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Metabolic signature of obesity‑associated 
insulin resistance and type 2 diabetes
Haya Al‑Sulaiti1†, Ilhame Diboun2†, Maha V. Agha3, Fatima F. S. Mohamed3, Stephen Atkin3,4, Alex S. Dömling1, 
Mohamed A. Elrayess5* and Nayef A. Mazloum3* 

Abstract 

Background: Obesity is associated with an increased risk of insulin resistance and type 2 diabetes mellitus (T2DM). 
However, some obese individuals maintain their insulin sensitivity and exhibit a lower risk of associated comorbidi‑
ties. The underlying metabolic pathways differentiating obese insulin sensitive (OIS) and obese insulin resistant (OIR) 
individuals remain unclear.

Methods: In this study, 107 subjects underwent untargeted metabolomics of serum samples using the Metabolon 
platform. Thirty‑two subjects were lean controls whilst 75 subjects were obese including 20 OIS, 41 OIR, and 14 T2DM 
individuals.

Results: Our results showed that phospholipid metabolites including choline, glycerophosphoethanolamine and 
glycerophosphorylcholine were significantly altered from OIS when compared with OIR and T2DM individuals. 
Furthermore, our data confirmed changes in metabolic markers of liver disease, vascular disease and T2DM, such as 
3‑hydroxymyristate, dimethylarginine and 1,5‑anhydroglucitol, respectively.

Conclusion: This pilot data has identified phospholipid metabolites as potential novel biomarkers of obesity‑associ‑
ated insulin sensitivity and confirmed the association of known metabolites with increased risk of obesity‑associated 
insulin resistance, with possible diagnostic and therapeutic applications. Further studies are warranted to confirm 
these associations in prospective cohorts and to investigate their functionality.
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Background
Obesity has become a global health care problem due 
to associated comorbidities including type 2 diabetes 
mellitus (T2DM), coronary artery disease (CAD), non-
alcoholic fatty liver disease (NAFLD) and cancer [1–4]. 
However, a subset of obese individuals exhibit fewer 
comorbidities than their equally obese counterparts 
including maintaining their insulin sensitivity as well as 
having a healthier lipid profile [5]. The underlying protec-
tive mechanisms of the metabolically healthy obesity, also 
known as insulin sensitive obesity, remain unknown.

Previous studies have suggested that lower levels of 
inflammatory mediators play a role in the protective phe-
notype of obese insulin sensitive (OIS) individuals com-
pared to their pathologically obese counterparts, also 
known as obese insulin resistant (OIR) individuals [6–8]. 
Other reports have suggested that OIS individuals show 
fewer markers of oxidative stress [8, 9]. These two media-
tors (inflammation and oxidative stress) could potentially 
be influenced by various genetic and environmental fac-
tors [10]. Although evidence of the genetic component 
remains limited, the environmental effect of certain 
pollutants and various medications has been previously 
established [11, 12].

Advancement in metabolomic tools including mass 
spectrometry (MS) technologies has allowed the identi-
fication of novel metabolic mediators of disease progres-
sion, including obesity associated insulin resistance and 
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T2DM [13]. Recent evidence showed that adipose tissue 
from OIS, OIR and T2DM individuals exhibit a unique 
lipidomic signature associated with an increased risk of 
obesity-associated insulin resistance [14, 15]. Further-
more, metabolomics studies in individuals with T2DM 
have revealed several diabetes-associated metabolites, 
including 1,5-anhydroglucitol (1,5-AG), mannose and 
glucose [16, 17]. Additionally, lipidomics analysis of 
plasma samples from young adults has revealed that 
waist circumference was associated with levels of sev-
eral sphingomyelins, diacylphosphatidylcholines and 
lysophosphatidylcholines, whereas HOMA-IR was 
associated with specific diacylphosphatidylcholines, 
lysophosphatidylcholines and diacylphosphatidylcholines 
[18]. However, no metabolomics studies have compared 
the metabolic differences in blood between lean healthy 
controls, OIS, OIR and T2DM. Such an approach can 
provide a deeper understanding of the underlying protec-
tive mechanisms in those lower risk individuals, and help 
in the design of novel diagnostic and therapeutic strate-
gies targeting those at higher risk of disease [19, 20].

The aim of this study was to employ untargeted metab-
olomics analysis of blood samples from lean, OIS, OIR 
and obese-T2DM individuals in order to investigate the 
metabolic pathways underlying obesity-associated insu-
lin resistance and T2DM.

Methods
Materials
Interleukin 6 (IL-6) and leptin ELISAs were from R&D 
systems (Abingdon, UK). Insulin ELISA was from Merco-
dia Diagnostics (Uppsala, Sweden). Other chemicals and 
reagents were from Sigma (Munich, Germany).

