
 

 

 University of Groningen

Soft-linking of a behavioral model for transport with energy system cost optimization applied
to hydrogen in EU
Blanco, Herib; Gómez Vilchez, Jonatan J.; Nijs, Wouter; Thiel, Christian; Faaij, André

Published in:
Renewable and Sustainable Energy Reviews

DOI:
10.1016/j.rser.2019.109349

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Blanco, H., Gómez Vilchez, J. J., Nijs, W., Thiel, C., & Faaij, A. (2019). Soft-linking of a behavioral model
for transport with energy system cost optimization applied to hydrogen in EU. Renewable and Sustainable
Energy Reviews, 115, [109349]. https://doi.org/10.1016/j.rser.2019.109349

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-12-2019

https://doi.org/10.1016/j.rser.2019.109349
https://www.rug.nl/research/portal/en/publications/softlinking-of-a-behavioral-model-for-transport-with-energy-system-cost-optimization-applied-to-hydrogen-in-eu(823ec214-a195-42da-815b-242dc855e324).html
https://doi.org/10.1016/j.rser.2019.109349


Contents lists available at ScienceDirect

Renewable and Sustainable Energy Reviews

journal homepage: www.elsevier.com/locate/rser

Soft-linking of a behavioral model for transport with energy system cost
optimization applied to hydrogen in EU

Herib Blancoa,b,∗,1, Jonatan J. Gómez Vilchezc,1, Wouter Nijsb,1, Christian Thielc,1, André Faaija

a Center for Energy and Environmental Sciences, IVEM, University of Groningen, Nijenborgh 6, 9747, AG, Groningen, the Netherlands
b European Commission, Joint Research Centre (JRC), Westerduinweg 3, NL, 1755LE, Petten, the Netherlands
c European Commission, Joint Research Centre (JRC), Via Enrico Fermi 2749, I-21027, Ispra, VA, Italy

A R T I C L E I N F O

Keywords:
TIMES
Energy system model
Power to gas
System dynamics
Fuel cell vehicles
Decarbonization

A B S T R A C T

Fuel cell electric vehicles (FCEV) currently have the challenge of high CAPEX mainly associated to the fuel cell.
This study investigates strategies to promote FCEV deployment and overcome this initial high cost by combining
a detailed simulation model of the passenger transport sector with an energy system model. The focus is on an
energy system with 95% CO2 reduction by 2050. Soft-linking by taking the powertrain shares by country from
the simulation model is preferred because it considers aspects such as car performance, reliability and safety
while keeping the cost optimization to evaluate the impact on the rest of the system. This caused a 14% increase
in total cost of car ownership compared to the cost before soft-linking. Gas reforming combined with CO2 storage
can provide a low-cost hydrogen source for FCEV in the first years of deployment. Once a lower CAPEX for FCEV
is achieved, a higher hydrogen cost from electrolysis can be afforded. The policy with the largest impact on FCEV
was a purchase subsidy of 5 k€ per vehicle in the 2030–2034 period resulting in 24.3 million FCEV (on top of 67
million without policy) sold up to 2050 with total subsidies of 84 bln€. 5 bln€ of R&D incentives in the
2020–2024 period increased the cumulative sales up to 2050 by 10.5 million FCEV. Combining these two po-
licies with infrastructure and fuel subsidies for 2030–2034 can result in 76 million FCEV on the road by 2050
representing more than 25% of the total car stock. Country specific incentives, split of demand by distance or
shift across modes of transport were not included in this study.

1. Introduction

To have a likely probability of staying within a global warming of
2 °C by end of this century, greenhouse gas (GHG) emissions need to be
reduced by 40–70% on a global basis by 2050. Cumulative emissions
need to stay between 550 and 1300 GtCO2e (2011–2050) whereas an-
nual emissions today are ~50 GtCO2e [1]. This is translated into
80–95% CO2 reduction for the European Union (EU) (compared to
1990) [2], corresponding to a less strict target of 60% for the transport
sector2 [3] considering its more difficult nature to decarbonize [4]. In
the EU, transport demand accounts for almost 33% of the final energy
use (out of which road transport represents 82%) and 31% of the GHG
emissions [5]. Transport is the only sector exhibiting an increase in CO2

emissions when compared to 1990 (+23% in 2015 [6]). Strategies to
reach those targets are increased efficiency, alternative fuels with a

lower CO2 footprint, modal shift (e.g. from private cars to public
transport) and reduced need for travel (e.g. urban planning, home-of-
fice) [1,7,8]. There is also the need to introduce alternative powertrains
in the transport sector to improve energy independence, since more
than 80% of the oil is imported in the EU with an import bill of 400 bln
€/yr (at an oil price of 100 $/bbl) [9].

The EU has adopted several initiatives to foster the deployment of
alternative fuels. In the Renewable Energy Directive (RED) [10], there
is a target for advanced renewable fuels (6.8% for 2030) and it has
specific targets for biofuels (3.6%), but none for hydrogen. RED was
revised in June 2018 [11] and includes a mandatory minimum of 14%
of renewables in transport by 2030 via obligations on fuel suppliers. At
the same time, conventional (i.e. first generation) biofuels EU-wide are
capped at a maximum of 7%, which indirectly promotes second gen-
eration biofuels and other energy carriers like electricity, hydrogen and
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synthetic fuels. Electricity and hydrogen are included in the strategy of
alternative fuels [12], considered as part of the deployment of alter-
native fuels infrastructure [13]. The new proposal of the CO2 emission
standards for the average new passenger cars and light commercial
vehicles (LCV) sold in the EU post-2020 [14] defines benchmarks of
15% electric vehicle (EV) sales by 2025 and 30% by 2030 (exceeding
these values will be rewarded with less strict CO2 targets for manu-
facturers). There is also support in terms of financing of 70 bln€ to
support low-emission mobility including 39 bln€ from the European
Structural and Investment Fund, 24 bln€ from Connecting Europe Fa-
cility (in total) and 6.4 bln€ from Horizon2020 program for research
activities [15]. Specifically for hydrogen, most of the EU research
funding is managed via the Fuel Cell and Hydrogen Joint Undertaking
(FCH JU), which is a public private partnership and has a budget of
1330M€ (2014–2020).

Among zero emission vehicle (ZEV) market deployment, battery
electric vehicles (BEV) are currently ahead of fuel cell electric vehicles
(FCEV). On a global level, there are over 5.1 million EV (BEV and plug-
in hybrid electric vehicles (PHEV)) [16], while there are only close to
11200 FCEV on the road [17]. How these powertrains compare in the
future will depend on the learning achieved by deployment. With
learning rates of 6–9% [18] or even 16% [19], lithium-ion EV batteries
could reach a cost between 50 and 75 €/kWh by 2040 [19,20], while
fuel cell cost could be reduced from 233 €/kW3 to an ultimate cost of 25
€/kW [21]. While the most affordable BEV in the C segment are being
sold for around 30–35 k€ (plus VAT) [22], FCEV sales are currently
dominated by a single model (the Toyota Mirai on the D segment)
marketed in Germany at 78.6 k€ [23]. Specific energy consumption is
better for BEV (0.33MJ/km vs. 0.63MJ/km for FCEV [24,25] with a
wider difference for long distance [26] or when the entire pathway is
considered [27]). Both powertrains have limitations, driving range and
charging time are the main issues for BEV, while fuel cell cost and lower
efficiency are issues for FCEV [22]. A possible complement between
both is to use BEV for short driving range and smaller vehicles size,
while FCEV are used for longer distances and larger cars [21].

Another key barrier for both powertrains is infrastructure. By end of
September 2017, there were over 120000 publicly accessible rechar-
ging points for EV in the EU, of which almost 15000 were fast charging
[28]. In contrast, only 82 hydrogen refueling stations are in operation
in the EU [28,29]. The EU directive (2014/94/EU) specifically ad-
dresses the need for infrastructure deployment of alternative fuels [29].
An assessment of the national policy frameworks submitted as part of
this directive, indicates that the investment needed is almost 900M€ for
electricity by 2020 and 700M€ for hydrogen by 2025. This would be on
top of 3.9 bln€ by 2020 for 440000 public accessible recharging points
and an ambitious target of 4 million EV on the road [29].

There are multiple ways to model transport at different spatial and
temporal scales from agent-based, system dynamics, engineering and
integrated assessment models [30]. System dynamics (simulation)
usually focuses on the transport system and stakeholders interactions,
while cost optimization usually disregards factors like budget (or in-
come), time availability, preferences and risk aversion, that also influ-
ence decisions [31,32]. This study soft-links these two types of models,
combining their strengths and making trade-offs across the entire en-
ergy system [33–35]. The specific models used are JRC-EU-TIMES4

which covers CO2 emissions from the energy system and allows asses-
sing the effect not only of technology assumptions (e.g. electrolyzer
efficiency and cost), but also the effect that systemic parameters (e.g.
CO2 underground storage) have on cost and commodity prices. JRC-EU-
TIMES has been used in the past to assess the parameters that promote
and hinder hydrogen use in alternative future scenarios [36]. The other

model is Powertrain Technology Transition Market Agent Model
(PTTMAM) which has 4 market agent groups (manufacturers, users,
infrastructure providers and authorities) and has been used in the past
to assess scenarios for the road transport sector [37] and provide policy
insights [38,39]. In both cases, the geographical scope is the same
(EU28) and they are used for the time horizon of 2050, when the shares
for FCEV are expected to be the highest.

The reason to focus on FCEV is twofold. First, from a purely eco-
nomic perspective, the case for FCEV is more difficult to justify (com-
pared to BEV), so applying a system dynamics model that covers non-
cost related attributes will shed light into the potential role FCEV can
play when considering a more holistic evaluation. Second, transport has
one of the highest willingness to pay for the hydrogen given its higher
difficulty to decarbonize [40,41]. This will help to justify the potential
investment in hydrogen production and facilitate the integration of
variable renewable energy (VRE) [42] (when produced through elec-
trolysis). The hydrogen potential for transport extends beyond cars.
When converted to other energy carriers such as ammonia or liquid
fuels, it can satisfy demand in aviation or the maritime sector [17].
Even within the road transport sector, hydrogen can be attractive for
heavy-duty long-haul trucks and buses that have higher power re-
quirements (leading to larger batteries if BEV are used). However, given
that the fuel choice for these sectors is fundamentally different from
cars, this study focuses specifically on passenger transport.

Based on this, the main objective of this study is twofold: (1) assess
how soft-linking affects the stand-alone output of each model; (2)
quantify the effect that different policies and subsidy schemes can have
in FCEV penetration and the cost effectiveness of these policies. The
main novelties are: (1) the soft-linking of the two mentioned models
with complementary features; (2) the coverage of the entire EU (rather
than one country); (3) the use of ambitious CO2 targets and (4) ana-
lyzing the effect different policies can have on FCEV penetration. Some
of the questions to be answered are: how does the soft-linking process
affect total system cost and commodity prices, what are the system
drivers that favor FCEV, what actions are needed (from the manu-
facturers, authorities and infrastructure) to promote FCEV deployment,
what is the incentives scheme (amount and timing) required to increase
the FCEV share, how does R&D subsidy compare with vehicle and fi-
nancing of refueling stations.

The rest of the paper is organized as follows. The next section pre-
sents a literature review and identifies gaps in the literature. Section 3
describes the methodology and modeling approach. Section 4 covers
the data and assumptions, while Section 5 goes through the scenarios
and policies evaluated. Section 6 presents and discusses the results and
lastly Section 7 summarizes the conclusions.

