
 

The University of Bradford Institutional 
Repository 

http://bradscholars.brad.ac.uk 

This work is made available online in accordance with publisher policies. Please refer to the 

repository record for this item and our Policy Document available from the repository home 

page for further information. 

To see the final version of this work please visit the publisher’s website. Access to the 

published online version may require a subscription. 

Link to publisher’s version: https://doi.org/10.1109/ACCESS.2018.2843166 

Citation: Kabir S, Yazdi M, Aizpurua JI et al (2018) Uncertainty-aware dynamic reliability analysis 

framework for complex systems. IEEE Access. 6: 29499-29515. 

Copyright statement: This work is licensed under a Creative Commons Attribution 3.0 License. 

For more information, see http://creativecommons.org/licenses/by/3.0/ 

 

https://doi.org/10.1109/ACCESS.2018.2843166
https://doi.org/10.1109/ACCESS.2018.2843166


Received April 30, 2018, accepted May 27, 2018, date of publication June 7, 2018, date of current version June 20, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2843166

Uncertainty-Aware Dynamic Reliability Analysis
Framework for Complex Systems
SOHAG KABIR 1, MOHAMMAD YAZDI2, JOSE IGNACIO AIZPURUA 3, (Member, IEEE),
AND YIANNIS PAPADOPOULOS1
1School of Engineering and Computer Science, University of Hull, Hull HU6 7RX, U.K.
2Centre for Marine Technology and Ocean Engineering, University of Lisbon, 1049-001 Lisbon, Portugal
3Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1RD, U.K.

Corresponding author: Sohag Kabir (s.kabir@hull.ac.uk)

This work was supported by the DEIS H2020 Project under Grant 732242.

ABSTRACT Critical technological systems exhibit complex dynamic characteristics such as time-dependent
behavior, functional dependencies among events, sequencing and priority of causes that may alter the effects
of failure. Dynamic fault trees (DFTs) have been used in the past to model the failure logic of such systems,
but the quantitative analysis of DFTs has assumed the existence of precise failure data and statistical
independence among events, which are unrealistic assumptions. In this paper, we propose an improved
approach to reliability analysis of dynamic systems, allowing for uncertain failure data and statistical and
stochastic dependencies among events. In the proposed framework, DFTs are used for dynamic failure
modeling. Quantitative evaluation of DFTs is performed by converting them into generalized stochastic Petri
nets. When failure data are unavailable, expert judgment and fuzzy set theory are used to obtain reasonable
estimates. The approach is demonstrated on a simplified model of a cardiac assist system.

INDEX TERMS Dynamic systems, fault tree analysis, fuzzy set theory, Petri nets, reliability analysis.

I. INTRODUCTION
Fault tree analysis (FTA) is widely used for safety and reli-
ability analysis of systems. FTA models are well-structured
and easily understood. However, they are unable to model
some aspects of system behavior such as dependencies
between subsystems and components, and ordering among
the component failure occurrences. For this reason, applica-
tion of classical FTA is limited to systems whose components
have no stochastic and temporal dependencies. However,
in practical technological systems, not all events are statis-
tically independent, and in such situations, the assumption of
statistical and stochastic independence of events can lead to
an inappropriate estimation of system reliability. In order to
model dependencies among events, classical FTA has been
extended to introduce dynamic fault trees [1] and temporal
fault trees (TFTs) [2], [3].

DFTs is a well-established dynamic version of the Fault
Tree (FT) that enables modeling time-dependent behavior in
dynamic systems. Temporal dependencies among the system
components and ordering among events are modelled using
DFT gates such as functional dependency (FDEP), Priority-
AND (PAND), and SPARE gates. These gates capture

temporal behavior, and therefore classical combinatorial
solutions for the quantification of FTs are not suitable for
DFTs. Alternative analytical solutions have been proposed
in [4], [5], but these approaches do not account for stochastic
dependencies among events or cater for uncertainty in failure
data.

DFTs can be quantified by converting them into Markov
chains [6], [7]. However, Markov chains are limited to expo-
nential distributions and the associated memoryless property.
This requirement may be too tight for modeling complex sys-
tems. Bayesian networks (BN) based methodologies [8]–[12]
have also been developed for the quantitative analysis of
DFTs. BN-based approaches can use both discrete- and
continuous- time models. When BN models are used to
quantify DFTs, first it is necessary to decide the model of
time. On the one hand, with discrete-time models the issue
of time-discretisation arises [9]. On the other hand, with
continuous-time models it may become tedious to express
the joint probability distribution of internal nodes with many
parents with a probability density function. Expert judgments
are often used for this purpose, but the integration of expert
judgement may become more tedious because it will be
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necessary to specify the information as probability density
functions instead of rules, and this is not always intuitive for
the designer and engineers.

Generalized Stochastic Petri Nets (GSPNs) [12] are also
used to quantify DFTs. The underlying reachability graph
of a GSPN is isomorphic to a continuous time Markov
chain. However, in contrast to Markov chains, GSPN models
are able to model non-exponential distributions. Similar to
BN-based models, GSPN can model stochastic dependen-
cies among events. In fact, Generalized Continuous time
BN (GCTBN) models [13] are solved by converting them
to GSPN. In addition to the benefits of BN-based mod-
els for DFT modeling, GSPN models provide a one-to-one
interface for other purposes such as formal specification
and verification, which cannot be handled with other for-
malisms. Accordingly, this work adopts GSPN as an under-
lying stochastic modeling formalism to quantify and evaluate
DFT models.

Generally, quantitative FTA assumes known failure rates
or probabilities of failure of system components. In practice,
it is often difficult to obtain this data for all the components,
which introduces uncertainty in the analysis. A few methods
have been proposed to perform quantitative analysis with
unknown and uncertain failure data. One of such approaches
is the fuzzy fault tree analysis (FFTA) [14], which is an
extension to classical fault trees where fuzzy failure data are
used in the reliability quantification process instead of crisp
values. More information about FFTA and its applications in
different areas can be found in [15]. As FFTA is an exten-
sion to classical FTs, it inherits all the limitations of the
classical FTA.

Recently, some attempts such as [16]–[23] have been made
to incorporate the concept of uncertainty in DFT analysis.
In this paper, we propose a comprehensive uncertainty-aware
framework for reliability analysis of complex dynamic sys-
tems. The framework combines DFTs with GSPN and fuzzy
set theory. DFTs are used to model the dynamic failure
behavior of systems. To quantify the DFTs including statis-
tical and stochastic dependencies, DFTs are translated into
a GSPN model. Fuzzy set theory and expert judgments are
combined together to obtain estimates of failure data for basic
events (BEs) of the DFT when such data are unavailable.

Accordingly, the contribution of this paper is the proposal
of a novel method, which is able to take into account sta-
tistical and temporal dependencies in the failure logic as
well as uncertainty modeling in component failure data. This
approach quantifies complex and dynamic systems accu-
rately taking into account temporal and stochastic depen-
dencies, and it enables the reliability analysis of complex
systems with lack of exact failure data of its constituent
components.

The rest of this paper is organised as follows. Section II
presents fundamental concepts and related work. Section III
introduces the proposed reliability analysis framework.
Section IV applies the proposed approach to a numerical case
study and finally, Section V draws conclusions.

FIGURE 1. Example fault tree.

