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RESEARCH Open Access

Genetic overlap of chronic obstructive
pulmonary disease and cardiovascular
disease-related traits: a large-scale genome-
wide cross-trait analysis
Zhaozhong Zhu1,2†, Xiaofang Wang3†, Xihao Li4, Yifei Lin2, Sipeng Shen1, Cong-Lin Liu5, Brain D. Hobbs6,
Kohei Hasegawa7, Liming Liang2,4, International COPD Genetics Consortium, H. Marike Boezen8,9,
Carlos A. Camargo Jr8,7, Michael H. Cho6,10 and David C. Christiani1,11*

Abstract

Background: A growing number of studies clearly demonstrate a substantial association between chronic obstructive
pulmonary disease (COPD) and cardiovascular diseases (CVD), although little is known about the shared genetics that
contribute to this association.

Methods: We conducted a large-scale cross-trait genome-wide association study to investigate genetic overlap
between COPD (Ncase = 12,550, Ncontrol = 46,368) from the International COPD Genetics Consortium and four primary
cardiac traits: resting heart rate (RHR) (N = 458,969), high blood pressure (HBP) (Ncase = 144,793, Ncontrol = 313,761),
coronary artery disease (CAD)(Ncase = 60,801, Ncontrol = 123,504), and stroke (Ncase = 40,585, Ncontrol = 406,111) from UK
Biobank, CARDIoGRAMplusC4D Consortium, and International Stroke Genetics Consortium data.

Results: RHR and HBP had modest genetic correlation, and CAD had borderline evidence with COPD at a genome-wide
level. We found evidence of local genetic correlation with particular regions of the genome. Cross-trait meta-analysis of
COPD identified 21 loci jointly associated with RHR, 22 loci with HBP, and 3 loci with CAD. Functional analysis revealed
that shared genes were enriched in smoking-related pathways and in cardiovascular, nervous, and immune system
tissues. An examination of smoking-related genetic variants identified SNPs located in 15q25.1 region associated with
cigarettes per day, with effects on RHR and CAD. A Mendelian randomization analysis showed a significant positive causal
effect of COPD on RHR (causal estimate = 0.1374, P = 0.008).

Conclusion: In a set of large-scale GWAS, we identify evidence of shared genetics between COPD and cardiac traits.

Keywords: Chronic obstructive pulmonary disease, Cardiovascular diseases, Genetic overlap

Background
Chronic obstructive pulmonary disease (COPD) is a
chronic inflammatory disease of the lungs that is the
fourth leading cause of death in the world, accounting
for more than 3 million deaths each year [1]. There is
now considerable evidence of an association between

COPD and cardiovascular disease (CVD). Several
population-based studies have shown that COPD and
airflow limitation is a predictor of cardiovascular risk
[2]. The SUMMIT randomized clinical trial reported
that exacerbations of COPD confer an increased risk of
subsequent CVD [3, 4]. The Lung Health Study reported
that for every 10% decrease in forced expiratory volume
in 1 s (FEV1), there is a 28% increase in fatal coronary
events among subjects with mild to moderate COPD [5].
In addition, CVD is a leading cause of death in patients
with COPD, with a 5-year mortality of up to 25% due to
a cardiovascular event [5, 6], such as high resting heart
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rate (RHR), systemic hypertension, coronary artery dis-
ease (CAD), or stroke [7–10].
We and colleagues recently identified shared genetic

architecture between COPD and lung function/pulmonary
fibrosis [11], asthma and allergic diseases [12], Alzheimer’s
disease and metabolic disorders [13], psychiatric disorders
[14], indicating potential pleiotropic effects among these
diseases. COPD and CVD are both highly heritable traits
[11, 15]. Parallel epidemic trends worldwide suggest shared
genetic and environmental components for both condi-
tions. However, there is little knowledge about shared gen-
etic components between COPD and CVD. Although a
previous study identified some genetic loci that influencing
both lung function and CAD [16], the findings were not
genome-wide in scale and were limited by small sample
size. Therefore, it remains largely unknown to what extent
the phenotypic association between COPD and CVD is due
to shared genetic and biologic effects.
Therefore, we investigated the genetic correlation be-

tween COPD and cardiac traits and attempted to describe
the specific shared genetic loci and biological pathways be-
tween traits. We conducted a large-scale, genome-wide as-
sociation study (GWAS) cross-trait analysis of COPD from
the International COPD Genetics Consortium (ICGC) and
4 cardiac traits from UK Biobank, CARDIoGRAMplusC4D
Consortium, and International Stroke Genetics Consortium
(ISGC) data, including RHR, high blood pressure (HBP),
CAD [17], and stroke [18].

