any vulnerability discovered (by an attacker), or

the Restoring state, in the event of a FP signal issued (by a security measure); the

imminent event dictates which one of the two possible transitions to occur. In the

absence of these security events, however, the self-transition (depicted as a directed
2Petri Net (PN) states (markings) in which no immediate transitions are enabled are called

tangible as opposed to vanishing states in which there is at least one immediate transition enabled.
Moreover, the system spends a positive amount of time in tangible states, and a null time in
vanishing states.
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Figure 3.5: Our proposed security state transition diagram model, showing four
tangible states and all possible transitions between them. The four distinct, mutually
exclusive states include Secure, Vulnerable, Incecure and Restoring states.

loop) indicates no state changing, implying that the system will continue to stay in

the Secure state.

The longer the sojourn times in the Secure state, the better. To improve the overall

sojourn time in this state, system designers can consider: a) employing more ad-

vanced and precise security measures (with lower FP rates) and/or b) minimising

vulnerability patch times, which can improve the likelihood of the system being

taken back to the Secure state after a vulnerability is discovered.

It is worth reminding that the system incurs extra performance penalties (increased

unavailability) due to FP alarms; that is, despite the system actually being secure,

it is falsely taken to the Restoring state where it will have to cease to operate all

its normal functionality and carry out an unrequired recovery! Therefore, the lower

the FP rates, the better.

The Vulnerable State indicates that the system has some known (discovered)

vulnerabilities and that it is susceptible to attacks although no security attack has

41



begun to exploit them as yet. While in here, there is a possibility that the system

is once again taken back to the Secure state provided those vulnerabilities are ad-

equately quickly patched, prior to vulnerability exploitation. Otherwise, an active

attack will take place, leading the transition to the Insecure state, Compromised

Undetected (CU). It is important to realise that the longer the sojourn times in this

state, the higher the chance of exploitation [7].

The Insecure State (Compromised Detected (CD) indicates that an active

security attack has taken place without the system administrators’ knowledge. In

other words, the system has been compromised but the administrator team is un-

aware of! While in here, the system has no way out unless a security mechanism

detects the actual attack (True Positive (TP)) in which case the system is taken to

the Restoring state. The Insecure state is perhaps the most worrying and costly

period of a security cycle due to the fact that the intruders have successfully gained

access to system resources without even being detected!

Despite the presence of security measures, it is possible that they will fail to detect

the intrusion (FN). For instance, given a security measure with FN = 0.05, the

probability that it would fail to detect an actual attack in its first inspection or in

its first and second inspections would be 5% and (0.05∗ 0.05) = 0.25%, respectively.

As a result, the higher the FN rates, (possibly) the longer the sojourn times in this

state, and the higher the probability of data breaches (more damage) [7]!

The Restoring State is reached when a security mechanism detects an intrusion,

truly (TP) or falsely (FP). While in here, a full recovery is enforced under the system

admin control. It is wise to expect that all normal functionality of the system

temporarily will cease to operate until it is fully recovered from the security failure

and taken back to the Secure state for another fresh cycle. This is in accordance with

the assumptions made for the node, in particular lack of redundancy or degradation

mode. It is evident that recovery comes at a cost and may significantly contribute

to the overall downtime of the system. The model can therefore inform system

designers to work towards minimising these sojourn times by a) accelerating the
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recovery processes, and b) ensuring that the system rarely ends up in this state in

the first place. Further analysis can help identify which system parameters are most

contributing to the transitions leading to this state.

Proliferation of the SSTD Models

We note that each security defence tool is designed to effectively target a certain

class of security threats [82]. As a result, we propose three SSTD models, one for

each class of security threats together with its respective countermeasure as assumed

above; more specifically,

• The Virus Security State Transition Diagram (VSSTD) captures the behaviours

of attacks originated by viruses and those of the anti-virus programs.

• The Insiders Security State Transition Diagram (ISSTD) captures the be-

haviours of attacks originated by insiders and those of the IDS.

• The Outsiders Security State Transition Diagram (OSSTD) captures the be-

haviours of attacks originated by outsiders and those of the encryption mech-

anisms as well as the NIDSs.

While all three SSTD models are very much similar in the concept and design, they

work independently from one another. The overall security state of the system,

as an integrated entity, is then decided based on the state information collectively

gathered from each of these individual SSTD models.

Below are different cases demonstrating how the state of security for the system as

a whole could be concluded based on the states of the individual SSTD models as

follows:

• The overall node is considered Secure if and only if all three SSTD models are

jointly in their Secure states.

• If at least one SSTD model is in its Vulnerable state and the rest are in their

Secure states, the node is considered Vulnerable overall.
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• If at least one SSTD model is in its Insecure state, the node is considered

Insecure overall, regardless.

• If at least one SSTD model indicates the system being taken to the Restoring

state, the node is considered in Restoring frozen, overall.

As expected, the methodology appears to remain the same and the number of SSTD

models can flexibly scale up/down depending on whether one plans to take a holistic

approach or just to include a minimum number of countermeasures to battle against

the most common security threats.

It is crucially important to realise that security is usually seen as a chain and,

as such, it is only as strong as its weakest link [15]. In other words, although

employment of longer security keys and stronger encryption algorithms is likely to

improve the security from the perspective of the outsiders, it may not necessarily

improve the overall security of the system! To do so, we need to effectively improve

the security from all perspectives where every aspect of security threat and the

respective countermeasures should be considered.

It is worth mentioning that we have implicitly assumed that multiple attacks of a

certain type are not allowed; that is, there can only exist one attacker, at most,

of each type at any given time. If an insider, for instance, has just exploited a

vulnerability and compromised the system (already in the Insecure state), the model

will not allow for any more attacks to be originated by insiders in parallel (not even

in learning phases), unless the one currently circulating through the ISSTD is either

mitigated or eventually caught by the IDS installed in the node.

Further Research

• We realise that, in a real-life, there is no way to limit the number of attackers

simultaneously targeting a system. In other words, while it is sensible to allow

for simultaneous attacks across different attack types, as in this research thesis

from insiders, outsiders and viruses, it should also be perfectly fine to assume
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that there might be more than one for each of these attack types at any given

moment who are making attempts to intrude the system.

• Recall that the SSTD models are assumed to work independently. However,

it does not always make sense to assume a vulnerability is known to a certain

group of attackers but not to the others. In a real-life, if a vulnerability is

disclosed, one should expect all types of attackers to become soon after aware

of it, hence a dependency among SSTD models!

3.3 Security Threats and Measures

In this section, we formalise security threats and security mechanisms. In particular,

we look at the typical behaviours of security threats, attackers, in conjunction with

the mitigation actions taken by security measures that are responsible for tackling

such security threats.

We assume that the security measures are configured to execute security inspections

on a periodic base and that both the inspection times and the time intervals between

two consecutive inspections are random processes with probability functions expo-

nentially distributed. We also note that the attackers and the security measures

behave and act quite differently with respect to the current phase of attack (the

security state).

Below comes, in details, an explanation of a) how an attack is initiated; b) how it

possibly makes its way to our individual computer node; and c) how security mea-

sures on the node deal with the attack and bring the system back to normal again.

Due to so much similarity in the SSTD models, we rather use more generic terms of

"attacker" and "security measure" related to the SSTD model illustrated in Figure

3.5. Nevertheless, the same applies to all three SSTD models with certain classes of

attackers and their countermeasures as discussed earlier in this chapter.

Recall that our individual computer entity is initially assumed secure with no known

vulnerabilities, implying that the SSTD model is in its Secure state. At this stage,
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the attacker makes a fresh start spending some time to learn about the system and

its potential security holes. In this research thesis, without loss of generality, the

learning time for the attacker is assumed to follow an exponentially distributed func-

tion although any arbitrary stochastic function of interest can be adopted.

While in the Secure state, two independent, mutually exclusive random events are

possible to take place to change the state of security; that is, they cannot happen

together, and the occurrence of either prevents the other from happening. More

specifically, if a vulnerability is first discovered, the attacker initiates the change

and moves the security state to the Vulnerable state, implying that the attacker

with some skills and gained knowledge has now the potential to attack the system.

Alternatively, if the security mechanism falsely signals a threat (FP), it causes the

transition to the Restoring state. The latter partly contributes to the probability of

the system being unavailable.

Once in the Vulnerable state, the main objective of the attacker is how to exploit

the existing vulnerabilities and commit active attacks. At the same time, the sys-

tem administrators work hard to remedy the known vulnerabilities at the shortest

possible time and ensure that the system is once again in the Secure state. A com-

petition is therefore launched between the attacker and the administrators and the

next trajectory from here will be decided based on the winner of this competition.

If the attacker wins, the system will transition to the Insecure state, implying that

the system is compromised but undetected (CU); that is, the system and its admin-

istrators are not aware of such an incident yet despite the intruder having gained

access to the resources! This is the most undesirable condition and can be costly

due to a high likelihood of data breaches.

However, if the administrators are able to patch the vulnerabilities prior to any

exploitation, the system can be taken to the Secure state once again, where the

attacker will have to start from scratch! This is due to the memoryless property of

the exponential distribution which implies the absence of ageing and learning [61].

Although this may not appear appropriate for modelling behaviours of an attacker,
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there are other complexities involved too which need to be considered together. For

instance, while it makes sense that the obtained skills and knowledge are taken into

account in the attackers’ future attempts, it is also perfectly reasonable to assume

that the system administrators have their own learning curves and are increasingly

becoming more experienced and quick in their actions! It is, therefore, sensible to

consider dynamic adoption of activity rates for both the attackers and the system

administrators (as well as security measures). We discuss this in our future work

and propose some extensions.

Suppose that the attacker has exploited the vulnerability, hence in the Insecure

state. This implies that the system is already under an active attack and the in-

truder has gained access to the resources. From the attacker’s point of view, the

longer the sojourn time in this state, the better! Once in here, the system is left at

the mercy of the attacker unless the security measure brings this to an end; once

the attack is detected, the system transitions to the Restoring state. There is a

possibility, however, that the security measure fails to detect the attack (FN) in

which case, the system needs to experience longer stays at this state, potentially

leading to even more damage.

During the Restoring state, the system ceases all its normal operations and under-

goes a full recovery. It also makes sense to disable the line of the attack while in this

state. Once recovery is completed, the system is once again taken back to the Secure

state and all its normal operations together with a line of attack are activated. We

note that, while in the Restoring state, the system is completely non-operational.

To reduce performance implications and the associated cost, one should either re-

duce the sojourn times in the Restoring state or ensure that the events leading to

that state become less frequent.

Of paramount importance is the implications an attacker and/or a security mea-

sure may have for performance of the system under consideration. At a minimum,

this can include the extra computational power required by the security measure in

order to periodically execute. This research thesis has currently taken into consider-
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ation performance implications of security measures as well as security failures. We

discuss these in further details in the Chapter 4.

