
 

 

 University of Groningen

Clinical protein science in translational medicine targeting malignant melanoma
Gil, Jeovanis; Betancourt, Lazaro Hiram; Pla, Indira; Sanchez, Aniel; Appelqvist, Roger;
Miliotis, Tasso; Kuras, Magdalena; Oskolas, Henriette; Kim, Yonghyo; Horvath, Zsolt
Published in:
Cell biology and toxicology

DOI:
10.1007/s10565-019-09468-6

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Gil, J., Betancourt, L. H., Pla, I., Sanchez, A., Appelqvist, R., Miliotis, T., ... Marko-Varga, G. (2019). Clinical
protein science in translational medicine targeting malignant melanoma. Cell biology and toxicology, 35(4),
293-332. https://doi.org/10.1007/s10565-019-09468-6

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-12-2019

https://doi.org/10.1007/s10565-019-09468-6
https://www.rug.nl/research/portal/en/publications/clinical-protein-science-in-translational-medicine-targeting-malignant-melanoma(bb82467b-7dec-478b-8a0e-72f3538f7f1e).html
https://doi.org/10.1007/s10565-019-09468-6


ORIGINAL ARTICLE

Clinical protein science in translational medicine targeting
malignant melanoma

Jeovanis Gil & Lazaro Hiram Betancourt & Indira Pla & Aniel Sanchez &

Roger Appelqvist & TassoMiliotis &Magdalena Kuras &Henriette Oskolas &YonghyoKim &

Zsolt Horvath & Jonatan Eriksson & Ethan Berge & Elisabeth Burestedt & Göran Jönsson &

Bo Baldetorp & Christian Ingvar & Håkan Olsson & Lotta Lundgren & Peter Horvatovich &

Jimmy RodriguezMurillo & Yutaka Sugihara & Charlotte Welinder & ElisabetWieslander &

Boram Lee & Henrik Lindberg & Krzysztof Pawłowski & Ho Jeong Kwon & Viktoria Doma &

Jozsef Timar & Sarolta Karpati & A. Marcell Szasz & István Balázs Németh &

Toshihide Nishimura & Garry Corthals & Melinda Rezeli & Beatrice Knudsen &

Johan Malm & György Marko-Varga

Received: 4 December 2018 /Accepted: 13 February 2019 /Published online: 21 March 2019
# The Author(s) 2019

Abstract Melanoma of the skin is the sixth most com-
mon type of cancer in Europe and accounts for 3.4% of all
diagnosed cancers. More alarming is the degree of recur-
rence that occurs with approximately 20% of patients
lethally relapsing following treatment. Malignant melano-
ma is a highly aggressive skin cancer and metastases
rapidly extend to the regional lymph nodes (stage 3) and
to distal organs (stage 4). Targeted oncotherapy is one of
the standard treatment for progressive stage 4 melanoma,
and BRAF inhibitors (e.g. vemurafenib, dabrafenib) com-
bined with MEK inhibitor (e.g. trametinib) can effectively
counter BRAFV600E-mutated melanomas. Compared to
conventional chemotherapy, targeted BRAFV600E inhi-
bition achieves a significantly higher response rate. After a
period of cancer control, however, most responsive pa-
tients develop resistance to the therapy and lethal progres-
sion. The many underlying factors potentially causing
resistance to BRAF inhibitors have been extensively stud-
ied. Nevertheless, the remaining unsolved clinical

questions necessitate alternative research approaches to
address the molecular mechanisms underlying metastatic
and treatment-resistant melanoma. In broader terms, pro-
teomics can address clinical questions far beyond the reach
of genomics, by measuring, i.e. the relative abundance of
protein products, post-translational modifications (PTMs),
protein localisation, turnover, protein interactions and pro-
tein function. More specifically, proteomic analysis of
body fluids and tissues in a given medical and clinical
setting can aid in the identification of cancer biomarkers
and novel therapeutic targets. Achieving this goal requires
the development of a robust and reproducible clinical
proteomic platform that encompasses automated
biobanking of patient samples, tissue sectioning and his-
tological examination, efficient protein extraction, enzy-
matic digestion, mass spectrometry–based quantitative
protein analysis by label-free or labelling technologies
and/or enrichment of peptides with specific PTMs. By
combining data from, e.g. phosphoproteomics and
acetylomics, the protein expression profiles of different
melanoma stages can provide a solid framework for un-
derstanding the biology and progression of the disease.
When complemented by proteogenomics, customised pro-
tein sequence databases generated from patient-specific
genomic and transcriptomic data aid in interpreting clinical
proteomic biomarker data to provide a deeper and more
comprehensive molecular characterisation of cellular
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functions underlying disease progression. In parallel to a
streamlined, patient-centric, clinical proteomic pipeline,
mass spectrometry–based imaging can aid in interrogating
the spatial distribution of drugs and drug metabolites
within tissues at single-cell resolution. These develop-
ments are an important advancement in studying drug
action and efficacy in vivo and will aid in the development
of more effective and safer strategies for the treatment of
melanoma. A collaborative effort of gargantuan propor-
tions between academia and healthcare professionals has
led to the initiation, establishment and development of a
cutting-edge cancer research centre with a specialisation in
melanoma and lung cancer. The primary research focus of
the European Cancer Moonshot Lund Center is to under-
stand the impact that drugs have on cancer at an
individualised and personalised level. Simultaneously,
the centre increases awareness of the relentless battle
against cancer and attracts global interest in the exceptional
research performed at the centre.

Keywords Malignant melanoma . Translational
medicine . Clinical proteomics . Post-translational
modifications . Cancer moonshot

Abbreviations
ALM acral lentiginous melanoma
CNN convolutional neural networks
COPD chronic obstructive pulmonary disease
DDA data-dependent acquisition
DIA data-independent acquisition
DNA deoxyribonucleic acid
EGFR epidermal growth factor receptor
FDA Food and Drug Administration
IMAC immobilised-metal ion chromatography
LMM lentigo maligna melanoma
MAKP mitogen-activated kinase pathway
MetM metastatic melanoma
MM malignant melanoma
MS mass spectrometry
MSI mass spectrometry imaging
NM nodular melanoma
NSCLC non-small-cell lung cancer
PET positron emission tomography
PLS-Cox partial least squares–Cox regression
PTM post-translational-modification
RNA ribonucleic acid
RPLC reversed-phase liquid chromatography
SLNB sentinel lymph node biopsy
SSM superficial spreading melanoma

TCGA Tumor Genome Atlas consortium
TILs tumour-infiltrating lymphocytes
TKIs tyrosine kinase inhibitors
TMT tandem mass tag

Introduction

Since ancient times, tumorous diseases have been known
and were recognised by the Greeks as an imbalance of
body fluids and an accumulation of ‘black bile’ (Falzone
et al. 2018; Karpozilos and Pavlidis 2004). Melanomas
mainly present as a dark-coloured-to-black mass, are
visible to the eye and represent an apparent disease.
Although exposure to ultraviolet (UV) radiation and rare
genetic susceptibility within some ethnic groups are
associated with the development and progression of
melanoma, very little is known about the aetiology of
this tumour (Dimitriou et al. 2018). The estimatedworld-
wide incidence of melanoma varies between 15th–19th
places amongst the most common cancers according to
the GLOBOCAN database, whilst in Europe rises to the
sixth position (Ferlay et al. 2015; IARC 2018; Leonardi
et al. 2018). The most frequently affected primary sites
are the torso in men and the limbs in women.

As with other types of tumours, the TNM classifica-
tion (where T refers to tumour size, N to lymph node
involvement, M to metastatic spread) and staging of
melanoma are still the gold standard prognostic factors
for this malignancy (Breslow 1970; Keohane et al.
2018). Practical prognosis of melanoma is based on the
depth of invasion (Breslow scale) into the skin (Breslow
1970; Keohane et al. 2018). Initially, a level of 0.76 was
considered the threshold for early-stage melanoma, and
surgery with an adequate margin of resection is curative
(stages 1 and 2). Melanoma, however, tends to recur in
approximately 10–20% of patients and metastases ex-
tend to the regional lymph nodes (stage 3) and to distal
organs (stage 4) (Falzone et al. 2018). During the pro-
gression of melanoma (Fig. 1), the rate at which the
disease advances increases, i.e. the 5-year survival rate
for localised melanoma is 98.4%, for regionally metasta-
tic, 63.6%, and for distant metastatic, 22.5%. The multi-
ple visceral and brain metastases are primarily responsi-
ble for the death of patients (Sandru et al. 2014).

Recently, the World Health Organisation (WHO)
introduced the 2nd melanoma pathology classification.
This is now considered the new global standard (2017).
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Additionally, WHO provides examples of typical im-
ages of tumour morphologies. Sequencing and BRAF
inhibitor therapy changed the course of the disease for
metastatic patients, as BRAF mutation is one of the key
targetable genetic aberrations that occurs in melanomas
(Chapman et al. 2011). Further DNA alterations have
been described and medication is available also in com-
bination to target key pathways. As a general trend,
however, the metastatic melanoma (MetM) escapes
from this blockage and in almost all instances progresses
(Hauschild et al. 2012; Chapman et al. 2011; Chiappetta
et al. 2015; Larkin et al. 2015; Tringali et al. 2014).
There is room for improvement in understanding tu-
mour biology, predicting prognosis and developing
more effective therapies.

In the development of malignant melanoma, molec-
ular alterations and protein modifications are responsi-
ble for the acquisition of a metastatic phenotype. In this
regard, clinical protein science, or clinical ‘proteomics’,
links to functional genomics by providing a role and
function to specific protein(s) in a given medical and
clinical setting. In this respect, the uniquely broad ver-
satility of proteomics, with dedicated applications to
biological mass spectrometry (MS), is a requirement
for achieving reliable results within many areas of life
science. No other technology has such a diverse array of
methods and protocols, and solid MS experiments are
often linked to functional conclusions.

Through collaborative efforts between academia and
modern healthcare, a cutting-edge cancer research cen-
tre with a specialisation in melanoma and lung cancer
has been established. Our focus is on the impact of drugs
on cancer and includes:

& Verification of disease mechanisms and disease
staging

& Mode-of-drug action
& Unravelling the complexity of cancer
& Functional confirmation of the disease link
& Determining the site(s) of post-translational

modifications

Disease presentation in melanoma patients

Malignant melanoma (MM) is themost aggressive type of
skin cancer and develops from pigment-containing cells
known as melanocytes (Dimitriou et al. 2018). These

pigment-forming cells migrate from the neural crest to
colonise the ectoderm during foetal life. Thus, the cells
occur primarily in the skin; however, such cells also exist
on the genitalia, in the mouth and in the eye (Table 1).
During the past few decades, the incidence of melanoma
has been continuously increasing together with no signif-
icant improvement in mortality. Recent epidemiological
study stated melanoma within the top three cancers with
the largest increase in incidence (39% from 2006 to 2016)
(Falzone et al. 2018; Fitzmaurice et al. 2018). Due to
improved screening and surveillance programs, there has
been a dramatic increase in thin melanomas. The frequen-
cy of thick melanomas, however, has remained stable
(Linos et al. 2009). Intrinsic aetiology of melanoma in-
cludes predisposition of melanoma-associated genes,
Fitzpatrick skin type, familiar atypical mole syndrome
and giant congenital nevi (Rigel 2010). Amongst the
extrinsic factors, exposure to UV light is still considered
the primary environmental driver of the genesis of mela-
noma (El Ghissassi et al. 2009). Additionally, men often
have a higher occurrence on the back, whilst with women,
the most common occurrence is on the legs (Glazer et al.
2017). It is known that the primary cause of melanoma is
exposure to UV light. This risk increases when combined
with low levels of skin pigment, a compromised immune
system and other genetic factors (Erdei and Torres 2010).

Clinical phenotypes of primary melanoma

In the vast majority of cases, patients present with the
primary melanoma lesion on the skin. However, other
types of melanomas such as subungual, mucosal and
ocular can also occur.

