
HAL Id: hal-02333333
https://hal.archives-ouvertes.fr/hal-02333333

Submitted on 9 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Typing Total Recursive Functions in Coq
Dominique Larchey-Wendling

To cite this version:
Dominique Larchey-Wendling. Typing Total Recursive Functions in Coq. Interactive Theorem Prov-
ing - 8th International Conference, ITP 2017, Sep 2017, Brasilia, Brazil. pp.371-388, �10.1007/978-3-
319-66107-0_24�. �hal-02333333�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/266929847?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-02333333
https://hal.archives-ouvertes.fr


Typing Total Recursive Functions in Coq

Dominique Larchey-Wendling

LORIA – CNRS, Nancy, France
dominique.larchey-wendling@loria.fr

Abstract. We present a (relatively) short mechanized proof that Coq
types any recursive function which is provably total in Coq. The well-
founded (and terminating) induction scheme, which is the foundation of
Coq recursion, is maximal. We implement an unbounded minimization
scheme for decidable predicates. It can also be used to reify a whole cat-
egory of undecidable predicates. This development is purely constructive
and requires no axiom. Hence it can be integrated into any project that
might assume additional axioms.

1 Introduction

This paper contains a mechanization in Coq of the result that any total recursive
function can be represented by a Coq term. A short slogan could be Coq types
any total recursive function, but that would be a bit misleading because the term
total might also refer to the meta-theoretical level (see Section 7).

The theory of partial recursive (or µ-recursive) functions describes the class
of recursive functions by an inductive scheme: it is the least set of partial func-
tions Nk −⇁ N containing constant functions, zero, successor and closed under
composition, recursion and unbounded minimization [9]. Forbidding minimiza-
tion (implemented by the µ operator) leads to the sub-class of primitive recursive
functions which are total functions Nk −→N. Coq has all the recursive schemes
except unbounded minimization so it is relatively straightforward to show that
any primitive recursive function f : Nk −→N can be represented by a Coq term
tf : N k→N where N is a short notation for the Coq type nat of Peano natural
numbers. To represent all partial recursive functions Nk−⇁N by Coq terms, we
would first need to deal with partiality and change the type into N k→option N
(for instance) because (axiom-free) Coq only contains total functions; so here the
term None : option N represents the undefined value. Unfortunately, this does
not work because Coq (axiom-free) meta-level normalization would transform
such an encoding into a solution of the Halting problem.

Then, from a theoretical standpoint one question remains: which are the
functions that Coq can represent in the type N k→N . In this paper, we give a
mechanized proof that formally answers of half of the question:

The type N k→N contains every recursive function of arity k which can
be proved total in Coq.

Work partially supported by the TICAMORE project (ANR grant 16-CE91-0002).

https://ticamore.logic.at
http://www.agence-nationale-recherche.fr/?Projet=ANR-16-CE91-0002


Such a result was hinted in [2] but we believe that mechanizing the suggested
approach implies a lot of work (see Section 2). This property of totality of Coq
can compared to the characterization of System F definable functions as those
which are provably total in AF2 [5]. Besides the fact that AF2 and Coq are
different logical frameworks, the main difference here is that we mechanize the
result inside of Coq itself whereas the AF2 characterization is proved at the
meta-theoretical level.

Before the detailed description of our contributions, we want to insist on
different meanings of the notion of function that should not be confused:

– The µ-recursive schemes are the constructors of an inductive type of algo-
rithms which are the “source code” and can be interpreted as partial function
Nk −⇁ N in Set theory or as predicates N k→N → Prop in Coq;

– The Set-theoretic notion of partial function is a graph/relation between el-
ements and their images. µ-recursive functions should not be understood
independently of the algorithm that implements theses relations: it is im-
possible to recover an algorithm from the data of the graph alone;

– Then Coq has function types A → B which is a related but nevertheless
entirely different notion of function and we rather call them predicates here.

Now let us give a more detailed description of the result we have obtained.
We define a dependent family of types Ak representing recursive algorithms of
arity k : N . An algorithm f : Ak defines a (partial) recursive function denoted
JfK and which is represented in Coq as a predicate JfK : N k→N → Prop:

The proposition JfK v x reads as: the computation of the algorithm f
from the input k-tuple v terminates and results in x.

The implementation of the relation JfK is a simple exercise. It is more difficult
to show that whenever the relation (v, x) 7→ JfK v x between the input v and
the result x is total, then there is a term tf : N k →N (effectively computable
from f) such that the result of the computation of f on the input v is (tf v) for
any v : N k. This is precisely what we show in the following formal statement:

∀(k : N )(f : Ak),
(
∀v,∃x, JfK v x

)
→
{
tf : N k→N

∣∣ ∀v, JfK v (tf v)
}

(CiT)

The statement means that if JfK represents a total function (∀v,∃x, JfK v x),
then it can be effectively transformed into a Coq term tf : N k →N such that
(tf v) is the value computed by the recursive function JfK on the input v.

As we already pointed out, “Coq is Total” (CiT) is only one half of the
characterization of the predicates that are definable in the type N k →N . The
other half of the characterization, i.e. any predicate of type N k→N corresponds
to a µ-recursive function, while meta-theoretically provable for axiom-free Coq,
cannot not be proved within Coq itself; see Section 7.

We will call reification the process of transforming a non-informative predi-
cate like P : ∀v,∃x, JfK v x into an informative predicate Q : ∀v, {x | JfK v x}.1

1 from which the term tf := v 7→ proj1_sig(Q v) of (CiT) is trivially derived.



In its general form, reification is a map from inhabitedX : Prop to X : Type; it
transforms a non-informative proof of existence of a witness into an effective wit-
ness. In a proof system like HOL for instance, reification is built-in by Hilbert’s
epsilon operator. On the contrary, because of its constructive design, Coq does
not allow unrestricted reification. If needed in its full generality, it requires the
addition of specific axioms as discussed in Section 3.1 and 8.

