
HAL Id: hal-02335011
https://hal.inria.fr/hal-02335011

Submitted on 28 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Algorithms for the Massively Parallel
Computation Model

Giuseppe Italiano, Silvio Lattanzi, Vahab Mirrokni, Nikos Parotsidis

To cite this version:
Giuseppe Italiano, Silvio Lattanzi, Vahab Mirrokni, Nikos Parotsidis. Dynamic Algorithms for the
Massively Parallel Computation Model. SPAA 2019 - 31st ACM Symposium on Parallelism in Al-
gorithms and Architectures, Jun 2019, Phoenix, France. pp.49-58, �10.1145/3323165.3323202�. �hal-
02335011�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/266926804?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02335011
https://hal.archives-ouvertes.fr

Dynamic Algorithms for the Massively Parallel Computation
Model

Giuseppe F. Italiano

LUISS University, Rome, Italy

Silvio Lattanzi

Google Research, Zürich, Switzerland

Vahab S. Mirrokni

Google Research, New York, USA

Nikos Parotsidis
∗

University of Copenhagen, Denmark

ABSTRACT
The Massive Parallel Computing (MPC) model gained popularity

during the last decade and it is now seen as the standard model

for processing large scale data. One significant shortcoming of the

model is that it assumes to work on static datasets while, in practice,

real world datasets evolve continuously. To overcome this issue,

in this paper we initiate the study of dynamic algorithms in the

MPC model. We first discuss the main requirements for a dynamic

parallel model and we show how to adapt the classic MPC model

to capture them. Then we analyze the connection between classic

dynamic algorithms and dynamic algorithms in the MPC model.

Finally, we provide new efficient dynamic MPC algorithms for a

variety of fundamental graph problems, including connectivity,

minimum spanning tree and matching.

CCS CONCEPTS
•Theory of computation→Dynamic graph algorithms;MapRe-
duce algorithms; Distributed computing models.

1 INTRODUCTION
Modern applications often require performing computations on

massive amounts of data. Traditional models of computation, such

as the RAM model or even shared-memory parallel systems, are

inadequate for such computations, as the input data do not fit into

the available memory of today’s systems. The restrictions imposed

by the limited memory in the available architectures has led to

new models of computation that are more suitable for processing

massive amounts of data. A model that captures the modern needs

of computation at a massive scale is the Massive Parallel Computing

(MPC) model, that is captured by several known systems (such as

MapReduce, Hadoop, or Spark). At a very high-level, a MPC system

consists of a collection of machines that can communicate with each

other through indirect communication channels. The computation

proceeds in synchronous rounds, where at each round the machines

receive messages from other machines, perform local computations,

and finally send appropriate messages to other machines so that

the next round can start. The crucial factors in the analysis of

algorithms in the MPC model are the number of rounds and the

amount of communication performed per round.

The MPC model is an abstraction of a widely-used framework in

practice and has resulted in an increased interest by the scientific

community. An additional factor that contributed to the interest in

this model is that MPC exhibits unique characteristics that are not

∗
The author is supported by Grant Number 16582, Basic Algorithms Research Copen-

hagen (BARC), from the VILLUM Foundation. Work partially done while the author

was an intern at Google.

seen in different parallel and distributed architectures, such as its

ability to perform expensive local computation in each machine at

each round of the computation. Despite its resemblance to other

parallel models, such as the PRAM model, the MPC model has

been shown to have different algorithmic power from the PRAM

model [24].

The ability of the MPC model to process large amounts of data,

however, comes with the cost of the use of large volumes of re-

sources (processing time, memory, communication links) during the

course of the computation. This need of resources strengthens the

importance of efficient algorithms. Although the design of efficient

algorithms for solving problems in the MPC model is of vital impor-

tance, applications often mandate the recomputation of the solution

(to a given problem) after small modifications to the structure of the

data. For instance, such applications include the dynamic structure

of the Web where new pages appear or get deleted and new links

get formed or removed, the evolving nature of social networks,

road networks that undergo development and constructions, etc.

In such scenarios, even the execution of very efficient algorithms

after few modifications in the input data might be prohibitive due

to their large processing time and resource requirements. Moreover,

in many scenarios, small modifications in the input data often have

a very small impact in the solution, compared to the solution in

the input instance prior to the modifications. These considerations

have been the driving force in the study of dynamic algorithms in

the traditional sequential model of computation.

Dynamic algorithms maintain a solution to a given problem

throughout a sequence of modifications to the input data, such as

insertions or deletion of a single element in the maintained dataset.

In particular, dynamic algorithms are able to adjust efficiently the

maintained solution by typically performing very limited compu-

tation. Moreover, they often detect almost instantly that the main-

tained solution needs no modification to remain a valid solution to

the updated input data. The update time of a dynamic algorithm in

the sequential model is the time required to update the solution so

that it is a valid solution to the current state of the input data. Dy-

namic algorithms have worst-case update time u(N) if they spend

at most O(u(N)) after every update, and u(N) amortized update

bound if they spend a total ofO(k ·u(N)) time to process a sequence

of k updates. The extensive study of dynamic algorithms has led to

results that achieve a polynomial, and often exponential, speed-up

compared to the recomputation of a solution from scratch using

static algorithms, for a great variety of problems. For instance, com-

puting the connected components of a graph takes O(m + n) time,

where n andm are the number of vertices and edges of the graph,

ar
X

iv
:1

90
5.

09
17

5v
1

 [
cs

.D
C

]
 2

2
M

ay
 2

01
9

respectively, while the most efficient dynamic algorithms can up-

date the connected components after an edge insertion or an edge

deletion inO(logn) amortized time [21], or in sub-polynomial time

in the worst-case [28]. Similarly, there exist algorithms that can

maintain a maximal matching in polylogarithmic time per update

in the worst case [11], while recomputing from scratch requires

O(m + n) time.

So far, there has been very little progress on modelling dynamic

parallel algorithms in modern distributed systems, despite their

potential impact in modern applications, with respect to the speed-

up and reduced use of resources. There have been few dynamic

algorithms that maintain the solution to a problem in the distributed

setting. For instance, in [12], Censor-Hillel et al. present a dynamic

algorithm for maintaining a Maximal Independent Set of a graph in

the LOCALmodel. Assadi et al. [8] improve the message complexity

by adjusting their sequential dynamic algorithm to the LOCAL

model. In [2], Ahn andGuha study problems that can be fixed locally

(i.e., within a small neighborhood of some vertex) after some small

modification that has a very limited impact on the existing solution.

This line of work has been primarily concerned with minimizing the

number of rounds and the communication complexity. Moreover,

the algorithms designed for the LOCAL model do not necessarily

take into account the restricted memory size in each machine.

In this paper, we present an adaptation of the MPC model, that

we call DMPC, that serves as a basis for dynamic algorithms in the

MPC model. First, we impose a strict restriction on the availability

of memory per machine, which mandates the algorithms in this

model to operate in any system that can store the input in the

total memory. Second, we define a set of factors that determine the

complexity of a DMPC algorithm. These factors consist of (i) the

number of rounds per update that are executed by the algorithm, (ii)

the number of machines that are active per round, and (iii) the total

amount of communication per round, which refers to the sum of

sizes of all messages sent at any round. A final requirement for our

model is that DMPC algorithms should provide worst-case update

time guarantees. This is crucial not only because of the shared

nature of the resources, but also because it is imposed by many real-

world applications, in which one needs to act fast upon an update

in the data, such as detecting a new malicious behavior, or finding

relevant information to display to a new activity (e.g., displaying

ads, friend recommendations, or products that are relevant to a

purchase).

Inspired by today’s systems that share their resources between

many different applications at any point in time, it is necessary to

design algorithms that do not require dedicated systems to operate

on, and that can be executed with limited amounts of resources,

such as memory, processors, and communication channels. This

necessity is further strengthened by the fact that typically dynamic

algorithms are required to maintain a solution to a problem over

long series of updates, which implies that the application is running

for a long sequence of time. Our model imposes these properties

through the predefined set of restriction. In particular, we focus on

three main dimensions

Memory. Dynamic algorithms in our model are required to use

a very limited amount of memory in each machine. Specifically,

assuming that the input is of size N , each machine is allowed to

use only O(
√
N) memory. Note that this limitation does not aim

at ensuring that the machines are large enough to fit O(
√
N) bits

(as a system with such weak machines would need many millions

of machines to even store the data, given that even weak physical

machines have several GB of memory). Rather, it aims at guaran-

teeing that the allocation of the machines of the model to physical

machines is flexible in terms of memory, allowing the system to

move machines of the model across different physical machines

without affecting the execution of the algorithm. (Notice that the

system can co-locate several machines of the model to a single

physical machine.)

Resource utilization and number of machines. Our model pro-

motes limited processing time in several ways. First, two factors

of evaluation of an algorithm are the number of rounds that are

required to process each update, and the number of machines that

are active at each round of the update. Notice that machines that are

not used by the execution of a dynamic algorithm can process other

applications that co-exist in the same physical machines. More-

over, algorithms with worst-case update time are guaranteed to end

the execution of a particular update in limited time, thus avoiding

locking shared resources for large periods of time.

Communication Channels. In our model, one of the factors that

contributes to the complexity of an algorithm is the amount of

communication that occurs at each round during every update.

Furthermore, the number of machines that are active per round

also contributes to the complexity of an algorithm (namely, the

number of machines receiving or transmitting messages). These

two facts ensure that efficient algorithms in the DMPC model use

limited communication.

Similarly to the sequential model, the goal of a dynamic algo-

rithm in the DMPC model is to maintain a solution to a problem

more efficiently than recomputing the solution from scratch with a

static algorithm. Here, the main goal is to reduce the bounds in all

three factors contributing to the complexity of an algorithm. How-

ever, algorithms reducing some of the factors, without increasing

the others, may also be of interest.

We initiate the study of dynamic algorithms in the DMPC model

by designing algorithms for basic graph-theoretic problems. In par-

ticular, we present fully-dynamic algorithms for maintaining a max-

imal matching, a 3/2-approximate matching, a (2 + ϵ)-approximate

matching, and the connected components of an unweighted graph,

as well as a (1 + ϵ)-approximate Minimum Spanning Tree (MST) of

a weighted graph.

Finally, we show that our model can exploit successfully the

techniques that were developed for dynamic algorithms in the se-

quential model. In particular, we present a black-box reduction that

transforms any sequential dynamic algorithm with p(S) preprocess-
ing time and u(S) update time to an algorithm in the dynamic MPC

model which performs the preprocessing step in O(p(S)) rounds,
uses O(1) machines and O(1) total communication per round, and

such that each update is performed inO(u(S)) number or rounds us-

ing O(1) machines and O(1) total communication per round. With

this reduction, the characteristics (amortized vs. worst-time and

randomized vs. deterministic) of the DMPC algorithm are the same

as the sequential algorithm.

2

Related work in the classic MPC model. It was known from

the PRAM model how to compute a (1 + ϵ) approximate matching

inO(logn) rounds [27]. Lattanzi et al. [26] introduced the so-called
filtering technique which gives an algorithm for computing a 2-

approximate matching inO(1/c) rounds assuming that the memory

per machine is O(n1+c), for any c > 0. Under the same memory

assumption, Ahn and Guha [2] showed an algorithm running in

O(1/(cϵ)) number of rounds for (1+ϵ) approximate matching. Both

those algorithms run in O(logn) time when the memory in each

machine isΘ(n), whichmatches the bound that was known from the

PRAM model. It was only recently that Czumaj et al. [15] overcame

the O(logn) barrier for computing an approximate matching. In

particular, in [15] the authors presented a (1 + ϵ)-approximate

matching in O((log logn)2) time with Õ(n) memory per machine.

This bound has been improved to O(log logn) rounds, under the
assumption of slightly superlinear memory per machine [7, 17].

Very recently, Ghaffari and Uitto [18] presented an algorithm that

uses only sublinear memory and can compute a (1+ϵ)-approximate

matching in Õ(
√
log∆) rounds, where ∆ is the maximum degree in

the graph.

Another central problem in the MPCmodel is the computation of

the connected components of a graph. This problem can be solved

inO(logn) rounds [25, 28]. In particular, the algorithm in [25] runs

in O(log logn) rounds on certain types of random graphs. In the

case where each machine contains O(n1+c) memory, it is known

how to compute the connected components of a graph in a constant

number of rounds [26]. Under a well-known conjecture [32], it is

impossible to achieve o(logn) on general graphs if the space per

machine is O(n1−c) and the total space in all machines is O(m).
Very recently Andoni et al. [5] presented a new algorithm that uses

sublinear memory and runs in Õ(logD) parallel rounds, where D
is the diameter of the input graph.