Main clinical types of primary melanoma

Superficial spreading melanoma (SSM) on sun-exposed
skin is responsible for more than half of the melanoma
cases that primarily affect middle-aged patients. SSM
appears as a dark macule or plaque that has usually
become altered in appearance according to the
ABCDE rules. According to these melanoma signs,
ABCDE classification is based on:

A— Asymmetry
B— Border irregularity: notched border
C— Colour variegation: red, white, blue, dark brown
D— Diameter of the melanoma
E— Evolution of moles
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Regression is not unusual and leads to polychro-
matic (amelanotic or even dark bluish dermal mela-
notic) areas. Other areas within the atypical plaque
can be more papular or nodular indicating secondary
vertical growth of the SSM. BRAFV600E is the main
genetic driver but is not specifically the mutation for
SSM (Bauer et al. 2011). Nodular melanoma (NM)
occurs at an older age than SSM but is less frequent.
NM can present anywhere on the body and presents
as a rapidly growing nodule with secondary ulcera-
tion. NM occurs via any of the main driver gene
mutations (Broekaert et al. 2010).

The UV-driven melanoma, lentigo maligna melano-
ma (LMM), occurs on sun-exposed areas of elderly
people: primarily the face, back and extremities. LMM
correlates strongly with UV-induced signature muta-
tions (Curtin et al. 2005). Although LMM is the most
indolent form of melanoma, in long-lasting, neglected
cases, a vertical growth phase also occurs. Acral
lentiginous melanoma (ALM) presents as variable
pigmented plaques on the palms, soles and subungual
areas and affects middle-aged to elderly patients. ALM
initially shows flat lentiginous spreading; however,
continuous trauma and loss of compliance often in-
duces a vertical growth phase. Mutation of c-kit is a
characteristic finding for ALM and also for mucosal
melanomas (Curtin et al. 2006). The desmoplastic
melanoma is considered an UV-induced melanoma
that appears on sun-exposed areas of elderly people,
and presents as a firm dermal mass mimicking a soft
tissue tumour. Clinical and histopathological diagnosis
can thus be challenging. Desmoplastic melanoma
tends to progress to haematogenous metastases rather
than lymphatic spread (Murali et al. 2010), and is
associated with a very high UV mutation rate and
signature prone to immunotherapy (Eroglu et al.
2018). Metastatic melanoma transformed from blue
nevus (malignant blue nevus) are bluish-coloured der-
mal plaques or nodules with secondary ulceration or
haemorrhage. Similar to ocular melanomas, these have
a characteristic GNAQ mutation affecting G protein–
coupled receptors (Arkenau et al. 2011).

Other infrequent types of melanoma such as child-
hood melanoma can occur as rapidly growing atypical
nodules within a congenital nevus. Spitzoid melanoma
together with BAP-1 pathway–inactivated melanoma
(Busam 2013) may display as firm skin-coloured,
verrucous or polypous nodules mimicking a conven-
tional wart or skin tag (Fig. 2A).

To be or not to be? Changed growth in primary
melanoma (regression, bulky tumour)

Regression is a pathological term defined as a disap-
pearance of dermal and junctional melanoma cells
that are replaced by fibrosis, permeation of inflam-
matory infiltrate and melanophages, together with
neovascularisation (Emanuel et al. 2008). Clinically,
melanoma regression is observed as a thinned, whit-
ish or bluish area during the clinical course of mela-
noma. The significance of regression is still debated
as there are pro and contra data concerning the role
played in melanoma progression, recurrence or sur-
vival (Kaur et al. 2007; Søndergaard 1985).
Nevertheless, there are clinical observations that
have shown the appearance of loco-regional metasta-
ses during the regression of the primary melanoma
defined as smouldering phenomenon (Piérard et al.
2012). Indeed, the cellular composition of regression
includes tumour-associated macrophages and cancer-
associated fibroblasts that are known to play a crucial
role in tumour promotion. Conversely, tumour-
infiltrating lymphocytes undoubtedly have anti-
tumoural effects within the melanoma-derived micro-
environment (Ziani et al. 2017). Along these lines,
regression may be considered a paradoxical one step
forward to loco-regional and distant metastases.

Bulky tumour or the tumourigenic phase shows as
a rapid change as an increase of the primary melano-
ma. In the majority of cases, this is why patients are
referred to a dermatologist. Tumour growth can be
based on sequential melanoma genesis followed by
SSM, ALM or LMM in a vertical growth phase. De
novo nodular melanomas, however, can occur within
weeks in the same manner as pronounced ulcerated
nodules. The increased thickness of these tumours
requires urgent treatment which can be accompanied
by a good response; otherwise, the prognosis is dis-
mal (Chapman et al. 2015).

Features of progression and metastasis

Local recurrence

After removal of a primary melanoma, local recur-
rence is used as an independent prognostic factor
and is usually indicative of a worst prognosis. In
cases where a broad excision and complete removal
of the primary melanoma was performed, recurrent
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satellite melanomas can be explained by the reacti-
vation of dormant tumour–derived cells in the peri-
tumoural stroma due to uncertain stimuli (Wong
et al. 2005).

Loco-regional (lymph node) disease

Lymph node metastasis is due to the lymphogenous
spreading of melanoma cells via peri-tumoural lym-
phatic vessels to the regional lymph nodes. The first
target lymph node of melanoma cells is defined as the
sentinel lymph node, which should be removed and
processed by histopathology. If the pathological stage
of primary melanoma reaches at least pT1b (presence
of ulceration, or thickness is more than 0.8 mm ac-
cording to AJCC 8th edition Gershenwald 2017
(Gershenwald et al. 2017)), sentinel lymph node bi-
opsy (SLNB) is routinely performed, which has a
prognostic value and may also indicate further treat-
ment (block dissection, or adjuvant therapy). An in-
ternationally validated nomogram (Pasquali et al.
2011) to predict possible involvement of sentinel
lymph node was developed based on clinic-
pathological factors such as age, location of tumour,
tumour thickness and presence of ulceration (Wong
et al. 2005). Loco-regional melanoma metastasis in-
dicates at least stage 3 disease.

Distant (haematogenous) metastases

As a consequence of disseminated melanoma, visceral
(e.g. lungs, liver, spleen, kidneys) or brain metastases
occur in advanced stage 4 and have a poor prognosis
(Gershenwald et al. 2017).

Circulating melanoma cells

Blood-borne metastatic melanoma cells are not only
observed in disseminated stage 4 disease. These have
also been detected in early-stage loco-regional or mini-
mal residual disease. Thus, detection thereof is crucial
for enhanced screening and melanoma diagnostics
(Scaini et al. 2019).

Open questions on special courses and progression
of melanoma

Special patient courses shed light on minimal residual
disease of melanoma

According to clinical staging, patients often show a
tumour-free state for several years following com-
plete removal by wide excision of the primary mel-
anoma. Unfortunately, rapid local recurrence, and/or
loco-regional or disseminated metastases, often oc-
cur. The phenomenon of late progression after a
disease-free state has been attributed to early dis-
semination of dormant, clinically non-apparent mel-
anoma cells before removal of the primary tumour
(Röcken 2010).

The fact that melanoma cells disseminate at an
early stage (when the primary tumour exists) but do
not manifest suggests the existence of a minimal
residual disease. This interesting phenomenon of
melanoma should direct oncological perception to-
wards an awareness that dormant metastases proba-
bly already exist even in clinically non-apparent
cases. The questions that now arise should ask
‘which patient’, and ‘when’ and ‘how’ melanoma

†Stage 4Stage 1-2 

skin (localized)

Stage 3

Regional lymph node +lung +liver +brain+ distant lymph node, 
skin

distant lymph nodes or organs)

• Age
• Loca  
• Ulcera  

(1-2 mm deep primary)

• Histological type
• Breslow/Clark levels 
• )
• Lymphovascular invasion

• Serum LDH levels
• Tumour load
• Affected organs

(>2 mm primary or regional lymph nodes) 

• Serum LDH levels

Fig. 1 Progression of melanoma with prognostic factors at each stage. Tumour thickness is a key determinant in predicting prognostic
outcome. With time, metastases develop and infiltrate multiple organs
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metastases manifest from this minimal residual dis-
ease. This hypothesis is also relevant for two other
peculiar forms of melanoma: extremely late metas-
tasis formation (more than 10 years after the remov-
al of the primary tumour) and donor-derived mela-
noma metastases in recipients after many years fol-
lowing transplantation (Strauss and Thomas 2010;
Tsao et al. 1997).

Another debated question is whether a relationship
exists between tissue healing and subsequent progression
of melanoma. This is because the inflammatory environ-
ment induced by melanoma is similar to the wound-
healing microenvironment. After the removal of the pri-
mary melanoma, hidden tumour cells can lead to an early
local recurrence adjacent to the surgical scar. Neither the
exact pathways nor evidence-based clinical data are
known to support this hypothesis, and only scattered case
reports are available on this topic (Tseng and Leong 2011).

The genomic, proteomic and other omic characteri-
sation of the appropriated cohort of samples can provide
the data to address all the questions regarding the pro-
gression and different outcomes in melanoma. As ulti-
mately proteins are the effectors of most the cellular
functions, the analysis of expression, post-translational
modifications and mutations thereof are extremely valu-
able to understand the biology of melanoma. The pat-
terns observed at the protein level including the post-
translational modifications can be correlated to differ-
ences in the progression of the disease, resistance to a
particular treatment or the preference to metastasise to a
specific organ. In addition, the integration of several
omic approaches and clinical data has the potential to
revolutionise the way cancer is treated today.

A case report on a 75-year-old female highlights the
importance of minimal residual disease. The disease
remained in a latent phase for 10 years before the sudden
rapid progression of melanoma (Fig. 2B). The patient
presented with ‘high-risk’ thick nodular melanoma on
her right leg but had not shown any clinically apparent
dissemination for a decade. Ten years after the complete
removal by wide excision of the primary melanoma, a
local recurrent lump had appeared. The tumour was
excised; however, weeks following surgery, rapid new
satellite tumours developed. The patient died within
weeks because of the rapid dissemination of the meta-
static disease. These rapid, multiple recurrent and met-
astatic cases are prone to targeted therapy (Falzone et al.
2018; Robert et al. 2015).
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Clinical aspects of oncotargeting: phenotype switch
of melanoma

To date, targeted oncotherapy is the standard treatment
for rapidly progressive stage 4 disease. BRAF inhibitors
(e.g. vemurafenib, dabrafenib) combined with MEK in-
hibitor (e.g. trametinib) effectively attack BRAFV600E-
mutated melanomas (Falzone et al. 2018; Robert et al.

2015). Compared to conventional chemotherapy, this
treatment strategy does result in a significantly higher
response rate in reducing the bulky masses. Thus, pa-
tients in a preterminal state are prevented from a rapid
death (Flaherty et al. 2012). After a period of
progression-free disease, however, most responsive pa-
tients develop resistance to the therapy and lethally prog-
ress (Pimiento et al. 2013).

2003 2013 2014

Site of removed 
primary tumour

Local recurrence

Rapid satellites

†

29y pT3a SSM
2006 2013 †

Removal of primary 
tumour

2012

Local 
relapse

Neck lymph 
metastasis

New melanoma 
during BRAF

inhibitor treatment

“Focal” disease for 5 years Manifested disseminated disease

a

c

b

fe

d

75y pT4b NMa

c

b

Fig. 2 (A) Representative clinical pictures of superficial spread-
ing melanoma (a), nodular melanoma (b), acral melanoma (c) and
lentigo maligna melanoma (d). Regression (e) exhibits a whitish,
non-specific macule without a palpable tumour, whereas the bulky
tumour phase (f) shows a large, ulcerated, rapidly growing nodule.
(B) Clinical images of minimal residual disease. Case study of a
75-year-old woman who had had a tumour removed from the
primary site over a decade earlier. After 10 years of dormancy,
the tumour recurred locally. Upon removal of the recurrent tumour,

several weeks later satellite tumours developed. (C) Clinical im-
ages of a young female with a completely excised scalp lesion.
After 5 years, local relapse followed by lymph node metastases
and satellite tumour formation occurred. During targeted
BRAFV600E therapy, the patient developed resistance and new
terminal melanomas developed (all from the database of the Onco-
dermatological Unit, Department of Dermatology and
Allergology, University of Szeged)
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Shown in Fig. 2C are the clinical images from a case
report on a young female. The patient presented with
high-risk superficial spreading melanoma on the scalp
that had been completely excised. Her past case history
included chronic lymphocytic leukaemia. There was no
sign of clinical dissemination for 5 years. Local recur-
rence, rapid spreading to the neck lymph nodes, cutane-
ous satellites and visceral progression developed after
block dissection. Targeted therapy was initiated as the
melanoma was BRAFV600E positive; however, new
tumours were identified on the back region during
BRAF inhibition. The patient showed resistance to
targeted therapy and passed away after rapid progres-
sion of the melanoma.