One of the originalities of this work is that the proof we develop is purely
constructive (axiom free) and avoids the detour through small-step operational
semantics, that is the use of a model of computation on an encoded representa-
tion of recursive functions. For instance, programs are represented by numbers
(Gödel coding) in the proof of the S-m-n theorem [13]. It is also possible to use
other models of computations such as register machines (or Turing machines) or
even λ-calculus as in [8] or in our own dependently typed implementation [7] of
Krivine’s reference textbook [6]; see Section 7.

In Section 2, we present an overview of the consequences of the use of small-
step operational semantics and how we avoid it. In Section 3 we describe how to
implement unbounded minimization of inhabited decidable predicates in Coq.
Section 4 presents the inductive types we need for our development, most notably
the dependent type Ak of recursive algorithms of arity k and Section 5 defines
three different but equivalent semantics for Ak, in particular a decidable cost
aware big-step semantics which is the critical ingredient to avoid small-step
semantics. Section 6 concludes with the formal statement of (CiT) and its proof.
In Section 7, we discuss related work and/or alternative approaches. In Section 8,
we describe how to reify undecidable predicates (under some assumptions of
course), in particular, provability predicates, normalizability predicates and even
arbitrary recursively enumerable predicates. Section 9 lists some details of the
implementation and how it is split into different libraries.

To shorten notations, we recall that we denote by N the inductively defined
Coq type nat of natural numbers. The µ-recursive scheme of composition re-
quires the use of k-tuples which we implement as vectors. Vectors are typeset in
a bold font such as in v : N k and they correspond to a polymorphic dependent
type described in Section 4. Π-types are denoted with a ∀ symbol. We denote
Σ-types with their usual Coq notations, which are (∃x, P x) : Prop for non-
informative existential quantification, {x | P x} : Set for informative existential
quantification, or even {x : X & P x} : Type when P : X → Type carries in-
formation as well. These Σ-types are inductively defined in modules Logic and
Specif of the standard library. The interpretation of the different existential
quantifiers of Coq is discussed in Section 3.1.

2 Avoiding Small-step Operational Semantics

In this section we give a high level view of our strategy to obtain a mechanized
proof of the typability of total recursive functions in Coq. Let us first discuss
the approach which is outlined in [2] (Section 4.4, page 685).



1. By Kleene’s normal form theorem [9], every recursive function can be ob-
tained by the minimization of a primitive (hence total) recursive function;

2. Every primitive recursive function can directly be typed in Coq. The primi-
tive recursion scheme is precisely the recursor nat_rec corresponding to the
inductive type nat (denoted N in this paper);

3. The outermost minimization could be implemented by a “specific minimiza-
tion function” defined by mutual structural recursion.

Items 1 and 2 are results which should not come as a surprise to anyone knowl-
edgeable of µ-recursion theory and basic Coq programming. These observations
were already made in [2]. Their approach to minimization (i.e. Item 3) seems2
however distinct from what we propose as Item 3′ here:

3′. Minimizations of inhabited and decidable predicates of type N → Prop can
be implemented in (axiom free) Coq.

Item 3′ could be considered as a bit surprising. Indeed, inductive type theory
and hence Coq prohibits unbounded minimization. Hence we did not suspect
that Coq could have such a property. When it first came to our attention, we
realized that it provided a direct path towards a proof that Coq “had” any total
recursive function. Critical for our approach, Item 3′ is described in Section 3.

Despite its apparent straightforwardness, this three steps approach (with ei-
ther Item 3 or Item 3′) is difficult to implement because of Item 1. Indeed, let us
describe more precisely what it implies. Kleene’s normal form theorem involves
the T primitive recursive predicate which decides whether a given (encoding of
a) computation corresponds to a given (encoding of a) program code or not.
For this, you need a small-step operational semantics (a model of computation),
say for instance Minsky (or counter) machines, and a compiler from recursive
functions code to Minsky machines. You need of course a correctness proof for
that compiler. Since the T predicate operates on natural numbers N , all these
data-structures should be encoded in N which complicates proofs further. Then
the T predicate should answer the following question: does this given encoding
of a sequence of states correspond to the execution of that given encoding of
a Minsky machine. Most importantly, the T predicate should be proved primi-
tive recursive and correct w.r.t. this specification. Programming using primitive
recursive schemes is really cumbersome and virtually nobody does this.

Compared to the above three steps approach, the trick which is used in this
paper is to merge Items 1 and 2. Instead of showing that recursive functions
are minimizations of primitive recursive functions, it is sufficient to show that
recursive functions are minimizations of Coq definable predicates. From this point
of view, it is possible to completely avoid the encoding/decoding phases from/to
N but more importantly, we do not need a small-step semantics any more; we
can replace it with a decidable big-step semantics: this avoids the implementation
of a model of computation and thus, the proof of correctness of a compiler.
2 It is difficult to use a word more accurate than “seems” because the relevant discussion
in [2] is just a short outline of an approach, not a proof or an actual implementation.



Our mechanization proceeds in the following steps. We define an inductive
predicate denoted [f ;v] −[α〉〉 x and called cost aware big-step semantics. It reads
as: the recursive algorithm f terminates on input v and outputs x at cost α. This
relation is functional/deterministic in both α and x. We show the equivalence
JfKv x ⇐⇒ ∃α, [f ;v] −[α〉〉 x. We establish the central result of decidability
of cost aware big-step semantics when α is fixed: for any f , v and α, either x
together with a proof of [f ;v] −[α〉〉 x can be computed (i.e. {x | [f ;v] −[α〉〉 x}),
or (an informative “or”) a proof that no such x exists can be computed (i.e.
¬∃x, [f ;v] −[α〉〉 x). These results are combined in the following way: from a
proof of definedness (∃x, JfKv x), we deduce ∃x∃α, [f ;v] −[α〉〉 x. Equivalently we
get ∃α, inhabited {x | [f ;v] −[α〉〉 x}. By unbounded minimization of inhabited
decidable predicates (see Section 3), we reify the proposition ∃α, inhabited {x |
[f ;v] −[α〉〉 x} into the predicate {α : N & {x | [f ;v] −[α〉〉 x}}. Then we extract
α, x and a proof that [f ;v] −[α〉〉 x, hence JfK v x, showing that the computed
value x is the output value of f on input v.