Our results. Throughout the paper we denote by G = (V ,E) the
input graph, and we use n = |V |, m = |E |, and N = m + n. All
bounds that are presented in this section are worst-case update

bounds. Our algorithmic results are summarized in Table 1. All of

our algorithms use O(N) memory across all machines, and hence

make use of O(
√
N) machines.

Maximalmatching. Our first algorithmmaintains fully-dynamically

a maximal matching in O(1) rounds per update in the worst case,

while the number of machines that are active per rounds is O(1),
and the total communication per round isO(

√
N). The general idea

in this algorithm, inspired from [30], is to use vertex-partitioning

across the machines and additionally to store at one machine the

last

√
N updates in a buffer, together with the changes that each

of these updates generated. We call this summary of updates and

the changes that they trigger the update-history. Every time that

an update arrives (i.e., an edge insertion or an edge deletion), the

update-history is sent to the endpoints that are involved in the

update, and each endpoint adjusts its data structure based on the

update-history (that is, it updates its knowledge of which vertices

among its neighbors are free), and further sends back (to the ma-

chine that maintains the update-history) any possible changes that

the update might have triggered. The machines that maintain the

endpoints of the updated edge might further communicate with one

of their neighbors to get matched with them. Additional challenges

arise from the fact that the neighborhood of a single vertex might

not fit in a single machine.

For comparison, the best static MPC algorithm to compute a

maximal matching in the static case runs in O(log logn) when the

space per machine is Õ(n) [17],O(
√
logn) when the space is sublin-

ear [18] and inO(c/δ) rounds when N ∈ Ω(n1+c) and the space per
machine is Ω(n1+δ) [26]. These algorithms use all the machines at

each round and generate Ω(N) communication per round.

We note that although our algorithm has communication com-

plexity O(
√
N) per round in the case where the available memory

per machine is O(
√
N), the communication complexity is actually

proportional to the number ofmachines used by the system. Namely,

if we allow larger memory per machine then the communication

complexity reduces significantly. Hence, in real-world systems we

expect our algorithm to use limited communication per MPC round.

3/2-approximate matching. We further study the problem of

maintaining a maximum cardinality matching beyond the factor

2 approximation given by a maximal matching. We present an al-

gorithm for maintaining a 3/2-approximate matching that runs

in a constant number of rounds, uses O(
√
N) machines per round

and with O(
√
N) communication per round. The best known static

algorithm for computing a O(1 + ϵ) approximate matching runs

in O(log logn) rounds in the case where the memory available in

each machine is Õ(n) [7, 15, 17] or in O(
√
log∆) rounds when the

memory available in each machine is sublinear [32], where ∆ the

maximum degree in the graph.

(2 + ϵ)-approximate matching. Our algorithm for maintaining

a maximal matching requires polynomial communication among

the machines and the use of a coordinator machine. To overcome

those restrictions, we explore the setting where we are allowed to

maintain an almost maximal matching instead of a proper maximal

matching. In other terms, at most an ϵ fraction of the edges of a

maximal matching may be missing. In this setting, we show that

we can adapt the fully-dynamic centralized algorithm by Charikar

and Solomon [13] that has polylogarithmic worst-case update time.

We note that our black-box reduction to the DMPC model yields a

fully-dynamic algorithm with a polylogarithmic number of rounds.

However we show how we can adapt the algorithm to run in O(1)
rounds per edge insertion or deletion, using O(polylog(n)) number

of active machines and total communication per round.
1

Connected components and (1+ϵ)MST. We consider the problem

of maintaining the connected components of a graph and the prob-

lem of maintaining a O(1 + ϵ)-approximate Minimum Spanning

Tree (MST) on a weighted graph. For both problems we present

fully-dynamic deterministic algorithms that run inO(1) rounds per
update in the worst case, with O(

√
N) active machines and O(

√
N)

total communication per round. Notice that, in order to maintain

the connected components of a graph, it suffices to maintain a

spanning forest of the graph. As it is the case also for centralized

1
We note that one could adopt the algorithm from [11] to maintain a (proper) maximal

matching with the same asymptotic bounds; however, that algorithm does not maintain

a consistent matching throughout its execution, meaning that the maintained matching

could be completely different between consecutive update operations, which is not a

desirable property for many applications.

3

Table 1: Algorithmic results achieved in this paper. The bounds presented in the first part of the table hold in the worst-case.

Problem #rounds

#active

machines

Commun.

per round

Comments

Maximal matching O(1) O(1) O(
√
N) Use of a coordinator,

starts from an arbitrary graph.

3/2-app. matching O(1) O(n/
√
N) O(

√
N) Use of a coordinator.

(2 + ϵ)-app. matching O(1) Õ(1) Õ(1)

Connected comps O(1) O(
√
N) O(

√
N) Use of Euler tours,

starts from an arbitrary graph.

(1 + ϵ)-MST O(1) O(
√
N) O(

√
N)

The approx. factor comes

from the preprocessing,

starts from an arbitrary graph.

Results from reduction to the centralized dynamic model

Maximal matching O(1) O(1) O(1) Amortized, randomized.

Connected comps Õ(1) O(1) O(1) Amortized, deterministic.

MST Õ(1) O(1) O(1) Amortized, deterministic.

algorithms, the hard case is to handle the deletion of edges from the

maintained spanning forest. The main ingredient in our approach

is the use of Euler tour of a spanning tree in each connected com-

ponent. This enables us to distinguish between different trees of

the spanning forest, based on the tour numbers assigned to each of

vertices of the trees, which we use to determine whether a vertex

has an edge to particular part of a tree. Notice that to achieve such

a bound, each vertex needs to known the appearance numbers of

its neighbors in the Euler tour, which one cannot afford to request

at each round as this would lead toO(N) communication. We show

how to leverage the properties of the Euler tour in order to avoid

this expensive step. In the static case, the best known algorithm

to compute the connected components and the MST of a graph

requires O(c/δ) rounds when N ∈ Ω(n1+c) and S ∈ Ω(n1+δ) [26].
In the case where S ∈ o(n), [14] presented an algorithm to compute

the connected components of a graph in O(logn) rounds, with all

the machines and Ω(N) communication per round.

Bounds from the dynamic algorithms literature. We present a re-

duction to dynamic algorithms in the centralized computational

model. More specifically, we show that if there exists a central-

ized algorithm with update time u(m,n) and preprocessing time

p(m,n) on a graph withm edges and n vertices, then there exists a

dynamic MPC algorithm which updates the solution in O(u(m,n))
rounds withO(1) active machines per round andO(1) total commu-

nication, after p(m,n) rounds of preprocessing. The characteristics
of the centralized algorithm (e.g., amortized or worst-case update

time, randomized or deterministic) carry over to the MPC model.

This reduction, for instance, implies an amortized Õ(1) round fully-

dynamic DMPC algorithm for maintaining the connected compo-

nents or the maximum spanning tree (MST) of a graph [21], and

an amortized O(1) round fully-dynamic DMPC algorithm for the

maximal matching problem [31]. These algorithms however do not

guarantee worst-case update time, which is important in applica-

tions. Moreover, the connected components and MST algorithms

have super-constant round complexity.

Road map. In Section 2 we introduce the DMPC model. Then,

in Sections 3 and 4 we present our maximal matching and 3/2-
approximate matching, respectively. We present our connected

components and (1 + ϵ)-approximate MST algorithms in Section 5.

In Section 6, we present our (2+ϵ)-approximatematching algorithm,

and finally the reduction is presented in Section 7.

2 THE MODEL
In this work we build on the model that was introduced by Karloff,

Suri, and Vassilvitski [24], and further refined in [4, 10, 19]. This

model is commonly referred to as the Massive Parallel Computing
(MPC) model. In its abstraction, the MPC model is the following.

The parallel system is composed by a set of µ machinesM1, . . . ,Mµ ,

each equipped with a memory that fits up to S bits. The machines

exchange messages in synchronous rounds, and each machine can

send and receive messages of total size up to S at each round. The

input, of size N , is stored across the different machines in an arbi-

trary way. We assume that S, µ ∈ O(N 1−ϵ), for a sufficiently small ϵ .
The computation proceeds in rounds. In each round, each machine

receives messages from the previous round. Next, the machine

processes the data stored in its memory without communicating

with other machines. Finally, each machines sends messages to

other machines. At the end of the computation, the output is stored

across the different machines and it is outputted collectively. The

data output by each machine has to fit in its local memory and,

hence, each machine can output at most S bits.

Since at each round all machines can send and receive messages

of total size S , the total communication per round is bounded by

S · µ ∈ O(N 2−2ϵ). See [24] for a discussion and justification. When

designing MPC algorithms, there are three parameters that need to

be bounded:

4

– Machine Memory: In each round the total memory used by

each machine is O(N (1−ϵ)) bits.
– Total Memory: The total amount of data communicated at any

round is O(N (2−2ϵ)) bits.
– Rounds: The number of rounds is O(logi n), for a small i ≥ 0.

Several problems are known to admit a constant-round algo-

rithm, such as sorting and searching [19].

Dynamic algorithms. In the centralized model of computation,

dynamic algorithms have been extensively studied in the past few

decades. The goal of a dynamic algorithm is to maintain the solution

to a problem while the input undergoes updates. The objective

is to update the solution to the latest version of the input, while

minimizing the time spent for each update on the input. A secondary

optimization quantity is the total space required throughout the

whole sequence of updates.

A dynamic graph algorithm is called incremental if it allows edge
insertions only, decremental if it allows edge deletions only, and
fully-dynamic if it allows an intermixed sequence of both edge in-

sertions and edge deletions. Most basic problems have been studied

in the dynamic centralized model, and they admit efficient update

times. Some of these problems include, connectivity and minimum

spanning tree [21, 29], approximate matching [6, 9, 11, 13, 30, 31],

shortest paths [1, 16].

Dynamic algorithms in the DMPC model. Let G = (V ,E) be
a graph with n = |V | vertices andm = |E | edges. In the general

setting of the MPC model, where the memory of each machine

is strictly sublinear in n, no algorithms with constant number of

rounds are known even for very basic graph problems, such as

maximal matching, approximate weighted matching, connected

components. Recomputing the solution for each of those problems

requires O(logn) rounds, the amount of data that is shuffled be-

tween any two rounds can be as large asO(N), all the machines are

active in each round, and all machines need to communicate with

each other. Therefore, it is natural to ask whether we can update

the solution to these problems after a small change to the input

graph, using a smaller number of rounds, less active machines per

round, and less total communication per round.

Notice that bounding the number of machines that communi-

cate immediately implies the same bound on the active machines

per round. For convenience, we call active the machines that are

involved in communication. The number of active machines also

implies a bound on the amount of data that are sent in one round,

as each machine has information at most equal to its memory (i.e.,

O(
√
N) bits). The complexity of a dynamic algorithm in the DMPC

model can be characterized by the following three factors:

– The number of rounds required to update the solution.

– The number of machines that are active per round.
– The total amount of data involved in the communication per

round.

An ideal algorithm in the DMPC model processes each update

using a constant number of rounds, using constant number of

machines and constant amount of total communication. While such

an algorithm might not always be feasible, a dynamic algorithm

should use polynomially (or even exponentially) less resources than

it’s static counterpart in the MPC model.

Use of a coordinator. Distributed systems often host multiple

jobs simultaneously, which causes different jobs to compete for

resources. Additionally, systems relying on many machines to work

simultaneously are prone to failures of either machines or chan-

nels of communication between the machines. Our model, allows

solutions where all updates are sent to a single (arbitrary, but fixed)

machine that keeps additional information on the status of the

maintained solution, and then coordinates the rest of the machines

to perform the update, by sending them large messages containing

the additional information that it stores. Examples of such an al-

gorithm is our algorithm for the maximal matching, and the 3/2
approximate matching. In practice, the use of a coordinator might

create bottlenecks in the total running time, since it involves trans-

mission of large messages, and also makes the system vulnerable

to failures (i.e., if the coordinator fails, one might not be able to

recover the solution).

We note that the role of the coordinator in our matching al-

gorithms is not to simulate centralized algorithms (as we do in

our reduction from DMPC algorithms to dynamic centralized algo-

rithms), i.e., to perform all computation at the coordinator machine

while treating the rest of the machines as memory. In particular, we

treat the coordinator as a buffer of updates and changes of the so-

lution, and we communicate this buffer to the rest of the machines

on a need-to-know basis.