II. BACKGROUND AND RELATED WORKS
A. DYNAMIC FAULT TREE ANALYSIS
Fault tree analysis was first introduced by Bell laboratories
in 1962 for a ballistic control system [24]. The process to
design an FTA model follows a top-down procedure, starting
from the undesired system level top-event (TE), which repre-
sents the system failure condition. The TE is decomposed into
a combination of intermediate events, which are defined with
Boolean logic. The intermediate events are further decom-
posed by using Boolean logic down to the specification of
the lowest-level event causes, which are named Basic Events
(BEs). Fig. 1 shows an FTA example.

FTA cannot accommodate temporal dependencies. For
instance, Boolean logic does not allow temporal ordering of
events the effect of which may be significant. For instance,
many systems use activation mechanisms to activate spares
when primary systems fail. Whether the activation mecha-
nism has failed before or after failure of the primary defines
whether the spare is activated. To address such issues, classi-
cal FTA was augmented with gates that capture dynamics in
the DFT method [1]. Fig. 2 below shows the main static and
dynamic gates used in DFT analysis, the function of which is
briefly defined as follows:

• Y = AND (X1, . . . ,XN), Y occurs only if all the BEs
{X1, . . . ,XN} fail simultaneously.

• Y = OR(X1, . . . ,XN), Y occurs if any of the BEs
{X1, . . . ,XN} fails.

• Y = PAND(X1, . . . ,XN), Y occurs only if BEs
{X1, . . . ,XN} fail in left-to-right graphical order. That
is, let us denote beforewith the symbol ‘‘<’’, then PAND
is defined as: Y = AND(X1 < X2, . . . ,XN−1 < XN).

• FDEP (T, D1, . . . , DN): the occurrence of the trig-
ger event T enforces the occurrence of the BEs
{D1, . . . ,DN}. This gate has no logical output.

• Y = SPARE(P,S1, . . . ,SN), the primary input P is an
active BE, while the standby inputs {S1, . . . ,SN} are
standby BEs. The standby BEs can have a dormancy
factor α that affects the failure rate of the BE indicating
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FIGURE 2. DFT logic gates.

a hot spare (α = 1), warm (1 < α < 0) or cold (α = 0)
spare.

• Y = SEQ(X1, . . . ,XN) models the sequence enforcing
event, which enforces the events to occur in an specific
left-to-right order.

A DFT model can be analysed qualitatively and quantita-
tively. The main result of qualitative analysis is the Minimal
Cut Sequence Set (MCSQ) expression, which determines
which are the temporal combination of minimal necessary
BEs that can cause the system-level failure. The main out-
come of quantitative analysis is the failure probability of the
top event (TE), typically representing the probability of a
system failure. The work presented in this paper focuses on
quantitative analysis.

Quantitative analysis requires specification of probabilistic
distributions of BEs. Widely accepted distributions include
Weibull and exponential distributions, but this is dependent
on the specific system under study. Note that the quantita-
tive analysis is not only limited to the system level failure
probability, other assessments and metrics can be extracted
from the DFT model such as the criticality analysis, which
calculates the contribution of each BE to the occurrence of
the TE.

B. PETRI NETS
Petri nets (PNs) are a graphical and mathematical modeling
formalism suitable for the specification and analysis of com-
plex, distributed and concurrent systems [25]. A conventional
PN is a bipartite directed graph containing a finite set of
places, a finite set of transitions, and a finite set of directed
arcs. In a PN model, places and transitions are graphically

FIGURE 3. Example of a PN.

represented by circles and rectangles, respectively. Directed
arcs are used to connect places to transitions and transitions to
places. Tokens (black dots) are used to specify the states of the
places in a PN model. The enabling condition of a transition
is defined as the presence of a certain number of tokens in its
input place(s). When a transition fires, a certain number of
tokens are deposited to the output place(s) of the transition.

Classical PNs are suitable to model simple behavior of
systems, however, to model more complex scenarios, PNs
have been extended with different features. One such feature
is the inhibitor arc, which is usually represented by an arc
that ends in a small circle. This type of arc is different from
a normal arc because it enables a transition when the input
place has no token and it disables a transitionwhen a place has
a token, i.e., opposite behavior of the normal arc. Stochastic
Petri nets (SPNs) [26] are another extension of PNs that
allow defining exponentially distributed transition delays.
GSPNs [13] extended SPNs by allowing inclusion of
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immediate and timed transitions in a single PN model. Black
and white bars are used to represent immediate and timed
transitions, respectively. In a GSPN model, an immediate
transition has priority over a timed transition and fires first
when both are enabled to fire simultaneously.

Application of PNs for system safety and reliability anal-
ysis can be traced back to 1980s [27], [28]. In [29] and [30]
methodologies have been proposed to convert classical fault
trees to PNs for reliability evaluation. DFTs have been trans-
lated into GSPNs for reliability analysis of dynamic systems
in [31]–[33].

FIGURE 4. Diagrams for a classical set (Boolean) and a fuzzy set [35].

C. FUZZY SETS IN UNCERTAINTY ANALYSIS
The fuzzy set theory was formalized in 1965 by Zadeh [34],
and also has been widely applied, including for dealing with
uncertainty in safety and reliability analysis. The use of
qualitative fuzzy terms indeed provides flexible modeling of
imprecise data and information. The main purpose of fuzzy
terms is to assist gradual transition between varieties of condi-
tions. A classical set contains expressions, which satisfy exact
characteristics of membership. On the other hand, a fuzzy set
contains expressions that satisfy ambiguous characteristics
of membership, i.e. the characteristics of fuzzy set expres-
sions can be partial. A comparison between a classical set
(Boolean) and a fuzzy set can be seen in Fig. 4. As it can
be seen for classical sets, in a universe U, an element D can
either be a member of some crisp set S or not. This binary
characteristic of membership can be defined as follows:

US =

{
1 when D ∈ S(D is a member of S)
0 when D /∈ S(D is not a member of S)

(1)

The characteristic of the binary membership is extended
by Zadeh to incorporate the different rate of membership on
the real continuous distance interval from zero to one [0, 1].
Zero means that there is nomembership whereas the endpoint
of the distance (one) indicates complete membership. A set
of universe U, which accommodates rates of membership is
named a fuzzy set. Thus, using the mathematical notation
µS̃ (D) ε[0, 1], a fuzzy set S̃ can be defined with µS̃ (D) the
rate of membership of element D in S̃, or briefly membership
of S̃. The value of µS̃ (D) belongs in the distance interval
[0, 1] and corresponds to the rate to which element D is a
member of fuzzy set S̃. The higher the value of µS̃ (D) the

stronger the rate of membership of D in S̃. Information about
arithmetic operations on fuzzy numbers can be found in [36].
Several developments of fuzzy set theory have been pro-

posed to improve the flexibility of conventional fuzzy set
theory. Atanassov [37] introduced an extension of fuzzy set
theory called intuitionistic fuzzy sets. These include member-
ship as well as non-membership functions, and can deal better
with uncertainties that may happen from biased results. How-
ever, intuitionistic fuzzy sets increase complexity and compu-
tation time. Chen and Hwang [38] developed fuzzy reasoning
using algebraic properties of fuzzy sets in order to provide
a solution to complex problems, including bounded-sum,
unbounded-sum, union, intersection, and algebraic product.
In addition, Atanassov [39] introduced an extension to intu-
itionistic fuzzy sets with hesitation margin groups to cope
with complexity. However, computation time remains a sig-
nificant limitation of this model.

