
 

 

 University of Groningen

Separation of conditions as a prerequisite for quantum theory
De Raedt, Hans; Katsnelson, Mikhail; Willsch, Dennis; Michielsen, Kristel

Published in:
Annals of Physics

DOI:
10.1016/j.aop.2019.01.012

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
De Raedt, H., Katsnelson, M., Willsch, D., & Michielsen, K. (2019). Separation of conditions as a
prerequisite for quantum theory. Annals of Physics, 403, 112-135.
https://doi.org/10.1016/j.aop.2019.01.012

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-12-2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Groningen

https://core.ac.uk/display/266939763?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.aop.2019.01.012
https://www.rug.nl/research/portal/en/publications/separation-of-conditions-as-a-prerequisite-for-quantum-theory(4a89a34f-4299-4ec4-b544-5ecb8315ac8e).html
https://doi.org/10.1016/j.aop.2019.01.012


Annals of Physics 403 (2019) 112–135

Contents lists available at ScienceDirect

Annals of Physics

journal homepage: www.elsevier.com/locate/aop

Separation of conditions as a prerequisite for
quantum theory
Hans De Raedt a, Mikhail I. Katsnelson b, Dennis Willsch c,
Kristel Michielsen c,d,∗

a Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4,
NL-9747AG, Groningen, The Netherlands
b Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135,
NL-6525AJ, Nijmegen, The Netherlands
c Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52425
Jülich, Germany
d RWTH Aachen University, D-52056 Aachen, Germany

a r t i c l e i n f o

Article history:
Received 7 November 2018
Accepted 22 January 2019
Available online 8 February 2019

Keywords:
Quantum theory
Separation of conditions
Logical inference
Stern–Gerlach experiments
Einstein–Podolsky–Rosen–Bohm
experiments

a b s t r a c t

We introduce the notion of ‘‘separation of conditions’’ meaning
that a description of statistical data obtained from experiments,
performed under a set of different conditions, allows for a decom-
position such that each partial description depends on mutually
exclusive subsets of these conditions. Descriptions that allow a
separation of conditions are shown to entail the basic mathe-
matical framework of quantum theory. The Stern–Gerlach and
the Einstein–Podolsky–Rosen–Bohm experiment with three, re-
spectively nine possible outcomes are used to illustrate how the
separation of conditions can be used to construct their quantum
theoretical descriptions. It is shown that the mathematical struc-
ture of separated descriptions implies that, under certain restric-
tions, the time evolution of the data can be described by the von
Neumann/Schrödinger equation.
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1. Introduction

Most of us heavily rely on our visual system to perform tasks in daily life. The ability of our
visual system to rapidly and effortlessly decompose a visual scene into separate objects and categorize
them according to their functionality considerably enhances the chance of survival of the individual.
The example of the visual system is just one of the many instances in which our cognitive system
constantly performs separations ‘‘on the fly’’. In daily life, we hardly notice that our brains are
performing these separations, suggesting that the basic processes involved are, as a result of evolution,
hardwired into our brains. Therefore, it is not a surprise that in many forms of cognitive activity, also
in the most abstract modes of human reasoning, separation into parts plays an important role.

There is a large variety problems in mathematics and physics for which separation into parts
is of great value. For instance, separation of variables is a very powerful method for solving (par-
tial) differential equations. Describing the harmonic vibrations in solids in terms of normal modes
(phonons) instead of using the displacements of the atoms and their momenta is muchmore effective
for understanding their properties. Analyzing a signal in terms of Fourier components is a standard
method for decomposing the signal into a sumof signals that each have a simple description. Similarly,
computing the principal components of a correlation matrix yields a description of the data that, in
many cases, is considerably simpler than the description of the data themselves.

The ubiquity of separation in cognitive processes suggests that it may be an important guiding
principle for developing useful descriptions of the phenomena that we observe. In this paper, this
guiding principle is used for the analysis and representation of data, as expressed by the statement

The separation of conditions (SOC), when applied to data produced by experiments per-
formed under several different sets of conditions (e.g. {(a, b), (a′, b′)}), reduces the com-
plexity of describing the collective of these experiments by decomposing the description of
the whole into descriptions of several parts which depend on mutually exclusive, proper
subsets (e.g. {(a), (a′)} and {(b), (b′)}) of the conditions only.

It is important to recognize that SOC operates on a much more primitive level than e.g. the principle
of stationary action which is central in modern theoretical physics. SOC serves as the foundation for
a chain of reasoning whereas the principle of stationary action refers to a general variational method
that has numerous applications across a wide field. The latter principle is used to derive equations of
motion from a postulated functional called ‘‘action’’ whereas SOC is used by our cognitive system for
a variety of functions.

It is remarkable that the evolution of our physical worldview goes hand in hand with evolution
of the main mathematical tools of theoretical physics. Classical mechanics is based on the concept of
materials points and enforces the use of ordinary differential equations [1]. According to Arnold [2],
themain achievement and themain idea of Newton can be formulated in one sentence: ‘‘It is useful to
solve (ordinary) differential equations’’. The Faraday–Maxwell revolution of 19th century placed the
concept of field in the center of theoretical physics, the corresponding mathematical apparatus being
partial differential equations [3]. Both the concepts of materials points and fields (e.g. water waves)
relate directly to our daily experience [4]. In contrast, in quantum theory, ‘‘states’’ of a system are
vectors in a Hilbert space, ‘‘observables’’ are Hermitian operators, and the mathematical apparatus is
linear algebra and functional analysis [5]. None of these concepts directly relates to elements of an
experiment. Numerous works on ‘‘interpretation of quantum theory’’ – for a brief or concise overview
of popular interpretations see Ref. [6] or Ref. [7], respectively – offer tens, hundreds of ways how
to interpret the symbols of this language; much less is known about its origin. Why is it that such
abstract concepts play the central role in our description of microscopic phenomena? In this paper,
we present an attempt to clarify this issue based on a careful analysis of ways to organize information
(represented by ‘‘experimental data’’) and of ways to operate with it.

The view adopted in this paper is that the primary goal of a theoretical model should be to provide
concise descriptions of the available data which constitute the objective information (i.e., free of
personal judgment), about the phenomena under scrutiny. In addition, it is desirable to construct such
descriptions using mathematics that is as simple as possible. Due to the general, non-mathematical
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nature of SOC, it is impossible to deduce or derive, in the mathematical sense, the basic postulates of
quantum theory fromSOC only: one has to inject into themathematical framework that is constructed
on the basis of SOC, additional knowledge about the specific conditions under which the experiments
are being performed. In this paper, we adopt the traditional approach of theoretical physics by
assuming that the phenomena under scrutiny allow for a continuum space–time description. In
other words, the additional assumption that we will use (implicitly) is that, in mathematical terms,
the symmetries of the space–time continuum apply. Furthermore, as discussed later in this paper,
quantum theory is not the only theory consistent with SOC, a statement which we will symbolically
denote as

SOC |= QT, (1)

meaning that models in SOC entail models of QT. However, the application of SOC yields a framework
that is specific enough such that the language of operators and state vectors appears in a natural
manner, consistent with our experience that experiments count individual events. Phrased more
concisely, we show that quantum theory is a model for the specific class of data (of frequencies of
events) to which SOC applies.

1.1. Quantum physics experiments

Consider a typical scattering experiment in which a crystal is targeted by neutrons produced by a
nuclear reactor. Obviously, a description of the experiment as a whole is much too complicated to be
useful. Therefore, we simplify matters. First, we leave out the description of the whole nuclear reactor
as a neutron source and imagine a fictitious source preparing neutrons with well-defined momenta.
Next, we assume that we know how to model the interaction of the neutrons with the atoms of the
crystals. Themeasurement itself consists of detecting, one-by-one, the neutrons that leave the crystal
in various directions. Finally, interpreting the counts of the neutrons scattered by the crystal in terms
of the neutron–crystal interaction model allows us to make inferences about the lattice or magnetic
structure of the crystal.

From this rough sketch of the neutron scattering experiment, it is clear that SOC has been used
before any attempt is made to describe the experiment by a mathematical model. SOC seems to
be an (implicit) assumption of all physical theories that have been invented. In particular, standard
introductions of the quantum formalism assume – and do so often implicitly – that a model of the
experiment can be decomposed into a preparation stage and a measurement stage, before the first
postulate is introduced, see e.g. Ref. [8].

A characteristic feature of quantum physics experiments such as the neutron scattering exper-
iment sketched earlier is the uncertainty in behavior of the individual neutrons. In essence, single
events are regarded as irreproducible.Moreover, because the observed counts are the basis formaking
inferences about the interaction model, these inferences may be subject to additional uncertainties,
in addition to those due to the uncertainties on the incoming neutrons. If single events are not
reproducible, we may have (but not necessarily have) the situation that in the long run, the relative
frequencies of the different detection events approach reproducible numbers. The latter means
that upon repetition of the whole experiment, i.e. by collecting the data of many detection events,
deviations of the new relative frequencies from the previous ones are within the statistical errors,
e.g. they satisfy the law of large numbers [9,10].

