
HAL Id: hal-02332496
https://hal.inria.fr/hal-02332496

Submitted on 24 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High performance tensor-vector multiplication on
shared-memory systems

Filip Pawlowski, Bora Uçar, Albert-Jan Yzelman

To cite this version:
Filip Pawlowski, Bora Uçar, Albert-Jan Yzelman. High performance tensor-vector multiplication on
shared-memory systems. PPAM 2019 - 13th International Conference on Parallel Processing and
Applied Mathematics, Sep 2019, Bialystok, Poland. pp.1-11. �hal-02332496�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/266931673?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02332496
https://hal.archives-ouvertes.fr


High performance tensor–vector multiplication
on shared-memory systems

Filip Paw lowski1,2, Bora Uçar2,3[0000−0002−4960−3545], and Albert-Jan Yzelman1

1 Huawei Technologies France
20 Quai du Point du Jour, 92100 Boulogne-Billancourt, France

({filip.pawlowski1,albertjan.yzelman}@huawei.com)
2 ENS Lyon (filip.pawlowski@ens-lyon.fr)

3 CNRS and LIP (UMR5668, CNRS - ENS Lyon - UCB Lyon 1 - INRIA), Lyon,
France (bora.ucar@ens-lyon.fr)

Abstract. Tensor–vector multiplication is one of the core components
in tensor computations. We have recently investigated high performance,
single core implementation of this bandwidth-bound operation. Here, we
investigate its efficient, shared-memory implementations. Upon carefully
analyzing the design space, we implement a number of alternatives using
OpenMP and compare them experimentally. Experimental results on
up to 8 socket systems show near peak performance for the proposed
algorithms.

Keywords: tensor computations· tensor–vector multiplication · shared-
memory systems

1 Introduction

Tensor–vector multiply (TVM ) operation, along with its higher level analogues
tensor–matrix (TMM ) and tensor–tensor multiplies (TTM ) are the building
blocks of many algorithms [1]. These operations are applied to a given mode
(or dimension), or to given modes (in the case of TTM ). Among these, TVM
is the most bandwidth-bound. Recently, we have investigated this operation on
single core systems, and proposed data structures and algorithms to achieve
high performance and mode-oblivious behavior [10]. While high performance is
a common term in the close by area of matrix computations, mode-obliviousness
is mostly related to tensor computations. It requires that a given algorithm for
a core operation (e.g., TVM ) should have more or less the same performance no
matter which mode it is applied to. In matrix terms, this corresponds to having
the same performance in computing matrix–vector and matrix–transpose–vector
multiplies. Our aim in this work is to develop high performance and mode obliv-
ious parallel TVM algorithms on shared-memory systems.

Let A be a tensor with d modes, or for our purposes in this paper, a d-
dimensional array. The k-mode tensor–vector multiplication produces another
tensor whose kth mode is of size one. More formally, for A ∈ Rn1×n2×···×nd and



2 Paw lowski et al.

x ∈ Rnk , the k-mode TVM operation Y = A×k x is defined as

yi1,...,ik−1,1,ik+1,...,id =

nk∑
ik=1

ai1,...,ik−1,ik,ik+1,...,idxik ,

for all ij ∈ {1, . . . , nj} with j ∈ {1, . . . , d}, where yi1,...,ik−1,1,ik+1,...,id is an
element of Y, and ai1,...,ik−1,ik,ik+1,...,id is an element of A. The output tensor
Y ∈ Rn1×···×nk−1×1×nk+1×···×nd is d − 1-dimensional. That is why one can also
state that the k-mode TVM contracts a d-dimensional tensor along mode k
and forms a d − 1-dimensional tensor. Let n =

∏d
i=1 ni. Then, a k-mode TVM

performs 2n flops on n + n/nk + nk data elements, and thus has arithmetic
intensity of 2n

n+n/nk+nk
flop per word, which is between 1 and 2. This amounts

to a heavily bandwidth-bound computation even for sequential execution [10].
The multi-threaded case is even more challenging, as cores on a single socket
compete for the local memory bandwidth.