III. THE PROPOSED UNCERTAINTY-AWARE DYNAMIC
RELIABILITY APPROACH
The framework of the proposed approach is shown in Fig. 5.
The approach consists of four steps: Fault Tree Modeling,
Petri Net Modeling, Failure Data Collection, and Reliability
Quantification. Fault Tree Modeling deals with the creation
of a DFT of the system under study. Petri Net Modeling and
Failure Data Collection are executed in parallel, where in the
Petri Net Modeling step the DFT is mapped into a GSPN
model and in the Failure Data Collection step the failure
rate of BEs with unknown data are collected. These data
are then incorporated into the GSPN model. The final step
is the Reliability Quantification, where all the analyses are
performed on the GSPN model. Detailed descriptions of the
steps are provided in the following subsections.

A. FAULT TREE MODELLING
In this step, the dynamic behavior of systems is modelled
using DFT. As DFT is an extended version of classical fault
trees, it can be created following the procedure described
in the fault tree handbook [40]. The objectives of a DFT
in general include (1) identifying all possible ways of caus-
ing an undesired event which is called top event (TE),
(2) providing a provable record of the analysis process, and
(3) providing the foundations of design evaluation and prac-
tical alternatives [41].
Selection of a TE requires good knowledge of sys-

tem function and from that projection of hazardous devi-
ations from that function. An example TE is ‘‘failure
of control circuit M which sends a signal when it is
necessary’’ [42], [43]. Boundary conditions are then deter-
mined distinguishing which failures and contributing factors
will be included in the analysis and which are not. Finally,
the resolution is determined defining the level of detail in
the analysis of root causes. DFTs are constructed in a top-
down fashion using the logic gates outlined in section II.A to
show the logical and temporal connections between events.
The following sections deal with DFT evaluation.
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FIGURE 5. Framework of the proposed uncertainty-aware approach.

B. PETRI NET MODELLING
This step takes the DFT generated in the previous step as
input and converts it into a GSPN model. Each DFT module
(e.g., basic event, logic gate) is translated into a GSPN sub-
net and all the sub-nets are combined to obtain an overall
GSPN of the DFT. The conversion of DFTs to GSPN is done
by following the concepts from [29]–[32], [44]. The GSPN
model of a BE is shown in Fig. 6. The place x.up represents

the state when the basic event x has not occurred, i.e., the
component associated with the BE has not failed. The timed
transition x.f is characterised by the failure rate of the BE.
If the failure rate (λ) is exponentially distributed, then the
probability that the transition is fired at the time instant t is
1−e−λt .The place x.dn represents the failed state of the basic
event x. This place receives token when x.f fires. Note that the
failure rate of some BEs may not be available. The GSPN of
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FIGURE 6. GSPN of a basic event.

FIGURE 7. GSPN of AND gate.

FIGURE 8. GSPN of OR gate.

such events would still be created, but the value of the firing
rate of the timed transition is left empty, and incorporated
later on using expert judgment.

GSPN of Boolean gates (AND and OR) are shown in
Figs. 7 and 8, respectively. In the GSPN model of the AND
gate, all input places (X1.dn,X2.dn, . . . ,Xn.dn) are connected
to a single immediate transition. When all the input places
get a token, then the immediate transition fires and deposits
a token to the output place, X.dn, i.e. all inputs of the AND
gate must be true to make the outcome of the AND gate true.
Unlike the GSPN model of the AND gate, the GSPN model
of the OR gate represents disjunction of events. In the latter,
each of the input places is connected to distinct immediate
transition, which makes sure that the output place will get a
token when any of the place gets a token, i.e., the output of

FIGURE 9. GSPN of PAND gate.

FIGURE 10. GSPN of FDEP gate.

the OR gate becomes true when any of the inputs becomes
true.

In the GSPN model of the PAND gate, the place X.dn
represents the outcome of the PAND gate. If events occur
in a required sequence, then this place gets a token. If the
sequencing is violated, then the place X.ok gets a token,
a confirmation that PAND gate output cannot be true. This
place is connected to the immediate transition Tn using an
inhibitor arc, which ensures that the place representing the
PAND gate outcome will not get a token if all the input events
of the PAND gate occur but not in the required sequence.

The GSPN model in Fig.10 models the behavior of the
FDEP gate. As seen in section II.A, the FDEP gate has no
logical output. If the trigger event occurs, the dependent
event will also occur. In the GSPN model, the place T.dn
represents the failed state of the trigger event, whereas the
places {D1.dn, . . . ,Dn.dn} represent the failed state of the
dependent events. The dependent events can fail indepen-
dently due to their internal failures and the places representing
their failed states can get tokens. However, as seen in the
Fig. 10, the places {D1.dn, . . . ,Dn.dn} will get a token if the
place T.dn gets a token, i.e., dependent events will occur if
the trigger event occurs.

The GSPNmodel of a warm spare gate is shown in Fig. 11.
The places S1.dn and S2.dn represent the failed state of
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FIGURE 11. GSPN of SPARE gate.

the two spare components S1 and S2, respectively. For both
components, it is possible to reach the failed state in two
ways. In the first way, when the components are in passive
mode, the internal failure of the components will take them to
failed states. In the GSPN model, S1.passive and S2.passive
represent the passive modes of the two spare components.
Timed transitions S1.p_f and S2.p_f are two timed transitions
representing the failure rate of the components in passive
mode. Firing of these transitions will take the components
to their failed mode. In the second way, firstly, the spare
components are activated due to the failure of the primary
component. This scenario is modelled by immediate transi-
tions wsp1 and wsp2 for components S1 and S2, respectively.
Timed transitions S1.a_f and S2.a_f are two timed transitions
representing the failure rate of the components in their active
mode and firing of these transitions will take the components
from their active mode to their failed mode. When places
P.dn, S1.dn and S2.dn get marked (i.e., all components failed),
the immediate transition wsp3 will fire and deposit a token to
place Y.dn, i.e., making the outcome of the spare gate true.
A cold spare gate can be modelled using GSPN in the similar
way; however, for the cold spare gate the part showing the
failure of the spare components in passive mode will not be
required.

A GSPN model of a SEQ gate is shown in Fig. 12. This
model forces the input events to occur in a sequence. For
instance, if we consider timed transition X2.f , this can fire
only after X1.dn gets a token, i.e., when the event X1 occurs.
In this way, the GSPN model ensures that the event X2 can
occur only after X1. The place X.dn represents the outcome
of the SEQ gate and this place will get a token when the
last event in the SEQ gate becomes true thus maintaining the
sequencing.

Given the above conversion rules for the basic event and
the logic gates, Fig.13 shows a pseudocode of a function
that converts a DFT to GSPN in the course of a depth first
traversal of the DFT. We assume a typical computational
representation of a tree, where a gate is a ‘node’ pointing to a
‘child’ (first input to the gate) which is then linked to a list of

FIGURE 12. GSPN of SEQ gate.

siblings representing the rest of gate inputs. Basic events do
not have a child and can be detected as such.

The function is called with the top event of the DFT as
argument. The tree is traversed via a recursive call until basic
events are found and translated to simple GSPN modules
using the rules given in the paper. When gates are encoun-
tered, the algorithm determines whether inputs to the gate
have been translated to GSPN or not. If inputs have not
yet been translated, a recursive call is initiated to do the
translation bottom up at lower levels first. On the other hand,
if inputs to the gate have been translated, then a GSPN
module for the gate can be constructed using the rules given
in this section for each type of gate and the input GSPNs.
Progressively, gates at higher level of the tree and ultimately
the top event of the DFT are translated to GSPN using appro-
priate rules and input GSPN modules. The computational
complexity of this translation process depends on the size and
complexity of the DFT itself. Moreover, the types of logic
gates that are translated also affects the performance of the
translation process.

