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Abstract

Respiratory syncytial virus (RSV) is one of the major causes of acute lower respiratory

tract infections (ALRTI) in children. Children younger than 1 year are the most susceptible

to RSV infection. RSV infections occur seasonally in temperate climate regions. Based on

RSV surveillance and climatic data, we developed statistical models that were assessed

and compared to predict the relationship between weather and RSV incidence among ref-

ugee children younger than 5 years in Dadaab refugee camp in Kenya. Most time-series

analyses rely on the assumption of Gaussian-distributed data. However, surveillance data

often do not have a Gaussian distribution. We used a generalized linear model (GLM) with

a sinusoidal component over time to account for seasonal variation and extended it to a

generalized additive model (GAM) with smoothing cubic splines. Climatic factors were

included as covariates in the models before and after timescale decompositions, and the

results were compared. Models with decomposed covariates fit RSV incidence data better

than those without. The Poisson GAM with decomposed covariates of climatic factors

fit the data well and had a higher explanatory and predictive power than GLM. The best

model predicted the relationship between atmospheric conditions and RSV infection inci-

dence among children younger than 5 years. This knowledge helps public health officials

to prepare for, and respond more effectively to increasing RSV incidence in low-resource

regions or communities.

Introduction

Respiratory syncytial virus (RSV) is one of the major causes of acute lower respiratory tract

infections (ALTRI) in infants and young children [1][2]. RSV infections occur seasonally in

temperate climate regions [3]. RSV adversely impacts the health of adults and immunocom-

promised patients, and is associated with significant mortality and morbidity, particularly in

young children and vulnerable infants [4]. Children younger than 1 year are most susceptible
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to RSV infection; often 60–70% of children in this age group have been infected at least once,

and re-infection can occur throughout their lifetime [4][5][6].

RSV is shed in saliva and nasopharyngeal secretions [7]. Infected hosts shed higher quanti-

ties of viral particles upon exposure to higher-ambient temperatures [8]. Low humidity during

winter enhances RSV viability, and enables its survival for up to 12 hours on nonporous sur-

faces [9]. In dry air conditions, large droplets evaporate and remain air-borne for longer peri-

ods of time. Some studies have shown that airborne transmission appears to be sensitive to

ambient humidity and temperature in temperate regions [8][10]. RSV outbreaks show some

seasonality that suggests a connection with atmospheric and environmental conditions [11]

[12]. Most RSV infections in temperate locations occur between November and April [13].

RSV infection has been associated with winter in these regions because people spend more

time indoors, potentially in crowded conditions [14]. Such climatic regions are different from

those of Kenya, which is located on the equator and experiences bimodal seasonal rainfall due

to the interaction of the Northern and Southern Hemisphere monsoon systems [15]. However,

variations in climatic factors, such as humidity, temperature, wind speed, rainfall etc., can have

a significant impact on disease dynamics. Therefore, it is essential that the RSV incidence be

evaluated for equatorial climatic regions to aid accurate predictions of RSV outbreaks. [16]

[17].

The wide range of statistical methods used to explore the link between RSV outbreaks and

climate makes it difficult to elucidate a definitive relationship. Pearson correlation analysis was

previously used to explain the associations of RSV-positive cases with meteorological variables

[11]. The univariate analysis of variance (ANOVA), multiple regression analysis, and Spear-

man’s rank correlation were used to assess the association between RSV incidence and meteo-

rological parameters [18]. A better understanding of the relationship between climate and

RSV helps in making reliable predictions of its incidence.

Worldwide, as of 2005, 99% of deaths from RSV were reported by the World Health Orga-

nization (WHO) to occur in developing countries [19]. It is, therefore, crucial to establish

good RSV surveillance systems in developing countries to help understand the dynamics of

the disease. In 2006, the U.S. Centers for Disease Control and Prevention (CDC) and the

Kenya Medical Research Institute (KEMRI) established a respiratory illness surveillance sys-

tem to detect disease outbreaks in Kenyan refugee camps [20]. We used RSV incidence data

from this system to explore the best model that predicts the relationship between RSV inci-

dence and climatic factors along spatio-temporal scales to determine whether a seasonal pat-

tern of RSV infection exists. A generalized linear model (GLM) with a sinusoidal component

over time was used to account for seasonal variation and compared with a generalized additive

model (GAM) with smoothing cubic splines. Climatic factors were included as covariates in

the models before and after timescale decompositions.

