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Abstract. Investigation of dynamics processes in cell biology very often relies on the

observation of sampled regions without considering re-entrance events. In the case of

image-based observations of bacteria cell wall processes, a large amount of the cylinder-

shaped wall is not observed. It follows that biomolecules may disappear for a period of

time in a region of interest, and then reappear later. Assuming Brownian motion with

drift, we address the mathematical problem of the connection of particle trajectories

on a cylindrical surface. A subregion of the cylinder is typically observed during the

observation period, and biomolecules may appear or disappear in any place of the 3D

surface. The performance of the method is mainly demonstrated on simulation data

that mimic MreB dynamics observed in 2D time-lapse fluorescence microscopy.

1. Introduction

In 2D and 3D live cell imaging, spatiotemporal events and biomolecule dynamics are

frequently observed with an incomplete field of view. Very often these observations are

related to regions of observation (ROO) inside a tissue, a cell, in the neighborhood of

membranes. Nevertheless, it is quite uncommon to analyze 3D dynamics occurring on

a closed surface and observed on a 2D plane. To our knowledge, identifying re-entrance

events of the same entities inside the ROO is not addressed in the literature. Yet, as soon

as the unobserved region represents a significant part of the entire surface, a complete

description of the dynamics on these closed surfaces is of paramount importance to

decipher the mechanisms involved in cell wall construction of bacteria [Billaudeau

et al., 2017]. Our objective is to provide a generic approach to tackle the problem

of the reconstruction of particle tracks observed on a small part of a closed surface

as illustrated on Fig. 1. As inputs, we consider a set of trajectories estimated by
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Figure 1. (a): Illustration of trajectories observed during TS on the surface of a

cylinder. Only the motions inside the ROO ]−l, 0[×[0, H] can be observed, even though

the dynamics happen on the whole surface. (b): Representation of the dynamics on

2D unwrapped surface ] − L, 0[×[0, H]. The objective is to recover the dynamics on

the whole surface from the partial observations, by coordinating the inputs through

{−l} × [0, H] and the outputs through {0} × [0, H] in a movie during TS , taking into

account particles birth and death events.

tracking algorithms (e.g. [Jaqaman et al., 2008], [Chenouard et al., 2013]). These

algorithms are very sophisticated and allows us to handle large sets of particles, different

stochastic dynamical models [Blom and Bar-Shalom, 1988], [Bressloff and Newby, 2013],

and observation models [Genovesio et al., 2006], [Li and Li, 2001]. They take into

account birth/death events, and/or split/merge events. Particles may be unobserved

or undetected for short periods of time, especially in 2D+time microscopy. However,

none computational or statistical method manages the situation corresponding to large

hidden or blind region inside the region of interest, or to the identification of particles

leaving the ROO through one border of the domain and re-entering from a far border.

In this paper, we focus on the design and evaluation of a self-contained

mathematical framework to tackle the reconstruction of particle tracks on cylindrical

surfaces, given the observations inside a restricted window sampled on the surface. 3D

image acquisition is not always appropriate, especially if the objective is to capture fast

and temporally short events as described in [Billaudeau et al., 2017]. The frame rate

adapted to the scale of dynamics may be too high when compared to the period of time

to acquire one 3D volume. In our study, the particles obey a stochastic Brownian motion

with drift and may appear or disappear during the observation period. In our modeling

framework, we do not consider split or merge events. The track reconstruction problem is

defined as the maximization of the tracks likelihood given tracks segments reconstructed

inside the region of observation. The optimization problem to be solved is formulated

as a integer linear programming problem. We derive a data-driven algorithm with no

hidden parameter to set by the user. We demonstrate the performance and robustness

of our computational method on simulation data, by varying the ratio of observed to

unobserved region, the speed and variance of particles as well as the birth and death

rates.
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The remainder of the paper is organized as follows. In Section 2, we present

the problem more formally. In Section 3, we describe a probabilistic framework,

including Poisson processes used to describe birth and death events, and Brownian

motion with drift to represent particle motion. This mathematical framework allows us

to derive a computational procedure aiming at connecting segments belonging to the

same trajectory, and then recovering particles dynamics on the whole closed surface.

Note that we ignore the curvature of the cylinder and suppose that the movements are

observed on a 2D unwrapped surface. In Section 4, the performance of the segments

connection algorithm is evaluated on simulated data. Finally we conclude and propose

some future work.

2. Problem statement and notations

We consider a probabilistic model to represent particles that are born, move and die on

a cylindric membrane. Formally, let us denote H and L the height and perimeter of the

cylinder respectively (see Fig. 1). We associate 2D coordinates (x, y) ∈ [−L, 0]× [0, H]

to each point of the underlying cylindric manifold. The particles are ”born” with a

constant rate λ and appear uniformly at random on the membrane surface. We consider

a Poisson process with intensity λ to statistically represent the birth events. Each

particle is assumed to have the same constant rate of death τd such that life duration Td
of a particle follows an exponential law of parameter τd. During its lifetime, a particle

k born at time t0 and located at Zk
0 = (Xk

0 , Y
k

0 ), moves according to Brownian motion

with drift. On the set ] − L, 0[×[0, H], the position of the particle at time t ≥ t0 prior

to its death time is given by

Zk
t = Zk

0 + v(t− t0) + ΣBk
t−t0 (1)

where Zk
t = (Xk

t , Y
k
t ), v = (vx, vy), Σ =

[
σx 0

0 σy

]
, Bk

t is a two-dimensional Wiener

process. In order to model the topology of the cylinder as illustrated in Fig. 1, we impose

deterministic jumps when the process reaches one of the two borders {−L} × [0, H] or

{0}× [0, H]. For any y ∈ [0, H], the process reaching position (−L, y) jumps to position

(0, y) and vice versa. Finally, we assume that each particle behaves independently from

the others and that there is no fission or fusion of particles.

In the sequel, we observe the dynamics at discrete times ∆t, 2∆t, 3∆t . . . We denote

∆t the time step on the subset [−l, 0]× [0, H] with l < L. The observations are recorded

during a time interval [0, TS]. As we suppose that a particle does not change its direction

along its trajectory, we assume that vx > 0, even though particles can actually move in

both directions, which requires a classification to separate them into two groups. We

consider that an observed segment of a given trajectory is an output if the last observed

point of the segment is within a neighborhood of {0} × [0, H]. Meanwhile, we consider

that it is an input if the first observed point is within a neighborhood of {−l} × [0, H].