Methods
Study populations
We included 4 major data sources—ICGC, UK Biobank,
CARDIoGRAMplusC4D Consortium, and ISGC—in the
overall study design (Fig. 1). Previous reports have
detailed disease definition and baseline characteristics of
the ICGC study cohorts [11] and UK Biobank cohort
[19]. In brief, the ICGC defined COPD by GOLD criteria
based on pre-bronchodilator spirometry: FEV1 of < 80%
and FEV1 to forced vital capacity (FVC) ratio of < 0.7 for
cases; or FEV1 of > 80% and FEV1/FVC of > 0.7 for con-
trols, and adjusted for age, sex, pack-years, and smoking
status. In UK Biobank, we used both data field 102 and
95 for RHR and data field 6150 for HBP. RHR was
assessed via two methods: automated reading during
blood pressure measurement (in 501,340 participants);
and pulse waveform obtained from the finger with an in-
frared sensor during arterial stiffness measurement (in
193,472 participants). RHR was averaged if multiple
measurements were available for one individual [20]. HBP
was assessed by touch screen questionnaire of participants’
HBP diagnosis by doctor. We retrieved summary statistics
from publicly available GWAS studies: CAD (Ncase/control =
60,801/123,504) from CARDIoGRAMplusC4D Consortium
[17], and stroke (Ncase/control = 40,585/406,111) from ISGC

[18]. CAD diagnoses in CARDIoGRAMplusC4D was
defined by an inclusive CAD diagnosis (e.g. myocardial in-
farction (MI), acute coronary syndrome, chronic stable an-
gina, or coronary stenosis > 50%) [17]. The ISGC defined
stroke by an inclusive stroke diagnosis (e.g. ischemic stroke,
large artery stroke, cardioembolic stroke and small vessel
stroke). We standardized GWAS summary data to
minimize potential bias due to quality control proce-
dures. Indels and rare/low frequency variants with a
minor allele frequency of < 1% were excluded. In addition,
we restricted analysis to autosomal chromosomes. Aside
from RHR and HBP, both tested in Biobank, we are not
aware of specific sample overlap between COPD and 4
major cardiovascular traits in this study, including RHR,
HBP, CAD and stroke. Details of each dataset can be
found in Additional file 1: Table S1. All subjects consent
to participate the study by the time of data analysis.

GWAS analysis in UK biobank
We performed GWAS analysis on RHR and HBP using
a linear mixed model (LMM) method [21] based on
European ancestry. See the Additional file 2: Supplemental
Note for additional information.

LD score regression (LDSC) analysis
We conducted post-GWAS genetic correlation analysis
with LDSC, which estimates genetic correlation between
true causal effects of two traits (genetic correlation estimate
Rg ranging from − 1 to 1) [22]. Cardiac traits showing
genome-wide genetic correlation with COPD were further
studied in the downstream analysis. See the Additional
file 2: Supplemental Note for additional information.
In addition, we performed genetic correlation analysis

between COPD and ischemic stroke subtypes, and meta-
bolic traits (lipids, obesity, and glucose).

Partitioned genetic correlation
To characterize genetic overlap at the level of functional
categories, we estimated genetic correlation between
COPD and cardiac traits in 11 annotation categories
using LDSC. These annotations included transcribed re-
gions, transcription factor binding sites, super-enhancers,
introns, DNaseI digital genomic footprinting (DGF) re-
gions, DNaseI hypersensitivity sites (DHSs), fetalDHSs,
and histone marks h3k9ac, h3k4me1, h3k4me3, and
h3k27ac [23]. For each annotation, we re-calculated LD
scores for SNPs assigned to that particular category and
then used annotation-specific LD scores to estimate the
COPD–cardiac trait genetic correlation.