3 Reifying ∃P into ΣP for P : N → {Prop, Type}

In this section, we describe a way to reify non-informative inhabited decidable
predicates of type P : N→Prop. So we show how to constructively build a value
n : N and a proof term t : P n. We use an unbounded (but still well-founded)
minimization algorithm whose termination is guaranteed by a proof of inhab-
itation ∃n, P n. The mechanization occurs in the file nat_minimizer.v which is
nearly self-contained. In a way, this shows that Coq has unbounded minimization
of inhabited and decidable predicates, whereas the theory of recursive functions
has unbounded minimization of partial recursive functions. In Section 3.3, we
also reify informative decidable predicates P : N → Type that are inhabited, i.e.
verifying ∃n, inhabited (P n).

3.1 Existential Quantification in Coq

Let us recall the usual interpretation of the existential quantifiers that are avail-
able in Coq. In Type Theory, they are called Σ-types over an index type X:

– for P : X→Prop, the expression ∃x : X,P x (or exP ) is of type Prop and a
term of that type is only a proof that there exists x : X which satisfies P x.
The witness x need not be effective. It can be obtained by non-constructive
means. For instance, the proof may use axioms in Prop such as the excluded
middle (typically). We say that the predicate ∃x : X,P x is non-informative;

– for P : X → Prop, the expression {x : X | P x} (or sigP ) is of type
Set/Type and a proof term for it is an (effective) term x together with a
proof of P x (x must be described by purely constructive methods). We say
that the predicate {x : X | P x} is informative;

– for P : X→Type, the expression {x : X & P x} (or sigTP ) is of type Type. It
carries both an effective witness x such that P x is inhabited and an effective
inhabitant of P x. The predicate {x : X & P x} is fully informative.



When the computational content of terms is extracted, the sub-terms of type
Prop are pruned and their code does not impact the extracted terms: this prop-
erty is called proof irrelevance. It implies that adding axioms in Prop will only
allow to show more (termination) properties but it will not change the behaviour
of terms. However, proof irrelevance is not preserved by adding axioms in Type.

The Constructive Indefinite Description axiom as stated in Coq standard
library module ChoiceFacts can reify any non-informative predicate ∃P :

∀(X : Type)(P : X → Prop), (∃x : X,P x)→{x : X | P x} (CID)

It provides an (axiomatic) transformation of ∃P (i.e. ∃x, P x in Coq) into ΣP
(i.e. {x | P x} in Coq). The type ∀X : Type, inhabited X → X provides an
equivalent definition of (CID) where inhabited : Type→ Prop is the “hidding
predicate” of the Logic module; see file cid.v and Section 3.3.

Assuming the axiom (CID) creates an “artificial” bridge between two separate
worlds.3 Some would even claim that such an axiom is at odds with the design
philosophy of Coq: the default bridges that exist between the non-informative
sort Prop and the informative sorts Set/Type were carefully introduced by Coq
designers to be “constructively” safe; in particular, to ensure that extraction
is proof irrelevant. Assuming (CID) would not be inconsistent with extraction
but it would leave a hole in the extracted terms that make use of it. Moreover,
assuming (CID), one can easily derive a proof of ∀AB : Prop, A ∨ B→{A}+{B}
and thus, a statement like ∀x, {P x} + {¬P x} cannot be interpreted as “P is
decidable” anymore. This is well explained in [3] together with the relations
between (CID) and Hilbert’s epsilon operator. You will also find a summary of
the incompatibilities between (CID) and other features or axioms in Coq.

3.2 The Case of Predicates of Type N → Prop

We describe a way to implement an instance of (CID) constructively but of
course, that proof requires additional assumptions: we require that P is a de-
cidable predicate that ranges over N instead of an arbitrary type X. We do
not extract the missing information x but instead, we generate it using a well-
founded algorithm that first transforms the non-informative inhabitation pred-
icate ∃x : N , P x into a termination certificate for a well-founded minimization
algorithm that sequentially enumerates natural numbers in ascending order.

Recall the definition of the non-informative accessibility predicate from the
Wf module of the Coq standard library:

Inductive Acc {X : Type} (R : X →X → Prop) (x : X) :=

| Acc_intro : (∀y : X,R y x→ Acc R y)→ Acc R x

We write Acc R instead of AccX R because the parameterX is declared implicit.
3 Of course this statement is of philosophical nature. We do not claim that assuming
additional axiom is evil, but carelessly adding axioms is a recipe for inconsistencies.



We assume a predicate P : N →Prop and we suppose that P is decidable (in
Coq) with a decision term HP . We define a binary relation R : N →N → Prop

and we show the following results:

Variables (P : N → Prop)
(
HP : ∀n : N , {P n}+ {¬P n}

)
Let R (n m : N ) := (n = 1 +m) ∧ ¬P m

Let P_Acc_R : ∀n : N , P n→ Acc R n
Let Acc_R_dec : ∀n : N , Acc R (1 + n)→ Acc R n
Let Acc_R_zero : ∀n : N , Acc R n→ Acc R 0
Let Acc_P : ∀n : N , Acc R n→{x : N | P x}

which all have straightforward proofs except for Acc_P. That last one is done by
induction on the accessibility predicate Acc R n. The proof term Acc_P uses the
decision term HP to choose between stopping and moving on to the successor:
it stops when HP n returns “true,” i.e. left T with T : P n; it loops on 1 + n
when HP n returns “false,” i.e. right F with F : ¬P n. We analyse the term:

Let Acc_inv (n : N ) (Hn : Acc R n) : ∀m,R m n→ Acc R m :=
match Hn with Acc_intro _ H ′

n 7→ H ′
n end

Fixpoint Acc_P (n : N ) (Hn : Acc R n) : {x : N | P x} :=
match HP n with

| left T 7→ exist _ n T
| right F 7→ Acc_P (1 + n)

(
Acc_inv _ Hn _ (conj eq_refl F )

)
end.

The recursion cannot be based on the argument n because it would not be
structurally well-founded in that case and the Coq type-checker would reject
it. The recursion is based on the Acc R n predicate. The definition is split in
two parts to make it more readable; Acc_inv is from the module Wf of the
standard library. The term Acc_P is a typical example of fixpoint by induction
over an ad hoc predicate (see [2] or the Coq’Art [1] page 428). The Fix_F fixpoint
operator of the Wf module of the Coq standard library is defined this way as well.
The cover-induction principle as defined in [4] uses a similar idea.