2. Literature review and gaps

This section is split in various clusters where each one looks at a
different element of the present study: 1. Use of stand-alone system
dynamics models for alternative fuel vehicles and specifically for FCEV;
2. Use of stand-alone optimization models for hydrogen use in low-
carbon systems; 3. Incorporation of the behavioral component in in-
tegrated assessment models; 4. Incorporation of the behavioral com-
ponent in energy system models. This literature review does not cover
studies for the hydrogen supply chain (commonly referred as HSC) or
specific geographical match between sources (e.g. high renewable po-
tential locations) and sinks. As starting point for that discussion, refer to
Refs. [43,44] for a review of the different models, [45] for UK or
[46–48] for Germany. Other approaches to model diffusion of alter-
native fuel vehicles including agent-based modeling [49], computable
general equilibrium [50] and econometrics (usually suitable for short-
term forecasts) have been left out of the review since they use a dif-
ferent modeling approach. For a review of applications of these other
approaches to BEV, refer to Ref. [51].

3 Throughout this report a currency conversion of 1 €=1.2 $ has been used.
4 TIMES=The Integrated MARKAL-EFOM System; MARKAL=Market

Allocation; EFOM=Energy Flow Optimization Model.

H. Blanco, et al. Renewable and Sustainable Energy Reviews 115 (2019) 109349

2



Ta
bl
e
1

Sy
st
em

dy
na

m
ic
s
m
od

el
s
ap

pl
ie
d
fo
r
FC

EV
pe

ne
tr
at
io
n.

M
od

el
R
eg

io
n

So
ft
-li
nk

in
g

Fi
nd

in
gs

G
ap

s
R
ef
er
en

ce

H
yD

IV
E

C
al
if
or
ni
a

N
H
ig
hl
y
no

n-
lin

ea
r
th
re
sh
ol
ds

fo
r
ta
x
cr
ed

it
s,

su
bs
id
ie
s
an

d
in
ta
ng

ib
le

co
st
s
w
er
e
id
en

ti
fi
ed

be
yo

nd
w
hi
ch

FC
EV

an
d
re
fu
el
in
g
st
at
io
ns

is
se
lf
-

su
st
ai
ne

d.
C
lu
st
er
in
g
of

re
fu
el
in
g
st
at
io
ns

ar
ou

nd
m
et
ro
po

lit
an

ar
ea
s.

A
lt
er
na

te
tr
an

si
ti
on

st
ra
te
gi
es
.B

et
te
r
qu

an
ti
fi
ca
ti
on

of
th
e
le
ve

l
an

d
du

ra
ti
on

of
su
bs
id
ie
s.

Ev
al
ua

ti
on

of
di
ff
er
en

t
sp
at
ia
l
di
st
ri
bu

ti
on

s
of

in
it
ia
lh

yd
ro
ge

n
re
fu
el
in
g
st
at
io
ns
.I
m
pr
ov

ed
un

de
rs
ta
nd

in
g
of

th
e
eff

ec
t

of
va

ri
ou

s
te
ch

no
lo
gy

pe
rf
or
m
an

ce
an

d
co

st
ta
rg
et
s.

[5
6]

H
2
V
IS
IO

N
G
en

er
ic
/W

as
hi
ng

to
n
D
.C

N
A

co
or
di
na

te
d
po

lic
y
ap

pr
oa

ch
to

pr
om

ot
e
FC

EV
sa
le
s
in

pa
ra
lle

l
to

in
fr
as
tr
uc

tu
re

de
ve

lo
pm

en
t
is

th
e
m
os
t
eff

ec
ti
ve

m
ea
su
re

fo
r
FC

EV
ad

op
ti
on

.

C
on

si
de

r
ot
he

r
ag

en
ts

be
si
de

s
in
fr
as
tr
uc

tu
re
.I
nt
ro
du

ce
he

te
ro
ge

ne
it
y
fo
r

co
ns
um

er
s.

In
cl
ud

e
ad

di
ti
on

al
at
tr
ib
ut
es

fo
r
co

ns
um

er
ch

oi
ce
.

[5
7]

A
ST

R
A

EU
25

+
N
O

+
C
H

Y
–
W
it
h
a
hy

dr
og

en
tr
an

si
ti
on

m
od

el
It

is
us
ed

w
it
h
m
ar
ke

t
pe

ne
tr
at
io
n
fr
om

H
yW

ay
s
pr
oj
ec
t,
fo
cu

se
d
on

G
er
m
an

y
an

d
as
se
ss
es

th
e
im

pa
ct

of
lim

it
ed

su
bs
id
ie
s,

in
fr
as
tr
uc

tu
re

de
ve

lo
pm

en
t
an

d
hy

dr
og

en
fu
el

ta
xi
ng

,w
he

re
fa
ilu

re
of

an
y
of

th
es
e

th
re
e
m
ea
su
re
s
re
su
lt
s
in

fa
ilu

re
of

si
gn

ifi
ca
nt

FC
EV

pe
ne

tr
at
io
n

(e
sp
ec
ia
lly

th
e
fi
rs
t
tw

o)
.

In
cl
ud

e
a
se
ns
it
iv
it
y
an

al
ys
is

fo
r
FC

EV
pe

rf
or
m
an

ce
.E

xo
ge

no
us

FC
EV

sh
ar
e.

Ex
og

en
ou

s
le
ar
ni
ng

cu
rv
e
fo
r
fu
el

ce
ll.

[5
8]

FC
EV

Tr
an

si
ti
on

M
od

el
G
er
m
an

y
N

Th
re
e
in
ce
nt
iv
es

ar
e
ne

ed
ed

to
en

su
re

th
at

FC
EV

re
ac
h
on

e
th
ir
d
of

th
e

fl
ee
t
by

20
40

:1
.S

ub
si
dy

eq
ui
va

le
nt

to
th
e
C
A
PE

X
di
ff
er
en

ce
w
it
h
IC
EV

(m
in
us

20
00

€)
;2

.I
ni
ti
al

in
fr
as
tr
uc

tu
re

de
pl
oy

m
en

t
(5
00

st
at
io
ns

fo
r

G
er
m
an

y)
;
3.

Fu
el

ta
x
ex
em

pt
io
n
(u
nt
il
th
e
fi
rs
t
m
ill
io
n
ve

hi
cl
es

is
re
ac
he

d)
.T

hi
s
le
ad

s
to

a
cu

m
ul
at
iv
e
bu

dg
et

de
fi
ci
t
of

4.
8
bl
n€

.

Fo
cu

se
d
on

ly
on

hy
dr
og

en
an

d
no

co
m
pe

ti
ti
on

w
it
h
ot
he

r
po

w
er
tr
ai
ns
.

Ex
og

en
ou

s
fu
el

pr
ic
e
as
su
m
pt
io
n.

Ex
og

en
ou

s
le
ar
ni
ng

cu
rv
e
fo
r
fu
el

ce
ll.

[5
9]

–
U
S

N
M
ul
ti
pl
e
eq

ui
lib

ri
um

le
ve

ls
ar
e
po

ss
ib
le

fo
r
th
e
al
te
rn
at
iv
es
,m

ea
ni
ng

th
at

ce
rt
ai
n
va

lu
e
th
re
sh
ol
ds

m
us
t
be

m
et

fo
r
th
e
al
te
rn
at
iv
es

to
pe

ne
tr
at
e
th
e
m
ar
ke

t.
Sm

al
l
di
ff
er
en

ce
s
in

in
fr
as
tr
uc

tu
re

de
ve

lo
pm

en
t

ca
n
m
ak

e
a
bi
g
di
ff
er
en

ce
fo
r
pe

ne
tr
at
io
n
of

al
te
rn
at
iv
e
fu
el
s.

U
se

of
al
te
rn
at
iv
e
da

ta
an

d
as
su
m
pt
io
ns
.I
nt
ro
du

ce
m
or
e
te
ch

no
lo
gi
es
.

C
on

si
de

r
m
ul
ti
pl
e
re
gi
on

s.
C
re
at
io
n
of

an
in
te
rf
ac
e.

A
lt
er
na

ti
ve

pl
au

si
bl
e

sc
en

ar
io
s.

[6
0]

–
K
or
ea

N
Th

er
e
w
er
e
cr
it
ic
al

th
re
sh
ol
ds

fo
r
ea
ch

of
th
e
pa

ra
m
et
er
s
an

al
yz
ed

th
at

pr
om

ot
ed

FC
EV

ad
op

ti
on

in
th
e
va

ri
ou

s
m
ar
ke

t
se
gm

en
ts
.L

ea
di
ng

[6
1]

(c
on

tin
ue
d
on

ne
xt

pa
ge
)

Ta
bl
e
1
(c
on

tin
ue
d)

M
od

el
R
eg

io
n

So
ft
-li
nk

in
g

Fi
nd

in
gs

G
ap

s
R
ef
er
en

ce

in
fr
as
tr
uc

tu
re

de
ve

lo
pm

en
t
w
as

es
se
nt
ia
l
fo
r
FC

EV
ad

op
ti
on

.F
in
an

ci
ng

an
d
su
bs
id
ie
s
of

in
it
ia
l
re
fu
el
in
g
st
at
io
ns

w
as

ne
ed

ed
.

In
tr
od

uc
e
he

te
ro
ge

ne
it
y
fo
r
co

ns
um

er
s.

A
dd

it
io
na

l
at
tr
ib
ut
es

fo
r

co
ns
um

er
ch

oi
ce
.I
nc

lu
de

a
se
ns
it
iv
it
y
an

al
ys
is

fo
r
FC

EV
pe

rf
or
m
an

ce
.

Ex
og

en
ou

s
le
ar
ni
ng

cu
rv
e
fo
r
fu
el

ce
ll.

H. Blanco, et al. Renewable and Sustainable Energy Reviews 115 (2019) 109349

3



2.1. System dynamics models for FCEV

System dynamics models have been applied to various areas of
transport including uptake of alternative fuel vehicles, supply chain
management, highway maintenance and construction, air travel and
urban planning [52]. For alternative fuels, they have been used to
evaluate the penetration of EV in the Netherlands and UK [38], Com-
pressed Natural Gas (CNG) in Switzerland [53] and biofuels in US [54]
and EU [55]. The applications for FCEV are limited and these are re-
flected in Table 1.

Some of the gaps these previous studies have in common that the
current one will cover are: (1) consideration of other market players
(like providers of refueling stations and manufacturers) that also play a
role in influencing FCEV penetration; (2) the consideration of the rest of
the energy system and how updated demand affects prices (through
soft-linking with the energy system); (3) cost effect of FCEV and hy-
drogen refueling stations on total system cost; (4) endogenous cost
development as a function of both deployment and choices made by car
manufacturers.

2.2. Energy system models for hydrogen and FCEV

Hydrogen is a common topic studied with energy system models
[46,47,62–87]. With the potential use in FCEV, hydrogen for transport
was one of the first hydrogen applications and in some cases the only
one evaluated. With stricter CO2 targets and a potential “hydrogen
economy” [46,88,89], uses in other sectors started to be included.
While most of the studies focus on the (now) conventional application
of FCEV penetration, some studies go a step further and have an ad-
ditional element in one of two directions: 1. Higher spatial resolution to
match supply (e.g. high renewable energy sources) and demand centers
(e.g. cities) and have a better estimate of the infrastructure cost to
connect these two [46,73,82,90]; 2. Including intangible costs (like
range anxiety, refueling stations, model availability) that influence the
choices made by consumers when selecting a powertrain in an attempt
to improve the initial optimization based purely on cost [91]. There are
examples for Germany [47,79,80] with both high spatial and temporal
resolution that determine the best locations for hydrogen production
(using power surplus from VRE) and the amount available (based on
hourly profiles). These still lack the energy system perspective, where
demand from all sectors is considered in competition for the hydrogen
produced, effect on prices and endogenous calculation of the hydrogen
demand. Taking as starting point energy models that have looked into
hydrogen and then added more details, the most advanced examples
can be seen in California with a combination of ambitious CO2 and ZEV
targets and in the UK. Both of these are briefly explained below.