Study design
One hundred and seven individuals (75 obese and 32 
lean) were recruited at Al Emadi hospital and Hamad 
Medical Corporation. Lean participants were healthy 
females visiting the clinic for acne concerns. Obese par-
ticipants were amongst patients undergoing weight 
reduction surgery. Subject inclusion criteria included 
males and females aged over 18 years and under 65 years 
of age. Subject exclusion criteria included malignancy or 
other terminal illness, poorly compliant patients, from 
whatever cause, inability to give informed consent, or 
involvement in other research projects. All individu-
als gave their written informed consent. Protocols were 
approved by Institutional Review Boards of the Anti-
Doping Laboratory Qatar (X2017000224) and Weill 
Cornell Medicine-Qatar (15-00007). Measurements of 
body mass index (BMI), systolic blood pressure (SBP), 
diastolic blood pressure (DBP) and mean arterial blood 
pressure (MAP) were recorded. Fasting blood samples 

were obtained from all participants. Plasma cholesterol 
(total, HDL, LDL and triacylglycerol), fasting blood glu-
cose (FBG) and liver function enzymes (total protein, 
ALP, AST, ALT and bilirubin) were measured by COBAS 
INTEGRA (Roche Diagnostics, Basil). IL-6, leptin and 
insulin were determined using commercially available 
ELISA. Insulin resistance was computed by homeostatic 
model assessment (HOMA-IR, https ://www.dtu.ox.ac.
uk/homac alcul ator/) [21] using 30th percentile (HOMA-
IR = 2.4) as a threshold point. Accordingly, obese subjects 
(BMI > 30) were dichotomized into IS (HOMA-IR < 2.4, 
n = 20, 6 males and 14 females), IR (HOMA-IR > 2.4, 
n = 41, 15 males and 26 females) and 14 clinically diag-
nosed T2DM patients (9 males and 5 females) according 
to the definition of the American Diabetes Association 
(ADA) “Standards of Medical Care in Diabetes” [22].

Metabolomics
Metabolomics profiling was performed using established 
protocols at Metabolon, Durham, NC, USA. All meth-
ods employed a Waters ACQUITY ultra-performance 
liquid chromatography (UPLC) and a Thermo Scientific 
Q-Exactive high resolution/accurate mass spectrom-
eter interfaced with a heated electrospray ionization 
(HESI-II) source and Orbitrap mass analyzer operated 
at 35,000 mass resolution. The detailed description of 
the liquid chromatography-mass spectrometry (LC–MS) 
methodology was previously described [23, 24]. Briefly, 
serum samples from the 107 participants were methanol 
extracted to remove the protein fraction. The resulting 
extract was divided into five fractions: two for analysis by 
two separate reverse phase (RP)/UPLC-MS/MS methods 
with positive ion mode electrospray ionization (ESI), one 
for analysis by RP/UPLC-MS/MS with negative ion mode 
ESI, one for analysis by hydrophilic interaction chroma-
tography (HILIC)/UPLC-MS/MS with negative ion mode 
ESI, and one sample was reserved for backup. Raw data 
was extracted, peak-identified, and quality control-pro-
cessed using Metabolon’s hardware and software [25]. 
Compounds were identified by comparison to library 
entries of purified standards or recurrent unknown enti-
ties with more than 3300 commercially available purified 
standard compounds. Library matches for each com-
pound were checked for each sample and corrected if 
necessary [26].