Local genetic correlation
To identify local genetic correlations between COPD
and cardiac traits, we performed ρ-HESS to estimate
local genetic correlation between a pair of traits at each
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LD-independent region in the genome [24]. Approxi-
mately 1703 independent LD blocks of 1.5 Mb were used
to calculate local genetic heritability and covariance. All
GWAS data were restricted to European ancestry, and
Bonferroni correction was used to adjust multiple testing
(two-tailed P < 0.05/1703) according to the original
method description [24].

Cross-trait meta-analysis
After assessing genetic correlations among all traits, we
applied 2 cross-trait GWAS meta-analysis methods to
combine binary or continuous traits [25]. We used associ-
ation analysis based on SubSETs (ASSET) to combine asso-
ciation evidence for COPD with HBP and CAD at
individual variants because it is designed for meta-analysis
of binary traits [26]. We also applied another cross-trait
GWAS meta-analysis method, cross phenotype association
(CPASSOC), to combine association evidence for COPD
with RHR at individual variants, since this method allows

meta-analysis of continuous traits [27]. See the Additional
file 2: Supplemental Note for additional information.
We applied PLINK [28] clumping function (parame-

ters: --clump-p1 5e-8 --clump-p2 1e-5 --clump-r2 0.2
--clump-kb 500) to determine top loci that were inde-
pendent from one another (i.e., variants with P < 1 ×
10− 5, r2 > 0.2, and < 500 kb away from a peak). The
variant with the lowest p-value was defined as the sentinel
variant. Putative genes for each variant were considered to
be those within the clump. We used Variant Effect Pre-
dictor based on Ensembl/GENCODE basic transcripts
database for detailed variant annotation [29].

Fine-mapping of credible sets
To identify the 99% credible set of variants within
each 500-kb sentinel variant, we identified a credible
set of causal variants at each shared locus that met
cross-trait meta-analysis criteria using the Bayesian
likelihood fine-mapping algorithm [30]. The algorithm

Fig. 1 Overall study design. Multiple GWAS data sources were first retrieved. We first conducted genome-wide genetic correlation between
COPD and 4 major cardiovascular disease (CVD) traits. For CVD traits that were shown genetic correlation with COPD, we conducted further post-
GWAS analyses to investigate genetic overlap between them (variant/region/functional levels, smoking effect and causal inference). We also
evaluated the genetic correlation between COPD and other CVD related traits. Abbreviations: ICGC: International COPD Genomic Consortium;
UKBB: UK Biobank; ISGC: International Stroke Genetics Consortium; GIANT: The Genetic Investigation of ANthropometric Traits (GIANT) consortium;
DIAGRAM: DIAbetes Genetics Replication And Meta-analysis consortium; ENGAGE: European Network for Genetic and Genomic Epidemiology
consortium; TAG: Tobacco and Genetics Consortium
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maps primary signal and uses a flat prior with stee-
pest descent approximation.

Pathway and GTEx tissue enrichment analysis
To gain biological insights for shared genes, we used the
WebGestalt tool [31] to assess enrichment of the identi-
fied shared gene set in the Gene Ontology (GO) bio-
logical process. We conducted GTEx tissue enrichment
analysis using functional mapping and annotation
(FUMA) [32] with 53 tissue types from GTEx version 7
[33]. Both analyses were based on shared genes that
were identified from cross-trait meta-analysis.

Transcriptome-wide association study (TWAS)
To identify shared COPD and cardiac trait gene expres-
sion associations in specific tissues, we conducted TWAS
using the FUSION software package based on 43 GTEx
(version 6) tissue expression weights [34]. Multiple testing
correction was applied for each trait’s gene–tissue
pairs on TWAS P-values using false discovery rate
(FDR) Benjamini-Hochberg procedure (FDR < 0.05).

Evaluation of effect of smoking-related genetic variants
between COPD and cardiac traits
To evaluate the potential effect of smoking-related genetic
variants between COPD and cardiac traits, we retrieved
129 genome-wide significant SNPs for cigarette per day
(CPD) from the Tobacco and Genetics Consortium (TAG)
[35]. We also looked up GWAS results for 2 other smok-
ing related traits from TAG, ever vs never smoked and
current vs former smoker, however no SNPs reached
genome-wide significance. Thus, we merged 129 SNPs
with COPD and CVD traits (RHR, HBP and CAD) and
identified 45 SNPs in common for all traits. We used
M-value posterior probability [36] to evaluate if the CPD
genetic variant effect exists among COPD and CVD traits.
A M-value > 0.9 was considered evidence that the SNP
had an effect on the trait.