Our main objective is then to associate the set of trajectories exiting the observed set
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[−l, 0] × [0, H] with the set of trajectories entering this observation set. The challenge

is to correctly match the outputs and the inputs associated to particles (see Fig. 1).

3. Probabilistic models and methods

Let us consider a given sample S, the observation set of all the trajectories. Define

the sets OS = {o1, ..., op} and IS = {i1, ..., iq} of p outputs and q inputs. Each output

o = (to, yo) ∈ OS is characterized by its output time to and its position yo ∈ [0, H]

where the particle left the observed region. Similarly each input i = (ti, yi) ∈ IS is

characterized by its input time ti and its position yi ∈ [0, H] where it entered the

observed region. A particle ”involved” in an output o ∈ OS either died after time to in

the unobserved region, or is ”involved” in a given input i ∈ IS with ti > to. We will

denote this event by {o → i}. Similarly a particle ”involved” in an input i ∈ IS was

either born before time ti in the unobserved region, or is ”involved” in a given output

o ∈ OS with ti > to, which corresponds to the event {o→ i}.
Define c = (Dc, Bc, bc) with Dc ⊂ OS, Bc ⊂ IS and bc a bijection from OS \Dc to

IS \ Bc in order to describe the configuration for which all outputs in Dc died in the

unobserved region, all inputs in Bc are born in the unobserved region, and the event⋂
o∈Os\Dc

{o→ bc(o)}

was realized. Our aim is to determine the maximum likelihood configuration c given the

sample S. The outline of the connection procedure is given in Fig. 2, to facilitate the

understanding of the modeling steps.

3.1. Likelihood of a configuration

In this section, our objective is to derive an analytic expression of the likelihood Q(c)

of a configuration c. The aim is to find, for a given sample S, the configuration ĉ such

that P (ĉ/S) is maximal. It is difficult to calculate directly P (ĉ/S). Since c ⊂ S ⊂ OS,

we can compute P (ĉ/S) working conditionally on OS.

However, since the model is in continuous time and involves random variables with

continuous densities with respect to the Lebesgue measure, the conditional probability

P (c/OS) is equal to 0. This prevents to compute directly P (ĉ/S) with the classical

conditional formula

P (c/S) =
P (c/OS)

P (S/OS)
,

because it gives P (S/OS) =
∑

c∈CS P (c/OS) = 0.

Therefore, for each input i = (ti, yi) ∈ IS, we consider a spatiotemporal

neighborhood V ε
i = T εi × Hε

i with T εi = [ti − ε
2
, ti + ε

2
] and Hε

i = [yi − ε
2
, yi + ε

2
] for

some ε > 0.

The idea is to replace a given configuration c by a set Cεc of configurations where

each element c∗ ∈ Cεc is similar to c but each input i ∈ IS is replaced by an input
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Sample S, the outputs and

inputs sets OS and IS

Estimation of parameters

τ̂α, τ̂d, v̂ and σ̂, (Section 3.3)

Computation of the probability

P (Bc) that the inputs in Bc are

born in the unobserved region.

(section 3.1 Eqs. (6) and (7))

Computation of the probability

P (Dc) that the outputs in Dc

died in the unobserved region.

(section 3.1 Eq. (5))

Computation of the probability

P ([c) that a set of outputs are

connected to a set of inputs.

(section 3.1 Eqs. (8) and (9)

Likelihood

(section 3.1 Eqs. (4),

(10)-(12))

Maximization of likelihood

with CPLEX, (section 3.2 Eqs.

(13) and(14))

Tracks reconstruction and

estimation of connection

accuracy, (section 4.2)

(+) Lifetime of a particle Td ∼ E(τd)
(+) The first passage time on l of a
Brownian motion Tl follows an Inverse
Gaussian distribution (Prop 1).

(+) To emphasize, τ̂α is a novel
estimator Eq.(19)

(+) The possibility to find the nth

optimal solution, second part of section
(3.2)

Figure 2. An outline of the connection procedure: from the estimation of the

parameters to connection accuracy measurement, involving likelihood formulation.

in V ε
i . Formally, for each configuration c leading to the input set IS, Cεc is the set of

configurations defined as follows: c∗ = (D∗c , B
∗
c , b
∗
c) ∈ Cεc if and only if for each i ∈ IS,

there exist i∗ε ∈ V ε
i satisfying:
D∗c = Dc,

B∗c = {i∗ε , i ∈ Bc},
For each i ∈ IS \Bc, bc∗ (b−1

c (i)) = i∗ε .
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With this definition, we have

P (c/S) = lim
ε→0

P (Cεc/S) = lim
ε→0

P (Cεc/OS)∑
c′∈CS P (Cεc′/OS)

. (2)

In what follows, we study the behavior of P (Cεc/OS) when ε goes to 0. We will

always work conditionally on the realization of the output set OS but we will keep

this conditioning implicit and write P (Cεc) instead of P (Cεc/OS) in order to simplify the

notations. The study of P (Cεc) will involve the probability for a particle to die in the

unobserved region but also the probability that a particle born in this unobserved region

enters the observed one in a given spatiotemporal neighborhood V ε
i .

Furthermore, we assume that the particles born in the unobserved region, enter the

observed one with a constant rate τα and with a uniform distribution on {−l} × [0, H].

This is consistent with the fact that the particles are born with constant rate λ and

appear uniformly at random on the membrane surface. Therefore, denote by Nα the

Poisson process of intensity τα counting the number of inputs involved by particles born

in the unobserved region.

Consider an output o ∈ OS and the possibility for the particle involved in o to die

in the unobserved region. We have the following proposition (see [Schrodinger, 1915],

[Tweedie, 1945], [Wald, 1973]).

Proposition 1 Given the particle motion model as Brownian motion with drift as

described in equation 1, the first passage time noted as Tl on the entrance line

{−l} × [0, H] of a particle starting at position z0 = (0, y0) for some y0 ∈ [0, H], follows

a law of inverse Gaussian, that is Tl ∼ IG
(
lu
vx
, ( lu
σx

)2
)

where lu := L− l is the length of

the unobserved region.