Statistical analysis of metabolomics data
Statistical analyses were carried out using IBM SPSS 
version 25, R version 3.2.1 and SIMCA 13.0.1 software 
(Umetrics, Sweden). Variables with skewed distribu-
tions were log transformed or taken the square root of as 
appropriate to ensure normality [27]. Comparisons were 
performed with t-test, Wilcoxon–Mann–Whitney and 
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1-way ANOVA as appropriate. Significance was defined 
as p ≤ 0.05. Non-parametric tests were used for compar-
ing ordinal or non-normal variables. Metabolomics data 
were log-transformed to ensure normality. Batch cor-
rection was performed by Metabolon by rescaling each 
metabolite’s median to 1. Principle component analysis 
(PCA) was performed using version 2.14, http://www.r-
proje ct.org/. PCA revealed two main components (PC1 
and PC2) that together captured 27% of the variance 
in the data. Linear regression was performed to iden-
tify significant metabolites differentiating study groups 
(OIS vs OIR and T2DM) and (lean = 0, OIS = 1, OIR = 2, 
T2DM = 3, denoting disease progression) using the R sta-
tistical package (version 2.14, http://www.r-proje ct.org/) 
after correcting for age, gender, BMI and principle com-
ponents (PC1 and PC2). PCs represent common signals 
by the metabolites that contribute to the overall vari-
ance in the data and uncover fingerprints of confounders 
allowing their incorporation into the model by assigning 
them quantifiable measures. In the first model, the varia-
ble study group is categorical whereas the variable disease 
progression in the second group is continuous. Pathway 
enrichment analyses were carried out using Chi square 
tests to identify pathways with metabolites enriched at 
the top of the list of metabolites ranked by p-value from 
the linear model since Bonferroni level of significance 
was not observed. Orthogonal partial least square discri-
minant analysis (OPLS-DA) was used to compare lean, 
OIS, OIR and T2DM groups using SIMCA 14 with per-
centage of missing metabolite values across the samples 
of 50%. A partial correlation analysis was used to deter-
mine metabolic traits of disease (age, BMI, blood pres-
sure, lipids, glucose/insulin/HOMA-IR and liver function 
enzymes) that exhibit best association with metabolites 
showing significantly differing levels between disease 
groups using IBM SPSS version 25, R version 3.2.1.

Results
General characteristics of participants
Thirty-two lean (BMI = 22.7 ± 2.5  kg/m2, all 
females) and seventy-five obese and morbidly obese 
(BMI = 45 ± 6.7  kg/m2, 45 females and 30 males) indi-
viduals were recruited at Hamad Medical Corporation 
and Al Emadi hospital, respectively. Lean individuals 
were younger and had significantly lower levels of SBP, 
MAP, triglycerides, triglycerides/HDL ratio, FBG, ALP, 
ALT and AST than obese individuals. Among obese 
participants, OIR individuals showed higher FBG than 
expected, suggesting a high prevalence of undiagnosed 
T2DM within this group. Therefore, subsequent analy-
ses considered OIR and T2DM groups as one group 
(all IR) as both groups share obesity and insulin resist-
ance. OIS subjects showed significantly lower MAP and 

levels of triacylglycerols, FBG, insulin and HOMA-IR 
than their equally obese all IR (OIR + T2DM) counter-
parts (Table 1).

Metabolites differentiating OIS from OIR + T2DM
Non-targeted metabolomics of serum samples from 
the 107 participants was applied to identify metabolites 
that differentiate OIS vs OIR and OIS vs OIR + T2DM 
individuals to reveal a metabolic signature of obesity-
associated insulin resistance and T2DM. Initial analysis 
revealed no significant differences in levels of metabolites 
between OIS and OIR due to their small group sizes (data 
not shown); however, when combining OIR + T2DM, the 
linear model revealed 27 metabolites exhibiting signifi-
cant differences between OIS and OIR + T2DM groups 
(Table  2). These included metabolites associated with 
glycolysis, gluconeogenesis and pyruvate metabolism 
(glucose and 1,5 AG), histidine metabolism (1-meth-
ylhistamine, 1-ribosyl-imidazoleacetate and formimi-
noglutamate) and phospholipid metabolism (choline, 
glycerophosphoethanolamine and glycerophosphoryl-
choline). Since the Bonferroni level of significance was 
not achieved for any of the identified associations, 
pathway enrichment analysis was performed based on 
identifying pathways reported by nominally significant 
metabolites more frequently than can be attributed to 
random chance. Among the significantly altered meta-
bolic pathways, the phospholipids metabolic pathway 
was significantly over-represented based on enrichment 
analysis of the nominally significant metabolites from 
the group comparisons (p = 3.9E−7). The corresponding 
metabolites associated with the phospholipids metabolic 
pathway differentiating OIS from OIR + T2DM included 
choline, glycerophosphoethanolamine and glycerophos-
phorylcholine (GPC) (highlighted in Table  2). Figure  1 
illustrates levels of significant metabolites that belong 
to enriched pathways in different study groups. Figure 1 
demonstrates higher levels of choline, glycophosphoe-
thanolamine and GPC in OIS compared OIR + T2DM 
and lean groups. Levels of these metabolites in individual 
groups are also shown in Additional file 1: Fig. S1.