The many underlying factors behind developed
resistance to BRAF inhibitors have been extensively
studied. These include reactivation of the mitogen-
activated kinase (MAPK) pathway and activation of
wild-type BRAF, and epigenetic changes (Pimiento
et al. 2013). Recent interest has focused on pheno-
type switching of melanoma. Acquisition of a low
microphthalmia-associated factor MITF state togeth-
er with activation of epithelial-mesenchymal transi-
tion (EMT) can transform melanoma cells to a high-
ly invasive, dedifferentiated and therapy-resistant
phenotype with cancer cell plasticity (Kemper et al.
2014). Melanoma cells can gain EMT state by the
downregulating of E-cadherin together with the up-
regulating of N-cadherin and osteonectin pathways
(Alonso et al. 2007). Repressors of E-cadherin are
SLUG and ZEB1 transcription factors (Wels et al.
2011). Furthermore, dedifferentiation of melano-
cytes can be driven by the loss of ZEB2 transcrip-
tion factor. For example, as decreased ZEB2 expres-
sion was associated with significantly reduced
metastasis-free survival in melanoma patients
(Caramel et al. 2013). Similarly, MITF not just plays
a crucial role in the differentiation state, but its loss
leads to the metastatic phenotype of melanoma
(Hoek et al. 2008). This change from proliferative
into invasive state of melanoma is regulated by
decreased LEF1 and increased TCF4 expression
(Eichhoff et al. 2011). As well as signalling path-
ways are considered, in addition of the well-known
MAPK and PI3K regulation, receptor tyrosine ki-
nase (RTK) and TGF-β signalling are also involved
in the phenotype switching and subsequent metasta-
tic phenotype of melanoma (Kemper et al. 2014; Li
et al. 2015). These widespread changes can be

responsible for the clonal evolution of heteroge-
neous melanoma tissue and also for the clinically
apparent evolution of the disease in response to the
iatrogenic ‘medical’ environment.

Unsolved clinical questions call for proteomic solutions

During the past few decades, the prognostic factors for
melanoma have unfortunately remained unaltered.
There is still histopathological staging that focuses pri-
marily on tumour thickness, and clinical staging that is
an estimate of the clinical behaviour of primary mela-
noma (Gershenwald et al. 2017). Although the main
driver genes (BRAF, NRAS, C-KIT, NF, GNAQ) have
been discovered, these markers cannot act as individual
indicators for every melanoma case. Therefore, there is a
fundamental need for novel prognostic biomarkers.
Similarly, individualised prognosis and personalised
therapeutic predictors are of prime importance.
Amongst the driver genes, BRAF is regarded as the
main predictor for targeted therapy. The BRAFV600E
mutation, however, is identified at the genetic level but
known targeted therapies act on proteins. In addition,
there is still a lack of evidence concerning the influence
of tissue heterogeneity in melanoma tissue on the effect
and outcome of targeted therapy. Therefore, whether the
BRAFV600E mutation is homogenously or heteroge-
neously translated to the level of the mutated proteins in
melanoma tissue requires further characterisation.
Moreover, the lack of any insights into the development
of protein resistance after targeted therapy calls for
proteomic approaches for personalised medicine.

Pathological characterisation of melanoma

Cancer tissue heterogeneity

Genomic instability results in the occurrence of hetero-
geneous events in the DNA. This is considered a hall-
mark of cancer and provides selective advantage for the
survival of tumour cells either in a dormant phase or as a
rapidly progressing disease (Jin et al. 2018). Tissue
heterogeneity in melanoma is key to the survival and
evolutionary versatility of the disease (Hwang et al.
2018), and some clinical studies have shown that re-
duced heterogeneity is linked to a longer survival of the
cancer patients (Gara et al. 2018; Hanahan and
Weinberg 2011; Szász et al. 2017). To some extent,
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heterogeneity exists in all types of malignant tumours.
This is already evident with the diversity of cells that
exist within a neoplasm and the proteomic profiles
thereof.

In routine diagnostics, attempts have been made to
characterise the tissue in more detail. This was previ-
ously mentioned for melanoma treatment; whereby se-
rial sections of a sentinel lymph node are taken to detect
cancer cells in the context of the surrounding heteroge-
neous tissue. Here, size is an important aspect as the
largest dimension of the tumour must be captured and
recorded. This then acts as a guide towards further
treatment, e.g. regional block dissection to harvest more
lymph nodes. In diagnostics, deeper levels of histolog-
ical samples are often requested to support and aid
pathological diagnostics. In every consecutive tissue
section, there are changes in the arrangement and com-
position of the cells. These changes can range from
minimal to substantial morphological heterogeneity
through all levels of a tumour. By extrapolation, such
cellular heterogeneity implies that a tumour and the
surrounding tissues are comprised of a broad and di-
verse range of proteins (Welinder et al. 2017).

Digital pathology and machine learning/artificial
intelligence

Digital pathology is a novel platform that can be used to
obtain spatial information from tissue architecture
(Cooper et al. 2015; Madabhushi and Lee 2016). It is
best applied to tissues after fixing and stabilising with
formalin. Therefore, digital pathology can be applied to
patient tissues that have been processed in the clinical
pathology laboratory. After embedding in paraffin, the
tissues are sectioned, placed on glass slides and stained
with haematoxylin and eosin (H&E) for microscopic
examination. Stained slides can also be digitised at high
resolution for analysis. As an alternative to H&E, tissues
can be stained by immunohistochemistry and immuno-
fluorescent antibody detection. Due to the high resolu-
tion of digital images, protein expression and protein
complex formation can be measured in subcellular com-
partments. A multiplexed antibody or in situ RNA
hybridisation format can be used to measure up to 40–
60 proteins per slide with technologies such as
multiplexed fluorescence microscopy (MxIF) (Gerdes
et al. 2013), imaging mass cytometry Tissue-CyTOF®
(Giesen et al. 2014), digital spatial profiling (DSP) using
NanoString Technology or co-detection by imaging

(CODEX) (Goltsev et al. 2018). In a colorectal cancer
study, by using MxIF, Gerdes et al. (2013) were able to
map the signal transduction patterns of the kinase
mTORC1 signalling. Measuring the phosphorylated tar-
gets of mTORC1, 4E-BP1 and RPS6, they could pro-
vide important clues regarding the mechanism of regu-
lation of this pathway. In this sense, in theory, any
proteoform or combination of proteoforms can be mea-
sured in individual cells.

Machine-learning algorithms that quantitate spe-
cific, predetermined patterns in images can be used
to obtain data from protein expression and from
cellular and tissue organisation. Alternatively, with
deep-learning convolutional neural networks (CNN)/
artificial intelligence, computers can be trained to
identify patterns that distinguish subgroups of can-
cers, differing in prognosis or treatment response.
Computers can also be trained to identify patterns in
images in an unbiased manner and convert images
into numerical data sets that capture spatial relation-
ships with tissue structures (Madabhushi and Lee
2016). As a result, digital pathology data comple-
ments molecular data sets that are generated from
tissue lysates. Altogether, digital pathology and ma-
chine learning provide novel opportunities for bio-
marker development. These quantitative imaging
biomarkers can be integrated with molecular data
and clinical variables to predict prognosis and treat-
ment responses in patients.

An important application of digital pathology is
the analysis of the immune infiltrate in melanoma.
Several recent papers describe new methods to pro-
file the magnitude, composition and activity associ-
ated with the spatial configuration of the tumour
immune response. A recent paper used a deep
learning/artificial intelligence approach to identify
patterns of lymphocyte infiltration in tumours (Saltz
et al. 2018). The authors applied a convolutional
autoencoder to boost a CNN that was trained to
recognise individual lymphocytes. For the first time,
a CNN a.k.a. ‘computational stain’ was sufficiently
accurate and efficient to count tumour-infiltrating
lymphocytes (TILs) in cancer tissues from 4759 sub-
jects and across 13 cancer types. Digital TIL numbers
were correlated with molecular data to reveal associ-
ations with survival, tumour subtypes and immune
profiles. The H&E images used for the study were
procured by the Cancer Genome Atlas (TCGA) con-
sortium. TCGA generated separate molecular
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profiling data for subcutaneous skin and uveal mela-
noma (Akbani et al. 2015; Robertson et al. 2017).
These melanoma subtypes differ in the mechanism of
cancer development and progression and with every
case an H&E stained slide representative of tumour
histology was included. In addition to unique molec-
ular profiles, cutaneous and uveal melanomas dif-
fered in immune cell infiltration. On average, the
immune infiltrate in uveal melanoma was sparse,
except for a fraction of uveal melanomas with poor
prognosis that displayed an extensive immune infil-
trate (Van Raamsdonk et al. 2010; Robertson et al.
2017). Interestingly, this T cell infiltration, which
consists of activated cytotoxic T cells and macro-
phages, has no effect on survival (de Lange et al.
2018). In contrast to uveal melanoma, skin cutaneous
melanoma displays, as expected, one of the highest
leukocyte fractions amongst 30 cancer types that
were profiled by the TCGA consortium (Thorsson
et al. 2018). A cluster analysis based on the spatial
configuration of TILs identified four structural pat-
terns and the cluster count separated good from poor
prognosis melanoma subgroups (Saltz et al. 2018).

In addition to immune cells, other cell types can
also be profiled in the tumour microenvironment
using digital pathology and machine learning. For
example, the vasculature is amenable to digital anal-
ysis (Ing et al. 2017). Microvessel density, lymphat-
ic density and vascular invasion correlated with
BRAF mutation status, suggesting a relationship
between aggressive behaviour and vascular morpho-
metric parameters (Aung et al. 2015). Since vascular
organisation can be imaged through non-invasive
methods, it could assist in the diagnosis of melano-
ma (Massi et al. 2002) and potentially also provide a
pre-surgical assessment of tumour stage.

Most recently, several studies demonstrated a road of
algorithmic pathology towards the clinic through applica-
tions that are directly related to patient care. In regular
pathology practice, deep-learning algorithms using CNNs
have the potential to provide a virtual second opinion and
improve the efficiency of dermatopathologists (Olsen
et al. 2018). In one study, the Google Inception v4 CNN
was trained for detection of melanomas and the diagnostic
performance was assessed with an international group of
58 dermatopathologists. Most were outperformed by the
computer diagnostic tool (Haenssle et al. 2018). A
machine-learning approach was also used prior to surgery
to predict the risk of melanomawith promising results that

approach the sensitivity and specificity of diagnostic eval-
uations by expert physicians (Gareau et al. 2017).

Altogether, recent advances in digital pathology,
machine-learning and deep-learning CNNs represent
disruptive technologies that are well situated to change
the future practice of pathology. These methods have the
potential to standardise the quality of pathological diag-
noses, improve the efficiency of pathologists and assist
in personalised treatment decisions. In particular, digital
pathology can be applied to measure patterns of TILs
that capture the anti-tumour activity of the immune sys-
tem at the interface of the tumour. Digital data can also
be integrated with genomic and proteomic data in pre-
dictionmodels of patient outcomes. Lastly, training com-
puters to assist with patient stratification provides a cost-
effective path to bring precision medicine to a broad
range of communities and across larger populations.

Biobanking and sample preservation

A fully integrated large-scale biobank infrastructure has
been built at the Biomedical Centre in Lund. The centre
provides storage space for preserving biological materi-
al (tissue and blood), processing and analysis of collect-
ed samples and sample shipment to scientific partners
for clinical projects/collaborations. There is a fully au-
tomated platform and workflow where > 1000 sample
tubes are processed per day. Robots tend to both blood
fractions and tissues that are stored at − 80 °C (Fehniger
et al. 2013; Malm et al. 2013, 2015, 2018; Marko-Varga
et al. 2012b).