Recall that if X ∼ IG(µ, λ), then X ≥ 0 almost surely, and for each x ≥ 0,

P (X ≤ x) =

∫ x

0

√
λ

2πy3
exp (− λ(y − µ)2

2µ2y
)dy. (3)

In our framework, the event corresponding to the death of a particle with life duration

Td following an exponential law of parameter τd in the unobserved region is precisely

{Td < Tl}. Hence, We can derive an explicit expression of P (Cεc).
Assume ε small enough so that for each i, i′ ∈ IS, T

ε
i ∩ T εi′ = ∅. For a given

configuration c and a given ε > 0, we will write Cεc = (Dc,Bεc, [εc) with Bεc = {B∗c , c∗ ∈ Cεc}
and [εc = {bc∗ , c∗ ∈ Cεc}.

Due to the independent behavior of the particles, we have the following

decomposition:

P (Cεc) = P (Dc)P (Bεc)P ([εc). (4)

We can then compute separately the probabilities of events Dc, Bεc and [εc. First, note

that we can assume without loss of generality that each output o ∈ Dc starts at time

to = 0 and that only the position yo ∈ [0, H] fluctuates with o, but with no influence on

Td or Tl. Moreover, the loss of memory property of the exponential law ensures us that
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the life duration Td of the particle after the the output o still follows an exponential law

of parameter τd.

Since all outputs behave identically and independently, we have P (Dc) = P (Td <

Tl)
|Dc|,where |Dc| stands for the cardinal of Dc. According to proposition 1, and since

Td and Tl are independent, we have

P (Td < Tl) =

∫ +∞

0

∫ tl

0

fTd(td)fTl(tl)dtd dtl, (5)

=

∫ +∞

0

∫ tl

0

τde
−τdtd lu

σx
√

2πt3l
exp

(
−(vxtl − lu)2

2σ2
xtl

)
dtd dtl,

=

∫ +∞

0

lu (1− e−τdtl)
σx
√

2πt3l
exp

(
−(vxtl − lu)2

2σ2
xtl

)
dtl,

where fTd and fTl respectively stand for the density functions of Td and Tl.

Now, consider the event Bεc. We call ”spontaneous input” an input related to a

particle born in the unobserved region that has never been observed. The set Bεc
is defined so that, for each input i ∈ Bc, we have exactly one ”spontaneous input”

appearing during the time interval T εi , with a position in Hε
i . Moreover, outside ∪i∈BcT εi ,

there is no ”spontaneous input”. Formally, we have

Bεc =

{
Nα

(
[0, TS] \

⋃
i∈Bc

T εi

)
= 0

}⋂(⋂
i∈Bc

(
{Nα(T εi ) = 1} ∩Hε

i

))
, (6)

whereNα is a Poisson process of intensity τα associated to the counting of inputs involved

by particles born in the unobserved region on the time interval [0, TS]. In order to simplify

the notations, Hε
i denotes also the event of ”spontaneous” appearance of an input i in

Hε
i . This event is independent of the process Nα, and since the ”spontaneous inputs”

appear uniformly on [0, H], we have P (Hε
i ) = ε

H
.

Meanwhile, for any time interval I, Nα(I) follows a Poisson law of parameter τα|I|
where |I| denotes the length of the interval I. Since ε is small enough so that for each

i, i′ ∈ IS, T
ε
i ∩ T εi′ = ∅, Nα(T εi ) and Nα(T εi′) are independent. Consequently, we can

compute P (Bεc) as follows:

P (Bεc) = e−τα(TS−|Bc|ε)
(
εταe

−ετα ε

H

)|Bc|
=

(
ε2τα
H

)|Bc|
e−ταTS . (7)

Finally, consider the event [εc. For each input i ∈ IS \ Bc, we denote by {oic → V ε
i }

the survival event of the particle involved in the output oic = b−1
c (i) in the unobserved

region which appears in the spatiotemporal neighborhood V ε
i . Since the particles behave

independently, we have

P ([εc) =
∏

i∈IS\Bc

P
(
{oic → V ε

i }
)
. (8)

In the sequel, we consider a given input i ∈ IS \Bc and its related output o = b−1
c (i).

Defining si = ti−to and hi = yi−yo allows us to center the situation around the output o

in the following way. A particle born at time 0 in position z0 = (0, 0) has a life duration
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Td following an exponential law of parameter τd. During its lifetime, the position of the

particle is driven by a brownian motion with drift Zt = (Xt, Yt): Zt = vt+ ΣBt, where

Bt is a two-dimensional Wiener process and v and Σ are given in Equation (1). Define

Tl the first reaching time of lu = L− l of the process Xt. The event {o→ V ε
i } can now

be written as follows:

{oic → V ε
i } = {Td > Tl}

⋂{
Tl ∈

[
si −

ε

2
, si +

ε

2

]}⋂{
YTl ∈

[
hi −

ε

2
, hi +

ε

2

]}
.

This expression corresponds exactly to the fact that in order to realize {oic → V ε
i } the

particle needs to have a life duration longer than its first reaching time of lu and to appear

in the spatiotemporal neighborhood
[
si − ε

2
, si + ε

2

]
×
[
hi − ε

2
, hi + ε

2

]
. Furthermore, Td

follows an exponential law of parameter τd, Yt follows a Gaussian law of parameters vyt

and σ2
yt and Tl ∼ IG

(
lu
vx
, ( lu
σx

)2
)

. Moreover, due to the fact that Σ is diagonal, the

process Yt is not only independent of Td but also of Tl. This allows us to write

P
(
{oic → V ε

i }
)

=

∫ si+
ε
2

si− ε2

fTl(tl)

(∫ +∞

tl

fTd(td)

(∫ hi+
ε
2

hi− ε2

fYtl (y)dy

)
dtd

)
dtl.

As the two integrals involve a small domain of size ε, P ({oic → V ε
i }) ∼ O(ε2), and

lim
ε→0

P ({oic → V ε
i })

ε2
= fTl(si)fYsi (hi)

∫ +∞

si

fTd(u)du (9)

=
lu

σx
√

2πs3
i

exp

(
−(vxsi − lu)2

2σ2
xsi

)
1

σy
√

2πsi
exp

(
−(hi − vysi)

2

2σ2
ysi

)
e−τdsi

=
lu

2πσxσys2
i

exp

(
−(vxsi − lu)2

2σ2
xsi

− (hi − vysi)
2

2σ2
ysi

− τdsi

)
.

For each configuration c, we derive the likelihood Q(c) of the configuration c as

follows:

Q(c) := lim
ε→0

P (Cεc)
ε2|IS |

.