CA-TIMES [81,92–94] is managed by the Policy Institute for Energy,
Environment and Economy at UC Davis [81]. looks at hydrogen de-
livery pathways including distance and flow for transmission and po-
pulation density and market penetration for distribution. It uses such
detailed analysis to update TIMES. Another boundary that has been
partially crossed is the behavioral one, where [91] has taken output
from MA3T and fed it back to TIMES through introducing: more seg-
ments in the market, an inconvenience cost for refueling infrastructure
(additional distance to be traveled to fuel the vehicle), range limitation
cost, risk attitude and consumer heterogeneity. Follow up work in-
cluded even a finer segregation by introducing clones within a market
segment (20 clones for each of the 36 segments) that capture randomly
distributed unobservable differences in preferences [95]. A proof of the
compromise and complexity associated to combining different com-
plementary approaches is that this version of TIMES is extended to
cover the spatial component by splitting California State in 8 different
regions to determine the specific production technologies, delivery
pathways and hydrogen demand in time [96,97]. However, such ver-
sion is treated as a separate model (H2TIMES [82]) and does not cap-
ture the interaction with the other sectors in the energy system.

In the case of UK, projects requiring an energy modeling component
use UCL MARKAL. It has over 35 years of history as preferred tool to
provide advice on national energy policy [98]. The hydrogen system
was developed in two stages, as part of each phase of the UKSHEC
(United Kingdom Sustainable Hydrogen Energy Consortium5). As part
of the effort to improve the transport representation, additional tech-
nologies were introduced leading to a finer market segmentation, in-
corporating the supply chain and infrastructure from previous studies
and using a lumpy investment option6 [99]. The revised model resulted
in 99% penetration of hydrogen cars by 2050 with an 80% CO2 re-
duction, which was compared to other studies in UK [90]. The soft-
linking with a simulation model (UKTCM7) has also been done where
the feedback to MARKAL was the demand (fixed activity) and efficiency
for each type of car, excluding the elasticity effect in MARKAL which
was already included in UKTCM [100].

The range of studies that have used energy system models to assess
hydrogen potential as energy carrier are shown in Table 2 highlighting
the ones that have looked beyond transport and the ones that have
included either a higher spatial resolution for infrastructure or the be-
havioral component.

The main gap covered in this study compared to previous ones is the
consideration of some of the intangible costs that also affect the con-
sumer decision and additional market agents besides the consumers
themselves that can either promote or limit FCEV penetration.

2.3. Incorporation of behavioral aspects of transport in IAM

FCEV have also been evaluated with Integrated Assessment Models
(IAM). The added value (for this study) of looking at IAM is that since
they cover a wider set of modules, they also need to simplify the re-
presentation of the transport sector to avoid a highly complex model.
IAM differ from energy system models since they also include land use,
agricultural, forestry, macro-economy and climate modules and they
have a global scope [105]. To improve the representation of the
transport sector, mainly two features have been introduced (the same as
with energy models): one is a higher segregation of the consumers, fine
enough to represent different socio-economic groups that will have a
different perception and weights for the attributes when choosing a
specific vehicle. The other one is monetization of intangible costs that
are usually not considered in cost minimization tools such as range
anxiety (in the case of BEV), refueling station availability (for early
stages of infrastructure development), risk premium (to represent per-
ception of new technologies risk), model availability (in early stages)
and BEV chargers [32]. Only recently, these behavioral features have
been introduced and more time is needed for it to become widely
adopted. Heretofore, IAMs have been used in the conventional way to
assess FCEV penetration (see Table SI 1 in Appendix 1) usually with
logit functions for the market shares and with elastic demand that is
sensitive to fuel prices and only some of them include modal shift. With
respect to FCEV some limitations that arise are: some IAMs do not have
hydrogen as option for passenger vehicles (e.g. WITCH [4]) or do not
have endogenous learning linking cost reduction to FCEV deployment
(e.g. GCAM [4]), establish a maximum share that FCEV can acquire or
have limited representation of the infrastructure (critical for both BEV
and FCEV). In spite of this, most of them show that hydrogen does not
play a role (< 5%) by 2050 and only under strict (450 ppm CO2) sce-
narios, it becomes a significant energy carrier for transport by 2100

5 From 2003 to 2007 and funded by the Engineering and Physical Sciences
Research Council.

6 The model chooses to invest in infrastructure with a minimum size (to en-
sure a minimum threshold is passed to deploy infrastructure).

7 UK Transport Carbon Model covering vehicle ownership, travel patterns,
fuel efficiency (driving style), vehicle ownership, stock turnover and valuation
of external costs, among others.
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[7,106,107]. In some cases [106,108], carbon capture and storage
(CCS) also becomes critical since it is the main route used to produce
(and decarbonize) the hydrogen.

2.4. Incorporation of behavioral aspects of transport in energy system
models

There are three main features that have been introduced: modal
shift, consumer heterogeneity and use of intangible costs. A set of stu-
dies [109,110] looked into incorporating modal shift by introducing
new parameters such as travel time budget, monetary budget, speed of
the different transport modes, infrastructure requirements (e.g. bike
lanes) and additional constraints such as maximal modal shares and
maximal rate of shift. This is also linked to the demand split by distance
traveled to be able to account for the different time variation in case of
choosing an alternative transport mode. The aim of introducing travel
time in a cost optimization framework is twofold: (1) It enables the use
of more expensive modes of transport that are able to reduce traveling
time; (2) It relates the investment in infrastructure to a reduction of
travel time of public transport modes.

Additional efforts have been made to split demand further and ac-
count for its heterogeneity with different characteristics (e.g. income)
and attributes evaluated by the different types of consumers [91,111].
Particularly in Ref. [111] the split is made based on region, type of
residential location (urban, suburban and rural) and income level,
which has resemblance but yet different from the split chosen for IAM
(residential location, distance traveled and attitude toward technology
adoption). To exploit this demand segregation and the different weight
each one gives to each attribute, additional intangible costs are in-
troduced including refueling infrastructure, range limitation (for BEV),
risk attitude and model diversity [91]. In every case, this requires the
collection of additional data (e.g. number of trips per person, average
trip distance, travel time for public transport, average speeds by dis-
tance, load factors for cars, infrastructure utilization) to be gathered. In
the case of California and Denmark [91,111], there was a highly dis-
aggregated simulation model for the transport sector (regional models
which had respectively over 1450 consumer segments and over 1200
zones) that contained all the information necessary to introduce both

the modal shift and the intangible costs. For the case of Ireland [110],
mostly national sources of statistics were used. Since the present work
has a wider geographical scope (EU28), there is no single source that
has consistent input in terms of market segmentation, demand split by
distance, mode of transport and growth in time. Therefore, a simulation
model (PTTMAM) is used where the trade-off has been wider geo-
graphical coverage at the expense of focus only on the passenger car
market without modal shifts.

There are two examples of soft-linking an energy model based on
cost optimization with a simulation model [25,112]. One [25] was for
Ireland, using TIMES and a model for the car stock evolution based on
activity, stock composition, energy intensity and emission factors where
the choice of future sales was based on a combination of income and
fuel elasticities. The possibility of an 80% CO2 reduction by 2050 (vs.
1990) was explored. Three measures were analyzed: improved energy
efficiency (75 gCO2/km by 2050), level of biofuel blending and degree
of reduction of intangible costs for alternative vehicles (i.e. BEV). The
other one [112] focused on France and Germany for 2030, while also
using a Pan-European TIMES to assess the powertrain mix for 2050 with
80–90% CO2 reduction scenarios.

There are two reviews of E3 (energy, economy, environment)
models focusing on the transport sector. One [113] reviews 13 models
and identifies some key characteristics: elastic demand based on price,
endogenous modal choice, choice of no physical travel (avoid demand),
demand split by distance (urban and intercity) and infrastructure (to
establish a maximum capacity for the transport mode or alternatively
investment needed to increase capacity) [113]. The dimension covered
by most (11) of the models reviewed was the demand response to price
through elasticity, 6 of them had endogenous modal choice, while de-
mand split by distance and infrastructure capacity were covered by only
one model respectively. The other one [114] reviews 27 energy and
transport models with variable degrees of integration. Behavioral fea-
tures to be considered in energy and transport systems are: technology
choice (also including non-energy cost parameters), modal choice
(using travel time budget or constant elasticities of substitution),
driving patterns (considering distance and speed) and new mobility
trends (e.g. carpooling or autonomous vehicles).

Two previous studies look at FCEV penetration at the EU level. In

Table 2
Energy models used for hydrogen potential assessment for different geographical regions.

Region Model H2 usea Infrastructureb Behavioral component Application Reference

Belgium MARKAL R,P,T,Ref No No Hydrogen potential (with focus on transport) [72]
California CA-TIMES T Yes Yes FCEV penetration, infrastructure development [81,82]
Canada TIMES-Canada T No No BEV penetration [83]
China MARKAL T No No FCEV penetration by 2045 [85]
China China-TIMES T No No Transport sector with 10, 20 and 50$/ton (CO2 price) [86]
Europe REACCESS R,C,I,P,T No No Hydrogen potential for transport [101]
Europe JRC-EU-TIMES R,C,I,P,T No No Current policies and 80% CO2 reduction by 2050 [87]
Germany MOREHyS (Balmorel) P,T Soft linking No Hydrogen role and link with GIS [46]
Global GMM T No No FCEV role and promotion linked to a climate model [62]
Global TIAM-ECN T No No H2 potential for Europe [64]
Global GENeSYS - MOD T No No 1.5 °C scenario for 2050 [102]
Italy MARKAL-Italy R,P,T,Ref No No Hydrogen role in future system [65]
Japan MARKAL T No No FCEV penetration [66]
Japan METANet T No No FCEV penetration [67]
US MARKAL EPA US9R T No No FCEV penetration [68,69]
UK UK MARKAL R,P,T Yes Yes FCEV penetration, infrastructure development, residential FC [70,71,103]
Norway TIMES-Norway T Soft-linking No Coupling with infrastructure [73]
Scandinavia Balmorel P,T No No H2 role in the transition to a low carbon transport [74,104]
Spain (Madrid) MARKAL T No No FCEV share for 3 scenarios for 2050 [75]
Switzerland MARKAL T No No Lower primary energy consumption [76]
Switzerland STEM (TIMES) T No No FCEV penetration [77]
South Africa TIMES-GEECO T Noc No Transport emissions and energy demand [78]

a This refers to the sectors where the model has the choice of using hydrogen; R=Residential; C=Commercial; I=Industry; P=Power; T=Transport;
Ref=Refinery.

b This refers to the linking of a model with explicit consideration of the spatial component or optimization of the hydrogen supply chain.
c GIS approach was used, not for H2 infrastructure, but for spatially locating emissions.
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the deep decarbonization scenario with PRIMES [115], the share of
hydrogen in road transport is only 2% with an 84% CO2 reduction
target, while this increases to 31% when the overall CO2 target is re-
duced to 96%. This corresponds to a share of 10% of FCEV in the car
fleet. A previous assessment with JRC-EU-TIMES has indicated that
hydrogen use in transport can be as high as 40 mtpa (4.8 EJ/yr), but
where the largest share is actually for heavy-duty trucks and FCEV only
represent 10–15% of the car fleet with BEV having a 60% share [36].

In summary, the gaps from literature that are covered in this study
are: (1) from the perspective of system dynamics models, the wider
scope beyond transport to include interaction with other sectors and
how it can affect the total system cost; (2) from the energy system
model perspective, it is a step in the direction of improving the beha-
vioral representation characteristic of consumer choices, but where still
further work will be needed to consider the potential shift among
transport modes and endogenize this behavioral aspect rather than re-
lying on a soft-linking methodology.

3. Modeling approach and structure

This study is based on the soft-linking between two models with EU
coverage managed by the Joint Research Centre (JRC): the JRC-EU-
TIMES model and the PTTMAM. The reason for this choice is that both
models are bottom-up (technology-rich) and have complementary fea-
tures [51,99]. In this section, each model is briefly described separately,
followed by the advantages of combining them and concluded by the
parameters that each model uses from each other.

