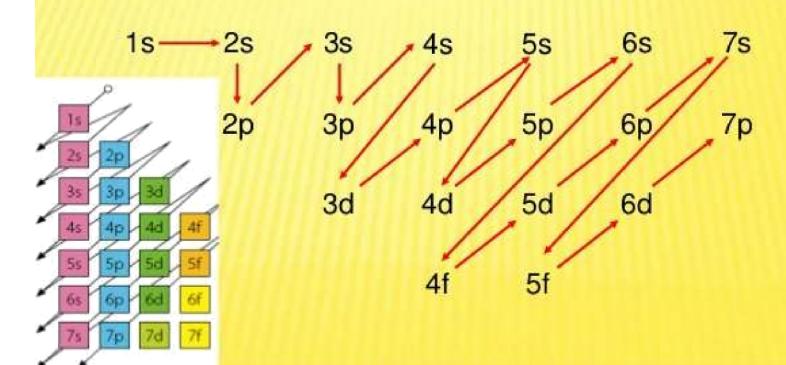


Ubicación de un elemento químico en la tabla periódica.

Propósito

Determinar el grupo y periodo donde se ubica un elemento químico en la tabla periódica, considerando su configuración electrónica.

TABLA PERIÓDICA ACTUAL



DISTRIBUCIÓN ELECTRÓNICA UTILIZANDO DIAGRAMA DE MOELLER

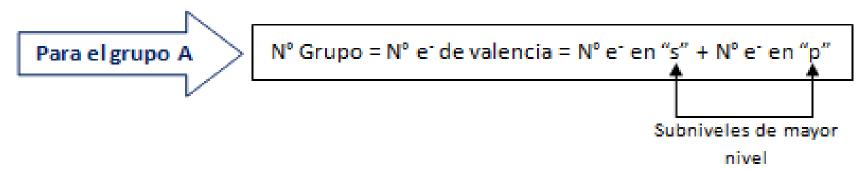
Esquema simplificado que ayuda a ubicar los electrones en niveles y subniveles en orden de energía creciente. Se le conoce también como la regla de SARRUS y comúnmente denominada "regla del serrucho"

OTRA FORMA DE APRENDER LA DISTRIBUCIÓN ELECTRÓNICA

Si	So pa	So pa	Se da pensión	Se da pensión	Se fueron de paseo	Se fueron de paseo
1s²	2s² 2p6	3s ² 3p ⁶	4s ² 3d ¹⁰ 4p ⁶	5s ² 4d ¹⁰ 5p ⁶	6s ² 4f ¹⁴ 5d ¹⁰ 6p ⁶	7s ² 5f ¹⁴ 6d ¹⁰ 7p ⁶

Cada elemento pertenece a un casillero de la <u>tabla periodica</u> y puede ubicarse conociendo su <u>numero atomico</u> (Z) de acuerdo a los siguientes pasos:

1^{er} paso: Tener presente que en un átomo neutro, Z es igual al numero de electrones.

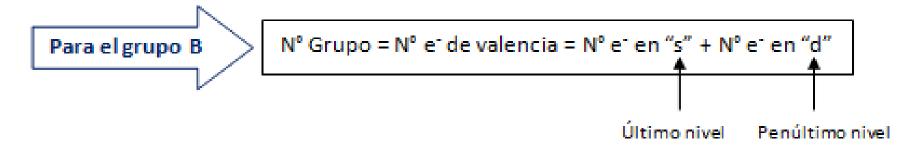

2^{do} paso: Realizar la distribución electrónica y analizar:

<u>Periodo</u> = está dado por el nivel externo o de mayor nivel (lo que determina el número de niveles del átomo)

<u>Grupo</u> = Si el último subnivel es "s" o "p", entonces es del grupo A; si el último subnivel es "d", entonces es del grupo B(se suma el último d con el último s); y si termina en subnivel "f", es un elemento de transición interna o tierra rara (grupo IIIB).

Ejemplo:

Indicar el numero de grupo y periodo para el elemento CI (Z = 17)


$$VII$$

$$_{17}CI = 1s^2 2s^2 2p^6 3s^2 3p^5$$

$$p = 3$$

$$Feriodo = 3$$

Ejemplo:

Indicar el numero de grupo y periodo para el elemento vanadio V (Z = 23)

$$V = 1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{6} 4s^{2} 3d^{3}$$

$$V = Grupo = VB$$

$$V = 1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{6} 4s^{2} 3d^{3}$$

$$V = 1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{6} 4s^{2} 3d^{3}$$

$$V = 1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{6} 4s^{2} 3d^{3}$$

$$V = 1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{6} 4s^{2} 3d^{3}$$

$$V = 1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{6} 4s^{2} 3d^{3}$$
Periodo = 4

Para **elementos del grupo VIIIB, IB y IIB** se debe considerar una regla práctica adicional:

Grupo	VIIIB			IB	IIB
N° e- "s" + N° e- "d"	8	9	10	11	12

Ejemplo:

Indicar el numero de grupo y periodo para el elemento Cu (Z = 29)

Los **elementos de transición interna** pertenecen al grupo IIIB, entonces el periodo solo depende del último nivel (nivel mas externo), que puede ser 6 ó 7, es decir lantánidos o actínidos respectivamente.

Ejemplo:

Indicar el numero de grupo y periodo para el elemento Pm (Z = 61)

$$_{61}$$
Pm = $[_{54}$ Xe $]$ 6 $\stackrel{1}{$^{2}}$ 4 $\stackrel{1}{$^{5}}$

Region = IIIB

Periodo = 6

Periodo = 6

ucontinental.edu.pe