Algorithmic challenges. The main algorithmic challenges im-

posed by our model are the sublinear memory (most of the al-

gorithm known in the MPC model use memory in Ω(n)) and the

restriction on the number of machines used in every round. This

second point is the main difference between the MPC and DMPC

model and poses a set of new interesting challenges.

3 FULLY-DYNAMIC DMPC ALGORITHM FOR
MAXIMAL MATCHING

In this section we present a deterministic fully-dynamic algorithm

for maintaining a maximal matching with a constant number of

rounds per update and a constant worst-case number of active

machines per update, when the memory of each machine is Ω(
√
N)

bits, where N = (m + n) andm is the maximum number of edges

throughout the update sequence. The communication per round is

O(
√
N). Recall that our model introduces additional restrictions in

the design of efficient algorithms. Specifically, the memory of each

machine might not even be sufficient to store the neighborhood of a

single vertex, which implies that the edges incident to a single vertex

may be stored in polynomially many machines. In this framework,

a scan of the neighbors of a single vertex requires a polynomially

number of active machines in each round.

Our algorithm borrows an observation from the fully-dynamic al-

gorithm for maximal matching of Neiman and Solomon [30], which

has O(
√
m) worst-case update time and O(n2) space, or the same

amortized update bound withO(m) space. Specifically, Neiman and

Solomon [30] observe that a vertex either has a low degree, or has

only few neighbors with high degree. This allows us to treat ver-

tices with large degree separately from those with relatively small

degree. We call a vertex heavy if it has a large degree and light
if it has a small degree. The threshold in the number of vertices

that distinguishes light from heavy vertices is set to be 2

√
m. As

5

the memory of each machine is Ω(
√
m), we can fit the light ver-

tices together with their edges on a single machine, but for heavy

vertices we can keep only up to O(
√
m) of their edges in a single

machine. Given that each vertex knows whether it is an endpoint of

a matched edge, the only non-trivial update to be handled is when

an edge e = (x ,y) of the matching is deleted and we have to check

whether there exists an edge adjacent to x or y that can be added

to the matching. Notice that if the neighborhood of each vertex

fits in a single machine, then it is trivial to bound the number of

rounds to update the solution, as it is sufficient to search for free

neighbors of x and y that can be matched to those vertices. Such

a search can be done in a couple of rounds by sending a message

from x and y to their neighbors to ask whether they are free to join

or not. However, this does not immediately bound the number of

active machines per round.

Overview. Our algorithm keeps for each light vertex all the edges

of its adjacency list in a single machine. For every heavy node

we keep only

√
2m edges that we call alive. We call suspended the

rest of the edges of v . We initially invoke an existing algorithm to

compute a maximal matching in O(logn) rounds. Our algorithm
always maintains a matching with the following invariant:

Invariant 3.1. No heavy vertex gets unmatched throughout the
execution of the algorithm2.

If a new edge gets inserted to the graph, we simply check if we

can add it to the matching (i.e., if both its endpoints are free). Now

assume that an edge (x ,y) from the matching gets deleted. If both

the endpoints are light, then we just scan their adjacency lists (that

lie in a single machine) to find a replacement edge for each endpoint

of (x ,y). If x is heavy, then we search the

√
2m alive edges of x and

if we find a neighbor that is free we match it. If we cannot find a free

neighbor of x , then among the (matched)

√
2m alive neighbors of x

there should exist a neighborw with a light mate z (as otherwise
the sum of degrees of the mates of neighbors of x would exceedm),

in which case we remove (w, z) from the matching, we add (x ,w) to
the matching, and we search the neighbors of the (light) vertex z for
a free neighbor to match z. If y is heavy, we proceed analogously.

We build the necessary machinery in order to keep updated the

aforementioned allocation of the adjacency lists to the available

machines. This involves moving edges betweenmachines whenever

this is necessary, which introduces several challenges, since we

cannot maintain updated the information in all machines with only

O(1) message exchange. On the other hand, we cannot allocate

edges to an arbitrary number of machines. We deal with these

issues by periodically updating the machines by taking advantage

of the fact that we can send large messages from the coordinator

machine.

Initialization and bookkeeping. Our algorithm makes use of

O(
√
N) machines. We assume that all vertices of the graph contain

IDs from 1 ton. Our algorithm executes the following preprocessing.

First, we compute a maximal matching (this can be done inO(logn)
rounds with the randomized CONGEST algorithm from [23]). To-

gether with each edge in the graph we store whether an endpoint of

2
After computing the initial maximal matching some heavy vertices might be un-

matched. During the update sequence, once a heavy vertex gets matched, it is not

being removed from the matching, unless it becomes light again

the edge is matched: if it is, we also store its mates in the matching.

In a second phase, we compute the degree of each vertex (this can

be done in O(1) rounds for all vertices). We place the vertices into

the machines in such a way that the whole adjacency list of light

vertices, and arbitrary

√
2m edges from the adjacency list of heavy

vertices, are stored in single machines. The remaining adjacency

list of a heavy vertex is stored in separate exclusive machines (only

store edges of that vertex) so that as few machines as possible are

used to store the adjacency list of a heavy vertex. On the other

hand, the light vertices are grouped together into machines. The

machines that store heavy vertices are characterized as heavy ma-
chines, and those storing adjacency lists of light vertices as light
machines.

One of the machines acts as the coordinator, in the sense that all

the queries and updates are executed through it. The coordinator

machine, denoted by MC , stores an update-history H of the last

O(
√
N) updates in both the input and the maintained solution, i.e.,

which edges have been inserted and deleted from the input in the

last

√
N updates and which edges have been inserted and deleted

in the maintained maximal matching. Moreover, for each newly

inserted edge that exists in the update-history we store a binary

value for each of its endpoints that indicates if their adjacency list

has been updated to include the edge.

For convenience, throughout this section we say that the algo-

rithm invokes some function without specifying that all the com-

munication is made throughMC . We dedicate O(n/
√
N) machines

to store statistics about the vertices of the graphs, such as their

degree, whether they are matched and who is their mate, the ma-

chine storing their alive edges, the last in the sequence of machines

storing their suspended edges (we treat the machines storing sus-

pended edges as a stack). To keep track of which machine keeps

information about which vertices, we allocate many vertices with

consecutive IDs to a single machine so that we can store the range

of IDs stored in each machine. Hence inMC , except of the update-

history H , we also store for each range of vertex IDs the machine

that contains their statistics. This information fits in the memory of

MC as the number of machines is O(
√
N). Finally,MC also stores

the memory available in each machine.

Maintaining the bookkeeping. In what follows, for the sake

of simplicity, we assume that the update-history H is updated

automatically. Further, we skip the description of the trivial update

or queries on the statistics of a vertex, such as its degree, whether

it is an endpoint of a matched edge, the machine storing its alive

edges, etc. All of these can be done in O(1) rounds via a message

through the coordinator machine MC . After each update to the

graph, we update the information that is stored in a machine by

executing those updates in a round-robin fashion, that is, each

machine is updated after at most O(
√
N) updates. Recall that we

use O(
√
N) machines.

Throughout the sequence of updates we use the following set of

supporting procedures to maintain a valid allocation of the vertices

into machines:

– дetAlive(x) : Returns the ID of the machine storing the alive

neighbors of x .
– дetDeдInMachine(M,x) : Returns x ’s degree in machineM .

6

– дetSuspended(x) : Returns the ID of the last in the sequence

of heavy machines storing the edges of x .
– f its(M, s) : Return true if s edges fit into a light machine M ,

and f alse otherwise.
– toFit(s) : Returns the ID of a light machine that has enough

memory to store s edges, and the available space in that machine.

– addEdдe((x ,y)): We only describe the procedure for x , as
the case for y is completely analogous. If x is heavy, add (x ,y)
in the machine дetSuspended(x) if it fits, or otherwise to a new

machine, and set the new machine to be дetSuspended(x). If, on
the other hand, x is light and (x ,y) fits into дetAlive(x), we sim-

ply add (x ,y) in дetAlive(x). If, (x ,y) does not fit in дetAlive(x)
then callmoveEdдes(x , s,Mx , toFit(s),H), where s is the number

of alive edges of x (if x becomes heavy, we mark that). If all of the

remaining edges in the machineMx (of light vertices other than x)
fit into another machine, then move them there (this is to bound

the number of used machines).

– moveEdдes(x , s,M1,M2,H), where x is light: First, remove

frommachineM1 deleted edges of x based onH . Second, send from

M1 up to s edges of x toM2. If the s edges do not fit intoM2, move

the neighbors of x fromM2 to a machine that fits them, i.e., execute

Mx ′ = toFit(s +дetDeдInMachine(M,x)), move the s edges of x in

M1 toMx ′ and callmoveEdдes(x ,дetDeдInMachine(M,x),M2,Mx ′ ,H).
– f etchSuspended(x , s), where x is heavy: Moves s suspended

edges to the machineMx = дetAlive(x). To achieve this we call

moveEdдes(x , s,дetSuspended(x),Mx). While the number of edges

moved toMx is s ′ < s , callmoveEdдes(x , s−s ′,дetSuspended(x),Mx).
–moveSuspended(x , s,L), where x is heavy: Moves the set L of

s edges of x from machine дetAlive(x) to the machines storing the

suspended edges of x . We first fit as many edges as possible in the

machine дetSuspended(x), and the rest (if any) to a new machine.

–updateVertex(x ,H) :Update the neighbors of x that are stored

in Mx = дetAlive(x) based on H . If x is heavy and the number

of edges from the adjacency list of x in M is s <
√
2m, then call

f etchSuspended(x ,
√
2m−s). If x is heavy and the set of alive edges

has size s >
√
2m, then callmoveSuspended(x , s −

√
2m,L), where L

are s −
√
2m edges of x that do not contain the edge (x ,mate(x)). If,

on the other hand, x is light and the set of alive edges of x does not fit

inMx after the update, callmoveEdдes(x , s,Mx , toFit(s),H), where
s is the number of alive edges of x . If all of the remaining edges

in the machineMx (of light vertices other than x) fit into another

machine, then move them there (this is to bound the number of

used machines).

– updateMachine(M,H) : Update all adjacency lists stored in

machine M to reflect the changes in the update-history H . If M
is a heavy machine of a vertex x , we proceed as in the case of

updateVertex(x ,H), but now onmachineM rather thanдetAlive(x).
Now we assumeM is light. First, delete the necessary edges of the

light vertices stored atM based on H . If all of the remaining edges

of the machine fit into another half-full machine, then move them

there (this is to bound the number of used machines).

Handling updates. Now we describe how our algorithm updates

the maintained maximal matching after an edge insertion or an

edge deletion.

insert(x ,y). First, execute updateVertex(x), updateVertex(y),
and addEdдe((x ,y)). If both x and y are matched then do noth-

ing and return. If neither x nor y are matched, add (x ,y) to the

matching and return. In the case where x is matched and heavy

and y is unmatched and light then do nothing and return. The

same happens if y is matched and heavy and x is unmatched. If x is

unmatched and heavy, search for a (matched, as this is a maximal

matching) neighborw of x whose mate z is light, remove (w, z) from
the matching, add (x ,w) to the matching, and if z (who is a light

vertex) has an unmatched neighbor q add (z,q) to the matching.

If y is unmatched and heavy proceed analogously. Note that this

restores Invariant 3.1. In any case, the update-history is updated to

reflect all the changes caused by the insertion of (x ,y).

delete(x ,y). First, update H to reflect the deletion of (x ,y) and
call updateVertex(x) and updateVertex(y). If (x ,y) is not in the

matching do nothing and return. (The edge has already been deleted

from the adjacency lists via the calls to updateVertex .) If (x ,y) is
in the matching proceed as follows. First, remove (x ,y) from the

matching. If z ∈ {x ,y} is heavy, search for a neighborw of z whose
mate w ′

is light, remove (w,w ′) from the matching, add (z,w) to
the matching, and ifw ′

(who is a light vertex) has an unmatched

neighbor q add (w ′,q) to the matching. If z ∈ {x ,y} is light, scan
the neighborhoods of z for a unmatched vertexw , and add (z,w) to
the matching. In any case, the update-history is updated to reflect

all the changes caused by the deletion of (x ,y).

Lemma 3.2. The algorithm uses O(
√
N) machines.

Proof. We show that we maintain at most twice the number

of machines than the optimum placement. LetM1, . . . ,Ml be the

machines that store the adjacency list of a heavy vertex x , where
M1 = дetAlive(x). Since onlyMl is not full, we use at most twice as

many machines as the optimum placement for each heavy vertex.