Metabolites associated with disease progression
An additional a linear model was used to assess the sig-
nificance of metabolites associated with increased risk 
of obesity-associated insulin resistance and T2DM (as 
defined in the method section). Sixty-six metabolites 
exhibited significant differences with disease progres-
sion. The list of metabolites and their associated path-
ways are shown in Additional file  2: Table  S1. These 
included metabolites associated with glycolysis (glu-
cose), mannose metabolism (mannose), monohydroxy 
fatty acid (3-hydroxylaurate, 3-hydroxyoctanoate, 

http://www.r-project.org/
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3-hydroxydecanoate and 3-hydroxymyristate), medium 
chain fatty acids (laurate) and urea cycle; arginine and 
proline metabolism (ADMA + SDMA) among oth-
ers. Enriched metabolic pathways included glycolysis, 
gluconeogenesis and the pyruvate metabolic pathway 
(p = 0.02), fatty acid monohydroxy metabolic pathway, 
urea cycle metabolic pathway (p = 0.04) and arginine 
and proline metabolic pathway (p = 0.05). Subsequently, 
metabolites that showed significant differences with 
disease progression (Additional file  2: Table  S1) within 
these enriched pathways were identified (Table  3). Fig-
ure  2 demonstrates patterns of increased (3-hydroxy-
laurate, 3-hydrocyoctanoate, 3-hydroxydecanoate, 
3-hydroxymyristate, and glucose) or decreased (1,5-AG, 
ADMA + SDMA, homoarginine, ornithine, 2-oxoargi-
nine) metabolites with disease progression.

An orthogonal partial least square discriminate analy-
sis (OPLS-DA) comparing subjects from lean, OIS, 
OIR and T2DM was used for ease of visualization. The 
model revealed three class-discriminatory components 
accounting for 48% of the variation in the data due to 
participant groups (Fig. 3). The score plot in Fig. 3a indi-
cates an x-axis separating the lean group from OIS, OIR 
and T2DM; the latter group being rather separated along 
the y-axis. The corresponding loading plot, shown in 
Fig. 3b, indicates enriched pathways’ associated metabo-
lites significantly differentiating OIS and OIR + T2DM 
and those associated with disease progression as per lin-
ear models. Specifically, higher glucose, choline, GPC, 
3-hydroxymyristate and 3-hydroxylaurate and lower 1,5-
AG, dimethylarginine (ADMA + SDMA), homoarginine, 
ornithine and 2-oxoarginine are indicated.

Table 1 General characteristics of participants

BMI body mass index, SBP systolic blood pressure, DBP diastolic blood pressure, MAP mean arterial blood pressure, LDL low density lipoprotein, HDL high density 
lipoprotein, IL-6 interleukin 6, FBG fasting blood glucose, HOMA-IR homeostatic model assessment of insulin resistance, TP total protein, ALP alkaline phosphatase, ALT 
alanine transaminase, AST aspartate aminotransferase, F female, M male. Data are presented as mean (SD). Differences between OIS, OIR and T2DM were tested by 
ANOVA. Differences between (OIS and OIR) and (OIS vs OIR + T2DM) were tested by independent sample t test (normally distributed variables) or Mann–Whitney U 
(variables with skewed distribution) test. A p‑value significance level of 0.05 was used. The asterisk (*) denotes ANOVA that compared OIS, OIR and T2DM due to lack of 
data from the lean group

Variables Lean OIS OIR T2DM p value All IR (OIR + T2DM) p value
(N = 32) (all F) (N = 20) 

(4M + 16F)
(N = 41) 
(15M + 26F)

(N = 14) (9M + 5F) ANOVA (N = 55) OIS vs 
(OIR + T2DM)

Age (years) 28 (6.8) 35.4 (10.0) 33.17 (10.1) 43 (10.9) < 0.001 35.7 (1.49) 0.92

BMI (kg/m2) 22.7 (2.5) 45.7 (6.038) 45.2 (6.8) 43.3 (7.2) < 0.001 44.8 (0.93) 0.55

SBP (mmHg) 115.3 (13.7) 124.9 (15) 126.9 (19.2) 132.3 (8.3) 0.004 128 (2.32) 0.42

DBP (mmHg) 70.7 (7.8) 74.2 (23.257) 74.0 (11.8) 77.1 (8.8) 0.52 74.8 (1.51) 0.88

MAP (mmHg) 85.6 (8.7) 85.2 (12.82) 91.7 (12.8) 95.8 (8.21) 0.01 92.7 (1.61) 0.03

Cholesterol 
(mmol/l)

4.3 (0.97) 4.5 (1.24) 4.8 (1.2) 4.9 (0.70) 0.27 4.8 (0.14) 0.24

LDL‑cholesterol 
(mmol/l)

2.5 (0.96) 2.9 (0.89) 3.0 (1.05) 2.8 (0.66) 0.32 3.0 (0.13) 0.74

HDL‑cholesterol 
(mmol/l)

1.4 (0.35) 1.2 (0.36) 1.4 (0.59) 1.2 (0.2) 0.18 1.4 (0.07) 0.12

Triacylglycerol 
(mmol/l)

