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ABSTRACT Hyphae are fungal filaments that can occur in both pathogenic and symbiotic fungi. Con-
sequently, it is important to understand what drives the growth of hyphae. A single hypha cell grows by
localized cell extension at their tips. This type of growth is referred to as tip growth. The interconnection
between different biological components driving the tip growth is not fully understood. Consequently, many
theoretical models have been formulated. It is important to develop methods, such that these theoretical
models can be validated using experimentally obtained data. In this paper, we consider the Ballistic Ageing
Thin viscous Sheet (BATS) model by Prokert, Hulshof, and de Jong (2019). The governing equations of
the BATS model are given by ordinary differential equations that depend on a function called the viscosity
function. We present a numerical method for computing solutions of the governing equations that resemble
the tip growth. These solutions can be compared to experimental data to validate the BATS model. Since
the authors are unaware of the existence of the required data to validate this model, a variety of theoretical
scenarios were considered. Our numerical results suggest that if there exists a solution that corresponds to
the tip growth, then there exists a one-parameter family of solutions corresponding to the tip growth.

INDEX TERMS Bifurcation, biomechanics, cells (biology), differential equations, morphogenesis, Newton
method, nonlinear equations, numerical analysis, shooting method, tip growth.

I. INTRODUCTION
Filamentous pathogenic fungi commonly occur as res-
piratory infections in immune-compromised patients [5].
They can also produce a wide variety of beneficial
drugs and antibiotics [16]. More recently, studies indi-
cate that filamentous fungi are useful in degrading
pharmaceuticals [18]. As more pharmaceuticals enter the
ecosystem through livestock rearing this might remedy the
negative effects of pharmaceuticals on fauna and human
health. In nature filamentous fungi play an important role in
decomposing organisms. Fungi convert dead cells into solu-
ble compounds that can be absorbed by plants. Consequently,
it is important to understand what drives the growth of fungal
filaments [11].

Fungal filaments are called hyphae. Hyphae grow by
localized cell extension at their tips. Hence, this growth

The associate editor coordinating the review of this manuscript and
approving it for publication was Yonghong Peng.

phenomenon is called tip growth. During tip growth a hypha
cell exhibits extreme lengthwise growth while its shape
remains qualitatively the same and the tip’s velocity remains
approximately constant. Furthermore, in the absence of spa-
tial influences the cell’s shape is almost rotationally symmet-
ric. In Fig. 1 we display an idealized cell wall shape during
tip growth at equally spaced time steps t0.
The interconnection between different biological

components driving tip growth is not fully under-
stood. Consequently, many theoretical models have been
formulated [2]–[4], [7]–[9]. The model of Bartnicki-Garcia
and Gierz [2] and Bartnicki-Garcia et al. [3] gives a detailed
description of the internal transport of new cell wall building
material. The model of Campàs and Mahadevan [4] gives a
detailed description of the cell wall evolution. To obtain an
improved model the models of Bartnicki-Garcia et al. and
Campàs, Mahadevan were combined in [12]. This newmodel
is called the Ballistic Ageing Thin viscous Sheet (BATS)
model. The governing equations are given by an ordinary
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FIGURE 1. Qualitative description of hypha tip growth.

differential equationwhich is dependent on an experimentally
determined function called the viscosity function. This model
was not validated using experimental data. Since there exists
a lot of variety between fungal hypha species it is important
to first construct a method which can validate the model
given processed experimental data. In this paper we present
a numerical method which, for suitable viscosity functions,
can compute solutions of the BATS model which resemble
hypha tip growth. Furthermore, we give numerical evidence
that for certain viscosity functions there exist no solutions
that resemble tip growth.

Solutions of the governingODEwhich resemble tip growth
cannot be straightforwardly computed using a standard ODE
solver since the majority of solutions of the ODE do not
resemble tip growth. By studying the limiting properties at
the tip and the base of the cell we can restrict to a family of
solutions. The solutions satisfying the limiting properties at
the tip admit a classification which allows us to specify which
solutions do not resemble tip growth. Using a Newtonmethod
we can then connect the remaining solutions to solutions
satisfying the limiting base properties.

Let us give an overview of this paper. In Section II we
revise the BATS model. In Section III we present the numer-
ical method for computing solutions corresponding to tip
growth. This method relies on computing expansions, defin-
ing a classification of solutions and a shooting method based
on a Newton method. In Section IV we apply the method
to a variety of viscosity functions. The numerical results
suggest that viscosity functions exist which admit solutions
corresponding to hypha tip growth. In addition, the numerical
results suggest that there also exist viscosity functions which
do not admit the existence of solutions corresponding to
hypha tip growth. Finally, in Section V we present conclu-
sions and topics for future work.