Let nowM1, . . . ,Ml be all the machines storing light vertices. Since

with each update of a light adjacency list we check if we can merge

two light machines, it follows that there are no twomachines whose

edges can be stored in one. Hence, our claim holds also in this

case. The lemma follows from the observation that the optimum

placement of the edges requires O(
√
N) machines. □

Lemma 3.3. Both insert(x ,y) and delete(x ,y) run inO(1) rounds,
activate O(1) machines per round, and generate O(

√
N) communica-

tion per round.

Proof. Recall that we manage the machines that are used to

store the sequence of machines storing the suspended edges of

heavy vertices as stacks, that is, we store the last machine storing

the suspended edges of a vertex x together with the rest of the

statistics for x , and each machine maintains a pointer to the next

machine in the sequence. Hence, we can access in O(1) rounds the
machine that is last in the sequence of machines maintaining the

suspended edges of a vertex. The only supporting function that

is not trivially executable in O(1) rounds is f etchSuspended . Note
that a call to f etchSuspended makes multiple calls tomoveEdдes
to transfer edges suspended edges of a heavy vertex x . As each

machine is updated everyO(
√
N) rounds, it follows that the number

of edges that have been removed from the graph and the machines

storing those edges are not yet updated, is O(
√
N). As all the calls

7

tomoveEdдes transfer at most O(
√
N) edges of x , and all but one

machines storing suspended edges of x are full, it follows that there

is at most a constant number of calls tomoveEdдes . □

4 FULLY-DYNAMIC 3/2-APPROXIMATE
MAXIMUMMATCHING

The algorithm for the 3/2 approximate matching builds on top

of the algorithm for maintaining a maximal matching from Sec-

tion 3. Our algorithm is an adaptation of the algorithm from [30]

to our DMPC model. Our algorithm’s approximation is based on

a well-known graph-theoretic connection between augmenting

paths in an unweighted graph, with respect to a matching, and the

approximation factor of the matching relatively to the maximum

cardinality matching. An augmenting path is a simple path starting

and ending at a free vertex, following alternating unmatched and

matched edges. Specifically, a matching that does not contain aug-

menting paths of length (2k−1) in a graph, is a (1+ 1

k)-approximate

matching [22]. In this section we show that it is possible to use the

technique in [30] to design a simple DMPC algorithm for k = 2. The

additional information that the algorithm needs to maintain, com-

pared to the algorithm from Section 3, is the number of unmatched

neighbors of each vertex. We call these counters free-neighbor coun-
ters of the light vertices. We keep this information in theO(n/

√
N)

machines storing the statistics about the vertices of the graph. In

this algorithm, we assume that the computation starts from the

empty graphs (An initialization algorithm for this problem would

require eliminating all augmenting paths of length 3, but we are

not aware of such an algorithm that does not require considerably

more than O(N) total memory).

Since the algorithm from Section 3 maintains a matching where

all heavy vertices are always matched, we only need to update the

free-neighbor counters whenever a light vertex changes its match-

ing status. Recall that a light vertex keeps all of its neighbors in the

same machine. Therefore, we simply need to update the counters

of the neighbors of the light vertex. This requires a message of size

O(
√
N) from the light vertex v that changed its status to the coordi-

nator and from there appropriate messages of total size O(
√
N) to

the O(n/
√
N) machines storing the free-neighbor counters of the

neighbors of v .
Given that we maintain for each vertex its free-neighbor counter,

we can quickly identify whether an edge update introduces aug-

menting paths of length 3. The modifications to the algorithm from

Section 3 are as follows.

– In the case of the insertion of edge (u,v), if u is matched but v
unmatched, we check whether the mate u ′ of u has a free neighbor

w ; if this is the case, we remove (u,u ′) from the matching and we

add (w,u ′) and (u,v) (this is an augmenting path of length 3). The

only free-neighbor counters that we have to update are those of

the neighbors ofw and v , as no other vertices change their status,

and no new augmenting paths are introduces as no matched vertex

gets unmatched.

– If both u and v are free after the insertion of (u,v), we add
(u,v) into the matching and update the free-neighbor counters of

all neighbors ofu andv (who are light vertices, as all heavy vertices

are matched).

– If we delete an edge which is not in the matching, then we

simply update the free-neighbor counters of its two endpoints, if

necessary.

– Whenever an edge (u,v) of the matching is deleted, we treat

u as follows. If u has a free neighborw , then we add (u,w) to the

matching and update the free-neighbor counters of the neighbors

ofw (who is light). If u is light but has no free neighbors, then we

search for an augmenting path of length 3 starting from u. To do so,
it is sufficient to identify a neighbor w of u whose mate w ′

has a

free neighbor z , u. If there exists suchw ′
then we remove (w,w ′)

from the matching and add (u,w) and (w ′, z) to the matching, and

finally update the free-neighbor counters of the neighbors of z (who
is light). No other vertex changes its status. If on the other hand, u
is heavy, then we find an alive neighborw ofu with a light matew ′

,

remove (w,w ′) from the matching and add (u,w) to it. (This can be

done in O(1) rounds communication through the coordinator with

the, up to n/
√
N , machines storing the mates of the statistics of the

O(
√
N) alive neighbors of w ′

.) Finally, given that w ′
is light, we

proceed as before trying to either matchw ′
or find an augmenting

path of length 3 starting from w ′
. Then, we proceed similarly to

the case where u was light.

Notice that in all caseswherewe have to update the free-neighbor

counters of all neighbors of a vertex v , v is a light vertex, so there

are at mostO(
√
N) counters to be updated and thus they can be ac-

cessed inO(1) rounds, usingO(n/
√
N) active machines, andO(

√
N)

communication complexity. Hence, given the guarantees from Sec-

tion 3 and the fact that we only take a constant number of actions

per edge insertion or deletion, we conclude that our algorithm

updates the maintained matching in O(1) rounds, using O(n/
√
N)

machines and O(
√
N) communication per round in the worst case.

We conclude this section by proving the approximation factor of

our algorithm.

Lemma 4.1. The algorithm described in this section correctly main-
tains a 3/2-approximate matching.

Proof. In order to guarantee the 3/2 approximation we need

to argue that there are no augmenting paths of length 3 or more.

Such a path exists if and only if there is an edge of the matching

whose both endpoints have a free neighbor. We show that after

every update made by our algorithm, we eliminate all such matched

edges. That is, for each edge of the matching we ensure that at most

one endpoint has a free neighbor. We proceed with a case study,

assuming that our claim holds just before the update we consider.

Recall that the maintained matching is always maximal as we build

on the algorithm from Section 3. The only two cases where we need

to search for an augmenting path of length 3 is when either a new

vertex becomes free, or when we connected a matched vertex with a

free vertex. In the case where a vertexu becomes free due to an edge

deletion, our algorithm tests whether u is an endpoint of a length-3

augmenting path ⟨u,w,w ′, z⟩, where w is a matched neighbor of

u that the mate of u and w a free neighbor of u ′, if u ′ has free
neighbor, and by removing (u,u ′) and adding (u,v) and (u ′,w) to
the matching to augment the length 3 augmenting path. This does

not create new augmenting paths as u and z have no free neighbors
and no new vertex becomes free. For the second case where we

connect a matched and a free edge, we again search and augment

8

possible augmenting paths of length 3. Given that all free-neighbors

counters are updated every time a vertex enters/leaves thematching,

our algorithm maintains a 3/2-approximate matching. □

5 FULLY-DYNAMIC CONNECTED
COMPONENTS AND APPROXIMATE MST

In this section we present a fully-dynamic deterministic distributed

algorithm for maintaining the connected components of a graph

with constant number of rounds per edge insertion or deletion,

in the worst case
3
. At the heart of our approach we use Euler

tours, which have been successfully used in the design of dynamic

connectivity algorithms in the centralized model of computation,

e.g., in [20, 21]. Given a rooted tree T of an undirected graph G, an
Euler tour (in short, E-tour) of T is a path along T that begins at

the root and ends at the root, traversing each edge exactly twice.

The E-tour is represented by the sequence of the endpoints of the

traversed edges, that is, if the path uses the edges (u,v), (v,w), then
v appears twice. As an E-tour is defined on a treeT , we refer to the
tree T of an E-tour as the Euler tree (E-tree, in short) of the E-tour.

The root of the E-tree appears as the first and as the last vertex of its

E-Tour. The length of a tour of an E-treeT is ELenдthT = 4(|T | − 1),
the endpoints of each edge appear twice in the E-tour. See Figures 1

and 2 for examples. As the preprocessing shares similarities with the

edge insertion, we postpone the description of the preprocessing

after describing the update procedure to restore the E-tour after an

edge insertion or deletion.

We assume that just before an edge update, we maintain for each

connected component of the graph a spanning tree, and an E-tour

of the spanning tree. Using vertex-based partitioning we distribute

the edges across machines, and each vertex is aware of the ID of its

component, and together with each of its edges we maintain the

ID of the component that it belongs to and the two indexes in the

E-tour (of the tree of the component) that are associated with the

edge. Moreover, we maintain with each vertex v the index of its

first and last appearance in the E-tour of its E-tree, which we denote

by f (v) and l(v). We denote by indexv the set of all indexes that

v appears in the E-tour of T . Note that |indexv | = 2 · dT (v) in the

E-tour, where dT (v) is the degree of v in the corresponding E-tree

T . We do not explicitly store indexv , this is implicitly stored with

each vertex as information on v’s edges. Therefore, we perform
updates on the indexes in indexv but it is actually the indexes that

are stored at the edges that are updated. To update this information

in a distributed fashion, we leverage the properties of an E-tour

which allows us to change the root of an E-tree, merge two E-trees,

and split an E-tree, by simply communicating the first and last

indexes of the new root, or the endpoints of the inserted/deleted

edge.

Handling updates. The main idea to handle updates efficiently

is that the E-tour of the spanning trees can be updated efficiently

without requiring a lot of communication. For instance, one can

change the root of an E-tree, and update all the information stored

in the vertices of that tree, by sending O(1)-size messages to all

3
Note that no constant round algorithm for connected component is known for the

static case. On the downside, the number of active machines per round is not bounded.

We leave as an interesting area of future work to design an algorithm that uses a

smaller number of machines per update

vertices. Moreover, we can test whether a vertex u is an ancestor of

a vertex v , in their common E-tree, using only the values f (u) and
l(u) and f (v) and l(v). The insertions and deletions of edges in the

graph are handled as follows.

insert(x ,y): If x and y are in the same connected component,

we simply add the edge to the graph. Otherwise, we proceed as

follows. We first make y the root of its E-treeTy (if it is not already).

Let ELenдthTy = 4(|Ty | − 1) denote the length of the E-tour of Ty .
For each vertex w in Ty we update each index i ∈ indexw to be

i = ((i + ELenдthTy − l(y)) mod ELenдthTy) + 1. These shifts of

the indexes ofw correspond to a new E-tour starting with the edge

betweeny and its parent, where the parent is defined with respect to
the previous root of Ty . Second, we update the indexes i ∈ indexw
of the verticesw ∈ Ty to appear after the first appearance of x in the

new E-tour. For each vertexw in Ty update each index i ∈ indexw
to be i = i + f (x)+2. Third, set indexy = indexy ∪{ f (x)+2, f (x)+
l(y) + 3} and indexx = indexx ∪ { f (x) + 1, f (x) + l(y) + 4}, where
l(y) is the largest index of y in the E-tour ofTy before the insertion

of (x ,y). Finally, to update the indexes of the remaining vertices in

Tx , for each i ∈ indexw where i > f (x) we set i = i + 4 ·ELenдthTy .
See Figure 1 for an illustration.

Notice that the only information required by each vertexw to

perform this update, besides indexw which is implicitly stored on

the edges ofw and f (w), is ELenдthTy , f (y), l(y), f (x), l(x), which
can be sent to all machines via a constant size message from x and

y to all other machines. Notice that x and y do not need to store

f (x), l(x) and f (y), l(y),ELenдthTy , respectively, as they can simply

learn those by sending and receiving an appropriate message to

all machines. Hence each insertion can be executed in O(1) rounds
using all machines and O(

√
N) total communication per round (as

all communication is between x or y with all other machines, and

contains messages of O(1) size).

delete(x ,y): If (x ,y) is not a tree edge in the maintained forest,

we simply remove the edge from the graph. Otherwise, we first

split the E-tree containing x and y into two E-trees, and then we

reconnect it if we find an alternative edge between the two E-trees.