3.1. Description of JRC-EU-TIMES

The model makes the choice for optimal system configuration based
on investment, fixed, annual, decommissioning, operational costs and
salvage value. It covers EU28 plus Switzerland, Norway and Iceland. To
reduce complexity, it uses 12 representative time slices (24 for power
sector) to represent a year and it has one node per country [116]. The
model generator used is TIMES [117–119]. It combines a normative
approach, meaning that the system will reach the pre-established policy

constraints, with an exploratory one, meaning that different future
scenarios can be used to understand their impact over the technology
mix. It is used by more than 250 institutions in 70 countries [120].
Several policies can be added including CO2 tax [121], technology
subsidy [122,123], regulations, targets, energy efficiency [124], feed-in
tariffs, emission trading systems [125] and energy security [126],
among others. A common application involves the exploration of dec-
arbonization pathways [84,127–129].

Technologies are represented through their input-output relation,
CAPEX, OPEX and lifetime. Individual processes are linked through
commodities. Prices are endogenously calculated through supply and
demand curves. Some of the key output is the capacity needed for each
technology, energy balance for each country in each time period,
trading, emissions and total cost. Key assumptions include: perfect
foresight (all technology costs, demand for services and balances are
known from the beginning of the period), perfect competition (there are
no individual players that can influence prices), central optimization
(lowest cost decisions made regardless of sectors or borders), no short-
term market consideration (e.g. day-ahead, intra-day) and rational
behavior. Due to the focus on energy systems (leaving changes in
agricultural practices, forestry, other land uses, petrochemical, solvents
out of the scope) and only CO2 (no CH4, N2O, NOx and air pollutants),
the model effectively covers around close to 80% of CO2 emissions.

3.2. Description of PTTMAM

PTTMAM is a simulation model that captures the interactions of the
major stakeholders in the light-duty road transport system. Four market
agent groups represent these stakeholders: users, manufacturers, in-
frastructure (refueling and recharging stations) providers and autho-
rities. These market agents are conceptual groupings and not individual
agents as in agent-based modeling [130]. Each market agent group
follows a set of decision rules that lead to different choices and there-
fore there is no single objective function. Through a complex interac-
tion between supply and demand time-varying conditions, powertrain
choice is determined by the users group. This market agent is influ-
enced by a series of vehicle attributes and a measure of the willingness

Table 3
Characterization of modeling approach for JRC-EU-TIMES and PTTMAM.

Model dimension [35] JRC-EU-TIMES PTTMAM Soft-linking consideration

Spatial coverage EU28 EU28 No adaptation required
Spatial resolution 1 node per country 1 node per country No adaptation required
Time horizon 2015–2050 2015–2050 Focus on 2050 given that significant FCEV deployment is

not expected in the short and medium term
Temporal resolution 12 time slices per year with parametrizations

based on hourly data
Annual (delta-time= 0.25) Annual values taken for commodity prices and powertrain

technology mix
Degree of competition Perfectly competitive One manufacturer conglomeratea Each model retains its own approach
Demand splitb 4 (executive, upper and lower medium, small) 3 (small, medium, large) 3 categories are chosen by merging upper and lower

medium in JRC-EU-TIMES
Powertrain class 4 (ICEV with different efficiency classes, BEV,

hybridc and FCEV)
4 (ICEV, BEV, hybrid and FCEV) No adaptation required

Energy carriers 10 (gasoline, diesel, CNG, LPG, electricity,
gaseous hydrogen, liquid hydrogen, ethanol,
synthetic gasoline, synthetic diesel)

8 (gasoline, diesel, CNG, LPG,
electricity, gaseous hydrogen,
biodiesel, bioethanol)

No liquid hydrogen in PTTMAM. Diesel and gasoline prices
from JRC-EU-TIMES already reflect the fuel mix (i.e.
include synthetic and biofuels since those are part of the
supply curve)

Sectoral coverage Power, residential, commercial, industrial,
transport, agriculture

Transport (cars) PTTMAM provides a detailed representation of the
passenger car transport sector to be used with the other
sectors in JRC-EU-TIMES

Mathematical
formulation

Linear programming Differential equations

Solution method Single objective (cost) optimization Euler integration Each model keeps their own solution method
Purpose Normative Explorative Each model keeps their own purpose
References [36,116] [131]

a Meaning there are no individual manufacturers with different strategies and competition.
b Small= Segment A and B, Lower Medium=Segment C, Upper Medium=Segment D, Executive= Segment E [178].
c “Hybrid” refers henceforth to the sum of plug-in hybrid electric vehicles and conventional hybrid ones. In the scenarios analyzed, most (80–90%) of these are

PHEV.
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to consider a certain powertrain. The former includes financial attrac-
tiveness (based on powertrain-specific total cost of ownership), con-
venience to effective refueling and recharging infrastructure, perfor-
mance, reliability, environment (i.e. emissions levels) and safety (see
Tables 2 and 3 of the model manual [131]). The latter is a modified
version of the formulation proposed by Ref. [132], affected by mar-
keting and social exposure. PTTMAM captures the most pertinent EU
regulations and initiatives (for a sub-set, see Table SI 2 in Appendix 2).
Because of this, the model can be used to conduct policy analysis and
explore the impact of certain policy measures on the market uptake of
vehicle powertrains.

The model is grounded on the system dynamics modeling approach
invented by Jay W. Forrester [133]. This method stresses the im-
portance of relating feedback structure with dynamic behavior and
conceptualizes systems as stock-and-flow structures [134]. System dy-
namics models are based on ordinary differential equations, often
solved via Euler numerical integration. The mathematical formulation
of PTTMAM leads to over 1500 parameters, out of which 250 are
exogenous, and 700000 elements in the model. Heavy-duty vehicles
and alternative modes of transport such as rail and buses are not in-
cluded in the model. PTTMAM has been applied in Refs.
[37–39,131,135]. The model was built in Vensim® and is openly ac-
cessible through EU Public License [136,137].

3.3. Advantages of soft-linking

A key input for PTTMAM is the prices for energy carriers. In JRC-
EU-TIMES prices are the result of the interaction between supply and
demand. The supply curve can be changed by introducing new tech-
nologies with different raw materials and cost structure, while the de-
mand curve varies when a different energy carrier or end-use tech-
nology (e.g. heat pump or gas boiler) is used to satisfy the service. These
endogenous prices are also defined by the exogenous import prices
assumed for fossil fuels, which are aligned with the EU Reference
Scenario [138] and where history has shown that prediction for out-
looks is usually poor [139,140] since it can be influenced by sudden
fluctuations.

An advantage of using JRC-EU-TIMES as part of the modeling fra-
mework is the insight into the competition between sectors for the same
commodities. Depending on the scenario, biomass can be more useful in
other sectors (even within transport) or hydrogen demand can be
mainly defined by a specific application. Similarly, policies affecting the
entire system, such as overall CO2 target, can have different effects
depending on the rest of scenario conditions that would be missed if
only a target for the transport sector is used. Lastly, alternative supply
chains for fuels are also captured and will have an impact on the price
of the fuel used by the powertrains (e.g. difference for supplying diesel
with Power-to-Liquid or import).

With respect to hydrogen, JRC-EU-TIMES can assess the impact of:
(1) different production technologies (e.g. electrolysis vs. biomass ga-
sification); (2) different delivery pathways (there are 20 possible op-
tions, see Ref. [36] for associated cost); (3) hydrogen price as a function
of electricity price (which in turn is defined by VRE potential and de-
gree of electrification); (4) learning curve for the electrolyzer (which is
actually an exogenous parameter, but can be modeled as a sensitivity).
These account for elements outside PTTMAM that will be reflected in
the hydrogen price. Some of the other elements that are captured better
in one of the models and where each one will benefit from soft-linking
are captured in Table SI 3 in Appendix 2.

JRC-EU-TIMES deploys powertrains based on CAPEX, OPEX, effi-
ciency and price for the input commodity. In reality, there are more
factors determining the choice for powertrains, for example: disposable
income per household, average distance per trip, marketing strategies,
risk aversion of consumers, popularity and availability of refueling in-
frastructure, among others. In contrast, powertrain choice in PTTMAM
is more elaborate as other factors beyond financial attractiveness are

also considered (see Section 3.2). Furthermore, the role of taxation is
explicitly accounted for in this model. In this way, PTTMAM can not
only increase the resolution of the dynamics that are usually overlooked
in cost optimization, but also complement JRC-EU-TIMES by illus-
trating that consumer choices are not necessarily based on a purely
economic behavioral framework.

Furthermore, economic attributes such as the purchase price and
the operating cost of powertrains are shaped by car manufacturers. This
aspect of the system, which is absent in the JRC-EU-TIMES model, is
covered by PTTMAM. Specifically, supply-side decisions related to
pricing and marketing strategies, investment in research and develop-
ment (R&D) and in vehicle manufacturing capacity are modeled. In
PTTMAM, the manufacturers’ market agent group reacts to planned EU
regulation (e.g. CO2 target), thereby anticipating the prospect of
emission penalties and making business decisions that favor certain
powertrains over the rest. As a result, the CAPEX and OPEX evolution
for each powertrain vary. Since this remains an exogenous input for
JRC-EU-TIMES, incorporating the values of these economic variables
from PTTMAM turns out to be desirable.

3.4. Overview of soft-linking process

The purpose of the interaction is to complement the strengths of
each model mentioned earlier and by doing so, improve the quality of
the resulting policy recommendations. To accomplish this, first, each
model needs to be characterized to understand better what the com-
plementary areas and the remaining gaps are. This is presented in
Table 3, while the overall framework is shown in Fig. 1.

Two dimensions where the models need to be harmonized are the
categories for users and the number of energy carriers. The choice has
been made based on simplicity and completeness to leave 3 categories
for the former and 8 energy carriers. There is also common input to
both that needs to be harmonized to ensure consistency in the output.
These are: data for base year (car stock, occupancy, distance traveled),
population growth assumption which in turn affects demand, the as-
sumption for the year on which a specific powertrain will become
available (2015 for FCEV) and if there is any maximum growth for
specific powertrains, to avoid the situation where a particular one at-
tains a large part of the market that might be too drastic or highly
optimistic (see Section 4.2).

The other aspect is to understand what variables will be used from
one model to the other and how this changes the stand-alone use. This
is shown in Fig. 1 along with the basic components of each model.

Fig. 1 only has the choices in the transport sector for JRC-EU-TIMES,
while the rest of the system has been omitted. However, relevant input
for this module from the rest of the model is the competition of energy
carriers among sectors, CO2 constraint and resulting CO2 price that will
affect the commodity prices, potential for renewable options (solar,
wind, geothermal, biomass) that will affect electricity prices and the
cost associated to infrastructure development for electricity, gas and
hydrogen.

Three approaches to soft-link both models were identified:

1. Exclude the choices for powertrain mix in JRC-EU-TIMES and leave
the choice and evolution in time to PTTMAM. This can be fed back
through fixed shares for each powertrain, country and year that
JRC-EU-TIMES will use to determine new supply and demand curves
and therefore new commodity prices, new costs to reach the tar-
geted CO2 constraint, new competition among sectors. The effect of
these new prices should be assessed with PTTMAM. For the sce-
narios analyzed in this study, two iterations were enough to reach
stable commodity prices.

2. Leave the choices for powertrain mix in JRC-EU-TIMES as part of the
optimization process, but instead change the exogenous input to
make these choices. This includes CAPEX and OPEX of powertrains
by country, size and their (annual) evolution in time, which are an
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output of PTTMAM (and therefore scenario dependent). This im-
proves the estimate for the input, while reducing changes in JRC-
EU-TIMES, but still makes the powertrain choice purely based on
cost. Since this approach would still lead to drastic changes in
shares, the constraints from the original JRC-EU-TIMES are kept (see
Section 4.2).