Mendelian randomization (MR) analysis
Finally, we performed MR analysis using Mendelian
Randomization Pleiotropy RESidual Sum and Outlier
(MR-PRESSO) [37] in order to infer putative causal rela-
tionships between COPD and 3 cardiac traits (RHR,
HBP, CAD). MR-PRESSO estimates effect of exposure
on outcome using SNPs significantly associated with
exposure and allows for the evaluation of horizontal
pleiotropy in multi-instrument Mendelian Randomization
utilizing GWAS summary association statistics. We con-
structed instruments using genome-wide significant LD-in-
dependent SNPs with P-value less than 5 × 10− 8. Prior to
running MR-PRESSO, we removed strand-ambiguous SNPs
and SNPs in the MHC region (chr6:25-34M).

Results
Genome-wide association and SNP-based heritability
The phenotype–genotype association test was carried
out on ~ 460,000 samples and ~ 5.26 million SNPs from
UK Biobank data after quality control. The genomic in-
flation factor (λgc) from LDSC for RHR and HBP were
1.8405 [LDSC intercept: 1.1256, standard error (SE):
0.0502; Additional file 3: Figure S1] and 1.7648 (LDSC
intercept: 1.1061, SE: 0.0244; Additional file 3: Figure S2),
respectively; these values suggest that much of the infla-
tion is due to polygenic inheritance [38]. Estimates of
SNP-based heritability on the observed scale using GWAS
summary statistics were 20.11% (SE: 2.61%) for COPD,
15.19% (SE: 1.28%) for RHR, 12.80% (SE: 0.58%) for HBP,
6.71% (SE: 0.52%) for CAD, and 1.21% (SE: 0.14%) for
stroke (Additional file 1: Table S2).

Genome-wide genetic correlation
We evaluated the genetic correlation of COPD and car-
diac traits using cross-trait LDSC. Nominally significant
genetic correlation with COPD was found for both RHR
(Rg = 0.0722; P = 0.0434) and HBP (Rg = 0.0751; P =
0.0467) (Table 1). Genetic correlation for COPD and
CAD was approximately 10%, but this value did not
reach statistical significance; we did not observe signifi-
cant genetic correlation between COPD and stroke
(Table 1), or additional blood pressure traits, such as
systolic blood pressure, diastolic blood pressure (Add-
itional file 1: Table S3). In addition, we did not find evi-
dence of genetic correlation between COPD and
ischemic stroke subtype or any CVD related metabolic
traits (Additional file 1: Table S3).

Partitioned genetic correlation
In partitioned LDSC analysis, we used 11 functional an-
notations to evaluate genetic correlations between
COPD and cardiac traits by specific functional category.
The highest magnitude of significant genetic correlation
between COPD and HBP was in introns (Rg = 0.1711;
P = 0.0233) and h3k9ac (Rg = 0.1428; P = 0.033) (Additional
file 3: Figure S3, Additional file 1: Table S4). Super en-
hancers had the highest magnitude of genetic correlation
between COPD and RHR (Rg = 0.1259; P = 0.0173).

Table 1 Genome-wide genetic correlation between COPD and
cardiac traits

Phenotype 1 Phenotype 2 Rg Rg_SE P

COPD Resting heart rate 0.0722 0.0357 0.0434

COPD High blood pressure 0.0751 0.0378 0.0467

COPD Coronary artery disease 0.1015 0.0528 0.0548

COPD Stroke 0.0226 0.0689 0.7428

COPD chronic obstructive pulmonary disease, Rg genetic correlation estimate,
SE standard error
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Local genetic correlation
We performed ρ-HESS to investigate whether specific
regions of the genome had genetic correlation between
COPD and cardiac traits. Analysis of the COPD/RHR
trait pair showed that the 4q31 region (chromosome 4:
143443265–146,178,187) had strong local genetic corre-
lations (P = 7.42 × 10− 7) (Fig. 2 and Additional file 1:
Table S5). Analysis of the COPD/HBP trait pair showed
strong local genetic correlations in 11q22 (chromosome
11: 100417169–101,331,121; P = 6.31 × 10− 7) and 5q32
(chromosome 5: 147181998–148,662,624; P = 3.98 × 10−

6) regions (Fig. 2 and Additional file 1: Table S6). We did
not observe any significant local genetic correlations for
the COPD/CAD trait pair (Fig. 2 and Additional file 1:
Table S7).