0.8 (0.28) 1.1 (0.39) 1.3 (0.62) 1.8 (0.8) < 0.001 1.4 (0.09) 0.04

Triglyceride/HDL 0.7 (0.56) 1.0 (0.45) 1.1 (0.77) 1.6 (1.1) 0.01 1.2 (0.12) 0.28

Leptin (ng/ml) NA 60.2 (29.9) 51.2 (21.8) 38.9 (23.8) 0.05* 48.0 (3.09) 0.06

Adiponectin (μg/
ml)

NA 4.2 (3.19) 3.1 (1.41) 3.4 (1.7) 0.5* 3.1 (0.30) 0.25

IL6 (pg/ml) NA 3.7 (2.07) 4.3 (2.1) 4.0 (2.0) 0.45* 4.2 (0.27) 0.26

Insulin (pmol/l) NA 5.3 (1.04) 6.3 (2.7) 11.3 (5.6) < 0.001* 7.6 (0.57) 0.02

FBG (mmol/l) 5.0 (0.39) 6.3 (2.30) 17.9 (8.8) 15.1 (8.6) < 0.001 17.2 (1.18) < 0.001

HOMA‑IR NA 1.5 (0.55) 5.22 (3.2) 6.4 (3.0) < 0.001* 5.5 (0.43) < 0.001

TP (g/l) 73.7 (3.40) 70.3 (4.36) 71 (4.4) 74.3 (7.2) 0.04 71.8 (0.89) 0.34

ALP (U/l) 60.3 (17.1) 70.2 (18.38) 72.5 (16.1) 95.5 (38.1) < 0.001 77.9 (3.46) 0.21

ALT (U/l) 12.6 (5.5) 22.9 (15.16) 31.3 (25.6) 30.9 (19.0) 0.002 31.2 (3.33) 0.15

AST (U/l) 15.5 (4.7) 20.8 (7.84) 24.9 (16.7) 21.7 (10.7) 0.04 24.1 (2.17) 0.36

Bilirubin (μmol/l) 21.2 (4.6) 8.30 (3.84) 8.2 (4.4) 8.5 (3.5) 0.55 8.0 (0.60) 0.9
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Correlation of significant metabolites with mediators 
of metabolic disease
A partial correlation analysis was used to determine 
traits of disease best associated with metabolites show-
ing significantly differing levels between disease groups. 
In essence, the correlation between each of such metab-
olites and each trait was evaluated after correcting for 
the effect of all other remaining traits. The correlations 
that remained significant after such correction are listed 
in Table 4. The trait of liver function enzymes (ALP and 
ALT), BMI, TAGs, leptin, insulin and HOMA-IR showed 
the most significant correlations with levels of metabo-
lites differentiating OIS and OIR + T2DM and those 
associated with disease progression.

Discussion
Obesity triggers a cascade of biochemical changes that 
increase the risk of various comorbidities including insu-
lin resistance and T2DM. However, some obese indi-
viduals seem to be protected against obesity-associated 
comorbidities. Understanding the underlying mecha-
nisms of this apparently protective phenotype could 
provide a therapeutic strategy to mitigate the comorbidi-
ties associated with pathological obesity. Various studies 
have investigated the potential mechanisms underlying 
differences among lean, obese-IS, obese-IR and obese-
T2DM individuals [7, 9, 11, 14, 28, 29], however no study 
has compared the differences in the metabolic signature 
among these groups as a means to identify potential 

Table 2 Metabolites differentiating OIS from OIR + T2DM

Italicized rows represent metabolites that belong to the significantly enriched phospholipids pathway. Linear regression was performed to identify significant 
metabolites differentiating OIS from OIR and T2DM using the R statistical package after correcting for age, gender, BMI and principle components (PC1 and PC2). A 
p‑value significance level of 0.05 was used. Asterisks (*) on IDs of some metabolites indicate that they have not been officially confirmed based on a standard, but their 
identities are known with confidence [23]

Metabolites Sub pathway Super pathway Fold change Std. error p value

1,5‑Anhydroglucitol (1,5‑Ag) Glycolysis gluconeogenesis and pyruvate 
metabolism

Carbohydrate − 0.92 0.4 0.041

12‑Dilinoleoyl‑Gpc (18:2/18:2) Phosphatidylcholine (PC) Lipid 0.47 0.2 0.037

12‑Dilinoleoyl‑Gpe (18:2/18:2)* Phosphatidylethanolamine (PE) Lipid 1.23 0.51 0.037