As a consequence, we can reify decidable and inhabited predicates over N :

Theorem nat_reify (P : N → Prop) :(
∀n : N , {P n}+ {¬P n}

)
→
(
∃n : N , P n

)
→
{
n : N

∣∣ P n
}

The proof is now simple: using P_Acc_R and Acc_R_zero, from ∃n, P n we
deduce Acc R 0, and thus {x : N | P x} using Acc_P.

Considering this somewhat unexpected result, maybe some further clarifica-
tions about the proof of nat_reify are mandatory at this stage. The witness n
which is contained in the hypothesis ∃n, P n of sort Prop is not informative and
thus cannot be extracted to build a term of sort Type. As this remarks seems
contradictory with what we show, we insist on the fact that we do not extract
the witness n contained in the hypothesis by inspection of its term. Instead,



we compute the minimum value m which satisfies P m by testing all cases in
sequence: P 0 ?, P 1 ?, ... until we reach the first value m which satisfies P m
(the decidability of P is required for that). To ensure that such a computation
is well-founded, we use the non-informative witness n contained in ∃n, P n as
a bound on the search space; but a bound in sort Prop: we encode n into the
accessibility predicate An : Acc R 0 which is then used as a certificate for the
well-foundedness of the computation of Acc_P 0 An.

3.3 Reification of Predicates of Type N → Type

We now generalize the previous result nat_reify to predicates in N → Type

instead of just N → Prop. But we first need to introduce two predicates:

Inductive inhabited (P : Type) : Prop := inhabits : P → inhabited P

Definition decidable_t (P : Type) : Type := P + P → False

where inhabited is from the standard library (module Logic) and decidable_t
is an informative version of the decidable predicate of the Decidable module
of the standard library. Their intuitive meaning is the following:

– inhabited P hides the information of the witness of P . Whereas a term of
type P is a witness that P is inhabited, a term of type inhabited P hides
the witness by the use of the non-informative constructor inhabits;

– decidable_t P means that either a term of type P is given or a proof that
P is void is given. The predicate is informative and contains a Boolean choice
(represented by the +) which tells whether P is inhabited or not. But it may
also contain an effective witness that P is inhabited.

We can now lift the theorem nat_reify that operates on N → Prop to
informative predicates of type N → Type in the following way:

Theorem nat_reify_t (P : N → Type) :(
∀n, decidable_t (P n)

)
→
(
∃n, inhabited (P n)

)
→
{
n : N & P n

}
The proof is only a slight variation from theN→Prop case. Notice that the result
type {n : N & P n

}
contains the reified value n for which P n is inhabited, but

it also contains the effective witness that P n is not void. On the contrary, in the
hypothesis ∃n, inhabited (P n) neither n nor the witness that P n is inhabited
have to be provided by effective means.

4 Dependent Types for Recursive Algorithms

So far, we have only encountered datatypes which originate in the Coq standard
library, and that are imported by default when loading Coq, most notably N
which is a least solution of the fixpoint equation N ≡ {0} + {S n | n : N}.
We will need the type of vectors VectorDef.t and the type of positions Fin.t



that also belong to the standard library module Vector. However, the stan-
dard library only contains a small fraction of the results that we use for these
datatypes. Moreover, the implementation of some functions of the Vector mod-
ule is incompatible with how we intend to use them. Typically, the definition of
VectorDef.nth which selects a component of a vector by its position does not
type-check in our succinct definition of the upcoming recalg_rect recursor: the
definition of VectorDef.nth makes Coq unable to certify the structural decrease
of recursive sub-calls which is mandatory for Fixpoint definitions. As a con-
sequence, we use our own vectors and positions libraries. This represents little
overhead compared to extending the standard libraries in the Vector module.

We define three types that depend on a parameter k : N representing an
arity. First the type of positions

pos 0 ≡ ∅ pos(1 + k) ≡ {fst}+ {nxt p | p : pos k}

which is isomorphic to pos k ≡ {i : N | i < k} but avoids carrying the proof
term i < k. The library pos.v contains the inductive definitions of the type pos k
and the tools to manipulate positions smoothly: an inversion tactic pos_inv,
maps pos2nat : pos k→N and nat2pos : ∀i, i < k→ pos k, etc. To shorten the
notations in this paper, p denotes pos2nat p, the natural number below k which
corresponds to p.

Positions of pos k mainly serve as coordinates for accessing the components
of vectors of arity k

X0 ≡ {vec_nil} X1+k ≡ X ×Xk

where Xk is a compact notation for vec X k. The type is polymorphic in X and
dependent on k : N . We will write terms of type Xk in a bold font like with
v or w to remind the reader that these are vectors. Given a position p : pos k
and a vector v : Xk, we write vp : X for the p-th component of v, a short-
cut for vec_pos v p. vec_pos is obtained from the “correspondence” Xk ≡
pos k → X. Notice however that the type Xk enjoys an extensional equality
(i.e. v = w whenever vp = wp holds for any p : pos k) whereas the function
type pos k → X does not. The file vec.v contains the inductive definition of
the type of vectors together with the tools to smoothly manipulate vectors and
their components where coordinates can either be positions of type pos k or
natural number i : N satisfying i < k. The constructors are vec_nil : X0 and
vec_cons : X → Xk → X1+k and vec_cons x v is denoted x#v here. The
converse operations are vec_head : X1+k→X and vec_tail : X1+k→Xk.

With positions and (polymorphic) vectors, we can now introduce the induc-
tive type of recursive algorithms of arity k denoted by Ak which is defined by
the rules of Fig. 1 and implemented in the file recalg.v. The notation Ak is a
short-cut for recalg k. Notice that Ak is a dependent type (of sort Set). It is the
least type which contains constants of arity 0, zero and succ of arity 1, projec-
tions at every arity k for each possible coordinate, and which is closed under the
composition, primitive recursion and unbounded minimization schemes. Ak itself



n : N
cstn : A0 zero : A1 succ : A1

p : pos k

projp : Ak

f : Ak g : Ak
i

comp f g : Ai

f : Ak g : A2+k

rec f g : A1+k

f : A1+k

min f : Ak

Fig. 1. The type Ak of recursive algorithms of arity k.

does not carry the semantics of those recursive algorithms: it corresponds to the
source code. We will give a meaning/semantics to those recursive algorithms in
Section 5 so that they correspond to the usual notion of recursive functions.