We do that as follows.We check whether x is an ancestor ofy or vice
versa by checking whether f (x) < f (y) and l(x) > l(y). Assume

w.l.o.g. that x is an ancestor of y in Tx . First, we set indexx =
indexx \ { f (y)−1, l(y)+1} and indexx = indexy \ { f (y), l(y)} (that
is, we simply drop the edge (x ,y)). Then, for all descendantsw of y
inTy (including y), for each i ∈ indexw set i = i − f (y), where f (y)
is the smallest index of y before the deletion of (x ,y). Update |Ty |
and allocate a new ID for the new connected component containing

y. Second, for all verticesw ∈ Tx \Ty and all i ∈ indexw if i > l(y)
set i = i − ((l(y) − f (y)+ 1)+ 2), where l(y) and f (y) are the largest
and smallest, respectively, index of y before the deletion of (x ,y).
This is to inform all vertices that appear after l(y) that the subtree
rooted at y has been removed, and hence the E-tour just cuts them

off (the +2 term accounts for the two appearances of x in the E-tour

because of (x ,y)). Finally, we find an edge from a vertex v ∈ Ty to

a vertexw ∈ Tx , and execute insert(x ,y).
Similarly to the case of an edge insertion, all of the above op-

erations can be executed in a constant number of rounds as the

only information that is required by the vertices are the ID of the

9

a

b f

c

d

e g

Euler tour 1: [b,c,c,d,d,c,c,b,b,e,e,b]

[1,8]

1 2 3 4 5 6 7 8 9 10 11 12

[1,12]

[2,7]

[4,5]

[10,11]

[2,7]

[4,5]

Euler tour 2: [a,f,f,g,g,f,f,a]
1 2 3 4 5 6 7 8

a

b f

c

d

e g

Euler tour 1: [e,b,b,c,c,d,d,c,c,b,b,e]

[1,8]

1 2 3 4 5 6 7 8 9 10 11 12

[2,11]

[4,9]

[6,7]

[1,12]

[2,7]

[4,5]

Euler tour 2: [a,f,f,g,g,f,f,a]
1 2 3 4 5 6 7 8

a

b f

c

d

e g

[1,24]

[8,17]

[10,15]

[12,13]

[6,19]

[2,23]

[4,21]

Euler tour: [a,f,f,g,g,e,e,b,b,c,c,d,d,c,c,b,b,e,e,g,g,f,f,a]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Figure 1: (i) A forest and an E-tour of each of its tree below. The brackets represent the first and the last appearance of a vertex
in the E-tour. (ii) The E-tour after setting e to be the root of its tree. (iii) The E-tour after the insertion of the edge (e,д).

a

b f

c

d

e g

Euler tour: [a,b,b,c,c,d,d,c,c,b,b,e,e,b,b,a,a,f,f,g,g,f,f,a]

[1,24]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

[2,15]

[4,9]

[6,7]

[12,13]

[18,23]

[20,21]

a

b f

c

d

e g

Euler tour: [a,b,b,c,c,d,d,c,c,b,b,e,e,b,b,a,a,f,f,g,g,f,f,a]

[1,24]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

[2,15]

[4,9]

[6,7]

[12,13]

[18,23]

[20,21]

a

b f

c

d

e g

Euler tour 1: [b,c,c,d,d,c,c,b,b,e,e,b]

[1,8]

1 2 3 4 5 6 7 8 9 10 11 12

[1,12]

[2,7]

[4,5]

[10,11]

[2,7]

[4,5]

Euler tour 2: [a,f,f,g,g,f,f,a]
1 2 3 4 5 6 7 8

Figure 2: (i) A tree and an E-tour of the tree below it. The brackets represent the first and the last appearance of a vertex in
the E-tour. (ii) An intermediate step of the update of the E-tour after the deletion of the edge (a,b). The red lines in the E-tour
indicate the split points of outdated E-tour. (iii) The E-tour after the deletion of the edge (a,b).

components of x and y, and the values f (x), l(x), f (y), l(y), which
are sent to all machines. Moreover, the search of a replacement

edge to reconnect the two trees of x and y can be done in O(1)
rounds as we only need to send the IDs of the two components

to all machines, and then each machine reports at most one edge

between these two components to a specific machine (specified also

in the initial message to all machines).

Preprocessing. During the preprocessing, we compute a spanning

forest T of the input graph and an E-tour on each tree T ∈ T
with arbitrary roots. We build on top of the O(logn) randomized

algorithm that computes a spanning forest of a graph by iteratively

identifying small neighborhoods to contract into single vertices

and at each iteration reduces the number of vertices by a constant

fraction [3]. It is instructive to view the contraction process as

merges of connected component that are build-up throughout the

execution, where initially all components are singleton vertices.

We augment this algorithm to maintain a spanning tree in each

component, as well as an E-tour of each spanning tree. We do this

as follows. Using vertex-based partitioning we distribute the edges

acrossmachines, and each vertex is aware of the ID of its component,

and together with each of its edges we maintain the two indexes

in the E-tour (of the tree of the component) that are associated

with the edge as well as the ID of the component containing the

edge. At each iteration, several components might merge into one,

but all such merges have a common component to which they are

contracted; we call this component the central component of the

merge. Whenever two, or more, components merge into one, they

all get the ID of the central component. Each of the components

that merge to the central component uses a single edge to merger

their spanning tree as a subtree of the spanning tree of the central

component. Let C1,C2, . . . ,Cl be the components that merge and

w.l.o.g. let C1 be the central component of the merge. Moreover, let

e2, . . . , el be the edges the non-central components use to connect

to the central component C1. Our plan is to simulate the sequence

of edge insertions of e2, . . . , el within a constant number of rounds.

First, in parallel for each component Ci ∈ {C2, . . . ,Cl } with

connecting edge ei = (xi ,yi),xi ∈ C1,yi = Ci , we set its root to
be yi . This is, essentially, the first step of the insert ei operation.
Second, we store the tree edges of all components C1, . . . ,Cl into

O(
√
N) machines, and we sort them based on the smallest of the

indexes of their endpoints. (Sorting can be done in O(1) rounds as
shown in [19].) The sorting implies an order of the machines storing

the ordered edges; let M1, . . . ,Mq be these machines. For each

component Ci with connection edge ei = (xi ,yi),xi ∈ C1,yi = Ci ,
we send the size of the E-tour of Ci (which is 4(|Ci | − 1)), to the

machine (among the machinesM1, . . . ,Mq) storing the index f (xi)
and we associate it with that index (it can be part of the message). If

more than one trees connect to the same vertex, we impose a total

order among them defined by the IDs of the other endpoints of the

connection edges of the components, and for each component Cj
in this order, we compute the sumψ (Cj) of sizes of the components

beforeCj in that order. If there is a single componentCj connecting

10

to a vertex, then itsψ (Cj) = 0. (Theψ values are used in the final

step of each iteration.) Within each machineMi , 1 ≤ i ≤ q we sum

the sizes that were sent to indexes stored atMi in the previous step,

and we send this information to all machinesMj , i < j ≤ q. (Each
machine sends a message of constant size to each other machine.

Hence, all messages can be sent in one round.) In tandem, we also

sum the values on the messages, of the same type, that are received

at machineMi from machinesMp , 1 ≤ p < i . Now we can compute

for each index i of an edge e = (w, z) in Ci the sum of sizes ϕ(i) of
components that are attached as subtrees to verticesw with smaller

value f (w) < f (v) (here we also consider those components that

were attached to indexes stored inMi). This allows use to execute

the final step of the procedure of inserting an edge in parallel for all

conflicting component merges. In particular, for each index j, we
set j = j + 4ϕ(j). Finally, we execute the second step of the process

of inserting an edge. That is, for each component Ci , i > 1 with

connection edge ei = (xi ,yi),xi ∈ C1,yi = Ci , and each index j of
an edge inCi we set j = j+ f (xi)+4ϕ(xi)+4ψ (Ci)+2. All additional
steps of the base algorithm can be executed in O(1) rounds, and
hence the whole preprocessing can be executed in O(logn) rounds.

5.1 Extending to (1 + ϵ)-approximate MST
To maintain a minimum spanning tree instead of a spanning tree,

we use the dynamic spanning tree algorithm with the following

two changes. First, whenever an edge (x ,y) is added and the two

endpoints are already in the same tree, we compute the edge (u,v)
with the maximum weight among all the edges whose both end-

points are ancestors of either x or y (but not both) and we compare

it to the weight of (x ,y) (these tests can be done efficiently using the

E-tree). We only keep the edge with the minimum weight among

(u,v) and (x ,y). Second, at Step 3 of the delete operation, instead
of adding any edge between the two trees, the algorithm adds the

minimum among all such edges.

The preprocessing can be adjusted to compute a (1+ϵ)-approximate

MST by doing bucketization, which introduces only a O(logn) fac-
tor in the number of rounds. In fact, it is enough to bucket the edges

by weights and compute connected components by considering the

edges in bucket of increasing weights iteratively and separately.

6 MAINTAINING A (2+ϵ)-APPROXIMATE
MATCHING

In this sectionwe adapt the algorithm byCharikar and Solomon [13]

to get a (2+ ϵ)-approximate matching algorithm withO(1) number

of rounds per update, Õ(1) communication per round, and Õ(1)
active machines per round. Although the algorithm from [13] needs

small modifications to achieve the above bounds in our model, these

are essential as the original algorithm relies on the fact that it is

executed sequentially. We first give an overview of the algorithm,

and then show how one can resolve the issues that arise from the

distributed implementation of the algorithm.

6.1 Overview of the sequential algorithm
The algorithm by Charikar and Solomon [13] builds on the frame-

work established by Baswana, Gupta, and Sen [9] that was designed

for fully-dynamic maximal matching with O(logn) amortized up-

date time. For ease of presentation, we first very briefly describe

the framework from [9] and then the modified version in [13]. The

set of vertices is decomposed into logγ n + 2 levels, γ ∈ O(logn).
The unmatched vertices are assigned level −1, while the matched

vertices are assigned to levels [0, . . . , logγ n], where γ = θ (n). De-
note the level of a vertex v as lvl(v). Let v be a matched vertex and

e = (u,v) be the edge of the matching that is adjacent tov . Roughly
speaking, the level of v in the level-decomposition is the logarithm

(with base γ) of the cardinality of the sampling space from which e
was selected uniformly at random, that is, the fact that lvl(v) = ℓ
implies that e was selected uniformly at random among at least γ ℓ

edges. We refer to the cardinality of the sampling space from which

an edge e was selected as the support of e . Notice that while neigh-
bors of a vertex v get deleted the support of the edge e reduces, but
insertions of new neighbors of v do not increase the support of e as
they were not an option when e was sampled. The aforementioned

grouping of the vertices and their adjacent matched edges serves

as an estimation of the number of updates needed to delete an edge

of the matching at each level. That is, a matching edge at level ℓ

is expected to be deleted after, roughly, γ ℓ/2 deletions of edges

adjacent to v . Moreover, the algorithm maintains an orientation of

the edges in the graph where each edge between two vertices u and

v is oriented from the vertex with higher level to the vertex of lower

level; ties are broken suitably by the algorithm. The outgoing edges

from a vertex v are stored in a list Outv , while for the incoming

edges of a vertex the algorithm maintains a partition of the edges

into lists based on their level, that is, the incoming edges of v at

level ℓ ≥ lvl(v) are stored in Inv [ℓ]. Notice that the more refined

maintenance of the incoming edges of a vertex allows vertex v to

traverse only the incoming edges at a specific level, while such a

process for the outgoing edges requires the traversal of the whole

list Outv . At this point it is useful to define the quantity Φv (ℓ)
which represents the number of neighbors of vertex v at levels 1

through ℓ − 1. This is mainly used in the algorithm in [13].

The algorithm maintains the following invariants during its

execution.

(i) Any matched vertex has level at least 0.

(ii) The endpoints of any matched edge are at the same level,

and this level remains unchanged until the edge is deleted

from the matching.

(iii) All free vertices have level -1 and out-degree 0. (This guar-

antees that the matching is maximal.)

(iv) An edge (u,v) with lvl(u) > lvl(v) is oriented by the al-

gorithm from u to v . In case where lvl(u) = lvl(v), the
orientation is determined suitably by the algorithm.