Further Research

In addition to security measures, some attack types may be computationally in-

tensive too; the DDoS is probably the most common attack of this type, which is

usually accomplished by flooding the system with superfluous requests in an attempt

to overload it and prevent some or all legitimate requests from being fulfilled. In

its less destructive form, an attacker may even attack the target system in order to

solely take advantage of its resources without intending to cause any harm at all.

Such performance implications are not considered in this research work. We do,

however, plan to conduct further research in this regard in our future work.

3.4 Security Metrics

Security metrics have received significant attention. However, they have not been

systematically explored based on the understanding of attack-defence interactions

[78]. While the terminologies used by the community are varying, we use stan-

dardised consensus-based security metrics established by The Center for Internet

Security (CIS) [28] for consistency. Below we discuss a selective list of those metrics

which we base our discussions in the rest of the thesis on as follows.

• Mean Time to Mitigate Vulnerabilities (MTTMV): The average time

taken to mitigate known vulnerabilities. The less time required to mitigate a

vulnerability, the more likely to react effectively to reduce the risk of exploita-

tion of vulnerabilities.

• Mean Cost to Mitigate Vulnerabilities (MCMV): The goal of this metric

is to understand the effort required for vulnerability remediation activities.

• Mean Time to Patch (MTTP): The average time taken to deploy a patch;

the more quickly patches can be deployed, the lower the mean time to patch

and the less time in the Vulnerable state.
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• Mean Cost to Patch (MCP): The goal of this metric is to understand the

effort required for vulnerability remediation activities.

• Mean Time Between Security Incidents (MTBSI): The average time,

in days, between security incidents; analogous to common reliability metric of

MTBF.

• Mean Time to Incident Discovery (MTTID): The effectiveness in de-

tecting security incidents; the faster in detecting an incident, the less damage

it is likely to cause.

• Mean Time to Incident Recovery (MTIR): The effectiveness in recover-

ing from security incidents; the sooner to recover from a security incident, the

less impact the incident will have.

• Mean Incident Recovery Cost (MIRC): The cost of returning business

systems to their pre-incident condition.

• Number of Incident (NOI): The number of security incidents for a given

time period.

• Mean Cost of Incident (MCOI): The mean cost from security incidents

identified relative to the number of incidents occurred during the metric time

period.

Below are a few more security related parameters that we have used in this thesis;

however, they do not appear to have been documented by CIS.

• Mean Time To Virus Vulnerability (MTTVV): The average time that

it takes for a virus to discover a vulnerability, once in the VSecure state.

• Mean Time To Virus Attack (MTTVA): The average time that it takes

for a virus to commit an active attack, once in the VVulnerable state.

• Mean Time To Insider Vulnerability (MTTIV): The average time that

it takes for an insider to discover a vulnerability, once in the ISecure state.
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• Mean Time To Insider Attack (MTTIA): The average time that it takes

for an insider to commit an active attack, once in the IVulnerable state.

• Mean Time to Outsider Vulnerability (MTTOV): The average time

that it takes for an outsider to discover a vulnerability, once in the OSecure

state. This is one of the key parameters since it is used to quantify security

levels (determined by application of different security key lengths) and map

them in terms of the time it takes for an outsider to discover a vulnerability;

that is, the longer the security key length, the longer the time it takes to find

a vulnerability.

• Mean Time To Outsider Attack (MTTOA): The average time that it

takes for an outsider to commit an active attack, once in the OVulnerable

state.

For a comprehensive detailed list, interested readers are advised to refer to the orig-

inal document [28].
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Chapter 4

Nodal Modelling and Analysis

In this chapter, we work towards proposing a combined quantitative model which

allows for capturing both performance and security aspects of the individual node

more realistically. More specifically, Section 4.1 gives a brief introduction to the

modelling formalism and solver employed in this research work. Section 4.2 discusses

the nodal model including all its submodels in a great detail.

4.1 Modelling Formalism

A formalism is a language for expressing a model within a framework. Formalisms

are many and varied including Queueing Network (QN), PN and Performance Evalu-

ation Process Algebra (PEPA) [79], among others. More often than not, the original

formalisms have limitations leading to less expressive, inefficient or even inaccurate

models which are unable to capture some key characteristics of the systems under

study. New formalisms, therefore, are continually developed from their predeces-

sor(s) in an attempt to improve expressiveness of the models as well as facilitate

modelling and evaluation of more sophisticated functionalities with desired levels of

details. Here in this thesis, we use the Stochastic Activity Networks (SANs) formal-

ism, which is one of many extensions of the well-known PN formalism.

Let us begin by providing a working definition of a typical model which, in the con-

text of SAN formalism, is composed of states and actions. The states of the model

represent an abstraction of the system’s behaviour and characteristics with respect
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to the time. They can be divided into distinct, non-overlapping state variables the

union of which will give the total states of the abstracted system. Actions, on the

other hand, define the way the states of the model may change. When an action

occurs, it induces the change of states associated with it [100].

4.1.1 Stochastic Activity Networks (SANs)

SANs have been used since the mid-1980s for performance, dependability, and per-

formability evaluation [90]. They have been utilised as a modelling formalism in

three modelling tools (METASAN, UltraSAN, and Möbius), to evaluate a wide

range of systems.

SANs can distinguish between two types of modelling formalisms: atomic and com-

posed. An atomic model is completely defined in one modelling formalism and is

a self-contained representation of either part of a system or the entire system. On

the other hand, a composed model is a collection of other models joined together

by sharing states or actions. It should be noted that a composed model may be

joined to other atomic or composed models to form a new composed model [100].

In this thesis, we use the SAN atomic formalism to design the independent mod-

ules and then the composed formalism to integrate them all into one single model

representing the individual computer node.

4.1.2 Möbius: The Modelling Tool

Despite the development of many modelling formalisms such as PN, various exten-

sions of QN and PEPA, and various model solution methods such as simulation,

analytical solution and state space exploration, most tool implementations support

only a single formalism and usually a single technique. Furthermore, due to lack

of cross-compatibility, models expressed in one formalism cannot be combined with

models expressed in other formalisms. This monolithic approach both limits the

usefulness of such tools to practitioners, and hampers modelling research, since it is

difficult to compare new and existing formalisms and solvers [29].
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Möbius, however, uses a method to eliminate these limitations. In fact, it is devel-

oped based on the belief that no one modelling formalism can be the best way to

build all models of systems from across the diverse spectrum of application domains

[88]. Möbius supports multiple interacting formalisms and solvers by providing an in-

frastructure which is extensible and new formalisms and solvers can be added to the

tool without changing those already implemented. This can be done through the use

of an Abstract Functional Interface (AFI), which provides a formalism-independent

interface to the models. It allows models expressed in multiple formalisms to inter-

act with each other, and with multiple solvers [29].

The driving motivation behind the framework is that a specific modelling formal-

ism, such as SAN or QN, may be appropriate for the representation of a particular

portion of a system being modelled, but not appropriate for an entire system. If a

user is allowed to specify each part of the system in an appropriate representation, it

becomes easier for the user to attain accurate results using simulation and analytical

numerical methods [100]. Furthermore, since models are constructed in specific for-

malisms, the expressive advantages of the particular formalisms are preserved [89].

Although Möbius was originally developed for studying the reliability, availability,

and performance of computer and network systems, its use has expanded rapidly.

It is now heavily utilised for quantitative modelling and evaluation of a broader

range of discrete-event systems, from biochemical reactions within genes to the ef-

fects of malicious attackers on secure computer systems, in addition to the original

applications.

4.2 Nodal Model

We now continue to work towards proposing a model-based solution for our indi-

vidual node such that a) behaviours of both security attacks and security measures

are quantitatively captured; b) performance implications of the security elements are

identified and accurately represented; and c) any interrelations between performance

and security are recognised and realised. Our quantitative model, as expected, builds
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on the SSTDs introduced in Chapter 3.

The Problem Scenario We assume that a simplified single server computer node

is given that is solely responsible for transmission of packets1 to the other nodes in

the network.

In a perfectly secure environment, e.g. one of the extreme cases mentioned in Chap-

ter 2, the node could be well represented with a simple SAN model of a single queue

with finite capacity (Figure 5.3). Such a node would be expected to work towards

and achieve its near nominal performance since there would be no security related

tasks which could continually be disrupting the server.

Figure 4.1: A single server finite-capacity queueing node represented using SAN
Atomic Formalism. The node is assumed to be solely responsible for packet trans-
mission and that there are no security threats whatsoever; as such, no security
measures are employed either.

Unfortunately, there is no such an environment as "perfectly secure"! In a real-life

scenario, every single node in a computer network is subject to a number of various

security threats, and our node is no exception. Recall that to battle against different

security threats we would have to employ different defence measures. As a result,

a holistic approach including a collection of both reactive and proactive solutions is

recommended as an effective strategy against security threats.

However, it would clearly be impracticable, if not possible, to propose a model-based

solution where all types of security threats and measures were considered. Here

we, therefore, concentrate on the modelling methodology rather than how inclusive

these models are or should be. We follow to realise the three SSTD models for three

classes of threats and their respective countermeasures, as discussed in Chapter 3.

We note that any extension or shrinkage of the model with respect to the number of
1At this stage, we are not much concerned about where/how these packets are generated.
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security submodels should be a straightforward task since the methodology remains

the same.

The Keynote For easy and meaningful comparisons, we ensure that our individ-

ual node, throughout its developing journey, owns the same amounts of resources,

qualitatively and quantitatively. In particular, addition of more functionality due to

deployment of any security measures in order to tackle new types of security attacks

is not going to alter the computational resources of the node in any way. In other

words, while the single server of the node would be exclusively dedicated to packet

transmission in a perfectly secure environment, it would now have to be shared among

various tasks, from its main task of transmitting packets to serving security related

tasks such as anti-virus and intrusion inspection programs, encryption, etc.

Model Realisation We utilise the SAN formalism, one of many extensions to

the well-known PN formalism, to carry out the modelling activity. We make use

of its features such as modularity and reusability so that security attack/defence

modules can be easily added/removed as required. As a solver, we use discrete event

simulation to allow for modelling and analysis of adequately detailed representation

of our computer node.

To ensure modularity in modelling, we break down the node into a number of easily

manageable submodels based on their functionality. To alleviate the complexity

concerning the verification and validation processes [108], submodels, to a great

extent, can be designed, developed, verified and validated pretty much independently

prior to their integration into a single unit to represent the entire node. Recall

that we propose a separate SSTD model for each class of security threats and its

countermeasure. To a great extent, these are independently implemented in separate

atomic models using the SAN formalism. We then use the composition technique to

integrate and properly configure them in order to build the nodal model representing

the overall node.