The Biomedical Centre acts as a hub with multiple
clinical centres participating in this initiative, and tissue
and blood samples are received into the melanoma
biobank from all over the world. The centre was devel-
oped to generate and build large-scale biostorage ar-
chives of patient melanoma samples. These are then
combined with histopathological expertise to character-
ise the patient tumours. This large-scale clinical sample
processing enterprise was initiated with the aim of cre-
ating high-end histopathology indexing with database
computational power and proteogenomic analysis.
Subsequently, the biobank at Lund has become an im-
portant resource in global clinical research (Fehniger
et al. 2013; Malm et al. 2013, 2015, 2018; Marko-
Varga et al. 2012b). Several national health programs
are now being initiated with the aim of also building
large-scale biobank storage and populating these with a
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wealth of high-quality patient samples. In our cancer
R&D activities, the samples in the biobanks and the data
derived from these are aiding in deepening our under-
standing of disease presentation. This information
drives research towards ‘Big Data’ proteogenomics
and mass spectrometry imaging studies.

Proteomics

Proteomics is a highly promising field to aid in the
identification of cancer biomarkers and novel thera-
peutic targets. Proteomics is defined as the character-
isation of proteins encoded by the genome of a given
organism at a given time in a given state (Aebersold
et al. 2018; Wasinger et al. 1995; Wilkins et al. 1996).
The core principles of proteomics lie in the ability to
perform sensitive analyses on a complex mixture of
proteins and peptides. Proteomics can address chal-
lenges beyond the reach of genomics, i.e. relative
abundance of the protein products, PTMs, protein
localisation, turnover, protein interactions and pro-
tein function. The proteomic analysis of body fluids
and tissues can be a valuable asset in the search for
diagnostic and prognostic biomarkers.

As a consequence of the human genome project,
the number of protein-coding genes is now estimat-
ed at 20,377. According to the Human Proteome
Project from the Human Proteome Organisation,

these can be divided into five classes depending on
the type of protein evidence (PE): PE1 (17,487,
85.8%) proteins identified by the highest stringency
criteria including data from mass spectrometry (MS)
analyses and antibody identification; PE2 (1728,
8.2%) by expressed mRNA transcripts; PE3 (515,
2.5%) by sequence similarity; PE4 (76, 0.4%) by in
silico prediction; PE5 (571, 2.8%) representing pro-
teins whose existence is uncertain (HPP, NextPro
Release 2018-09-03). Many genes are transcribed
as splice variants. When this is taken into consider-
ation, the number of human proteins increases to
42,384. In addition, human proteins also undergo
post-translational modification that strongly influ-
ences function and/or activity. There is a wide and
diverse array of PTMs including modifications such
as glycosylation, phosphorylation and acetylation
(Fig. 3). Ultimately, such PTMs give rise to many
hundreds of thousands of additional protein variants
(Aebersold et al. 2018).

Clinical proteomic pipeline

Shown in Fig. 4 is an overview of the different steps
involved in current clinical proteomic workflows/
pipelines. This includes tissue sectioning and histo-
logical examination, protein extraction from selected
metastatic melanoma tissues and enzymatic digestion.
Depending on the clinical question and the samples

Fig. 3 Schematic illustration of proteoforms formed by gene coded regions, undergoing post-translational modification
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under investigation, these steps are then followed by
such approaches as quantitative analysis based on
label-free or labelling technologies, e.g. tandem mass
tag (TMT) multiplexing and peptide fractionation, or
enrichment of peptides with specific PTMs.
Regardless of the decision-making process, complex
peptide mixtures are injected onto a sensitive and

high-resolution LC-MS/MS system, i.e. a nano-high-
performance liquid chromatography (nHPLC) instru-
ment coupled to a mass spectrometer. Peptides are
separated by reversed-phase fractionation, detected
by mass spectrometry (MS) and sequenced by tandem
mass spectrometry (MS/MS). All data generated is
then analysed to identify and quantitate the peptides
and proteins.

To maximise our knowledge, a cryo-sectioning strat-
egy was implemented (Fig. 5). With this approach,
histological images of all samples are recorded every
10–15 slices. This is of major importance, because
within a tumour sample, the composition can vary sig-
nificantly at different levels in terms of tumour cell
content, presence of necrosis, infiltration of immunolog-
ical cells and connective tissue content. In addition,
from sliced tissues, the protein extraction is maximised
without the need to macerate the sample. Each tissue
section has a thickness of 10 μm and, on average, 15
sections of melanoma tumour sample weigh 7.8 mg,
ranging from 5 to 10 mg. In these samples, the protein
content and the number of proteins can vary depending
on the composition. Overall, the protein recovery from
melanoma samples is approximately 12% of the total
weight of the tissue.

In the context of translational medicine where
large cohorts are essential, the automation of the
different steps of sample preparation can result in a
significant improvement in reproducibility and a re-
duction in the intrinsic variability of manual proce-
dures. The incorporation of automated steps during
sample preparation maximises the likelihood of dis-
covering new and meaningful findings. The imple-
mentation of automation at the protein extraction and
enzymatic digestion steps has shown an effective
increase in throughput and a marked reduction in
experimental variability (Kuras et al. 2019).

The protein extraction protocol plays a fundamental
role within any proteomic pipeline, as it provides the
starting material for all subsequent steps during sample
processing. Previous studies have indicated that this step
is the major source of variation in proteomics
(Piehowski et al. 2013). On the proteomic platform
developed for MM, the Bioruptor plus (model UCD-
300) is utilised for protein extraction. This device uses
temperature-controlled ultrasound technology for
highly-efficient disruption and homogenisation of the
tissues with minimal operator participation. Up to 12
samples can be simultaneously processed, thus

R1 R2
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76%
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Fig. 4 Clinical proteomic workflow. Tissue sections are proc-
essed to extract the proteins. These are digested and analysed by
LC-MS/MS. Peptides are identified and quantitated via labelling
approaches or by label-free methods. Peptides with specific PTMs
can be enriched and also analysed by LC-MS/MS.
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increasing throughput and reducing processing time.
For the lysis buffer, urea or SDS/DTT extraction solu-
tions are used (Wiśniewski et al. 2009). In our hands,
both solutions provided similar results in terms of the
number of identified proteins; however, protein yield is
higher with SDS/DTT. This is particularly true for sam-
ples with a very low tumour cell density and/or high
content of connective tissue.

Usually in proteomics, protein extraction is followed
by the enzymatic digestion of proteins, in most cases
with trypsin alone or combined with other enzyme(s).
Via LC-MS/MS analysis, generated peptides are central
to both identifying and quantitating the proteins. For
large cohorts of samples, this step is performed in the
automated micro-chromatographic platform Bravo
AssayMAP, in order to ensure the reproducibility of the

a

b

Fig. 5 a, b Sample processing strategy for deep analysis of the
melanoma proteome by mass spectrometry. Three different types
of solid samples are stored in the biobank frommelanoma patients:
primary tumours, lymph nodes and distant organ metastases.
Samples selected for analysis were cryo-sectioned. Fifteen slices

are used for MS analysis and one section is prepared for histology
to determine the tumour cell content and the percentage of other
tissues that are present. The MM slices are prepared for quantita-
tive proteomics
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hydrolysis. The Bravo AssayMAP is useful in a variety
of procedures, from enzymatic digestion and peptide
purification/concentration to specific affinity purification
steps such as phosphopeptide enrichment (see below).
Digestion of urea-containing MM lysates was easily
implemented on the Bravo AssayMAP for MM samples.
For these samples, digestion can be performed after
simple dilution because trypsin tolerates moderate
amounts of this chaotropic agent. Conversely, the low
tolerance of trypsin to the presence of SDS requires a
buffer exchange step before digestion, which can then be
performed in the presence of sodium deoxycholate
(SDC). SDC is a trypsin-compatible detergent usually
used in proteomics (Gil et al. 2017; Lin et al. 2008).

Even though the majority of the proteomic ap-
proaches involve a protein extraction step and enzy-
matic digestion, different strategies provide different
outcomes. This is particularly the case for quantita-
tive proteomics, where a variety of methods are avail-
able. These methods are divided in two major groups,
those based on differential isotopic labelling of each
sample, such as TMT, and those using label-free
approaches. In addit ion, the study of post-
translational modifications usually requires specific
methods. For example, to characterise the phosphor-
ylation status of the proteins, the proteomic workflow
is adapted to include a phosphopeptide enrichment
step. The workflow can be readily adapted or modi-
fied to provide data on specific PTMs, and protein–
protein or drug–protein interactions. For quantitative
proteomics, phosphoproteomics and acetylomics of
MM samples, different approaches were implement-
ed based on isotopic labelling (TMT 11-plex) or
label-free analyses.

TMT 11-plex labelling for quantitative proteomics

TMT 11-plex is a powerful technology that enables the
simultaneous relative quantitation of proteins by mass
spectrometry in up to 11 different biological samples.
There are 11 different mass-tagging reagents with the
same nominal mass and chemical structure. Each are
composed of an amine-reactive NHS-ester group, a spac-
er arm and a mass reporter (Fig. 6). For every sample, a
unique reporter ion mass signal in the lowmass region of
the MS/MS spectrum is used to measure relative protein
expression levels following peptide fragmentation.
When analysing tumour samples, for example, a portion
of each of the ten protein lysates is used to create a

pooled reference (the 11th sample). To enable compari-
son across the entire sample cohort, the 11th sample is
used in each labelling experiment. Quantitation is
achieved by comparing the TMT reporter ion intensities
ratios (sample/reference) in each sample.

To increase the analytical dynamic range, proteome
coverage and improve quantitation, it is highly advis-
able to fractionate the peptide mixture prior to LC-MS/
MS analysis (Manadas et al. 2010). Currently, the two-
dimensional reversed-phase liquid chromatography
(2D-RPLC) strategy is the favoured trend in proteomic
studies. RPLC exhibits higher peak capacities and re-
solves peptides more efficiently than other chromato-
graphic systems. 2D-RPLC consists of an initial, first
dimension separation with a mass spectrometry–
compatible high pH solvent system followed by a sec-
ond dimension separation with a low pH solvent prior to
analysis by LC-MS/MS. This 2D RPLC strategy was
applied to our MM proteomic workflow to analyse the
TMT-labelled peptides.

As an example, proteins from 10 frozen, sectioned
MM tumours were extracted in 100 mM ammonium
bicarbonate containing 4 M urea on the Bioruptor. Ten
aliquots of the lysate and one from a reference sample
pool prepared in advance were placed in the Bravo
AssayMAP robot for protein denaturation, digestion
and peptide desalting. Protein reduction and alkylation
were performed with 10 mM DTT and 20 mM
iodoacetamide, respectively. Denatured proteins were
digested with endoproteinase Lys-C for 5 h at room
temperature using an enzyme:protein ratio of 1:50 (w/
w). This was followed by an overnight digestion with
trypsin at room temperature using an enzyme:protein
ratio of 1:50 (w/w). MM samples (each 30 μg peptides)
were labelled with TMT 11-plex reagents, mixed and
fractionated by high pH RP-HPLC. Eluted peptides were
pooled into 24 concatenated fractions. Approximately
1 μg of labelled peptides was analysed by LC-MS/MS
on a Q Exactive HF-X mass spectrometer.

The complete LC-MS/MS analysis of the 10 samples
including data output was achieved in 3 to 4 days on a
single LC-MS/MS instrument. Currently, we can sys-
tematically and confidently identify and quantitate >
10,000 proteins. To the best of our knowledge, this
represents the largest data set of proteins identified to
date from MM tumours.
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Label-free quantitative proteomics

With the high reproducibility, sensitivity, speed and
accuracy of current LC-MS/MS systems based on the
orbitrap technology, e.g. Q Exactive HF-X, it is now
possible to identify more than 60,000 peptides corre-
sponding to more than 6000 proteins in a single LCMS
analysis. These features provide a solid foundation for
achieving the highest quality data possible from the
quantitative proteomic strategy termed ‘label-free’. To
date, the label-free approach is the most straightforward
approach for performing quantitative proteomics. There
are different label-free quantitation methods available;

however, within this article, emphasis is primarily
placed on the intensity-based approaches. Intensity-
based quantitation is built on the fact that for a given
sample, protein abundance correlates with the intensity
of the unique peptides (Chelius and Bondarenko 2002).
Data acquisition by mass spectrometry was evaluated
with data-dependent acquisition (DDA) and data-
independent acquisition (DIA).