II. BALLISTIC AGEING THIN VISCOUS SHEET MODEL
The BATS model is based on the thin viscous sheet tip
growth model of Campàs and Mahadevan [4] and the bal-
listic tip growth model of Bartnicki-Garcia and Gierz [2]

FIGURE 2. Overview of the BATS model.

and Bartnicki-Garcia et al. [3]. It connects these two models
by introducing a so-called age equation. In this section we
will briefly revise the BATS model and present the govern-
ing equations. The details can be found in [12]. For a short
biomechanical overview of the BATS model we refer to [13].
For more details concerning the biology of hypha growth we
refer to [1], [6], [8], [10], [14], [17], [19].

A. MODELLING TIP GROWTH
We assume that the cell wall shape is axially symmetric.
Thus, at a fixed time we describe the cell shape in cylindrical
variables (z, r, φ). Due to its axial symmetry the cell shape
can be fully described in the (z, r)-plane. We parameterize
the r, z variables by s, the arclength to the tip.

During tip growth the cell grows with constant speed in
the direction normal to the tip. In addition, the hypha cell
preserves its overall shape. Hence, tip growth corresponds to a
travellingwave profile: (z(s)+ct, r(s), φ) with c the travelling
wave velocity. We will take c < 0.

We consider a moving reference frame where the tip of the
cell is fixed at lims→0(z, r) = (z0, 0) with z0 < 0. Note that
this removes the dependency on time. We assume that the
cell wall is a thin viscous sheet. We assume that the sheet is
infinitely long. The base of cell then corresponds to s→∞.
The sheet is subject to an outward force resulting from the
pressure difference. In the hypha biology this corresponds
to the pressure difference between the turgor and the atmo-
spheric pressure. At s the thickness of the thin viscous sheet is
denoted by h(s) and the tangential velocity is denoted by u(s),
see Fig. 2. The travelling wave velocity can then be retrieved
by computing lims→∞ u(s).
Cell wall building material is transported to the cell wall in

straight trajectories from an isotropic point source, called the
ballistic Vesicle Supply Center (VSC), see Fig. 2. We fix the
ballistic VSC at (z, r) = (0, 0). For an alternative model for
cell wall building material transport see [15], [20].

We assume that the cell wall ages. The ageing starts when a
cell wall building particle is absorbed by the cell wall. Hence,
we compute the average age of all cell wall particles at s.
Denote by T (ς, s) the time it takes a particle in the cell wall to
travel from ς to s. Observe that the tangential velocity, u(s),
is parameterized by s. Hence, we have that

T (ς, s) =
∫ s

ς

1
u(σ )

dσ. (1)
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In Fig. 3 the components of T (ς, s) are displayed. There exist
other methods to define the local age of the cell wall, for
example see [7].

FIGURE 3. Travel time of particles through the cell wall.

We define the cumulative flux G(s) as the total flux of
material over the surface of revolution given by the arc from
the tip to ς = s, see Fig. 4.

FIGURE 4. G(s) is the total flux through the grey cap.

Observe that since no particles exit the cell wall the flux is
equal to the inflow of cell wall building particles. At a point
with arclength s there is cell wall material which originally
entered at ς ∈ (0, s) and has been part of the cell wall for
T (ς, s). Weighing T (ς, s) by the mass which enters the cell
wall at the boundary of the disk at ς we get T (ς, s)G′(ς ).
To obtain the average age we integrate T (ς, s)G′(ς ) over an
arc (0, s) and divide it by the total flux over that arc:

9(s) =

∫ s
0 G
′(ς )T (ς, s)dς

G(s)
. (2)

The integral equation (2) can be reformulated as a differential
equation which will be presented in the next section.

We assume that the viscosity depends on age. Hence,
the viscosity at s is given by µ(9(s)), where µ ∈ C∞(R+)
is the viscosity function. The biology suggests that the cell
wall ‘hardens’ with age. In this model ‘hardening’ of the cell
wall means that the cell wall’s viscosity increases. Therefore,
we require that µ satisfies:

dµ
d9

> 0. (3)

From an application perspective µ needs to be determined
experimentally. Hypha cells can have different material
properties based the fungal cell species and the physical
circumstances of the cell. Hence, we expect thatµ is problem
specific. Thus, from a theoretical perspective we want to
consider µ as general as possible.