The node is now composed of four SAN atomic submodels separately designed and
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developed. As depicted in Figure 4.2, there exist three SAN atomic submodels for

three SSTD models, introduced in Chapter 3, together with a SAN atomic submodel

for the Core which mainly represents the packet encryption and transmission as well

as the scheduling of the shared server as follows.

Figure 4.2: The nodal model of a single server finite-capacity queueing system in
a more realistic environment, represented using SAN Composed Formalism. The
model combines four modularly designed SAN Atomic submodels using a Join node.
The node here is assumed to be subject to three different classes of security threats:
insiders, outsiders and viruses; as such, as top of packet transmission, the node
employs various security measures to tackle such threats.

Here are the constituent submodels of the individual node as follows:

• Virus Attack Detection Sub-model (VADS): A submodel to mimic the be-

haviours of virus attacks together with an anti-virus program

• Insider Attack Detection Sub-model (IADS): A submodel to mimic the be-

haviours of insiders together with HIDS

• Outsider Attack Detection Sub-model (OADS): A submodel to mimic the be-

haviours of outsiders together with NIDS; for clarity in design, however, the

encryption mechanism, which is also part of a security measure for outsiders,

is implemented in the Core submodel

• Core: A submodel including everything else; in particular, packet transmis-

sion, encryption process, the scheduling of the single shared server plus any

states to be shared with the security submodels.
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4.2.1 Submodels

As pointed out earlier, there are three purely security related submodels, each rep-

resenting the behaviour of a certain class of security attacks together with their

respective countermeasure. More specifically, the IADS captures the behaviours of

insiders and the HIDS countermeasure which are commonly employed to cope with

the threats originated from inside the network. In our case, insiders would include

all those who have direct access to the node and intend to use it maliciously. The

OADS mimics the behaviours of outsiders and that of NIDS countermeasure. The

NIDSs are usually employed to deal with the attacks originated from outside the

network, in this particular case, outside the node which includes the rest of the

network too. The last security submodel is the VADS, capturing the behaviours of

viruses and those of the anti-virus package.

Before we delve into the details of each submodel, here come some generic aspects

which apply to all these security submodels in the hope that they help appreciate

the modelling concepts in the following sections.

• Nomenclature: The three security submodels studied in this thesis have

quite a lot in common. To a large extent, that is due to similarities in their

definitions and functionality, which is expectedly extended to the use of nomen-

clature for various places (states), activities (events), input/output gates, etc.

For consistency, we ensure that all similar components are given the same

names as long as their scope is limited to a certain submodel. If, however, we

need to share some of them in the Core submodel, we make use of an extra

capital letter in front of such components to indicate the submodels they be-

long to. More specifically, we use V, I and O to refer to Virus, Insider and

Outsider submodels, respectively.

• Tokens: Each submodel utilises two tokens of which one is used to keep track

of security state from perspective of that particular attack type, and the other

is used to ensure requests for security inspections are made on a regular basis.

• Miscellaneous: The Detection Control (DC) and the Attack Control (AC)
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places, present in each submodel, are solely for the sake of flexibility in con-

trolling whether the submodel is configured to capture a security functionality

(security attack, detection mechanism or both) or not. That is, any time we

wish to switch an attack or detection mechanism on/off, we simply need to

deposit/remove a token to/from the respective place, as appropriate, without

having to make major changes to any other parts of the submodels. They have

proved very useful, in particular during development periods. Moreover, for

consistency, these also have the submodel initials in their names, e.g. VDC,

VAC!

It is worth noting that the detailed quantitative modelling of security attacks and the

respective countermeasures discussed below are solely based on the conceptualised

and formulated SSTD models provided in Chapter 3. Any amendments in either

the concepts or the models would expectedly require the respective other to be

appropriately updated.

The Virus Attack Detection Submodel (VADS)

VADS mimics, in an abstract level, the behaviours of the threats introduced by

viruses and the way anti-viruses react and work towards stopping them. Figure

4.3 shows the SAN atomic model of the VADS in full detail. More specifically,

the right half (roughly) of the submodel represents the behaviour of the attacker (a

virus) and the left half captures the functionality of a security measure (an anti-virus

program). Below is given a brief explanation of how the model is constructed and

works as follows.

• Attack: Recall that, by default, the system always starts from the Secure

state. To realise this, a token is deposited to the VSecure place which enables

the VLearntV activity, implying that the attacker has begun to learn more

about the system and its potential vulnerabilities.

• Detection: The VScanTrig activity is ensuring that requests for security

inspection (virus scan) are made on a regular basis, determined by value of

theMean Inter-Inspection Time (MIIT) parameter. Every time the VScanTrig
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Figure 4.3: The Virus Attack Detect Submodel (VADS), represented using SAN
Atomic Formalism. This mimics the behaviours of viruses (right) and those of anti-
viruses (left) and their respective impcats on the node to help quantitatively examine
performance implications of security, and vice versa.

activity fires, one token is deposited into the VScanReq place indicating that

it is high time the virus inspection began although the process may have to

be delayed for various reasons depending on the current state of the system.

• Detection: Once a request for inspection is made, subject to the (shared)

server availability, the VScanEn is deposited with a single token, while the

one in the VScanReq place is removed to ensure the inspection period. We

note that a token in VScanEn enables the VScan activity, implying that the

security mechanism (anti-virus) is now inspecting the system.

• Detection: If the inspection process concludes a threat despite system being

in the Secure state, the model translates this into a FP alarm by depositing

a token into the VFP place. This together with VSecure enable the instanta-

neous FalseAlarm activity which, upon firing, forces the system into unneces-

sary recovery!

• Attack: Given that a vulnerability is discovered, the VLearntV activity fires

upon which the token is removed from the VSecure and deposited into VVul-
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nerable; this announces the change of security state. As a result, the VAttack

activity is enabled, implying that the attacker is planning to commit an active

attack but has not succeeded in doing so yet.

• Detection: Meanwhile, if the inspection process (anti-virus) is executed, there

is a possibility that the vulnerability is detected and fixed prior to any actual

exploitation in which case, the system is brought back to the Secure state

without any damage. Otherwise, the attacker is given more chance to succeed.

• Attack: Suppose that the virus wins this competition; that is, the VAttack

activity fires first. That removes the token from the VVulnerable place and

deposits it into the VInsecure place, implying that an active attack has taken

place. We note that, while the system is compromised, the admin team is not

yet aware of this! This is the most serious and potentially dangerous state. The

longer the sojourn time in the VInsecure place, the more the likelihood of data

breach! Minimising these periods should be one of the key design objectives

that is only achievable with the help of quantitative models; otherwise it would

be impractical, if not impossible, experimenting these with real systems.

• Detection: There is a high chance that occurrence of the incident is detected

and appropriately responded during the next inspection process (anti-virus)

run. If so, the Detect activity fires, removing the token from the VInsecure

and depositing it into the Restoring place. Once in Restoring, the system

undergoes a full recovery during which all its normal operations are frozen.

We note that these periods contribute to unavailability of the system which

is one of the key performance metrics. It is worth mentioning that there is

also a possibility (FN) that the detection system identifies the attack as an

acceptable activity and fails to catch that! In such cases, the system is exposed,

even longer, to the attackers who have already gained unauthorised access to

the resources!
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The Insider Attack Detection Submodel (IADS)

The IADS represents, in a similar fashion, the behaviours of and the actions taken

by the insiders and the HIDS, respectively. Recall that HIDSs are installed on the

node and observe the activities taken place on it; this may include user activities,

the attempts in accessing certain OS files, network ports, etc. Figure 4.4 shows

the SAN atomic model of the IADS in full detail, which closely resembles that of

VADS as discussed earlier, except that each submodel represents different attacking

objects and their respective detecting mechanisms. To avoid repetition, we are not

going to explain this submodel in any further details. It is well worth reminding

though that there are significant differences between these two types of attacks and

detection mechanisms, as discussed in Chapter 2. We also note that incorporation

of both models simultaneously provides a more realistic representation of the system

and, therefore, gives more accurate insights into the security related performance

implications in real life systems.

Figure 4.4: The Insider Attack Detect Submodel (IADS), represented using SAN
Atomic Formalism. This mimics the behaviours of insiders (right) and those of
preventive measures such as IDSs (left) and their respective impcats on the node to
help quantitatively examine performance implications of security, and vice versa.
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The Outsider Attack Detection Submodel (OADS)

The OADS captures the behaviours of and the actions taken by the outsiders and the

NIDS, respectively. Also recall that the NIDSs are installed at some strategic points

within the network in order to perform deeper packet inspections at network level.

That said, the OADS should theoretically capture the collective behaviour of various

security measures across the network, including firewalls, NIDS and encryption

mechanisms, together with the behaviour of the outsider attacks, which are treated

the same way.

We note, however, that different elements of this class of attack/defence mechanisms

are implemented in different submodels - some in the Core, some in the OADS and

some goes beyond our single node model which can be seen in the bigger picture

at network level. In other words, the OADS appears slightly different from the

VADS and the IADS for which all processes with regard to the security measures

are executed inside the host utilising the shared server. In case of the OADS,

however, only the encryption process utilises the shared server but the remaining

tasks do not rely on our node resources. This is reflected by immediate activation,

once a request arrives, and independent execution of the inspection mechanism in

the OADS submodel, that is, without having to involve the host server. Figure 4.5

shows the SAN atomic model of the OADS in full detail.

Note: As we have seen earlier in Chapter 2, outsider, in general, refers to the type

of attack that is originated from outside the organisations’ local networks; that is,

it would need to pass through various devices on the network, including firewalls,

targeting a single host. Since our modelling methodology is focusing on a single

node in the network, any attacks from other nodes in the network would also be

considered as an outsider.

The Core Submodel

As pointed out earlier, the Core submodel plays a significant role by sticking ev-

erything together. More specifically, it captures a) the packet transmission activity,
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Figure 4.5: The Outsider Attack Detect Submodel (OADS), represented using SAN
Atomic Formalism. This mimics the behaviours of outsiders (right) and those of
preventive measures such as Firewalls and IDSs (left) and their respective impcats
on the node to help quantitatively examine performance implications of security,
and vice versa.

which is the main functionality of the node; b) the encryption process, which is

related to the OADS and acts as a preventive security measure to ensure confiden-

tiality and integrity of the packets; c) the scheduling of the single (shared) server

plus any places (states) which need sharing with the security submodels; and d)

the arrival process. This last bit is only of interest if we wish to adopt arbitrary

distribution functions for the arrival of packets.

In addition, and perhaps of paramount, the Core is accommodating for the intertwin-

ments between performance and security, in particular, performance implications of

the security related tasks. This is twofold: a) allowing the single server of the node

to be shared with security measures and b) freezing all normal operation of the tasks

in the event of a security failure.