To be able to compute with or prove properties of terms of type Ak, we
implement a general fully dependent recursion scheme recalg_rect described
in the file recalg.v. This principle is not automatically generated by Coq because
of the nested induction between the types Ak and vec _ k which occurs in the
constructor comp f g. The definition of recalg_rect looks simple but it only
works well because vec_pos was carefully designed to allow the Coq type-checker
to detect nested recursive calls as structurally simpler: using the “equivalent”
VectorDef.nth instead of vec_pos prohibits successful type-checking. We also
show the injectivity of the constructors of the type Ak. Some require the use
of the Eqdep_dec module of the standard library because of the dependently
typed context. For example, the statement of the injectivity of the constructor
comp f g involves type castings eq_rect (or heterogenous equality):

Fact ra_comp_inj k k′ i (f : Ak) (f
′ : Ak′) (g : Ak

i ) (g
′ : Ak′

i ) :

comp f g = comp f ′ g′→∃e : k = k′,∧
{
eq_rect _ _ f _ e = f ′

eq_rect _ _ g _ e = g′

5 A Decidable Semantics for Recursive Algorithms

In this section, we define three equivalent semantics for recursive algorithms.
First the standard relational semantics defined by recursion on f : Ak, then
an equivalent big-step semantics defined by a set of inductive rules. Those two
semantics cannot be decided. Then we define a refinement of big-step semantics
by annotating it with a cost. By constraining the cost, we obtain a decidable
semantics for recursive algorithms Ak.

5.1 Relational and Big-step Semantics

We define relational semantics Jf : AkK : N k→N→Prop of recursive algorithms
by structural recursion on f : Ak so as to satisfy the fixpoint equations of Fig. 2
where JfK is a notation for ra_rel f ; the fixpoint equations ra_rel_fix_∗
are proved in the file ra_rel.v. Without preparation, such a definition could be



JcstnK_x ⇐⇒ n = x JzeroK_x ⇐⇒ 0 = x
JsuccKv x ⇐⇒ 1 + vfst = x JprojpKv x ⇐⇒ vp = x

Jcomp f gKv x ⇐⇒ ∃w, JfKw x ∧ ∀p, JgpKvwp

Jrec f gK (0#v)x ⇐⇒ JfKv x
Jrec f gK (1 + n#v)x ⇐⇒ ∃y, Jrec f gK (n#v) y ∧ JgK (n#y#v)x

Jmin fKv x ⇐⇒ ∃w, JfK (x#v) 0 ∧ ∀p : posx, JfK (p#v) (1 +wp)

Fig. 2. Relational semantics ra_rel for recursive algorithms of Ak.

quite technical because of the nested recursion between the type Ak and the
type vec Ai k of the parameter g in the constructor comp f g. Using our general
recursion principle recalg_rect, the code is straightforward; but see the remark
about recalg_rect in Section 4. We explicitly mention the type p : posx in
the definition of Jmin fK because it is the only type which does not depend on
the type of f : the dependent parameter x is the result of the computation.

The big-step semantics for recursive algorithms in Ak is an inductive rela-
tion of type ra_bs : ∀k,Ak →N k →N → Prop and we denote [f ;v]  x for
(ra_bs k f v x); the parameter k is implicit in the notation. [f ;v]  x intu-
itively means that the computation of f starting from input v yields the result
x. We define big-step semantics in file ra_bs.v by the inductive rules of Fig. 3.
We point out that the rule corresponding to [min f ;v]  x is of unbounded
arity but still finitary because posx is a finite type. These rules are similar to
those used to define the semantics of Partial Recursive Functions in [13] except
that thanks to our dependent typing, we do not need to specify well-formedness
conditions. In ra_sem_eq.v, we show that big-step semantics is equivalent to
relational semantics:

Theorem ra_bs_correct k (f : Ak) (v : N k) x : JfK v x⇐⇒ [f ;v] x

However big-step semantics has the advantage of being defined by a set of in-
ductive rules instead of being defined by recursion on f : Ak.

Relational and big-step semantics are not recursive/computable relations:
this is an instance of the Halting problem. As such, these relations cannot be im-
plemented by a Coq evaluation function ra_rel_eval : Ak→N k→ option N
satisfying ra_rel_eval f v = Some x⇐⇒ JfK v x for any f , v and x. Indeed,
when it is axiom free, Coq has normalisation which implies that the functions
that can be defined in it are total recursive at the meta-theoretical level. Never-
theless big-step semantics as presented in Fig. 3 is an intermediate step towards
a decidable semantics for Ak.

5.2 Cost Aware Big-step Semantics

The cost aware big-step semantics for recursive algorithms in Ak is defined as
an inductive predicate of type ra_ca : ∀k,Ak → N k → N → N → Prop. We
denote (ra_ca k f v α x) by [f ;v] −[α〉〉 x where the argument k is implicit in



[cstn;v] n [zero;v] 0 [succ;v] 1 + vfst [projp;v] vp

[f ;v] x

[rec f g; 0#v] x

[rec f g;n#v] y [g;n#y#v] x

[rec f g; 1 + n#v] x

[f ;w] x ∀p, [gp;v] wp

[comp f g;v] x

[f ;x#v] 0 ∀p : posx, [f ; p#v] 1 +wp

[min f ;v] x

Fig. 3. Big-step semantics ra_bs for recursive algorithms of Ak.