B. GOVERNING EQUATIONS: FIVE DIMENSIONAL
FIRST ORDER ODE
The modeling assumptions from Section II-A can be
expressed as two force balance equations, a mass conser-
vation equation and an age equation. We can eliminate the
u-variable as is shown in [12]. After non-dimensionalisation
the governing equations can be expressed as the following
five dimensional first order ODE:

ρ′ =
3
2
(1− ρ)2

r

(
−1+

µ(9)0(r, z)ρ
√
1− ρ2

r3

)
,

r ′ = ρ,

h′ =
( rγ (ρ, r, z)

0(r, z)
−
ρ

2r
−

r2

2µ(9)0(r, z)
√
1− ρ2

)
h,

9 ′ =
rh

0(r, z)
−
rγ (ρ, r, z)
0(r, z)

9,

z′ =
√
1− ρ2, (4)

where the prime denotes the s-derivative,

γ (ρ, r, z) =
r
√
1− ρ2 − zρ

(z2 + r2)3/2
,

0(r, z) = 1+
z

√
r2 + z2

, (5)

and µ ∈ F with

F := {µ ∈ C∞(R+) : µ′ > 0, lim
9→∞

µ(9) = ∞}. (6)

A function µ ∈ F is referred to as a viscosity function.
We will consider the phase space given by

M := {(ρ, r, h, 9, z) ∈ (−1, 1)× R+ × R+ × R+ × R}.
(7)

In [12] it is shown that the governing ODE (4) does not
have any biologically realistic solutions if it does not satisfy
lim9→∞ µ(9) = ∞.

For notational conveniencewewill denote a solution vector
of (4) by x. Hence, we have that x = (ρ, r, h, 9, z). When
necessary we will indicate the dependence of x on µ by
writing x( · ;µ).

C. STEADY TIP GROWTH SOLUTIONS
Steady tip growth solutions are solutions of (4) which cor-
respond to fungal tip growth in the phase space. A solution
x := (ρ, r, h, 9, z) is called a steady tip growth solution if
it is a solution of the ODE (4) which satisfies the following
four conditions:

T1 Tip limits:

lim
s→0

ρ(s) = 1, lim
s→0

r(s) = 0,

lim
s→0

h(s) = h0 > 0, lim
s→0

9(s) = h0 z20,

lim
s→0

z(s) = z0 < 0.
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Rationale: The limits for ρ, r, h, z follow directly from the
cell shape in Fig. 2. Then, after computing leading order
asymptotics the limit for 9 follows.
T2 Analyticity in r2: There exists s1 > 0 and G ∈

Cω
(
(−a, a),R4

)
with a = r(s1)2 such that

(ρ, h, 9, z)(s) = G(r(s)2) ∀s ∈ (0, s1).

Rationale: This condition follows from the axial symmetry
and the smoothness at the tip.
T3 Global constraints: For all s ∈ R+ the following

constraints are satisfied

ρ′(s) < 0, ρ(s) > 0.

Rationale: If we require that r satisfies r ′(s) > 0 and r ′′(s) <
0 for all s ∈ R+ we obtain the characteristic tip growth cell
shape displayed in Fig. 2. We expect that the thickness and
the age are positive for all s ∈ R+.
T4 Base limits:

lim
s→∞

ρ(s) = 0, lim
s→∞

r(s) = r∞ > 0,

lim
s→∞

h(s) = h∞ > 0, lim
s→∞

9(s) = ∞,

lim
s→∞

z(s) = ∞.

Rationale: We assume that the cell’s length is infinite and
that the cell’s width converges to a constant. We expect that
the cell wall thickness converges to a positive constant. For a
detailed derivation of T1-T4 we refer to [12].

Solutions which are not steady tip growth solutions are not
meaningful from a biological perspective.

Remark:
- In [12] the T4 condition of steady tip growth solutions
does not contain lims→∞9(s). In [12] it is shown that
the T4 condition without lims→∞9(s) implies condi-
tion T4. Hence, for convenience it has been absorbed in
condition T4.

III. COMPUTING STEADY TIP GROWTH SOLUTIONS
Assume that for some viscosity function µ the governing
ODE (4) has a steady tip growth solution. Our objective is
to compute the steady tip growth solutions. Observe that
T1,T2 are local conditions for small arclength s, T3 is a global
condition on arclength s and T4 is a local condition for large
arclength s. The T1-T4 conditions are displayed in relation to
the r, z-variables. T1 and T2 are conditions related to The
limits given in T1 and T4 give degrees of freedom since
h0, z0, r∞, h∞ are not specified. Then, to approximate steady
tip growth solutions we can numerically connect solutions
satisfying T1,T2 to solutions satisfying T4 by varying the
parameters given by the limits. We then only consider a
connecting solution which satisfies T4 to obtain a steady
tip growth solution. By computing expansions we will see
that solutions satisfying T1,T2 from a two parameter family
of solutions and that solutions satisfying T4 form a three
parameter family of solutions. Observe that for a solution
satisfying T4 this means that besides r∞, h∞ from T4 there

is another parameter. The solutions satisfying T1,T2 can be
classified in such a way that we can identify solutions which
do not satisfy T3. The remaining solution can then be con-
nected to the solutions satisfying T4 using the corresponding
expansion.