C. FAILURE DATA COLLECTION
The BEs of the DFT can be classed into those with known
failure rates and those with unknown failure rates. Known
failure rates are typically determined by consulting reliability
data handbooks such as PDS or OREDA [45], [46]. For
estimation of unknown failure rates, methods include statis-
tical extrapolation, and expert judgment [47]. In this study,
the expert judgment method is used as an integration of fuzzy
set theory and subjective opinions [48]. Various methods are
available to aggregate experts’ opinion, such as fuzzy pri-
ority relations, game theory, arithmetic averaging operation,
max–min Delphi method, and similarity aggregation method
(SAM) [49], [50], [51]. Liu et al. [52] have argued that there
is no way to determine which technique is superior.

In this study, we have opted for the SAM method, which
considers both homogeneous and heterogeneous groups of
experts. The qualitative terms used in the study to express and
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FIGURE 13. Pseudocode to convert DFT to GSPN.

collect the experts’ opinions are defined as a combination of
fuzzy triangular and fuzzy trapezoidal numbers from which
failure rates are estimated [53]. The group of experts was
defined as heterogeneous because in practice their opinion
brings different value and weight to the final result. Conse-
quently, for qualifying the measurements, the relevance of
the experts was ranked using a methodology that takes into
account the professional position, job experience, education
level, and age (see [54]–[59]). The score rating of the experts
was determined according to Table 1.

The rating of an expert judgment can be done according
to the weight given to each BE. The concept of linguistic
expressions has a high value in dealing with any circum-
stances that are ill-defined or complex to be described in
the old model of quantitative expression [24]. In order to
convert qualitative terms to corresponding fuzzy numbers,
Chen and Hwang [38] represented a numerical approxi-
mation. To acquire this criterion, there are common ver-
bal expressions in the system. Chen’s conversion scale
is provided in Table 2 in which scale one contains
two verbal terms and scale eight contains thirteen verbal
terms [60], [61]. In addition, Lavasani et al. [58] suggested
that humans are capable of distinguishing effectively between
five and nine linguistic expressions that cover a range of
possible outcomes. Using this theory, we have opted for a
scale of six using five verbal terms that provide options for the
subjective evaluation of experts with regards to estimating the
probability of failure. Table 3 presents the fuzzy membership
function in the form of trapezoidal numbers.

TABLE 1. Score rating according to the expert’s traits.

The linguistic expressions of Fig. 14 are in the form of both
triangular and trapezoidal fuzzy numbers and it is possible to
transform all the triangular fuzzy numbers to the correspond-
ing trapezoidal fuzzy numbers. Table 3 illustrates the fuzzy
numbers of Fig. 14 in the form of trapezoidal numbers.
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TABLE 2. Qualitative terms and their corresponding fuzzy numbers [38].

TABLE 3. Fuzzy numbers of conversion scale six.

FIGURE 14. Transformation of scale six.

Let us assume that each expert, El(l = 1, 2, . . . ,m)
expresses their viewpoint about a specific attribute in a certain
context using qualitative terms. The qualitative terms are
converted to the corresponding fuzzy numbers as follows:
Step 1: Computing the degree of similarity (degree of

agreement). Suv
(
R̃u, R̃v

)
is defined as similarity between

opinions of each pair of experts Eu and Ev. If Ã = (a1, a2, a3)
and B̃ = (b1, b2, b3,) are the two standard triangular fuzzy
numbers, the degree of agreement function of S is defined as:

S
(
Ã, B̃

)
= 1−

1
j = 3

j=3∑
i=1

|ai − bi| (2)

Step 2: When (Ã, B̃) ∈ [0, 1], the greater the value
of S (Ã, B̃) the higher the similarity between two experts
with respect to fuzzy numbers Ã and B̃. For two standard

trapezoidal fuzzy numbers, the value of j in Equation (2)
should be equal to 4.

The Average of Agreement (AA) degree AA(Eu) of an
expert’s opinions is given by:

AA (Eu) =
1

m− 1

m∑
u 6= v
v = 1

S(R̃u, R̃v) (3)

Step 3: The Relative Agreement (RA) degree, RA(Eu) of
all experts is given by:

Eu (u = 1, 2, . . . ,m) as RA (Eu) =
AA(Eu)∑m
v=1 AA(Ev)

(4)

Step 4: The Consensus Coefficient (CC) degree, CC(Eu)
of expert opinions, Eu (u = 1, 2, . . . ,m) is given by:

CC (Eu) = β ·W (Eu)+ (1− β) · RA (Eu) (5)

WhereW (Eu) is the weighting factor for expert Eu. Using
the weighting criteria from Table 1,W (Eu) can be calculated
as:

W (Eu) =
WS(Eu)∑m
j=1WS(Ej)

(6)

where WS(Ej) is the total weight scored by an expert Ej.
The coefficient β in Equation (5) is presented as a relax-

ation factor of the untaken procedure satisfying 0 ≤ β ≤ 1.
It illustrates the importance of W(Eu) over RA(Eu). When
β = 0, no weight could be given to it by the experts and
thereby a homogenous group of experts should be employed,
whereas β = 1 signifies that the consensus degree among the
different expert opinions is high enough to assign it to good
weight.

Hsu and Chen [62] suggest that the consensus coefficient
of each expert is better known when the comparative com-
petency of each expert opinion is estimated. Therefore, it is
important for the decisionmaker to obtain a proper value of β.
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FIGURE 15. The CAS dynamic fault tree (modified after [8]).

Step 5: The aggregated result of the experts’ judg-
ment R̃AG, can be calculated as follows:

R̃AG = CC (E1)× R̃1 + CC (E2)

× R̃2 + · · · + CC (Em)× R̃m (7)

Step 6: Defuzzification procedure. In the fuzzy set
theory, defuzzification is employed to arrive at a crisp
quantified outcome. Zhao and Govind [63] explore defuzzi-
fication issues in the application of fuzzy control in indus-
trial operations. In general, the way defuzzification is done
defines further decision making in a fuzzy environment.
In this study, the center of area (CoA) of the defuzzifica-
tion environment method is employed to obtain crisp failure
possibilities (CFPs) of BEs. This method was extended by
Sugeno et al. [64]. Equation (8) defines how deffuzzified
output is derived using this technique from fuzzymembership
functions:

X∗ =

∫
µi (x) xdx∫
µi (x) dx

(8)

where X∗ denotes the defuzzified output, µi (x) models the
aggregated membership function, and x denotes the output
variable.

TABLE 4. The CAS basic events (components) and their reference tags.

Equation (8) can be applied to both trapezoidal and trian-
gular fuzzy numbers.

Defuzzification of triangular fuzzy number Ã = (a1, a2, a3)
is given by equation (9).

X∗ =

∫ a2
a1

x−a2
a2−a1

xdx +
∫ a3
a2

a3−x
a3−a2

xdx∫ a2
a1

x−a2
a2−a1

dx +
∫ a3
a2

a3−x
a3−a2

dx
=

1
3
(a1+a2+a3)

(9)
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FIGURE 16. GSPN model of the DFT of Fig.15.

Defuzzification of trapezoidal fuzzy number Ã = (a1, a2,
a3, a4) can be obtained by Equation (10).

