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Abstract In this paper, we discuss a dynamical behavior of Predator-Prey with ratio 

dependent, refuge in prey, and harvest from predator. Model reconstruction is 

organized by adding the refuge control in prey with the values ,10  m  and linear 

predator harvesting. The aim of analysis is to describe the equilibrium points and 

their stability. In analysis, the possible fixed points are the prey extinction, the 

predator extinction, and predator-prey coexists. By using linearization, the 

stability of predator extinction point is unstable, and the prey extinction point, 

coexists point becomes stable with certain condition. Finally, the dynamical 

simulation show that the trajectories of solution convergent to their stability, and 

the refuge strategy suitable to avoid the extinction of prey. 
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1. INTRODUCTION 

In ecology system, the predation model to be interesting in the depth 
discussion. One of the popular predation models is predator prey by Lotka (1925)-
Volterra (1927). Lotka-Volterra proposes of the predation model is, 

( )

( ).dNcP
dt

dP

bPaN
dt

dN

+−=

−=

 (1) 

Where PN , represents prey and predator, and dcba  , , , are the growth rates of 

prey, the predation of predator-prey, the predator mortality rate, and corventions 
rate of prey biomass. Then, the model (1) modified by Xiao danRuan (2001), that 
the natural rate of prey hold on logistically model and including the ratio 
dependent response in prey. Based on the dynamical analysis, the predator-prey 
population density possible isvanished. Therefore, Kar and Chudori 
(2001),suggest predator-prey harvesting with the model of Holling type II to 
prevent population extinction. 

By the next investigation, Rayungsariet all.(2014), move of Holling Type II 
model with the ratio dependent response and harvesting from predator, because 
of the population density should be based on the predator-prey density and to 
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avoid the extinction, that is, 
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(2) 

Here PN , describe of predator-prey density in time, and the all of parameters must 

be positive constant. From model analysis (2), we get likely to become extinct of 
predator-prey hence there is no refuge in prey. Refuge activity was studied by 
Ilmiyahet all. (2014), and Trisdianiet all. (2014), and the result is refuge process in 
prey enable to manage the extinction. In the other side, dynamical refuge was 
analyzed and used to in predator-prey with infection in predator Pusawidjayantiet 
all. (2015), and analysis of protection behaviour was supported by Abdulghofour 
and Naji (2018). 

In this paper, we reconstruct the model (2) by addingrefuge in prey by 

constant ( ),10  m and the goals of protection is surviving of predator-prey 

population,then the modified model as follow, 
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(3) 

With PN , denote the prey and predator, the parameters 21,rr represent the 

intrinsic rate of predator-prey, and 21, KK describe of carryingcapacity of 

predator-prey, respectively. Parameters a  declare predation rate, 1c  denote the 

intrinsic convertion of biomass to be predator reproduction, and the last 2c  is a 

linear harvest from predator. 
 

2. Methods 
In this analysis, we use the research methodology and theory for describing 

solution behavior, as follows; 

Autonomous System 
An autonomous system has a form 

).(xF
dt

dx
=  (4) 

Where, ( )xF  are real functions that do not depend explicitly on the independent 

variable t  (Nagle danSaff, 1993). 

Fixed Point 
The point ( )tx*  that fulfill ( ) 0=xF  is called the equilibrium point of model 
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(4), such that the point to be autonomous system solution (Robinson, 2004). 

Linearization of the Nonlinear System 
Let the system of (4) is nonlinear system and ( )xF  has continuous partial 

derivative at the point ( )tx* , then the Taylor series of the function ( )xF  around the  

point ( )tx*  is, 
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By using ( )
dt
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xF i

i =  and ( ) ,,...,2,1  ,* nixx
dt

d
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ii

i =−= the equation (5) can be 

written, 
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 (6) 

Suppose *xxw −= and based on the definition of equilibrium point, we have 

( ) 0* =xF , such that the equation of (6) become, 
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The equation (7) rewrite simple form is, 
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Here, ( )*xJ is called JacobianMatrices or partial derivative matrices (Robinson, 

2004). 
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Dynamic Stability of  2Dimensions 
Let A  is a second ordermatrices, 

,
2221

1211









=

aa

aa
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Withdeterminant 21122211 aaaa −= and trace 2211 aa += . The stability analysis by 

usingmatric determinant and trace hold on as follow, 
1. If 0 , then the system unstable. 
2. If 0= , then the system unstable. 
3. If 0  ,0   , then the system unstable. 