Note that to compute expansions for solutions satisfying
the liming conditions we must make minor assumptions
on µ. These assumptions will be specified in the following
subsections.

A. TIP EXPANSION
Let x be a solution of the governing ODE satisfying T1.
Observe that the vector field corresponding to (4) is not
defined on lims→0 x(s). Consequently, solutions satisfying
T1 cannot be computed using a standard solver. Hence,
we compute an expansion for solutions satisfying T1 and
T2 which is called the tip expansion.

Let x( · ;µ) := (ρ, r, h, 9, z)( · ) be a solution of the
governing ODE (4) that satisfies T1 and T2. We assume that
µ is analytic. The solution x( · ;µ) satisfies

lim
s→0

h(s) = h0 > 0, lim
s→0

z(s) = z0 < 0, (8)

where (h0, z0) ∈ Y tip with

Y tip
:= R+ × R−. (9)

We assume that x(s;µ) can be written as a formal expansion
in s. We denote the i-th coefficient of the expansion with an
(i) superscript and a tip subscript, e.g.,

r(s) = r (0)tip + sr
(1)
tip + s

2r (2)tip + O(s
3).

The equality r ′ = ρ in the governing ODE (4) implies that
ρ
(i)
tip = (i+ 1)r (i+1)tip which together with condition T2 implies

that

h(2 i+1)tip = 9
(2i+1)
tip = z(2i+1)tip = r (2i)tip = 0.

Substituting the resulting expansions in the governing
ODE (4) and collecting terms of the same order we can com-
pute unique coefficients corresponding to the higher order
terms. We refer to these expansions as tip solution expan-
sions. For our numerical work we will use the tip expansion
up to 8th order as higher order expansion do not lead to
improved results. The coefficients are lengthy. Denote by
Y tip
µ ⊆ Y tip the maximal domain on which the coefficients

of the corresponding expansion are defined. We have that

Y tip
µ =

{
(h0, z0) ∈ Y tip

:
10
3
6=
h0z20µ

′(h0z20)

µ(h0z20)

}
. (10)

The derivation of (10) and higher order coefficients of the
base expansion are presented in Appendix V-A.

The tip expansion gives strong evidence that a family of
solutions satisfying T1, T2 can be parameterized by (h0, z0) ∈
Y tip
µ . Consequently, given µ we denote a solution satisfying

T1, T2 with (h0, z0) = α ∈ Y
tip
µ by xα( · ;µ).

VOLUME 7, 2019 53769
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B. CLASSIFYING TIP SOLUTIONS
We define tip solutions as solutions xα( · ;µ) =

(ρα, rα, hα, 9α, zα) for which there exists a s1 > 0 for which

ρ′α(s;µ) < 0, ρα(s;µ) > 0, ∀s ∈ (0, s1). (11)

Observe that since steady tip growth solutions satisfy T3 it
follows that a steady tip growth solution is also a tip solution.

In terms of the ρ-variable the numerically computed tip
solutions resemble the graph in Fig. 5 or the graph in Fig. 6.
Fig. 5 is not a steady tip growth solution since ρ changes sign.
Fig. 6 is not a steady tip growth solution since ρ′ changes sign.

FIGURE 5. The ρ-variable characterizing Aµ.

FIGURE 6. The ρ-variable characterizing set Bµ.

Tip continuations The set Aµ and Bµ in Fig. 5 and Fig. 6
are defined by

Aµ := {α ∈ Y
tip
µ : ∃s0 ∈ R+, ρα(s;µ)ρ′α(s;µ) < 0

∀s ∈ (0, s0), ρα(s0;µ) = 0},

Bµ := {α ∈ Y
tip
µ : ∃s0 ∈ R+ρα(s;µ)ρ′α(s;µ) < 0,

∀s ∈ (0, s0), ρ′α(s0;µ) = 0}.

(12)

We define

Xµ := Y tip
µ \(Aµ ∪ Bµ). (13)

We expect that if steady tip growth solutions exist then they
should correspond to tip solutions xα∗ ( · ;µ) with α∗ ∈ Xµ.
The numerical results suggest, as we will see in Section IV-A,
that almost all perturbations of α∗ ∈ Xµ are in Aµ ∪
Bµ. Hence, a tip solution with parameters in Xµ depends
sensitively on parameters. Consequently, steady tip growth
solutions cannot be approximated by shooting from the tip.

We approximate steady tip growth solutions by connecting
the numerically computed tip solutions corresponding to Xµ
to an expansion of solutions satisfying T4.