Methods

Data

Surveillance for viral respiratory illnesses, including adenovirus, human metapneumovirus,

influenza virus, parainfluenza viruses 1, 2, and 3, and RSV was implemented in Dadaab refugee

camp in north eastern Kenya in 2007. Paediatric and adult patients who presented at a camp

medical unit, and met the case definition for influenza-like illness (ILI) or severe acute respira-

tory infection (SARI), were enrolled into the laboratory-enhanced respiratory surveillance sys-

tem and tested for all of the above diseases after an informed consent form was completed by

adults, older minors, and guardians of all minors <15 years [20]. The number of laboratory-

confirmed cases was recorded on a daily basis from September 2007 to August 2011. The

Non-Gaussian TSA_RSV
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monthly counts of all RSV cases among children younger than 5 years were included in the

present analysis; the main outcome of interest being monthly RSV incidence rate in this age

group. RSV incidence rate per 1,000 children younger than 5 years was calculated by dividing

monthly RSV counts by the monthly population of children younger than age 5 years in the

camp. Local weather and climatic data, including: the mean temperature and mean dew point

for the day (both in ˚F); mean sea level pressure for the day in millibars; mean visibility for the

day in miles; mean wind speed for the day in knots; minimum and maximum temperature

(˚F) reported during the day; and the total precipitation (in inches) reported during the day

were obtained from the World Meteorological Organization’s (WMO’s), World Weather

Watch Program, according to WMO Resolution 40 (Cg-XII) (available at http://www7.ncdc.

noaa.gov/CDO/cdo). The meteorological dataset consisted of measurements recorded at suc-

cessive, equally spaced time points (covariates used in the present study are provided in the

supplementary materials, S3 Table). Data and R codes used in the analysis are available at

https://figshare.com/s/feb61d236cad0abcf5b6 DOI 10.6084/m9.figshare.5010767.

Statistical modeling

A Poisson distribution model was used in this analysis, as the outcome of interest (incident

RSV cases) was non-Gaussian count data. Some authors have used Gaussian vector autoregres-

sive models on multivariate counts that are serially correlated. Brandt and others used vector

autoregressive methods that were based on Gaussian error process [21]. However, such an

assumption is not applicable to event count data because it produces biased estimates [22]. So,

as many of those methods apply for count series that approximate normality, they may not

hold to dynamic events like the ones applied here. In the first model, seasonal effects on RSV

incidence were analysed by using a generalized linear model (GLM) with a sinusoidal compo-

nent to account for seasonal variation. The second model extended the GLM model to a gener-

alized additive model (GAM) by applying smoothing cubic splines. The GAM is an extension

of the GLM and is adaptable to non-normally distributed variables [23]. GLM uses linear

predictors specified as the expected value of a response variable (Yj), which is expressed as

η = Sjβj(Xj). Here, βj is a coefficient parameter and Xj represents the j-th explanatory variable.

The GAMs extend these by replacing them with η = Sjfj(Xj), where fj(Xj) are unspecified non-

parametric functions estimated by including smoothing splines [24]. GAMs allow for adjust-

ments of the nonparametric, nonlinear, confounding effects of seasonality, trends, and

weather variables, which have been previously used in modeling time-series data [25]. In the

present analysis, climatic time-series covariates were included in the GLM and GAM models

and implemented in R language v3.1.0 [26]. Both models were optimized for predictive accu-

racy and precision.

Data were decomposed into three components, namely: trend, seasonal, and random com-

ponents, in order to independently evaluate the existence and strength of associations between

RSV incidence and covariates on each time scale. Data decomposition was accomplished using

Loess smoothing, a regression method that assigns a weighted polynomial to each component

[25]. We introduced a GLM for time-series data, with a sinusoidal component over time to

account for seasonal variations. The GLM was extended to include a smoothing function using

the GAM approach to the Poisson distribution [27] In each model, a data-driven smoothing

function of time was fitted, and compared with those fitted, using sine and cosine functions in

the Fourier basis.

The observed number of RSV counts, Yt at a given month t = 1, � � �, n from the population

at risk is assumed to follow a Poisson random variable: Yt * Poisson(μt). We let nt be the pop-

ulation of children age 5 years and younger at risk at time t in the camp. The expected value of

Non-Gaussian TSA_RSV
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Yt is E(Yt) = μt = ntƟt where the dependence of covariates onƟt is modeled byƟt ¼ exT
t b.