4. If 0  ,0   , then the system asymptotically stable (Robinson, 2004). 

 

3. Results and Discussion  

Existences of Equilibrium Points 
Repose on the definition of fixed point, the system (3) has possible three 

equilibrium points, namely the prey extinction ,1,0
2
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The existence condition of 1E  is ,21 rc   the second fixed point always exists 

without any condition, and the third equilibrium to be able to exist, if one of the 
any conditions hold in system,  

1. ( ),11 mar −  
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2. ( ) ,0  and  ,0 ,11 − DBmar  

3. ( ) .  and   1
2

12
221

K

Kbr
crmar −−=  

Local Stability 
If the linearization theory applies in system (3), then we get Jacobianmatrices 

construction as follow, 
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The Jacobian matrices form around each fixed points are, 
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From ( )1EJ  obviously 1E comes to local asymptotically stable, if the requirement

( )mar − 11  holds, and unstable if ( )mar − 11 . The second Jacobian matrix has 

one positive eigen value is ( )
( )

,0
11

22 
−

+−
b

mc
cr  and it is clear that 2E always 

unstable. 

Theorem: The equilibrium 3E  is local asymptotically stable if 
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021122211 −= JJJJ , and 02211 += JJ . 

Proof: Obviouslydecided that the 
( )

( )
0

1
2**

2*

12 
+

−
−=

bNP

Nmab
J , and 

( )
0

2**

2*

1
21 

+
=

bNP

Pc
J . While, we analyze the sign of 11J by manipulating algebra is, 

 

( )

( )2**

2*

1

*

111

12
1

bNP

Pma

K

N
rJ

+

−
−








−=  

( )
( )

2

1

*

1

1

*

1
1

1

1
2

1





















−









−

−−







−=

ma

K

N
r

ma
K

N
r  

( )

2

1

*2

1

1

*

1 1
1

2
1 








−

−
−








−=

K

N

ma

r

K

N
r  

( ) 1

*

1

1

*
1

1

*

1 1
1

11
K

Nr

K

N

ma

r

K

N
r −























−

−
−








−=  

 

By condition ( ),11 mar − we have 
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Such that, it is clear that 011 J , and then we will show that 022 J  with under 

condition of the existence of 3E , namely; 
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Obviously, it is given 022 J , respectively we have the determinant value is 

positive and the trace value is negative, and the theorem is proven completely. 

Numerical Simulation 
This part, we share about numerical simulation of model (3) to describe the 

existences of fixed points and their stability, and the aim of numerical simulation 
for supporting the dynamical analysis based on theory. By taking the parameters 
in this table is, 

Table 1. Parameter of the simulation 
 

Parameter Simulation 1 Simulation 2 

1r  0.2 0.6 

2r  0.5 0.8 

1K  15 15 

2K  10 10 

a  1 1 
b  1 1 
m  0.6 0.6 

1c  0.6 0.6 

2c  0.4 0.4 

 
By taking the value on the table 1 and based on the simulation 1 above, we have 
the behavior solution figure of the system (3) is, 
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Figure 1. The Dynamical Solution of Simulation 1 

 
The simulation figure (1) above, we read the result giving information that there 

are two fixed points exist, namely ( )2,01 =E  by under condition 22 5,04,0 rc == . 

Then, the fixed points of ( )0,152 =E always be exist without any condition. Based 

on the initial values ( ) ( ) ( ) ( ) 8,5  ,5,16  ,2.0,18  ,5.0,5.3 4321 ==== NANANANA are 

describing the several dynamical solution. It is clear that the all solution by using 

the initial value comes to 1E  or 1E  to be sink point, so the obviously consequence 

is stable by local stability condition ( )mar −== 14,02,01 . In ecology, it is mean 

that the predator population will be surviving although the prey density is ruined. 

Whereas, the equilibriums 2E always be seen in the figure (1) that the all phase 

portrait ondynamical solution never tend to the second equilibrium or the other 

name side is 2E always be unstable ever. While, the interior equilibrium does not 

exists since the condition is not fulfilled. 
Next simulation by submitting the different values and initial condition (table 

1 and simulations 2), the behavior phase portrait and the stability can be dedicated 
on the next figure by running the program is, 

0 2 4 6 8 10 12 14 16 18
0

1

2

3

4

5

6

7

8

N(t)

P
(t

)
NA (5 ; 8)

NA (16 ; 5)

NA (3.5 ; 0.5)

E1 (0 ; 2)

NA (18 ; 0.2)
E2 (15 ; 0)
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Figure 2. The Dynamical Solution of Simulation 2 

 
In addition of simulation analysis, figure (2) represent aboutthree equilibrium 

pointsbecomeexist, specifically ( )5,01 =E  is the equilibrium of prey extinction, 