C. BASE EXPANSION
If x is a solution of the governing ODE satisfying T4 then
lims→∞ ‖x(s)‖ = ∞. Consequently, solutions satisfying
T4 cannot be computed using a standard solver. Hence,
we compute an expansion for solutions satisfying T4 which
is called the base expansion.

Let x( · ;µ) := (ρ, r, h, 9, z)( · ) be a solution of the gov-
erning ODE (4) that satisfies condition T4. Then, the solution
x( · ;µ) satisfies

lim
s→∞

h(s) = h∞ > 0, lim
s→∞

r(s) = r∞ > 0. (14)

We assume that x(s;µ) can be written as a formal expansion
in 1/s. We denote the i-th coefficient of the expansion with
an (i) superscript and a base subscript, e.g.,

r(s) = r (0)base + s
−1r (1)base + s

−2r (2)base + O(s
−3).

We take µ such that νµ given by

νµ(ψ) :=

{
0 if ψ = 0,
1/µ(1/ψ) otherwise,

(15)

is analytic. If νµ(ψ) ∼ c1ψ forψ → 0 then the formal expan-
sions do not satisfy T4. The proof is given in Appendix VI.
If νµ(ψ) = O(ψ2) then from T4 we obtain the following
lowest order asymptotics for the converging variables:

r (0)base = r∞, h(0)base = h∞. (16)

Substituting the resulting expansions in the governing
ODE (4) we find that the leading order terms of 9, z are of
order s. We denote the leading order terms of 9 and z by
9

(−1)
base and z(−1)base , respectively. We obtain that

9
(−1)
base =

r∞h∞
2

, z(−1)base = 1.

Substituting the resulting expansions in the governing
ODE (4) and collecting terms of the same order we can
compute coefficients corresponding to the higher order terms.
These coefficients are not uniquely determined given r∞, h∞.
More specifically, the zero-th order terms corresponding
to the 9- and z-component introduce two additional free
parameters:

9
(0)
base = 9c, z(0)base = zc. (17)

Since 9(−1)
base and z(−1)base are non-zero we can absorb 9c or zc

in the independent variable s. We will fix zc = 0. Observe
that (17) implies that T4 is insufficient to define a unique
solution.

Let (r∞, h∞, 9c) ∈ Y base with

Y base
:= R+ × R+ × R.

We can then compute unique coefficients for the higher
order terms. We refer to these expansions as base expan-
sions. For our numerical work we will use a base expansion

53770 VOLUME 7, 2019



T. G. de Jong et al.: Numerical Method to Compute Hypha Tip Growth for Data Driven Validation

up to 7th order since higher order approximations do not
yield improved results. Denote by Y base

µ ⊆ Y base the max-
imal domain for which these base coefficients are defined.
We have that

Y base
µ = Y base. (18)

The derivation of Y base
µ and higher order coefficients are

presented in Appendix V-B.
The base expansion gives strong evidence that solutions

xµ( · ;µ) satisfying T4 and

lim
s→∞

9(s;µ)−
r∞h∞

2
s = 9c,

lim
s→∞

z(s;µ)− s = 0,

can be parameterized by (r∞, h∞, 9c) ∈ Y base
µ .

D. CONNECTING TIP SOLUTIONS TO THE BASE
EXPANSION
Consider the numerically computed xα∗ ( · ;µ) with α∗ ∈ Xµ.
Let s1 be given by (11). Then, the numerics suggests that we
can find a s0 < s1 such that ρ′(s0) � 1 and s1 − s0 � 1.
At s = s0 we connect the r, h, 9, z-variables of the tip
solution to the corresponding variables of the base expansion
using a Newton method. Observe that we have four equations
and that the base expansion has four degrees of freedom,
three parameters given by r∞, h∞, 9c and one independent
variable given by s. Note that the dependent variable s can
be used as a degree of freedom in the base expansion since
the governing ODE (4) is autonomous. The Newton method
requires an initial vector. We have good estimates for r∞, h∞
since generally at s = s0 the tip solution is close to the base.
We do not have good estimates for 9c and s. Hence, we con-
tinuously vary over initial estimates of these parameters until
the tip solution smoothly connects to the base expansion.

IV. NUMERICAL RESULTS: BIFURCATION DIAGRAMS
AND STEADY TIP GROWTH SOLUTIONS
We applied the numerical method to

µi(9) := 1+9 i, µ̂i(9) := 9 i, i = 2, 3, 4, 5. (19)

Observe that µi, µ̂i ∈ F where F is given by (6), µi, µ̂i is
analytic as required by Section III-A and νµi , νµ̂i , defined
in (15), is analytic as required by Section III-C. We computed
the tip solutions and classified these tip solution using the set
Aµ and Bµ from (12). This yields a bifurcation diagram of
the tip solutions corresponding to a given µ. For the viscosity
function for which steady tip growth solutions exist we used
the connection method of Section III-D.