From (4) and Equations (5, 7, 8 and 9), we finally obtain the likelihood

Q(c) =
(τα
H

)|Bc|
e−ταTS

(∫ +∞

0

lu (1− e−τdtl)
σx
√

2πt3l
exp

(
−(vxtl − lu)2

2σ2
xtl

)
dtl

)|Dc|

×
∏

i∈IS\Bc

[
lu

2πσxσys2
i

exp

(
−(vxsi − lu)2

2σ2
xsi

− (hi − vysi)
2

2σ2
ysi

− τdsi

)]
.(10)

Note that the limit when ε goes to 0 of P (Cεc)
ε2|IS |

is well defined, strictly positive, and

that the exponent 2|IS| does not depend on the configuration c.

Recall (2), this allows us to write

P (c/S) =
Q(c)∑

c′∈CS Q(c′)
(11)

and as a consequence, we have

ĉ = argmax
c∈CS
{Q(c)}. (12)
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3.2. Maximum likelihood and optimal configuration

The aim of this section is to identify the configuration c corresponding to the maximal

likelihood Q(c) (see Equation (10)). Define

β := − log
(τα
H

)
,

δ := − log

(∫ +∞

0

lu (1− e−τdtl)
σx
√

2πt3l
exp

(
−(vxtl − lu)2

2σ2
xtl

)
dtl

)
and for each configuration c and each i ∈ IS \Bc

γic := − log

[
lu

2πσxσys2
i

exp

(
−(vxsi − lu)2

2σ2
xsi

− (hi − vysi)
2

2σ2
ysi

− τdsi

)]
.

It follows that

ĉ = argmax
c∈C

Q(c) = argmin
c∈C
− log (Q(c)) (13)

= argmin
c∈C

β|Bc|+ δ|Dc|+
∑

i∈IS\Bc

γic

 .

This decomposition allows us to consider a linear optimization problem where β

represents the cost of the spontaneous birth of an input, δ the cost of the death of

an output and γic the cost of the connection between the output b−1
c (i) and the input i.

The cost of connection can be defined for any couple (o, i) ∈ OS × IS as

γio := − log

[
lu

2πσxσys2
o,i

exp

(
−(vxso,i − lu)2

2σ2
xso,i

− (ho,i − vyso,i)
2

2σ2
yso,i

− τdso,i

)]
,

where so,i := ti − to, ho,i = yi − yo and the convention γio = +∞ if ti ≤ to.

In order to write in a canonical way this linear optimization problem, we associate to

each configuration c a family of coefficients (co,i)(o,i)∈OS×IS such that co,i = 1 if bc(o) = i

and co,i = 0 if bc(o) 6= i. Since an output can be connected to at most one input, for each

o ∈ OS,
∑

i∈IS c
o,i ∈ {0, 1} and

∑
i∈IS c

o,i = 0 corresponds to the death of the output

o. Similarly, for each i ∈ IS,
∑

o∈OS c
o,i ∈ {0, 1} and

∑
o∈OS c

o,i = 0 corresponds to the

fact that the input i is a ”spontaneous input”.

Our optimization problem is then equivalent to finding the family of coefficients

(co,i)(o,i)∈OS×IS that minimizes the quantity

β

(∑
i∈IS

(
1−

∑
o∈OS

co,i

))
+ δ

(∑
o∈OS

(
1−

∑
i∈IS

co,i

))
+
∑
o∈OS

∑
i∈IS

γioc
o,i

or equivalently

K(c) :=
∑
o∈OS

∑
i∈IS

(
γio − β − δ

)
co,i subject to


∀o ∈ OS, ∀i ∈ IS, co,i ∈ {0, 1},
∀o ∈ OS,

∑
i∈IS c

o,i ∈ {0, 1},
∀i ∈ IS,

∑
o∈OS c

o,i ∈ {0, 1}.
(14)
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In order to avoid to have infinite costs γio when ti ≤ to,, we can also impose

co,i = 0 if ti ≤ to. Actually the problem (14) is a conventional linear optimization

problem which can be solved by applying the CPLEX Linear Programming solver

(https://www.ibm.com/analytics/cplex-optimizer).

The configuration ĉ is then the solution of the optimization problem (14) and

corresponds to the most likely configuration given the sample S. In order to complete

the study, we propose to compute the following most likely configurations in a reccurent

by solving (14) with additional constraints ensuring that the solution is different from

the previous ones. In other words we define recursively the sequence (cn)n∈N in the

following way:

• c1 := ĉ

• ∀n ≥ 2, cn solves (14) with the n− 1 additional constraints

∀k ∈ {1, . . . , n− 1},
∑
o∈OS

∑
i∈IS

[
co,in (1− co,ik ) + (1− co,in )co,ik

]
≥ 1.

With this definition, cn is then the n−th most likely configuration. When n

is greater than the number nS of configurations compatible with the sample S, the

constraints are impossible to satisfy. In other words this sequence is well defined up to

nS.

3.3. Estimation of parameters

Several parameters are involved in our computational approach. In this section, we

propose clues to set these parameters. First, The parameters v and Σ can be estimated

with classical maximum likelihood estimation procedures.

Second, we propose an estimator τ̂d of τd as explained below. The sample S can be

considered as a set of points p = (tp,Zp) observed at time tp and position Zp = (Xp, Yp)

grouped in clusters s corresponding to segments of trajectories. The death of a particle

in the observed region is detected in S for each point p ∈ S for which the associated

segment sp has no successor point at time tp + ∆t. In order to be sure that the absence

of successor is effectively due to the death of a particle and not to a particle leaving

the observed region, we restrict the analysis to a region excluding a neighborhood of

the border. However, we can check in this neighborhood the existence of successors

for points in the restricted region. We denote by Sr ⊂ S the sample of points in the

restricted region. For each point p ∈ Sr, we denote by Dp the event corresponding to

the absence of successor for p. This correspond to the fact that the particle involved

in p died during the time interval [tp, tp + ∆t]. Since the life duration Td of a particle

follows an exponential law of parameter τd, and the absence of memory property of the

exponential law, we have

P (Dp) = P (Td ∈ [0,∆t]) = 1− e−τd∆t. (15)
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Hence, we define our estimator τ̂d as

τ̂d =
1

∆t|Sr|
∑
p∈Sr

1[Dp], (16)

where |Sr| stands for the number of points in Sr and 1[·] denotes the indicator function.

Due to the absence of memory property of the exponential law, the random variables

1[Dp] are i.i.d. As |Sr| goes to +∞, the strong law of large numbers yields to

lim
|Sr|→∞

τ̂d =
1− e−τd∆t

∆t
a.s.