Therefore, a Poisson GLM of the form EðYtÞ ¼ mt ¼ ntexT
t b is used. More explicitly, to model

the incidence, we use:

logmt ¼ b0 þ ayt� 1

þ
Xn

t¼1

Xm

k¼1

Xr

s¼1

Xq

l¼0
bkslxðt� lÞks þ Z1cos

2pt
T

� �

þ Z2sin
2pt
T

� �

þ lognt ð1Þ

Where μt is the infection rate for the month, t. β0 is the intercept, α is the coefficient of the

lagged RSV counts by one month, which is represented by yt−1, x(t−l)ks, is the decomposed

measured covariate, βksl their corresponding coefficients with k = 1, � � �, m covariates and

s = 1, � � �, r corresponding to r-th decomposition of the k-th covariate, l = 0, 1, � � �, q distributed

lags where q is the maximum lag and t = 1, � � �, n are the time points. The terms η1 and η2 are

coefficients of the sine and cosine function, respectively. Here, T is the number of time periods

described by one cosine function over the interval [0,2π].

Using a cosine function, we specified two periods: one that defines the measure of RSV

infection (month) and the other that is described by one cosine cycle. After fitting all covariates

in the GLM model, the most parsimonious model was identified. The maximum lag for each

covariate was obtained by comparing different lagged models using Akaike information crite-

rion (AIC). The maximum lag for each covariate was used to run “crossbasis” in the “dlnm”

package for time-series models [28][29]. The same covariates were used to fit the GAM model.

The corresponding GAM for the Poisson model is:

logmt ¼ b0 þ ayt� 1

þ
Xn

t¼1

Xm

k¼1

Xr

s¼1

Xq

l¼0
bkslCkðxðt� lÞks; ltksÞ þCkþ1ðt; ltðkþ1ÞÞ þ lognt ð2Þ

Where λtks is the smoothing parameter or the degrees of freedom for covariates, λk+1 is a

smoothing parameter for time and C. is the smoothing function. Larger values of λ. are indica-

tive of a less-smooth function.

For Models (1) and (2), the additive time-scale decomposition of the k-th covariate into the

seasonal (S), trend (T), and random (R) components is:

bkslxðt� lÞks ¼ bkSlxðt� lÞkS þ bkTlxðt� lÞkT þ xðt� lÞkR ð3Þ

for every k in {1, � � �, m}. In the above case, s takes on three levels S, T, and R. This decomposi-

tion helps in assessing for the significance of the seasonal and trend components of the covari-

ates in explaining the RSV incidence. The combination of the seasonal and trend components

makes up the patterns in the covariates.

The trend cycles represent long-term changes in the levels or values of the covariate, while

the periodic changes are the fluctuations of constant length. The GLM (1) has the Logit link

function. The residual deviance for these models takes on the form D = −2log(Ltest/Lsat), where

Ltest and Lsat are the maximized likelihoods under the test and saturated models, respectively.

The model selection and fitting was done using the "glmulti" package [30] and "gam" [31] in

"mgcv" package [24] in the R language v3.1.0.

Ethical considerations

Ethical approval for the surveillance activities was obtained from the KEMRI Ethical Review

Committee (SSC Protocol Number 1161). Institutional review was waived by CDC because

the study was considered to be a non-research public health activity. Informed written consent

was obtained from all participants and from the guardians of minors.
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Results and discussions

Data exploration

A peak in RSV incidence occurred every 11–12 months, particularly from October to January

(Fig 1). Other than these peaks, there was relatively low RSV incidence (� 20 cases per 1000

person months).

The decomposed data, seasonal pattern, trend line, and random component of the RSV,

wind, rainfall, and temperature time series are shown in S1–S4 Figs. The seasonal pattern of

RSV incidence regularly repeated itself, with two distinct peaks annually (S1 Fig). The data

show that overall, lower wind speeds and higher temperatures were associated with higher

RSV incidence. The magnitude of the seasonal components of the decomposed covariates did

not vary annually (S1–S6 Figs). This justifies the use of additive, rather than multiplicative

decomposition. There was a positive correlation between temperature and RSV incidence

(Fig 2B). There was a significant moderate correlation between RSV incidence and wind speed

(ρ = −1.603, p = 0.003)(Fig 2A); an insignificant weak correlation between RSV incidence and

temperature(ρ = 0.809, p = 0.289) (Fig 2B); an insignificant weak correlation between RSV

incidence and dew point (ρ = −0.763, p = 0.201) (Fig 2A); and for temperature and wind speed

(Fig 2D);, the parabolic curve was fitted using:x3 = ɤ0 + ɤ1(x1−ɤ2)2 where ɤ0,1,2 are constants,

and the regression fit was significant (p< 0.001). Here, x1 and x3 represent wind speed and

temperature, respectively.