1‑Methylhistamine Histidine metabolism Amino Acid 1.16 0.38 0.007

1‑Ribosyl‑Imidazoleacetate* Histidine metabolism Amino Acid 0.85 0.35 0.03

26‑Dihydroxybenzoic Acid Drug—topical agents Xenobiotics 1.18 0.42 0.011

3‑Amino‑2‑Piperidone Urea cycle; arginine and Proline metabolism Amino Acid − 0.99 0.37 0.016

5‑Methylthioadenosine Polyamine metabolism Amino Acid 1.18 0.38 0.006

Alpha‑hydroxyisovalerate Leucine isoleucine and valine metabolism Amino Acid 0.7 0.27 0.023

Arachidonoylcholine Fatty acid metabolism (acyl choline) Lipid − 1.05 0.41 0.021

Choline Phospholipid metabolism Lipid − 0.46 0.17 0.013

Cortisol Corticosteroids Lipid 0.87 0.31 0.012

Docosatrienoate (22:3N3) Long chain polyunsaturated fatty acid (n3 and 
n6)

Lipid 0.64 0.25 0.024

Formiminoglutamate Histidine metabolism Amino Acid 1.15 0.52 0.05

Gamma‑tocopherol/beta‑tocopherol Tocopherol metabolism Cofactors and Vitamins 1.38 0.55 0.024

Glucose Glycolysis gluconeogenesis and pyruvate 
metabolism

Carbohydrate 0.3 0.12 0.025

Glycerol 3‑phosphate Glycerolipid metabolism Lipid − 0.93 0.38 0.029

Glycerophosphoethanolamine Phospholipid metabolism Lipid − 1.24 0.47 0.019

Glycerophosphorylcholine (GPC) Phospholipid metabolism Lipid − 1.85 0.77 0.032

HWESASXX* Tyrosine metabolism Amino Acid − 1.44 0.59 0.029

Methionine sulfone Drug—metabolic Xenobiotics 0.89 0.34 0.018

Methylphosphate Benzoate Metabolism Xenobiotics − 1.55 0.48 0.006

N‑Formylanthranilic Acid Fatty acid metabolism (acyl carnitine monoun‑
saturated)

Lipid 0.9 0.4 0.044

N‑Stearoyl‑Sphinganine (D18:0/18:0)* Endocannabinoid Lipid 0.84 0.31 0.015

N‑Stearoyl‑Sphingosine (D18:1/18:0)* Ceramides Lipid 0.44 0.2 0.05

Pipecolate Fatty acid dicarboxylate Lipid 0.92 0.32 0.011

Ribitol Vitamin A metabolism Cofactors and vitamins 0.33 0.14 0.044
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diagnostic and therapeutic targets. In this study, untar-
geted metabolomics analysis of serum samples from 
lean, OIS, OIR and obese-T2DM individuals was uti-
lized to investigate the metabolic pathways underlying 
progression of insulin resistance and T2DM. Our novel 
data indicate that the phospholipid metabolites (choline, 
glycerophosphoethanolamine and glycerophosphoryl-
choline) were significantly altered when comparing OIS 
and OIR + T2DM. Additionally, our data confirmed met-
abolic changes in several metabolic pathways with obe-
sity-associated insulin resistance and T2DM, including 
fatty acid and arginine metabolism as well as metabolic 
markers of liver disease, vascular disease, and diabetes. 
Therefore, the novel metabolites reported here differen-
tiate the metabolically healthy obese group (OIS) from 
the pathological obese group (OIR + T2DM) and con-
firm known biomarkers of obesity-associated insulin 

resistance with potential diagnostic and therapeutic 
applications. The causative nature of the identified cor-
relations between metabolites and insulin resistance can-
not be ruled out particularly as it is recognized that free 
fatty acids, for instance, increase insulin resistance [30]. 
Therefore, future in  vitro and in  vivo functional studies 
are warranted where the effects of these metabolites on 
inducing insulin resistance could confirm their functional 
relevance.

A novel metabolic signature differentiating OIS 
and OIR + T2DM
Since there were no difference between OIS and OIR 
likely due to their small group sizes, the analysis was 
repeated by comparing OIS and combined OIR and 
T2DM groups as the latter two groups were matched for 
obesity and insulin resistance. Three phospholipids were 

OIS                                   OIR+T2DM OIS                                   OIR+T2DM OIS                                   OIR+T2DM