The justification of this choice for τ̂d relies in the following almost sure convergence:

lim
∆t→0

lim
|Sr|→∞

τ̂d = τd a.s. (17)

Our estimator τ̂d is then consistent as ∆t is small enough. Moreover, since the variables

1[Dp] are i.i.d Bernoulli random variables, we can calculate the related confidence

interval. If qα denotes the α-quantile of the standard normal distribution, we have

the following confidence interval of level α for 1−e−τd∆t

∆t
:

CIα =

τ̂d − qα
√
τ̂d
(

1
∆t
− τ̂d

)
|Sr|

, τ̂d + qα

√
τ̂d
(

1
∆t
− τ̂d

)
|Sr|

 . (18)

If ∆t is small enough, we get a good approximation of a confidence interval of level α

for τd since

lim
∆t→0

1− e−τd∆t

∆t
= τd.

Now, we describe the estimation procedure for the rate τα of ”spontaneous inputs”

induced by particles born in the unobserved region [−L,−l] × [0, H] and reached the

border {−l} × [0, H]. We assume here that the parameters v, Σ and τd are known,

keeping in mind that in practice estimators are used instead. As introduced earlier, L

is the perimeter of the cylinder, l is the length of the observed region, and lu = L− l is

the length of the unobserved region. For a given length x, we denote by Nx the number

of segments born in the region ] − x, 0] × [0, H] and reached the border {0} × [0, H].

Accordingly,
Nlu
TS

is a consistent estimator of τα since the dynamics are assumed to be

homogeneous on the surface of cylinder. Our aim is actually to build an estimator for

τα in the case where lu > l which prevents us to compute directly Nlu . Therefore, we

compute Nl by taking the whole observed region into account, and denote by S∗l the set

of segments having an input in {−l} × [0, H] and an output in {0} × [0, H]. For each

segment s ∈ S∗l and each length x ∈ [0, lu], we denote by Bx
s the event corresponding to

the birth of s within ]− l− x,−l]× [0, H]. Let le = lu− l be the length of the extended

zone [−lu,−l]× [0, H],. We are now interested in the realization of the events Ble
s .

In Fig. 3, Nl = 2 correspond to tracks #1 and #4, S∗l = {2, 5}, and the event Ble
2

is realized while Ble
5 is not.
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Figure 3. An artificially constructed zone ] − lu, 0] × [0, H] having the same size as

the unobserved region ] − L,−l] × [0, H]. The observed region is ] − l, 0] × [0, H] ; as

the width of the invisible part is lu, the extended zone has width le = lu − l.

Note that since the particles have the same independent dynamics, P (Bx
s ) does not

depend on s. For x < l, this probability can easily be estimated as follows:

p̂x =
Nx

|So|
,

where So is the set of segments having an output in {0}× [0, H]. The strong law of large

numbers yields a consistent estimator and allows us, in the case where le < l, to define

our estimator τ̂α as follows:

τ̂α =
Nl + p̂le|S∗l |

TS
. (19)

Intuitively, this estimator amounts to counting the number of particles reaching

{0} × [0, H] with weight 1 for each segment that we actually saw being born in the

observed region and with weight p̂le for each spontaneous input that appeared in

{−l}× [0, H]. Note that, as Nlu = Nl +
∑

s∈S∗l
1[Ble

s ], τ̂α is an unbiased estimator of τα.

Moreover, if we assume that the number of observed segments grows linearly with the

observation time TS, this estimator is consistent when TS goes to +∞.
Now, we consider the case l < le < 2l which can easily be extended to the general

case l < le. Consider s ∈ S∗l and denote for each interval J ⊂ [−L, 0] the event BJ
s

where the segment s is born in the region J × [0, H]. The event Ble
s can be decomposed

as follows:

Ble
s = B[−2l,−l]

s

⋃(
B

[−2l,−l]
s ∩B[−lu,−2l]

s

)
.

The loss of memory and homogeneity properties of the dynamics leads to the following

estimator p̂le :

p̂le := p̂l + (1− p̂l) p̂le−l.
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3.4. Limits of the model

The main assumptions in this work are homogeneity in time and space, induced by

the constant death and birth rates, as well as constant speed and noise. While these

assumptions lead to a simple model and allows a reasonably technical study, it is natural

to question it. The main reason of this choice is that it corresponds to uniform laws

when we have no reason prioritize one specific behavior in particular.

Note that a similar study can be made with different speeds among trajectories.

This can be done by classifying the trajectories according to their speeds and applying

the present procedure to each class. This would lead to the same estimation procedure

with smaller datasets but theoretical results will still hold.

We then discuss the homogeneity in time, for which the most questionable

assumption is the constant death rate that could possibly depend on the position or

on the age of the particle. Concerning the dependence in space, this modification would

lead to the estimation of a function of the position instead of the simple constant τd.

From a practical point of view, this would increase the dimension of the parameter

to estimate, with the same size of dataset. From a theoretical point of view a more

technical study can be made as long as we assume the death function rate (depending

on the position) constant on each segment {y}×]− L, 0] in order to overcome the issue

of partial observation.

Concerning the dependence in time, the assumption that the death rate depends

on the age of the particle prevents to propose a similar study. Indeed, due to partial

observation, the age of each particle entering the observed region is unknown and can

not be estimated.

4. Simulation study

We present next a series of experiments performed on synthetic datasets. These

experiments aim at the evaluation and sensitivity analysis of the reconstruction

procedure when varying the characteristics of the dynamics as well as the spatio-

temporal support of observations. In addition to demonstrate the potential of our

procedure, these experiments might also be useful for the design of the experimental

setting when considering the observation of censored dynamics on closed surfaces. The

reconstruction procedure has been implemented in Matlab.

4.1. Generation of trajectories

Trajectories are generated on a rectangular unwrapped cylindrical surface of size

[0, L] × [0, H] (Fig. 4). In our experiments, we set L = 50, H = 30. The initial

position of each trajectory is drawn uniformly on the surface. Time duration T between

two births follows an exponential law with birth rate parameter λ. At each birth, the

intrinsic properties of a trajectory i are given, such as velocity vi, variance Σi, and

lifetime T id. The lifetime Td follows an exponential law, with a constant death rate τd
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Figure 4. A set of simulated trajectories during 2.5 minutes (in stationary regime).