A. VISCOSITY FUNCTIONS ADMITTING STEADY TIP
GROWTH SOLUTIONS
The numerics suggests that the viscosity functionsµ3, µ4, µ5
admit steady tip growth solutions.

FIGURE 7. Aµ3 in blue and Bµ3 in red.

FIGURE 8. Xµ3 in orange.

FIGURE 9. Aµ4 in blue and Bµ4 in red.

1) THE SET Y tip
µ

Using (10) we compute Y tip
µ3 , Y

tip
µ4 , Y

tip
µ5 :

Y tip
µ3 = {(h0, z0) ∈ R+ × R−},
Y tip
µ4 = {(h0, z0) ∈ R+ × R− : h40 z

8
0 6= 5},

Y tip
µ5 = {(h0, z0) ∈ R+ × R− : h50 z

10
0 6= 2}.

2) BIFURCATION DIAGRAMS AND Xµ
In Fig. 7 we show the computed Aµ3 and Bµ3 . Fig. 7 suggests
that Aµ3 and Bµ3 are connected sets. Then, if Aµ3 and Bµ3 are
open then Fig. 7 suggests that Xµ3 6= ∅. In Fig. 8 we have
computed Xµ3 .
In Fig. 9 and Fig. 10 we present the computed Aµ4 ,Bµ4

and Aµ5 ,Bµ5 , respectively. Fig. 9 and Fig. 10 suggest
that Bµ4 ,Bµ5 are connected sets and that Aµ4 ,Aµ4 are
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FIGURE 10. Aµ5 in blue and Bµ5 in red.

FIGURE 11. Xµ4 in orange and h4
0 z8

0 = 5 in green.

disconnected sets consisting out of two connected compo-
nents. If Aµ4 ,Bµ4 and Aµ5 ,Bµ5 are open the numerics also
suggests that Xµ4 6= ∅ and Xµ5 6= ∅, respectively. In Fig. 11
and Fig. 12 we display by an orange curve the approximation

FIGURE 12. Xµ5 in orange and h5
0 z10

0 = 2 in green.

of Xµ4 and Xµ5 , respectively. The green curve in Fig. 11 and
Fig. 12 corresponds to the (h0, z0) which are not in Y tip

µ4 and
Y tip
µ5 , respectively. Hence, the green curve corresponds to the

limiting values for which tip solutions do not exist.
Fig. 8, 11, 12 suggest that the parameter set corresponding

to steady tip growth solutions is one dimensional. This means
that almost all perturbations on Xµi are in Aµi ∪ Bµi where
i = 3, 4, 5. Hence, steady tip growth solutions cannot be
approximated by continuing tip solutions in forward s.

3) STEADY TIP GROWTH SOLUTIONS
In this section we will see that the numerical results sug-
gest that steady tip growth solutions for µ3, µ4, µ4 exist
and that they correspond to tip solutions with parameters in
Xµ3 ,Xµ4 ,Xµ5 , respectively.
The range of steady tip growth solutions corresponding to

µ3, µ4, µ5 varies greatly. Hence, we scale each steady tip

FIGURE 13. Steady tip growth solutions for µ3.
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FIGURE 14. Steady tip growth solutions for µ4.

FIGURE 15. Steady tip growth solutions for µ5.

growth solution by its tip and base parameters. For visual-
ization purposes we plot graphs for the rescaled variables:
r/r∞, z/r∞, h/h0, 9/(h0 r∞), s/r∞.

In Fig. 13, 14, 15 we present the numerical approximations
of tip solutions corresponding to parameters inXµ3 ,Xµ4 ,Xµ5 ,

respectively. Fig. 13-15acd suggest that these tip solutions are
steady tip growth solutions. Fig. 13-15acd suggest that the
graphs of the corresponding scaled variables are ordered.

The numerically computed steady tip growth solutions
are smooth with the exception of the steady tip growth
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solution corresponding to z0 = −1.4 as Fig. 15d shows.
This non-smooth point occurs at the arclength s where the
approximated tip solutions connects to the base expansion.
Hence, denote the arclength at the connection point by sbase.
This non-smoothness at s = sbase worsens when z0 is further
decreased. Hence, we did not approximate steady tip growth
solutions for z0 < −1.4. For z0 = −1.4 we observe that
h′(sbase) is not small, see the dashed line in Fig. 15c. For the
base expansion corresponding to µ5 we have that |h′(s)| � 1
for s large. Hence, we expect that at s = sbase the computed
tip solution is not in the domain where the base expansion
gives a good approximation of the steady tip growth solution.
From Fig. 10 we observe that (h0, z0) ∈ Xµ5 with z0 ≤ −1.4
is close to the curve where the tip asymptotic expansion is
not defined, h50 z

10
0 = 2. This might lead to an approximation

of (h0, z0) ∈ Xµ5 with insufficient decimal precision which
results in the non-smooth connection.