Results of laboratory experiments are always subject to uncertainties. In the theoretical description
of these results we may choose to ignore these uncertainties, for good reason as in Newtonian
mechanics, or not, as in quantum theory. The latter has no means by which to calculate the outcome
of an individual event, a feature it shareswith Kolmogorov’s probability theory [10,11]. Not being able
to deduce from a theory the very existence of the individual events that we observe is at the heart of
the difficulties of understanding what the theory is about and what it describes.
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1.2. Quantum theory

Quantum theory is probably the most obscure and impenetrable subject of all current scientific
theories. Text books on quantum theory usually startwith a brief historical account of the experiments
that were crucial for the development of the theory to make plausible the postulates which define
the mathematical framework [8,12–15]. Subsequent efforts then go into mastering linear algebra
in Hilbert space, solving partial differential equations, and other abstract mathematical tools. The
tendency to focus on the elegant mathematical formalism [5], which, unfortunately, is far more
detached from everyday experience than for instance Newtonian mechanics or electrodynamics,
promotes the ‘‘shut-up-and-calculate’’ approach [16]. Hermitian operators, wave functions, and
Hilbert spaces are conceptual, mental constructs which have no tangible counterpart in the world as
we experience it through our senses. The mathematical results that are derived from the postulates
of a theoretical model are only theorems within the axiomatic framework of that theoretical model.
Theoretical physics uses axiomatic frameworks which have a rich mathematical structure, allowing
the proof of theorems. For instance, the Banach–Tarsky paradox [17] has no counterpart in the world
that humans experience. Taking the mathematical description for real is like opening bottles that
contain very exotic and sometimes magical substances. In other words, relating theorems derived
within a mathematical axiomatic formalism to observable reality is not a trivial matter.

In quantum theory, the mapping from what occurs in Hilbert space to what is taking place in
the laboratory is further convoluted by the fact that quantum theory lacks the means to account for
the fact that a single measurement has a definite outcome [8,12,13]. That is, quantum theory cannot
describe the fact that humans register individual events although it does a wonderful job to describe,
under appropriate conditions, the frequencies with which these events occur. The conundrum of not
being able to deduce from the theory that eachmeasurement yields a definite outcome [18]manifests
itself in the number of different quantum-theory interpretations that exist today.

It may be of interest to mention here that the formalism of quantum theory finds applications
in fields of science that are not even remotely related to the physics experiments which cannot be
described by classical physics [19]. This begs the question ‘‘Why is the quantum formalism also useful
in these non-quantum applications?’’.

1.3. Application of SOC

In this paper, we explore a route, based on SOC, to construct the quantum theoretical description
without running into the conundrum mentioned earlier. We start from the empirical fact that
the result of a measurement yields a definite outcome. We review several different, simple ways
to represent the moments of the relative frequencies of the different outcomes. It then follows
that the mathematical structure underlying quantum theory is the simplest of many equivalent
representations that allows the description of the experiment to be decomposed into a description of
a preparation stage and a measurement stage (an implicit assumption in the formulation of quantum
theory [8]).

It is obvious that thisway of thinking is opposite to themore traditional, deductive reasoningwhich
assumes an underlying ontology [20–24] or starts from various, different sets of axioms [15,25–47],
the individual event being the last (but apparently unreachable) element in the chain of thoughts. This
is also evident from the fact that in our construction there is no need to even mention the concept of
probability, simply because the mathematical structure directly follows from a rearrangement of the
data (counts of events) and the application of SOC. For a different approach based on rearranging data,
see Ref. [48].

Another approach which reverses the chain of thought, i.e. starts from the notion of an individual
event, uses the algebra of logical inference (LI), a mathematical framework for rational reasoning in
the presence of uncertainty [49–53]. Applying LI to reproducible and robust experiments yields a
description in terms of a seemingly complicated nonlinear global optimization problem, the solutions
of which can be shown to be equivalent to the extrema of a quadratic form. For instance, for one
particular scenario of collecting data, we recover the (time-dependent) Schrödinger equation [54,55].
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Fig. 1. (Color online) Diagram illustrating the different chains of thought. (a) Traditionalmethod to formulate quantum theory;
(b) logical inference approach for deriving basic equations of quantum theory; (c) the approach explored in this paper. In
contrast to the traditionalmethod, which lacks themeans to predict the individual, observable event, the other two approaches
put the event at the core of reasoning. In (a) and (c) the box ‘‘quantum theory’’ refers to the mathematical framework, defined
by postulates P1 and P2.

Similarly, for two other scenarios, LI yields the Pauli or Klein–Gordon equations, respectively, all
without invoking concepts quantum theory [56,57].

The SOC approach only yields the basic mathematical framework, in essence only the postu-
lates that appear in the statistical (ensemble) interpretation of quantum theory [8,14] (see below),
knowledge about the specific physical problem has to be supplied in terms of symmetries, the
correspondence principle etc., as in conventional quantum theory. In contrast, the LI approach starts
from the notion of reproducible and robust frequencies of events, uses the requirement that in the
absence of uncertainty classical Hamiltonian mechanics is recovered, and allows us to derive, in a
strict mathematical sense, e.g. the Schrödinger equation of the hydrogen atom. So far, all equations
derived on the basis of LI describe quantum systems in a pure state only [54–59]. Whether the LI
approach can be extended to cover quantum systems in a mixed state is an open problem.

Recently, we have given simple examples, one of them in the context of the EPRB experiment,
showing that LI can describe realizable data sets which do not allow for a quantum theoretical
description [60]. Therefore, symbolically we have

LI |= QT∗. (2)

where QT∗ denotes the class of quantum systems characterized by pure states. On the other hand, the
SOC approach contains the results of the LI approach, such that

SOC |= LI |= QT∗ and SOC |= QT. (3)

As already mentioned, this paper takes the notion of an individual event as the starting point but
does not require the experiment to be reproducible nor to be robust. The only requirement is that the
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data gathered in one run is completely described by the relative frequencies of the different kinds
of detection events, a number of which, in any laboratory experiment, is always finite. We show
that SOC and consistency, combined with a simple reorganization of the observed data and some
standard assumptions (e.g. symmetries of the space–time continuum ), are sufficient to construct the
mathematical framework of quantum theory for a finite number of different outcomes. By consistency
wemean that the description of a particular part is independent of the experiment or context inwhich
the part is used.

A graphical representation of the traditional, the logical inference, and the SOC approach to
introduce the formalism of quantum-theory is shown in Fig. 1. As far as we know, all interpretations
of quantum theory are based on the same expressions for expectation values of dynamical variables
such as position, energy etc. The difference between interpretations appears in theway the theoretical
description deals with the measurement problem, i.e. ‘‘explains’’ that each measurement yields a
definite outcome. The statistical (ensemble) interpretation of quantum theory is silent about this
aspect. Copenhagen-like interpretations postulate the elusive wave function collapse to ‘‘explain’’ the
existence of events.

Independent of the interpretation that one prefers, there is the crucial fact, almost never men-
tioned, that a genuine probabilistic theory does not entail a procedure or process bywhich elementary
events can actually be produced. The existence of a set of elementary events is assumed, and
probability theory is then built on this assumption [11]. Ways to produce events according to a
specified probability distribution would be (1) call Tyche to produce events without undiscoverable
cause, i.e. appeal to magic, or (2) use an algorithm to let a computer generate events. Obviously,
the latter is deterministic, pseudo-random in nature, does not produce random events in the strict
mathematical sense, and is ‘‘outside’’ probability theory.

The two other approaches, graphically represented in Fig. 1(b,c), do not suffer from the problem
of not being able to generate events. Indeed, in both the logical inference and the SOC approach,
the event is the key element on which the whole theoretical structure is built. There is no need to
have a procedure to generate events according to a specified probability distribution. Instead, this
distribution is constructed from the frequencies of the events (and additional pieces of knowledge,
depending on the case at hand).

Instead of discussing the application of SOC to quantum physics experiments in its most general
form, we choose the more instructive route by demonstrating its application to two simple, but
non-trivial experiments which have been instrumental in the development of quantum theory. The
mathematical framework that emerges from applying SOC generalizes in an almost trivial manner.
Following Feynman [13], we use the Stern–Gerlach (SG) experiment to illustrate how its quantum
theoretical description directly emerges from a representation of the observed data in terms of
independent, separate descriptions of the source and the SG magnet. We explicitly show that SOC
in combination with the requirement of consistency and the use of symmetries of the space–time
continuum suffice to recover the quantum theoretical description of a spin one (S = 1) system.
As a further illustration, we consider the Einstein–Podolsky–Rosen–Bohm experiment (EPRB) and
show how also in this case the quantum theoretical description derives from a representation of
the observed data in terms of independent, separate descriptions of the source and SG magnets. This
example also demonstrates how to extend the approach tomany-body problems. Thework presented
in this paper extends and generalizes our earlier work [55,59] on the spin-1/2 case.

1.4. Preview of the main result

In general terms, the main result of this paper can be summarized as follows. The mathematical
structure of the following two postulates (or equivalent formulations of them)

P1. To each dynamical variable R (physical concept) there corresponds a linear operator R (mathematical
object), and the possible values of the dynamical variable are the eigenvalues of the operator [8].

and

P2. To each state there corresponds a unique state operator. The average value of a dynamical variable
R, represented by the operator R, in the virtual ensemble of events that may result from a preparation
procedure for the state, represented by the operator ρ, is ⟨R⟩ = Tr ρR/Tr ρ [8].
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which form the basis for the statistical (ensemble) interpretation of quantum theory [8,14] and suffice
for all practical ‘‘shut-up-and-calculate’’ applications of quantum theory, directly follow from the
application of SOC and a simple rearrangement of the data for the frequencies of the observed events.
Note that neither quantum theory nor SOCyield the expressions ofρ orR. Obviously, these expressions
depend on the details of the experiment. Application of SOC to data gathered in quantum physics
experiments provides an answer to the riddle ‘‘Where does the quantum formalism come from and
why is it useful in non-quantum applications?’’.