Whenever an edge is deleted from the matching, the algorithm

places each endpoint of the deleted edge at a level ℓ such that it

can pick an incident matching edge among a pool of γ ℓ candidate
edges. We avoid giving the details on how to update the maintained

data structures after an edge insertion or deletion, as these details

are out of the scope of this paper. Roughly speaking, the main idea

of the analysis in [9] builds on the fact that to remove a matching

edge e = (u,v) at level ℓ, the adversary needs to deleteO(γ ℓ) many

edges, which allows the algorithm to accumulate enough poten-

tial to restore the maintained invariants by reassigning levels to

u and v and update the data structures Out · and In ·[·] of u and v
and their affected neighbors. The bottleneck of the algorithm is

11

in maintaining the data structures Out · and In ·[·] throughout the
updates. With our model, each machine contains local computa-

tional power and can send messages in batches to the neighbors of a

vertex stored at the machine. This allows one to update the affected

data structures in batches, by simply sending and receiving the

appropriate information from each endpoint of the inserted/deleted

edge to their neighbors and each individual vertex updates the data

structures concerning themselves. That is, if a vertex changes level,

it can learn it can update all the relevant data structure in O(1)
rounds using a number of machines and communication that is

analogous to the number of neighbors of the vertex.

The algorithm from [13]maintains a relaxed version of the invari-

ants that are maintained by [9]. As the authors argue themselves, in

order for the algorithm to have a subpolynomial worst-case update

time it is necessary to be proactive with respect to deletions of

matched edges. More specifically, the authors present a scenario

where the adversary can force the algorithm to reduce drastically

the support of many edges of the matching, and then remove many

edges of the matching that have reduced support, which forces the

algorithm to perform a polynomial time computation within few

updates. Charikar and Solomon [13] deal with such situations by

designing an algorithm that ensures that at any point in time every

edge of the matching at level ℓ is sampled uniformly at random

from a relatively large sample space (i.e., Ω((1 − ϵ) · γ ℓ)). That is,
the algorithm maintains a relatively large support for each edge

of the matching independently of the adversarial deletions. This is

done to keep low the probability of the adversary “hitting” an edge

of the matching at level ℓ, and thus, at any point in time only few

edges might be deleted from the matching by the adversary.

As hinted in the discussion of the algorithm from [9], a deletion

of an edge from the matching at level ℓ can trigger an update that

requires Ω(γ ℓ) time in order to place the endpoints of the deleted

edge in the right level and try to match them with another ver-

tex in their neighborhood. The algorithm from [13] uses a similar

approach, with the difference that each long update is executed

in small batches of operations, where each batch is executed after

an edge update and performs a polylogarithmic number of opera-

tions. More specifically, each batch contains either ∆ = O(log5 n)
or ∆′ = ∆ · logn operations, depending on the type of update that

is being performed. In other words, a long process is simulated

over polynomially many adversarial edge insertions/deletions. The

period during which the algorithm remains active after an edge

insertion or deletion is called update cycle. At a high level, the

algorithm ensures a low-enough probability of deleting an edge

of the matching which, in turn, allows it to process such a dele-

tion in many update cycles, without having to deal with many

such deleted edges simultaneously, with high probability. This is

achieved by proactively deleting edges of the matching that have

low support and then trying to match again the newly free end-

points of the deleted edges; the endpoints of deleted edges by the

algorithm are called temporarily free vertices. In addition, to ensure

low-enough probability of an adversarial deletion of a matched

edge, the algorithm runs several procedures that remain active

throughout the sequence of the edge insertions/deletions (one of

which keeps removing edges with low support). These procedures

are called schedulers, and each such scheduler is responsible for

ensuring different invariants that are maintained throughout the

algorithm. The algorithm executes for each level −1, 0, . . . , logγ n
of level-decomposition a copy of a scheduler from each type. Each

of those copies is called a subscheduler, and all subschedulers of

the same type are managed from the same scheduler. Hence, there

are O(logγ n) subschedulers managed by a constant number of

schedulers.

Since long updates are executed in many small batches, it is

unavoidable that at each round there exist vertices that are in the

process of being updated. These vertices are called active and they

are maintained in a list throughout the execution of the algorithm;

we call this list the active list and denote is by A. It is shown that

at any point in time there are at most O(logn) active vertices, with
high probability. The algorithm also maintains the vertices that

become free due to adversarial edge deletions. Such vertices are

maintained in lists based on the level of the deleted edges, i.e.,

the algorithms maintains a list Qi at each level i . Recall that the
algorithm breaks down the execution of each process in batches

of size ∆ or ∆′ = ∆ · logn. The size of each batch depends on the

procedure that initiated the execution and not on the level of the

subscheduler that runs the batch; that is, for the batches handled

by the same scheduler is uniform across the different levels. Hence,

the execution of a procedure by a subscheduler at level ℓ, which

requires Tℓ time, is carried out in Tℓ/∆̂, where ∆̂ ∈ {∆,∆′}. The
level-decomposition ensures that a procedure that is executed by

a subscheduler at level ℓ requires at least as many rounds as any

process at levels ℓ′ < ℓ. As a consequence, during an execution of

a process at level ℓ, possibly many processes at lower levels are

executed.

Before describing the schedulers that are used by the algorithm,

we first review three supporting procedures. In what follows, sim-

ilarly to [13], we assume that the length of the update sequence

is limited to O(n2), and that the maintained matching has size

Ω(log5 n/ϵ4). These assumptions can be easily removed.

The authentication process. While updating the data structures

of a vertex v , some of its neighbors potentially change their level

multiple times. This happens because a procedure handling a vertex

at level ℓ compared to a procedure handling a vertex at level ℓ′ < ℓ
takes γ ℓ−ℓ

′
times more time (as the exact difference depends on the

type of the processes being carried out). Hence, at the end of the

execution of the process handling vertex v , vertex v might not be

updated about the level of some of its neighbors. To deal with this,

the algorithm keeps track of the neighbors of v that change their

level, and acts upon such changes. This is implemented efficiently

as follows. At the end of the execution of a procedure handling a

vertexv , the algorithm iterates over the list of active vertices and for

each active vertex z the information of v about z is being updated.
Since two procedures might have a very different execution times,

we also need to take care of the scenario where a neighborw of v
enters and leaves the active list A before v finishes its execution.

However, just before w leaves A, both v and w are active, and

hence, it suffices to scan the active list A and for each neighbor z
ofw that is active (that includes v), update their information about

w . Since |A| = O(logn), searching for all neighbors of a vertex

in the list and updating their mutual information takes O(log2 n)
time, which means that it can be executed in a single batch (i.e., it

12

should not be simulated in multiple update rounds). In our model,

this can be implemented in O(1) rounds using only Õ(1) machines

per round.

Procedure set-level(v, ℓ). This supporting procedure is responsi-
ble to set the level of v to be ℓ and to update all the necessary data

structures of v and its affected neighbors. This procedure is called

by the various subschedulers to facilitate the level change that is

associated with them. Notice that the level ℓ to which v is set is

not determined by the procedure itself, but by its caller. We refer

to this process as the rising, or falling, of v depending on whether

lvl(v) < ℓ or lvl(v) > ℓ, respectively, where lvl(v) is the level of v
before the call of set-level procedure. This process is executed by

a level
ˆℓ = max{ℓ, lvl(v)} subscheduler. The procedure runs in a

total of O(γ ˆℓ) time, which is executed in batches of size ∆ or ∆′

(depending on the subscheduler calling it).

The procedure starts by storing the old level of v (that is, ℓoldv =

lvl(v)), and setting lvl(v) = ℓ. Then it updates the vertices in

Outv about the new level of v , that is, for each vertex w ∈ Outv
such that lvl(w) < ℓ it moves v from Inw [ℓoldv] to Inw [ℓ]. Next,
depending on whether v is rising of falling, we further need to

flip the outgoing (resp., incoming) edges of v with its appropriate

neighbors to restore the invariants of the level-decomposition. In

the casewherev is falling, that is ℓ < ℓoldv , for each vertexw ∈ Outv
such that ℓ < lvl(w) ≤ ℓoldv we movew from Outv to Inv [lvl(w)]
and v from set Inw [ℓoldv] to Outw . We further need to update the

value Φw (i), for all w ∈ Outv and all ℓ + 1 ≤ i ≤ ℓoldv . We again

do that by iterating through the set Outv and for each edge we

increment all appropriate counters. The procedure is analogous for

the case where v is rising.

Recall that the O(γ ˆℓ) time required by procedure set-level, to
change the level of vertex v from ℓoldv to ℓ where ˆℓ = max{ℓ, ℓoldv },
is executed in batches of size ∆̂ ∈ {∆,∆′}. In our distributed im-

plementation of the algorithm we will execute all ∆ operations of

each batch of procedure set-level in one round. To do so, we notice

that all updates in the data structures of v and its neighbors are

independent from each other, that is, the updates made in the data

structure of each neighborsw ∈ Outv do not depend on the preced-

ing or succeeding updates to other neighbors of v . Hence, we can
execute all of them in parallel. We can use the machinery developed

in Section 3 to identify to which machine each message should

be delivered. In other words, the ∆̂ operations that are executed

by each subscheduler at each update round are performed in O(1)
MPC rounds.

Procedure handle-free(v). This procedure is responsible for han-
dling a temporarily free vertex v . The procedure first identifies

the highest level ℓ, such that Φv (ℓ) ≥ γ ℓ (recall that Φv (ℓ) is the
number of neighbors of v in level strictly lower than ℓ), and then

the corresponding set S(v) of non-active neighbors of v at levels

lower than ℓ. Then the procedure samples uniformly at random a

vertexw from S(v) \ A as the new mate of v in the matching. To

matchv withw the procedure does the following. It first unmatches

w from its former mate w ′
, then v and w are set to level ℓ using

calls to set-level(v, ℓ) and set-level(w, ℓ) and adds edge (w,v) into
the matching. Finally, if w was previously matched with w ′

the

procedure handle-free(w ′) is called recursively. The running time

of handle-free(v) is bounded by O(γ lvl (v) log4 n) (see [13] for the
analysis), and it is executed in batches of size ∆̂. Note that also in

this case we can execute all ∆̂ operations in a constant number of

rounds.

Maintained invariants. The algorithm in [13] maintains the fol-

lowing invariants:

(a) Any matched vertex has level at least 0.

(b) The endpoints of any matched edge are of the same level,

and this level remains unchanged until the edge is deleted

from the matching. (This defines the level of a matched edge,

which is at least 0 by item (a), as the level of its endpoints.)

(c) Any vertex of level -1 is unmatched and has out-degree 0.

(d) An edge (u,v), such that lvl(u) > lvl(v) and u and v are not

temporarily free, is oriented as from u to v .
(e) For any level-ℓ matched edges e with Tℓ/∆ ≥ 1 and any t , it

holds that |St (e)| > (1 − 2ϵ) · γ ℓ .
(f) For any vertex v and any level ℓ > lvl(v), it holds Φv (ℓ) ≤

γ ℓ ·O(log2 n)
Notice that the invariants (a)–(d) are equivalent to the invari-

ants (i)–(iv) of the algorithm from [9] which are adapted to take

into account the concept of temporarily free vertices. Invariant (e)

formalizes the property of maintaining large support for all edges

of the matching. Next we review the four schedulers that are used

to maintain the invariants (a)–(f) of the algorithm.

Scheduler free-schedule. The free-schedule scheduler handles the
vertices that become temporarily free due to the adversary. Such

vertices reside at logγ n + 1 queues Q0, . . . ,Qlogγ n at the different

levels of the level-decomposition. Each subscheduler at level ℓ iter-

atively removes a vertex v from Qℓ and calls handle-free(v), which
runs in timeO(γ ℓ), simulating ∆′

steps with each update operation.

In [13] the subschedulers at the different levels are executed in an

order from the one at the highest level to the one at the lowest level.

In our adaptation to the DMPC model, the logγ n free-schedule
subschedulers are executed in parallel. Each such subscheduler

simulates ∆ operations (in fact, their calls to handle-free), and the

total work by all subschedulers requires a constant number of MPC

rounds. However, this parallel execution of the subschedulers at

different levels creates some conflicts that do not appear in [13], as

the subschedulers are assumed to follow some predefined order of

execution. We will show how these conflicts can be resolved later

on.

Scheduler unmatch-schedule. The goal of the unmatch-schedule
subscheduler at level ℓ is to guarantee that the size of the support

of each matched edge at level ℓ remains between γ ℓ · (1− ϵ) and γ ℓ
(that is, invariant (e) of the algorithm). Each subscheduler at level

ℓ simply removes the level-ℓ matching edge e = (u,v) of smallest

sample space, and executes handle-free(u) and handle-free(v). The
computation that is triggered by a removal of a matched edge at

level ℓ is bounded byO(γ ℓ), and it is executed in batches of ∆ oper-

ations. Each such batch contains exchange of information between

u and v and ∆ of their neighbors, and hence, can be executed in

O(1) rounds using Õ(1) machines and communication per round.