λ = 0.03, τd = 0.005, vx = 0.6 and σ = 0.2. X(resp. Y) axis represents the unfolded

circumferential (resp. main) direction of the cylinder. Colors from light to dark green

represent time evolution. Shadowed area corresponds to the unobserved region and

white area corresponds to the ROO.

for all trajectories in the whole simulated image sequence. The speed vi = (vxi, vyi) and

noise Σi =

[
σx 0

0 σy

]
are constant along one given trajectory. It is set vx = 0.01vy

and σx = σy = σ.

As there is no particle on the surface at the beginning, the simulated trajectories set

needs some warm-up time to reach the stationary regime, where the law of the number

of trajectories does not depend on time. According to the supposed dynamic process,

the expectation of the trajectories number N during stationary regime is E(N) = λ
τd

. To

ensure that the dynamics are in a stationary regime, the images sequence is simulated

long enough, for around 2 hours (Fig. 5). The time interval between two images

is ∆t = 0.25s. Figure 5 shows how the number of trajectories on the surface changes

along time t, when λ = 0.03 and τd = 0.005. It can be noticed that after a while, around

t = 20 min, the trajectories number fluctuates around the theoretical expectation value

6.

4.2. Analysis of the connection criterion: The Adjusted Rand Index

Given the true and estimated class assignments, we compute the Adjusted Rand Index

to evaluate similarity or consensus between the two sets. The Rand index ignores

permutation and is symmetric: swapping the arguments does not change the score.
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Figure 5. Fluctuations of the number of trajectories w.r.t. time. The dynamics

parameters are the same as in Fig. 4

.

Perfect matching is scored 1.0 and 0 or negative on the contrary: Let G and K be the

true and estimated assignments respectively, let us define a and b as: a the number

of pairs of elements that are in the same class in G and in the same class in K, b the

number of pairs of elements that are in different classes in G and in different classes in

K. The raw (unadjusted) Rand index is then given by:

RI =
a+ b

CM
2

, (20)

where CM
2 is the total number of possible pairs in the dataset (without ordering) of size

M . The RI score does not guarantee that random assignments will get a value close to

zero. This is especially true if the number of clusters has the same order of magnitude as

the number of samples. To overcome this difficulty, we prefer to consider the Adjusted

Rand Index defined by Rand [1971]:

ARI =
RI − E(RI)

1− E(RI)
. (21)

Here E(RI) denotes the Expectation of the Rand Index where the estimated

assignment K is replaced by an assignment chosen uniformly at random. This means

that the assignment procedure does not do better than random assignment if the ARI

score is zero, and that it does worse than random if ARI < 0.

4.3. Experimental results

The connection procedure relies on the estimation of the characteristics of the dynamics:

the speed, v, the diffusion variance, Σ, the arrival rate τα and the death rate τd, as
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Figure 6. The normalized τ̂α as l/lu fluctuates, TS = 30 min. The proportion of l to

lu is set from 0.42 to 1 (the lowest value l/lu = 0.42 corresponds to a realistic situation

in 2D time-lapse fluorescence images). The value of y axis is the difference between the

estimated value τ̂α and the ’ground truth’, normalized w.r.t. the ’ground truth’. It can

be noticed that, at l/lu=0.42, more than a half of the trials presents a relative error

smaller than 10%. The proposed estimator τ̂α is unbiased and the variance decreases

as l/lu increases.

these quantities are used in the calculation of the likelihood (Fig. 2). In this section, we

evaluated the impact of several combinations of parameters of the dynamics (v,Σ, τα, τd)

and spatio-temporal sampling, (l/lu, TS) (Appendix , Table ??) on the estimators and

the accuracy of the reconstruction.

4.3.1. Performance of estimator τ̂α In the following section, the proposed estimator

τ̂α defined in eq.(19) is evaluated by simulation. The impact of spatial (resp. temporal)

sampling through l/lu (resp. TS) as well as of birth rate λ and death rate τd is tested.

To calculate the ”true” value of τα in the invisible zone of size lu ×H, lu = L − l,
we propose to count the arrival trajectories during TS and approximate τα by Nlu/TS.

This value can serve as ’ground truth’. Then, by varying the value of l < lu, lu is fixed,

we test the robustness of the estimator τ̂α.

In Fig. 6, each box is computed from 1000 replications and the movie length used

to calculate τ̂α is 30 min, which is long enough to have a stable value. However, in

reality it is difficult to obtain a film as long as 30 min, because of photo bleaching and

the natural growth in living samples. Therefore, the robustness of τ̂α w.r.t. TS is also

evaluated. The proportion l/lu is set to 0.42, which corresponds to the real experimental

data. The result is shown in Fig. 7. TS varies from 2.5 min to 30 min. It can be noticed
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Figure 7. The counted ’ground truth’ τα and the estimated τ̂α obtained by images

movies of different length, varying from 2.5 min to 30 min. Blue boxes show the

”ground truth” when all the information, even the invisible region, is available.

Magenta boxes correspond to the estimator τ̂α. The blue line is the counted value

when TS = 30 min.

that the counted ’ground truth’ (blue boxes) decreases as TS becomes longer. Actually

the counted value is only a pseudo ’ground truth’ and it is sensible to TS especially

when TS is small. The counted value converge to the hidden true value as TS ∼ ∞.

The distributions of count ’ground truth’ and estimator become close to each other for

TS ≥ 10 min.

The absolute value of τα depends on λ and τd. Fig. 8 displays for different

combinations of λ and τd, the estimations of τ̂α by 5-min movies (magenta) and 30-

min movies (blue). It shows that τα increases linearly as the birth rate λ increases, and

decreases slightly linearly as the death rate τd increases.

4.3.2. Performance of the estimator τ̂d As explained in previous section, τ̂d is a rather

classical estimator. Fig. 9 shows the estimator with 5-min movies (magenta) and 30-

min movies (blue) respectively. It confirms that the estimator is unbiased. Black lines

represent the true value of τd. Naturally, the variance is bigger with shorter movies.

Some estimators of death rate with movies of 5 min falls to zero, which means that

the particle is immortal. This error will surely cause connection error because the

algorithm will force the connection. We found that TS = 5 min is a good choice to limit

the estimation error of τd and to ensure a good connection performance (more details

in Appendix).

According to Figs. 8 and 9, when TS = 30 min, the estimators of τα and τd perform
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Figure 8. The estimation of arrival rate τα w.r.t. different λ and τd. For example,

when λ = 0.04, τd = 0.004, the median value of τ̂α is around 0.025, which means that

at each moment, the probability that a particle born in the invisible zone arrives at

{−l} × [0, H] is around 0.025.