Cross-trait meta-analysis between COPD and cardiac traits
ASSET and CPASSOC were applied for genome-wide
meta-analysis to identify genetic loci associated with
COPD and cardiac traits (meta-analysis P < 5 × 10− 8;
trait-specific P < 0.01). After pruning, we found 21 loci
significantly associated with COPD and RHR (Table 2

Fig. 2 Plots depicting local genetic correlation (top), genetic covariance (middle), and SNP heritability (bottom) for COPD and RHR (a),
COPD and HBP (b), and COPD and CAD (c). Blue or red highlights indicate significant local genetic correlation and covariance after
multiple testing correction
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and Additional file 1: Table S8). The most significant
SNP was rs7655625 (Pmeta = 1.92 × 10− 19), located at the
HHIP locus. The second most significant locus (sentinel
SNP: rs59985166, Pmeta = 4.08 × 10− 18) was located at
the CASZ1 locus [39].
In addition, we found 22 loci significantly associated

with both COPD and HBP (Table 3 and Additional file 1:
Table S9). The top significant locus was near ARHGAP42
(sentinel SNP: rs633185, Pmeta = 1.80 × 10− 47) [40], Not-
ably, rs7655625, the most significant SNP for COPH/
RHR, also had strong correlation with COPD/HBP
(Pmeta = 9.69 × 10− 19).
In addition to rs7655625 in HHIP, we also observed

two more overlapping significant loci in meta-analyses
of COPD/RHR and COPD/HBP. The first locus was
EEFSEC (sentinel SNP: rs2955083, Pmeta = 3.56 × 10− 8

for COPD/RHR; sentinel SNP: rs2293947, Pmeta = 9.09 ×
10− 10 for COPD/HBP) [11, 41]. The other locus was
BMP8A (sentinel SNP: rs3738676, Pmeta = 3.07 × 10− 11

for COPD/RHR; sentinel SNP: rs61781370, Pmeta =
7.47 × 10− 9 for COPD/HBP) [42, 43]. Finally, we identi-
fied 3 loci significantly associated with COPD and CAD
(Table 4 and Additional file 1: Table S10). The first locus
(sentinel SNP: rs2128739, Pmeta = 3.17 × 10− 12) is a tran-
script of long non-coding RNA gene RP11-563P16.1.
The second locus represented by rs8108474 (Pmeta =
1.49 × 10− 8) was mapped to DMPK [44]. The third locus
(sentinel SNP: rs8046697, Pmeta = 3.80 × 10− 8), was
mapped to BCAR1 [45]. Detailed annotation for each
sentinel variant is shown in Additional file 1: Table S11.

Identification of causal variants
We identified a credible set of causal SNPs using Bayesian
fine-mapping at each shared loci meeting significance cri-
teria in the COPD–cardiac traits meta-analysis. The cred-
ible set of variants at each locus were 99% likely to contain
the causal variant. A list of credible sets of SNPs for each
locus is provided in Additional file 1: Tables S11–S14.
We found 5 loci (in MACF1, SYNPO2L, RIN3, TNS1,

and MLN) for COPD/RHR (Additional file 1: Table S15),
4 loci (NR0B2, C1orf172, MAFC1, and TNRC6A) for
COPD/HBP (Additional file 1: Table S16), and 7 loci
(CD3EAP, C19orf83, GIPR, FBXO46, AC074212.3, SIX5,
and DMPK) for COPD/CAD (Additional file 1: Table
S17) in which the credible set included exonic missense
polymorphisms. However, most variants in credible sets
at each locus were either intronic or intergenic, which is
consistent with prior studies showing most variants de-
tected by GWAS involve gene regulatory effects, rather
than protein structure changes [46].