1.5. Structure of the paper

The paper is organized as follows. In Section 2, we sketch the experimental setup of the double SG
experiment that we use as the primary example to illustrate the application of SOC to data obtained
by performing experiments under different conditions. Section 3 discusses the kind of data that
are generated by this experiment and their characterization in terms of moments. In Section 4, we
introduce SOC using the SG experiment with three different outcomes as an example and show that
matrix algebra allows for the description to be separated in the sense of SOC. Explicit expressions
for the description of the measurement stage are given in Sections 5 and 6. The application to
the double SG experiment, given in Section 7, completes the construction and also shows how the
basic structure of the quantum formalism emerges from SOC. In Section 8, we work out in detail a
specific example of the double SG experiment and show that quantum theory restricts the functional
dependence of the observed frequencies on the SG magnet parameters to those dependences for
which separation is possible. Section 9 discusses the most general description of the particle source
and also the measurements that are required to fully characterize this source. Application of SOC
enforces a representation of the data in terms of matrices, suggesting that there may be a relation to
Heisenberg’s matrix mechanics [61]. In Section 10, we scrutinize this relation and argue that if there
is one, it is very weak. Section 11 explores the conditions under which the time evolution of data
that allows for a separated description can be described by the von Neumann/Schrödinger equation.
Using the EPRB experiment as the simplest, nontrivial example,we demonstrate in Section 12 how the
tensor-product structure of quantum many-body physics naturally emerges from the application of
SOC. In Section 13, we discuss the general features of the SOC construction of the quantum formalism
and its relation to the commonly accepted postulates of quantum theory. Our conclusions are given
in Section 14.

2. Double Stern–Gerlach experiment

The SG experiment [12,13,62,63] involves sending particles through an inhomogeneous magnetic
field and observing their deflection. A source emits particles such as atoms [62,63], neutrons [64,65],
electrons [66], or atomic clusters [67]. Particles are sent one-by-one through a SG magnet, the salient
feature of which is that it generates an inhomogeneousmagnetic field, along a direction characterized
by the unit vector a. The interaction of this field with magnetic moment of the particles changes
the momentum of the latter. As a result, the particle beam is split into in 2S + 1 spatially well-
separated directions which are determined by the unit vector a, an experimental fact [62,64,65,67].
This experimental fact is regarded as direct evidence for the quantized magnetic moment [12,13,62].
The latter is proportional to the ‘‘spin’’ of the particle and is assigned a magnitude S.

Assume that it is already established by experiments that there is a magnetic but no electric field
between the poles of a SG magnet and that it is known, also from experiments, that the particles
under scrutiny do not carry electrical charge. Then, if these particles pass through the SG magnet and
show a deflection that is absent when themagnetic field is zero, it makes sense to assign the attribute
‘‘magnetic’’ to these particles. The observed deflection can be attributed to the interaction between
the magnetic field inside the SG magnet and the assigned magnetic quality of the particles.

We now wish to go a step further and assign to the particles a definite magnetic moment,
characterized by a direction and size, a necessary step if we want to speak about quantized magnetic
moments.
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Fig. 2. (Color online) Layout of the double Stern–Gerlach experiment that we consider in this paper. Electrically neutral,
magnetic particles leave the source one-by-one and pass through the inhomogeneousmagnetic field, characterized by the same
unit vector a, created by the Stern–Gerlachmagnet SG1. Particles leave SG1 in one of the three beams labeled by k = +1, 0, −1.
The direction of these beams depends on the unit vector a. Particles then travel to either SG2, SG3, or SG4, all three of them
characterized by the same unit vector b. Particles leave SG2, SG3, or SG4 in one of the three beams labeled by l = +1, 0, −1.
Finally, each particle is registered by one and only one detector (detectors not shown) labeled by (k, l).

In general, a consistent assignment of a particle property is a two-step process. First, we employ
a filter to select particles. Then, using a second identical filter, we verify that all the particles
pass that second filter. In the case at hand, this procedure amounts to performing a double SG
experiment [12,13] such as the one sketched in Fig. 2. Only if the direction of the magnetic moment
is ‘‘preserved’’ during repeated probing, it makes sense to attribute to the particle, a definite direction
of magnetization.

We do not know of any laboratory realization of a double SG experiment but, following Feyn-
man [13], we use this thought experiment to construct the theoretical description which, in contrast
to Feynman’s approach, does not build on postulates of quantum theory. Also following Feynman [13],
we focus on the case of particles which, in quantum parlance, are said to have spin S = 1.
Generalization to other values of the spin is straightforward [13]. We emphasize that our choice to
illustrate themain ideas by using experimentswith three outcomes per SGmagnet is only for the sake
of balance between generality and simplicity. Our treatment readily generalizes to experiments with
any number of different outcomes.

Following standard practice in developing theoretical models, we assume that the experiment is
‘‘perfect’’ in the sense that all SG magnets are identical, their inhomogeneous magnetic fields are
constant for the duration of the experiment, each particle leaving the source is detected by one and
only one of the nine detectors, and so forth.

3. Data generated by the experiment

As is clear from Fig. 2, for each particle leaving the source, one and only one detector, labeled by
(k, l), will fire. It may be tempting to say that the detected particle traveled along the beams labeled
by k and l but as a matter of fact, on the basis of the available data, i.e. (k, l), no such assignment can
be made. On the other hand, for the purposes of this paper, it does no harm to imagine and it also
simplifies the writing to say that the particle followed a particular path, but to know this for sure, we
would have to add detectors in the beams between the SG1 and second layer of SG magnet.

We start by considering the experiment in which the second layer (SG2, SG3, SG4) is absent and
detectors are placed in the beams labeled by k. We denote the counts of detector clicks recorded after
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N particles have left the source by

K =
{
kn | kn ∈ {+1, 0, −1} ; n = 1, . . . ,N

}
. (4)

The relative frequency with which particles travel along the path k is given by

f (k|a, P,N) =
1
N

N∑
n=1

δk,kn . (5)

We introduce the notation |a, P,N) to indicate that the N data items have been collected during a
period in which a and the properties of the particles, represented by the symbol P , are assumed to be
constant.

Similarly, for the double SG experiment, repeating the experiment with N particles yields the data
set

D =
{
(kn, ln) | kn, ln ∈ {+1, 0, −1} ; n = 1, . . . ,N

}
, (6)

and the relative frequency with which particles travel along the paths (k, l) is given by

f (k, l|a, b, P,N) =
1
N

N∑
n=1

δk,knδl,ln . (7)

In Eq. (7), |a, b, P,N) indicates that the N data items have been collected during a period in which a
and b and the properties of the particles, represented by the symbol P are assumed to be constant.
Regarding the meaning of P , it is important to note that properties of the particles under scrutiny can
only be assigned a-posteriori on the basis of experimental data.

Obviously, relative frequencies do not contain information about correlations between events, if
any were present. Therefore, in general, a full characterization of data in the set D (K ) requires more
than just the knowledge of the relative frequencies f (k, l|a, b, P,N) (f (k|a, P,N)).

In this paper,we only analyze the simplest case by discarding all knowledge about
the events that is not contained in the relative frequencies.

For later use, we write f (k|a, P,N) in terms of its moments defined by

mp(a, P,N) = ⟨kp⟩a =
1
N

N∑
n=1

kpn =

∑
k=+1,0,−1

kpf (k|a, P,N) , p = 0, 1, 2, (8)

where, by construction, the zero’th moment ism0 = 1 and ⟨X⟩a denotes the average of X with respect
to the relative frequencies f (k|a, P,N). The explicit expression of f (k|a, P,N) in terms of its moments
m0,m1 andm2 can be found by solving the corresponding linear set of equations. We have

f (k|a, P,N) = 1 − m2(a, P,N) +
m1(a, P,N)

2
k +

3m2(a, P,N) − 2
2

k2, (9)

which is consistent with Eq. (8).
According to the boxed text above, in this paperwe take the viewpoint that data inK is completely

described by two relative frequencies, e.g. f (−1|a, P,N) and f (0|a, P,N), and the normalization
f (−1|a, P,N)+f (0|a, P,N)+f (+1|a, P,N) = 1 or, equivalently, by themomentsm0 = 1,m1(a, P,N),
m2(a, P,N), and Eq. (9). Similarly, the data in D is completely described by the moments ⟨kplq⟩a for
p, q = 0, 1, 2.

4. Application of SOC

Given the description of the data K in terms of relative frequencies f (k|a, P,N), we ask ourselves
whether it is possible to apply the general idea of separation to the SG experiment and construct a
description of the whole in terms of descriptions of the various components of the experiment, in
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the case at hand the particle source and the SG magnet. That such a separation can be made was
already shown for the spin-1/2 SG and Bell-type experiments [55,59]. In this paper, we show that this
approach extends to higher spin and leads to the same conclusion [55,59], namely that a separation
is possible if we write the same data in matrix rather than in vector form.

We begin by focusing on the first stage of the double SG experiment depicted in Fig. 2 and do some
innocent-looking rewriting. Let us organize the observations (+1, 0, −1) and the relative frequencies
into vectors k = (+1, 0, −1)T and f = (f (+1|a, P,N), f (0|a, P,N), f (−1|a, P,N))T , respectively. We
have

⟨1⟩a = (1, 1, 1) · f = Tr (1, 1, 1) · f = Tr f · (1, 1, 1)

= Tr

( f (+1|a, P,N) 0 0
0 f (0|a, P,N) 0
0 0 f (−1|a, P,N)

)
, (10)

and

⟨k⟩a = kT
· f = Tr kT

· f = Tr f · kT
= Tr

( f (+1|a, P,N) 0 0
0 0 0
0 0 −f (−1|a, P,N)

)
, (11)

where Tr A denotes the trace of the matrix A, i.e. the sum of all diagonal elements of A, and we made
use of the invariance of the trace under cyclic permutation of thematrices, i.e. Tr AB = Tr BA. Eqs. (10)
and (11) express the normalization condition and the average of k as the trace of the 3 × 3 matrices
f · (1, 1, 1) and f · kT .