Below comes in further details how the Core submodel is constructed and what the

most important design factors should be considered as follows.

• Packet Generation: Except for recovery periods, the PacketArr activity

is always enabled, implying that the packets are generated throughout on a
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Figure 4.6: The Core Submodel, represented using SAN Atomic Formalism. The
submodel captures such features of the node as packet generation, packet transmis-
sion, packet encryption and the scheduling of the shared single server between the
Core and the other security related submodels.

regular basis and according to a certain distribution function. The packets

then join the EncBuf buffer, if possible, to be encrypted; otherwise, they are

lost, contributing to the Packet Loss Probability (PLP) metric. It is further

assumed that packet generation is not a computationally intensive process and

is neglected in favour of other processes.

• Shared Server: The node is assumed to have a single server, as highlighted

earlier, which is shared among all the main processes that are regularly running

on the node. More specifically, the server provides service for virus scanning,

intrusion inspection, encryption and transmission processes with their respec-

tive activities being VScan, HIDS, Enc and Trans. A single token in the

SharedServer place indicates that the server is available; otherwise it is busy.

We also note that the processes are non-preemptive; that is, a running pro-

cess, regardless of its priority, is executed until completion. Nevertheless, the

model can be flexibly adapted to accommodate for other processing disciplines

if needs be.

• Priority: In the event of competition for the shared server, the priority is first
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given to the virus scanner and then to the HIDS; in the absence of both, an

input parameter is employed to arbitrate between encryption and transmis-

sion to address any possible conflict. We use the input gate IG_SS together

with the instantaneous activity Shared Server Scheduler (SSS) to manage the

existing priorities and the arrangements to utilise the shared server. As ex-

pected, all these priorities can be easily rearranged to suit different application

requirements.

• Encryption: We assume that every packet requires encryption prior to its

transmission. We also follow common knowledge in assuming that longer se-

curity key lengths provide higher security levels. Recall, however, that the

security key lengths and their respective encryption times are directly propor-

tional; in other words, longer security keys require longer encryption times.

To capture this notion, we virtually link the Enc activity in the Core module

with the time to discover vulnerabilities in the OADS so that the first dynamic

relation between performance and security is established.

Although security key lengths and encryption times can be used interchange-

ably, in this thesis, we prefer to use encryption times due to their direct im-

plications for performance.

• Transmission: Encrypted packets join the TransBuf buffer, subject to space

availability, and wait for transmission. For the sake of simplicity, no acknowl-

edgement or retransmission mechanisms are assumed.

• Recovery Mode: As discussed earlier, the overall security state is collec-

tively monitored and updated by three security measures working collabora-

tively. We note that the system is considered vulnerable or insecure if either

of security measures reports so; however, it is deemed secure only if it is

jointly reported secure, from all security mechanisms’ perspective. Once in

the Restoring state, regardless of the cause, the Restoration Reconfiguration

Evolution (RRE) activity is enabled, implying that the node has undergone a

full recovery process. It is perfectly reasonable to assume that, during recov-
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ery, all normal functionality of the node ceases to operate; this includes the

attack and detection mechanisms, packet generation, encryption and trans-

mission. When recovery is complete, the node makes a fresh start by resetting

its performance and security related states to default conditions.

4.2.2 Parametrisation

A significant number of parameters used in this research work belong to the activities

that represent various events or actions taking place in our quantitative models. We

use two types of activities : a) timed activities, which represent events that take some

time to complete when enabled such as encrypting or transmitting a packet, and

b) instantaneous activities, which represent actions that complete instantaneously

(negligible compared to timed activities) when enabled such as SSS used to control

and manage the shared server. Furthermore, every timed activity has a time distri-

bution function associated with its duration. Different distributions, however, may

require different sets of parameters to be fully defined. For instance, a single param-

eter, mean rate, is sufficient to completely characterise an exponential distribution

function.

The main focus of this research thesis is on developing a methodology for the model-

based quantitative analysis of performance vs security trade-offs. For the sake of

simplicity, therefore, exponential distributions are chosen for all timed activities.

We realise, however, that the memoryless property of an exponential distribution

implies the absence of ageing and learning, which does not seem appropriate for

modelling of the attackers behaviour [61]; nor does it fully capture the characteris-

tics of a security measure. In our future work, we discuss the wide range of different

distributions which are available and can be employed to capture various scenarios

in a real life.

Here is a brief summary about the input parameters utilised by a number of timed

activities as follows.

• Mean Inter-Arrival Time (MIAT): This is the average inter-arrival time
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of packets; the inverse of this parameter would be equal to the mean rate

required for the exponential distribution of the PacketArr timed activity.

• Buffer Size (BS): There exist two finite capacity buffers in the Core sub-

model. For the sake of simplicity, this single parameter determines the sizes

of both buffers simultaneously. Having parametric queues allows for investi-

gation into the impact of different buffer sizes on performance and security

trade-offs.

• Mean Transmission Time (MTT): This is the average time to transmit a

packet; the inverse of this parameter would be the mean rate of the exponential

distribution for the Trans timed activity.

• Transmission Over Encryption Priority (TOEP): Clearly, a single shared

server can only serve a single task at any given time. Therefore, a need for arbi-

tration will arise where there are more than one task competing for the server.

In the absence of security tasks, which are given higher priority, this param-

eter is utilised to define priority between encryption and transmission tasks.

For TOEP=0.5, they are treated equally so the arbitration between them can

decided with a uniform random number. If, TOEP>0.5 or TOEP<0.5, trans-

mission or encryption would be given priority over the other, respectively.

• Mean Inspection Time (MIT): This is the average time taken to execute

a security inspection process; we define one parameter for both virus scanning

and HIDS process times. Recall that NIDSs do not require the single shared

server of the node to execute.

• Mean Encryption Time (MET): This reflects the time required to encrypt

a message, which is linked to the security key length employed by security

algorithms; the longer the security keys, the longer the encryption times.

• MIIT: This parameter sets the time between two consecutive executions of a

security measure; that is, how often we wish to inspect the node for potential

intrusions.
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• FA: This reflects the accuracy of the IDSs employed, namely HIDS, NIDS

and anti-virus. We also assume that, for all cases, the FP and FN take equal

probabilities though this might not be always desirable. Security measures

may employ technologies and methods that are different from one another in

which case, we may need to define two false alarm parameters, FN and FP,

separately for each security measure, if required. In addition, it appears that

1% for FN and FP is deemed acceptable, reflecting the presence of a medium

to high quality IDS.

• Vulnerability Detection Probability (VDP): This indicates the proba-

bility that the system administrators will take action to patch any known

vulnerabilities so that they can manage to take the system to the Secure state

before vulnerabilities are exploited.

• MTTOV: This is the average time an attacker takes to discover a vulnerability

in the system. It is common knowledge that the longer the security keys, the

longer the time to discover vulnerabilities (the more secure the system).

• MTIR: This is the average time the node takes to fully recover from a security

incident.

• MTTMV2: This is the average time the node takes to mitigate the known

vulnerabilities and ensure the node is once again secure. Please note that

this parameter works together with VDP to decide whether or not a known

vulnerability can be mitigated on time.

• MTTID2: This is the average time the node takes to discover/detect a security

incident.

• MTBSI2: This is the average time between consecutive security incidents; this

parameter is not directly used in our current models.
2These are standardised security metrics defined by CIS, which are not directly used in the

latest models introduced in this thesis. This is mainly due to the fact that the overall security
is controlled by employing three different security mechanisms independently and each of which
has its own SSTD with their own three states of being secure, vulnerable or insecure. In addition,
some of these parameters are now implemented in the security measure model which, we believe,
provides more realistic view of the real life systems. Another point to make is that some of the
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4.2.3 Obtainable Measures

The Möbius tool together with the SAN modelling formalism enable construction

and collection of a large set of performance values. While it is also possible to

collect results for transient time analysis, the following measures are all collected

in a steady-state mode. Careful observations and interpretations of these metrics

can help identify and obtain invaluable insights into potential issues with respect to

both performance and security. Here are the metrics we have used in this thesis as

follows.

• ssu is a key performance metric since four crucial processes rely on the shared

server availability. A server bottleneck can lead to significant degradation of

performance as well as poor security in the system under consideration.

While, throughout this research work, we mostly refer to performance impli-

cations of security related tasks, it is equally important to realise that any

performance issue, e.g. fully utilised server, can lead to security implications

due to the scarcity of computational resources, hence intertwinements between

performance and security.

• eu & tu show what fractions of ssu the shared server has been busy doing

encryption and transmission, respectively.

• el & tl provide estimations for the average number of jobs (packets) in the

encryption buffer (EncBuf ) and transmission buffer (TransBuf ), respectively.

• ear indicates the effective (actual) packet arrival rate. There are two reasons

why this might be different from the theoretic one of 1/MIAT : a) there are

times when all operations, including packet generation, are ceased; b) some

packets may be lost prior to any processes (due to congestion at the encryption

buffer). While this measure can provide useful information re the node itself,

we use it to work out an indirect metric, pte, demonstrating the overall efficacy

of the node.

parameters listed above are shared by three security measures. This, however, can be resolved and
extended to provide more flexibility by defining distinct parameters for each measure, if needs be.
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• sth provides the throughput, the rate at which packets are transmitted by this

node. We note that any packets transmitted during the system being insecure

(compromised undetected) are in fact deemed wasted, and hence excluded. It

is worth mentioning that this is only checked from outsider’s perspective since

the encryption mechanism is considered a preventive measure only against

outsiders. The sth metric is actually believed to be a combined metric since

there is a security related condition influencing its ultimate value, as otherwise

it would be different.

• (Virus, Insider & Outsider) Secure Probabilities indicate the fraction of

time the node spends in the Secure state from virus’, insiders’ and outsiders’

point of view, respectively. That is the fraction of time it can be seen in the

respective places of VSecure, ISecure and OSecure.

• (Virus, Insider & Outsider Vulnerable Probabilities indicate the fraction

of time the node spends in their respective Vulnerable state, namely in the

VVulnerable, IVulnerable and OVulnerable places.

• (Virus, Insider & Outsider) Insecure Probabilities indicate the fraction of

time the node spends in the respective Insecure state, namely in VInsecure,

IInsecure and OInsecure places; that is, the periods when the system is com-

promised but undetected! These demonstrate the most serious and dangerous

fractions of system life cycle which need to be minimised.

These probabilities may provide valuable insights into various aspects of the

system under consideration, including behaviour of the attackers and the de-

sign characteristics and configuration settings of the security measures. They

may as well make sense when considered in conjunction with other metrics.