We proposed [10] a blocking approach for obtaining efficient, mode-oblivious
tensor computations by investigating the case of tensor–vector multiplication in
the single core setting. Earlier approaches to related operations unfold the tensor
(reorganize the whole tensor in the memory), and carry out the overall operation
using a single matrix–matrix multiplication [5]. Recent alternatives [6] instead
propose a parallel loop-based algorithm: a loop of the BLAS3 kernels which op-
erate in-place on parts of the tensor such that no unfold is required, which we
adopt for TVM . Other related work targets more complex operations [2] (called
MTTKRP), and tensor–tensor multiplication [7, 11, 12]. Our TVM routines ad-
dress a special case of TMM , which is a special case of TTM , based on our earlier
work [10]. Apart from not explicitly considering TVM , these do not adapt the
tensor layout. Kjolstad et al. [4] propose The Tensor Algebra Compiler (taco)
for tensor computations, which generates straightforward for-loops in our case.

We list the notation in Section 2, and provide a background on blocking al-
gorithms we proposed earlier for sequential high performance. Section 3 contains
TVM algorithms whose analyses are presented in Section 3.3. Section 4 contains
experiments on up to 8-socket 120 core systems. A deeper analysis of algorithms
and experiments appears in the accompanying technical report [9], which we
refer to for the sake of brevity.

2 Notation and background

2.1 Notation

We use mostly the standard notation [5] (the full list of symbols is given in
Table 1 in the technical report [9]). A is an order-d, or a d-dimensional tensor.
A ∈ Rn1×n2×···×nd has size nk in mode k ∈ {1, . . . , d}. Y is a (d−1)-dimensional
tensor obtained by multiplying A along a given mode k with a suitably sized
vector x. Matrices are represented using boldface capital letters; vectors using
boldface lowercase letters; and elements in them are represented by lowercase



High performance tensor–vector multiplication on shared-memory systems 3

letters with subscripts for each dimension. When a subtensor, matrix, vector,
or an element of a higher order object is referred, we retain the name of the
parent object. For example ai,j,k is an element of the tensor A. We use Matlab
column notation for denoting all indices in a mode. For k ∈ {1, . . . , d}, we use
Ik = {1, . . . , nk} to denote the index set for the mode k. We also use n = Πd

i=1ni
to refer to the total number of elements in A. Likewise, I = I1×I2×· · ·×Id is the
Cartesian product of all index sets, whose elements are marked with boldface
letters i and j. A mode-k fiber ai1,...,ik−1,:,ik+1,...,id in a tensor is obtained by
fixing the indices in all modes except mode k. A hyperslice is obtained by fixing
one of the indices, and varying all others. In third order tensors, a hyperslice
become a slice, and therefore, a matrix. For example, Ai,:,: is the ith mode-1
slice of A.

2.2 Sequential TVM and dense tensor memory layouts

We parallelize the TVM by distributing the input tensor between the physical
cores of a shared-memory machine, while adopting the tensor layouts and TVM
kernels from our earlier work [10], summarized below.

A layout ρ maps tensor elements onto an array of size n = Πd
i=1ni. Let

ρπ(A) be a layout, and π an ordering (permutation) of (1, . . . , d) such that

ρπ(A) : (i1, . . . , id) 7→
∑d
k=1

(
(iπk
− 1)

∏d
j=k+1 nπj

)
+ 1, with the convention

that
∏d
j=k+1 · = 1 for k = d. The regularity of this layout allows such tensors be

processed using BLAS in a loop without explicit tensor unfolds. Let ρZ(A) be a
Morton layout defined by the space-filling Morton order [8]. Such layout improves
performance on systems with multi-level caches due to the locality preserving
properties of the Morton order. However, ρZ(A) is an irregular layout, and thus
unsuitable for processing with BLAS routines.