It is not possible to write down an expression similar to Eq. (11) that yields ⟨k2⟩a unless we
introduce a new vector k(2)

= (+1, 0, +1)T and define ⟨k2⟩a = Tr f · (k(2))T . However, if we write
the observations and relative frequencies as 3 × 3 diagonal matrices

K̃ =

(
+1 0 0
0 0 0
0 0 −1

)
and F̃(a, P,N) =

( f (+1|a, P,N) 0 0
0 f (0|a, P,N) 0
0 0 f (−1|a, P,N)

)
,

(12)

respectively, we have as a result of standard matrix algebra that

⟨kp⟩a = Tr F̃(a, P,N )̃Kp , p = 0, 1, 2. (13)

Thus, using representation Eq. (12), there is no need to introduce an object (such as k(2)) to represent
⟨k2⟩. Note that a similar argument played a key role in Heisenberg’s construction of his matrix
mechanics [61].

Up to this point, rewriting Eq. (8) as Eqs. (12) and (13) does not seem to bring anything new.
However, as we now show, by arranging numbers in matrices instead of vectors, it becomes possible
to perform the desired separation in terms of a description of the source and the SG magnet [55,59].
The key idea is to note that any pair of matrices F and K satisfying

⟨kp⟩a = Tr FKp , p = 0, 1, 2, (14)

is a valid and therefore potentially useful representation of the data set K , see Eq. (9). As will become
clear later on, it is not a coincidence that Eq. (14) resembles the expression of an expectation value of
a system in a quantum state described by a density matrix.

From Eq. (14) it is clear that the only way to separate the description of the source from that of the
SG magnet is to require that the former, i.e. F, does not depend on the direction of the magnetic field
a whereas the latter, i.e. K, does. We make this explicit by writing K(a) in the following and rewrite
Eq. (14) as

⟨kp⟩ = Tr F(P,N)Kp(a) , p = 0, 1, 2, (15)

where we dropped the subscript in ⟨.⟩a to emphasize that ⟨.⟩ refers to averages with respect to the
matrix F(P,N) which does not depend on a.
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The left-hand side of Eq. (15) is obtained by counting events and is, for each p, a rational number.
Therefore, we should impose that Tr F(P,N)Kp(a) is real-valued, but there is no such constraint on
the matrices F(P,N) or Kp(a). For p = 0, this implies that Tr F(P,N) = Tr F†(P,N) where, as
usual, ‘‘†’’ stands for Hermitian conjugate. This requirement is satisfied if F(P,N) is Hermitian but
F†(P,N) = F(P,N) + X with Tr X = 0 would be allowed too.

An obvious route to search for the pair (F(P,N),K(a)) is to use the property that the trace of a
matrix does not change under a similarity transformation R. Thus, looking for matrices R such that
F(P,N) = R̃F(R)R−1 and K(R) = RK̃R−1 might seem a viable route to explore. However, limiting the
search to similarity transformations is overly restrictive because it does not allow for transformations
of the kind F̃(R)̃Kp

= F(P,N)Kp(R) + X where X is a matrix of trace zero. In fact, for the spin-1/2
case, the transformation that produces the desired separation is of this type [55,59]. In summary, the
requirement that only the traces of the matrices should not change if we switch from representation
Eq. (9) to Eq. (15) still leaves a lot of freedom in the choice of the representation.

We would like to emphasize that

1. Eqs. (12)–(15) are not postulated but are instead obtained by a simple rewriting of
two sets of numbers as two square arrays instead of two linear lists and by noting
that there is considerable flexibility in choosing the arrays.

2. There is, a-priori, no reason why ⟨kp⟩a for p = 1, 2 allows for a separation of the form
Eq. (15).

3. In this particular example, SOC splits the compound condition (a, P,N) into the
conditions (a) and (P,N).

4. If SOC applies, the data gathered in the SG experiment (i.e. not the imagined data
represented in terms of real numbers) can be expressed in the form Eq. (15) which
has the mathematical structure of postulate P2 of quantum theory.

5. Up to this point in the paper, all variables take rational values only. Starting from
Eq. (15) one cannot derive, in a strict mathematical sense, a theoretical framework
that uses irrational, real, or complex numbers but, as is well-known from number
theory, one can construct such a framework by an appropriate limiting process. In
the sections that follow, we bypass such a construction by adopting the traditional
viewpoint of theoretical physics that space–time is a continuum and use complex
numbers for convenience.

5. Explicit form of K(a)

Suppose that initially, the particles travel in the x-direction and that a is along the z-direction, both
directions being fixedwith respect to the laboratory frameof reference (ex, ey, ez). Then, the deflection
of a particle that ends up in the k = +1 and k = −1 beam can be associated with the +ez and −ez
direction, respectively. In other words, K(ez) is just the matrix K̃ given in Eq. (12). The expression of
K(a) is then readily found by performing the rotation that turns ez into a. This is most easily done by
resorting to the standard theory of angularmomentumand rotations in terms of spin-1matrices. Note
that we use these matrices to describe the effect of rotating a on the numbers f (k|a, P,N) and that we
do not postulate the existence of the spin of a particle. In our approach, the concept of ‘‘spin’’ may be
viewed as the result of the interpretation of the mathematical symbols involved, not necessarily as a
postulated, intrinsic property of the particle.

For spin 1, the three spin-1 matrices read [8]

Sx =
1

√
2

( 0 1 0
1 0 1
0 1 0

)
, Sy =

1
√
2

( 0 −i 0
+i 0 −i
0 +i 0

)
,

Sz =

(
+1 0 0
0 0 0
0 0 −1

)
,

(16)
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and we immediately see that K̃ = Sz . For completeness, Appendix A gives a derivation of the well-
known result that a rotation in 3D space which turns a unit vector u into a unit vectorw corresponds
to a rotation in spin-space that changes the projection of the spin on the direction u to the projection
of the spin on the directionw. Expressed in a formula, this means that

K(a) = a · S, (17)

from which it directly follows that Kp(a) = (a · S)p for p = 0, 1, 2

6. Matrix representation for filters

The next step is consider only those particles which travel along a particular beam k and to
construct the correspondingmatrices. As before, it is expedient to startwith the case a = ez . Replacing
the moments in Eq. (9) by the powers of Sz we have

Mk(ez) = 1 − (Sz)2 +
k
2
Sz +

k2

2

[
3(Sz)2 − 21

]

=

⎛⎝ k2+k
2 0 0
0 1 − k2 0
0 0 k2−k

2

⎞⎠ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 1 0 0
0 0 0
0 0 0

)
, k = +1

( 0 0 0
0 1 0
0 0 0

)
, k = 0

( 0 0 0
0 0 0
0 0 1

)
, k = −1

. (18)

From Eq. (18), it follows by inspection thatMk(ez)Ml(ez) = δk,lMk(ez), that is theMk(ez)’s are the three
mutually orthogonal projectors. In Appendix B, we give a general proof that for a non-degenerate
Hermitian matrix A, the projectors onto the eigenspaces of A can be obtained by expanding a function
of the eigenvalues of A in terms of its moments, and then symbolically replacing each moment by A.

As a result of rotating ez to a,Mk(ez) changes into

Mk(a) = 1 − (a · S)2 +
k
2
a · S +

k2

2

[
3(a · S)2 − 21

]
. (19)

ThematricesMk(a) represent threemutually orthogonal projectors since Eq. (19) follows fromEq. (18)
by a unitary transformation, implying in addition thatMk(a) is a Hermitian matrix and Tr Mk(a) = 1.
For later use, note that

a · S = M+1(a) − M−1(a) , (a · S)2 = M+1(a) + M−1(a). (20)

7. Separating the description of the double SG experiment

Consistency with the original, non-separated description requires that we have

f (k|a, P,N) = Tr F(P,N)Mk(a) = Tr Mk(a)F(P,N) = Tr Mk(a)F(P,N)Mk(a), (21)

where we have used the invariance of the trace under cyclic permutation of the matrices and the fact
that Mk(a) is a projector to write down three equivalent forms. Note that Born’s rule [68] postulates
Eq. (21) whereas in the approach taken in this paper, Eq. (21) is obtained by selecting, from the many
different ways of representing the frequencies of events f (k|a, P,N) and the averages computed from
them, the one that yields a description which is separated in parts.

The next step is to extend the separated description of the SG experiment in terms of F(P,N) and
Mk(a) to the double SG experiment.
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As all SGmagnets are assumed to be identical, consistency demands that their description should
be the same, that is the filtering property of SG2, SG3 and SG4 should be described byMl(b).