X∗ =

∫ a2
a1

x−a1
a2−a1

xdx +
∫ a3
a2
xdx +

∫ a4
a3

a4−x
a4−a3

xdx∫ a2
a1

x−a1
a2−a1

dx +
∫ a3
a2
dx +

∫ a4
a3

a4−x
a4−a3

dx

=
(a4 + a3)2 − a4a3 − (a1 + a2)2 + a1a2

3 (a4 + a3 − a2 − a1)
(10)

Step 7: Converting corresponding crisp possibility of BEs
into failure probability (FP).

Equation (11) is expressed by Onisawa [65] to convert
crisp possibility of BEs into corresponding FP. Onisawa [65],
[66] have mentioned that this Equation is obtained by certain
characteristics including appropriateness of anthropomorphic

feeling to the logarithmic amount of a physical value.

FP =

{
1/10K , CFP 6= 0
0, CFP = 0, K

=

[(
1

CFP
− 1

)]1/3
× 2.301 (11)

If the FP is obtained for exponentially distributed data and for
time t, then the failure rate of the BE can be determined as:

λ =
− ln (1− FP)

t
(12)

D. RELIABILITY QUANTIFICATION
The timed transitions of the GSPN model created in
step 3 can now be completed with the failure data that have

VOLUME 6, 2018 29509



S. Kabir et al.: Uncertainty-Aware Dynamic Reliability Analysis Framework for Complex Systems

TABLE 5. Expert weighting.

TABLE 6. Details of the experts.

TABLE 7. Experts’ decision on the unknown BEs (components).

been estimated using fuzzy set theory and expert judgment.
At this point, a mission time for the system can be defined
and the completed GSPN model can be simulated to predict
the reliability of the system for this mission time.

1) CRITICALITY ANALYSIS
Criticality analysis allows identifying the critical BEs in the
dynamic fault tree. The criticality of a BE is determined
by calculating its contribution to the TE probability. This
information can identify the weakest parts of the system, thus
pointing towards areas for design improvement. Different
criticality analysis techniques such as Birnbaum importance
measures (BIM) and risk reduction worth [40] are widely
used.

Using BIM, the contribution of a BE to the occurrence
of the TE is determined by taking the difference between
the TE probability, by setting the occurrence of the BE to
1 and 0, respectively. In our proposed framework, we can use
the GSPN model to obtain BIM of BEs as follows:

IBIMBE i = P (Top Event|BE i = 1)− P (Top Event|BE i = 0)

(13)

Where IBIMBE i is the BIM of the basic event BE i,
P (Top Event|BE i = 1) is the probability of the TE given that
the probability of the BE i is 1 and P (Top Event|BE i = 0) is
the probability of the TE given that the probability of the BE i
is 0.

To make the probability of the BE i equal to 1, in the GSPN
model, we have to set the firing rate of the corresponding
timed transition to 1. On the other hand, to make a component
fully available, i.e. consider the probability of a BE to be 0,
we need to remove the token from the place representing
the event. By doing this, we are ensuring that the transition
connected to the place will never fire during the simulation.
When the BIM of all components have been determined,
we can rank them. The higher the BIM of an event, the more
the critical the event is.

IV. NUMERICAL EXAMPLE
To illustrate the application of the proposed method, we use
a benchmark case study of a simplified Cardiac Assist
System (CAS) in [8]. The system consists of four modules:
trigger, CPU unit, motor section, and pumps. The DFT of
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TABLE 8. Aggregation calculations for the BE.1.

TABLE 9. Defuzzification of numbers and corresponding FP of each BEs.

the CAS is shown in Fig.15. BEs of the DFT with their
reference tags are shown in Table 4. As seen in the DFT,
the trigger connected to the FDEP gate can become true due
to the failure of either the crossbar switch (CS) or the system
supervision (SS) or both. This trigger will cause both CPU
units (P and B) to fail. The CPUs themselves are in warm
spare configuration, where P is the primary unit and the B is
the backup unit with a dormancy factor of 0.5. For the motor
section of the system to fail, both MOTOR and MOTORC
have to fail. The pump unit contains two cold spare gates and

for the pump unit to fail the CSPGate_1 has to fail before
CSPGate_2. CSPGate_1 and CSPGate_2 have PUMP_1 and
PUMP_2 as their primary unit, respectively, and both CSP
gates share a common spare (Backup_PUMP).

We have considered that the failure rates of the BEs of
the DFT are unknown. Following the process described in
section III.B, the DFT in Fig. 15 is translated into a GSPN
model and unknown failure rates of the BEs are collected
according to the process described in section III.C. TheGSPN
model of the DFT after incorporating the failure rates of the
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FIGURE 17. System unreliability for different mission times.

BEs (values for timed transitions) is shown in Fig. 16. For
the data collection process for BEs, a heterogeneous group of
experts was employed.

As it is evident from Table 1, the experts’ weights are
not same (see Table 5). Four experts participated in this
study to make the judgments. Two of them have a M.Sc.
degree in systems engineering and had been working as sys-
tem analysts for over 8 years. The third expert has a B.Sc.
degree in manufacturing engineering and he had been work-
ing as a consultant and trainer for over four years. The last
expert has a Ph.D. in industrial engineering and she had been
working as an academic staff for over ten years. Job tenure
and current activities of these experts are summarized in
Table 6.

The experts’ decision on the BEs which have unknown
failure rates is given in Table 7.

The SAM technique was used to aggregate expert opinions
for t=1000 hours. BE.1 is taken as an example and the details
of aggregation are provided in Table 8. To compute consensus
coefficient using Equation (5), relaxation factor (β) is con-
sidered to be 0.5 to give the weight of the experts and their
relative agreement an equal importance.

In addition, Equations (9) and (10) are applied to defuzzify
the failure possibility of each BEs and also to transfer the
corresponding fuzzy number to FP, respectively. The compu-
tation of BE.1 is done as an example and the results of other
BEs are provided in Table 9.

Defuzzification of BE.1

=
1
3
(0.303+ 0.419+ 0.442+ 0.580

−
0.442× 0.580− 0.303× 0.419

(0.442+ 0.580)− (0.303+ 0.419)

)
= 0.437391

K = (
1

0.437
− 1)

1/3
× 2.301 = 2.503

FP = 1
/
102.503 = 0.003145

TABLE 10. Criticality of the basic events of the DFT in Fig. 15.

From this FP value, using Equation (12) the failure rate is
calculated as:

λ =
− ln (1− 0.003145)

1000
= 3.15E-06

In the last step, we simulated the GSPN model of Fig. 16.
Note that we use ORIS Petri net simulator [67] to create
and simulate the GSPN model. The unreliability of the CAS
system for different mission times is graphically presented
in Fig.17. The criticality of the BEs of the DFTwas calculated
using the process described in section III.D.1 and BEs were
ranked based on their criticality, as shown in Table 10. As seen
in the table, the basic events BE.1 and BE.2 are identified as
the twomost critical events. These BEs represent the crossbar
switch (CS) and system supervision (SS), respectively. Thus,
if the analysts want to increase the reliability of the system
then they may consider replacing these critical components
using components with higher reliability or theymay consider
introducing redundant components in parallel with the critical
components.