4/0.4 6/0.4 8/0.4 10/0.4 4/0.6 6/0.6 8/0.6 10/0.6 4/0.8 6/0.8 8/0.8 10/0.8 4/1 6/1 8/1 10/1 x10^-2

birth rate / death rate

0

0.005

0.01

0.015

0.02

0.025

0.03

Estimated by a long film of around 30 min

Estimated by a short film of 5 min

True value

Figure 9. τ̂d with different λ and τd. The estimator is unbiased. The variance of

the estimator is larger with shorter movies (magenta). For a given τd, when birth rate

λ increases, and therefore the number of particles also increases, then the variance

decreases.
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Figure 10. Connection performance comparison for different λ and τd, when TS = 5

min. Blue boxes represents ARI values obtained with true parameters τd, τα, v and σ;

Magenta color represents ARI values obtained with estimators τ̂d, τ̂α, v̂ and σ̂. The

black line represents the mean number of segments in a movie.

well, being converged with small variance. As 30-min movies acquisition is almost

infeasible under the situation of fluorescence microscopy, these estimators are noted as

τ̃α and τ̃d. In the following, the estimators obtained with tested TS (ex. 5 min or 2.5

min) are denoted as τ̂α and τ̂d.

4.3.3. Connection performance with parameters τα, τd, v, σ and with their estimators

τ̂α, τ̂d, v̂, σ̂ In this part, we assess the performance of the connection algorithm with

different parameters λ and τd. The duration of movies TS is set to 5 min. This choice

of TS is a result of some experimental tests. In the Appendix, The estimation results

with 2.5-min movies are presented. It shows that at TS = 2.5 min, the estimators

are not accurate enough to ensure the good performance of the connection procedure.

Therefore it justifies the choice of TS = 5 min is a good balance between data acquisition

and connection performance. The results of connection measured by ARI is presented

in Fig. 10.

For every combination of λ and τd, 100 replications of segments connection

procedure are performed on 100 5-min movies. The performance of connection is effected

by the number of segments in each movie to be connected. The higher the density of

segments is, the more difficult it is to find the right ones. One point in the black line

represents the mean value of the number of segments of 100 movies corresponding to

the setting of λ and τd.

It can be noticed that the ARI value when we use the estimators τ̂d, τ̂α, v̂ and σ̂, is
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Figure 11. Estimation of v and σ. vx (resp. vy) and σx (resp. σy) are the speed

and the diffusion in the circumferential (resp. main axis) direction of the cylinder. By

default vy = 0.01vx. σx = σy = σ (isotropic diffusion). ’vc’ means v is constant and

’vu’ means that v ∼ U(0.4, 0.8).

almost as good as when we use true values for all the parameters. This is an encouraging

result as it means that it is feasible to apply the algorithm in real images sequences.

For the highest particle density, when the average number of segments reaches 100, the

ARI criterion is still around 0.8. When the number of segments is around 20, for more

than half of the replicates, the ARI values are higher than 0.9.

4.3.4. The impact of the intrinsic characteristics of dynamics, the speed v and the

variance σ, to the connection algorithm In the following, birth rate λ = 0.08 and death

rate τd = 0.004 are fixed for all the experiments. Several experiments are conducted,

varying the distribution of the speed and the variance. Two situations for the speed is

designed. In the first one, all particles in one movie have the same speed as 0.6/s (note

as vc or v const) and in the second one, the speed of particles v ∼ U(0.4, 0.8) (note as vu

or v unif ) in one movie. The variance σ is constant in one movie, however, depending

on the experiments it varies from 0.2 to 0.5. In Fig. 11 each box shows the distribution

of the estimator in one experiment with 100 replication on 100 generated movies. In all

these four plots, the first four boxes correspond to the case where v is constant and the

last four boxes correspond to the case where v ∼ U(0.4, 0.8). In the plot of v̂x, it can be

noticed that v̂x are unbiased when v is constant. The variances increase as σ increases.

However when v ∼ U(0.4, 0.8), the red lines on the boxes, which represent the median

of the estimator is higher than 0.6. It should be specified that the estimation of v and

σ is averaged over the entire movie. This choice makes the estimation of v more stable
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Figure 12. Comparison of segments connection when v and σ vary. Blue (resp.

green, dark green and magenta) boxes represents ARI values obtained with parameters

(τd, τα,v, σ) (resp. (τ̃d, τ̃α,v, σ), (τ̂d, τ̂α,v, σ) and (τ̂d, τ̂α, v̂, σ̂)).

when all the particles have the same speed. However, when the speed is drawn from a

random law, the distribution of v̂x is no longer centered on the expected value and is

positively biased. The explanation is that faster particles can be observed more often

in the ROO. The estimations of σx and σy are biased. The bias might be related to the

temporal resolution ∆t.

The connection results show that when we use true values for all parameters in

the algorithm, which correspond to blue boxes in both Figs. 12 and 13, the connection

performance decreases considerable and reasonably with σ increases. When we replace

all parameters by there estimators (τ̂d, τ̂α, v̂, σ̂), corresponding to magenta boxes in both

Figs. 12 and 13, it can be seen that the last four magenta plots, where the speed vx
is not the same for all the particles, have low ARI values. To investigate in detail

which estimators cause the degradation of the connection performance, we plot the

intermediate cases to analyze the individual impact of the estimators (Figs 12 and 13).

Although in Figs 8 and 9 it shows that τ̃α and τ̃d (estimators with 30-min movies)

have better performance than τ̂α and τ̂d (estimators with 5-min movies), the connection

performance using (τα, τd), (τ̃α, τ̃d), or (τ̂α, τ̂d) are almost equally good (Fig. 12 in blue,

green and dark green). we now focus on the last four boxes in Fig. 13, when we use

true value of τα and τd, and use the estimators of v̂, σ̂, the ARI values drop brutally

(from blue to violet). Combing both figures, it can be concluded that good estimation

of v and σ is essential to ensure the good performance of the algorithm.
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Figure 13. Comparison of segments connection when v and σ vary. Blue (resp. violet,

cyan and magenta) boxes represents ARI values obtained with parameters (τd, τα,v, σ)

(resp. (τd, τα, v̂, σ̂), (τ̃d, τ̃α, v̂, σ̂), and (τ̂d, τ̂α, v̂, σ̂)).