Scheduler rise-schedule. Each subscheduler of this type at level ℓ

ensures that for each vertexw at level ℓ′ < ℓ it holds that Φw (ℓ) ≤
13

γ ℓ · O(log2 n). The subscheduler, each time identifies the vertex

w at level ℓ′ < ℓ with the highest value of Φw (ℓ), removes the

matching edge (w,w ′) (if such an edge exists), and raises w to

level ℓ by executing rise-schedule(w, ℓ). Finally, the subscheduler
executes handle-free(w) and handle-free(w ′) to match bothw and

w ′
. The execution of this subscheduler takes Tℓ = O(γ ℓ) time in

batches of size ∆, that is the subscheduler is executed fromO(γ ℓ/∆)
update cycles. Again, each batch of this update can be executed in

a constant number of DMPC rounds.

Scheduler shuffle-schedule. This scheduler at level ℓ each time

picks a matching edge e = (u,v) uniformly at random among the

matching edges at level ℓ, removes it from the matching, and exe-

cutes handle-free(u) and handle-free(v) to try and match again the

endpoints of the removed matching edge. The role of this scheduler

is mainly to facilitate the proof in [13] showing that the adversary

has low probability of deleting a matched edge (the low probability

is defined depending on the level of the matched edge). While the

total time required by this subscheduler is O(γ ℓ), it is executed in

batched of size ∆′ = ∆ · logn, which ensures that it runs faster than

the unmatch-schedule by a logarithmic factor, for technical reasons

as explained in [13]. This scheduler runs only for the levels ℓ for

which γ ℓ/∆′ > 1 as otherwise each update of at level ℓ is executed

immediately (not in multiple chunks) and hence the adversary does

not have enough time to delete an edge during the execution of a

subscheduler at this level. In a same way as the other schedulers,

each batch of this scheduler can be executed in O(1) rounds using
Õ(1) machines and communication per round.

Handling updates. Following the insertion of an edge e = (u,v),
the algorithm updates the relevant data structures in timeO(logγ n).
If both u and v are at level −1, the algorithm marks e as matched

edge and sets the level of u and v to be 0 by calling set-level(u, 0)
and set-level(v, 0). In [13] it is shown that this process is enough

to guarantee that all the invariants are maintained, and that an

edge insertion can be handled inO(log4 n) time. The above process

can be simulated in O(1) DMPC rounds, as all instructions involve

exchanging information between u and v and their neighbors, as

well as each vertex updating their part of the maintained data

structures.

To process the deletion of an edge e = (u,v) we proceed as

follows. If the edge does not belong to the matching, it is sufficient

to update the relevant data structures which requires onlyO(logn)
time. On the other hand, if e belongs to the matching we first

remove it from the matching, add its endpoints in Qlvl (u). The
above process is sufficient, as the subscheduler handle-free at level
lvl(u) will handle the newly free vertices u and v appropriately.

Moreover, the process ensures that all the invariants maintained

by the algorithm continue to be satisfied after this process.

As one can observe, the insertions and deletions of edges do not

trigger any long update procedures (even when deleting edges of

the matching!), but rather work together with the schedulers in

maintaining the invariants (a)–(f) of the algorithm, which in turn

ensures that the maintained matching is almost-maximal. However,

as the different subscheduler at the different levels do not commu-

nicate with each other but operate independently, there are some

issues that arise if they try to process the same vertices.

6.2 Conflicts between schedulers
Here we deal with synchronization issues that arise from the fact

that all subschedulers are working simultaneously at all times.

These issues are called conflicts between subschedulers. We ex-

hibit the conflicts that arise and show the modifications that need

to be made in order to ensure that all invariants of the algorithm

are satisfied at all times. Some of the modifications were already

suggested in [13], however, we repeat them here for completeness

of the algorithm. In what follows we ignore the overhead added by

updating the list A of active vertices.

Sampling mates conflict. The procedure handle-free (v) at level ℓ,
as part of a call from its subscheduler, might pick as a new mate

of v a vertex that is already processed by some other subscheduler.

However, this is not really an issue as the sampling avoids such

vertices by sampling from S(v) \ A, and the active list A contains

all vertices that are being processed.

Deleting unmatched edges conflict. A conflict may arise when

unmatch-schedule or shuffle-schedule subschedulers try to remove

a vertex that has already been removed from the matching. While

the case where the processed edge has been removed at a previous

round is not really a conflict, as once a subscheduler removes an

edge from the matching it informs all other subschedulers in O(1)
rounds and usingO(logn) machines, the case where subschedulers

from different levels try to remove the same edge from the match-

ing is problematic. For each unmatch-schedule subscheduler we
pick the top 2 logn choices of edges to remove from the matching

and for each shuffle-schedule subscheduler we pick 2 logn random

edges to remove from the matching. Next, all unmatch-schedule
and shuffle-schedule subschedulers send their 2 logn choices to the

same machine, and that machine decides for which subscheduler

removes which edges from the matching, by first processing the

unmatch-schedule subschedulers in decreasing order of their level

followed by the shuffle-schedule subschedulers in decreasing order

of their level and for each subscheduler we assign the first unas-

signed choice among its list of 2 logn choices. Then, the machine

communicates to the subscheduler their assigned edges, and hence

no conflicts occur among the different subschedulers as each has a

unique edge to delete from the matching.

Match an active vertex conflict. A conflict arises if the next vertex

chosen by free-schedule subscheduler at level ℓ from a queue Qℓ is

active. To deal with this issue we delay the scheduling of all the free-
schedule subschedulers at least one round (within the same update

cycle) after the rest of the subschedulers so that they can send

which vertices they mark active in order for them to be removed

from the queues Qℓ .

Raising and falling conflicts. During subscheduler rise-schedule,
at level ℓ, the vertex v that is picked to be raised might be already

active. We do not try to prevent this type of conflicts, as it is possible

that we actually want to raise v to level ℓ even though v is already

active, in order to satisfy the invariant (f) of the algorithm. In

particular, during the process where rise-schedule at level ℓ chooses
a vertex v to move it to level ℓ, some other procedure might be

handling v , that is, v might be in the process of being raised or

fallen level. Notice that, if v is being raised or fallen at some level

14

ℓ′ > ℓ, then there is no need for rise-schedule subscheduler to raise

v to ℓ′. The case where rise-schedule needs to raise v to ℓ is when

ℓ′ < ℓ (the destination level of v at the process of raising or falling).

First, we take care of the conflicts between subschedulers of

type rise-schedule. Similarly to the case of the unmatch-schedule
and shuffle-schedule subschedulers, we process the rise-schedule
subschedulers in a sequence according to their levels and we assign

to them (inactive and unassigned) vertices to rise, ensuring that

each rise-schedule subscheduler at level ℓ does not raise the same

vertex with one of a rise-schedule subschedulers at higher levels.
Other than conflicts between different rise-schedule subsched-

ulers, the only other scheduler that might conflict with rise-schedule
is handle-free. In this case we distinguish conflicts of a rise-schedule
subscheduler with calls handle-free(w), where w is being raised,

and calls handle-free(w), wherew is being fallen. As shown in [13],

the conflicts between rise-schedule subscheduler and calls to the

procedure handle-free(w) where w is being raised are avoided as

follows. Each level-ℓ rise-schedule subscheduler picks the subse-

quent vertex that it is going to raise and adds it into the set of active

vertices, so that it cannot be processed by other schedulers. The

vertex that is going to be raised with the next call to rise-schedule,
is called the next-in-line vertex of the corresponding subscheduler.

That is, each time a call to rise-schedule subscheduler is being ini-
tiated, it chooses the vertex that it is going to raise in the next

call, and proceeds with raising the vertex that was chosen in the

previous call. It can be shown that this mechanism avoids conflicts

between rise-schedule and procedure handle-free, where handle-free
is processing a raising vertex. The correctness is based on the fact

that the call to level-ℓ rise-schedule subscheduler will end later than
the call to level-ℓ′ handle-free procedure, where ℓ′ < ℓ. Moreover,

because we schedule the different rise-schedule subschedulers in a

decreasing order of their level, exactly as it is being done in [13],

our distributed version does not affect their analysis.

Finally, we need to deal with the conflicts that arise between

rise-schedule subschedulers and calls to procedure handle-free(w),
wherew is in the process of falling. This is a special case on its own,

and is not resolved solely by the next-in-line mechanism discussed

before, as the call to handle-free(w) may have been initiated from a

level ℓ′ > ℓ. The first modification is that during a call to handle-
free(w) we first check whetherw is the next-in-line vertex of any

of the rise-schedule subschedulers at levels j > lvl(w), and if yes,

we ignore the call to handle-free(w). This trick guarantees that

there are no level-j (where j > lvl(w)) rise-schedule subscheduler
attempts to raise w while w is falling from lvl(w) to a level ℓ, as

part of a call to handle-free(w).
It is possible that while w is falling from lvl(w) to ℓ, a level-j

rise-schedule subscheduler attempts to raisew to level j. The next-
in-line trick does work here as the call to handle-free(w) requires
more time than rise-schedule and hence it is not guaranteed thatw
will be in a next-in-line for some rise-schedule subscheduler with
level ℓ < j < lvl(w). We deal with this by preventing any level-j
rise-schedule subschedulers to raisew to level j whilew is falling

for any j < lvl(w). Although this guarantees that no rise-schedule
subscheduler raises a falling vertex, the fact that we prevent the

subscheduler to raise a vertex, might violate invariant (f), i.e., that

for any vertex v and any level ℓ′ > lvl(v),Φv (ℓ′) ≤ γ ℓ
′ ·O(log2 n).

To ensure that this does not happen, right afterw falls to level ℓ, we

immediately raise to the highest level ℓ′ that violates invariant (f).
It is shown in [13] that this modification prevents the violation of

invariant (f) and also the new version of rise-schedule subscheduler
can be done within the time of the scheduler that initiated the

falling ofw .

Theorem 6.1. A (2+ϵ)-approximate matching can be maintained
fully-dynamically in the dynamic MPC model in O(1) rounds per up-
date, using Õ(1) active machines per round and Õ(1) communication
per round, in the worst case.

Proof. As we argued with the description of each scheduler, we

simulate the ∆ or ∆′
operations executed by each subscheduler in

[13] with O(1) number of rounds, using Õ(1) active machines and

Õ(1) communication. Since the job done by the different subsched-

ulers is independent among them, and there are only O(logn) of
these subschedulers, it follows that the execution of all subsched-

ulers in one update cycle can be executed inO(1) rounds, using Õ(1)
active machines and Õ(1) communication. By the same argument,

the authentication process at each update cycle for all subsched-

ulers can be executed in the same time. Finally, with analogous

reasoning, it can be shown that the modifications needed to ensure

that no conflicts arise can be executed within the same asymptotic

complexity. □

7 SIMULATING SEQUENTIAL DYNAMIC
ALGORITHMSWITH MPC ALGORITHMS

Lemma 7.1. Assume that there exists a sequential algorithm SA
for maintaining a solution to the problem P with polynomial pre-
processing time p(N), and update time u(N), where the algorithm is
either deterministic or randomized and the update time is amortized
or worst-case. There exists a DMPC algorithmMRA with O(p(N))
number of rounds for the preprocessing, and O(u(N)) number of
rounds per update with O(1) machines active per round. The DMPC
algorithm is of same type as the sequential algorithm.

Proof. For the reduction, we assume that the computation is

taking place on a single machine MMRA and the rest of the ma-

chines act as the main memory in the corresponding sequential

algorithm. For each array-based data structure of the sequential

algorithm, we allocate a single machine to keep track of how the

data are distributed over the machines, i.e., the data structure allo-

cates a minimum number of machines (up to a constant factor) and

distributes the data in intervals such that a whole interval of the

array lies on a single machine. For each list-based data structure,

similarly to the way the sequential algorithm stores a single link

to the first element of the list we store only the machine storing

the first element together with its position in the memory of the

machine. Moreover, at the position of each element of the list we

also store a pointer to the machine and position of the next ele-

ment. For other type of data structures we could act similarly. For

instance if a data structure is a list of a dynamically reallocated

array-based data structure, then we could maintain the array-based

data structures in as few machines as possible and allocate new

machines whenever it is necessary (this is to ensure that we do not

use too many machines).