[cstn;v] −[1〉〉 n [zero;v] −[1〉〉 0 [succ;v] −[1〉〉 1 + vfst [projp;v] −[1〉〉 vp

[f ;v] −[α〉〉 x

[rec f g; 0#v] −[1 + α〉〉 x

[rec f g;n#v] −[α〉〉 y [g;n#y#v] −[β〉〉 x

[rec f g; 1 + n#v] −[1 + α+ β〉〉 x

[f ;w] −[α〉〉 x ∀p, [gp;v] −[βp〉〉 wp

[comp f g;v] −[1 + α+Σβ〉〉 x

[f ;x#v] −[α〉〉 0 ∀p : posx, [f ; p#v] −[βp〉〉 1 +wp

[min f ;v] −[1 + α+Σβ〉〉 x

Fig. 4. Cost aware big-step semantic ra_ca for recursive algorithms of Ak.

the notation. [f ;v] −[α〉〉 x intuitively means that the computation of f on input
v yields the result x and costs α. We define the predicate ra_ca in file ra_ca.v
by the rules of Fig. 4. It is interesting to compare these rules with those of
conventional big-step semantics ra_bs of Fig. 3. The very simple but nonetheless
powerful idea to get decidability is to decorate big-step semantics with a cost
and to constrain computations by a cost that must be exactly matched. This
is how we realize the principle of our proof that Coq contains total recursive
functions: we avoid a small-step semantics (Kleene’s T predicate) and replace it
with a big-step semantics for recursive algorithm that is nevertheless decidable.

We show the equivalence of relational and cost aware big-step semantics

Theorem ra_ca_correct (k : N ) (f : Ak) (v : N k) (x : N ) :

JfK v x⇐⇒ ∃α : N , [f ;v] −[α〉〉 x

in file ra_sem_eq.v. The proof is circular in style: ra_ca implies ra_bs implies
ra_rel implies ∃ra_ca and all these three implications are proved by induc-
tion on the obvious inductive parameter. Do not feel puzzled by a statement of
equivalence between a decidable and an undecidable semantics, because it is the
quantifier ∃α in ra_ca_correct which brings undecidability.

Inversion lemmas named ra_ca_∗_inv are essential tools to prove the high-
level properties of Section 5.3. They allow case analysis on the last step of an
inductive term depending on the shape of the conclusion. Here is the inversion



lemma of one rule:

Lemma ra_ca_rec_S_inv (k : N ) (f : Ak) (g : A2+k) (v : N k) (n γ x : N ) :

[rec f g; 1 + n#v] −[γ〉〉 x→∃y α β,∧

 γ = 1 + α+ β
[rec f g;n#v] −[α〉〉 y
[g;n#y#v] −[β〉〉 x

Such results could be difficult to establish if improperly prepared. In our opinion,
the easiest way to prove it is to implement a global inversion lemma that encom-
passes the whole set of rules of Fig. 4. Then a lemma like ra_ca_rec_S_inv
can be proved by applying the global inversion lemma and discriminate between
incompatible constructors of type Ak (in most cases) or use injectivity of thoses
constructors (in one case). The global inversion lemma is quite complicated to
write because of dependent types. It would fill nearly half of this page (see lemma
ra_ca_inv in file ra_ca.v). However it is actually trivial to prove, a “reversed”
situation which is rare enough to be noticed.

5.3 Properties of Cost Aware Big-step Semantics

The annotation of cost in the rules of Fig. 4 satisfies the following paradigm:
the cost of a compound computation is greater than the sum of the costs of its
sub-computations. Hence, we can derive that no computation is free of charge:

Theorem ra_ca_cost k (f : Ak) (v : N k) (α x : N ) : [f ;v] −[α〉〉 x→ 0 < α

The proof is by immediate case analysis on [f ;v] −[α〉〉 x. The cost and results
given by cost aware big-step semantics are unique (provided they exist)

Theorem ra_ca_fun (k : N ) (f : Ak) (v : N k) (αβ x y : N ) :

[f ;v] −[α〉〉 x→ [f ;v] −[β〉〉 y→ α = β ∧ x = y

The proof is by induction on [f ;v] −[α〉〉 x together with inversion lemmas
ra_ca_∗_inv to decompose [f ;v] −[β〉〉 y. Inversion lemmas are the central
ingredient of this proof.

Now the key result: cost aware big-step semantics is decidable (in sort Type,
see Section 3.3) when the cost is fixed

Theorem ra_ca_decidable_t (k : N ) (f : Ak) (v : N k) (α : N ) :

decidable_t
{
x
∣∣ [f ;v] −[α〉〉 x}

Its proof is the most complicated of our whole development. It proceeds by
induction on f : Ak and uses inversion lemmas ra_ca_∗_inv, functionality
ra_ca_fun as well as a small decidability library to lift decidability arguments
over (finitely) quantified statements. The central constituents of that library are:

Lemma decidable_t_bounded (P : N → Type) :(
∀n : N , decidable_t (P n)

)
→ ∀n : N , decidable_t {i : N & i < n× P i}



Lemma vec_sum_decide_t (n : N ) (P : (N → Type)n) :(
∀(p : posn) (i : N ), decidable_t (P p i)

)
→ ∀m : N , decidable_t {v : Nn & Σv = m× ∀p,P p vp}

Lemma vec_sum_unbounded_decide_t (P : N →N → Type) :(
∀n i : N , decidable_t (P n i)

)
→
(
∀n : N , P n 0→ False

)
→ ∀m : N , decidable_t

{
n : N & {q : Nn & Σq = m× ∀p, P p qp}

}
Some comments about the intuitive meaning of such results could be useful.

Recall that decidability has to be understood over Type (as opposed to Prop):

– decidable_t_bounded states that whenever P n is decidable for any n,
then given a bound m, it is decidable whether there exists i < m such that
P i holds. Hence bounded existential quantification inherits decidability;

– vec_sum_decide_t states that if P is a posn × N indexed family of de-
cidable predicates, then it is decidable whether there exists vector v : Nn

(of length n) which satisfies P p vp for each of its components (indexed by
p : posn), and such that the sum of the components of v is a fixed value
m. This express the decidability of some kind of universal quantification
bounded by the length of a vector;

– vec_sum_unbounded_decide_t states that if P is a N ×N indexed family
of decidable predicates such that P _ 0 is never satisfied, then it is decidable
whether there exists a vector q of arbitrary length which satisfies P at every
component and such that the sum of those components is a fixed value m.
This is a variant of vec_sum_decide_t but for unbounded vector length,
only the sum of the components acts as a bound.