The question now is how to generalize Eq. (21) to yield f (k, l|a, b, P,N). As F(P,N) completely
characterizes the particles leaving the source and Mk(a) determines the number of particles that
exit SG1 through beam k, we could try to interpret the matrix product Mk(a)F(P,N) as a ‘‘new
source’’ emitting particles along beam k towards the second stage of SG magnets. For the sake of
argument, let us interpretMk(a)F(P,N) as representing the source F(P,N) emitting particles followed
by beam selection through Mk(a). Then, we would read Ml(b)Mk(a)F(P,N) as the source F(P,N)
emitting particles, beam selection by Mk(a), followed by beam selection through Ml(b). Although
this may sound reasonable, this interpretation leads to inconsistencies because the only thing that
matters is the result that we obtain by calculating the trace of the matrix product. Indeed, as
Tr Ml(b)Mk(a)F(P,N) = Tr Mk(a)F(P,N)Ml(b) we would read the latter as ‘‘a source Ml(b) emits
particles, . . . ’’, which clearly makes no sense. Using this line of reasoning, it is not too difficult to
convince oneself that the only expression that has a contradiction-free meaning is the last one of
Eq. (21). In words, we say that the results of filtering byMk(a) is to produce a fictitious source in beam
kwhich is described by the matrixMk(a)F(P,N)Mk(a). The latter is also the only form which satisfies
the requirement that thematrix describing the sourcemust be Hermitian (see Section 9). Consistency
with the earlier expression then requires that

f (k, l|a, b, P,N) = Tr Ml(b)Mk(a)F(P,N)Mk(a)Ml(b). (22)

A direct consequence of Eq. (22) is that

f (k|a, P,N) =

∑
l=+1,0,−1

f (k, l|a, b, P,N), (23)

which expresses the fact that in the double SG experiment, the frequencies of outcomes after the first
SG magnet (SG1) are a function of a only, a direct consequence of the application of SOC.

Although Eq. (22) can be simplified to f (k, l|a, b, P,N) = Tr Ml(b)Mk(a)F(P,N)Mk(a), Eqs. (21) and
(22) make it clear how the approach generalizes to three, four,. . . ,layers of SG magnets.

If we interpret F(P,N) as the 3 × 3 density matrix ρ which characterizes the state of a quantum
system, then Eqs. (21) and (22) are exactly the same as those postulated in quantum theory [8].

8. Illustrative example

Up to this point, the magnetic properties of particles before they interact with the first SGmagnet,
represented by the symbol P , did not play any role (apart from the assumption that themagnetic field
affects the particles). As an example we consider the case in which P corresponds to the matrix

F(P,N) =
1
3

( 1 0 0
0 1 0
0 0 1

)
, (24)

and ask ourselves what we can learn about themagnetic properties of the particles by performing the
double SG experiment.

Performing the matrix multiplications and calculating traces yields

f (k|a, P,N) = Tr Mk(a)F(P,N)Mk(a) =
1
3
, (25)

⟨kp⟩ = Tr F(P,N)Kp(a) = Tr F(P,N)(a · S)p

=

⎧⎨⎩ Tr F(P,N) = 1 , p = 0
Tr F(P,N)(M+1(a) − M−1(a)) = 0 , p = 1
Tr F(P,N)(M+1(a) + M−1(a)) =

2
3 , p = 2

. (26)

and

f (k, l|a, b, P,N) = Tr Ml(b)Mk(a)F(P,N)Mk(a)Ml(b)
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=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
12 (1 + a · b)2 , k = l = +1, −1
1
3 (a · b)2 , k = l = 0
1
12 (1 − a · b)2 , (k, l) = (+1, −1), (−1, +1)
1
6 (1 − (a · b)2) , (k, l) = (+1, 0), (−1, 0), (0, +1), (0, −1)

. (27)

FromEqs. (26) it is clear that the description of the counts in beams k = +1, 0, −1 does not depend
on a. In otherwords, the choice Eq. (24) of F(P,N) describes a situation that is invariant under rotations
of a. Similarly, Eq. (27) shows that the dependence of the outcomes on the directions a and b of the
respectivemagnetic fields only enters through the angle between the two vectors a andb. On the other
hand, there is a-priori no reason why f (k, l|a, b, P,N) should depend on a ·b only. The dependence on
a ·b is a direct consequence of the choice Eq. (24) of F(P,N) and the desire to separate the description
into independent descriptions of parts. From Eq. (27) it is clear that p(k, l|a, a) = δk,l/3. Therefore,
this model of the SGmagnet functions as an ideal filtering device, meaning that it is possible to assign
a definite magnetic moment to the particle.

The reasoning that led to the general form Eq. (22) and to the example Eq. (27) does not predict but
rather restricts the functional dependence of the frequencies f (k, l|a, b, P,N) on a and b. For instance,
and only for the sake of argument, if we replace in Eq. (27) a ·b by (a ·b)4, the resulting expression for
f (k, l|a, b, P,N) are valid frequencies that might be realized in a (computer) experiment but do not
admit a description in terms of quantum theory. Indeed, such expressions cannot be obtained from
the quantum theoretical considerations because the projectors Eq. (19) are quadratic functions of a ·S
(or of b · S). In other words, we have SOC |= QT. For an explicit example in the context of the EPRB
experiment, see Ref. [60].

We summarize these findings as follows:

1. There exist physically realizable processes (e.g. computer simulations) that produce data
which do not allow for a separation of the form Eq. (15).

2. As explained above and demonstrated explicitly in Ref. [60], there also exist physically
realizable processes that produce data which allow for a separation of the form Eq. (15)
but are outside the scope of what standard quantum theory can possibly describe.

3. Therefore, the quantum formalism describes a proper (strict) subset of a class of experi-
ments for which SOC holds, i.e, SOC |= QT.

9. General description of the source

In Section 8, we considered the special and also simple case in which the source is described by the
matrix F(P,N) = 1/3. The most general description of the magnetic properties of the particles before
they enter the magnetic field maintained by the first SG magnet can be constructed as follows. First,
we choose a complete basis for the linear space of 3 × 3 matrices which is orthonormal with respect
to the inner product (A, B) ≡ Tr A†B. For instance, one possible choice is

B =

(
B0, . . . ,B8

)
=

( 1
√
3
,
Sx
√
2
,
Sy
√
2
,
Sz
√
2

−

√
2
3

1 +

√
3
2
(Sx)2, −

√
21 +

(Sx)2
√
2

+
√
2(Sz)2,

SxSy + SySx
√
2

,
SxSz + SzSx

√
2

,
SySz + SzSy

√
2

)
, (28)

is such a basis. We have (Bi, Bj) = δi,j for i, j = 0, . . . , 8 and in addition, we have Tr B0 =
√
3 and

Tr Bi = 0 for i = 1, . . . , 8.
With the help of this basis, we can write down the most general expression for F(P,N) as

F(P,N) =

8∑
i=0

fiBi, (29)
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where the expansion coefficients fi’s can, in principle, be arbitrary complex-valued numbers. Imposing
the restriction that Tr F(P,N) = 1 enforces f0 = 1/

√
3. The other coefficients can only be determined

from the observed data. Using expansion Eq. (29) we find

⟨k⟩ = Tr F(P,N) a · S =
√
2(axf1 + ayf2 + az f3), (30)

and

⟨k2⟩ = Tr F(P,N) (a · S)2

=
2

√
3

+

√
2
3
f4a2x − (

f4
√
6

+
f5

√
2
)a2y − (

f4
√
6

−
f5

√
2
)a2z

+
√
2(axayf6 + axaz f7 + ayaz f8). (31)

As Eqs. (30) and (31) are linear in the unknown fi’s, the latter can be found by solving the two linear
sets of equations obtained by repeating the experiment with five different values of a. For each of
these five values of a, the experiment yields values of ⟨k⟩ and ⟨k2⟩. Three of such values of ⟨k⟩ suffice
to determine f1, f2, and f3. The five values of ⟨k2⟩ allow us to solve for f4, f5, f6, f7, and f8. The left-
hand-sides of Eqs. (30) and (31), being obtained by counting, are necessarily real-valued numbers. As
Eqs. (30) and (31) hold for any choice of a, it follows immediately that all the fi’s must be real-valued
numbers too. By choice, the basis vectors are Hermitianmatrices. Therefore, requiring the description
of the data to be separable automatically enforces the matrix F(P,N) to be Hermitian. Furthermore,
Tr Mk(a)F(P,N)Mk(a) corresponds to the counts in beam k ∈ E andmust therefore be a non-negative
number for all choices of a. As Mk(a) is a projector on the kth eigenstate âk of a · S, i.e. Mk(a) = âk̂aTk ,
we have Tr Mk(a)F(P,N)Mk(a) = Tr âk̂aTkF(P,N )̂ak̂aTk = âTk · F(P,N) · âk ≥ 0 for all unit vectors a,
implying that the matrix F(P,N) is positive semidefinite. Obviously, F(P,N) has all the properties of
the density matrix ρ, which in quantum theory, is postulated to be the mathematical representation
of the state of the system [8].

10. Relation to Heisenberg matrix mechanics

From Section 2, it is clear that the use ofmatrix algebra is key to construct, starting from the notion
of individual events, the mathematical structure of quantum theory. Matrix algebra also played a key
role in the early development of quantum theory [5,6], so let us briefly review the essential elements
of Heisenberg’s matrix mechanics [61].

Consider a classical mechanical, one-particle system characterized by the Hamiltonian H(p, q)
where p and q are themomentum and position of the particle, respectively. According to Heisenberg’s
recipe, we seek for some representation of p and q in terms of two matrices p̂ and q̂ such that
[̂q, p̂] = ih̄1 and that the matrix H (̂p, q̂) becomes diagonal [5,6]. The diagonal elements of this matrix
are the eigenvalues of the system and the matrix elements of q̂ can be used to compute transition
rates between the eigenstates of the system [5,6]. In Heisenberg’s construction, the two-indexed
objects (that is, the matrices) appear because of Heisenberg’s assumption that, rather than the atomic
states themselves, only transitions between atomic states (that is, pairs of initial and final states) are
observable. Note that the matrices p̂ and q̂ cannot be finite dimensional because that would be in
conflict with the statement that the trace of the commutator of two finite-dimensional matrices is
zero [69,70].