For instance, a higher sojourn time in a Vulnerable state may indicate: a) the

system attracts attention of too many malicious hackers, b) there are too many

vulnerabilities (of various types) which are probably easier to discover too, c)

the system administrators are too slow in applying vulnerability patches, or

d) the transition from Vulnerable to Insecure is not that straightforward, and
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attackers still need significant efforts to succeed despite having managed to

discover some vulnerabilities. To find out the most likely reason, therefore, we

may well require to consider some other factors and metrics in order to make

sensible judgements.

• rp is the probability of the node being in the Restoring state; that is, the

fraction of time the node is unavailable.

• System (Secure, System & Insecure) Probabilities indicate the fractions of

time the node as a whole is secure, vulnerable or insecure, respectively. In

order for it to be considered secure, all security measures in place must, at

the same time, confirm secure states; that is, we take the joint probability

(intersection) of vsp, isp and osp. Needless to say that the weakest link in the

chain of system security would dictate the level of security in the system.

However, being in either of insecure states regardless would suffice to announce

that the system is insecure; that is the union of vip, iip and oip. And finally,

the node will be considered vulnerable if it is not insecure but there is at least

one known vulnerability. In other words, the security state of the system is in

none of vip, iip or oip, and that it is confirmed to be at least in one of vvp, ivp

or ovp states.

• plp gives the probability of packets being lost overall in the node; that is, the

fraction of time that the encryption buffer, the transmission buffer, or both

are full.

• cpsm1 is the sum of ssp, a pure security metric, and sth, a performance and

security metric. It combines takes contributions from both performance and

security. Both contributing measures are "higher-better" [40, 112] measures

and, therefore, their sum is also a "higher-better" measure.

• cpsm2 is yet another combined metric comprised of plp, a pure performance

metric, and svp, sip and rp, which are pure security metrics. The main dif-

ference is that all contributing metrics are "lower-better" [40] measures and,
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therefore, their sum should also be a "lower-better" measure, which we desire

to minimise.
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Chapter 5

Numerical Experiments and

Interpretations

In this chapter, we utilise simulation modelling to demonstrate the impacts of secu-

rity measures and security threats on performance of an individual computer node.

We analyse the empirical data obtained from numerous simulation experiments and

provide physical interpretations into optimisation of trade-offs between performance

and security. We are, in particular, interested in system parameters that would

optimise combined performance and security trade-offs and whether/how different

input parameters could possibly influence such optimal responses.

5.1 Simulation Setup

This section describes the model and configurations under which we run the simu-

lation experiments and collect the numerical results. In the following subsections,

we briefly present the model employed and discuss main assumptions made. We

also provide a procedure which summarises the methodology we follow during this

simulation study.

5.1.1 The Model

A more realistic model to use would be the one we propose in Chapter 4, which

captures various aspects of a holistic approach to secure an individual node by tak-
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ing into consideration a number of attack scenarios together with their respective

security measures. However, due mainly to severe security data scarcity, finding

sensible input parameters for all these different aspects of security attacks and secu-

rity measures has proved impracticable. Therefore, for the rest of this chapter, we

use a simplified model representing an individual node that: a) is solely subject to

attacks from outsiders; b) employs an encryption mechanism to encrypt all packets

prior to their transmission; and c) is facilitated by an NIDS to identify and prevent

intruders from the outside world targeting it.

The Core and OADS submodels are redrawn below in figures 5.1 and 5.2, respec-

tively. Interested readers are referred to Chapter 4 for further details regarding these

submodels.

Figure 5.1: The Core Submodel

Input Parameters are some global variables that are used to parameterise the

design and development of the models. In particular, they are used for characteri-

sation of probability density functions (pdf) employed in the models and facilitate

optimisation studies as and where needed.

Although other probability density functions could be easily adopted, we use Ex-
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Figure 5.2: The Outsider Attack Detect Submodel (OADS)

ponentially distributed functions for all timed activities, where a single mean rate

parameter (µ) would fully characterise each of these probability functions. Table

5.1 provides a selective list of input parameters together with some possible values

attempted during various simulation runs to follow below.

Name Type Range Type Value(s)
BS (Buffer Size) short Manual [10, 30, 50]

MIAT (Mean Inter-Arrival Time) double Manual [1, 1.5, 2]

MTT (Mean Transmission Time) double Manual [0.1, 0.5, 1]

MET (Mean Encryption Time) double Incremental [0.1, 0.2, 0.3, ..., 3.3, 3.4]

MTTOV (Mean Time To Outsider Vulnerability) double Manual [12.5, 25, 50, 100, 600, 1100,
1600, 2100, ..., 14600, 15100]

FA (False Alarm) double Manual [0, 0.005, 0.01, 0.02]

MIIT (Mean Inter-Inspection Time) double Manual [10, 30, 50, 100, 200, 400]

MIT (Mean Inspection Time) double Manual [0.1, 0.5, 1]

MTTR (Mean Time To Recovery) double Fixed [360]

TOEP (Transmission Over Encryption Priority) double Fixed [0.5]

VDP (Vulnerability Detection Probability) double Fixed [0.8]

Table 5.1: Input parameters defined and used in the simulation models

Performance Variables are reward variables recorded during simulation exper-

iments. They are defined as either Rate Rewards or Impulse Rewards; the former
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being based on the time spent in each state, the latter defining functions that are

evaluated when activities in the child models are fired. The Impulse Rewards are

mostly used as counters to work out the average number of times the respective

activities fire. Moreover, all these reward variables are defined as Steady State re-

sponse types. That is, the reward functions are evaluated after the system being

modelled reaches steady state.

While there exist other types of estimates, we collect estimates for mean of these re-

ward variables. And finally, the confidence level across all simulation runs and for all

reward variables is set to 95%. Despite this setting, however, it is likely that some

performance variables in certain experiments are unable to satisfy the confidence

level requirement, e.g. due to limited number of batches used in the experiments.

If so, an asterisk (*) is added next to such variables to indicate the occurrence of

dissatisfaction. Table 5.2 provides a selective list of performance variables of interest

in this numerical study.

Name Type
ssu (Share Server Utilisation) Rate Reward

eu (Encryption Utilisation) Rate Reward

tu (Transmission Utilisation) Rate Reward

el (Encryption Queue Length) Rate Reward

tl (Transmission Queue Length) Rate Reward

ear (Effective Arrival Rate Impulse Reward

sth (Secure Throughput) Impulse Reward

rp (Prob. of System Found in Recovery State) Rate Reward

ssp (Prob. of System Found in Secure State) Rate Reward

svp (Prob. of System Found in Vulnerable State) Rate Reward

sip (Prob. of System Found in Insecure State) Rate Reward

plp (Packet Loss Prob.) Rate Reward

Table 5.2: Performance variables defined and used in the simulation models

5.1.2 Combined Performance and Security Metrics

We refer to the above response variables as individual reward functions; that is, they

are either performance or security related variables. The combined metrics, on the

other hand, are defined such that aspects of both performance and security can at

the same time contribute to. More specifically, we define two combined metrics as
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follows:

• cpsm1 = ssp+ sth: While ssp is a pure security metric that gives the prob-

ability of the node being secure (in Secure state), sth is a performance metric

influenced by security state of the node. As mentioned earlier, sth gives secure

throughput, the average packet transmission rate subject to system being se-

cure. In other words, those packets transmitted during insecure periods (cu)

are excluded. Both ssp and sth are "higher-better" metrics and therefore

cpsm1 also is a "higher-better" metric.

• cpsm2 = svp+ sip+ rp+plp: The first two components, svp and sip, may

be considered as pure security metrics, whereas plp is a mixed performance

and security metric. It may also be argued that rp can be seen as a perfor-

mance measure, in the form of unavailability; we, however, realise that seeking

to make computer resources unavailable is one major objective of security at-

tacks1. All components of cpsm2 are ’lower-better’ metrics and, therefore,

cpsm2 should be a ’lower-better’ metric.

5.1.3 Assumptions

First and foremost, we ensure that the computational capacity of the individual

node remains the same throughout all simulation runs and experiments (as a control

variable). That is, addition of more functionality, due mainly to the employment of

security measures, is not going to alter this capacity in any way. In other words,

while the single server of a perfectly secure node would exclusively be serving packet

transmission, it would, in a more hostile environment, have to serve security related

tasks as well. This allows for more sensible comparisons to be made and meaningful

conclusions drawn later on.

Furthermore, all experiments to follow are based on the fact that security of an

individual node varies with respect to the length of security keys employed. As

commonly agreed, longer security keys require, on average, relatively more time to
1Recall that the ultimate goal of security is to protect confidentiality, integrity and availability
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break, hence improved security. However, longer keys are translated into longer

encryption times, implying that they are likely to lead to significant performance

implications too. As detailed in Table 5.1, simulation runs are executed for 34

different security key lengths where each key is associated with a different encryption

time. Moreover, depending on the length of the security key employed, the time to

vulnerability for outsiders (level of security) varies such that longer keys lead to

longer times before a vulnerability can be discovered.

5.1.4 Design of Experiments

There exist relatively a large number of input parameters that can possibly influence

the outcomes of simulation experiments. The total combinations of various param-

eters can easily explode far beyond anything practical. For instance, there would be

over 109 experiments (cartisian product) to run if each input parameter was only

to take on 4 different values, still not representative of reasonably high dynamic

operating conditions. Therefore, careful design of simulation experiments is crucial

and can save a lot of time and effort by providing efficient ways to estimate the

effects of changes in the model’s inputs on its outputs. Kelton [46] raises a number

of questions that need to be answered before just trying different things to see what

happens. They are as follows:

• What model configurations should we run?

• How long should the runs be?

• How many runs should we make?

• How should we interpret and analyse the outputs?

• What’s the most efficient way to make the runs?

Some of these questions are dealt with when we design and develop simulation

models in Chapter 4, where we decide what performance variables to include, how

to define them, what configurations of input parameters should be considered and

why, etc. Others are addressed in this chapter by considering, for instance, a)
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our particular interest in steady-state rather than transient simulation types; b) a

suitable confidence level (CL) to terminate a given experiment, say 95%; c) some

variance reduction techniques to possibly sharpen the precision of output estimators

without having to do more simulations [46]; and d) the impact of certain input

parameters on outputs (sensitivity analysis).

We adopt an incremental methodology to conduct this numerical study. That is, we

begin with a minimal model as a reference and then, to increase model complexity,

add a single new functionality to it each time. Here is the procedure in further detail

as follows:

• We design a simplest possible model configuration that serves as the basis of

our comparisons throughout. This reference model represents a single server

node that would be operating in a perfectly secure environment. The main

advantage of this model is that there exist exact solutions [4] that help validate

our numerical results in the very first stage.