3. Change the representation of the transport sector in JRC-EU-TIMES
and include additional features such as disaggregated market seg-
mentation to capture different risk adoption profiles, annual driving
profile, additional cost for limited spatial distribution of refueling
stations, additional cost for cars with limited range and larger dis-
aggregation of vehicle categories for richer choices in powertrains.

For this study, the first two approaches are followed. This allows
assessing the difference due to soft-linking methodology, as well as the
gap between pure cost optimization and the output from PTTMAM that
considers in addition the non-financial aspects. For the first approach,
two variations are tested: 1. Specific shares by country and powertrain;
2. Shares at EU level by powertrain (leaving the choice of shares by
country to JRC-EU-TIMES).

The third approach to soft-linking, in essence reproducing in JRC-

EU-TIMES the additional calculations performed in PTTMAM, implies
larger model changes that need to be validated for a wider range of
scenarios. Opting for this modeling approach constitutes one step be-
yond soft-linking and towards model integration. The incorporation of
the features of one model onto the other has already been used in a
TIMES model for California [91]. A crucial difference of that model is
the scale (a state in a country) in comparison to EU28 covered by the
current study.

4. Data and assumptions

4.1. Base year calibration in JRC-EU-TIMES

Part of the exogenous input for JRC-EU-TIMES is the “base year”
data, which refers to the start year where all the capacities, energy
balance and fuel prices are known and used as starting point for in-
vestment choices in the future to satisfy demand for the different ser-
vices. Specifically for transport, this base year data (see Fig. 1) includes:
(1) car stock; (2) mileage per type of car; (3) occupancy rate (different
by region) and (4) energy consumption. These parameters are taken
from TRACCS database [141] that has enough level of segregation (by

Fig. 1. Soft-linking methodology between JRC-EU-TIMES and PTTMAM.
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country) and coverage (EU28). To have the same starting point as
PTTMAM, the car stock has been updated to match the fuel mix and
split by size (small, medium and large) in PTTMAM. The other three
parameters (mileage, occupancy rate and energy consumption) have
been kept from the original JRC-EU-TIMES data since it is more detailed
than what is available in PTTMAM. In particular, mileage (i.e. average
annual vehicle-km traveled by car (VKT) or the distance traveled per
year) is not differentiated by fuel in PTTMAM. In JRC-EU-TIMES, there
are large differences in distance traveled between fuels (diesel and
gasoline) based on TRACCS (see Fig. SI 1 in Appendix 3 for data on
medium size vehicles). Therefore, those are used for existing vehicles.
For new ones the average distance is prorated with car stock and used
for all powertrains, assuming cars with similar size will travel the same
distance regardless of fuel. In PTTMAM, mileage is an endogenous
parameter and this was used to decide if the parameter was soft-linked.
Since the average based on car stock in JRC-EU-TIMES was already
close to the values used in PTTMAM, no additional change was im-
plemented. There is no further stock or demand split by journey dis-
tance.

For calibration in the JRC-EU-TIMES model, the base year is 2010.
The main differences in the car stock for the base year were in the split
by size and total number of vehicles across EU (see Fig. SI 2 in Appendix
3). The total car stock in JRC-EU-TIMES was originally 240.8 million
vehicles [141], while in PTTMAM it was 228.5 million vehicles (6.6%
difference). The variation in shares by country was not that significant
(see Fig. SI 3 in Appendix 3 for comparison). The other major difference
was that JRC-EU-TIMES had almost 10 and 30% more vehicles in the
small and large categories, while having 4% lower medium vehicles.
The potential effect of this is that the CAPEX differences for powertrains
of the same size are different. As an example, BEV might be more at-
tractive than diesel in small cars, but this could be the opposite for large
vehicles. Therefore, it will affect the powertrain shares for each size and
overall for the total stock since the assumption is that these shares will
remain in times (in JRC-EU-TIMES).

4.2. Demand growth for 2050 and exogenous constraints

For subsequent years (until 2050), growth in travel demand by car
(total passenger-km (PKM)) has been also aligned with PTTMAM. In
JRC-EU-TIMES, total demand of distance traveled is an input to the
model. This usually comes from a macro-economic model that takes
into account population growth, gross domestic product, employment,
among others to estimate such demand. The original demand is aligned
with the EU Reference Scenario [138]. In contrast, this parameter is an

output of PTTMAM based on the composition of the car stock. To avoid
large differences in output due to this parameter, the demand growth
from the baseline scenario for PTTMAM has been used to calibrate the
input to JRC-EU-TIMES (see Fig. SI 4 in Appendix 3). For assumptions
on hydrogen use in other sectors refer to Ref. [36].

Since JRC-EU-TIMES is based on cost optimization, it will invest in
the most attractive (lower cost) powertrain for each period. This could
create large swings in car stock [91]. There are additional constraints
introduced to prevent this from taking place:

• A range is introduced for the share of new sales of diesel cars within
the total sales of fossil cars. A 30% point range is calculated around
the average share in 2015, which is calibrated by country based on
average diesel shares monitored by the European Environment
Agency. This prevents diesel or gasoline being suddenly overtaken
by an alternative fossil fuel from one period to the next.

• A minimum of 5% of the 2015 value (in share) for new sales of
gasoline vehicles.

• A maximum of 20% of new sales by 2020, 50% by 2040 and it can
only reach 100% by 2060 for the total of BEV and PHEV, based on
[142].

These constraints are only used in the second approach to soft-
linking (see Section 3.4) since the shares come directly from PTTMAM
in the first approach. This already introduces a preference for the first
approach to soft-linking since it does not require these additional
constraints.

4.3. Energy efficiency by powertrain

The FCEV efficiency assumed will have a large influence over its
market share since it affects fuel consumption and in turn, the operating
cost of the car. In JRC-EU-TIMES this is an exogenous input, which
originally came from Ref. [143]. When benchmarking FCEV efficiency
in JRC-EU-TIMES with previous studies (collected by Refs. [90,93]), it
was found that it lies within the range in literature with similar im-
provement over time (see Fig. 2). Because of this, it was decided to take
the efficiencies from JRC-EU-TIMES as input for PTTMAM. This does
not mean that R&D investments are no longer affecting the model re-
sults, for those investments still have an impact on other car attributes.
However, the variation in time observed in the results was minimal. It is
to be noted that in JRC-EU-TIMES, there is an efficiency variation by
country and size (based on actual data [141]) for diesel and gasoline
vehicles. To avoid promoting FCEV just based on the efficiency

Fig. 2. Energy efficiency for (medium size) FCEV in comparison to previous studies [90,93].
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difference for specific countries, the FCEV is varied to keep the same
ratio by country (see Fig. SI 5 in Appendix 3 for the range by size). On
the other hand, this is an endogenous parameter in PTTMAM influenced
by R&D investments. Nevertheless, the improvement in time is limited
even in cases where its deployment is significant.

For ICEV, JRC-EU-TIMES has a relation between efficiency (opera-
tional CO2 emissions) and cost [144]. Different than BEV or FCEV, the
efficiency improvement in time is not pre-defined, but it is instead an
indirect result of the CO2 target. A lower CO2 target will trigger more
investment in more expensive (and efficient) vehicles increases. Similar
than for FCEV, ICEV efficiencies have limited improvement in time and
the ones from JRC-EU-TIMES are used as input, assuming that the most
efficient vehicles will be deployed by 2050.

4.4. Component cost and price by powertrain

In PTTMAM, the costs of 8 key vehicle components are explicitly
modeled. Of particular interest to this study are 3: the fuel cell system,
the hydrogen storage tank and the BEV battery. The inclusion of the
latter is motivated by the fact that, given strict CO2 emissions standards
for cars that promote the uptake of ZEV, BEV and FCEV enter into direct
competition. Component costs are the result of the level of component
maturity and the effect of the learning curve in PTTMAM. Whereas the
former is influenced by R&D investments (see Appendix 4), the latter
depends on the assumed cost reduction fraction associated with
learning from cumulative production. Given the future uncertainty of
the cost evolution of these components, sensitivity analyses on the as-
sumed learning rate (by default 10% for each component, except for the
ICE which is 1%) were conducted. Based on Monte Carlo simulation
(200 runs using a uniform probability distribution) performed in
PTTMAM on the three components, the BEV battery cost was identified
as the most influential variable. In Fig. 3a, the BEV battery price re-
sulting from learning rates of 5% (low – dashed curve) and 15% (high –
dotted curve) can be seen (see also Fig. SI 8 in Appendix 3).

Fig. 3 also shows the price evolution of these three components in
PTTMAM, compared with information from various sources (for the EV
battery, refer also to Fig. 5.1 in Ref. [149]). The price of components
was derived using a default mark-up of 10% over the costs (also applied
to values from literature whenever it was interpreted they were refer-
ring to cost). With regards to the simulated price evolution of the BEV
battery (Fig. 3a), it is higher than the historical data until 2018 and the
values projected by Ref. [19]. The price in 2030 is, however, within the
values available in the literature. By 2040, a value of 57 €/kWh was
simulated, which falls to 52 €/kWh by 2050. With respect to the FCEV
components (Fig. 3b), both the fuel cell and the hydrogen tank have a
steep price decrease until 2030 with almost a flat trend after 2030.
Compared to literature, the initial price values found by the Hydrogen
Council [21,148], based on low volumes, are lower than the ones from
PTTMAM. Particularly ambitious seems to be the 2020 target value of
33 €/kW (page 69 [148]), given the purchase price of FCEV currently

available in the market and the limited number of models expected to
be launched in the near future. In 2040, PTTMAM simulates a price of
14 €/kW for the fuel cell. It is assumed that the medium BEV has a
battery size of 30 kWh and the medium FCEV features a 90 kW fuel cell
system and a 4.8 kg storage tank. Fig. 3b shows that faster price re-
ductions in the two main FCEV components occur in the Ambitious H2

scenario than in the No CCS scenario (see Section 5).
In PTTMAM, R&D investments by manufacturers are influenced by

the possibility of incurring in CO2 emission penalties. Strict CO2 emis-
sion targets can be expected to divert R&D investment towards ZEV.
Overall, the cost simulations in PTTMAM reflect the anticipation of
manufacturers to the prospect of more stringent CO2 targets, which
eventually lead to faster cost reductions for the three powertrain
components and subsequent fluctuations in cost reduction from one
year to the next (as shown in Fig. 3). This introduces a more realistic
cost curve that is not completely smooth, while also carrying an un-
certainty associated to the relation between CO2 target, long-term profit
expectation by powertrain and fraction of R&D invested.

5. Scenario definition

The scenarios approach used is technical, in the sense that they do
not rely on storylines [150–152]. This means that key input parameters
are changed to analyze their effect rather than relating them into
plausible dynamics to depict alternative futures. This analysis was al-
ready done with JRC-EU-TIMES [36] and the three parameters that
have the most influence on hydrogen deployment (other parameters in
Table SI 3 in Appendix 2) are:

• CO2 target. 95% CO2 reduction by 2050 (vs. 1990) could increase
hydrogen flows by 50–80% compared to an 80% CO2 reduction
target. This CO2 target is for the entire energy system, whereas the
reduction by sector (e.g. passenger transport) is a result of the cost
optimization.

• CO2 underground storage. This option could be limited due to social
acceptance or political interests. In such case, it excludes gas steam
reforming as hydrogen production technology, requiring a larger
electrolysis capacity. At the same time, limiting the technology
portfolio, demands more from the options left (including hydrogen)
in order to achieve the CO2 target.

• Biomass potential. Biomass can be used across all sectors (including
hydrogen production) and can provide neutral CO2 for electrofuels
downstream (if sustainability criteria is established and respected),
so it provides CO2-free energy. Ranges explored for EU28 are
7–25.5 EJ/yr [36].

In PTTMAM, the assumption on further evolution of the CO2

emission regulation for cars is crucial for the market penetration of
FCEV. Without a strict CO2 target for the EU28 average new car sold,
the uptake of this powertrain is minimal (as already analyzed in Ref.