Blocking is a well-known technique for improving data locality. A blocked
tensor consists of blocks Aj ∈ Rb1×···×bd , where j ∈ {1, . . . ,

∏d
i=1 ai}, and nk =

akbk for all modes k. We previously introduced a ρZρπ blocked layout which
organizes elements into blocks, and uses ρZ to order the blocks in memory, and
ρπ to order the elements in individual blocks [10]. By using the regular layout at
the lower level, we can use BLAS routines for processing the individual blocks,
while benefiting from the properties of the Morton order (increased data reuse
between blocks, and mode-oblivious performance).

3 Shared-memory parallel TVM algorithms and analysis

We assume a shared-memory architecture consisting of ps connected processors.
Each processor supports running pt threads for a total of p = pspt threads. The
set of all possible thread IDs is P = {1, . . . , p}. Each processor has local memory
which can be accessed faster than remote memory areas. We assume threads tak-
ing part in a parallel TVM computation are pinned to a specific core, meaning
that threads will not move from one core to another while a TVM is executed.



4 Paw lowski et al.

The pinning of the threads entails the notion of explicit versus interleaved mem-
ory use (see Section 3.1 of the accompanying technical report [9]).

A distribution of an order-d tensor of size n1×· · ·×nd over p threads is given
by a map π : I → {1, . . . , p}. Let π1D be a regular 1D block distribution such
that π1D(A) : (i1, i2 . . . , id) 7→ b(i1 − 1)/b1Dc+ 1, where block size b1D = dn1/pe
refers to the number of hyperslices. Let ms = |π−11D(s)| count the number of
elements local to thread s. We demand that a 1D distribution be load-balanced,
maxs∈P ms −mins∈P ms ≤ n/n1. The choices to distribute over the first mode
and to use a block distribution are without loss of generality (see Section 3.1 in
the report [9]).

3.1 Baseline: loopedBLAS

We assume A and Y have the default unfold layout. The TVM operation could
naively be written using d nested for-loops, where the outermost loop that does
not equal the mode k of the TVM is executed concurrently using OpenMP; such
code is generated by taco. For a better performing parallel baseline, however,
we observe that the d − k inner for-loops correspond to a dense matrix–vector
multiplication if k < d; we can thus write the parallel TVM as a loop over
BLAS-2 calls, and use highly optimized libraries for their execution. For k = d,
the naively nested for-loops actually correspond to a dense matrix–transpose–
vector multiplication, which is a standard BLAS-2 call as well.

We execute the loop over the BLAS-2 calls in parallel using OpenMP. For
k = d, and for smaller tensors, this may not expose enough parallelism to make
use of all available threads; we use any such left-over threads to parallelize the
BLAS-2 calls themselves, while taking care that threads collaborating on the
same BLAS-2 call are pinned close to each other to exploit shared caches as
much as possible. Since all threads access both the input tensor and input vector,
and since it cannot be predicted which thread accesses which part of the output
tensor, all memory areas corresponding to A, Y, and x must be interleaved. We
refer to the described algorithm as loopedBLAS.

3.2 Proposed 1D TVM algorithms

We explore a family of algorithms assuming the π1D distribution of the input and
output tensors, thus resulting in p disjoint input tensors As and p disjoint output
tensors Ys where each of their unions correspond to A and Y, respectively. For
all but k = 1, a parallel TVM amounts to a thread-local call to a sequential
TVM computing Ys = As ×k x; each thread reads from its own part of A while
writing to its own part of Y. We may thus employ the ρZρπ layout for As and
Ys and use its high-performance sequential mode-oblivious kernel [10]; here, x
is allocated interleaved while As and Ys are explicit. The global tensors A and
Y are never materialized in shared-memory—only their distributed variants are
required. We expect the explicit allocation of these two largest data entities
involved with the TVM computation to induce much better parallel efficiency
compared to the loopedBLAS baseline where all data is interleaved.