V. CONCLUSION
Reliability analysis of complex and dynamic systems such
as cyber physical systems is intricate. There are multiple
stochastic and temporal dependencies that need to be taken
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into account and not all the existing stochastic formalisms
are able to grasp these dependencies. Besides, the failure
specification of some components, i.e., failure rate, is difficult
to obtain. Frequently, the engineers have a qualitative knowl-
edge about the possible failure behavior, but with existing
state-of-the-art methods this is not enough to quantify they
system reliability.

In this context, this paper presents a novel uncertainty-
aware dynamic reliability analysis approach. The approach
enables the specification of failure data from expert judge-
ment for components with unknown failure rates. Statisti-
cal, stochastic and temporal dependencies among events are
treated in the analysis through Dynamic Fault Trees (DFT)
and Generalized Stochastic Petri Nets (GSPN). There are
other approaches that have addressed some of these issues
in an isolated manner. However, to the best of the authors’
knowledge, not all issues have been covered in a single
approach. Here this is achieved by combining DFT, GSPN,
and fuzzy set theory.

The use of DFTs helped to model time-dependant failure
behavior, dependency among events, redundancy in the sys-
tem model, and priorities among events. Fuzzy set theory and
expert judgment enable us to collect uncertain failure data
and also to explicitly highlight the areas of uncertainty in the
data. GSPN was used to take into account the statistical and
stochastic dependencies among events, which helped to avoid
inaccurate reliability estimation of the system by performing
analysis under realistic assumptions.

The effectiveness of the approach was demonstrated via
application to a benchmark case study. The result obtained
is believed to be improved and more useful than results
derivedwithmore traditional approaches due to the combined
capabilities of the method.

The use of expert judgement in estimating failure probabil-
ities of BEs is not expected to be faultless, but can contribute
to usefully quantifying what was previously unquantifiable.
Note that the current method only obtained an exponentially
distributed failure rate, however, to utilise the full potential of
GSPN, it would be worthwhile to explore methods to obtain
the failure rate function for other distributions. The critical-
ity analysis allows analysts to identify weak areas of the
system early and to focus redesign efforts correspondingly.
The extent of scalability of this approach for the analysis
of large-scale systems is not yet determined. It could be
the case that GSPNs grow to sizes that make computations
very demanding. However, if issues arise then modularisation
techniques such as [68]–[71] may help to improve scalability
of the analysis.

REFERENCES
[1] J. Bechta Dugan, S. J. Bavuso, and M. A. Boyd, ‘‘Dynamic fault-tree

models for fault-tolerant computer systems,’’ IEEE Trans. Rel., vol. 41,
no. 3, pp. 363–377, Sep. 1992.

[2] G. K. Palshikar, ‘‘Temporal fault trees,’’ Inf. Softw. Technol., vol. 44, no. 3,
pp. 137–150, 2002.

[3] M. Walker, ‘‘Pandora: A logic for the qualitative analysis of temporal fault
trees,’’ Ph.D. dissertation, Univ. Hull, Hull, U.K., 2009.

[4] G. Merle, J. M. Roussel, J. J. Lesage, and A. Bobbio, ‘‘Probabilistic
algebraic analysis of fault trees with priority dynamic gates and repeated
events,’’ IEEE Trans. Rel., vol. 59, no. 1, pp. 250–261, Mar. 2010.

[5] G. Merle, J.-M. Roussel, and J.-J. Lesage, ‘‘Algebraic determination of the
structure function of dynamic fault trees,’’ Rel. Eng. Syst. Saf., vol. 96,
no. 2, pp. 267–277, Feb. 2011.

[6] H. Boudali, P. Crouzen, and M. Stoelinga, ‘‘A rigorous, compositional,
and extensible framework for dynamic fault tree analysis,’’ IEEE Trans.
Dependable Secure Comput., vol. 7, no. 2, pp. 128–143, Apr. 2010.

[7] J. B. Dugan, S. J. Bavuso, andM.A. Boyd, ‘‘Fault trees andMarkovmodels
for reliability analysis of fault-tolerant digital systems,’’ Rel. Eng. Syst.
Saf., vol. 39, no. 3, pp. 291–307, 1993.

[8] H. Boudali and J. B. Dugan, ‘‘A discrete-time Bayesian network reliability
modeling and analysis framework,’’ Rel. Eng. Syst. Saf., vol. 87, no. 3,
pp. 337–349, 2005.

[9] H. Boudali and J. Bechta Dugan, ‘‘A continuous-time Bayesian network
reliability modeling, and analysis framework,’’ IEEE Trans. Rel., vol. 55,
no. 1, pp. 86–97, Mar. 2006.

[10] S. Montani, L. Portinale, A. Bobbio, and D. Codetta-Raiteri, ‘‘Radyban:
A tool for reliability analysis of dynamic fault trees through conversion
into dynamic Bayesian networks,’’ Rel. Eng. Syst. Saf., vol. 93, no. 7,
pp. 922–932, Jul. 2008.

[11] D. Marquez, M. Neil, and N. Fenton, ‘‘Improved reliability modeling
using Bayesian networks and dynamic discretization,’’ Rel. Eng. Syst. Saf.,
vol. 95, no. 4, pp. 412–425, Apr. 2010.

[12] M. A. Marsan and G. Chiola, ‘‘On Petri nets with deterministic and
exponentially distributed firing times,’’ in Advances in Petri Nets, vol. 266.
Berlin, Germany: Springer, Jun. 1987, pp. 132–145.

[13] D. Codetta-Raiteri and L. Portinale, ‘‘Generalized continuous time
Bayesian networks as a modelling and analysis formalism for dependable
systems,’’ Rel. Eng. Syst. Saf., vol. 167, pp. 639–651, Nov. 2017.

[14] H. Tanaka, L. T. Fan, F. S. Lai, and K. Toguchi, ‘‘Fault-tree analysis by
fuzzy probability,’’ IEEE Trans. Rel., vol. TR-32, no. 5, pp. 453–457,
Dec. 1983.

[15] S. Kabir, ‘‘An overview of fault tree analysis and its application in model
based dependability analysis,’’ Expert Syst. Appl., vol. 77, pp. 114–135,
Jul. 2017.

[16] Y.-F. Li, J. Mi, Y. U. Liu, Y.-J. Yang, and H.-Z. Huang, ‘‘Dynamic fault tree
analysis based on continuous-time Bayesian networks under fuzzy num-
bers,’’ Proc. Inst. Mech. Eng., O, J. Risk Rel., vol. 229, no. 6, pp. 530–541,
2015.

[17] S. Kabir, M. Walker, Y. Papadopoulos, E. Rüde, and P. Securius, ‘‘Fuzzy
temporal fault tree analysis of dynamic systems,’’ Int. J. Approx. Reason-
ing, vol. 77, pp. 20–37, Oct. 2016.

[18] Y. F. Li, H. Z. Huang, Y. Liu, N. Xiao, and H. Li, ‘‘A new fault tree anal-
ysis method: Fuzzy dynamic fault tree analysis,’’ Eksploat. i Niezawodn.
Reliab., vol. 14, no. 3, pp. 208–214, 2012.

[19] Y. Ren, D. Fan, X. Ma, Z.Wang, Q. Feng, and D. Yang, ‘‘A GO-FLOW and
dynamic Bayesian network combination approach for reliability evaluation
with uncertainty: A case study on a nuclear power plant,’’ IEEE Access,
vol. 6, pp. 7177–7189, 2018.

[20] A. Toppila and A. Salo, ‘‘A computational framework for prioritization
of events in fault tree analysis under interval-valued probabilities,’’ IEEE
Trans. Rel., vol. 62, no. 3, pp. 583–595, Sep. 2013.