• Despite the node still operating in a fully secure environment, we go ahead

with our incremental development and employ an encryption mechanism so

that all packets would be encrypted prior to their transmission. This added

functionality should impose extra load onto the single server node. We plan

to investigate the performance implications of this first security mechanism

before it becomes more complicated.

• Next comes a further developed model to represent the node in a more realistic

operating condition. That is, the node is now subjected to security attacks

from outsiders and, to cope with potential intrusions, it needs to employ fur-

ther security measures. As expected, these new features should impose undue

computational and network overhead; nevertheless, we assume the node retains

its original computational capacity so as to allow for more sensible compar-

isons.

• We then fix all input parameters, except for MET and MTTOV, at some

reasonable values. The values of MET and MTTOV are associated with the
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security keys employed and as we vary the key length from experiment to

experiment, the MET and MTTOV are also accordingly changed. For a set

of fixed input factors, we sweep through a range of different key lengths, run

the experiments and collect various performance variables of interest. We can

then plot the responses with respect to MET2 at the end of each run to analyse

the behaviour of each response.

• We realise that not all input factors are equally important in terms of having

a major impact on the outputs. There are several factor screening designs in

literature [10, 38, 39, 48, 53] that are extremely helpful in transforming a rather

hopelessly large number of runs into something that is eminently manageable.

Here, however, we are very selective about our input parameters as we solely

aim to illustrate how different configurations could significantly change the

optimal trade-offs (responses) between performance and security. Therefore,

we simply choose a set of input factors that we believe are important; these

include BS, FA, MIAT and MIIT.

• Last but not least, we ensure that, at any given experiment, only one of these

input parameters (along with the key length) is varying so that we can draw

more accurate and reasonable conclusions as to whether the impact of that

input factor on various responses is significant.

5.2 Simulation Runs

Following the methodology discussed above, we design and run a number of sim-

ulation scenarios. Generally, we aim at investigating the implications of security

measures and security attacks for performance of a single computer node. In par-

ticular, we wish to:

• Identify the security keys for which optimal trade-offs between performance

and security can be achieved. That is, any security key that can maximise/minimise
2The actual independent variable here is the length of security key and the MET is assumed to

be a monotonically increasing function of security key length. Nevertheless, it is easier and more
sensible to work with the latter than the former
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our combined metrics of cpsm1/cpsm2, respectively.

• Examine the impact of various input parameters on these optimal trade-offs.

Of particular interest, are BS, MIAT, MIIT and FA parameters.

5.2.1 Perfectly Secure Scenario

This scenario can in fact represent an extreme case where an embedded system is

connected to a secure, reliable and fully isolated local network [112]. There would

be little, if any, security concerns for such a system and therefore the server would

be expected to work towards and achieve its near nominal performance. Although

making such presumptions about security of a computer node may sound unrealistic,

this scenario is aimed at providing a basis for more sensible comparisons.

To ensure a smooth transition, here we consider two separate cases, with and with-

out encryption mechanisms, as follows.

Without Encryption Mechanism

We begin with an individual node where security measures are all made redundant.

Such a node would solely be responsible for transmitting packets without possibly

being disrupted with any security tasks or issues. The model configuration for this

case can be effectively reduced to an idealised SAN atomic model of an M/M/1/K

queueing system, a single server with finite capacity3. (Figure 5.3)

Figure 5.3: The SAN Atomic model of an M/M/1/K queueing system

Simulation runs are executed aiming to provide insights into various reward func-

tions defined in this simplified model. Table 5.3 below shows the input parameters
3In QN, an M/M/1/K notation implies a FCFS queueing discipline in place; this, however,

cannot be guaranteed in SAN formalism since tokens are not distinguishable.
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used during these experiments.

Name Value(s)
BS [10, 30, 50]

MIAT [1, 1.5, 2]

MTT [0.1]

Table 5.3: Input parameters in a perfectly secure environment where there is no
encryption process nor is the node subject to any potential security threats.

Simulation results are briefly presented in three different groups of graphs: a)

individual performance metrics; b) individual security metrics; and c) combined

performance and security metrics. Figure 5.4 shows the results for different buffer

sizes (BS), where the packet arrival rate remains unchanged.

The M/M/1/K queueing system is a well-known model with exact solutions, and

thus the interpretation of all results are pretty straightforward. Here is the summary

of the outcomes highlighted as follows:

• The ear is exactly the same as the arrival rate, implying that all arriving

packets make their way through transmission. In other words, the plp is

almost always zero and the chance of losing packets due to lack of buffer is

negligible, despite finite capacity.

• Throughput, as confirmed, is therefore equal to arrival rate.

• There is no encryption mechanism in place, which is confirmed by zero utili-

sation of eu reward function.

• The shared server is only responsible for transmitting the packets, which is

again confirmed by ssu being always equal to tu.

• The node has no vulnerability, implying that it is always secure. As such,

there is no chance of finding the node in the Recovery state.

• There is no mystery about cpsm1 and cpsm2; as defined earlier, they are

just calculated using some individual metrics. It is therefore clear from the

curves that none of these combined metrics shows any optimal trade-offs for

performance and security.
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Figure 5.4: Given the node is operating in a perfectly secure environment and
MIAT=2, the graphs show simulation results with respect to three different values
of the BS parameter. The x-axes, shared among all graphs, simply indicate an index
number with no dimension (the very same results are achieved 34 times to allow for
easy comparison later on). For the top and middle groups of graphs, the y-axes
indicate either probability or normalised values varying in the range of [0-1]. For
the bottom graphs, however, they inidcate plain numbers (no dimension); the values
here are achieved by adding corresponding values of some individual metrics making
each combined metric. This is only useful for comparison as well as identification of
optimum points, if any.
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Figure 5.5 shows the results for a similar set of experiments except that here packet

arrival rate is varying and buffer size remains unchanged throughout the runs. In

brief,

• All security metrics remain the same as before since nothing has really changed

from security point of view.

• Despite increased arrival rates, it is confirmed that the buffer size (BS=30)

together with the server rate are sufficiently high to guarantee zero packet

loss. (plp=0)

• The changes in the arrival rate are correctly and expectedly reflected in both

ear and sth graphs. The same is for utilisation of the server since higher

arrival rates would require more server times, which can be observed from ssu

and tu plots.

• Again, neither cpsm1 nor cpsm2 exhibit any optimal trade-offs for perfor-

mance and security.

With Encryption Mechanism

In this scenario, the node employs an encryption mechanism while still operating in

a fully trusted environment. That is, all security related tasks except for encryption

continue to remain disabled. Our single server node is now responsible for both

encryption and transmission of the packets. As such, any significant changes in

simulation outcomes should presumably be considered as performance implications

of the encryption mechanism.

The model configuration for this scenario can be seen as though the service time of

the M/M/1/K queueing system is increased such that it now takes longer to serve

each packet than before. As an immediate effect, this should therefore increase util-

isation of the server, which may in turn have some impacts on other metrics such

as plp and sth.

It is worth noting though that in addition to controlled changes in BS and MIAT pa-
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Figure 5.5: Given the node is operating in a perfectly secure environment and
BS=30, the graphs show simulation results with respect to three different values of
the MIAT parameter. The x-axes, shared among all graphs, simply indicate an index
number with no dimension (the very same results are achieved 34 times to allow for
easy comparison later on). For the top and middle groups of graphs, the y-axes
indicate either probability or normalised values varying in the range of [0-1]. For
the bottom graphs, however, they indicate plain numbers (no dimension); the values
here are achieved by adding corresponding values of some individual metrics making
each combined metric. This is only useful for comparison as well as identification of
optimum points, if any.
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rameters, now the security key length is also varying across the experiments, which

are respectively reflected in the encryption times of the server as discussed previ-

ously.

Table 5.4 and Table 5.5 below provide the input parameters used during these ex-

periments as follows.

Name Value(s)
BS [10, 30, 50]

MIAT [2]

MTT [0.1]

MIIT [30]

MIT [0.1]

FA [0]

TOEP [0.5]

MET [0.1, 0.2, 0.3, ..., 3.3, 3.4]

MTTOV [12.5, 25, 50, 100, 600, 1100,
1600, 2100, ..., 14600, 15100]

Table 5.4: Input parameters (BS
varying) used in a perfectly secure en-
vironment with an encryption process
in place

Name Value(s)
BS [30]

MIAT [1, 1.5, 2]

MTT [0.1]

MIIT [30]

MIT [0.1]

FA [0]

TOEP [0.5]

MET [0.1, 0.2, 0.3, ..., 3.3, 3.4]

MTTOV [12.5, 25, 50, 100, 600, 1100,
1600, 2100, ..., 14600, 15100]

Table 5.5: Input parameters (MIAT
varying) used in a perfectly secure en-
vironment with an encryption process
in place

Simulation results for different values of BS and MIAT are shown in Figure 5.6

and Figure 5.7, respectively. We realise, from Figure 5.6, that:

• The buffer size, BS, has very little influence on the responses.

• The ear remains unaltered regardless. This is because the link controlling the

arrival process is not activated yet, and therefore the packets are generated

without any interruption.

• The longer the security key length, the longer the encryption time and that.

As the encryption time is increasing, the server utilisation is increasing too.

• A fully utilised server ends up losing arrival packets. This is confirmed by the

plp graph. It further shows that the probability of loss for shorter buffers is

higher, which is well understood.

• Any increase in plp should also be reflected in the throughput of the system.
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This can be seen by the sth graph which begins to decrease by any further

increase in encryption time.

• The severe implications of encryption for performance is clearly observable

when the utilisation of encryption is compared with that of transmission.

While the latter is almost negligible, it further decreases as the system loses

more packets in case of longer keys.

• The security metrics are identical to those of previous scenario. This is ex-

pected since the node is not subject to any security threats yet, and as before,

it is always secure.

• Although the cpsm1/cpsm2 metrics begin to decrease/increase, respectively,

as the key length increases, they do not show any optimal values. Clearly, the

lower the security key, the less performance implications of security.

For different arrival rates, the trend continue to remain the same except that the

abrupt changes in the responses are shifted to the left/right for higher/lower arrival

rates. Figure 5.7 shows the simulation results, where all experiments are run for a

fixed buffer size of BS=30. In brief, we realise that

• All security metrics remain the same as before since nothing has really changed

from security point of view.

• Despite some higher arrival rates, the plp still confirms that the buffer size

(BS=30) together with the server rate are sufficiently high to guarantee zero

packet loss.

• The changes in the arrival rate are correctly and expectedly reflected in both

ear and sth graphs. The same is for utilisation of the server since higher

arrival rates would require more server times, which is observable from ssu

and tu plots.