As is well-known, Heisenberg’s matrix mechanics can be derived from Schrödinger’s wave me-
chanics [6,71]. Both approaches postulate amathematical structure that leads to the desirable features
such as discrete energy levels. On this level of description, there is no connection to individual
detection events. This comes in through Born’s rule [68] which postulates that the probability to
observe a particle at a point q is given by the modulus squared of the wave function at this point.
The chain of reasoning in this case is the one depicted in Fig. 1(a) which conceptually is very different
from Fig. 1(c). Therefore, except for the use of themachinery ofmatrix calculus itself, there is no direct
relation between Heisenberg’s matrix mechanics and the approach pursued in this paper.
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11. Parameter dependence

Next, we consider a source whose characteristics change as a function of a parameter λ. For each
value λ of interest, we detect N particles and construct the data set D(λ), as explained in Section 3. As
before, from this data we compute f (k, l|a, b, P,N, λ) and f (k|a, P,N, λ). According to SOC, we have

⟨kp⟩λ = Tr F(P,N, λ)Kp(a) , p = 0, 1, 2, (32)

where the notation ⟨kp⟩λ is used to make explicit that the first and second moments depend on λ.
From Tr F(P,N, λ) = 1, it follows immediately that

Tr
∂nF(P,N, λ)

∂λn = 0 , n > 0, (33)

meaning that all the derivatives of F(P,N, λ) with respect to λ are traceless matrices and it is
understood that these derivatives are well-defined. As a traceless matrix is the commutator of two
matrices [69,70], we may write

∂F(P,N, λ)
∂λ

= [Y (λ), Z(λ)], (34)

where Y (λ) and Z(λ) are matrices of the same dimension as F(P,N, λ).
On the other hand, F(P,N, λ) is a Hermitian (non-negative definite) matrix and can therefore be

written as F(P,N, λ) = U†(λ)D(λ)U(λ) where D(λ) are the non-negative eigenvalues of F(P,N, λ) and
U(λ) is the unitary transformation which diagonalizes F(P,N, λ) (here and in the remainder of this
section,wewriteU(λ) = U(P,N, λ), etc. in order to simplify the notation). Using ∂

(
U†(λ)U(λ)

)
/∂λ =(

∂U†(λ)/∂λ
)
U(λ) + U†(λ) (∂U(λ)/∂λ) = 0, we have

∂F(P,N, λ)
∂λ

=

[
F(P,N, λ),U†(λ)

∂U(λ)
∂λ

]
+ U†(λ)

∂D(λ)
∂λ

U(λ). (35)

In the following, we examine the case where all the eigenvalues of F(P,N, λ) are independent of λ.
In this case, ∂D(λ)/∂λ = 0, and comparing Eqs. (34) and (35) shows that, up to irrelevant additive
terms and factors, Y (λ) = F(P,N, λ) and Z(λ) = U†(λ)(∂U(λ)/∂λ). As Z†(λ) = −Z(λ) we may write
Z(λ) ≡ iH(λ) where H(λ) is a Hermitian matrix. From Eq. (34) it then follows that

∂F(P,N, λ)
∂λ

= i[F(P,N, λ),H(λ)]. (36)

The formal solution of Eq. (36) reads

F(P,N, λ) = V (λ)F(P,N, 0)V †(λ), (37)

where the unitary matrix V (λ) is the solution of

i
∂V (λ)
∂λ

= H(λ)V (λ) , V (0) = 1, (38)

which has the structure of the time-dependent Schrödinger equation. In other words, if we restrict
ourselves to the class of data for which the eigenvalues of F(P,N, λ) do not depend on λ, the
parameter dependence of F(P,N, λ) is determined by an equation that is reminiscent of the time-
evolution equation of a closed quantum system (in general, the time-evolution of open quantum
system cannot be described in terms of a unitary matrix [72]). Clearly, the restriction to cases for
which the eigenvalues of F(P,N, λ) do not depend on λ is yet another indication that SOC |= QT.

Note that Eq. (37) is consistent with the assumption that SOC holds for all λ. Indeed, using Eq. (37)
we have ⟨kp⟩λ = Tr F(P,N, 0)V †(λ)Kp(a)V (λ) for p = 0, 1, 2, which has the form that we expect
from the application of SOC. Whether there are more general solutions of Eqs. (34) and (35) that are
compatible with SOC is an open question.
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11.1. von Neumann and Schrödinger equation

After proper identification of the symbols and introducing units of time and energy, Eq. (36) is
nothing else but the von Neumann equation

ih̄
∂ρ(t)
∂t

= [H(t), ρ(t)], (39)

for the density matrix [72]. Note that adding to H(t) the matrix c(t)1, c(t) being a complex number,
does not change Eq. (39). Traditionally, the von Neumann Eq. (39) is obtained from the Schrödinger
equation of a pure state after introducing the concept of a weighted mixture of pure states [5,8,72].
Conversely, the Schrödinger equation follows from the von Neumann Eq. (39) if we assume that ρ(t)
takes the form of a pure state |Ψ (t)⟩, i.e. ρ(t) = |Ψ (t)⟩⟨Ψ (t)|. In this case, Eq. (39) reads

ih̄
∂|Ψ (t)⟩

∂t
⟨Ψ (t)| + ih̄|Ψ (t)⟩

∂⟨Ψ (t)|
∂t

= H(t)|Ψ (t)⟩⟨Ψ (t)| − |Ψ (t)⟩⟨Ψ (t)|H(t), (40)

which is (up to an irrelevant phase-shift matrix exp(ic(t)1)) equivalent to the time-dependent
Schrödinger equation

ih̄
∂

∂t
|Ψ (t)⟩ = H(t)|Ψ (t)⟩. (41)

FromEq. (41), it follows that thematrixH(t), playing the role of the time-dependentHamiltonian, is
the generator of infinitesimal time displacements of a vector |Ψ (t)⟩. Returning to the specific example
of the SG experiment with three different outcomes, this matrix takes the general form

H(t) =

8∑
i=1

hi(t)Bi, (42)

where the eight expansion coefficients hi(t) are real numbers the Bi’s are defined by Eq. (28), and we
have dropped the termwith B0 = 1/

√
3 because adding such a term to H(t) does not change Eq. (39).

We repeat that our treatment trivially generalizes to experiments with any number of different
outcomes.

Itmaybeworthwhile tomentionhere thatmany applications of quantumphysics to e.g. condensed
matter problems de facto start from a representation such as Eq. (42). For instance, the description
of electron paramagnetic resonance spectra usually starts from a single-spin Hamiltonian such as
Eq. (42) that contains Zeeman terms, the interaction with the crystal field (for S > 1/2) and other
interactions of the magnetic moment with its environment [73]. In practice, the parameters which
specify the strength of the various contributions to the Hamiltonian are obtained by fitting the model
to experimental data.

Originally, the Schrödinger equation for a particle in a potential was formulated in continuum
space [74]. In contrast, the construction of the quantum theoretical framework presented in this
paper builds on data that is represented by a finite number of different kinds of events (e.g. k =

−1, 0, 1), i.e. by finite-dimensional matrices. The transition from the finite-dimensional to the
infinite-dimensional (continuum) case is very nicely and extensively explained in the Feynman
lectures [13], and will therefore not be repeated here.

Historically, classical Hamiltonianmechanics served as the starting point for formulating the corre-
sponding quantummechanical problem, see e.g. our discussion of Heisenberg’smatrixmechanics [61]
and Schrödinger’s first derivation of his equation [74]. However, for particles moving in continuum
space, the symmetries of space–time very much determine the form of the Hamiltonian in terms of
the operators that correspond to momentum, angular momentum, potentials etc. [6,8,75], without
recourse to classical mechanics. Therefore, completing the present construction with the part giving
physical content to the description is not a real issue.

In summary, we have shown that a description of the time-dependent data set D(t) does not
require us to postulate Eqs. (39) or (41). We emphasize that in both the time-dependent and time-
independent case, we have SOC |= QT, i.e., SOC allows for equations that are not compatible with
quantum theory. However, much if not all of the machinery of quantum theory for a single particle
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Fig. 3. (Color online) Layout of the EPRB thought experiment with pairs of magnetic particles. The inhomogeneous magnetic
field created by Stern–Gerlach magnet SG1 (SG2) is characterized by the unit vector a (b). A particle passing through SG1 (SG2)
appears in one of the beams labeled by k = +1, 0, −1 (l = +1, 0, −1).

follows from SOC, a straightforward application of matrix algebra, and the symmetries of the space–
time continuum. There is no need to introduce postulates about ‘‘wave functions’’, ‘‘observables’’,
‘‘quantization rules’’, ‘‘Born’s rule’’, and the like.

It remains to be shown how the same ideas extend to the case that the data consists of tuples
(k1, k2, . . .) instead of a single item k. This problem is the subject of the next section where we show,
bymeans of a concrete example of a two-particle problem, how the direct-product structure of vector
spaces and matrices emerges from application of SOC in a most natural manner.

12. Einstein–Podolsky–Rosen–Bohm experiment

This section is not meant to contribute to the Einstein–Bohr debate [76], related to a Gedanken-
experiment suggested by Einstein–Podolsky–Rosen [77] and modified by Bohm [12]. Its purpose is
to demonstrate how the quantum theoretical description follows from the application of SOC, the
requirement of consistency with the description of the single- and double SG experiment developed
above, and space–time continuum symmetries, without resorting to one of the postulates of quantum
theory. Most importantly, this section shows, by means of the simplest example of a two-particle
system, how the direct-product-of-Hilbert-spaces structure, which is characteristic for many-body
quantum theory, emerges from the application of SOC.