In Fig. 13b-15b we performed a transformation on the
r-axis and z-axis to indicate that the tip shape of the scaled
variables becomes more pointed when z0 is increased. All
these graphs are ordered.

Fig. 13-15d suggests that 9 ′ > 0. Fig. 13d-15d suggests
that h can be monotonously increasing, decreasing or have a
local minimum.

B. VISCOSITY FUNCTIONS ADMITTING NO STEADY TIP
GROWTH SOLUTIONS
For the µ2, µ̂2, µ̂3, µ̂4, µ̂5 the tip expansions are defined for
all (h0, z0) ∈ R+ × R−.
The numerical work suggests that µ2, µ̂2, µ̂3, µ̂4, µ̂5

admit no steady tip growth solutions. More specifically,
it suggests that

Aµ2 = Aµ̂2 = Aµ̂4 = Aµ̂5 = Bµ̂3 = R+ × R−.

Furthermore, we observe that the computed tip solutions
corresponding to µ2, µ̂2, µ̂4, µ̂5 satisfy 9 ′ < 0 and that the
computed tip solutions corresponding to µ̂3 satisfy 9 ′ > 0.
These observations are also supported by the sign of the
leading order term corresponding to the tip expansion of 9 ′.

V. CONCLUSION AND FUTURE WORK
Fungal filaments occur in pathogenic and symbiotic fungi.
Hence, it is relevant to study fungal growth models such as
the BATS model. We give an overview of the obtained results
and discuss future research directions.

A. OVERVIEW RESULTS
Our numerical results suggest that there exist viscosity func-
tions for which steady tip growth solutions exist. Hence,
we have evidence which supports the BATS model. Further-
more, there exist viscosity functions for which steady tip
growth solutions do not exist. This suggests that the viscosity
function is a determining factor for tip growth in the BATS
model.

The bifurcation diagrams suggests that if there exists
a steady tip growth solution then there also exists a one

parameter family of steady tip growth solutions. In relation
to the cell shape this parameter influences the pointedness of
the cell’s tip. Hence, the BATS model allows for a variety of
different cell shapes.

B. FUTURE RESEARCH DIRECTIONS
From a mathematical perspective it would be interesting to
rigorously prove the existence of steady tip growth solutions.
The numerical work suggests that the set Aµ, Bµ can be help-
ful in proving the existence of steady tip growth solutions.
The governing ODE (4) is a five dimensional first order ODE.
Hence, it might be fruitful to create a toymodel with solutions
corresponding to Aµ, Bµ and then show that these sets can
be used to prove the existence of a toy steady tip growth
solutions.

The computed bifurcation diagrams suggest that if x( · ;µ)
is a steady tip growth solution then h0 or z0 as given by
condition T1 defines a unique steady tip growth solution.
Hence, to compute the steady tip growth solution we only
need to have data onµ and on either h0 or z0. It is important to
observe that the governing ODE (4) is non-dimensionalised.
During non-dimensionalisation the cell’s parameters have
been absorbed in the viscosity function [12]. These param-
eters concern the pressure difference between the inside and
outside of the cell and the rate of cell-wall building material
emitted by the VSC, see Fig. 2. Consequently, experiments
need to be performed to obtain these parameters.

The numerical method can be applied to validate the BATS
model in an experimental setting. However, a method to
process the data is still needed. The data processing method
should be able to compute a viscosity function which fits
the experimental data. Then, in combination with biolog-
ical parameters it should be possible to verify the BATS
model using the presented numerical method. The authors
are unaware if the required biological experiments have been
performed. Once this data has been obtained a data processing
method can be implemented.

In conclusion, we have formulated a numerical technique
such that the BATS model can be validated by a to be devel-
oped data driven methodology.

APPENDIX A EXPANSIONS
We present coefficients of the variables r, h, 9, z for the
expansions at the tip and the base. The coefficients corre-
sponding to ρ are not presented since they can be directly
obtained using r ′ = ρ from the governing ODE (4).
The expressions become lengthy for high order coeffi-

cients. Hence, we only present low order coefficients. These
coefficients were computed symbolically using Mathematica
(TM). The script is available on request.