High performance tensor–vector multiplication on shared-memory systems 5

For k = 1, the output tensor Y cannot be distributed. We define that Y
is then instead subject to a 1D block distribution over mode 2, and assume
n2 ≥ p. Since the distributions of A and Y then do not match, communication
ensues. We suggest three variants that minimize data movement, characterized
by the number of synchronization barriers they require: zero, one, or p−1. Before
describing these variants, we first motivate why it is sufficient to only consider
one-dimensional partitionings of A.

Assume a tensor of size n =
∏d
k=1 nk, with ni ≥ ni+1 for i = 1, . . . , d − 1,

and n1 ≥ p > 1. Consider a series of d TVMs, Yk = A ×k vk, for all modes
k ∈ {1, . . . , d}. Assume any load-balanced distribution π of A and Y such that
thread s has at most 2ddn1/pen/n1 work. For any i ∈ I, the distribution π defines
which thread multiplies the input tensor element ai with its corresponding input
vector element xik . The thread(s) in π(i1, . . . , ik−1, Ik, ik+1, . . . , id) are said to
contribute to the reduction of yj, where j = (i1, . . . , ik−1, 1, ik+1, . . . , id), as they
perform local reductions of multiplicands to the same element yj. We do not
assume a specific reduction algorithm and count the minimal work involved.

For any i ∈ I, let Ji = {j ∈ I | ∨dk=1 ik = jk} be the set of elements lying
on d different axes which all go through i, as illustrated in Figure 1 (left). Let
Xi = π(Ji), where π is any distribution, describe the set of threads to which
elements in Ji are mapped. Should |Xi| > 1 for all i ∈ I, then there is at least
one TVM for which all elements of Y are involved in a reduction, as at least two
threads contribute to yj. For a 1D distribution, this amounts to n/n1 reductions,
occurring only for mode 1, which shows that this lower bound on communication
complexity for a series of TVMs is attainable. We will now consider if we can
do better by allowing i for which |Xi| = 1, and if so, by how much.

Suppose there exist r =
∏d
k=1 rk coordinates i ∈ I such that Xi = {s}, which

form a hyper-rectangular subtensor B of side length rk < nk contained in A, as
in Figure 1 (right). We choose a hyper-rectangular shape, so that the r elements
create the minimum amount of redundant work. Since |Xi| = 1, the number of

coordinates which must then also lie on thread s is r(
∑d
k=1 nk/rk − (d − 1)).

If rk = 21/(d−1)nk/p
1/(d−1), this already corresponds to a load exceeding the

assumed load balance (2n− n/n1)/p. Furthermore, with r = 2d/(d−1)n/pd/(d−1)

such coordinates, the lower bound on communication complexity may only be
reduced to n/n1(1− 2/p), where r/r1 = 2n/pn1 is the projection of the cube r
onto the d−1-dimensional output tensor. The data movement on the input vector
is at most (d−1)n1, which typically is significantly less than the data movement
associated with the output tensor. Thus, the π1D distribution is asymptotically
optimal when n/n1 � (d− 1)n1 and d > 2.

In the following, we discuss two 1D algorithms, while our accompanying
technical report [9, Section 3.3] contains three more.

0-sync. We avoid performing a reduction on Y for k = 1 by storingA twice; once
with a 1D distribution over mode 1, another time using a 1D distribution over
mode d. Although the storage requirement is doubled, data movement remains
minimal while explicit reduction for k = 1 is completely eliminated, since the



6 Paw lowski et al.

i

r

Fig. 1. Illustrations of elements in Ji, indicated via thick gray lines, for an arbitrarily
chosen i depicted by a filled dot (left), and for a cube of r elements i (right).

copy with the 1D distribution over mode d can then be used without penalty. In
either case, the parallel TVM computation completes after a sequential thread-
local TVM ; this variant requires no barriers to resolve data dependencies.

q-sync. This variant stores A with a 1D distribution over mode 1. It also stores
two versions of the output tensor, one interleaved Y and one thread-local Ys. The
vector x is interleaved. Both As and Ys are split into q =

∏d
i=2 qi ≥ p parts, by

splitting each object into qi parts across mode i. We index the resulting objects
as As,t, which are explicitly allocated to thread s, and Ys,t, which are both
allocated as explicit and interleaved. The input vector x remains interleaved.
The algorithm is seen below.