Fig. 3. Price evolution of key powertrain components: (a) BEV battery; (b) FCEV. Source: data/projections shown in the legend and own simulations
[19–21,145–148].
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[135]).
These parameters and policy instruments are combined in 3 main

scenarios with the rationale explained below and with the choice for
parameters shown in Table 4.

• Low Carbon. It has 95% CO2 reduction for JRC-EU-TIMES, possibi-
lity of CO2 underground storage and a biomass potential of 10 EJ/yr.

• No CCS. CO2 underground storage has a large impact in CO2 prices
and technologies chosen. At the same time, it faces social acceptance
issues and it has a large impact on technology choices. The only
difference of this scenario compared to Low Carbon is the absence of
CO2 storage.

• Ambitious H2. Under this scenario, which is derived from the No
CCS scenario, a pro-FCEV policy package comprising the 5 policy
instruments (see Table 5) is simulated.

The Low Carbon scenario has already been explored in detail with
JRC-EU-TIMES [36], but it represents a new space explored for
PTTMAM, where the Baseline scenario from Ref. [131] had much higher
CO2 emissions (84 gCO2/km for 2050 vs. 5.2 gCO2/km in the Low
Carbon). The comparison of this previous scenario from PTTMAM with
the Low Carbon scenario in this study is discussed in Fig. SI 9 and 10 of
Appendix 5.

5.1. Policy instruments explored for FCEV

In addition to the system-wide parameters considered above, there
are also technology-specific policy instruments that are relevant for
hydrogen, especially to kick-off deployment and the learning process
needed for cost reduction. The range of policies that can be used for
low-carbon transport is covered in Table SI 2 in Appendix 1, including
its coverage by JRC-EU-TIMES and PTTMAM. The ones selected for this
study (used for the Ambitious H2 scenario) are:

• FCEV purchase subsidy (or tax exemption) by authorities. The same
way it has been applied for BEV [153], reducing the cost penalty for
the consumer could increase attractiveness, uptake and minimum
deployment level to reduce cost (besides wider set of choices for the
consumer and an optimized manufacturing process).

• Vehicle discount by manufacturers. In theory, this could happen if
car manufacturers forecast that they will have to pay emission pe-
nalties unless they sell more ZEV. It can also be considered to be a
marketing tool.

• Fuel subsidy (or tax exemption). Currently CAPEX for electrolyzers
is still relatively high (1200–1500 €/kW for PEM) and it could lead
to high hydrogen prices without taxes (depending on operating

hours and average electricity price paid) of 6–8 €/kg [154]. This
subsidy is also equivalent to financing of the rest of hydrogen in-
frastructure (e.g. pipelines, delivery trucks, compression).

• H2 refueling station investment. Governments could financially
support in an initial development to reduce risk for investors and
provide certainty for investment. Infrastructure availability affects
the convenience attribute and consequently the car choices made by
the users.

• R&D subsidy (see Appendix 4). This would tackle the “learning-by-
research” component rather than “learning-by-doing”, with the
same common target of reducing the CAPEX. The two most ex-
pensive components of FCEV are the fuel cell and the hydrogen tank.
R&D subsidy is tested for the fuel cell only and for both components.
This considers the relation between R&D subsidy and potential cost
decrease, but it is not technology explicit (e.g. consider a different
technology for storing hydrogen). This subsidy is triggered by the
Authorities agent of PTTMAM.

This list of instruments does not cover all the possibilities for policy-
making. Other financial incentives with the potential to influence
powertrain choice are vehicle tax (exemptions) such as registration,
circulation and value-added taxes [155]. Even though technology spe-
cific policies can result in a higher cost for society [156], there are cases
(e.g. R&D) where it is attractive [157]. Technology-specific policies are
also favored to bridge the gap between invention and large scale dif-
fusion and that have potential to reduce cost by economies of scale
[157] making possible a lower life cycle cost in the long term [158].

5.2. Sensitivities on policy instruments for FCEV

Table 5 shows the assumed timing and numerical values for the 5
aforementioned policy measures. The individual effect is explored in
the results and when simulated together, they represent the pro-FCEV
policy package under the Ambitious H2 scenario. A numerical value of
100% for hydrogen infrastructure investment means that the cost of
building a H2 station for infrastructure providers becomes fully sub-
sidized by the authorities over the period 2030–2034. The proportion of
FCEV subsidy, equal to 25%, translates into government subsidies that
range from approximately 8-11 k€ in 2020 to 0.3–1.5 k€ for small FCEV
in 2024 (for medium and large FCEV, the price differential reaches zero
by then). For comparison, rebates amounting to 4–6 k€ are offered for
FCEV in California [159]. Concerning fuel subsidies, the assumed value
leads to H2 pump prices that are on average 60% lower than without
subsidies. The R&D subsidy refers to expenditure in improving the fuel
cell system. For reasons of simplicity, changes in subsidies have been
implemented in the model runs as step changes and not gradual

Table 4
Parameter combination for main scenarios.

JRC-EU-TIMES PTTMAM Soft-linking

Scenario CO2 target CO2 storage Refueling station Purchase subsidy Vehicle discount Fuel subsidy R&D subsidy
Low Carbon −95% Y N N N N N Approach 1 and 2
No CCS −95% N N N N N N Approach 1
Ambitious H2 −95% N Y Y Y Y Y From JRC-EU-TIMES to PTTMAM

Table 5
Pro-FCEV policy measures under the Ambitious H2 scenario.

Policy instrument PTTMAM parameter Period for subsidy Subsidy

Purchase subsidy as vehicle discount Manufacturer vehicle subsidy 2030–2034 5 k€/car
Purchase subsidy Authorities vehicle subsidy proportiona 2020–2024 25%
H2 refueling station investment Authorities desired infrastructure support 2030–2034 100%
Fuel subsidy Authorities fuel subsidy 2030–2034 100%
R&D subsidy Authorities subsidy for R&D expenditure 2020–2024 5 bln€

a Of price differential between the FCEV and the gasoline car.
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changes. This means for example, the subsidy for refueling stations in
2029 and 2035 is zero, as compared to 100% during the 2030–2034
period. These policies are implemented for all Member States.

Concerning H2 refueling infrastructure, due to these subsidies in the
Ambitious H2 scenario and subsequent economies of scale, the simulated
cost of a H2 station decreases from 1.6M€ in 2030 to 0.5 M€ after the
policy period. Fig. 4 shows how H2 station deployment and cost varies
by scenario (endogenous in PTTMAM). Whereas the European Alter-
native Fuels Observatory (EAFO) data point [28] is based on 82 H2

stations, the National Policy Framework (NPF) point is the result of
summing up the 2025 values communicated by the Member States in
the context of the Directive 2014/94/EU [160]. In all the scenarios, the
total number of refueling stations in the EU28 is 118000, as simulated
in PTTMAM. As can be seen, H2 refueling availability is wider in the
Ambitious H2 scenario than in the Low Carbon and No CCS scenarios,
facilitated by the drastic decrease in the cost that infrastructure pro-
viders face due to the subsidy. The impact of infrastructure investment
over the 2030–2034 period leads to achieving the minimum cost of
0.5 M€ earlier than the other scenarios and a maximum coverage of H2

refueling stations of 70%. However, the simulation shows that this
market is not yet self-sustained and there is a slight decrease in H2

refueling availability once financial support is removed in 2034 and
infrastructure providers need to pay the investment.

6. Results and discussion

Results are divided in three sections: (1) transport in context of the
energy system (Section 6.1) (2) soft-linking process, how it affects the

stand-alone output of each model and the impact it has on the rest of
the energy system (i.e. total cost and hydrogen prices) (Sections 6.2 and
6.3); (3) FCEV deployment to identify drivers, most effective policies
and the level of investment or subsidies needed (Section 6.4). To fa-
cilitate understanding, each section starts with the two most important
ideas followed by the more in-depth explanation and each paragraph
starts with a header with the main topic discussed.

6.1. Overview of the transport sector and relation with the rest of the energy
system

BEV and FCEV can increase electricity demand by around 600 TWh
at a similar cost than a high CO2 scenario and a benefit of 60% re-
duction in energy consumed. PtL can be attractive for cars in a world
with high biomass potential and no CCS.

The CO2 footprint of ZEV is largely defined by the upstream pro-
duction of the fuel (different from current ICEV where most of the
emissions are upon end-use combustion). The electricity mix for the
Low Carbon scenario is shown in Fig. 5a. At the same time, it is expected
that the higher ZEV efficiency leads to lower energy consumption and
the share from passenger transport is put in context of the total trans-
port energy demand (Fig. 5b).

Electricity production. Electricity production grows from almost
3200 TWh in 2015–6300 TWh by 2050. The largest contributors to this
growth (see Fig. SI 20 in Appendix 6) are the electrification of heating
in the residential and commercial sectors (+750–850 TWh), hydrogen
production (+700–800 TWh) and industry (600–650 TWh). This sce-
nario still has CCS as a possibility, resulting in gas reforming as main

Fig. 4. Share of H2 refueling stations in the EU28 [28,160], by scenario, and cost of deployment (right).

Fig. 5. (a) Electricity mix (b) Energy demand for transport in the Low Carbon scenario.
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production route (see Section 6.1). In case CCS is not possible, com-
bined with the efficiency loss for electricity to hydrogen conversion, the
total electricity demand increases to almost 10000 TWh (3× current
system) and almost 1000 GW of electrolyzers are needed. To be able to
achieve a low electricity footprint and reach the desired benefit in
downstream sectors, fossil fuels are phased out. Coal is phased out by
2025–2030 and most of gas by 2040. These are partially replaced by gas
in combination with CCS to be able to provide flexibility to the power
system, while still restricting the CO2 emissions. Nuclear and hydro
remain mostly at the current level, considering that further expansion
of the nuclear capacity in some countries is combined with nuclear
phase-outs in other countries. These conventional sources have a si-
milar production level (2800 TWh) than in 2015. Most of the growth is
supplied by VRE that reach almost 3300 TWh by 2050. This in turn
translates into almost 1000 GW of solar and 850 GW of wind needed by
2050.

Transport energy demand. Due to electrification of the passenger
transport, its energy demand decreases from almost 10 EJ/yr in 2015 to
3.8 EJ/yr by 2050. Heavy-duty trucks instead increase their demand
40% by 2050 (vs. 2015). They shift mostly to hydrogen and the higher
efficiency (compared to ICE) compensates the higher ton-km demand
keeping the overall energy demand increase to only 27%. With these
changes, the share of energy demand from passenger transport halves
from 56% in 2015 to 28% in 2050. This also translates into a smaller
increase in the electricity demand of 550 TWh.

System cost breakdown. The total (sum of CAPEX, OPEX and fuel
for all powertrains) cost contribution of the passenger transport sector
is 800 bln€/yr for the Low Carbon scenario. The split is close to 65/35 in
CAPEX/OPEX. To put this in perspective, the cost of the overall road
transport sector (including heavy-duty trucks and buses) is almost 1700
bln€/yr by 2050 [36], while the total energy system costs (including
other sectors) is 3500–4000 bln€/yr. Already by 2030, the cost differ-
ential between ZEV and ICEV has closed considering the learning effect
for the former and the higher CAPEX due to efficiency improvements
for ICEV.

Higher biomass potential. Using a higher biomass potential
(25.5 EJ/yr [161]) in the Low Carbon scenario increases the number of
gasoline and diesel vehicles in 2050 compared to the scenario with the
reference biomass potential, increasing their share from 7% of the fleet
to almost 34%. This growth does take some share away from FCEV,
which decrease to 4.3% of the car fleet. This increase in ICE is not the
direct product of more biofuels due to the higher biomass potential.
Instead, more biomass is coupled with CCS, which allows negative
emissions and enables positive emissions from the use of fossil fuels in
transport. Fossil fuels go from 0.4 EJ/yr with a reference biomass po-
tential to 3.5 EJ/yr with a high biomass potential (see Fig. SI 14 in
Appendix 5). This is still lower than the 12 EJ/yr of the base year.
Biofuels for cars increase from 0.75 EJ/yr to 2.2 EJ/yr. Without CCS,
there is no possibility of offsetting the positive emissions from transport
and even in this scenario, ICE reach around a third of the car stock.