Biological pathway, tissue enrichment, and TWAS
We performed pathway analyses to identify biological
pathways enriched for shared loci related to COPD and

cardiac traits based on significant cross-trait meta-analysis
results. COPD and RHR response to nicotine was present
only at a liberal FDR (FDR = 0.198) (Additional file 1:
Table S18). COPD shared pathways of detection of chem-
ical stimulus involved in sensory perception of smell with
HBP (FDR = 1.06 × 10− 10) (Additional file 1: Table S19).
No biological pathways were significantly shared by
COPD and CAD (Additional file 1: Table S20).
GTEx enrichment analysis identified 20 independent tis-

sues that were significantly enriched (after Benjamin-
Hochberg correction) for expression of cross-trait-associ-
ated genes for COPD and RHR traits, the top of which
was brain amygdala (Fig. 3). In addition, all 13 independ-
ent tissues enriched for COPD and HBP trait expression
overlapped with COPD and RHR traits. COPD and CAD
trait expression only showed one significantly enriched tis-
sue, heart left ventricle.
To identify associations between COPD and cardiac

traits with gene expression in specific tissues, we con-
ducted TWAS analysis in 44 GTEx tissues. A total of
231 gene–tissue pairs were significantly associated with
COPD, in addition to 8504 gene–tissue pairs with RHR,
8272 gene–tissue pairs with HBP, and 805 gene–tissue
pairs with CAD. Most associations were found in heart,
vascular system, and lung tissues. Notably, 18 COPD-as-
sociated gene–tissue pairs were shared with RHR, 16
pairs were shared with HBP, and 2 pairs were shared
with CAD (Additional file 1: Table S21).

Effect of smoking-related genetic variants between COPD
and cardiac traits
In the GWAS cross-trait subset effect analysis of
smoking-related genetic variants, four SNPs located in the
15q25.1 region (rs4539564, rs11072810, rs11072811 and
rs7173743) with CPD genetic effect, were also identified
to be associated with RHR and CAD traits. These SNPs
also had a moderate effect in COPD with M-values more
than 0.5 (Fig. 4 and Additional file 1: Table S22).

Causal inference
We identified a significant positive causal effect of COPD
on RHR (causal estimate = 0.1374, P = 0.008), but not on
HBP (causal estimate = 0.007, P = 0.35) or CAD (causal
estimate = 0.004, P = 0.40) (Additional file 1: Table S23).

Discussion
To our knowledge, this study is the first large-scale
genome-wide analysis to investigate genetic overlap be-
tween COPD and cardiac traits. We found significant
positive genome-wide genetic correlation of COPD with
RHR or HBP, and a positive correlation between COPD
and CAD, although this latter association failed to reach
statistical significance. In the analysis of functional parti-
tioned LDSC, we observed positive genetic correlations
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between COPD and cardiac traits in most annotated
regions of the genome. Among them, introns, h3k9ac,
and super enhancers had the highest magnitude and
significance.
GWAS most frequently detects non-coding variants,

and variants affecting gene expression have been shown

to have pervasive effects on most diseases [46]. Histone
markers like h3k9ac and h3k4me3 are some of the most
essential modification markers involved in arterial pres-
sure [47] and development of bronchial epithelial cells
influencing COPD [48]. Super enhancer regions have
multiple enhancers that drive transcription of genes

Table 4 Genome-wide significant loci by cross-trait meta-analysis at sentinel SNPs associated with COPD and CAD (Pmeta < 5 × 10−8;
single trait P < 0.01)

Sentinel SNP CHR N Position PCAD PCOPD PMETA Variant
annotation

Genes within clumping region

rs2128739 11 13 chr11:103660567–103,718,660 7.05 × 10−11 3.69 × 10−3 3.17 × 10−12 Intergenic RP11-563P16.1

rs8046697 16 164 chr16:75236763–75,516,534 3.24 × 10−6 8.1 × 10−4 3.80 × 10−8 Intron BCAR1, CFDP1, CHST6, CTRB1,
CTRB2, LOC100506281, TMEM170A

rs8108474 19 27 chr19:46190268–46,370,381 7.51 × 10−6 5.62 × 10−5 1.49 × 10−8 Intron DMPK, DMWD, FBXO46, FOXA3,
LOC388553, QPCTL, RSPH6A, SIX5,
SNRPD2, SYMPK