• AS before, there are no optimal points for neither cpsm1 nor cpsm2.
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Figure 5.6: Despite a perfectly secure environment, an encryption mechanism is
employed to highlight the overhead. Given MIAT=2, the graphs show simulation
results for three different values of the BS parameter. The x-axes, shared among
all graphs, indicate the encryption times corresponding various security key lengths
(34 different keys). For both performance and security individual metrics, the y-
axes indicate either probability or normalised values varying in the range of [0-1],
whereas for Combined metrics they only indicate plain numbers, achieved by adding
corresponding values of some individual metrics making each Combined metric.
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Figure 5.7: Despite a perfectly secure environment, an encryption mechanism is
employed to highlight the overhead. Given BS=30, the graphs show simulation
results for three different values of the MIAT parameter. The x-axes, shared among
all graphs, indicate the encryption times corresponding various security key lengths
(34 different keys). For both performance and security individual metrics, the y-
axes indicate either probability or normalised values varying in the range of [0-1],
whereas for Combined metrics they only indicate plain numbers, achieved by adding
corresponding values of some individual metrics making each Combined metric.
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5.2.2 Optimal Key Length Scenario

It is time to move on to a more realistic model where the node is subject to security

threats from outsiders and that further security measures are employed to prevent

intrusion as well as unauthorised access to the data. The model configuration for

this scenario is the same as those drawn in figures 5.1 and 5.2 above, where all

security related tasks are once again active and operational.

Following a similar procedure as above, simulation experiments are executed for

different buffer sizes and arrival rates as detailed in Table 5.6 and Table 5.7.

Name Value(s)
BS [10, 30, 50]

MIAT [2]

MTT [0.1]

MIT [0.1]

FA [0]

MIIT [30]

MET [0.1, 0.2, 0.3, ..., 3.3, 3.4]

MTTOV [12.5, 25, 50, 100, 600, 1100,
1600, 2100, ..., 14600, 15100]

MTTR [360]

TOEP [0.5]

VDP [0.8]

Table 5.6: Input parameters (BS
varying) used to identify optimal keys
where the node is subject to the out-
siders

Name Value(s)
BS [30]

MIAT [1, 1.5, 2]

MTT [0.1]

MIT [0.1]

FA [0]

MIIT [30]

MET [0.1, 0.2, 0.3, ..., 3.3, 3.4]

MTTOV [12.5, 25, 50, 100, 600, 1100,
1600, 2100, ..., 14600, 15100]

MTTR [360]

TOEP [0.5]

VDP [0.8]

Table 5.7: Input parameters (MIAT
varying) used to identify optimal keys
where the node is subject to the out-
siders

Simulation results are illustrated in figures 5.8 and 5.9, revealing very interesting

insights into the node model. The key finding is that the node now becomes a

bottleneck not only for longer but also for shorter security keys. While encryption

mechanism is the major cause of bottleneck for longer keys, we learn that increased

recovery time, due to frequent security attacks, severely impacts the performance

of the system for shorter keys. Below comes more detailed interpretation of what is

happening in these graphs as follows.

• Recall that all normal operations in the node are frozen during a recovery

period, packet generation is no exception. Employment of shorter security
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keys leads to a less secure node; such a susceptible node would end up in

Recovery state more often, hence longer frozen times overall.

• The sth graph now significantly drops for shorter keys. This is associated with

the frequent denial of arrivals, which is also in line with the ear graph.

• Unlike previous scenarios, the node is no longer always secure; this is well

understood. The security metrics are now indicating the probabilities of the

node being secure, vulnerable, insecure or recovery.

• While there is no optimal (maximum) in neither sth nor ssp with respect to

any security key length, cpsm1 exhibits a clear optimal for a certain key.

• There is no optimal (minimum) for any constituents of cpsm2 either; never-

theless, for the very same key length, cpsm2 exhibits a clear optimal (mini-

mum).

• We also learn that these optimal keys may vary with respect to the BS pa-

rameter; the smaller the buffer size, the shorter the optimal key.

• Although the graphs may look different, the arrival rate has similar influence

as the buffer size. The higher the arrival rate, the shorter the key length.

• The BS parameter has a very similar influence on the response, though in a

smaller scale. In other words, shorter buffer sizes tend to shift the optimal

trade-offs towards left.
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Figure 5.8: The graphs show the impact of outsider threats and the overhead re-
sulted from an encryption mechanism employed to tackle with such threats. Given
MIAT=2, simulation results are achieved for three different values of the BS param-
eter. As before, the x-axes are shared among all graphs, indicating the encryption
times corresponding various security key lengths (34 different keys). For both per-
formance and security individual metrics, the y-axes indicate either probability or
normalised values varying in the range of [0-1], whereas for Combined metrics they
only indicate plain numbers, achieved by adding corresponding values of some indi-
vidual metrics making each Combined metric.
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Figure 5.9: The graphs show the impact of outsider threats and the overhead resulted
from an encryption mechanism employed to tackle with such threats. Given BS=30,
simulation results are achieved for three different values of the MIAT parameter.
As before, the x-axes are shared among all graphs, indicating the encryption times
corresponding various security key lengths (34 different keys). For both performance
and security individual metrics, the y-axes indicate either probability or normalised
values varying in the range of [0-1], whereas for Combined metrics they only indicate
plain numbers, achieved by adding corresponding values of some individual metrics
making each Combined metric.
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5.2.3 False Alarm Scenario

Recall that FP and FN are inherent characteristics of every security measure and

putting FA=0 would be somewhat unrealistic. In this section, therefore we investi-

gate the impacts of different FA rates on optimal keys identified in previous sections.

Table 5.8 provides the list and settings of input parameters used in these models.

Name Value(s)
BS [30]

MIAT [2]

FA [0, 0.005, 0.01, 0.02]

MTT [0.1]

MIT [0.1]

MIIT [30]

MET [0.1, 0.2, 0.3, ..., 3.3, 3.4]

MTTOV [12.5, 25, 50, 100, 600, 1100,
1600, 2100, ..., 14600, 15100]

MTTR [360]

TOEP [0.5]

VDP [0.8]

Table 5.8: Input parameters used to identify optimal keys (impact of FA parameter)

The simulation outcomes, shown in Figure 5.10, exhibit an explicit trend with re-

spect to FA. We observe that increasing FA rates leads to significant drops in both

sth and ssp. Here is why as follows.

• Let us begin with the FA rates equal to 0, which implies the security measures

perform perfectly accurately; that is, they are capable of identifying the secu-

rity state of the node correctly at all times, whether it be secure or insecure

state. As such, the false alarm activities (FP & FN) in security submod-

els never fire, delivering the most optimistic results that are solely useful for

comparison purposes.

• Real life systems, however, usually come with non-zero FA rates. These may

pose significant performance penalties and security concerns to computer net-

works, which are well worth careful investigations. Figure 5.10 shows the

simulation results under various settings for FA. Here, a FA rate equal to 0.02,

for instance, would imply that the security measure, in 2 out of 100 inspec-

tions on average, would either falsely signal a security attack (FP: fires the
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Figure 5.10: Impact of the FA parameter on optimal security keys, showing how
different rates of FA (associated with the intrusion detection systems in place) -
either FN, FP or both - can possibly affect both performance and security metrics.
The Combined metrics reveal that the exact value of the FA parameter can lead
into meaningful changes in the optimal keys.
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FalseAlarm activities) or fail to detect a real security attack (FN: Case 2 of

HIDS, NIDS and VScan activities).

• More specifically, an FP is issued when the system is actually secure but

the intrusion inspection erroneously signals an alarm, hence an unrequired

recovery. We note that FP rates are associated with increased unavailability,

thereby leading to performance implications (reduced throughput). An FN is

issued when the system is insecure but the intrusion inspection fails to detect.

This can be extremely costly in system life cycle as the attackers have access

to the resources without administrators’ knowledge. The FN rates thus are

associated with increased likelihood of data breaches.

• Figure 5.10 shows that the FA rates have significant impact on both perfor-

mance and security, as expected; nevertheless, they do not appear to shift

(meaningfully) the optimal security key.
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5.2.4 Optimal Inspection Interval Scenario

MIIT is the parameter that determines the average inspection interval between two

successive executions of a security measure deployed. Thus far, this has been set to

a fixed default value of 30 (units of time). In this scenario, however, we let MIIT

vary across a range of preselected values so as to allow for sensitivity analysis of

performance and security metrics with respect to MIIT.

Table 5.9 below provides settings for all input parameters used in this scenario.

Name Value(s)
BS [30]

MIAT [2]

MIIT [10, 30, 50, 100, 200]

FA [0.005]

MTT [0.1]

MIT [0.1]

MET [0.1, 0.2, 0.3, ..., 3.3, 3.4]

MTTOV [12.5, 25, 50, 100, 600, 1100,
1600, 2100, ..., 14600, 15100]

MTTR [360]

TOEP [0.5]

VDP [0.8]

Table 5.9: Input parameters used to identify optimal keys (impact of MIIT param-
eter)

For each MIIT value given in the table, simulation experiments with respect to secu-

rity key length are repeated. Figure 5.11 outlines the outcomes for both performance

and security metrics as follows.

• Recall that for FA=0, the higher the execution rate (shorter inspection inter-

val), the higher the security of the node overall. However, security inspection

tasks are computationally expensive and therefore lower MIITs are likely to

impose undue computational overheads on the server, hence more performance

loss.

• Non-zero FAs imply that security measures may occasionally fail to identify

the true state of security and therefore take wrong actions, either further

penalising performance or increasing the chance of data breaches. Here, higher

inspection intervals can mean that the node will have to wait for longer periods
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Figure 5.11: Impact of the MIIT parameter on optimal security keys, showing how
various settings for the time intervals between security inspections (associated with
the intrusion detection systems in place) can possibly affect both performance and
security metrics. The Combined metrics reveal that there in fact an optimum in-
terval, not too short not too long, for which the Combined metrics can be further
improved and optimised. 98



(until the following inspections are initiated) once misidentified. In case of

lower inspection intervals, these periods can be much shorter; however, due to

increased rate of misidentification, the overall times spend in falsely identified

security states will increase.

• Both cpsm1 and cpsm2 exhibit an explicit optimal value, except for FA=0.

This is contrary to common belief that intrusion inspection systems should be

operated as often as possible to provide better security assurance. In fact, the

results confirm that we need to operate such measures at an optimal rate. In

other words, frequent execution of security measures can be as dangerous and

inefficient as operating them infrequently.
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Chapter 6

Conclusions

6.1 Research Summary

Performance and security are closely interrelated such that security measures may

require significant amounts of computational resources to execute. Moreover, in the

absence of appropriate security measures, frequent security failures are likely to oc-

cur, which may potentially lead to catastrophic network performance degradation

as well as serious data breaches.