Fig 1. Plot of RSV incidence in Dadaab. Fluctuations in the data are roughly constant over time, indicating that the RSV time series could likely be

described using an additive model.

https://doi.org/10.1371/journal.pone.0178323.g001
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Model assessment and comparison

The trend component of the wind decomposition model decreased slightly immediately after

2008, then increased steadily to a peak in early 2009, followed by a decrease to a minimum

value in late 2010 (S2 Fig). These finding indicate that the wind variable has a seasonal impact

on RSV incidence. A similar seasonal effect was observed in the RSV and temperature decom-

position (S1–S4 Figs). To determine the best predictive model, we compared the performance

of the four models described in the methods section. The best GLMs and GAMs from the

Poisson were compared using the AIC and residual deviances (S1 Table). In the models with

Fig 2. Correlation-regression analysis. A: Correlation between RSV incidence and wind speed; B: Correlation between RSV incidence and

temperature; C: Correlation between RSV incidence and dew point; and D: Correlation between temperature and wind speed. In these plots, the

regression lines of best fit are indicated by bold blue lines.

https://doi.org/10.1371/journal.pone.0178323.g002
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decomposed covariates for both GLM and GAM, the current cases of RSV did not depend on

the previous observations. The AIC was used to judge the best model from the set of models

that had a good fit. The best models all had covariates with p< 0.05. This was the case for

models with and without decomposed covariates. Of all the models that were evaluated, the

Poisson GAM with decomposed covariates had the best fit to the data (AIC = 317.17 and a

Deviance explained = 65.3%, S1 Table). Fig 3 shows the best model fit to the RSV incidence

data with decomposed covariates comparing the Poisson GLM and the Poisson GAM, where

the Poisson GAM fits the data well. The best model in its reduced form is the Poisson GAMa

(S4 Table). S2 Table contains the corresponding ANOVA results for the Poisson GAMa. From

this table, the wind with both the trend and seasonal effects (seasonal effect of rainfall, trend

mean dew point, and the trend effect of visibility) significantly explained RSV incidence. We

note that time in months did not significantly explain RSV incidence, further demonstrating

the importance of using climactic factors to explain the seasonality of RSV.

Fig 3. Best model fit to the RSV incidence data (bold lines) with decomposed covariates. A: Poisson, GLM. B: Poisson, GAM. The standard error

bars to the model fit are indicated by the dotted lines (95% confidence bounds). The base year in all these plots was September 2009.

https://doi.org/10.1371/journal.pone.0178323.g003
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The direction of effects demonstrated nonlinear relationships with RSV incidence, except

in the case of seasonal wind speed, which had a linear relationship (Fig 4). High wind speed

within the same month had a significant negative effect on the RSV incidence. The trend com-

ponent of the wind speed in the 2 months preceding incident RSV cases had a nonlinear rela-

tionship with RSV incidence. As the wind speed increased, incidence fluctuated from low to

high, returning to low incidence when the speeds were highest. An increase in the seasonal

component of rainfall in the four months preceding RSV cases was associated with an increase

in RSV incidence. When rainfall was at its lowest, RSV incidence increased then returned to

baseline when rainfall reached its maximum. The trend effect of the mean dew point 1 month

preceding incident cases was associated with an increase in RSV incidence until dew point

reached its maximum. The increase in visibility trend component 2 months preceding incident

RSV cases demonstrated a constant effect on RSV incidence, which peaked when the visibility

was 19.5 miles and troughed when the visibility was at its highest.

Implication of results and comparison to related studies

Our data showed seasonal variations for RSV incidence (S1 Fig). The Poisson GAM with

decomposed covariates out-performed the GLM variant, thereby relaxing its linearity. Gener-

ally, the role of climatic factors in determining disease dynamics is rather complex to decipher

[32]. In the literature, there is strong evidence that the relationship between climatic factors

and RSV incidence varies widely between geographical regions [18]. Previous studies have

shown that climatic factors might be associated with RSV, although it remains unclear what

these factors are or exactly how they impact RSV incidence. We performed a correlation

analysis for each covariate with RSV by fitting regression lines to test the level of significance

between the climatic variables (Fig 2A–2C). A recent study by Agoti et al [33] on RSV strains

using the same RSV surveillance data showed that there were six epidemic peaks within the 3

year study period: two peaks each year; the first and the last peaks were composed of group B

strains and the other four peaks were composed of group A strains. Agoti’s study, in conjunc-

tion with our findings, show that onset of RSV infections in Kenya can be reliably predicted.

Our findings, in comparison with other studies, also suggest that the relationship between

RSV incidence and climatic factors varies widely; for instance, from 2004 to 2012 in tropical

and sub-tropical zones such as Hong Kong, China, Singapore, Kuala Lumpur, Malaysia,

Medellin and Colombia outbreaks occurred primarily during the hot and rainy seasons [14].