SNP single nucleotide polymorphisms, CHR chromosome, CAD coronary artery disease, COPD chronic obstructive pulmonary disease

Fig. 3 GTEx tissue enrichment analysis for expression of cross-trait-associated genes for COPD and RHR (a), COPD and HBP (b), or COPD and CAD
(c). Red represents significant tissue enrichment after Benjamin-Hochberg correction
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involved in cell identity in diseases and heart develop-
ment [49]. In local genetic correlation analysis, we iden-
tified multiple novel regions that have strong local
genetic correlation between COPD and cardiac traits,
such as the 4q31 region shared by COPD and RHR, and
11q22 and 5q32 regions shared by COPD and HBP. The
4q31 region was previously reported to have an inde-
pendent association with COPD and RHR [20, 50], al-
though it has not been identified as a shared region. By
contrast, we did not observe any significant local genetic
correlation between COPD and CAD.
We also discovered 21 shared loci between COPD and

RHR, 22 shared loci between COPD and HBP, and 3
shared loci between COPD and CAD using cross-trait
meta-analysis. Among them, we highlight the novel asso-
ciation of HHIP, EEFSEC, RIN3, SIX5, and DMPK with

COPD and cardiac traits due to their potentially inter-
esting functions.
First, the top sentinel variant for both COPD/RHR and

COPD/HBP was rs7655625 near HHIP, known to be asso-
ciated with COPD susceptibility by influencing crucial
lung development signaling pathway [51]. HHIP is also
downregulated during angiogenesis and under oxidative
stress [52], and its knockdown in late endothelial progeni-
tor cells improves endothelial angiogenesis, promoting
vascular repair [53]. Another top association common to
the COPD/RHR and COPD/HBP meta-analysis was with
variants near EEFSEC, however the two analyses identified
different sentinel variants. EEFSEC encodes a translation
factor necessary for incorporation of selenocysteine into
proteins associated with COPD [11] and cardiovascular
events [41]. DMPK encodes a myotonic dystrophy protein

Fig. 4 PM plots of 4 smoking related SNPs from Tobacco and Genetics Consortium that also have an effect on at least one CVD trait. a
rs4539564, (b) rs7173743, (c) rs11072810, (d) rs11072811. Red dot represents the SNP has an effect on certain traits (M-value> 0.9); green dot
represents the SNP may have an effect on certain traits (0.1≤M-value≤0.9), but the effect is ambiguous; blue dot represents the SNP does not
have an effect on certain traits (M-value< 0.1)
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kinase that is involved in heart cells, and SIX5, encodes
a homeodomain-containing transcription factor that
appears to function in the regulation of organogenesis
[44]. Fine-mapping analysis identified multiple missense
variants. For example, in meta-analysis of COPD and
RHR only, we identified RIN3 as a significant locus.
Fine-mapping analysis found that rs117068593 is a mis-
sense variant in which the effect allele T results in mu-
tation R279C in RIN3. Also, several missense variants
were found in SIX5 and DMPK, which are associated
with COPD and CAD. However, we stress that the
causal genes in these and other associated regions can-
not be determined without further study.
Post-GWAS functional analyses provided biological in-

sights to the shared genes between COPD and cardiac
traits. GTEx tissue enrichment analysis identified shared
genes that were significantly enriched in several tissues,
including cardiovascular, nervous, and immune systems.
Our findings of cardiovascular system genetic enrich-
ment could eventually have therapeutic implications for
managing COPD patients through exploration of shared
mechanisms in genes such as HHIP [53].
Although the association between COPD/CVD and

the nervous system may initially seem counterintuitive,
further exploring their genetic link may provide func-
tional and molecular understanding of their etiologies.
Impaired brain function is a complication of COPD and
CVD [54], which can be due to systemic inflammation,
induced stress, and neurochemical abnormalities [55].
Further, stimulation of nicotinic cholinergic receptors re-
leases a variety of neurotransmitters in the brain, which
have adverse effects [55]. Nicotine-related functions in
both diseases were also highlighted in our biological
pathway analysis.
In TWAS analysis, we integrated data from GWAS