In this thesis, we study optimisation problems for the trade-offs between perfor-

mance and security as they exist between performance and dependability. While

performance metrics are widely studied and well-established, those of security are

rarely defined in a strict mathematical sense. We, therefore, conceptualise and for-

mulate security by analogy with dependability so that, like performance, it is also

modelled and quantified.

We propose a security state transition diagram which inclusively accommodates for

all tangible states an individual computer node can, from security perspective, be

found at any given time. We then design and propose, on the basis of the state

transition diagram, a stochastic model which allows for quantitative modelling and

analysis of combined performance and security.

We adopt a simulation-based modelling approach in order to identify optimal trade-
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offs between performance and security for a single node of a generic computer net-

work, subject to a number of security threats. Based on a stochastic modelling

formalism, we propose a new nodal model which captures more realistically both

performance and security aspects, in particular the intertwinements between them.

This empirical approach utilises optimal combined metrics of both performance and

security and facilitates more sophisticated optimisation studies in this field.

We realise that system parameters can be found that optimise these abstract mea-

sures, while they are optimal neither for performance nor for security individually.

Based on the proposed simulation modelling framework, credible numerical exper-

iments are carried out, indicating the scope for further work extensions for a sys-

tematic performance vs security tuning of computer networks.

6.2 Future Work Directions

In this section, we outline some research areas that may be extended from this thesis

as follows.

Energy Consumption

Approaches to extend the system or network lifetime in wireless networks, mostly

in wireless sensor networks [3, 17, 31, 33, 59, 81, 102, 116], and MANET [55, 92,

99], have generally been considered in terms of reducing energy consumption. Many

energy-efficient algorithms have been devised to prolong network lifetime while meet-

ing performance requirements with minimum energy consumption. A system failure

is often defined as when the first node fails [3, 31, 33, 59, 81, 92, 102, 116], or when

a majority of nodes (say more than one half) fail due to energy depletion [17].

The focus of this thesis is to model the implications of both security attacks and

the legitimate security mechanisms designed to thwart such attacks, and investigate

the trade-offs between them. Security attacks, for instance, can take the forms of

resource starvation or resource exploitation [76], where attackers make attempts to

either access and control unauthorised resources for their own benefits or just simply
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use them wastefully to minimise the lifetime of a system under attack. In addition,

security mechanisms may require significant amount of energy to run throughout

the system lifecycle. While both deployment of further security mechanisms and

use of longer security keys tend to provide higher security levels, they usually come

at the cost of higher energy consumptions; at the same time, the absence of security

mechanisms or use of shorter security keys increase the chance of malicious attacks,

which in turn can lead to increased wasteful use of energy by intruders. It is clear,

therefore, that both attackers and security measures demand substantial amounts

of processing power (energy) to accomplish their tasks, one making a wasteful use

of the system and the other trying to protect it!

We also realise that, depending on the security status of the system, security mea-

sures as well as attacking behaviours may have to dynamically adopt to new con-

ditions; such real world complexities may as well require models with adoptable

topologies and dynamically changing service rates in order to accurately represent

performance and energy implications of security.

Below are some processes that may consume substantial amount of energy and need

to be considered in the models as follows.

• During secure states, extra computational resources are required to run le-

gitimate processes driven by security measures, which are employed for the

purpose of security assurance. This is the only cost contribution of security in

terms of energy where the system is secure.

• When security state of the system is either vulnerable or insecure, security

measures may need to work harder, e.g. due to deviations from normal profiles.

They would therefore require even longer service times, thus more energy.

• The system may be subject to various kinds of starvation attacks (CPU, Mem-

ory, Resource and Network starvation attacks), implying that the resources will

be even more utilised to cope with the demand, now coming from both legiti-

mate and malicious activities. If in any vulnerable or attack states, the extra

processing should be reflected in the amount of energy consumption.
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Currently, these extra processing opportunities during pre-attack or attack phases

are not considered. In future, combined performance and energy models can be

introduced taking these into account. In particular, this would be helpful to study

systems with strict energy constraints, e.g. in MANETs, where depletion of energy

would imply unavailability of the system.

The investigation can possibly aim at identifying the primary sources of energy con-

sumption, their relation with various security threats and trade-offs between energy

and security. It is further assumed that computer networks consume more energy

when they transition to vulnerable or insecure states. During insecure periods, it is

highly likely that adversaries have achieved some success and taken control of the

system, at least partially. They would then start executing a variety of tasks to

gain unauthorised access to the data (running so many CPU/HD/RAM intensive

commands in such a short time for searching, copying, deleting, uploading, etc.)

that would not be running otherwise. Even during early stages of security attacks,

when attackers probe into the system to learn about potential vulnerabilities, the

security measures would probably be busier as they would find some signs of suspi-

cious activities, thereby consuming more energy.

We consider two different cases as follows:

• The computer system assumes no limit in the amount of energy that it can

consume, in which case, we may focus on the levels of energy consumption

under various security conditions. We realise that,

– On the one hand, the system is likely to consume more energy where the

level of security is very low. This makes sense as such a system would

be frequently broken into and, based on the assumptions, the adversaries

would intensively utilise the system resources for their own interest.

– On the other hand, the improved security is very often achieved at the

expense of putting a combination of various and lengthier security mea-

sures in place. For instance, using longer security keys for (d)encryption

which would require longer time to (d)encrypt messages, hence consum-

103



ing more energy. Also similar simulation experiments can be carried out

to examine the impact of such input parameters as FA and MIIT on

optimal trade-offs between energy and security.

• We also assume that the computer system has a certain amount of limited

energy that, once fully used up, it will stop operating and require a recovery.

It is further assumed that the system can be recharged for the same amount of

energy every time it goes through recovery. In other words, while the system

may fail due to dead battery, it is repairable and, once charged, can start

operating again.

Cost Functions

Recall that security mechanisms such as encryption, decryption or security proto-

cols come at a cost in terms of computing resources which may lead to significant

performance degradation, e.g. higher response times or lower throughputs. On the

other hand, modern computer systems are subject to a variety of malicious attacks

which, in the absence of security mechanisms, can easily end up in long unavailable

conditions or data leakage to unauthorised users. More accurate cost factors would

depend on the length of the time such system resources are exposed to intruders

and the value and volume of unauthorised data accessed, just to name a few. The

level of increased energy consumption can also be considered as a cost factor which

is caused by both security threats and security measures in place.

Wolter and Reinecke [112] provide an in-depth discussion of security cost based on

two simplified gain and lost functions, where the authors formulate an optimisation

problem for encryption. That is, the longer the security key, the longer the encryp-

tion time, the higher the cost. At the same time, a security incident has associated

costs as well. Therefore, the security key must have an optimal length so as to keep

encryption costs and the cost of security related incidents together as low as possi-

ble. Vice versa, normal operation of a system achieves revenue which is reduced by

encryption cost and, at a much higher degree, by the recovery cost from a security

incident. In order to maximise revenue, the encryption key is chosen such that the
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encryption cost is reasonably low and security incidents occur only very rarely.

There are a number of areas where these cost functions can be improved both in

terms of accuracy and practicality. Having employed SAN paradigm, we believe that

more detailed rate rewards and reward functions can be devised to provide a more

realistic reflection of cost and implications of security breaches. This may include

• The amount and value of the data exposed to potential intruders

• How long did they have access to such data

• An estimation of system unavailability period

• The amount of data purged which would need reprocessing

• Implications of performance degradation such as longer waiting and response

times, buffer lengths

• Increased packet loss probabilities

Other Considerations

In addition to Energy Consumption and Cost Functions, the current research can

be extended to generalise and incorporate more features with respect to some other

aspects such as:

• Modelling a Network: The immediate extension could be a network of several

hosts. This would allow for study of similar performance and security con-

cepts and measures across a typical computer network. It would also enable

investigation into scalability issues with regard to security protocols involved.

• Alternative Time Distributions: Lessons learned may be taken into considera-

tion to represent maturer detection systems [52] and more sophisticated attack

scenarios, providing more accurate and reliable predictive outcomes. Cho [18]

consider three attacker functions: Logarithmic, Linear and Polynomial time

attackers, as well as three similar detection functions. Others propose even a
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longer list of distributions sensible in the context of security analysis includ-

ing deterministic, exponential, hyper-exponential, hypo-exponential, weibull,

gamma and log-logistic [60, 63].

• Modelling of Various Security Threats/Measures: For the purpose of this the-

sis, we only vary the encryption times (security key lengths) and investigate

the impacts on performance and security aspects of the node. Although per-

formance implications of other security mechanisms such as anti-virus pro-

grams may be easily understood and modelled, less is known about how se-

curity levels quantitatively would be affected with respect to different tech-

niques/algorithms involved in such measures. Therefore, quantification of

other security measures in a similar way to encryption key lengths will al-

low for examination of real life systems where a number of different security

threats and their respective measures can be actively operating at the same

time.

• Cooperative Detection and Attack: Our security modules are currently mod-

elled so that both the attack submodels and their respective detection submod-

els operate independently and in a self-initiated manner, except for the times

where a successful attack of either type forces the whole system to freeze. This

can be extended such that IDRSs are both distributed and cooperative [115],

thereby representing a more realistic model with improved accuracy [54]. The

models can equally be extended to reflect the coordinated attacks targeting

the system simultaneously from various angles.

• Simultaneous Attacks: We realise that, in a real-life, there is no way to limit

the number of attackers who are simultaneously targeting a system. In other

words, while it is sensible to allow for simultaneous attacks across different

attack types1, it should perfectly be fine to assume that there might be more

than one for each of these attack types at any given moment who are making

attempts to intrude the system.
1As is the case in this research thesis where attackers of insiders, outsiders and viruses can all

be targeting the node independent from one another and possibly at the same time
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• Recall that the SSTD models are assumed to work independently. However,

it does not always make sense to assume a vulnerability is known to a certain

group of attackers but not to the others. In a real-life, if a vulnerability

is disclosed, one should expect all types of attackers, soon after, to become

aware of it, hence a dependency among SSTD models!

• Performance Implications of Security Attacks: In addition to security mea-

sures, some attack types may be computationally intensive too. The DDoS is

probably the most common attack of this type, which is usually accomplished

by flooding the system with superfluous requests in an attempt to overload

it and prevent some or all legitimate requests from being fulfilled. In its less

destructive form, an attacker may even attack the target system in order to

solely take advantage of its resources without intending to cause any harm

at all. While such performance implications of the attacks have not been

considered in this thesis, they appear really intriguing.

• Real Life Data: Any data from real life security attack/detect scenarios would

extremely be helpful in refinement of the models and the parameters involved.

Since such data is hardly made available by companies, we aim to design and

deploy a pilot Local Area Network (LAN) which is subject to various security

threats and has respective security measures to tackle them. Data collected

this way should provide useful insights into modelling and parameterisation

processes discussed earlier in this thesis.
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