15

Whenever the algorithm that is executed on MMRA requests

access to an arbitrary position of an array-based data structure, then

in a constant number of rounds this memory position is fetched and

written back again (if the value has been changed) by only access-

ing a constant number of machines. In the case where theMRA
algorithm requests access to an element of a list, it is required to

specify a pointer to the machine and position of the element (in

the beginning a pointer to the first element is specified, and as the

list is scanned, the pointer to the next element is known by the

algorithm).

The complexity of a sequential algorithm is determined by the

number of its accesses to the memory and also by arithmetic op-

erations. Since each access to the memory by SA is simulated by

a constant number of rounds byMRA with constant number of

active machines per round, the running time of SA is translated to

rounds of MRA. Therefore, the preprocessing time p(N) and the

update time u(N) of the sequential algorithm can be simulated by

O(p(N)) andO(u(N)) rounds, respectively, by the algorithmMRA
with constant number of machines per round. □

8 DISCUSSION AND OPEN PROBLEMS
Although we believe that our model is a natural extension of the

MPC model for dynamic algorithms, we acknowledge that the

DMPC model has a few deficiencies. The main deficiency of the

model is that it allows algorithms that during an update make use of

a predefined set of machines (in the sense that the same machines

are used during this update independently of the nature and content

of the update), for instance, the algorithms that make use of a

coordinator machine in some of the algorithms presented in this

paper. Such practices might create bottlenecks in the performance

of algorithms, and even make the overall system more vulnerable to

failures or malicious attacks. This consideration can be taken into

account by adding the following parameter to the DMPC model.

Assuming that the updates are executed uniformly at random from

all possible updates at each round, we measure the entropy of the

normalized distribution of the total communicated bits among the

pairs of machines at each round. The higher the value of the metric

the better the algorithm in terms of how uniformly distributed are

the transmitted messages among the machines. We next further

elaborate on this potential metric.

Consider a particular update round r , where the update hap-

pening is drawn uniformly at random from the set of all possible

update that can potentially happen at round r . Let ϕ : V ×V → [C2],
where C the total number of machines, be a mapping from pairs of

machines to integers, and let α be the vector where α[ϕ(i, j)] is the
expected size message transmitted frommachineMi to machineMj
at round r , which depends on the update happening at round r . For
instance, an algorithm using a coordinator machineMc will have∑
i,c α[ϕ(c, i)] =

√
N , and hence Mc will be certainly activated

and transmitting

√
N bits in expectation. Ideally, we would like

the expected total communication to be equally distributed over

the values α[ϕ(i, j)]. This can be captured by the notion of entropy,

defined over the normalized vector α , where
∑
i, j α[ϕ(i, j)] = 1. The

entropy H (α) is maximized when the distribution of the unit value

over the entries of α is uniform, that is, when α[ϕ(i, j)] = 1/ℓ, where
ℓ the length of α . Note that the absolute value of the average value

of α is upper bounded by the bound on total communication per

round required by our model. Intuitively, the measure of entropy

that we consider quantifies the randomness in the set of machines

that exchange messages, with respect to a random update. For in-

stance, when using a coordinator machine for an algorithm, then

the communication is concentrated at the connection between the

coordinator and the machine storing the updated elements (which

is random), and hence the total entropy is limited.

A second deficiency of our model is that the measure of total

communication per round is somewhat “coarse” as it ignores the

form of the messages exchanged, e.g., consider a round that uses

O(
√
N) total communication and O(

√
N) active machines, in this

case, the model does not distinguish between the case where each

active machine transmits short messages of size O(1) to another

machine and the case where one machine transmits a large mes-

sage of size O(
√
N) and the rest of the machines small messages.

Notice that also this second deficiency can be taken into account

by introducing the entropy-based metric that we used in the case

of the first deficiency.

For the sake of simplicity of the model, we chose to avoid incor-

porating complicated metrics as parameters of the model in this

initial paper introducing the model. However, we believe that this

is an interesting direction for future work.arxaa

Open Problems. In this paper we initiated the study of algorithms

in the DMPCmodel, by considering some very basic graph problems.

It is natural to study more problems in this setting as the MPC

model becomes the standard model for processing massive data

sets, and its limitations with respect to processing dynamically

generated data are clear. In general, we think it is of great value to

understand the complexity of fundamental problems in the DMPC

model, both in terms of upper and lower bounds. We also believe

that it would be interesting to establish connections with other

models of computation, in order to develop a better understanding

of the strengths and weaknesses of the DMPC model.

REFERENCES
[1] I. Abraham, S. Chechik, and S. Krinninger. Fully dynamic all-pairs shortest paths

with worst-case update-time revisited. In Proc. of the 28th Annual ACM-SIAM
Symp. on Discrete Algorithms, pages 440–452, 2017.

[2] K. J. Ahn and S. Guha. Access to data and number of iterations: Dual primal

algorithms for maximummatching under resource constraints. ACM Transactions
on Parallel Computing (TOPC), 4(4):17, 2018.

[3] K. J. Ahn, S. Guha, and A. McGregor. Analyzing graph structure via linear mea-

surements. In Proc. of the 23rd annual ACM-SIAM Symp. on Discrete Algorithms,
pages 459–467. SIAM, 2012.

[4] A. Andoni, A. Nikolov, K. Onak, and G. Yaroslavtsev. Parallel algorithms for

geometric graph problems. In Proc. of the 46th annual ACM Symp. on Theory of
computing, pages 574–583. ACM, 2014.

[5] A. Andoni, Z. Song, C. Stein, Z. Wang, and P. Zhong. Parallel graph connectivity

in log diameter rounds. In 59th IEEE Annual Symp. on Foundations of Computer
Science, FOCS 2018, pages 674–685, 2018.

[6] M. Arar, S. Chechik, S. Cohen, C. Stein, and D.Wajc. DynamicMatching: Reducing

Integral Algorithms to Approximately-Maximal Fractional Algorithms. In 45th
International Colloquium on Automata, Languages, and Programming (ICALP
2018), volume 107, pages 7:1–7:16, 2018.

[7] S. Assadi, M. Bateni, A. Bernstein, V. Mirrokni, and C. Stein. Coresets meet edcs:

algorithms for matching and vertex cover on massive graphs. In Proc. of the 30th
Annual ACM-SIAM Symp. on Discrete Algorithms, pages 1616–1635, 2019.

[8] S. Assadi, K. Onak, B. Schieber, and S. Solomon. Fully dynamic maximal inde-

pendent set with sublinear update time. In Proc. of the 50th Annual ACM SIGACT
Symp. on Theory of Computing, STOC 2018, pages 815–826, 2018.

[9] S. Baswana, M. Gupta, and S. Sen. Fully dynamic maximal matching in O(log

n) update time. In IEEE 52nd Annual Symp. on Foundations of Computer Science,

16

pages 383–392, 2011.

[10] P. Beame, P. Koutris, and D. Suciu. Communication steps for parallel query

processing. In Proc. of the 32nd ACM SIGMOD-SIGACT-SIGAI Symp. on Principles
of database systems, pages 273–284. ACM, 2013.

[11] A. Bernstein, S. Forster, and M. Henzinger. A deamortization approach for

dynamic spanner and dynamic maximal matching. In Proc. of the 31st Annual
ACM-SIAM Symp. on Discrete Algorithms, 2019.

[12] K. Censor-Hillel, E. Haramaty, and Z. Karnin. Optimal dynamic distributed MIS.

In Proc. of the 2016 ACM Symp. on Principles of Distributed Computing, PODC ’16,

pages 217–226, 2016.

[13] M. Charikar and S. Solomon. Fully Dynamic Almost-Maximal Matching: Breaking

the Polynomial Worst-Case Time Barrier. In 45th International Colloquium on
Automata, Languages, and Programming (ICALP 2018), pages 33:1–33:14, 2018.

[14] L. Chitnis, A. Das Sarma, A. Machanavajjhala, and V. Rastogi. Finding connected

components in map-reduce in logarithmic rounds. In Proc. of the 2013 IEEE
International Conference on Data Engineering, ICDE ’13, pages 50–61, 2013.

[15] A. Czumaj, J. Łącki, A. Mądry, S. Mitrović, K. Onak, and P. Sankowski. Round

compression for parallel matching algorithms. In Proc. of the 50th Annual ACM
SIGACT Symp. on Theory of Computing, STOC 2018, pages 471–484, 2018.

[16] C. Demetrescu and G. F. Italiano. A new approach to dynamic all pairs shortest

paths. Journal of the ACM (JACM), 51(6):968–992, 2004.
[17] M. Ghaffari, T. Gouleakis, C. Konrad, S. Mitrović, and R. Rubinfeld. Improved

massively parallel computation algorithms for MIS, Matching, and Vertex cover.

In Proc. of the 2018 ACM Symp. on Principles of Distributed Computing, PODC ’18,

pages 129–138, 2018.

[18] M. Ghaffari and J. Uitto. Sparsifying distributed algorithms with ramifications in

massively parallel computation and centralized local computation. In Proc. of the
30th Annual ACM-SIAM Symp. on Discrete Algorithms, pages 1636–1653, 2019.

[19] M. T. Goodrich, N. Sitchinava, and Q. Zhang. Sorting, searching, and simulation in

themapreduce framework. In International Symp. on Algorithms and Computation,
pages 374–383, 2011.

[20] M. R. Henzinger and V. King. Randomized fully dynamic graph algorithms with

polylogarithmic time per operation. Journal of the ACM (JACM), 46(4):502–516,

1999.

[21] J. Holm, K. De Lichtenberg, and M. Thorup. Poly-logarithmic deterministic

fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and

biconnectivity. Journal of the ACM (JACM), 48(4):723–760, 2001.
[22] J. E. Hopcroft and R. M. Karp. An O(n5/2) algorithm for maximum matchings in

bipartite graphs. SIAM Journal on computing, 2(4):225–231, 1973.
[23] A. Israeli and A. Itai. A fast and simple randomized parallel algorithm for maximal

matching. Information Processing Letters, 22(2):77 – 80, 1986.

[24] H. Karloff, S. Suri, and S. Vassilvitskii. A model of computation for MapReduce. In

Proc. of the 21st annual ACM-SIAM Symp. on Discrete Algorithms, pages 938–948,
2010.

[25] J. Łącki, V. Mirrokni, and M. Włodarczyk. Connected components at scale via

local contractions. arXiv preprint arXiv:1807.10727, 2018.
[26] S. Lattanzi, B. Moseley, S. Suri, and S. Vassilvitskii. Filtering: a method for

solving graph problems in MapReduce. In Proc. of the 23th annual ACM Symp. on
Parallelism in algorithms and architectures, pages 85–94. ACM, 2011.

[27] Z. Lotker, B. Patt-Shamir, and S. Pettie. Improved distributed approximate match-

ing. In Proc. of the 20th annual Symp. on Parallelism in algorithms and architectures,
pages 129–136. ACM, 2008.

[28] A. Lulli, E. Carlini, P. Dazzi, C. Lucchese, and L. Ricci. Fast connected components

computation in large graphs by vertex pruning. IEEE Transactions on Parallel &
Distributed Systems, (1):1–1, 2017.

[29] D. Nanongkai, T. Saranurak, and C. Wulff-Nilsen. Dynamic minimum spanning

forest with subpolynomial worst-case update time. In 2017 IEEE 58th Annual
Symp. on Foundations of Computer Science (FOCS), pages 950–961, Oct 2017.

[30] O. Neiman and S. Solomon. Simple deterministic algorithms for fully dynamic

maximal matching. ACM Transactions on Algorithms (TALG), 12(1):7, 2016.
[31] S. Solomon. Fully dynamic maximal matching in constant update time. In IEEE

57th Annual Symp. on Foundations of Computer Science, pages 325–334, Oct 2016.
[32] G. Yaroslavtsev and A. Vadapalli. Massively parallel algorithms and hardness for

single-linkage clustering under ℓp distances. In Proc. of the 35th International
Conference on Machine Learning, volume 80, pages 5600–5609, 10–15 Jul 2018.

17

	Abstract
	1 Introduction
	2 The model
	3 Fully-dynamic DMPC algorithm for maximal matching
	4 Fully-dynamic 3/2-approximate maximum matching
	5 Fully-dynamic connected components and approximate MST
	5.1 Extending to (1+)-approximate MST

	6 Maintaining a (2+)-approximate matching
	6.1 Overview of the sequential algorithm
	6.2 Conflicts between schedulers

	7 Simulating sequential dynamic algorithms with MPC algorithms
	8 Discussion and Open Problems
	References