and GTEx tissue expression to identify shared mechanis-
tic hypotheses between COPD and cardiac traits on a
tissue–gene pair level. We found 231 unique gene–tissue
pairs with transcriptome-wide significant associations
with COPD, in addition to 8504 with RHR, 8272 with
HBP, and 805 with CAD. Most were associated with
heart, vascular system, and lung tissues. Notably, 18
COPD-associated gene–tissue pairs were shared with
RHR, 16 pairs were shared with HBP, and 2 pairs were
shared with CAD, thus implicating specific shared regu-
latory features for functional follow-up.
In addition to genetic contributions to COPD and CVD,

environmental, behavioral, and clinical factors also play im-
portant roles in their comorbidity. Notably, smoking is a
major common environmental risk factor for both COPD
and CVD. One possible mechanism linking COPD and
CVD is systemic inflammation due to smoking [9]. Thus
the impact of controlling such modifiable risk factor can be
large. Several interventions, such as smoking cessation,

exercise, drug use (e.g., statins), increased awareness of the
connection between COPD and CVD, and improved col-
laboration between pulmonary and cardiovascular clini-
cians, have been shown to improve COPD and CVD and
currently represent the most hopeful approaches to disease
prevention and treatment [56]. While we adjusted for
cigarette smoking in our ICGC COPD GWAS, other
GWAS did not, and accurate measurement of exposure is
challenging. Some loci such as 15q25.1 are clearly related
to cigarette smoking, which is also a risk factor for CVD.
Previous studies have suggested that the 15q25.1 region
played a role in nicotine, alcohol, and cocaine dependence
[57]. This region has been reported related to multiple dis-
eases, such as COPD [11]. In our cross-trait subset effect
analysis, we also found 4 variants in 15q25.1 region have an
effect with RHR and CAD. However, interestingly, these
variants were not related to COPD, suggesting that the gen-
etic effect of cigarette smoking between COPD and CVD is
complex, and not necessarily based on the same genetic
variants in 15q25.1 region.
Finally, our MR analysis suggested a significant positive

causal effect of COPD on RHR. One possible causal path-
way example is genetic variation leading to COPD could
exacerbate right ventricular diastolic dysfunction and al-
terations in heart rate [8]. However, our MR results should
be taken with caution as other potential confounders may
bias the causal relationship. For example, COPD is also
known to be associated with cardiovascular autonomic
neuropathy resulting in decreased parasympathetic and
increased sympathetic activity, which can alter the heart
rate [58]. In addition, medication use (bronchodilators) or
stimulants (such as cigarettes and caffeine) may also con-
tribute to elevated RHR in COPD patients [7].
We also acknowledge other potential limitations in this

study. First, additional GWAS cohorts are not available to
replicate our findings. However, we used the largest datasets
available at the time of our study to perform our analyses.
Genome-wide genetic correlation results were relatively
weak, and did not reach significance level after multiple test-
ing correction. However, we found a strong local genetic
correlation between COPD and RHR at 4q31, between
COPD and HBP at 11q22 and 5q32 regions after multiple
testing correction, which highlights the genetic overlap be-
tween COPD and CVD at regional level. In addition, we
identified a credible-set of SNPs that contains potential
causal variants. Further functional experiments are needed
to investigate the causal variants or genes. Finally, the
current study was limited to assessing shared genetic factors
between COPD and CVD. Future studies on shared envir-
onmental factors between COPD and CVD are needed.

Conclusions
Understanding the genetic overlap between COPD and
CVD is important for disease prevention, timely diagnosis
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and treatment of both diseases. Our study shows evidence
of significant positive genetic correlations between COPD
and cardiac traits. Shared genetic variants were fine-
mapped to improve resolution and identify potential
shared causal variants with exonic missense polymor-
phisms. We also found multiple common biological path-
ways and tissue enrichments, such as nicotine response,
cardiovascular, brain, and immune-related tissues, which
can further our understanding of the connection between
these diseases. Such shared genes and pathways might
serve as common drug targets in both COPD and CVD.
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