The layout and data gathering procedure of the EPRB thought experiment that we consider is
illustrated by Fig. 3. The experiment produces a data set

D =
{
(kn, ln) | kn, ln ∈ +1, 0, −1 ; n = 1, . . . ,N

}
. (43)

for each pair of settings (a, b). From this data set we can compute the relative frequency of an event
(k, l)

f (k, l|a, b, P,N) =
1
N

N∑
n=1

δk,knδl,ln . (44)

The notation used and the structure are the same as before, see Eq. (7). However, the meaning of k
and l are quite different from that in Section 3 because k and l refer to the detection of two particles,
not of one. Therefore, we cannot proceed in a sequential manner by considering only one SG magnet
and add the second one later.

As in Section 3, we only consider the simplest case where we discard all knowledge about the
events that is not contained in f (k, l|a, b, P,N). Here and in the remainder of this section, the symbol
P indicates a conditional dependence on the properties of both particles.

Adopting the same reasoning as for the SG experiment, it follows that we cannot separate the
description of the EPRB data in different parts if we stick to a representation in terms of vectors.
Therefore, we simply repeat the steps that led to the matrix representation in Eq. (15) and start by
writing the observations and relative frequencies as 9 × 9 diagonal matrices(̃

K1
)
[k,l],[k,l] = k ,

(̃
K2
)
[k,l],[k,l] = l and(̃

F(a, b, P,N)
)
[k,l],[k,l] = f (k, l|a, b, P,N) , (k, l) ∈ E 2,

(45)
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where we have introduced the notation A[k,l],[k′,l′] = Ai(k,l),i(k′,l′) for the matrix elements of A and the
function i(k, l) = 2 − k + 3(1 − l) is only there to map (k, l) ∈ E 2 onto the standard matrix indices
which run from 1 to 9. The reason for introducing two different matrices K̃1 and K̃2 representing the
observations is that in an EPRB experiment, it is obviously necessary to distinguish between detector
clicks in the left (subscript 1) and right (subscript 2) wing of the experiment, see Fig. 3.

Separating the descriptions of the source and observation stations means that we search for 9 × 9
matrices F(P,N), K1(a), and K2(b) such that

⟨kplq⟩ = Tr F̃(P,N, a, b)̃Kp
1K̃

q
2 = Tr F(P,N)Kp

1(a)K
q
2(b) , p, q = 0, 1, 2. (46)

Consistency of the description with the one of the (double) SG experiments dictates that if q = 0
(p = 0), we must have

K1(a) = (a · S1) ⊗ 1 , K2(b) = 1 ⊗ (b · S2), (47)

where ⊗ denotes the Kronecker product and 1 is the 3 × 3 unit matrix. Similarly, the expressions for
the projections are given by

f (k, l|a, b, P,N) = Tr M(2)
l (b)M(1)

k (a)F(P,N)M(1)
k (a)M(2)

l (b) = Tr F(P,N)M(1)
k (a)M(2)

l (b), (48)

where

M(1)
k (a) = Mk(a) ⊗ 1 and M(2)

l (b) = 1 ⊗ Ml(b). (49)

In Section 9, we gave a proof that the matrix F(P,N) describing the source of the SG experiment is
positive semidefinite. Using the same reasoning, it follows that F(P,N) appearing in Eq. (48) is positive
semidefinite as well.

With the help of the basis in Eq. (28), we can write down the most general expression of F(P,N) as

F(P,N) =

8∑
i,j=0

fi,jBi ⊗ Bj, (50)

where the expansion coefficients fi,j = f ∗

j,i can, in principle, be determined from the data Eq. (48),
obtained by making experiments with several different choices of (a, b). However, in practice, the
experimental procedure to determine the 80 real numbers entering Eq. (50) is quite cumbersome. In
contrast, given a specific expression for F(P,N), it is straightforward to compute the moments ⟨kplq⟩.
For instance, if we choose

F(P,N) =
1
3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 −1 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 −1 0 1 0 −1 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 −1 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (51)

which, in quantum theory language, represents the pure state |Ψ ⟩ = (|−1, 1⟩ − |0, 0⟩ + |+1, −1 ≫)

/
√
3 with total spin zero, we obtain

⟨k⟩ = Tr F(P,N) (a · S1) = ⟨a · S1⟩ = 0,
⟨l⟩ = Tr F(P,N) (b · S2) = ⟨b · S2⟩ = 0,

⟨kl⟩ = Tr F(P,N) (a · S1) (b · S2) = ⟨a · S1 b · S2⟩ = −
2
3

a · b,

⟨k2l⟩ = Tr F(P,N) (a · S1)2 (b · S2) = ⟨(a · S1)2 (b · S2)⟩ = 0,
⟨kl2⟩ = Tr F(P,N) (a · S1) (b · S2)2 = ⟨(a · S1) (b · S2)2⟩ = 0,

⟨k2l2⟩ = Tr F(P,N) (a · S1)2 (b · S2)2 = ⟨(a · S1)2 (b · S2)2⟩ =
1
3

(
1 + (a · b)2

)
. (52)
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From Eq. (52) it is clear that all the moments are invariant for arbitrary rotations of the laboratory
reference frame, i.e. the matrix Eq. (51) describes a source which emits particles with properties that,
upon measurement, do not change if we rotate the source.

13. Discussion

Quantum theory allows us to describe situations in which we are unable to predict each individual
event but are able to represent the collection of such events by relative frequencies only. In contrast,
the key of our construction of the quantum formalism is to start from the notion of individual events.
Therefore, by construction, this formulation of quantum theory is free of the usual interpretational
issues related to the meaning of the density matrix/wave function and other mathematical tools,
such as probability theory. In our treatment, the events are the ‘‘real thing’’ and the wave function
only serves as a mathematical vehicle to represent the observed frequencies.

Our construction of the mathematical framework that forms the basis of quantum theory starts
with the consistent application of the general and natural idea of separating descriptions in parts and
of a simple rewriting of the representation of the frequencies of observed events. For concreteness, we
presented an explicit construction of the quantum theoretical description for the case of the SG and
EPRB experimentwith three possible outcomesper particle. There is nothing in our explicit treatments
that prevents generalizations to an arbitrary number of outcomes per particle and an arbitrary number
of particles.

Therefore, it may be useful to discuss the relation between the various steps in our explicit
construction and the commonly accepted axiomatic formulation of quantum theory. The latter is well
documented [5,6,8,15]. For the purpose of discussing the relation with the construction given in this
paper, the formulation given in Ref. [8] is most convenient. We list each of them together with a
reference to the point in this paper where they appear.

1. To each dynamical variable R (physical concept) there corresponds a linear operator R (mathemati-
cal object), and the possible values of the dynamical variable are the eigenvalues of the operator [8].
Physical concepts ultimately relate to sense impressions. As a metaphor for these impressions,
we use the different outcomes of a (double) SG or EPRB experiment. The elementarymathemat-
ical objects are the projection operatorsMk(ez), see Section 6. More complicated mathematical
objects can be constructed by appropriate linear combinations of these projection operators,
exactly as in quantum theory.

2. To each state there corresponds a unique state operator. The average value of a dynamical variable R,
represented by the operator R, in the virtual ensemble of events that may result from a preparation
procedure for the state, represented by the operator ρ, is ⟨R⟩ = Tr ρR/Tr ρ [8].
The unique state operator, denoted by the matrix F(P,N) appears after separating the descrip-
tion of the data set into a description of the particle(s) and SGmagnet(s). In Section 9, we show
that the usual properties (Tr F(P,N) = 1 and F(P,N) non-negative definite) follow from the
fact that the numbers of events are non-negative numbers. The expression of the average value
of a dynamical variable R follows directly from the requirement that the description separates,
see Section 4. There is no need to consider a virtual ensemble of events.

Our derivation of the von Neumann equation and Schrödinger equation, see Section 11.1, builds
on the theorem that the trace of a matrix is zero if and only if the matrix can be written as a
commutator [69,70] and the condition that the eigenvalues of F(P,N, λ) are independent of λ. SOC
applied to the relative frequencies of events and elementary use of matrix algebra, together with
standard assumptions about the space–time continuum, are sufficient to construct the mathematical
framework of quantum theory. But even with these additional assumptions, we have SOC |= QT.

14. Conclusion

We have explored a route to construct the mathematical framework of quantum theory without
relying on the accepted set of quantum physics postulates. The Stern–Gerlach and EPRB experiment,
both key to the development of quantum theory, have been used to demonstrate that the basic
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postulates of the quantum formalism follow from describing the number of particles in the outgoing
beams in terms of separate descriptions of the individual components that make up the experiment.
The SOC approach readily handles any value of the number of outcomes. The Schrödinger and the von
Neumann equation, two equations governing the time evolution of quantum systems, are shown to
model time-dependent data, the description of which can be separated in parts.

The general message of this paper may be summarized as follows. The idea that the description of
a quantumphysics experiment can be decomposed in descriptions of independent parts (e.g. prepara-
tion andmeasurement stage) is not only an implicit assumption in standard formulations of quantum
theory but is, as we show in this paper, already sufficient to expose its basic mathematical structure
embodied in Eq. (15) and generalizations thereof.

However, SOC itself does not suffice to derive, for each individual experiment, the concrete, explicit
descriptions that we know from quantum theory. To this end, SOC has to be supplemented with
standard assumptions about the symmetries of the space–time continuum and, as in the case of the
time-dependent Schrödinger equation, with other assumptions as well. In other words, SOC can be
used to describe experiments performed under different but separable conditions which may or may
not be describable by the quantum formalism. In any case, the SOC-based construction of the quantum
formalism explains the success of quantum theory as a tool to describe the statistics of a vast amount
of (quantum or non-quantum) experiments for which we have nomeans to predict individual events.