However, the largest change in the fuel mix is from a higher supply
from PtL that uses the biogenic CO2 and nearly triples its production to
reach almost 60% of the diesel supply, while biofuels (mainly through
BtL) supply the balance of demand. Therefore, even with a high po-
tential biomass plays a limited role directly in passenger transport. With
a reference potential of 10 EJ/yr, biomass is better used in sectors like
aviation, maritime transport and heavy-duty [36].

For more details on the outlook of the wider energy system and
changes due to low carbon scenarios as well as sensitivities, refer to Ref.
[36].

6.2. Soft linking – approach 1 – powertrain shares

Considering the behavioral aspects in passenger car transport
changes the solution from the cost optimal resulting in 14% higher total
cost for this sector. During early stages of deployment, using hydrogen
from gas reforming for FCEV can be attractive.

FCEV shares. For both soft-linking approaches, a stricter CO2 target
was introduced in PTTMAM that was taken from JRC-EU-TIMES results
(5.2 gCO2/km). The fleet is dominated by hybrid vehicles (30%) fol-
lowed by BEV (24.5%), ICE (24%) and FCEV (16.5%) (see Fig. 6b). This
allows achieving 16.7 gCO2/km for the new vehicles. This is better than
the 84 gCO2/km PTTMAM had as starting point, but still not low en-
ough to achieve the target set by JRC-EU-TIMES (which has a higher
BEV share as shown in Fig. 6a). To put this in perspective, in a scenario
with PRIMES looking at 80% CO2 reduction (for the entire system) with
faster learning curve for fuel cells and a CO2 standard of 16–23 gCO2/
km, FCEV achieve 16% of the car stock by 2050, BEV have the largest
(51%) share and hybrids are 17% [162]. When targeting a net-zero
emissions pathway, which translates into 90% GHG reduction for
transport and 0 gCO2/km for new vehicles from 2040 onwards, FCEV
remain at a similar level (16%), while BEV increase their share to 80%.
Nevertheless, no combination of a net-zero emissions pathway and a
high learning rate for fuel cells was considered in Ref. [162]. Another
study with PRIMES [163] looking at a scenario where the dec-
arbonization strategy fails to develop during the 2020–2030 decade.
This translates into higher emissions during this decade that are com-
pensated later on with a CO2 target of 5 gCO2/km in 2050 to stay within
the 155.5 GtCO2 of cumulative emissions until 2050. With this stricter
target, the fleet has 7% FCEV and 78% BEV in 2050 (where the latter
grows from 27% of the car stock in 2040). The Hydrogen Council has
400 million FCEV on a global basis as part of their 2050 vision [148],
which would imply a larger FCEV stock in EU than the 48 million FCEV
obtained in the present study.

In the first approach, the choices for powertrain mix are excluded
from JRC-EU-TIMES. The car stock shares were fed back from PTTMAM
to JRC-EU-TIMES in two modes: (1) Country specific for four milestone
years (every 10 years from 2020 to 2050); (2) Overall EU shares
(leaving the degree of freedom in JRC-EU-TIMES to allocate shares to
specific countries). Fig. 7a shows the country specific shares obtained

Fig. 6. EU28 powertrain mix from (a) JRC-EU-TIMES before soft-linking; (b) PTTMAM (equivalent to the “after soft-linking” since the shares are an input to JRC-EU-
TIMES in this approach) for the Low Carbon scenario.
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from PTTMAM. In one scenario these shares are exactly achieved by
JRC-EU-TIMES since it is used as constraint. However, this leads to a
more constrained system.

Country vs. EU shares – Hydrogen prices. When only using the
overall EU share as constraint, it can be seen (Fig. 7b) that it is better to
exploit the countries with low electricity and hydrogen prices to in-
crease the BEV and FCEV shares in those countries, while leaving ga-
soline and diesel vehicles for the countries with higher prices (noting
that gasoline and diesel prices are almost the same across countries
since taxes are not included). This is also the case for the No CCS sce-
nario (see Fig. SI 15 in Appendix 5). This enables lower hydrogen
prices, since countries with expensive hydrogen do not need to use it
anymore and on average hydrogen is 0.4 €/kg cheaper when taking the
EU shares, but the benefit can be as high as 2.2 €/kg for Sweden (see
Fig. SI 11 in Appendix 5). Differences for the two scenarios can be
explained based on: 1. The technology mix for hydrogen production; 2.
Distribution route for hydrogen and 3. Magnitude of hydrogen demand

for FCEV compared to the total demand. For example, for Sweden,
hydrogen is mainly produced by biomass gasification when the hy-
drogen demand is the lowest (i.e. EU shares – Fig. 7b). However, when
the hydrogen demand is forced to be higher (by specifying the FCEV
share), the marginal contribution is by gas reforming with CCS and a
more expensive distribution route (smaller refueling stations that have
a more pronounced effect than production technology) leading (mainly
the latter) to a higher hydrogen price.

Country vs. EU shares – CO2. Similar to the large fluctuations in
powertrain mix by country when the shares at EU level are used, there
are large differences in CO2 emissions for the car fleet depending on the
approach used (see Fig. SI 12 in Appendix 5). For example, Denmark
has an average CO2 emission for the fleet of 43.4 gCO2/km when the
country specific shares are used, but only 9.1 gCO2/km when the
overall EU shares are used (in 2040). Exploiting the wind potential in
Denmark leads to lower electricity prices and to increase the BEV share
beyond the output from PTTMAM leading to lower average emissions

Fig. 7. Country specific powertrain shares for the Low Carbon scenario in 2050 (a) Shares from PTTMAM (b) Optimized shares when using shares at EU level.
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from the fleet. Similar cases occur in Finland, Austria and Ireland.
Country vs. EU shares – Total cost. In spite of these large changes

in composition, when looking at the total cost for passenger transport
including CAPEX, OPEX and fuel cost, the differences are smaller (see
Table SI 5 in Appendix 5 for the cost breakdown). The cost is only 0.5%
lower for the entire period when shares at EU level are considered
(compared to country shares) with a larger difference (1.2% lower
annual cost for EU shares vs. country shares) for 2050. When the
boundaries are expanded to cover the entire energy system, cost dif-
ferences for the additional flexibility translate into a marginal CO2 price
increase of 20 €/ton. This is an indication that there are alternative
pathways with very similar cost (i.e. near optimal), but with large
differences in technology mix. This is a well-known characteristic of
energy cost optimization models [168], where other factors such as
energy security, exposure to high commodity prices [169], risk [170],
societal aspects [171], sustainability [172], among others should be
considered to select the best set of policies and pathway to achieve the
low-carbon future.

Soft-linking effect – Cost. When comparing the costs for the Low
Carbon scenario before and after fixing the shares from PTTMAM (see
Fig. SI 13 in Appendix 5), there is a 14% increase in the total (CAPEX,
OPEX and fuel) costs for passenger vehicles. This means adding the
extra attributes that PTTMAM covers (e.g. performance, reliability and
convenience), deviates the solution from the cost optimal. Therefore,
feeding back the shares from PTTMAM does cause a large difference in
both cost and powertrain mix. The limited impact is on how these
shares are fed back (country specific vs. EU level).

Hydrogen production pathways. The hydrogen price was found to
actually increase in time instead of decreasing along with the cost curve
for electrolyzers (see Fig. SI 16 in Appendix 5). For the first few years
when FCEV are starting to enter the market, it results better to use
relatively cheap hydrogen from steam reforming (starting at 1.5 €/kg).
This allows compensating a high CAPEX for the vehicles with a low
OPEX (decreasing the need for subsidy) and it still results in lower well-
to-wheel CO2 emissions than ICEV [164–166]. At the same time, hy-
drogen flows in these early years (before 2030) are relatively small
(1%) of the full demand in 2050, decreasing the possibility of a lock-in
effect. By 2030, the CO2 target becomes more stringent leading to
higher CO2 prices, while hydrogen is also being used for other sectors
increasing the demand. Both of these effects lead to higher hydrogen
prices (2.5–5 €/kg). The higher CO2 price also leads to reforming be-
coming less attractive due to the higher penalty associated to the re-
maining emissions after capture. In parallel, CAPEX for electrolysis is
lower and there is more wind and solar capacity leading to lower cost
electricity and need for flexibility. Therefore, after 2030, when hy-
drogen flows start to increase substantially, most of the growth
(> 98%) is in electrolysis (complemented by biomass gasification). The
factor with the largest influence on hydrogen production (and elec-
trolysis) is the use of CO2 storage (see Fig. 8 and [36]). With CCS
available (Low Carbon scenario), gas is used as dominant technology
and electrolysis is deployed 10 years later to a smaller extent. The effect

on hydrogen prices is that without CCS, there are fewer options to
achieve the CO2 target, leading to higher CO2 prices and therefore
higher hydrogen prices (by ~1 €/kg). To put these numbers in per-
spective [47], estimated a hydrogen cost of 4.35 €/kg (including wind
turbines, electrolyzer, storage and transmission) for a hydrogen-to-
mobility scenario in Germany [80], estimated a production cost at the
refueling station of 3–6.4 €/kg considering the cost uncertainty for each
step in the production chain and [167] estimated between 6.5 and 8
€/kg including electricity, hydrogen production, storage and refueling
considering an electrolyzer cost of 720 €/kW and a corresponding ef-
ficiency of 70%.

6.3. Soft linking – approach 2 – CAPEX and OPEX

Only using the costs from the simulation model has the dis-
advantage of not capturing fully the behavioral aspects rendering this
approach less attractive than using the powertrain shares directly. Also,
when non-disruptive scenarios are not desirable, still additional con-
straints are needed in the cost optimization model.

This approach evaluates the difference in powertrain mix when
using JRC-EU-TIMES, but with the CAPEX and OPEX updated from
PTTMAM. The comparison between the original CAPEX for ZEV (con-
tinuous lines) and the ones from the Low Carbon scenario in PTTMAM
(dashed lines) are shown in Fig. 9. The reason to focus on ZEV is that
these are key options to achieve so low CO2 targets (< 10 gCO2/km for
the average fleet) in 2050. Originally in JRC-EU-TIMES there was no
differentiation of CAPEX by size because the shares by size were fixed
throughout the entire period and there was no possibility of changing
demand from one size to the other. This leads to only two lines pre-
sented in Fig. 9 for the original JRC-EU-TIMES. In contrast, the CAPEX
used from PTTMAM does have the differentiation by size and con-
sidering the evolving fraction for each size.

FCEV Capex differences. The CAPEX for all the FCEV sizes is below
the one from JRC-EU-TIMES beyond 2026 with a difference of almost 4
k€ for the small vehicles in 2050. At the same time, the CAPEX for BEV
from PTTMAM is higher than the original one in JRC-EU-TIMES. Given
that the Low Carbon scenario already had almost a 16% FCEV share in
the car stock by 2050, it is expected that these more optimistic CAPEX
for FCEV will only increase this share, unless the higher share, which
results in higher hydrogen demand increases the price enough to make
FCEV too expensive (in terms of total cost of ownership) in spite of the
lower CAPEX. However, this is not the case and FCEV dominate due to
the lower CAPEX (see Fig. 10).