1: if k = 1 then
2: Y = As,s ×k x
3: for t = 2 to q do
4: barrier
5: Y += As,(t+s−1) mod q+1×k x
6: else
7: for t = 1 to q do
8: Ys,t += As,t ×k x

If this algorithm is to re-use output
of mode-0 TVM , then, similarly to the
0-sync variant each thread must re-
synchronize its local Ys,t with Y. Thus,
unless the need explicitly arises, imple-
mentations need not distribute Y over n2
as part of a mode-1 TVM (at the cost of
interleaved data movement on Y).

3.3 Analysis

We investigate the amount of data moved during a TVM computation, mode-
obliviousness, memory, and work. We divide data movement into intra-socket
data movement (where cores contend for resources) and inter-socket data move-
ment (where data is moved over a communication bus, instead of only to and
from local memory). For quantifying data movement we assume perfect caching,
meaning that all required data elements are touched exactly once. Since TVM
is bandwidth bound, we consider memory overhead and efficiency versus the
sequential memory requirement. Once we quantify algorithm properties in each
of these five dimensions, we consider their iso-efficiencies [3]. Table 1 gives the
summary, while the technical report contains an in-depth analysis [9, Section 4].

The loopedBLAS algorithm, thanks to interleaving, is both memory- and
work-optimal. It does not include any cache-oblivious nor mode-oblivious opti-
mizations, and has no barriers. Since all memory used is interleaved, the effective
bandwidth is spread over intra and inter-socket bandwidth proportional to the



High performance tensor–vector multiplication on shared-memory systems 7

number of CPU sockets ps. Thus, assuming a balanced work distribution, its
overhead O((ps−1)/psn(h−g)) becomes Θ(n(h−g)) as ps increases. For ps = 1
the overhead is Θ(ptnkg), which excludes any underlying overhead of its parallel
implementation. The 0-sync algorithm is work optimal, incurs n words of extra
storage (not memory optimal), and has no barriers. It fully exploits the cache-
and mode-oblivious optimizations from our earlier work. The overhead of 0-sync
is bounded by Θ(pnkh) for ps > 1, a significant improvement over loopedBLAS.
The q-sync algorithm is work optimal, but not memory optimal as it stores Y
twice. However, it improves upon 0-sync’s overhead.

Method Work Memory Movement Barrier Oblivious Implicit Explicit k

loopedBLAS 0 0 n(h− g) 0 none x,A,Y - -
0-sync 0 n pn1h + ptn1g 0 full x A,A,Y -
q-sync 0 n/nd pn/ndh + ptn/ndg p2L good x,Y A,Y 1

Table 1. Overheads of different TVM algorithms, and the allocation mode of A,Y,
and x. Optimal overheads are in bold. We display the worst-case asymptotics, i.e.,
assuming ps > 1 and the worst-case k for non mode-oblivious algorithms. Intra-socket
throughput g and the inter-socket throughput h are in seconds per word (per socket),
threads’ compute speed is in r seconds per flop, and a barrier completes in L seconds.

The loopedBLAS algorithm is highly sensitive to the mode k of the TVM ,
while the algorithms based on the ρZρπ tensor layout are not [10]. The 0-sync
variant exploits the ρZρπ maximally; thus, it is fully mode-oblivious. In the q-
sync variant, As are split into q parts, and each part is stored using a ρZρπ
layout, which implies an overhead of q − 1 space-filling curves. Furthermore, in
the worst-case, each element of Y is touched p− 1 times more than in a 0-sync
variant, which hurts both cache efficiency and mode-obliviousness.