Finally,we believe that the approach of introducing the quantum theoretical framework pursued in
this papermay contribute to its demystification because there (i) is no need tomotivate the postulates
P1 and P2. and (ii) it is void of the usual postulates/interpretations regarding ‘‘wave functions’’,
‘‘observables’’, ‘‘quantization rules’’, ‘‘Born’s rule’’, ‘‘probabilities’’, and the like.
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Appendix A. Rotation of the SG magnet

According to Rodrigues’ formula, rotating a unit vectoru about the axis of rotationα (with ∥α∥ = 1)
by an angle φ yields the vector

v = u cosφ+(α×u) sinφ+(α·u)α(1−cosφ) = u+(α×u) sinφ+α×(α×u)(1−cosφ). (A.1)

Conversely, if u andw are unit vectors, setting

α =
u × w

∥u × w∥
=

1
sinφ

u × w , cosφ = u · w, (A.2)

defines the rotation about the unit vector α by the angle φ which changes u intow.
Wenowaskwhat happens to the projection of the spinmatrices Son theunit vectoru ifweperform

the same rotation in spin-space as the one that changesu intow. To answer this question,we introduce
the operator

g(φ) ≡ e−iφα·S u · S e+iφα·S, (A.3)

and using the commutation relations of the angular momentum (spin) operators [Sx, Sy] = iSz ,
[Sz, Sx] = iSy, and [Sy, Sz] = iSz we find

∂g(φ)
∂φ

= e−iφα·S (α × u) · S e+iφα·S, (A.4)

∂2g(φ)
∂φ2 = e−iφα·S α × (α × u) · S e+iφα·S

= e−iφα·S (α · u)α · S e+iφα·S
− e−iφα·S u · S e+iφα·S

= −g(φ) + (α · u)e−iφα·S α · S e+iφα·S
= −g(φ) + (α · u)α · S. (A.5)
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Integrating the second-order differential equation (A.5) yields

g(φ) = g(0) cosφ + g ′(0) sinφ + (α · u)α · S(1 − cosφ)
= u · S cosφ + (α × u) · S sinφ + (α · u)α · S(1 − cosφ)
= [u cosφ + (α × u) sinφ + (α · u)α(1 − cosφ)] · S = w · S. (A.6)

In other words, we have shown that a rotation in 3D space that changes a unit vector u into a unit
vector w corresponds to a rotation in spin-space that changes the projection of the spin on the
direction u to the projection of the spin on the directionw according to

w · S = e−iφα·S u · S e+iφα·S. (A.7)

Appendix B. Projection operators and moment expansions

We give a general proof that explicit expressions for the projectors onto the eigenspaces of a non-
degenerate Hermitianmatrix A can be obtained by expanding an arbitrary function of the eigenvalues
of A in terms of its moments, and then symbolically replacing the pth moment by the pth power of A.

Let A be aN×N Hermitianmatrix with non-degenerate eigenvalues λ1, . . . , λN and corresponding
eigenvectors v1, . . . , vN . The matrix

Pi(A) =

∏
j̸=i

A − 1λj

λi − λj
= P†

i (A), (B.1)

satisfies Pi(A)vk = δi,kvk and Pj(A)Pi(A)vk = δi,kδj,kvk and is therefore a projector on the one-
dimensional space defined by the eigenvector vk. Formally expanding the product in Eq. (B.1), we
obtain

Pi(A) =

N∑
n=1

bi,nAn−1. (B.2)

From the same formal expansion of the real-valued function defined by

gi(λ) =

∏
j̸=i

λ − 1λj

λi − λj
=

N∑
n=1

bi,nλn−1, (B.3)

it follows that

gi(λk) = δi,k =

N∑
n=1

bi,nλn−1
k . (B.4)

Introducing the Vandermonde matrix Vk,n = λn−1
k , Eq. (B.4) reads bV T

= 1 or, equivalently, b =(
V T
)−1 where the assumption that the eigenvalues are non-degenerate guarantees that the inverse of

V T exists. Therefore we may write Eq. (B.2) as

Pi(A) =

N∑
n=1

(
V T)−1

i,n An−1. (B.5)

On the other hand, the momentsmp of the function f (λ1), . . . , f (λN ) are defined as

mp =

N∑
j=1

f (λj)λ
p−1
j =

N∑
j=1

f (λj)Vj,p

or

M = V TF , (B.6)

where M = (m1, . . . ,mN )T and F = (f (λ1), . . . , f (λN ))T. From Eq. (B.6) it follows directly that

F =
(
V T)−1

M
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or

f (λi) =

N∑
p=1

(
V T)−1

i,p mp−1. (B.7)

Replacing the symbol mp−1 in Eq. (B.7) by Ap−1, the right-hand-side of Eq. (B.7) becomes identical to
the right-hand-side of Eq. (B.5), which proves the statement made in the beginning of this section.

References

[1] I. Newton, The Principia. The Mathematical Principles of Natural Philosophy, Univ. of California Press, Berkeley, CA, 1999.
[2] V.I. Arnold, Huygens and Barrow, Newton and Hooke: Pioneers in Mathematical Analysis and Catastrophe Theory from

Evolvements to Quasicrystals, Birkhäuser, Basel, 1990.
[3] A. Einstein, L. Infeld, The Evolution of Physics, Simon and Schuster, New York, 1967.
[4] H. Weyl, The Continuum: A Critical Examination of the Foundation of Analysis, Dover, Toronto, 1994.
[5] J. von Neumann, Mathematical Foundations of QuantumMechanics, Princeton University Press, Princeton, 1955.
[6] S. Weinberg, Lectures on QuantumMechanics, Cambridge University Press, Cambridge, UK, 2003.
[7] H. Rauch, S.A.Werner, Neutron Interferometry: Lessons in Experimental QuantumMechanics,Wave-Particle Duality, and

Entanglement, Oxford, London, 2015.
[8] L.E. Ballentine, Quantum Mechanics: A Modern Development, World Scientific, Singapore, 2003.
[9] R. Barlow, Statistics. A Guide to the Use of Statistical Methods in the Physical Sciences, Wiley, Chichester, UK, 1989.

[10] G.R. Grimmet, D.R. Stirzaker, Probability and Random Processes, Clarendon Press, Oxford, 2001.
[11] A.N. Kolmogorov, Foundations of the Theory of Probability, Chelsea Publishing Co., New York, 1956.
[12] D. Bohm, Quantum Theory, Prentice-Hall, New York, 1951.
[13] R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics, Vol. 3, Addison-Wesley, Reading MA, 1965.
[14] L.E. Ballentine, Rev. Modern Phys. 42 (1970) 358–381.
[15] A.Yu. Khrennikov, Contextual Approach to Quantum Formalism, Springer, Berlin, 2009.
[16] J.P. Ralston, How to Understand QuantumMechanics, Morgan and Claypool Publishers, San Rafael, CA, 2017.
[17] S. Banach, A. Tarski, Fund. Math. 6 (1924) 244–277.
[18] Armen E. Allahverdyan, Roger Balian, Theo M. Nieuwenhuizen, Ann. Physics 376 (2017) 324–352.
[19] A.Y. Khrennikov, Ubiquitous Quantum Structure: From Psychology to Finance, Springer, Berlin Heidelberg, 2010.
[20] D. Bohm, Phys. Rev. 85 (1952) 166–179.
[21] L. de la Peña, A.M. Cetto, The Quantum Dice: An Introduction to Stochastic Electrodynamics, Kluwer, Dordrecht, 1996.
[22] G. ’t Hooft, Found. Phys. Lett. 10 (1997) 105–111.
[23] L. de la Peña, A.M. Cetto, Contribution from stochastic electrodynamics to the understanding of quantum mechanics,

2005, arXiv:0501011.
[24] G. ’t Hooft, in: T.M. Nieuwenhuizen, B. Mehmani, V. S̆pic̆ka, M.J. Aghdami, A.Yu. Khrennikov (Eds.), Beyond the Quantum,

World Scientific, Singapore, 2007, pp. 3–19.
[25] A. Landé, Amer. J. Phys. 42 (1974) 459–464.
[26] B.R. Frieden, Amer. J. Phys. 57 (1989) 1004–1008.
[27] G.V. Vstovsky, Phys. Rev. E 51 (1995) 975–979.
[28] M. Reginatto, Phys. Rev. A 58 (1998) 1775–1778.
[29] L. Hardy, Quantum theory from five reasonable axioms, 2001, http://arXiv/quant-ph/0101012.
[30] S. Luo, J. Phys. A: Math. Gen. 35 (2002) 5181–5187.
[31] B.R. Frieden, Science from Fisher Information: A Unification, Cambridge University Press, Cambridge, 2004.
[32] J. Bub, Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Modern Phys. 38 (2007) 232–254.
[33] C.M. Caves, C.A. Fuchs, R. Schack, Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Modern Phys. 38 (2007) 255–274.
[34] V. Palge, T. Konrad, Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Modern Phys. 39 (2008) 273–287.
[35] V. Kapsa, L. Skála, J. Chen, Physica E 42 (2010) 293–297.
[36] G. Chiribella, G.M. D’Ariano, P. Perinotti, Phys. Rev. A 84 (2011) 012311.
[37] L. Masanes, M.P. Müller, New J. Phys. 13 (2011) 063001.
[38] Č. Brukner, Physics 4 (2011) 55.
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