DDA has largely been the method of choice for high-
throughput proteomic analyses. In this method, the mass
spectrometer firstly performs a short MS1 survey scan of
the peptides that are currently eluting from the LC
system. This scan monitors peptide ion intensity and
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identifies potential peptides to be fragmented. A series
of tandem mass spectrometry (MS2 or MS/MS) events
are performed whereby a peptide signal is isolated and
fragmented, and the product ions are detected. The
peptide intensity and the associated MS/MS data pro-
vide the necessary information to identify and quantitate
the protein, respectively. Due to the semi-stochastic
nature of the ion selection process, several replicates
are usually required to increase coverage of the prote-
ome. If a peptide signal is not selected for fragmentation,
noMS/MS spectrum is recorded and subsequently these
peptide species are not identified. One method to in-
crease peptide selection is to pre-fractionate the sample.
Thus, peptide mixtures with reduced complexity are
injected onto the LC-MS/MS system. Sample fraction-
ation prior to LC-MS/MS analysis has substantially
contributed to increasing the coverage of the proteome
(see TMT 11-plex section below).

Recently, DIAmethods such as SWATH orMSe have
gained increasing popularity. Here, single peptide ions
are not isolated; rather, a m/z window is utilised. The

window allows simultaneous fragmentation of all pep-
tides eluting in the selected m/z range. All product ions
from multiple peptide ions are then recorded in a single
MS/MS spectrum. To cover a wider m/z range, several
m/z windows are usually chosen. The result is the gen-
eration of highly complex tandem mass spectra. These
are compared to previously generated DDA spectral
libraries and matched MS/MS spectra are then assigned
to peptide sequences.

A MM cohort including 11 primary tumours, nine
lymph node metastases and three cell lines was submit-
ted to a quantitative proteomics analysis based on the
label-free approach. The proteins were extracted in the
presence of SDS/DTT and after buffer exchange were
digested with trypsin. MS data was acquired in a DDA
method. The number of identified proteins ranged from
6000 to 7000 in tumour samples, whilst for the cell lines
the numbers reached 7200 identifications (Fig. 7a). The
relative abundance profiles of identified proteins in all
samples were used to create a principal component
analysis (Fig. 7b). The results showed that the cell lines
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and the lymph node metastases cluster together: whilst
the primary tumours are more dispersed. The high var-
iability in protein expression observed in primary tu-
mours can provide an explanation as to how and why
MM have such a broad range of outcomes. Our data do
suggest that at least for the transition from the primary
tumour to lymph node metastases, this diversity is re-
duced. An explanation for this observation may be that
not all tumour cells can metastasise or produce a viable
metastasis. Thus, the abundance profiles of the proteins
in each sample combined with histological data and the
clinical and pathological history of the patients will
become a powerful tool in understanding the progres-
sion of the disease.

Understanding melanoma by mapping proteomic data
on biological pathways and interaction networks

Typically, a proteomic experiment provides a large num-
ber of protein measurements that relate to a biological
outcome, e.g. exhibit significantly different expression
between primary and metastatic tumour. In order to gain
insight into the biological meaning of such protein lists,
a typical bioinformatic approach involves elucidating
over-represented pathways and other functional annota-
tions (e.g. Gene Ontology terms or structural domains).

The quantitative protein data that was obtained from
analysing the MM cohort consisting of 11 primary tu-
mours, nine lymph node metastases and the three cell
lines (Fig. 7) contained a wealth of information to aid in
understanding the biology and progression of MM.
When the samples were grouped according to origin
(primary tumours, cell lines and lymph nodemetastases),
more than 1500 different proteins were found to be
dysregulated between the groups. In particular, the
lymph node metastases had the largest set of upregulated
proteins when compared to the primary melanoma tu-
mours. This is presented in the heat map in Fig. 8.
Amongst the significantly upregulated proteins in lymph
node metastases, pathways such as the spliceosome,
RNA transport and mRNA surveillance, i.e. indicative
of a higher rate of cell division, were enriched. Most of
these proteins were also upregulated in cultured melano-
ma cell lines. The roles of signalling pathways such as
the PI3K-AKT,mTOR andMAPK have been previously
described in melanoma (Rodríguez-Cerdeira et al. 2018).
In several studies, these pathways were activated in
melanoma and other type of cancers. When compared
to primary tumours, elements of these pathways showed

significant upregulation in lymph node metastases. In
this sense, there is a possibility that the upregulation of
these pathways could be a prerequisite for the progres-
sion of the disease towards metastasis. These results
might support the hypothesis that in the primary tumour,
only those cells that upregulate these pathways are able
to metastasise. These findings partially support the dif-
ferences in patient survival when the disease is diag-
nosed at different stages, particularly, if the upregulation
of these pathways is only evident in metastatic
melanoma.

Proteins expressed in the primary tumours that were
downregulated when the disease underwent metastasis
(at least to the lymph nodes) were involved in pathways
related to cell communication and interaction with the
extracellular matrix. In addition, a large number of
proteins that are involved in metabolic pathways were
over-represented in the primary tumours. The upregula-
tion of peroxisomal and fatty acid metabolism proteins
suggested an imbalance in energy production that be-
gins in primary tumours. More profound changes in the
metabolism of tumour cells were observed in the meta-
static samples. Eleven proteins involved in the hypoxia
inducible factor-1 signalling pathway were upregulated
in the lymph node metastases. Even in the presence of
normal oxygen levels, the activation of this pathway
contributes to the metabolic shift from oxidative phos-
phorylation to the glycolytic phenotype. Amongst the
proteins induced by HIF-1, hexokinase 3 (HK3, but not
HK1 or HK2) was upregulated in the lymph node me-
tastases and cell lines. HK3 is involved in the first step
of glycolysis and is the only isoform not linked to the
mitochondria. This means that upregulation of HK3
contributes to the glycolytic phenotype independently
to the mitochondrial status. In addition, the phospho-
enolpyruvate carboxykinase (GTP), mitochondrial
(PCK2) was upregulated in the metastatic samples com-
pared to the primary tumours. This enzyme is involved
in the first step of gluconeogenesis and upregulation
contributes to the accumulation of glycolysis intermedi-
ates that are required to support rapid cell proliferation.
When compared to premalignant lesions, similar results
in gastric adenocarcinoma biopsies have been found
(Fernández-Coto et al. 2018). The activation of glycol-
ysis is also aided by the upregulation of proteins in-
volved in the insulin signalling pathway. When com-
bined with data from more specific disciplines such as
phosphoproteomics and acetylomics, the protein expres-
sion profiles of samples from different stages of
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melanoma provide a solid basis for understanding the
biology and progression of this disease.

For a more unbiased view, the proteomic data can also
be mapped on biological relationship networks that may
include protein–protein interactions, activation, post-
translational processing or influencing expression. Such
relationship networks can be built by literature curation,
or automatically by integrating data from various data-
bases. As an example, in Fig. 9, such an analysis is
presented for a set of proteins that had an expression
pattern that was significantly related to patient survival in
a cohort of 111 lymph node metastasis samples from
patients with different melanoma survival histories
(Betancourt et al., manuscript under review). Here, a
partial least squares–Cox regression (PLS-Cox) model
was built that reduced the expression of an entire feature
set (~ 1300 proteins) to a single inferred variable. This
subsequently explained the main reason for protein ex-
pression variability with respect to patient survival. The
survival-related proteins were used as queries for a large
functional relationship database (Ingenuity Knowledge
Base). Querying (Ingenuity Pathway Analysis) involved
extracting dense relationship subnetworks enriched in
the query proteins. Amongst proteins that positively

correlated with survival (high expression in longer sur-
viving patients), mapping to relationship networks iden-
tified small groups of transcription factor, splicing factors
and proteasome subunits that most probably regulate
tumour development and can be promising biomarkers.
Proteins negatively correlated with survival (high ex-
pression in shorter survival) are primarily functionally
related extracellular proteins with expression that may be
linked to the vascularisation aspect of melanoma metas-
tases and to immune component of cancer.

The network mapping approach not only provides
functional modules composed of subsets of query pro-
teins that are likely to act together in the biological
process studied but also merges these with non-query
proteins that are nevertheless tightly functionally inter-
connected with the queries.

Post-translational modification of proteins

Pathway signalling and protein phosphorylation

Regulation of molecular events and protein dynamics
are commonly associated with PTMs (Ardito et al.
2017). From the ~ 200 known PTMs, phosphorylation

Fig. 9 Ingenuity Pathway
Analysis (IPA) for the proteins
identified by the PLS-Cox
analysis as significantly related to
survival in a cohort of 111 lymph
node melanoma metastases. Two
of the top protein–protein
relationship subnetworks that are
enriched in the query proteins
were merged. Blue, proteins with
expression negatively correlated
with survival. Red, proteins
positively correlated with
survival. Solid lines, direct
relationships. Dashed lines,
indirect relationships. Subcellular
localisation is indicated
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is one of the most studied and documented (Sharma
et al. 2014). Phosphorylation involves the addition of a
phosphate group onto the side chain of serine, threonine
and/or tyrosine residues (Ubersax and Ferrell 2007).
This modification is usually mediated by the action of
kinases and phosphatases (Hunter 1995), and is in-
volved in multiple biological functions including migra-
tion, cell growth, differentiation and cell death (Ardito
et al. 2017). These functions are usually performed by
the action of several signalling pathways (Tarrant and
Cole 2009).

MM induces abnormal activation of signalling path-
ways that affect the overall phosphorylation profile of
the cells (Rodríguez-Cerdeira et al. 2018). In this con-
text, the application of phosphoproteomics to MM has
become extremely relevant. In order to block these
pathways, protein targets against which new drugs can
be designed must be identified (Abelin et al. 2016). The
RAS/RAF/MAPK (mitogen-activated protein kinases)
pathway appears to be a key regulator of the develop-
ment of MM. MAPK proteins are essential in cell pro-
liferation and evasion of apoptosis (Burotto et al. 2014).
The classical MAPK pathway includes proteins such as
v-Raf murine sarcoma viral oncogene product (BRAF)

and the downstream partners extracellular signal-
regulated kinases 1 and 2 (ERK1/ERK2) (Burotto
et al. 2014). These proteins activate several transcription
factors involved in cell development and proliferation
(Fig. 10). BRAF has received enormous attention be-
cause of the mutation rate in MM patients (50–60%)
(Hu-Lieskovan et al. 2014). In addition, some drug
therapies based on BRAF inhibition or combined
BRAF and MEK inhibition against MM have been
successfully applied in the treatment of melanoma (e.g.
vemurafenib, trametinib, dabrafenib and vemurafenib
with cotellic) (Chapman et al. 2011; Hauschild et al.
2012; Hu-Lieskovan et al. 2014).

Knowledge on the MM phosphoproteome was gen-
erated by applying phosphopeptide enrichment proto-
cols and LC-MS/MS on MM-derived cell lines (Basken
et al. 2018; Galan et al. 2014; Smit et al. 2014).
Amongst the methodologies available to enrich
phosphopeptides in MM, the most widely practiced are
immobilised metal ion chromatography (IMAC)
(Thingholm and Larsen 2016a) and titanium dioxide
(Thingholm and Larsen 2016b), and combinations
thereof. In addition, fractionation protocols such as
strong cation exchange (SCX) (Lombardi et al. 2015),

Fig. 10 Illustration of pathway signalling where phosphorylation signalling PTMs have been sequenced and annotated in melanoma
tumours from patients
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hydrophilic interaction liquid chromatography (HILIC)
(Boersema et al. 2008) or basic reversed-phase chroma-
tography can be utilised to increase coverage of the
phosphoproteome (Batth et al. 2014). To perform
phosphoproteomics, large quantities of protein are usu-
ally necessary (Mertins et al. 2013). Consequently, cul-
tured cells are usually preferred. To characterise theMM
phosphoproteome in detail, and to discover biomarkers
of clinical significance, large MM patient tissue cohorts
are required. Unlike cell lines, patient tissue takes into
account the heterogeneity of the tumours and the micro-
environment of the surrounding cells (Marcell Szasz
et al. 2018; Szász et al. 2017). This, however, raises
additional challenges such as reproducibility, low quan-
tities of available startingmaterial, material loss and lack
of automation.