Choline Glycerophosphorylcholine (GPC)Glycerophosoethanolamine

*
* *

29.6

29.5

29.4

29.3

29.2

24.8

24.4

24.0

23.6

31.5

31.0

30.5

30.0

29.5

Fig. 1 Boxplot of metabolites that belong to the enriched phospholipid pathway differentiating OIS and OIR + T2DM groups. Linear regression was 
performed to identify significant metabolites differentiating OIS from OIR and T2DM using the R statistical package after correcting for age, gender, 
BMI and principle components (PC1 and PC2). Y‑axis indicates levels of metabolites (log2). *p‑value significance level of 0.05 was used

Table 3 Metabolites that  belong to  the  significantly enriched pathways associated with  obesity-associated insulin 
resistance and T2DM

Linear regression was performed to identify significant metabolites associated with disease progression (lean, OIS, OIR, T2DM) using the R statistical package after 
correcting for age, gender, BMI and principle components (PC1 and PC2). A p‑value significance level of 0.05 was used. Asterisks (*) on IDs of some metabolites 
indicate that they have not been officially confirmed based on a standard, but their identities are known with confidence [23]

Metabolites Sub pathway Super pathway Beta value Std. error p value

3‑Hydroxylaurate Fatty acid monohydroxy Lipid 0.3 0.1 0.002

3‑Hydroxyoctanoate Lipid 0.3 0.1 0.008

3‑Hydroxydecanoate Lipid 0.3 0.1 0.009

3‑Hydroxymyristate Lipid 0.2 0.1 0.012

Glucose Glycolysis gluconeogenesis 
and pyruvate metabolism

Carbohydrate 0.2 0 0.001

15‑Anhydroglucitol (1,5‑AG) Carbohydrate − 0.4 0.2 0.019

Dimethylarginine (ADMA + SDMA) Urea cycle; arginine and proline 
metabolism

Amino Acid − 0.3 0.1 0.009

Homoarginine Amino Acid − 0.3 0.1 0.017

Ornithine Amino Acid − 0.2 0.1 0.042

2‑Oxoarginine* Amino acid − 0.3 0.1 0.045
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found to differentiate between OIS and OIR + T2DM. 
These included increased levels of choline and GPC in 
OIS compared to OIR + T2DM and lean groups, suggest-
ing a protective role in obesity-associated insulin resist-
ance. GPC is a natural precursor of phospholipids and a 
metabolite derived from phosphatidylcholine. It contrib-
utes the most to circulating choline levels; therefore, GPC 
serves as a precursor for acetylcholine. The latter is an 
important neurotransmitter and a vasodilator that shows 
a different microvascular reactivity between IR and IS 
nondiabetic women [31]. Previous studies have reported 
that dietary choline levels can also lower the risk of fatty 
liver disease and liver damage [32]. Glycerophosphoetha-
nolamine was another metabolite that differentiated OIS 
from OIR + T2DM. Glycerophosphoethanolamine rep-
resents a membrane degradation product that has been 
linked to chronic liver disease [33]. The novel associa-
tions between higher levels of these phospholipid metab-
olites and obesity-associated insulin sensitivity could 
therefore reflect decreased risk of microvascular disease, 
small vessel disease, lipotoxic cardiac diseases and non-
alcoholic liver disease in the OIS group compared to 
OIR + T2DM group of participants [34–36].

Metabolic signature of obesity‑associated insulin 
resistance and T2DM
When comparing the metabolic profiles of lean, obese-
IS, IR and T2DM individuals, several metabolites 

significantly changed with disease progression. These 
included metabolites that were previously reported in 
association with insulin resistance and T2DM such as 
glucose and 1,5-AG [37, 38]. Other identified metabo-
lites were reported in association with comorbidities 
of insulin resistance and T2DM including fatty acid 
metabolic disorders (such as 3-hydroxylaurate) [39], 
impairment of liver function and diabetic status (such 
as 3-hydroxymyristate and homoarginine) [40, 41] and 
vascular disease (such as dimethylarginine) [42]. Other 
novel arginine metabolites were also found to be sig-
nificantly changed with disease progression including 
ornithine (a precursor of arginine, also a medication 
for hepatic encephalopathy) [43] and 2-oxoarginine 
(a metabolite of arginine catabolism and a marker of 
argininemia) [44]. Novel metabolites in association 
with disease progression were also identified includ-
ing medium chain fatty acids 3-hydroxyoctanoate and 
3-hydroxydecanoate that have been reported to be 
involved in beta-oxidation of longer-chain fatty acids 
[45, 46]. Previous reports have associated increased 
plasma levels of 3-hydroxyoctanoate in patients with 
an inherited deficiency of long-chain 3-hydroxyacyl-
CoA dehydrogenase, as a marker of various clinical 
cases such as recurrent myoglobinuria, hypoketotic 
hypoglycemic encephalopathy, hypertrophic/dilatative 
cardiomyopathy, sudden infant death, and fulminant 
hepatic failure [46, 47].