4.4. Analysis of the connection results
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Figure 14. The difference between K(ct) and K(c∗) versus ARI for different values

of birth rate and death rate.

In this section, we evaluated the connection error caused by randomness. We display
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in Fig. 14 the scatter plots of ARI value vs K(ct)−K(c∗), where c∗ denotes the optimal

configuration calculated by the ”Segment Connection Algorithm” while ct is the true

configuration. Each scatter plot displays the results of 100 simulations for a given

combination of λ and τd.

The difference between K(ct) and K(c∗) is always positive or null, showing the

optimization procedure works correctly to find the optimal solution. When K(ct) >

K(c∗), it means that the configuration c∗ has higher probability than the true realization

ct, which can be due to randomness. We can notice that ARI decreases as soon as

K(ct)−K(c∗) increases. This error occurs when the realization is significantly different

from the optimal configuration. Overall, ARI values are generally above 0.7.

4.4.1. Number of rotations around the cylinder Once the connection procedure is

achieved, we can address the question of the number of rotations of a particle around

the cylinder. In the context of simulation, the death rate τd and the dynamic velocity vx
are known. Accordingly, the value of the number of loops is known to be equal to vxTd

L
,

where Td ∼ E(τd) which gives a theoretical expectation value of vx
τdL
. By counting the

segments for each trajectory, we can obtain a proxy of the number of rotations around

the cylinder. In Fig. 15, the theoretical values of the number of rotations, after being

rounded, are presented in blue color for different values of τd between 0.002 and 0.005.

Cyan color is used to display the distribution of the true number of segments for each

trajectory. Magenta color is used to display the distribution of the number of segments

estimated by our connection procedure. Overall, when τd is small, the distribution has

a heavier tail. In general, the cyan and magenta distributions are similar to each other.

Conclusion

In this paper, we proposed a probabilistic framework and a computational approach

with no hidden parameter to connect trajectory segments from 2D partial observations.

We provided several consistent estimators of parameters to automatically drive the

connection procedure. The performance of our procedure is satisfying if we consider

the ARI criterion. Moreover, an ordered set of the best reconstructions could also be

proposed. The robustness of the procedure has been tested for different drifts, diffusion

of the dynamics, and trajectory densities. Our computational approach can be extended

to the case when the drift/speed is not the same for all particles but remains constant

along time. In that case, it is straightforward to estimate and classify the drifts before

applying our connection procedure to each class of drift since the segments with different

speeds are not likely to be connected.

After recovering the whole trajectory on the surface of the cylinder, we can have a

better understanding of the average duration of a particle, and more accurate statistics

about the spatio-temporal organization of particles. The simulation study can also serve

as a guideline to the design of experiments.

For future works, we plan to investigate real TIRF (Total Internal Reflection
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Figure 15. The distribution of ’number of rotations’ under the assumption that the

life duration follows an exponential law of parameter τd.

Fluorescence Microscopy [Axelrod et al., 1984]) microscopy datasets. Experiments on

real data show that the observed region corresponds approximately to one third of the

total surface, which is rather small. However, we have shown that we are able to cope

with such hidden region. Nevertheless, several assumptions and approximations need

to be further investigated. For instance, we assumed spatial homogeneity, suggesting

that the particles are born or die uniformly on the membrane surface. Moreover, we

assumed a memoryless lifetime while dependency with respect to particle “age” could

be more realistic.

Appendix: Estimators τ̂α and τ̂d and the connection performance with

2.5-minute movies

Estimation of birth rate τα

The performance of segments connection in 2.5-min movies is evaluated and the result

is presented in Fig. 16. Compared to Fig. 8 where 5-min movies are used, the

estimations with 2.5-min movies have bigger variance. With 2.5-min movies, there

are more estimations equal to zero.
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Figure 16. The estimation of arrival rate τα with different λ and τd. Magenta boxes

represents τ̂α estimated by 2.5-min movies and blue boxes by 30-min movies.
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Figure 17. The estimation of death rate τd with different λ and τd. Magenta boxes

represents τ̂d estimated by 2.5-min movies and blue boxes by 30-min movies. Black

lines represent the true value of τd.

Estimation of death rate τd

It is shown that both in Figs 16 and 17, the estimators τ̂α and τ̂d have many zero values.

This phenomenon will deny the birth and death of particles, and force the connection
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Figure 18. Connection performance comparison. Color representation is the same

as in Fig. 12. Light green boxes, representing the result when τ̃α, τ̃d (estimators with

30-min movies) and true value v, σ are used, shows performance as good as the blue

boxes, where true parameters values are used. However, the dark green boxes, where

τ̂α, τ̂d (with 2.5-min movies) and v, σ are used, show much degraded results.

of observed segments. The result of connection is presented in the next section and it

shows that these biases of parameter estimation have severe influence to the segments

connection performance.

Evaluation of the connection procedure

Figs. 18 and 19 show the results of segments connection measured by ARI, according

to different settings of birth rate λ and death rate τd. Concerning the experiment with

true parameters (blue boxes in both figures), the more the number of segments, the less

precise the connection performance is. However, when the estimators τ̂d, τ̂α are used

(dark green boxes and magenta boxes), and the number of segments is too small, the

errors introduced by the estimator cause the crush of the connection algorithm.

Through Fig. 18 and 19, it can be concluded that the error of estimators τ̂d, τ̂α is

the main cause of the dramatic decrease of ARI when all the estimators τ̂d, τ̂α, v̂ and σ̂

are used.

The accuracy of τ̂α increases as the total observed time TS increases (see Fig. 7).

Therefore, in the study we chose movies of 5 min to estimate τα and τd and then to

evaluate the connection performance.
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Figure 19. Connection performance for different λ and τd, when vx = 0.6 and σ = 0.2.

Color representation is the same as in Fig. 13. Boxes with blue, violet, and cyan colors

are similar, which means that the estimators v̂, σ̂, τ̃α and τ̃d do not cause degradation of

the connection. Only when τ̂α and τ̂d are used, shown in magenta boxes, the connection

results degrades.
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R. Carballido-López and C. Billaudeau for their inspiring work in MreB studies

which triggered this research. This work was partially supported by ANR DALLISH,

Programme CES232016.

References

D. Axelrod, T. P. Burghardt, and N. L. Thompson. Total internal reflection fluorescence.

Annual review of biophysics and bioengineering, 13(1):247–268, 1984.

C. Billaudeau, A. Chastanet, Z. Yao, C. Cornilleau, N. Mirouze, V. Fromion, and
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