To overcome these challenges, a protocol to per-
form phosphopeptide enrichment from MM tissues in
an automatic manner was recently optimised (Post
et al. 2017). The AssayMap Bravo platform enables
enrichment of phosphopeptides with high selectivity
and sensitivity, and up to 96 samples can be simulta-
neously processed (De Graaf et al. 2016; Post et al.
2017). From 16-fold less material than previous re-
ports on cell lines, thousands of phosphopeptides
were detected using Fe(III)-IMAC cartridges. The
obtained phosphoproteome covered essential features
of MM (MAPK and non-canonical MAPK phospho-
proteins) and was comparable with previous reports
based on cell lines. More importantly, additional
MM-related pathways were revealed that were only
apparent in human tissue (i.e. anti-tumour immune
response). The development and incorporation of this
protocol represents a significant step towards a better
understanding of MM and an opportunity to integrate
clinical data combined with phosphoproteomics in
biomarker screening.

Quantitative acetylomics

Protein lysine acetylation is a widely spread PTM that
participates in the regulation of a vast majority of cellu-
lar processes. Lysine acetylation is a reversible PTM that
occurs on the epsilon (ε) amino group of lysine residues.
This PTM is catalysed by lysine acetyltransferases or via
non-enzymatic mechanisms under a specific chemical
environment, e.g. the mitochondrial matrix. The remov-
al of an acetyl group only occurs enzymatically. Two
groups of enzymes with lysine deacetylase activity have

been described: the Zn2+-dependent lysine deacetylases
and the sirtuins. The latter uses NAD+ as a cofactor.
Lysine acetylation affects the interaction of a modified
protein with other molecules such as nucleic acids, or by
opposing the occurrence of other PTMs targeting the
same site, e.g. methylation and ubiquitination.

There is an increasing number of studies linking
dysregulation of lysine acetylation targets, interacting
proteins thereof and controlling enzymes with the

Fig. 11 Strategy to identify and determine the stoichiometry of
acetylation sites
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development and progression of cancer. Particularly in
melanoma, class I lysine deacetylases are overexpressed
when compared to non-cancerous cells (Krumm et al.
2016). Greater efforts, however, are imperative to fully
understand how the upregulation of these enzymes al-
ters the acetylation status of the targets and how this is
subsequently translated into cancer progression.
Therefore, the study of not only the expression of these
enzymes but also targets thereof and the status of the
acetylation modification will open new avenues in terms
of therapeutic strategies.

To study lysine acetylation, an MS-based ap-
proach aimed at identifying and quantitating lysine
residue acetylation was implemented (Gil et al.
2017). This method relies on the chemical modifica-
tion of the free ε-NH2 groups in proteins by acetyl
groups labelled with deuterium (CD3–CO–)
(Fig. 11), and subsequent differentiation from endog-
enous acetylation (CH3–CO–, Fig. 11). The acetyla-
tion of all lysine ε-NH2 groups in proteins limits
trypsin cleavage to arginine residues. The complexity
of the sample is subsequently decreased by reducing
the number of generated peptides per protein. With a
reduced number of diverse peptides per protein in the
sample, the LC-MS/MS system can, in theory, ana-
lyse peptides from more proteins, which additionally
aids in the identification of lower-abundance pro-
teins. After LC-MS/MS analysis of the tryptic digest,
the identification of mass signals assigned to every
peptide containing deuterium-labelled acetylated ly-
sine triggers the search for peptide signals at the same
elution time with a decrease in mass of 3 Da, i.e. the
mass difference between the endogenously and ex-
ogenously labelled acetylated peptides. A thorough
informatic analysis of the mass accuracy and isotopic
distribution of the signals enabled both the identifi-
cation of the acetylated lysine residue and the extent
of the modification.

Using this approach, the acetylation sites and the
stoichiometry of the modification were determined
for protein lysates from different melanoma cell
lines. More than 2200 acetylated peptides corre-
sponding to more than 1500 different proteins were
identified in each cell line. In addition, our results
confirmed previous findings that lysine acetylation
is a PTM with low stoichiometry (Schölz et al.
2015). More than 40% of all identified acetylation
sites showed less than 10% occupancy by this PTM.
Amongst the acetylated proteins were found those

directly linked to ribosomal RNA processing. Others
are involved in the spliceosome machinery and
mRNA splicing. Ribosomal proteins were also con-
firmed as group influenced by acetylation.

Liquid biopsies in melanoma

Liquid biopsies refer to the analysis in blood or other
body fluids, of molecules or cells as a result of tumour
leakage (Schwarzenbach et al. 2011). Nucleic acids such
as DNA, mRNA and microRNA can be detected circu-
lating in blood and they can be released from cancerous
cells. However, not only tumour cells, but also other
pathological and physiological conditions, can result in
an increase of these molecules in blood. In this sense, in
melanoma, the analysis of circulating DNA from tu-
mour has been focused mainly on the detection of driver
gene mutations, e.g. BRAF and NRAS (Buder-Bakhaya
et al. 2017). This type of study has potential to be used
for prognosis (Gray et al. 2015). In several studies
monitoring mutated BRAF DNA in plasma from mela-
noma patients, correlation has been found between
levels of circulating DNA and response to treatment
with BRAF inhibitors, as reviewed by Calapre et al.
(2017). The detection of other nucleic acid molecules
in melanoma liquid biopsies has been less explored.
Even though liquid biopsies have intrinsically prognos-
tic value, the potential usage for monitoring disease
progression as well as predicting different outcomes,
liquid biopsies have still not yet been established as a
routine clinical test.

Comprehensive data processing and analysis

Cancer research projects can include several ‘omic’
strategies such as proteogenomics, transcriptomics and
metabolomics. Together with clinical and histopatho-
logical data, the information from these platforms has
broadened our knowledge about the entire biological
systems. The most efficient, albeit challenging, way to
study such systems is to integrate different data sets that
were generated from several complementary techniques
(Fig. 12).

Currently available tools to integrate omic data include
web-based tools requiring no computational experience,
and more versatile tools for those with computational
experience (Misra et al. 2018). Examples of such tools
include the more user-friendly Paintomics (http://www.
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paintomics.org), 3Omics (http://3omics.cmdm.tw/) and
GalaxyP,M (https://usegalaxy.org/), and IntegrOmics
(http://math.univ-toulouse.fr/biostat), SteinerNet
(https://cran.rproject.org/src/contrib/Archive/SteinerNet/),
OmicsIntegrator (http://fraenkel.mit.edu/omicsinte

grator,https://github.com/fraenkel-lab/OmicsIntegrator)
and MixOmics (http://mixomics.org/) for users with
programming expertise.

In this melanoma project, the patient samples were
analysed with several analytical techniques, each with
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Fig. 12 Data integration and most common outcomes. Omic and
clinical information combined with histopathological data are
integrated through bioinformatic tools based on machine learning

and statistical approaches. As a result, it is possible to discover
new biomarkers and to obtain a better understanding of the disease
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different aims and approaches. By applying machine-
learning tools and statistical approaches, correlations
between variables from the different data sets (e.g. pro-
teins panel and % of tumour) were determined.
Ultimately, this type of information leads to the discov-
ery of new biomarkers.

Proteogenomics

Proteins are the downstream products of the genome
and transcriptome. Protein properties such as the prima-
ry sequence can be predicted (with high accuracy) from
the genome and proteome. Properties such as post-
translation modifications or protein quantity in a partic-
ular cell location or tissue are the result of complex
interactions with other proteins, environmental effects
and stimuli and therefore cannot be accurately predicted.
The chemical composition of proteins is more complex
than the genome, and consequently, proteins are more
challenging to qualitatively and quantitatively analyse.
Proteins, however, are the molecules that actively con-
tribute to biological events. Therefore, these harbour
important information to further our understanding on
developmental, ageing and disease processes in living
organisms.

The genome, transcriptome and proteome do share
similar information on the state of a living organism, but
additional different types of complementary information
can also be determined (Zhu et al. 2018). The goal of
proteogenomics is to integrate tightly qualitative
(identification) and quantitative aspects obtained from
genomic, transcriptomic and proteomic information.

Tracking disease-associated mutations and/or single
amino acid variants in malignant melanoma

Qualitative aspects encompass identification of se-
quence variants that include, e.g. single amino acid
polymorphism, splice junction peptides and rare se-
quence variants. These variants cannot be identified
with a standard proteomic workflow because canonical
sequences from public databases such as Uniprot or
Ensembl are used. The canonical sequence is the longest
protein sequence and is usually the most abundant form
of a protein-coding gene (SwissProt) or contains a lim-
ited number of proteoforms (Trembl). Identification of
these variants can be performed in different ways. One
of the most popular approaches is to complement the
canonical sequence with sequence variants from various

databases such as CanProVar1.2 (Li et al. 2010; Zhang
et al. 2017), VarCards3 (Li et al. 2018), COSMIC4
(Forbes et al. 2017) and others (Yang et al. 2015).
Alternatively, 6-frame translation of the human genome
or 3-frame translation of mRNA data from various
samples can be included (Kim et al. 2014; Nesvizhskii
2014; Zhu et al. 2018). Other approaches use genomic
or transcriptomic data obtained from the same sample to
predict protein sequence variants. The latter approach is
preferred as a smaller search space is utilised (including
only non-synonymous variants present in the sample)
and the statistical scoring of the database search is
facilitated (Low et al. 2013).

Previous studies have estimated that the mutation rate
for melanoma and lung cancer cell is up to 100 per 1
million base pairs. Thus, a mutation phenotypically
expressed at the protein level is invaluable as this may
potentially represent a novel drug target. The problem of
drug resistance (a.k.a., why do some patients respond to a
particular treatment whilst others do not?) represents an-
other remarkable question that can be addressed through
proteogenomic studies. For example,MM is characterised
by somatic BRAF and RAS mutations in the MAPK
pathway. These mutations strongly correlate with poor
prognosis of the disease. The inhibition of the mutated
BRAF with selective inhibitors such as vemurafenib or
dabrafenib has resulted in the reduction of MAPK signal-
ling and regression of the disease. Unfortunately, most
patients quickly develop resistance to drug treatment and
the identification of proteins with somatic mutations that
influence the development of resistance has largely
remained elusive (Salemi et al. 2018).

InMM translational research to date, only a few reports
have utilised a proteogenomic approach. In a pioneering
study, Lobas et al. (2018) used MM cell lines to identify
protein variants originating from coding mutations. This
was achieved by acquiring and processing exomic and
deep proteomic data. The authors also assessed strategies
to minimise both false-positive and false-negative identifi-
cations, an important goal in cancer proteogenomics.

Preliminary searches for protein isoforms and mutant
variants were performed on the proteomic data generat-
ed from regional lymph node metastatic melanomas.
Single amino acid variations were observed in a signif-
icant number of proteins. In Fig. 13 are the observed
protein variants of the poly ADP-ribose polymerases
(the PARP protein family) that were identified in at least
20 of the analysed metastatic melanoma tumours.
PARPs play a role in chromatin modification, DNA
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replication and transcription during induced cell death
and DNA repair. The most prevalent isoforms of the
poly ADP-ribose polymerase were detected in our

proteomic study, a fact that indicated the complexity
and heterogeneity of the disease at the protein level.
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Fig. 13 MS/MS spectra of
peptides from subunits 4 and 9 of
poly ADP-ribose polymerase
(PARP) confirming the
occurrence of mutations and
single amino acid substitutions in
the sequences. a Substitution of
the alanine residue at position 899
for a threonine in PARP-4, b
substitution of a proline residue at
position 1328 for a threonine in
PARP-4, c substitution of a
glycine residue at position 1265
for an alanine in PARP-4, and d
substitution of a tyrosine residue
at position 493 for a cysteine in
PARP-9. The designation for the
fragment ion signals in the MS/
MS spectra is according to the
Roepstorff–Fohlmann–Biemann
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Given the capacity to target BRCA1/2-deficient can-
cers, PARP inhibitors (PARPis) have elicited consider-
able enthusiasm as a cancer treatment, and the discovery
of PARPis led to the concept of ‘synthetic lethality’
(Helleday 2011). In fact, inhibitors of the PARP family
of proteins are currently under preclinical and clinical
evaluation as anticancer medication for melanoma and
ovarian, breast and prostate cancer. PARPis have a pe-
culiarity in that these drugs increase the efficacy of
DNA-damaging agents to selectively target tumour cells
with specific DNA repair defects (Musella et al. 2018;
Papeo et al. 2013; Plummer et al. 2013). Resistance of
cancer cells to PARP inhibitors, however, is also begin-
ning to occur and accurate biomarkers for treatment
sensitivity and resistance remain challenging (Montoni
et al. 2013; Schlacher 2017).