Fig. 2 Boxplot of metabolites that belong to the enriched pathways associated with increased risk of obesity‑associated insulin resistance and 
T2DM. Linear regression was performed to identify significant metabolites associated with disease progression using the R statistical package after 
correcting for age, gender, BMI and principle components (PC1 and PC2). Y‑axis indicates levels of metabolites (log2). A p‑value significance level of 
0.05 was used
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Correlation between metabolites differentiating OIS 
and OIR + T2DM and classical mediators of metabolic 
disease
When considering correlations between the identified 
metabolites and classical mediators of metabolic dis-
ease such as age, BMI, lipids, FBG, insulin, HOMA-IR 
and liver function enzymes, a partial correlation analy-
sis revealed several significant associations. Choline, 
previously shown to be lower in hepatic damage [48], 
was found to positively correlate with leptin and ALT. 
Despite its positive correlation with ALT, choline was 
found to be higher in OIS compared to OIR + T2DM, 
indicating a relationship between this metabolite 
and the protective phenotype of OIS individuals that 
requires further investigation. On the other hand, glyc-
erophosphoethanolamine was found to be associated 

with BMI, suggesting increased levels of this membrane 
degradation product with obesity.

Correlation of disease progression metabolites 
and classical mediators of metabolic disease
As expected, glucose and 1,5-AG, previously shown to be 
associated with T2DM, were found to correlate signifi-
cantly with levels of insulin and circulating triacylglycerol 
levels. When considering metabolites that were signifi-
cantly associated with obesity-related comorbidities, a 
significant correlation between levels of 3-hydroxylaurate 
and ALP, was revealed. This suggests that 3-hydroxylau-
rate, a medium chain fatty acid that is associated with 
intolerance to prolonged fasting and recurrent episodes 
of hypoglycemic coma, may constitute a novel marker of 
fatty liver disease. Similarly, 3-hydroxyocanoate was also 
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Fig. 3 OPLS‑DA model comparing metabolites from lean, OIS, OIR and T2DM individuals. a A score plot showing the class‑discriminatory 
component 1 (x‑axis) versus class‑discriminatory component 2 (y‑axis). b The corresponding loading plot showing enriched pathways’ associated 
metabolites differentiating OIS and OIR + T2DM groups or those associated with disease progression
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found to be associated with ALP and BMI, suggesting 
that it may also be a novel marker of obesity-associated 
fatty liver disease. 3-hydroxydecanoate was also found 
to be associated with BMI, suggesting increased levels of 
another medium-chain fatty acid with a role in the beta-
oxidation and obesity. Ornithine, previously shown to be 
associated with hepatic damage, was found to be associ-
ated with leptin and ALT, providing a further evidence of 
its association with obesity associated non-alcoholic fatty 
liver disease.

Study limitations
This has a number of limitations including the relatively 
low number of participants per group and the cross-
sectional nature of the study limited the interpretation of 
the findings from a pathophysiological point of view. The 
observational nature of the findings requires functional 
validation before suggesting any causalities, especially as 
some findings were based on weak to moderate associa-
tions. Furthermore, since blood samples were collected at 
multiple sites, a batch effect may have occurred, but this 
was mitigated by standardized protocols for sample col-
lection, processing and storage. It is possible that other 
unmeasured factors may have impacted our data includ-
ing dietary habits, medication/supplements and other 
unknown environmental factors; however, inclusion of 

principle components in the regression model may have 
captured part of these potential confounding factors. 
Finally, controls were not matched for age and gender 
compared to the study groups, adding an additional vari-
able; however, both age and gender were corrected for 
in the analysis, but their influence over metabolic differ-
ences cannot be ruled out.

Conclusion
In the comparison between equally obese insulin sen-
sitive and insulin resistance individuals, phospholipid 
metabolites including choline, glycerophosphoethan-
olamine and glycerophosphorylcholine (GPC) were sig-
nificantly altered. In addition, several metabolites were 
identified and were confirmatory for insulin resist-
ance and T2DM (such as glucose and 1,5-AG) or their 
comorbidities (such as 3-hydroxylaurate, 3-hydroxy-
myristate, homoarginine and dimethylarginine). This 
pilot study also identified novel metabolic markers such 
as the medium chain fatty acids 3-hydroxyoctanoate 
and 3-hydroxydecanoate and highlighted their poten-
tial link to non-alcoholic fatty liver disease, a hallmark 
of increased risk of obesity-associated insulin resistance. 
Further studies are needed to confirm these associations 
in prospective cohorts and to investigate their functional 
relevance.
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