[21] A. Rajan, M. P.-L. Ooi, Y. C. Kuang, and S. N. Demidenko, ‘‘Analytical
standard uncertainty evaluation using Mellin transform,’’ IEEE Access,
vol. 3, pp. 209–222, 2015.

[22] A. P. Ulmeanu, ‘‘Analytical method to determine uncertainty propagation
in fault trees by means of binary decision diagrams,’’ IEEE Trans. Rel.,
vol. 61, no. 1, pp. 84–94, Mar. 2012.

[23] X. Song, Z. Zhai, P. Zhu, and J. Han, ‘‘A stochastic computational approach
for the analysis of fuzzy systems,’’ IEEE Access, vol. 5, pp. 13465–13477,
2017.

[24] H. A. Watson, Launch Control Safety Study. New York, NY, USA: Murray
Hill, 1961.

[25] T. Murata, ‘‘Petri nets: Properties, analysis and applications,’’ Proc. IEEE,
vol. 77, no. 4, pp. 541–580, 1989.

[26] M. K. Molloy, ‘‘Performance analysis using stochastic Petri nets,’’ IEEE
Trans. Comput., vol. TC-31, no. 9, pp. 913–917, Sep. 1982.

[27] B. Beyaert, G. Florin, P. Lonc, and S. Natkin, ‘‘Evaluation of computer
systems dependability using stochastic Petri nets,’’ in Dig. 11th Annu.
Symp. Fault-Tolerant Comput., 1981, pp. 79–81.

[28] N. G. Leveson and J. L. Stolzy, ‘‘Safety analysis using Petri nets,’’ IEEE
Trans. Softw. Eng., vol. TSE-13, no. 3, pp. 386–397, Mar. 1987.

VOLUME 6, 2018 29513



S. Kabir et al.: Uncertainty-Aware Dynamic Reliability Analysis Framework for Complex Systems

[29] G. S. Hura and J. W. Atwood, ‘‘The use of Petri nets to analyze coherent
fault trees,’’ IEEE Trans. Rel., vol. 37, no. 5, pp. 469–474, Dec. 1988.

[30] A. Bobbio, G. Franceschinis, R. Gaeta, and L. Portinale, ‘‘Exploiting Petri
nets to support fault tree based dependability analysis,’’ in Proc. 8th Int.
Workshops Petri Nets Perform. Models, Sep. 1999, pp. 146–155.

[31] D. Codetta-Raiteri, ‘‘The conversion of dynamic fault trees to stochastic
Petri nets, as a case of graph transformation,’’ Electron. Notes Theor.
Comput. Sci., vol. 127, no. 2, pp. 45–60, Mar. 2005.

[32] S. Kabir, M. Walker, and Y. Papadopoulos, ‘‘Quantitative evaluation of
pandora temporal fault trees via Petri nets,’’ IFAC-PapersOnLine, vol. 48,
no. 21, pp. 458–463, 2015.

[33] S. Kabir, M. Walker, and Y. Papadopoulos, ‘‘Dynamic system safety
analysis in HiP-HOPS with Petri nets and Bayesian networks,’’ Saf. Sci.,
vol. 105, pp. 55–70, Jun. 2018.

[34] L. A. Zadeh, ‘‘Fuzzy sets,’’ Inf. Control, vol. 8, no. 3, pp. 338–353,
Jun. 1965.

[35] Y. Hong, H. J. Pasman, S. Sachdeva, A. S. Markowski, and M. S. Mannan,
‘‘A fuzzy logic and probabilistic hybrid approach to quantify the uncer-
tainty in layer of protection analysis,’’ J. Loss Prevention Process Ind.,
vol. 43, pp. 10–17, Sep. 2016.

[36] T. J. Ross, Fuzzy Logic With Engineering Applications. London, U.K.:
Wiley, 2009.

[37] K. T. Atanassov, ‘‘Intuitionistic fuzzy sets,’’ Fuzzy Sets Syst., vol. 20,
pp. 87–96, Aug. 1986.

[38] S.-J. Chen and C.-L. Hwang, ‘‘Fuzzy sets and their operations,’’ in Fuzzy
Multiple Attribute Decision Making. Berlin, Germany: Springer, 1992,
pp. 42–100.

[39] K. T. Atanassov, ‘‘On the concept of intuitionistic fuzzy sets,’’ in
On Intuitionistic Fuzzy Sets Theory. Berlin, Germany: Springer, 2012,
pp. 1–16.

[40] W. E. Vesely, M. Stamatelatos, J. Dugan, J. Fragola, J. Minarick, and
J. Railsback, ‘‘Fault tree handbook with aerospace applications,’’ NASA
Office Saf. Mission Assurance, Washington, DC, USA, Tech. Rep. Version
1.1, 2002.

[41] S. Banerjee, Industrial Hazards and Plant Safety. London, U.K.:
Taylor & Francis, 2003.

[42] B. M. Ayyub, Risk Analysis in Engineering and Economics, 2nd ed. Boca
Raton, FL, USA: CRC Press, 2014.

[43] M. Modarres, M. Kaminskly, and V. Krivtsov, Reliability Engineering and
Risk Analysis. Boca Raton, FL, USA: CRC Press, 1999.

[44] M.Malhotra andK. S. Trivedi, ‘‘Dependabilitymodeling using Petri-nets,’’
IEEE Trans. Rel., vol. 44, no. 3, pp. 428–440, Sep. 1995.

[45] M. Rausand, Reliability of Safety-Critical Systems. Hoboken, NJ, USA:
Wiley, 2014.

[46] Offshore Reliability Data Handbook, 4th ed. OREDA, Trondheim,
Norway, 2002.

[47] C. Preyssl, ‘‘Safety risk assessment and management—The ESA
approach,’’ Rel. Eng. Syst. Saf., vol. 49, no. 3, pp. 303–309, 1995.

[48] M. Yazdi, ‘‘Hybrid probabilistic risk assessment using fuzzy FTA and
fuzzy AHP in a process industry,’’ J. Failure Anal. Prevention, vol. 17,
no. 4, pp. 756–764, 2017.

[49] S. Greco, J. Figueira, and M. Ehrgott,Multiple Criteria Decision Analysis.
New York, NY, USA: Springer, 2005.

[50] M. Yazdi and E. Zarei, ‘‘Uncertainty handling in the safety risk analysis:
An integrated approach based on fuzzy fault tree analysis,’’ J. Failure Anal.
Prevention, vol. 18, no. 2, pp. 392–404, 2018.

[51] F. Aqlan and E. M. Ali, ‘‘Integrating lean principles and fuzzy bow-tie
analysis for risk assessment in chemical industry,’’ J. Loss Prevention
Process Ind., vol. 29, no. 1, pp. 39–48, 2014.

[52] Y. Liu, Z.-P. Fan, Y. Yuan, and H. Li, ‘‘A FTA-based method for risk
decision-making in emergency response,’’ Comput. Oper. Res., vol. 42,
pp. 49–57, Feb. 2014.

[53] M. Yazdi, F. Nikfar, and M. Nasrabadi, ‘‘Failure probability analysis by
employing fuzzy fault tree analysis,’’ Int. J. Syst. Assurance Eng. Manage.,
vol. 8, pp. 1177–1193, Nov. 2017.