Linking genes to protein expression and function

Quantitative aspects include co-expression (correlation)
analysis between the two layers, which is known to be
medium (around 0.4–0.5 in cell lines and tissue). This
medium correlation can be explained by the fact that
transcripts are upstream to proteins and transcriptions,
translations and post-translation and protein and tran-
script degradation are events that have different time
dynamics (Schwanhäusser et al. 2011).

Other integration approaches use multivariate statis-
tics that aim at performing dimension reduction to
integrate heterogeneous quantitative molecular profiles
and use the obtained model for prediction of, e.g.
survival or treatment efficiency, or perform improved
disease classification. Examples of such methods are
Multiview Nonnegative Matrix Factorization
Algorithm (Ray et al. 2017), Joint Non-negative
Matrix Factorization (Zhang et al. 2012; Zhang et al.
2011) and mixOmics R package (Rohart et al. 2017).
Compound co-expression networks based on correla-
tion or partial correlation (Graphical Gaussian models,
GGM) are also gaining momentum. The NetICS meth-
od can be used to identify, e.g. mediator genes, and
translate upstream events, e.g. differential expression,
genetic mutations and differential methylation of the
gene promoter region (Dimitrakopoulos et al. 2018).
The reader is invited to read recent reviews on the
various statistical approaches in Bersanelli et al.
(2016) and Huang et al. (2017).

Other aspects of proteogenomic data integration are
to reveal the effect of genomic variants on transcript

(eQTL) and protein (pQTL) abundance on the basis of
quantitative trait loci analysis and the effect of gene
duplications/deletions for both molecular layers using
copy number variation (CNV) analysis (Mertins et al.
2016). These analyses have the potential to reveal so-
matic or germline variants and chromosomal aberrations
that alter transcript and protein abundance and link these
to the disease.

Another interesting direction of linking genes to pro-
tein expression and function is the analysis of DNA
methylation. DNA methylation is an epigenetic mecha-
nism that occurs mostly by the addition of a methyl
group to DNA at the 5-carbon of the cytosine ring.
There is growing evidence demonstrating that DNA
methylation may deeply alter protein expression and
potentially be a causative event in cancer (Fernandez
et al. 2012; Jones and Baylin 2002). Hypermethylation
has been associated to the silencing of genes and to
decreased gene expression of tumour suppressors,
whilst hypomethylation can potentially result in geno-
mic instability and reactivation of oncogenes (Litovkin
et al. 2014, 2015; Paska and Hudler 2015;Weisenberger
2014). Based on genome-wide studies, abnormal meth-
ylation patterns have been detected in melanoma pa-
tients, highlighting potential markers for disease pro-
gression and also providing an important strategy for
tumour diagnosis and treatment (Fu et al. 2017; Guo
et al. 2018; Koga et al. 2009). Nevertheless, as the
proteome represents a link between DNA and pheno-
type, proteins likely provide a more accurate depiction
of the cell state. Hence, integrating next-generation se-
quencing applications in methylome analysis with com-
prehensive proteomic data provides an opportunity to
more accurately identify functionally relevant abnormal
methylation events that drive cancer pathogenesis.

Challenges in drug discovery and development

The Food and Drug Administration (FDA) and other
international agencies are posing ever-increasing de-
mands prior to approval and release of novel drugs onto
the market. Ultimately, these demands improve quality
of care and treatment outcome for patients. There are a
number of challenges and pitfalls where drugs prove to
be unsuitable for medical use in healthcare. Managing
these is of mandatory importance to the medical indus-
try, and recently, a report outlined in detail a benchmark
survey of a large number of drug development projects
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in phases I–III. From this, the 5R Framework strategy
was implemented (Cook et al. 2014; Vreman et al.
2018). The 5R Framework encompasses the right target,
right patient, right tissue, right safety, and right commer-
cial potential. The right protein target refers to the need
for evidence of a strong link between a disease and the
chosen protein target. In addition, the right level of
safety is important to provide both differentiated and
clear safetymargins. This also encompasses understand-
ing secondary pharmacological risks that may occur
from reactive metabolites and genotoxicity (Cook et al.
2018). The right tissue must be identified to enable
adequate bioavailability and tissue exposure and where
the pharmacokinetics is well understood. The right pa-
tients are imperative to identify the most relevant popu-
lation where the highest drug efficacy can be obtained.
The most difficult component of 5R is to address the
safety issues associated with novel drugs. This is often
the major reason for failure and accounts for at least
50% of all project closures (Arrowsmith and Miller
2013; Cook et al. 2014; Paul et al. 2010). Additionally,
safety and lack of efficacy indirectly contribute to pro-
ject closure by limiting the dose at which compounds
can be evaluated in humans. This results in a prevention
of adequate drug exposure that also limits protein target
engagement.

As an example, epidermal growth factor receptor
(EGFR) tyrosine kinase inhibitors (TKIs) such as gefi-
tinib (IRESSA) and erlotinib (TARCEVA) are
established treatments for advanced non-small-cell lung
cancer (NSCLC) in Asia (Han et al. 2014; Kato et al.
2011; Mok et al. 2009). The EGFR-TKIs exhibit high-
affinity binding to the mutated EGFR tyrosine kinase
domain and have been used as an approach to treat
advanced NSCLC in Japanese populations (Dagogo-
Jack et al. 2018; Nogami et al. 2019). Understanding
the mode-of-drug action is a key component in safe and
effective treatments, and the measurement of bio-
markers will become very important. Utilising liquid
chromatography–mass spectrometry, a recent study
was undertaken to identify plasma biomarkers for inter-
stitial lung disease in NSCLC patient groups (cases and
controls). This is likely to be one of the largest biomark-
er discovery studies performed to date by mass spec-
trometry (Marko-Varga et al. 2007; Nyberg et al. 2011;
Végvári and Marko-Varga 2010). The success of the
aforementioned personalised medicine studies has
established a new paradigm in these Asian healthcare

centres: the right medicine to the right patient at the right
time point.

Drug imaging by mass spectrometry

The development of more effective drugs is at the heart of
any future plan to meet societal pressures and necessities.
Our research endeavours are positioned to provide
healthcare decision-makers with new options with better
medicines. Academic research has contributed greatly to
the drug development process by identifying potential
disease targets and developing the technology platforms
that support and validate the eventual clinical products.
There are many diverse disciplines that participate in this
process, from clinical medicine to molecular biology, and
also chemistry, physics, statistical sciences, informatics
and device engineering. To provide the overall scientific
knowledge required to launch a new pharmaceutical
product, these disciplines must be highly inter-
connective andmutually co-dependent. The development
of new technologies that can aid in selecting effective
candidate drugs would provide broad benefit to:

& Improve the success rate for approval by the FDA
and regulatory agencies

& Identify safety issues with certain compounds
& Reduce the cost of drug development by identifying

problems early in the decision-making process
& Increase our understanding of the mechanisms of

drug efficacy

At the very centre of the drug development process is
the matching of specific biological targets with an an-
tagonist or agonist drug. This interaction must result in a
biological effect that limits or suppresses the pathology
of the disease. Nevertheless, many questions arise. How
do we know what happens to a drug once administered
to patients? What is the fate of the drug?Where does the
drug accumulate and what effect is there at the local site
of target interaction?What other sites does the drug also
affect? For most of the drugs on the market, there is a
paucity of information on the actual localisation of
administered compounds within the multitude of differ-
ent types of tissue compartments in humans. This infor-
mation can be obtained in experimental animal studies;
however, extrapolating data from animal models to
humans is not without limitations and problems.

Although the last half century has witnessed dramatic
advances in the field of medical imaging, there is still an
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urgent need to develop more advanced techniques to
image compounds during the drug discovery process.
This is particularly important in order to narrow the
selection of potential leads for further development.
One of the reasons this has been difficult to accomplish
in the past is that the only avenue for visualising the
in vivo distribution of drugs in targeted tissues was to
use radioactive labels that inherently pose a health and
safety risk. The standard methods to localise drugs in
situ have included autoradiography and positron emis-
sion tomography (PET). These can provide information
on the distribution of a radio-labelled compound even at
the cellular level; however, both methods rely on quan-
titative data that is based on the relative strength of the
label rather than the relative concentration of the drug. If
a drug is metabolised and the label remains on a
metabolised fragment of the drug that is not active, not
the precursor of an active form, then the read-out of
distributionmay have little to dowith the mode of action
or the actual efficacy of the drug. Other methods rely on
isotopes with relatively short half-lives or fluorescent
tags that hinder long-term pharmacokinetic analyses or
alter the chemical structure and thus the binding affinity
and/or avidity to the target molecule. From this point of
view, it is particularly important that the methods chosen
should investigate the characteristics of the unaltered
native compound (i.e. the same agent that is adminis-
tered to patients).

Particularly for drugs, mass spectrometry imaging
(MSI) is a technology under rapid development and this
particular combination is finding widespread applica-
tion across the life and medical sciences (Charkoftaki
et al. 2018; Gessel et al. 2014; Végvári et al. 2011).
Recently, important progress has been achieved in tissue
preparation combined with novel MSI instrumentation
to generate high-quality data. In addition, MSI can now
aid in interrogating the spatial distribution of native drug

compounds and drug metabolites within tissues at the
resolution of a single cell (Sugihara et al. 2018; Torok
et al. 2015, 2017; Végvári et al. 2017). Cold compounds
are being measured by MSI, i.e. without any modifica-
tion of its native structure.

In drug imaging, the signals that are generated and
acquired as a mass spectrum will spatially define the
distribution of a drug within the tumour tissue. The
resultant data reflects the pattern of a specific compound
within the tumour compartment and is based on a profile
of intensity values that correspond to specific mass-to-
charge (m/z) values. The technology that enables the
generation of modern drug imaging spectra is capable
of accurately computing high-resolution m/z data to
approximately the mass of a single electron.

By understanding mode-of-drug-action mechanisms,
efficacy prediction can be improved. Thus, imaging
mass spectrometry can aid in the development of safety
strategies for the treatment of melanoma. Together with
establishing large biobanks, there will be considerable
improvements in patient treatment. A major goal, there-
fore, is to provide drug mechanism evidence by drug-
target affinity interaction and protein target binding spec-
ificity and redundancy. These are the key elements of
efficacy and safe drug use. Our integrated system com-
bines macroscopic and microscale imaging with drug
and mechanistic information that predicts responders.

Over the last years, our research group has become
one of the world leaders in developing a new method to
identify, quantitate and determine the in vivo tissue
distribution of label-free drugs and metabolites by mass
spectrometry imaging of histological tissue sections.

Dedicated MSI laboratories have been established
within pharma industry, where instrument platforms have
been developed to routinely provide detailed spatial
quantitation of drugs within tissue via mass spectrometry
imaging (MALDI-MSI). MALDI-MS has been used

Fig. 14 First reported study where MALDI-MSI was used to
demonstrate localisation of a drug administered at therapeutic
levels in humans. The study demonstrated that the ipratropium

precursor ion (m/z 332.332) is rapidly absorbed into the airway
wall partitioned within submucosal spaces containing the targeted
airway smooth muscle
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since the mid-1990s in pharmacokinetic studies to char-
acterise in vitro metabolites. As an important advance-
ment in studying drug action, MALDI-MSI can deter-
mine the spatial distribution of drugs and metabolites
thereof at a histologically relevant resolution. MALDI-
MSI does not require labelled compounds and thus can be
applied to native drug structures and metabolites within
any tissue environment. Tissue biopsies are an important
component of the diagnostic evaluation of many condi-
tions and, until recently, analyses performed on tissue
samples typically focused on the histology, pathology,
gene expression and immunohistochemistry for biomark-
er expression. The measurement of the drug level in
tissue by MSI is a standard approach complemented with
the above-mentioned indices. Using this methodology,
the first report on tracking an unlabelled drug to the
targeted tissue compartment was achieved by our re-
search team (Fehniger et al. 2011). In this study, an
inhaled anti-muscarinic receptor antagonist, ipratropium,
was tracked to the receptor located on the bronchiole wall
smooth muscle bundles. This imaging modality has also
been combined with in situ labelling of the target receptor
(Fig. 14).