For loopedBLAS, efficiency is constant if g/(h−g) decreases while ps increases,
which does not scale. The 0-sync attains efficiency when p grows linearly with
n/nk. The q-sync algorithm attains iso-efficiency when p grows linearly with nk.

4 Experiments

We run our experiments on three Intel Ivy Bridge nodes, described in Table 2.
In the paper, the terms KB, MB, and GB denote 210, 220, and 230 bytes, respec-
tively. We do not use hyperthreading and limit the tests to at most p/2 threads
equal the number of cores (each core supports 2 hyperthreads). We measure the
maximum bandwidth of the systems with the STREAM benchmark, and report
the maximum measured performance. The system uses CentOS 7 with Linux
kernel 3.10.0 and software is compiled with GCC version 6.1. We use Intel MKL
version 2018.2.199 for loopedBLAS. For algorithms based on blocked layouts (0-
and q-sync), we run with LIBXSMM version 1.9-864 and Intel MKL, and retain



8 Paw lowski et al.

the faster result. We conduct 10 experiments for each combination of dimen-
sion, mode, and algorithm and report the average performance (the effective
bandwidth, GB/s) and its standard deviation among the modes.

We compare the synchronization-optimal loopedBLAS, the work- and commu-
nication-optimal 0-sync, and the work-optimal q-sync. We benchmark tensors of
order 2 up to 5. We choose n such that the combined input and output memory
areas during a single TVM call have a total size of at least 10 GBs. The exact
tensor sizes and block sizes are given in Table 3, and Table 4, respectively. The
block sizes selected ensure that computing a TVM on a block fits the L3 cache.
This combination of tensor and block sizes ensures all algorithms run with perfect
load balance and without requiring any padding of blocks. We additionally kept
the sizes of tensors equal through all pairs of (d, ps), which enables comparison
of different algorithms within the same d and ps.

Bandwidth
Node CPU (clock speed) ps pt p Memory size (clock speed) STREAM Theoretical

1 E5-2690 v2 (3 GHz) 2 20 40 256 GB (1600 MHz) 76.7 GB/s 95.37 GB/s
2 E7-4890 v2 (2.8 GHz) 4 30 120 512 GB (1333 MHz) 133.6 GB/s 158.91 GB/s
3 E7-8890 v2 (2.8 GHz) 8 30 240 2048 GB (1333 MHz) 441.9 GB/s 635.62 GB/s

Table 2. Machine configurations used. Nodes 1 and 2 use a quad-channel and node
3 uses an octa-channel memory configuration. Each processor has 32 KB of L1 and
256 KB of L2 cache per core, and 1.25pt MB of L3 cache shared amongst the cores.

d Node 1 Node 2 Node 3

2 45600× 45600 (15.49) 68400× 68400 (34.86) 136800× 136800 (139.43)
3 1360× 1360× 1360 (18.74) 4080× 680× 4080 (84.34) 4080× 680× 4080 (84.34)
4 440× 110× 88× 440 (13.96) 1320× 110× 132× 720 (102.81) 1440× 110× 66× 1440 (112.16)
5 240× 60× 36× 24× 240(22.25) 720× 60× 36× 24× 360(100.11) 720× 50× 36× 20× 720(139.05)

Table 3. Tensor sizes n1×· · ·×nd per tensor-order d and node. The exact size in GBs
is given in parentheses.

4.1 Single-socket results

Table 5 shows the results for the single-socket of node 1. Here, all memory regions
are allocated locally. As loopedBLAS relies on the unfold storage and requires
a loop over subtensors for modes 1 and d, no for-loop parallelization is possible
for these modes, and MKL parallelization is used instead. Its performance is
highly mode-dependent, and thus it is outperformed by the algorithms based on
ρZρπ-storage. The block Morton order storage transfers the mode-obliviousness
to parallel TVMs (the standard deviation oscillates within 1%).