[54] M. Yazdi, ‘‘The application of bow-tie method in hydrogen sulfide risk
management using layer of protection analysis (LOPA),’’ J. Failure Anal.
Prevention, vol. 17, no. 2, pp. 291–303, 2017.

[55] S. M. Lavasani, N. Ramzali, F. Sabzalipour, and E. Akyuz, ‘‘Utilisation of
fuzzy fault tree analysis (FFTA) for quantified risk analysis of leakage in
abandoned oil and natural-gas wells,’’ Ocean Eng., vol. 108, pp. 729–737,
Nov. 2015.

[56] N. Ramzali, M. R. M. Lavasani, and J. Ghodousi, ‘‘Safety barriers analysis
of offshore drilling system by employing fuzzy event tree analysis,’’ Saf.
Sci., vol. 78, pp. 49–59, Oct. 2015.

[57] M. R. M. Lavasani, J. Wang, Z. Yang, and J. Finlay, ‘‘Application of fuzzy
fault tree analysis on oil and gas offshore pipelines,’’ Int. J. Mar. Sci. Eng.,
vol. 1, no. 1, pp. 29–42, 2011.

[58] S. M. Lavasani, A. Zendegani, and M. Celik, ‘‘An extension to fuzzy
fault tree analysis (FFTA) application in petrochemical process industry,’’
Process Saf. Environ. Protection, vol. 93, pp. 75–88, Jan. 2015.

[59] M. Yazdi and S. Kabir, ‘‘A fuzzy Bayesian network approach for risk
analysis in process industries,’’ Process Saf. Environ. Protection, vol. 111,
pp. 507–519, Oct. 2017.

[60] J. S. Nicolis and I. Tsuda, ‘‘Chaotic dynamics of information processing:
The ‘magic number seven plus-minus two’ revisited,’’ Bull. Math. Biol.,
vol. 47, no. 3, pp. 343–365, 1985.

[61] G. A. Miller, ‘‘The magical number seven, plus or minus two: Some limits
on our capacity for processing information.,’’ Psychol. Rev., vol. 101, no. 2,
pp. 343–352, 1956.

[62] H.-M. Hsu and C.-T. Chen, ‘‘Aggregation of fuzzy opinions under group
decision making,’’ Fuzzy Sets Syst., vol. 79, no. 3, pp. 279–285, 1996.

[63] R. Zhao and R. Govind, ‘‘Defuzzification of fuzzy intervals,’’ Fuzzy Sets
Syst., vol. 43, no. 1, pp. 45–55, 1991.

[64] M. Sugeno, H. T. Nguyen, and N. R. Prasad, Fuzzy Modeling and Control:
Selected Works of M. Sugeno. Boca Raton, FL, USA: CRC Press, 1999.

[65] T. Onisawa, ‘‘A representation of human reliability using fuzzy concepts,’’
Inf. Sci., vol. 45, no. 2, pp. 153–173, 1988.

[66] T. Onisawa, ‘‘An application of fuzzy concepts to modelling of reliability
analysis,’’ Fuzzy Sets Syst., vol. 37, no. 3, pp. 267–286, 1990.

[67] A. Horváth, M. Paolieri, L. Ridi, and E. Vicario, ‘‘Transient analysis of
non-Markovian models using stochastic state classes,’’ Perform. Eval.,
vol. 69, nos. 7–8, pp. 315–335, Jul. 2012.

[68] R. Gulati and J. B. Dugan, ‘‘A modular approach for analyzing static and
dynamic fault trees,’’ in Proc. Annu. Rel. Maintainability Symp., Jan. 1997,
pp. 57–63.

[69] R.Manian, J. B. Dugan, D. Coppit, and K. J. Sullivan, ‘‘Combining various
solution techniques for dynamic fault tree analysis of computer systems,’’
in Proc. 3rd IEEE Int. High-Assurance Syst. Eng. Symp., Nov. 1998,
pp. 21–28.

[70] C.-Y. Huang and Y.-R. Chang, ‘‘An improved decomposition scheme for
assessing the reliability of embedded systems by using dynamic fault
trees,’’ Rel. Eng. Syst. Saf., vol. 92, no. 10, pp. 1403–1412, 2007.

[71] F. Chiacchio, M. Cacioppo, D. D’Urso, G. Manno, N. Trapani, and
L. Compagno, ‘‘A Weibull-based compositional approach for hierarchical
dynamic fault trees,’’ Rel. Eng. Syst. Saf., vol. 109, pp. 45–52, Jan. 2013.

SOHAG KABIR received the Ph.D. degree in com-
puter science and the M.Sc. degree in embed-
ded systems from the University of Hull, U.K.,
in 2016 and 2012, respectively. He is currently a
Research Associate with the Dependable Intelli-
gent Systems (DEIS) Research Group, University
of Hull. He has worked in EU projects on safety
includingMAENAD andDEIS. His research inter-
ests include model-based safety assessment, prob-
abilistic risk and safety analysis, dynamic safety

and reliability analysis, and stochastic modeling and analysis.

MOHAMMAD YAZDI received the B.Sc. degree
in process safety engineering from the Petroleum
University of Technology, Abadan, Iran, in 2012,
and the M.Sc. degree in industrial engineer-
ing from Eastern Mediterranean University,
Famagusta, Cyprus, in 2017.

He is currently pursuing the Ph.D. degree with
the Centre for Marine Technology and Ocean
Engineering, University of Lisbon. His research
mainly focuses on risk assessment based on uncer-

tainty handling. Before undertaking the academic career, he served as a
Safety Expert and an Auditor in oil and gas industry from 2012 to 2016.

29514 VOLUME 6, 2018



S. Kabir et al.: Uncertainty-Aware Dynamic Reliability Analysis Framework for Complex Systems

JOSE IGNACIO AIZPURUA (M’17) received the
Eng., M.Sc., and Ph.D. degrees from Mondragon
University, Spain, in 2010, 2012, and 2015 respec-
tively. He was a Visiting Researcher with the
Dependable Systems Research Group, Univer-
sity of Hull, U.K., in 2014. He is currently a
Research Associate with the Institute for Energy
and Environment, University of Strathclyde, U.K.
His research interests include prognostics and
health management, reliability, availability, main-

tenance and safety analysis, and systems engineering for power engineering
applications.

YIANNIS PAPADOPOULOS is currently a Pro-
fessor and a Leader of the Dependable Intelli-
gent Systems Research Group, University of Hull.
He pioneered the HiP-HOPS MBSA method and
contributed to the EAST-ADL automotive design
language, working with Volvo, Honda, Continen-
tal, Honeywell, and DNV-GL, among others. He is
actively involved in two technical committees of
IFAC (TC 1.3 & 5.1).

VOLUME 6, 2018 29515


	uncertainty
	08375086
	INTRODUCTION
	BACKGROUND AND RELATED WORKS
	DYNAMIC FAULT TREE ANALYSIS
	PETRI NETS
	FUZZY SETS IN UNCERTAINTY ANALYSIS

	THE PROPOSED UNCERTAINTY-AWARE DYNAMIC RELIABILITY APPROACH
	FAULT TREE MODELLING
	PETRI NET MODELLING
	FAILURE DATA COLLECTION
	RELIABILITY QUANTIFICATION
	CRITICALITY ANALYSIS


	NUMERICAL EXAMPLE
	CONCLUSION
	REFERENCES
	Biographies
	SOHAG KABIR
	MOHAMMAD YAZDI
	JOSE IGNACIO AIZPURUA
	YIANNIS PAPADOPOULOS