The ability to predict increases in RSV incidence, based on prevailing meteorological condi-

tions, could potentially inform the application of public health interventions and provisions of

healthcare in Kenya, and perhaps, in other regions with a similar climate and equatorial loca-

tion. Currently, there is no RSV vaccine available; however, in developed countries, infants at

risk of severe outcomes can be administered monthly doses of the anti-RSV antibody, palivizu-

mab, during outbreaks of RSV [3][8]. Because predicting the incidence of RSV could optimize

the cost-effectiveness of immunoprophylaxis; our model might be useful to apply in a cost-

benefit analysis of this approach in Kenya. In most temperate climate regions, RSV occurs as

an annual epidemic. For instance, Noyola and Mandeville found that temperature was the pre-

dominant atmospheric condition explaining the annual spread and variability of RSV inci-

dence in San Luis Potosi, Mexico [34]. Using correlation and regression analysis, Noyola and

colleagues observed that the weekly number of RSV incidence between October 2002 and May

2006 was correlated to ambient temperature, barometric pressure, relative humidity, vapor

tension, dew point, precipitation, and hours. Our findings corroborate what they observed for

the same climatic factors. The modeling has aided identification of factors influencing RSV

incidence and provided indicators for devising measures to prevent the spread of the disease.

Non-Gaussian TSA_RSV
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Fig 4. Best model fit (Poisson, GAM) to the RSV incidence data with the signifficant decomposed covariates. Seasonal, wind speed; Trend, wind

speed; Seasonal, rainfall; Trend, rainfall; and Trend, visibility. The standard error bars to the model fit are indicated by the gray shade (95% confidence

bounds). RSV incidence units as cases per 1,000 person months.

https://doi.org/10.1371/journal.pone.0178323.g004
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Our analysis showed that other climatic factors affecting RSV seasonality can improve the

performance of a predictive model. Khor et al [18] demonstrated that, in Malaysia, ambient

temperature was inversely associated with RSV activity, even though the highest number of

cases may not always coincide with the lowest temperature. A negative correlation between the

mean minimum temperatures and RSV incidence was recently reported in Italy [11]. RSV

transmission that occurs during cold weather is facilitated by its stability in secretions, since

inhalation of cold air slows down the mucociliary escalator. This reduces phagocytic activity of

leukocytes, increasing the host’s vulnerability to infection. There is evidence of RSV epidemics

occurring in tropical areas with high temperatures during rainy seasons, a phenomenon that

our data are exhibiting [35][36]. However, the exact mechanisms of how climatic factors affect

RSV incidence requires further investigations, especially across geographically diverse regions.

The relationship between the dynamics in wind speed and direction, and how these dynamics

influence the climate of geographical regions like Dadaab, remains unclear. Understanding

such complex relationships between the co-factors explaining the spread of RSV is essential to

predict its incidence.

A foreseeable limitation of our models is that with log- or logit-links; the mean value zero

corresponds to an infinite range on a linear predictor scale. For count data with a relatively

large number of zeros clustered closely within the covariate space, GAMs might suffer from

identifiability problems, especially the Poisson family. For the over-dispersion parameter, the

assumption of equal mean and variance inherent in the Poisson GAM might be violated;

hence, it has to be replaced by variances that exceed the mean. Our data show a cyclic and sea-

sonal behavior for RSV incidence among children (Fig 1). The Poisson GAM from this analy-

sis demonstrated that climatic factors, including wind speed, rainfall, dew point and visibility,

significantly affected RSV incidence. The use of atmospheric condition data help public health

officials predict increases in RSV infection incidence among children and help them prepare

and respond more swiftly to increasing RSV incidence in low-resource regions or communi-

ties. While specific vaccines, antiviral medications, and immunoglobulins are not available to

control RSV in these settings, agencies responsible for managing healthcare in crisis-affected

populations can increase preparedness for RSV outbreaks by establishing additional patient-

isolation areas and bed space, ensuring that all healthcare workers are provided with adequate

personal protective equipment (e.g., facial masks and gloves) and appropriate amounts of

hand sanitizers and adequate hand-washing facilities for healthcare workers are readily

available.

Health education is important; crisis-affected populations should be made aware of the

symptoms and signs of RSV, how it spreads, and how to protect themselves and their loved

ones. Health education should focus on how to cover coughs, keep appropriate social distanc-

ing (e.g., not being too close to others, not shaking hands), and the importance of washing

hands with soap. In particular, our model indicates that when the wind speed in knots change

from high to low, these interventions should be enhanced to prevent spread of RSV infections

in Kenya. In the future, these models could be validated with new RSV surveillance data to see

how well they perform to predict increases in RSV incidence particularly for geographical

regions with similar climatic attributes to Dadaab.
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