Once ra_ca_decidable_t is established, we combine it with ra_ca_fun
to easily define a bounded computation function for recursive algorithms, as is
done for instance at the end of file ra_ca_props.v:

Definition ra_ca_eval (k : N ) (f : Ak) (v : N k) (α : N ) : option N
Proposition ra_ca_eval_prop (k : N ) (f : Ak) (v : N k) (α x : N ) :

[f ;v] −[α〉〉 x⇐⇒ ra_ca_eval f v α = Some x

Notice that the function ra_ca_eval could be proved primitive recursive with
proper encoding of Ak into N but the whole point of this work is to avoid having
to program with primitive recursive schemes.

6 The Totality of Coq

In this section, we conclude our proof that Coq contains all the recursive func-
tions for which totality can be established in Coq. We assume an arity k : N
and a recursive algorithm f : Ak which is supposed to be total:

Variables (k : N ) (f : Ak)
(
Hf : ∀v : N k, ∃x : N , JfK v x

)



Mimicking Coq sectioning mechanism, these assumptions hold for the rest of the
current section. We first show that given an input vector v : N k, both a cost
α : N and a result x : N can be computed constructively:

Let coq_f (v : N k) :
{
α : N & {x : N | [f ;v] −[α〉〉 x}

}
The proof uses unbounded minimization as implemented in nat_reify_t to
find a cost α such that {x : N | [f ;v] −[α〉〉 x} is an inhabited type. This can
be decided for each possible cost thanks to ra_ca_decidable_t. Recall that
nat_reify_t tries 0, then 1, then 2, etc until it finds the one which is guaranteed
to exist. The warranty is provided by a combination of Hf and ra_ca_correct.

To obtain the predicate t : N k →N that realizes JfK, we simply permute x
and α in coq_f v. We define t := v 7→ proj1_sig(projT2(coq_f v)). Using
projT1(coq_f v), proj2_sig(projT2(coq_f v)) and ra_ca_correct, it is
trivial to show that t v satisfies JfK v (t v). Hence, closing the section and
discharging the local assumptions, we deduce the totality theorem.

Theorem Coq_is_total (k : N ) (f : Ak) :(
∀v : N k, ∃x : N , JfK v x

)
→
{
t : N k→N

∣∣ ∀v : N k, JfK v (t v)
}

7 Discussion: Other Approaches, Church Thesis

Comparing our method with the approach based on Kleene’s normal form theo-
rem (Section 2), we remark that the introduction of small-step semantics would
only be used to measure the length (or cost) of computations. Since there is at
most one computation from a given input in deterministic models of computa-
tion, any computation can be recovered from its number of steps by primitive
recursive means. Hence the idea of short-cutting small-step semantics by a cost.

It is not surprising that the Kleene’s normal form approach was only sug-
gested in [2]. Mechanizing a Turing complete model of computation is bound
to be a lengthy development. Mainly because translating between elementary
models of computation resembles writing programs in assembly language that
you moreover have to specify and prove correct. And unsurprisingly, such devel-
opments are relatively rare and recent, with the notable exception of [13] which
formalizes computability notions in Coq. µ-recursive functions are not depen-
dently typed in [13] (so there is a well-formedness predicate) and they are not
compiled into a model of execution. In [12] however, the same author presents
a compiler from µ-recursive functions to Unlimited Register Machines, proved
correct in HOL. Turing machines, Abacus machines and µ-recursive functions
are implemented in [11] with the aim of been able to characterize decidability
in HOL. The development in [8] approaches computability in HOL4 through λ-
calculus also with the aim at the mechanization of computability arguments. We
recently published online a constructive implementation in (axiom-free) Coq [7]
of an significant portion of Krivine’s textbook [6] on λ-calculus, including a
translation from µ-recursive functions to λ-terms with dependent types in Coq.



Actually, this gave us a first mechanized proof that Coq contained any total re-
cursive function by using leftmost β-reduction strategy to compute normal forms.
But it requires the introduction of intersection type systems, a development of
more than 25 000 lines of code.

Now, what about a characterization of the functions of type N→N definable
in Coq? Or else, is such a converse statement of (CiT)

∀(k : N ) (g : N k→N ),∃f : Ak,∀v : N k, JfK v (g v) (ChT)

provable in Coq? It is not too difficult to see that (ChT) does not hold in a
model of Coq where function types contain the full set of set theoretic functions
like in [10], because it contains non-computable functions. However, it is for us
an open question whether a statement like (ChT) could be satisfied in a model
of Coq, for instance in an effective model.

In such a case, the statement (ChT) would be independent of (axiom free)
Coq: (ChT) would be both unprovable and unrefutable in Coq. We think (ChT)
very much expresses an internal form of Church thesis in Coq: the functions
which are typable in Coq are exactly the total recursive functions. The problem
which such a statement is that the notion of totality is not independent from
the logical framework in which such a totality is expressed and some frameworks
are more expressive that others, e.g., Set theory defines more total recursive
functions that Peano arithmetic. It is not clear how (ChT) could be used to
simplify undecidability proofs in Coq.

8 Reifying Undecidable Predicates

In Section 3, we did explain how to reify the non-informative predicate (∃n, P n)
into the informative predicate {n | P n}, for P of type N →Prop. This occurred
under an important restriction: P is assumed Coq-decidable there. The Coq term
nat_reify that implements this transformation is nevertheless used in Section 6
to reify the undecidable “computes into” predicate ra_bs. This predicate is first
represented as an existential quantification of the decidable precidate ra_ca,
which is basically a bounded version of ra_bs. Then nat_reify is used to
compute the bound by minimization. Without entering in the full details, we
introduce some of the developments that can be found in the file applications.v.