MALDI-MSI is more and more widely used to de-
scribing drug distributions in experimental systems.
Nevertheless, more than 100 reports have been pub-
lished where the technology has been used to character-
ise drug compounds in experimental drug predicting
models (Connell et al. 2015; Kwon et al. 2015;
Marko-Varga et al. 2012a; Végvári et al. 2017). Until
recently, only our own studies have described such drug
distribution in humans. The ability to analyse the same
tissue section with multiple assays such asMALDI-MSI
(drug or marker), immunohistochemistry (protein target,
antigen, receptor), conventional pathology chromogenic
stains (histology, image analyses) and in situ
hybridisation (gene expression, etc.) provides an incred-
ible and rare opportunity to study and define biology at
the very local level of histological compartments.

Drug selectivity and specificity is dependent on the
frequency of a protein mutation and the specific binding
properties of the drug molecule. The ultimate proof of
personalised medicine (PM) mechanisms is data that
show the target protein binding to the targeted drug.
Over the last decade, our team has been developing
MSI to characterise some of the most commonly used
PM drugs in cancer and inflammatory diseases. Co-
localisation of drug and protein target is an extremely
challenging but very important task, and requested by

the FDA to prove mode-of-drug action. Cases of MM
have been studied where a single gene mutation was
identified that responded to one of the main therapeutic
agents, vemurafenib (Sugihara et al. 2014). In mutant
and wild-type patient tumours, a significantly different
uptake of the drug in the mutated tumours was observed
compared to the wild-type. Expression of the BRAF
V600E was demonstrated to coincide with drug binding
in areas of BRAF V600E expression (as demonstrated
in Fig. 15).

Processing MSI data

MSI experiments generate vast numbers of mass spec-
tra, at least one from each of the selected points through-
out the tissue area. The combination of this and the high
mass resolution ofmodern instruments leads to data files
whose size may easily exceed tens of gigabytes. Pre-
processing of the raw data is performed by projecting
the spectra onto a common list of peaks or mz-bins. Ion
images can then be generated by visualising each peak
or bin in a two-dimensional space.

Users typically query MSI software to determine
which analytes co-localise with a known compound,
e.g. a drug or drug metabolite. Alternatively, regions of
interest (ROIs) corresponding to known structures in the
tissue are marked and the question of which peaks are
specific to each region is asked, Fig. 16a and b. Finally,
there are ways to segment the image in an unsupervised
fashion into regions with similar spectral signatures
(Suits et al. 2013).

There are multiple ways to perform pre-processing
and the choice of method will impact the quality of the
ion-images and downstream statistical analysis. The
most common approach is to attempt to separate and
extract peaks originating from relevant signals, e.g. those
originating from structures in the tissue itself, or drugs,
from noise and background signals. This is often referred
to as peak-picking in the literature. There are numerous
algorithms that perform peak-picking and existing MSI
software usually implements at least one of these.
Alternatively, the spectra can be binned which has the
advantage that less data is discarded.Whilst binning may
reveal signals that may have been excluded by a peak-
picking algorithm, more noisy data is generated. This
effectively shifts some of the responsibility from the pre-
processing step to later stages (Alexandrov 2012).

Currently, there is no standardised means to perform
these tasks. Each instrument vendor provides a software
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Fig. 15 (1) Immunohistochemistry image of a frozen melanoma
tissue from a lymph node. BRAF V600E specific antibody was
used for immunohistochemistry with DAB stating. BRAF V600E
was expressed in the cytoplasm in the melanoma cells. The lym-
phocytes were used as a negative control. (2) Vemurafenib distri-
bution in melanoma tissue. Adjacent tissue sections were used for
immunohistochemistry. (a) High-resolution MSI spectrum of
vemurafenib (m/z 490.079); (b and c) low-resolution ion trap

MS/MS data for two fragment ions of vemurafenib (m/z 383.1
and 262.1); (d) haematoxylin and eosin (H&E) staining demon-
strated the distribution of the cancer cells and lymphocytes; (e)
overlaid image of the MSI vemurafenib distribution and histology
showed the vemurafenib signal originated from the melanoma
cells and not the lymphocytes; (f) chemical structure of
vemurafenib
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solution with implemented proprietary algorithms.
Furthermore, most vendor software only accept their
own data format, whereas others also accept the more
global imzML format. In addition to proprietary soft-
ware, there are freeware alternatives such as the R
package Cardinal (Bemis et al. 2015). These often
demand that the user is proficient in programming. In
our team, we seek to develop freely available and
vendor-agnostic software solutions that aid our re-
searchers and others to interact with the data in an
intuitive fashion.

Outreach programs on cancer awareness

From innovation to implementation

Decisions that are made concerning patient treatment
are highly dependent on reaching a correct diagnosis
from pathological evidence, but does modern pathology
require more advanced tools? The current situation is
that:

1. Diagnosis is observer-dependent, with high inter-
observer variability.

2. Due to a multi-step decision process, diagnosis is
time-consuming.

3. Sometimes, a definitive diagnosis is not possible.
4. Usually, no prediction of response or outcome can

be determined.

Central to the activities of the consortium is the con-
vergence of existing knowledge to arrive at the

alternative approach detailed in this review. The aims
are to collect patient and tissue-specific molecular infor-
mation (in the form of big data) and convert this into
knowledge upon which serious action can be taken. As
discussed above, the key technologies used to analyse
1000s of proteins in 10,000s of cancer types will be
merged. A novelty of this approach is the unprecedented
scale of analysis. By correlating protein patterns with
genomics, pathology and patient (clinical) outcome, rap-
id and improved cancer diagnosis is anticipated.
Ultimately, a personalised treatment decision process
for pathologists and medical staff will ensue and lead
to the discovery of new targets for improved treatment
regimens.

Thus, the focus of our work is to advance and trans-
late innovative research findings directly into clinical
applications. Notwithstanding the impressive advances
in recent years and those expected to emerge from this
research, a significant hurdle still exists in obtaining
relevance through the application of new findings and
translating this into benefit for patients. The gap be-
tween what a researcher ascertains as beneficial innova-
tion and what clinicians require prior to implementation
is still very broad. The reasons for this disparity are
partially due to the complexity of the task and the
attainment of precise molecular information for each
individual and for each cancer type.

It is important to remember that despite worldwide
efforts to treat melanoma, many unresolved questions
remain. To progress, the intimate collaboration between
the community of researchers, clinicians and patients is
crucial, as is the inclusion of stakeholders and funding
agencies. Gaps in knowledge and subsequent hurdles
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Fig. 16 a H&E-stained primary tumour from a malignant mela-
noma patient. Four different regions highlighting the composition
of the tissue have been marked by a pathologist. b Principal

component analysis based on MALDI-MS spectra from each of
the four ROIs of the tissue slice. The results were projected on the
three first principal components
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for healthcare professionals can only be resolved by
technological approaches. Thus, our aim is to under-
stand melanoma with key mature technologies at an
unprecedented scale of operation. In this way, molecular
information on patient tissues will be generated that may
at first glance appear to be an overwhelming deluge for
many colleagues and patients. Thus, the dilemma faced
is that a community that can absorb new molecular
information and readily apply this to patients or research
models does not yet exist. The greatest challenges that
lie ahead may not only be in generating new informa-
tion, but also in aiding clinicians and patients to under-
stand this information in the context of the disease.
Patients are important decision-makers in this process
and therefore need to understand the information that is
generated and the relevance thereof. Important issues for
communities are to consider mechanisms for sharing
and reuse. How (patient) data will be regulated is one
of our immediate challenges.

In summary, merging pathology with our understand-
ing of the location of proteins, the chemical structures of
proteins and the pathways where these proteins are
functionally active will lead to new and more precise
information for each individual and for each cancer
type. The potential success of the work described in this
review, however, will lie fallow unless successfully
translated into information that can be interpreted by

humans. To advance from innovative science to imple-
mentation in patients through meaningful information
requires the concerted efforts of scientists, clinicians and
the community. The consortium welcomes and encour-
ages such collaborations.

At the European Cancer Moonshot Lund Center,
every aspect of the battle against cancer is undertaken
with the utmost seriousness. Part of that battle is to
increase awareness of the global fight against cancer,
and to attract attention to the exceptional research per-
formed by our top scientists and staff—the foot soldiers
that tirelessly fight on a daily basis in the war against this
relentless disease. To expedite our efforts, the European
Cancer Moonshot program has empowered our commu-
nications team to boost our visibility and increase aware-
ness of the cooperative research being undertaken with
our global partners. This has been achieved through
social media platforms of Facebook, Instagram, and
Twitter (Fig. 17). Social media are used daily by billions
of people and enable organisations such as ours to rap-
idly and cost-effectively reach a massive and diverse
audience that otherwise would be difficult through other
more conventional media channels.

When utilised correctly, social media can aid our
organisation in engaging stakeholders, supporters and
other research projects, capturing not only global atten-
tion but also increasing awareness of cancer and the
diligent work of our dedicated team. At the European
Cancer Moonshot Lund Center, the most important of all
stakeholders are the patients, relatives and friends who
are all affected by cancer to differing degrees. With
effective communication of our values and continued
outreach, many likeminded people will be motivated to
become associated with our organisation and supportive
of our goals. From our outreach efforts on social media
where focus centres on patients, relatives and friends, a
community of supporters continues to grow. By raising
awareness at the recent European CancerMoonshot Lund
Center symposium, inter-connectivity between the
University of Amsterdam, Szeged Medical University,
Semmelweis Medical Center and the Cedars Sinai
Hospital in Los Angeles has built a common platform
to provide value to the patients. Details of these develop-
ments can be followed via posted videos of the sympo-
sium (https://www.youtube.com/channel/UCjNZ6
FYdzKqTrD4VCSnXgAA).

Through this community, our vision is not only ac-
tively communicated, but also expedited via direct com-
munication with the organisations and people that our

Healthcare Research

Patient Relative Friend

Fig. 17 Find the European Cancer Moonshot Lund Center on
these social media services. (Facebook, Twitter, Instagram,
LinkedIn)
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centre and research want to reach. In doing this, not only
is our influence increased, but also our credibility.
Consequently, we will be better equipped to achieve
the goals decreed by the European Cancer Moonshot
Lund Center. With patient-, relative- and friend-focused
social media outreach programs, the daily impact on the
cancer research field will be augmented and enhanced to
further our cause.

Conclusions

Modern science is changing the paradigm of how disease
is diagnosed and treated in both a local and global setting
of healthcare. Activities in translational science are
streamlining the process of drug discovery, and
personalised medicine approaches are delivering more
effective care. Developing our understanding of disease
mechanisms will advance modalities for measuring bio-
markers within disease pathways, and clinical proteo-
mics will play an important role in delivering these
measurements. Today, however, there is still very little
information available to scientifically evaluate drug dis-
tribution patterns with an associated biological effect
following drug treatment and the impact of medicine
on pathology. The development of new analytical tools
that can quantitate drugs and metabolites thereof that are
delivered at pharmacological doses directly to the site of
drug action would provide invaluable data for
interpreting the results of drug studies. Drug concentra-
tion evaluations are already an integral part of compre-
hensive safety studies of drug candidates that are a
prerequisite to the clinical approval. Drug imaging by
mass spectrometry is currently the only available tech-
nology that can accurately measure unlabelled drugs in a
pharmaceutically administered form. To the best of our
knowledge, the results presented here are the first to
demonstrate that the interfacing of imaging by mass
spectrometry with histopathology is a versatile and sim-
ple method to examine drug pharmacokinetic attributes.
By extension, this combination further enables the elu-
cidation of the mechanisms-of-drug action at the local
in vivo site of intended effect. The constant develop-
ments and improvements in mass spectrometry and in-
strumental platforms will ensure continued delivery of
new knowledge on the changes that occur in the histo-
logical microenvironment and the subsequent response
to drug ‘substances’.
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