High performance tensor–vector multiplication on shared-memory systems 9

d Node 1 Node 2 Node 3

2 570× 570 570× 570 570× 570
3 68× 68× 68 68× 68× 68 34× 68× 34
4 22× 22× 22× 22 22× 22× 22× 12 12× 22× 22× 12
5 12× 12× 12× 12× 12 12× 12× 12× 12× 6 6× 10× 12× 10× 6

Table 4. Block sizes b1 × · · · × bd per tensor-order d and node. Sizes are chosen such
that all elements of a single block can be stored in L3 cache.

Average performance Sample stddev.
d loopedBLAS 0-sync q-sync loopedBLAS 0-sync q-sync

2 40.23 42.28 42.54 0.63 0.55 0.65
3 36.43 39.34 39.87 24.93 2.55 2.50
4 37.63 39.02 39.05 21.29 4.35 4.40
5 34.56 36.53 36.65 22.43 5.14 4.26

Table 5. Average effective bandwidth (in GB/s) and relative standard deviation (in
% of the average) over all possible k ∈ {1, . . . , d} of algorithms on a single-socket of
node 1. The highest bandwidth and lowest standard deviation for each d are in bold.

4.2 Inter-socket results

Table 6 shows results on the compute nodes for tensors of order-3 and 5 (the
accompanying report [9] contains results for order-2 and 4 as well). These runtime
results show a lack of scalability of loopedBLAS. This is due to the data structures
being interleaved instead of making use of a 1D distribution. Interleaving or not
only matters for multi-socket results, but since Table 5 conclusively shows that
approaches based on our ρZρπ-storage remain superior on single sockets, we
conclude that our approach is superior at all scales. The performance drops
slightly with the increasing d for all variants. This is inherent to the BLAS
libraries handling matrices with a lower row-to-column ratio better than tall-
skinny or short-wide matrices [10].

Order-3 Order-5
Sample stddev. Avg. performance Sample stddev. Avg. performance

algorithm / ps 2 4 8 2 4 8 2 4 8 2 4 8

loopedBLAS 9.57 16.52 23.05 63.89 55.68 13.66 15.37 19.70 32.03 56.11 54.04 12.43
0-sync 2.80 1.38 3.42 77.06 145.07 467.31 3.47 5.01 5.02 71.71 129.80 421.98
q-sync 1.90 3.86 6.56 76.27 143.17 441.65 4.17 9.37 14.83 71.65 129.60 397.25

Table 6. Average effective bandwidth (in GB/s) and relative standard deviation (in
% of average) over all possible k ∈ {1, . . . , d} of order-3 and -5 tensors of algorithms
executed on different nodes (2 socket node 1, 4 socket node 2, and 8-socket node 3). The
highest bandwidth and lowest standard deviation for different d are stated in bold.



10 Paw lowski et al.

As 0-sync does not require any synchronization for k = 1, it achieves the
lowest standard deviation. Thus, for TVMs of mode 1, the 0-sync algorithm
slightly outperforms the q-sync, while they achieve almost identical performance
for all the other modes. Some results are faster than STREAM benchmark, as
the output tensor fits the combined L3 size and enables super-linear speedup.
When passing from 4 to 8 processors the increase may be higher than twofold,
due to the octa-channel memory on node 3. Overall, our measured performances
are within the impressive range of 75–88%, 81–95%, and 66–77% of theoretical
peak performance for node 1, 2, and 3, respectively.

Table 7 displays the parallel efficiency on three different nodes versus the per-
formance of the q-sync on a single socket. Each node takes its own baseline since
the tensor sizes differ between nodes as per Table 3; one can thus only compare
parallel efficiencies over the columns of these tables. We compare algorithms,
and do not investigate inter-socket scalability. The efficiencies larger than one
are commonly due to cache-effects; here, output tensors fit in the combined cache
of eight CPUs, but did not fit in cache of a single CPU. These tests conclusively
show that both 0- and q-sync algorithms scale significantly better than looped-
BLAS for ps > 1, resulting in up to 35x higher efficiencies (for order-4 tensors
on node 3).