Powertrain shares. When taking the updated cost from PTTMAM
and leaving the choice to JRC-EU-TIMES with no constraints, it chooses
FCEV from 2040 onwards when the CO2 target is strict enough to re-
quire low emissions from this sector and given that it is more attractive
than BEV, it becomes the dominant powertrain (Fig. 10a). Since this
drastic change based on pure cost optimization is optimistic, that is why
the additional constraints on diesel, gasoline, CNG, LPG and BEV were
added in the first place (see Section 4.2). Only when the original

Fig. 8. Hydrogen production mix for passenger transport in (a) Low Carbon and (b) No CCS scenarios.
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additional constraints are added, the transition has less abrupt changes
(Fig. 10b). However, in the competition among ZEV, FCEV still dom-
inate. The lower FCEV CAPEX outweighs the higher pathway efficiency
for BEV. Even though these constraints can be seen as artificial (and will
differ by specific TIMES model), they do avoid highly disruptive or
highly ambitious changes (FCEV go from 0% of the car stock in 2030 to
93.3% 10 years later) in the car stock. The use of this approach does
result in 12% lower transport cost (see Fig. SI 13 in Appendix 5) since
FCEV is the dominant powertrain and the soft-linked CAPEX is lower
than originally in JRC-EU-TIMES (Fig. 9). As soon as the additional
constraints are added, the total cost increases by 20% reaching the same
level as Approach 1 (with country shares).

When comparing this Approach 2 (i.e. updating CAPEX and OPEX
plus additional constraints) to Approach 1 (directly use the shares),
Approach 1 has the clear advantages of: (1) avoiding additional con-
straints that might be arguable or ad-hoc; (2) considering other aspects
besides cost and it is the preferred method to soft-link it both models.

6.4. Policies effect on FCEV deployment

Combining R&D investment in 2020 with infrastructure, purchase
and fuel subsidy in 2030 is the most effective policy mix to promote
FCEV deployment.

This section shows the market share for FCEV for different scenarios
(see Section 5.2). Support policies are implemented individually to
evaluate their effectiveness in 3 different periods. The effectiveness is
measured through cumulative number of sales over the entire period
(2015–2050) since (1) the timing for each one is different and (2) they
can have an effect after the policy has been removed. All the policies
have been evaluated in the No CCS scenario (assuming the reference
learning rate of 10% for FCEV) and the policies with the largest impact

are combined in the Ambitious H2 scenario. This scenario includes soft-
linking from JRC-EU-TIMES to PTTMAM, but feeds back neither the
shares nor the CAPEX and OPEX to JRC-EU-TIMES and it is only meant
to assess the effectiveness of the various policies in FCEV diffusion. The
individual and combined effects are shown in Table 6 and Fig. 11.

Policy effectiveness. The effect of each instrument on cumulative
(2015–2050) FCEV sales is shown in Table 6. The No CCS scenario
(without any FCEV policy) has cumulative sales of 67 million vehicles.
The main insights are:

• The measure with the largest net impact is the 5 k€ vehicle discount
over 2030–2034, which reaches 24.3 additional million FCEV for a
total incentive of 84 bln€. The largest impact occurs when it is in-
troduced in the latter period, where the 5k€ represents 22–28% of
the FCEV CAPEX (depending on the size).

• The policy with the highest specific impact is R&D, where the FCEV
sales increase is 2.1 million for every bln€, while it is only 0.28
million FCEV for every bln€ spent as purchase subsidy (from man-
ufacturers).

• Infrastructure and fuel subsidy have the lowest specific impact at
0.12 additional million FCEV for every bln€ spent (113 bln€, most of
which goes to infrastructure development).

• R&D investment is more effective when used for the fuel cell system
rather than equally split between the fuel cell and the tank. The
effect of the same 5 bln€ results in 10.5 additional million FCEV
when invested in fuel cell, while only 5.6 additional million FCEV
when equally split in both components.

• Contrary to expectations, delaying the infrastructure support to
2030 has a beneficial effect on sales resulting in 14 additional mil-
lion FCEV when introduced in 2030 compared to only 0.3 additional
million FCEV when introduced in 2020. This is because in early

Fig. 9. CAPEX comparison for BEV and FCEV between original values in JRC-EU-TIMES and output from PTTMAM for the Low Carbon scenario.

Fig. 10. EU28 powertrain mix for the Low Carbon scenario from JRC-EU-TIMES (a) Only updating CAPEX and OPEX from PTTMAM (b) Updating CAPEX and OPEX
plus adding original constraints.
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periods there is limited infrastructure deployment that takes ad-
vantage of the subsidy, while later deployment results in a higher
total subsidy.

Policy mix. R&D expenditure is more effective in 2020, while in-
frastructure, fuel and purchase subsidies are more effective in 2030.
These are combined in the Ambitious H2 scenario, which reaches an
additional 56.5 million FCEV of cumulative sales for a total incentive of
252 bln€. There is a synergistic effect between policies and the increase
in total number of sales from the Ambitious H2 scenario is larger than
the sum of sales for each individual policy. This comes however, at a
higher cost of 252 bln€, which actually means a lower effectiveness of
incentive at 0.22 additional million FCEV for every bln€ spent. If the
policy target is to promote FCEV deployment, the combination from the
Ambitious H2 is the most attractive since it comes at a similar marginal
benefit for the incentive. Part of the benefit not reflected in Fig. 11 is
that this extra cost is partially offset by the lower CO2 emission pe-
nalties that manufacturers would face in the Ambitious H2 (vs. No CCS
scenario). When looking at FCEV sales (Fig. 11), the Ambitious H2 sce-
nario reaches more than 25% already in 2030, staying at a similar level
in 2040 and increasing slightly until 2050.

Comparison with previous studies. To put some of these numbers
in perspective [159], claims that the cost to construct 60 HRS in 2017
was 167M€ and the Hydrogen Council [148] indicates that around 17
bln€ are needed to build an HRS network of 15000 stations. In 2008, it
was estimated by the HyWays project that an HRS network between
13000 and 20000 HRS would cost around 15 bln€ [173]. McKinsey
estimated a cost of 54 bln€ for the hydrogen distribution and retail

infrastructure for a 25% (68 million) FCEV penetration in EU by 2050,
while this cost would rise by another 75 bln€ for 50% FCEV penetration
[174]. In Germany, the total (production, distribution and refueling)
infrastructure cost for an FCEV fleet of 20 million was estimated at 20
bln€ [175]. The same study [175] has an overview of the infrastructure
for previous studies including 100 bln€ (total infrastructure cost) for a
fleet of 42–45 million. In terms of R&D, the European automotive in-
dustry invests around 54 bln€ in R&D each year [176].

Ambitious H2 scenario. In Fig. 12a, the evolution of the FCEV sales
and stock in the EU28 between 2015 and 2050 on an annual basis under
the No CCS and Ambitious H2 scenarios is shown, where the periods
when policies are in place are shaded. As expected, R&D has limited
immediate impact on sales when it is applied (2020–2024) and only
seen later by providing a higher starting point (4.6 vs. 1.6 million FCEV
as part of the car stock) when the rest of the policies come in place in
2030. The combined effect of fuel, infrastructure and purchase sub-
sidies results in the increase of sales to 9 million FCEV a year by the end
of the period (2034) compared to only 1.8 million FCEV in the No CCS
scenario. Even though sales drop to 4 million a year as soon as the
incentives are removed, these FCEV sales stay 1.5–2 million higher than
the No CCS scenario, which translates into an offset of 25–30 more
million FCEV in the car stock post-2030 and changing the 2050 share
from 16.4% in the No CCS to 26.4% in the Ambitious H2 (Fig. 12b). In
combination with very stringent CO2 targets, the proposed FCEV policy
package leads to a situation where FCEV becomes the most widespread
powertrain technology in the European car market in 2050 (see Fig. SI
18 in Appendix 5 for the car stock composition by MS for this Ambitious
H2 scenario).

Fig. 11. EU28 FCEV market share by policy scenario (left axis) and cumulative cost (right).

Fig. 12. PTTMAM simulations: (a) EU28 FCEV sales and stock for the No CCS and Ambitious H2 scenarios; (b) EU28 powertrain mix for the Ambitious H2 scenario.
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7. Conclusions

With the challenges of lower CO2 emissions and a more integrated
energy system with increased sector coupling, there is a need for using
more overarching models that capture the various interdependencies of
the energy system. Transport models need to consider the interaction
with the rest of the energy system through commodity prices, resource
constraints and energy supply while energy models need to consider the
intricacies of the choices in the transport sector. The literature review in
this study showed that there are multiple efforts to bring these two
types of models together, where lessons can also be drawn from similar
engineering models such as Integrated Assessment Models. This study
looked at one potential alternative to bridge these two worlds by soft-
linking a system dynamics model with an energy system model applied
specifically for FCEV in a 2050 future with 80–95% CO2 reduction for
the entire energy system. Two approaches for this soft-linking were
explored, one feeding back the powertrain shares from the simulation
to the optimization model and one where the cost for the various
powertrains was the parameter exchanged. It was found that the most
useful approach is when the shares are fed back. This enables exploiting
the behavioral aspect of the end users that is part of the simulation
model, it avoids large swings in shares characteristic of the optimiza-
tion model and it still captures the interaction with the rest of the en-
ergy system.

In turn, two approaches to feed back the shares were explored, one
with the shares at EU level (leaving the choice of country shares to the
optimization framework) and one with fixed country shares (i.e. less
flexibility). The benefit of doing it at EU level were limited. The cu-
mulative costs (2015–2050) were 0.5% lower and on average 0.4 €/kg
cheaper hydrogen (compared to an average H2 price of 5 €/kg) when
shares at EU level were used. However, large swings of up 70–80% in
powertrain shares for individual countries were observed. In this ap-
proach, FCEV started to be deployed earlier (before 2030). In this early
period, it was more attractive to use gas reforming combined with CO2

storage to produce relatively cheap hydrogen and only later on when
FCEV and refueling stations have become cheaper use electrolysis as
main production technology.

Policies that promote FCEV were also analyzed including purchase
(by government and manufacturers), fuel, R&D and infrastructure in-
centives. Their effect was quantified in terms of change in cumulative
sales over the 2015–2050 period. A no-policy scenario had 67 million
FCEV sales by 2050 to reach a stock of almost 45 million FCEV. The
measure with the largest net impact was a vehicle discount by manu-
facturers of 5 k€ per vehicle. This had a total cost of 84 bln€ with a net
effect of 24.3 additional million FCEV sold. A 5 bln€ invested in R&D
resulted in 10.5 additional million FCEV, while 113 bln€ in infra-
structure and fuel subsidy only increased the cumulative FCEV sales by
14 million. The timing of each policy had a large impact, where R&D
had the highest impact in the 2020–2024 period, while the rest of in-
centives were the most effective in 2030–2034. The combination of
these policies led to 123 million cumulative sales with an annual peak
of 9 million resulting in a FCEV stock of 76.8 million by 2050, which

represent 26.4% of the total car stock, at a cost of 252 bln€. This is to be
compared with 47.8 million FCEV (by 2050) in a scenario where no
incentive scheme is in place.

Soft-linking introduces the need for iterations and increases the
complexity to produce multiple scenarios and analyze the results.
Nevertheless, the aforementioned benefits outweigh these costs and
soft-linking is overall beneficial. Further research on improving the two
models as well as on policy analysis and design by building additional
policy scenarios is needed. Future expansions of the modeling frame-
work could include features such as: modal shift, demand split by dis-
tance traveled, consideration of travel time budget, consideration of a
second hand market, spillover effect of other transport sectors over
battery and fuel cell costs, different car use pattern for households with
multiple cars and higher heterogeneity in terms of consumer attributes,
while applying this framework to ambitious CO2 scenarios with new
energy carriers such as hydrogen. In addition, more research needs to
be undertaken to improve the understanding of behavioral dynamics
and their representation in models. This study only covers the use of
hydrogen for cars which should be evaluated in the broader context of
transport and potential hydrogen (or derivatives) use for heavy-duty,
trains, ships and planes where its potential can be high due to its higher
energy density (vs. electricity).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.rser.2019.109349.
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