We describe how to reify other kinds of undecidable predicates. For instance,
we can reify undecidable predicates that can be bounded in some broad sense.
Consider a predicate P : X→Prop for which we assume the following: P is equiv-
alent to

⋃
n(Q n) for some Q : N →X→ Prop such that Q n is (informatively)

finite for any n : N . Then, the predicate ∃P can be reified into ΣP :

Variables (X : Type) (P : X → Prop) (Q : N →X → Prop)
(HP : ∀x, P x⇐⇒ ∃n, Q n x)(
HQ : ∀n, {l : list X | ∀x, In x l⇐⇒ Q n x}

)
Theorem weighted_reif : (∃x : X,P x)→{x : X | P x}



The idea of the proof is simply that the first parameter of Q is a weight of
type N and that for a given weight n, there are only finitely many elements x
that satisfy Qnx (hence P x). The weight n such that ∃x, Qnx is reified using
nat_reify, then the value x is computed as the first element of the list given by
HQ n. The hypothesis ∃x, P x ensures that the list given by HQ n is not empty.

Among its direct applications, such a weighted reification scheme can be used
to reify provability predicates for arbitrary logics, at least those where formulæ
and proofs can be encoded as natural numbers. This very low restriction allows
to cover a very wide range of logics, with the notable exception of infinitary
logics (where either formulæ are infinite or some rules have an infinite number
of premisses). Hence, one can compute a proof of a statement provided such a
proof exists. Another application is the reification of the normalizable predicate
for any reduction (i.e. binary) relation which is finitary (i.e. with finite direct
images). This applies in particular to β-reduction in λ-calculus.

To conclude, we implement a judicious remark of one of the reviewers. He
points out that we can derive a proof of Markov’s principle for recursively enu-
merable predicates over N k (instead of just decidable ones). These are predicates
of the form v 7→ JfK v 0 for some µ-recursive f function of arity k.

Theorem re_reify k (f : Ak) :
(
∃v : N k, JfK v 0

)
→
{
v : N k

∣∣ JfK v 0
}

Hence if a recursively enumerable predicate can be proved inhabited, possibly
using 1-consistent axioms in sort Prop such as e.g. excluded middle, then a
witness of that inhabitation can be computed.

9 The Structure of the Coq Source Code

The implementation involves around 4 500 lines of Coq code. It has been tested
and should compile under Coq 8.5pl3 and Coq 8.6. It is available under a Free
Software license at https://github.com/DmxLarchey/Coq-is-total.

More than half of the code belongs to the utils.v utilities library, mostly in
files pos.v, vec.v and tree.v. These could be shrunk further because they contain
some code which is not necessary to fulfil the central goal of the paper. The files
directly relevant to this development are:

utils.v The library of utilities that regroups notations.v, tac_utils.v, list_utils.v,
pos.v, nat_utils.v, vec.v, finite.v and tree.v;

nat_minimizer.v The reification of ∃P to ΣP by unbounded minimization of
decidable predicates of types N → Prop and N → Type, see Section 3;

recalg.v The dependently typed definition of recursive algorithms with a general
recursion principle and the injectivity of type constructors, see Section 4;

ra_{rel,bs,ca}.v The definitions of relational, big-step and cost aware big-step
semantics, with inversion lemmas, see Section 5.1 and 5.2;

ra_sem_eq.v The proof of equivalence between the three previous semantics,
see Section 5.1 and 5.2;

https://github.com/DmxLarchey/Coq-is-total


ra_ca_props.v High-level results about cost aware big-step semantics, mainly
its functionality and its decidability, see Section 5.3;

decidable_t.v The decidability library to lift decision arguments to finitely
quantified statements, see Section 5.3;

coq_is_total.v The file that implements Section 6, which shows that any prov-
ably total recursive function can be represented by a Coq term;

applications.v The file that implements Section 8, reification of (undecidable)
weighted predicates, provability predicates, normalizability predicates and
recursively enumerable predicates.

References

1. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development –
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series, Springer (2004)

2. Bove, A., Capretta, V.: Modelling general recursion in type theory. Mathematical
Structures in Computer Science 15(4), 671–708 (2005)

3. Castéran, P.: Utilisation en Coq de l’opérateur de description (2007), http://
jfla.inria.fr/2007/actes/PDF/03_casteran.pdf

4. Coen, C.S., Valentini, S.: General Recursion and Formal Topology. In: Partiality
and Recursion in Interactive Theorem Provers, PAR@ITP 2010, Edinburgh, UK,
July 15, 2010. EPiC Series, vol. 5, pp. 71–82. EasyChair (2010)

5. Girard, J.Y., Taylor, P., Lafont, Y.: Proofs and Types. Cambridge University Press,
New York, NY, USA (1989)

6. Krivine, J.: Lambda-calculus, types and models. Ellis Horwood series in computers
and their applications, Masson (1993)

7. Larchey-Wendling, D.: A constructive mechanization of Lambda Calculus in Coq
(2017), http://www.loria.fr/~larchey/Lambda_Calculus

8. Norrish, M.: Mechanised Computability Theory. In: Proceedings of the Second
International Conference on Interactive Theorem Proving. pp. 297–311. ITP’11,
Springer-Verlag, Berlin, Heidelberg (2011)

9. Soare, R.I.: Recursively Enumerable Sets and Degrees. Springer-Verlag New York,
Inc., New York, NY, USA (1987)

10. Werner, B.: Sets in Types, Types in Sets. In: Theoretical Aspects of Computer
Software, Third International Symposium, TACS ’97. Lecture Notes in Computer
Science, vol. 1281, pp. 530–346. Springer (1997)

11. Xu, J., Zhang, X., Urban, C.: Mechanising Turing Machines and Computability
Theory in Isabelle/HOL. In: Interactive Theorem Proving, ITP 2013. Lecture Notes
in Computer Science, vol. 7998, pp. 147–162. Springer (2013)

12. Zammit, V.: A mechanisation of computability theory in HOL. In: Theorem Prov-
ing in Higher Order Logics, TPHOLs’96. Lecture Notes in Computer Science, vol.
1125, pp. 431–446. Springer (1996)

13. Zammit, V.: A Proof of the S-m-n theorem in Coq. Technical report, The Com-
puting Laboratory, The University of Kent, Canterbury, Kent, UK (March 1997),
http://kar.kent.ac.uk/21524/

http://jfla.inria.fr/2007/actes/PDF/03_casteran.pdf
http://jfla.inria.fr/2007/actes/PDF/03_casteran.pdf
http://www.loria.fr/~larchey/Lambda_Calculus
http://kar.kent.ac.uk/21524/

	Typing Total Recursive Functions in Coq