Order-2 Order-3 Order-4 Order-5

algorithm / ps 2 4 8 2 4 8 2 4 8 2 4 8

loopedBLAS 0.81 0.31 0.02 0.80 0.34 0.03 0.79 0.28 0.03 0.77 0.32 0.05
0-sync 0.99 0.93 0.98 0.97 0.88 0.96 0.99 0.83 1.05 0.98 0.76 1.53
q-sync 0.99 0.93 0.97 0.96 0.87 0.91 0.98 0.82 1.00 0.98 0.76 1.44

Table 7. Parallel efficiency of algorithms on order-2 up to 5 tensors executed on 3
different nodes (2 socket node 1, 4 socket node 2, and 8-socket node 3), calculated
against the single-socket runtime on a given node of q-sync algorithm on the same
problem size and tensor order.

5 Conclusions

We investigate the tensor–vector multiplication operation on shared-memory
systems. Building on an earlier work, where we developed blocked and mode-
oblivious layouts for tensors, we explore the design space of parallel shared-
memory algorithms based on this same mode-oblivious layout, and propose sev-
eral parallel algorithms. After analyzing those for work, memory, intra- and
inter-socket data movement, the number of barriers, and mode obliviousness, we
choose to implement two of them. These algorithms, called 0-sync and q-sync,
deliver close to peak performance on three different systems, using 2, 4, and
8 sockets, and surpass a baseline algorithm based on looped BLAS calls that



High performance tensor–vector multiplication on shared-memory systems 11

we optimized. For future work, we plan to investigate the use of the proposed
algorithms in distributed memory systems.

References

1. Bader, B.W., Kolda, T.G.: Algorithm 862: MATLAB tensor classes for fast algo-
rithm prototyping. ACM TOMS 32(4), 635–653 (2006)

2. Ballard, G., Knight, N., Rouse, K.: Communication lower bounds for matricized
tensor times Khatri-Rao product. In: 2018 IPDPS, pp. 557–567. IEEE (2018)

3. Grama, A.Y., Gupta, A., Kumar, V.: Isoefficiency: Measuring the scalability of
parallel algorithms and architectures. IEEE Parallel & Distributed Technology:
Systems & Applications 1(3), 12–21 (1993)

4. Kjolstad, F., Kamil, S., Chou, S., Lugato, D., Amarasinghe, S.: The Tensor Algebra
Compiler. Proc. ACM Program. Lang. 1(OOPSLA), 77:1–77:29 (2017)

5. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Review
51(3), 455–500 (2009)

6. Li, J., Battaglino, C., Perros, I., Sun, J., Vuduc, R.: An input-adaptive and in-place
approach to dense tensor-times-matrix multiply. In: SC’15, pp. 76:1–76:12 (2015)

7. Matthews, D.: High-performance tensor contraction without transposition. SIAM
Journal on Scientific Computing 40(1), C1–C24 (2018)

8. Morton, G.M.: A computer oriented geodetic data base and a new technique in file
sequencing (1966)

9. Paw lowski, F., Uçar, B., Yzelman, A.J.N.: High performance tensor–vector mul-
tiples on shared memory systems. Tech. Rep. 9274, Inria, Grenoble-Rhône-Alpes
(2019)

10. Pawlowski, F., Uçar, B., Yzelman, A.N.: A multi-dimensional Morton-ordered
block storage for mode-oblivious tensor computations. Journal of Computational
Science (2019). https://doi.org/https://doi.org/10.1016/j.jocs.2019.02.007

11. Solomonik, E., Matthews, D., Hammond, J.R., Stanton, J.F., Demmel, J.: A
massively parallel tensor contraction framework for coupled-cluster computations.
Journal of Parallel and Distributed Computing 74(12), 3176–3190 (2014)

12. Springer, P., Bientinesi, P.: Design of a high-performance gemm-like tensor–tensor
multiplication. ACM TOMS 44(3), 28:1–28:29 (2018)