A. TIP EXPANSION
Let x( · ;µ) be a tip expansion as defined in Section III-A. The
viscosity functionµ is analytic. We denote the i-th coefficient
of the formal expansion ofµ by an (i) superscript. Recall from
Section III-A that r is an odd function. We present the 1st and
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3rd order coefficients of r :

r (1)tip = 1,

r (3)tip = −
2 z40

27µ
(
h0 z20

)
2
.

Recall from Section III-A that h, 9, z are even functions.
We present the 2nd order coefficients of h, 9, z:

h(2)tip = h0(−4 h0 z80µ
′(h0 z20)+ 8 z50µ(h0 z

2
0)(z0

−3 h0µ′(h0 z20))+ z
2
0µ(h0 z

2
0)

2(64 z0
−27 h0µ′(h0 z20))+ 72µ(h0 z20)

3)

×(6 z20µ(h0 z
2
0)

2(3 h0 z20µ
′(h0 z20)− 10µ(h0 z20)))

−1,

9
(2)
tip =

h0
(
24 z30µ

(
h0 z20

)
+ 27µ

(
h0 z20

)
2
+ 8 z60

)
18µ

(
h0 z20

) (
10µ

(
h0 z20

)
− 3 h0 z20µ

′
(
h0 z20

)) ,
z(2)tip =

z20
3µ
(
h0 z20

) .
The lower order coefficients for r, h, 9, z are given in
Section III-A. Observe that the denominator in the expression
for h(2)tip and 9(2)

tip is zero for

10
3
=
h0 z20µ

′(h0 z20)

µ(h0 z20)
.

More generally, the tip coefficients are defined if and only if
(h0, z0) ∈ Y

tip
µ .

B. BASE EXPANSION
Let x( · ;µ) be a base expansion as defined in Section III-C.
We fix zc = 0 since we showed in Section III-C that the
zc parameter can be absorbed in the independent variable s.
The function νµ defined in (16) is assumed to be analytic.
We denote the i-th coefficient of the formal expansion of νµ
by an (i) superscript. Since µ ∈ F with F given by (6) we
have that ν(0)µ = 0. As a result of Appendix VI we assume that
νµ(ψ) ∈ O(ψ2) for ψ → 0. Hence, we have that ν(1)µ = 0.
The 1st and 2nd order coefficients for r, h, 9 are given by

r (1)base = −
2ν(2)µ r∞
h2∞

,

r (2)base =
4ν(2)µ 9ch∞ − 2ν(3)µ h∞ + 6(ν(2)µ )2 r∞

h4∞
,

h(1)base =
2ν(2)µ
h∞

,

h(2)base = −
16ν(2)µ 9ch∞ − 8ν(3)µ h∞ + h4∞ r3∞ + 8(ν(2)µ )2 r∞

4 h3∞ r∞
,

9
(1)
base =

1
4
h∞r3∞,

9
(2)
base = −

r2∞
(
−29ch∞ + 6ν(2)µ r∞

)
8 h∞

.

For z we have that z(1)base = z(2)base = 0. The 3rd and 4th order
coefficients for z are given by

z(3)base =
2(ν(2)µ )2 r2∞

3 h4∞
,

z(4)base = −
ν
(2)
µ r∞

(
4ν(2)µ 9ch∞ − 2ν(3)µ h∞ + 6(ν(2)µ )2 r∞

)
h6∞

.

The lower order coefficients of the base expansion are pre-
sented in Section III-C. Observe that the base coefficients are
defined for all (r∞, h∞, 9c) ∈ Y base

µ .

VI. NECESSARY CONDITION VISCOSITY FUNCTION FOR
SOLUTIONS SATISFYING T4
Recall νµ defined in (16). We will show that if νµ(ψ) ∼ c1ψ
for ψ → 0 with c1 > 0 then the governing ODE (4) does not
have solutions satisfying T4. Observe that by (16) it follows
that νµ(ψ) ∼ c1ψ for ψ → 0 is equivalent to

µ(9) ∼
1
c19

for 9 →∞. (20)

Assume that x is a solution satisfying T4. Then for s → ∞
we have that

r(s)γ (ρ(s), r(s), z(s))
0(r(s), z(s))

∼
c2
s3
,

r(s)2

2µ(9(s))0(r(s), z(s))
√
1− ρ(s)2

∼
c3
s
, (21)

where c2, c3 > 0. We can re-write the h-equation in the
ODE (4) as

(h
√
r)′

h
√
r
=
rγ (ρ, r, z)
0(r, z)

−
r2

2µ(9)0(r, z)
√
1− ρ2

. (22)

Using (21) in equation (22) we find that there exist s1 and
c4 > 0 such that

(h(s)
√
r(s))′

h(s)
√
r(s)

≤ −
c4
s

for all s > s1.

Integration yields that lims→∞ h(s) = 0 which is in contra-
diction with the h-limit given in condition T4.
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