( )0,152 =E is the equilibrium of predator extinction, and ( )86.6,19.113 =E  is the 

interior equilibrium or the prey-predator to be survive of both. On the figure (2) 

adduce the equilibrium ( )5,01 =E  to be unstable since the analytical stability 

condition does not fulfilled, with the value 6,01 =r greaterthan the value of 

( ) 4,01 =−ma . At the same time, the second equilibrium ( )0,152 =E always occurs 

unstable, with the isocline of initial value never tend to fixed point 2E .Last 

numerical simulation indicated that the all of trajectorieswith different initial value 
convergent to interior equilibrium point, this is correspondingtoanalytical stability 
condition for interior point, namely positive determinant value is 9155.0= and 
the negative trace value is 448.4−= into corresponding of matrix 

( )** , PNJ .Interior pointexistence condition represent that the predator-prey 

density does not close to be ruined, and the predation activity always being of 
them. From the simulation, the refuge effect in prey is seemed that with the initial 

value of ( )5.0,5.01 =NA  condition, the growth of prey density greater than the 

growth of predator density, respectively for the other initial values. Therefore, the 
refuges in prey correspond to decrease the extinction. 
 

0 2 4 6 8 10 12 14 16 18 20
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P
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NA (20 ; 12)NA (0.2 ; 11)

NA (19 ; 0.2)

NA (0.2 ; 0.2)

E1 (0 ; 5)

E3,1 (11.19 ; 6.86)

E2 (15 ; 0)
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4. CONCLUSION 
In the last performed, weare discussed the behavior stability of the dynamical 

predator-prey system within the refuge in prey and harvest from predator. By 
investigation system, the modelhas three equilibrium points by under the 

existence condition. There are  , , 21 EE and  3E where 1E  to be stable if the 

condition ( )mar − 11  holds, respectively, and the point of  2E always be unstable 

equilibrium. While, the interior equilibrium or  3E become stable if the 

determinant of jacobian matrix ( ) 3EJ is positive and the trace of jacobian matrix 

( ) 3EJ is negative. Numerical simulation iscarrying the illustration that the 

predator-prey still becomes extinction, although the refuge in prey and harvesting 
from predator has applied in models. But, the effect of refuge can be shown with 
the simulation (2) that refuges in prey afford to decrease prey extinction. 

5. REFERENCES 
A.S. Abdulghofur and R.K Naji.“A Study a Diseased Prey-Predator Model with 

Refuge in Prey and Harvesting from Predator”, Journal of Applied 
Mathematics, Volume 2018. 

A. J. Lotka, Elements of Physical Biology. Baltimore, Williams and Wilkins, 1925. 
G. Xiao and S. Ruan, “Global Dynamics of a Ratio-dependent Predator-prey System”, 

J.Math. Biol. 43, pp. 268–290, 2001. 
K. Pusawidjayanti, A. Suryanto, and R.B.E. Wibowo, “Dynamics of a Predator-Prey 

Model Incorporating Prey Refuge, Predator Infection and Harvesting”, 
Apllied Mathematical Sciences, Vol. 9, no. 76, pp.3751-3760, 2015. 

M. Rayungsari, W. M. Kusumawinahyu, and Marsudi, “Dynamical Analysis of 
Predator-Prey Model with Ratio Dependent Functional Response and 
Predator Harvesting”, Apllied Mathematical Sciences, Vol. 8, no. 29, pp.1401-
1410, 2014. 

N.N. Ilmiyah, Trisilowati, and A.R. Alghofari, “Dynamical Analysis of a Harvested 
Predator-Prey Model with Ratio Dependent Response Function and Prey 
Refuge”, Apllied Mathematical Sciences, Vol. 8, no. 101, pp.5027-5037, 2014. 

P.I. Trisdiani, Trisilowati, and A. Suryanto, “Dynamics of Harvested Predator-Prey 
System with Disease in Predator and Prey in Refuge”, International Journal 
of Ecological Economics &Statistica, Vol. 33, no. 2, 2014. 

R. C. Robinson, An Introduction to Dynamical Systems: Continuous and Discrete, 
USA : Prentice Hall Education, 2004. 

R. K. Nagle, and E. B. Saff, “Fundamentals of Differential Equations and Boundary 
Value Problems”, USA: Addison-Wesley Publishing Company, 1993. 

T. K. Kar, and K. S. Chaudhuri, “On Non-selective Harvesting of a Multispecies 
Fishery. International Journal of Mathematical Education in Science and 
Technology 33, pp. 543-556.2001. 

V. Volterra,Variations and Fluctuations in the Numbers of Coexisting Animal 
Species. Lecture Notes in Biomathematics, pp. 65-273.1927. 


