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Abstract
In this paper, we study reasoning with existential
rules in a setting where some of the predicates may
be closed (i.e., their content is fully specified by
the data instance) and the remaining open predi-
cates are interpreted under active-domain seman-
tics. We show, unsurprisingly, that the main rea-
soning tasks (satisfiability and certainty / possibil-
ity of Boolean queries) are all intractable in data
complexity in the general case. However, several
positive (PTIME data) results are obtained for the
linear fragment, and interestingly, these tractability
results hold also for various extensions, e.g., with
negated closed atoms and disjunctive rule heads.
This motivates us to take a closer look at the linear
fragment, exploring its expressivity and defining a
fixpoint extension to approximate non-linear rules.

1 Introduction
There has been significant interest in recent years in ontology-
mediated query answering (OMQA) [Bienvenu and Ortiz,
2015], in which data is enriched with an ontology that
provides general domain knowledge. Ontologies are typi-
cally expressed using decidable fragments of first-order logic.
While description logics (DLs) [Baader et al., 2003] re-
main the most widely-studied formalism, existential rules
(aka Datalog +/-) [Baget et al., 2009; Baget et al., 2011;
Krötzsch and Rudolph, 2011; Calı̀ et al., 2012], which we
adopt in this paper, have been drawing increasing interest, as
they allow relations of arbitrary arity (unlike DLs which are
restricted to unary and binary predicates) and generalize both
Datalog [Abiteboul et al., 1995] and tractable DLs like DL-
Lite and EL [Calvanese et al., 2007; Baader et al., 2005].

The vast majority of work on OMQA adopts the open
world assumption, whereby facts that are not present in the
data instance are treated as unknown. Formally, each knowl-
edge base (KB) (R, I), consisting of an ontology R and in-
stance I , gives rise to a set of models, defined as the first-order
structures that make true all facts in I and satisfy all rules
(or axioms) in R. When querying a KB, we are interested
in obtaining the certain answers, i.e. the answers that hold
for every model of the KB. By contrast, relational databases
make the closed-world assumption, where each instance I is

interpreted as the finite structure whose domain is equal to the
active domain of I (i.e., the constants explicitly mentioned in
I) and which makes true precisely the facts in I .

In practice, it seems natural to assume that applications
may involve some predicates whose contents are fully known
and others for which we have only partial information. This
motivates the consideration of mixed-world semantics, where
the set of predicates is partitioned into closed and open pred-
icates, and models are required to coincide with the instance
on the closed predicates. Mixed-world OMQA was first ex-
plored for DL ontologies [Lutz et al., 2013; Lutz et al., 2015;
Ahmetaj et al., 2016; Ngo et al., 2016] and has only recently
been studied for existential rules [Benedikt et al., 2016]. Fur-
ther variants of traditional OMQA semantics can be obtained
by placing additional restrictions on the models. In partic-
ular, as the classical semantics considers arbitrary models
with possibly infinite domains, it is interesting to consider
the restriction to finite models [Ibáñez-Garcı́a et al., 2014;
Gogacz et al., 2018] , or models with fixed or bounded-size
domains [Gaggl et al., 2016; Rudolph and Schweizer, 2017].

The present paper combines elements of these different
lines of research by exploring OMQA with existential rules
under a hybrid mixed-world active-domain semantics, in
which we can use both closed and open predicates, and the se-
mantics is based upon active-domain models whose domains
are equal to the active domain of the instance. Such a seman-
tics is appropriate for scenarios in which all relevant constants
are made available in the instance. A possible use case (for-
malized in Example 1 in simplified form), which served as
a motivation for this work, is in analyzing the trajectories of
people circulating in a geographically restricted area (e.g., in-
dustrial facility, closed medical facility) that is equipped with
sensors and secure entry and exit (so that the set of people in
the area is known at each timepoint).

The paper is structured as follows. In Section 3, we for-
mally introduce our framework for mixed-world reasoning
with existential rules under active-domain semantics, in par-
ticular, defining the certain and possible answers to conjunc-
tive queries (CQs). In the following section, we analyze the
data complexity of the three central reasoning tasks which
are to determine whether a mixed-world knowledge base
(MWKB) is satisfiable, and whether a Boolean CQ is certain
or possible w.r.t. a MWKB. We show that all three tasks are
intractable (NP- or coNP-complete in data complexity) for



MWKBs based upon arbitrary existential rules. However, for
the linear fragment of our language (where rule bodies may
contain at most one atom with an open predicate), we are
able to establish several tractability results. Indeed, we can
show that satisfiability, possibility of BCQs, and certainty are
all PTIME-complete in data complexity, and moreover, the
PTIME upper bounds remain valid in the presence of use-
ful extensions, like (in)equality atoms, negated closed atoms,
and disjunction in ruleheads. Motivated by these encourag-
ing results, we investigate the linear fragment in more detail.
In Section 4, we explore the expressive power of the linear
fragment and prove our most technically challenging result,
namely, that atomic queries coupled with mixed-world linear
existential rules, extended with either closed negated atoms
or disjunctive ruleheads and interpreted under either certain
or possible active-domain semantics, can express all PTIME
queries over ordered databases. Section 5 provides a gen-
eral method of approximating unrestricted existential rules by
means of linear rules augmented with a fixpoint semantics.
We conclude the paper with a discussion of related and future
work. Due to space restrictions, some proof details have been
deferred to the appendix of the long version [Bienvenu and
Bourhis, 2019].

2 Preliminaries
We assume the reader is familiar with standard notions from
first-order logic. A term is either a constant or variable. An
atom takes the form P (t1, . . . , tk), where P is a predicate (or
relation) symbol of arity k ≥ 0, and each ti is a term. A fact is
an atom that does not contain any variables, and an instance
is a finite set of facts. The active domain of an instance I ,
denoted adom(I), is the set of constants occurring in I .

A signature Σ is a finite set of predicate symbols. A Σ-
instance (resp. Σ-atom, Σ-fact) is an instance (resp. atom,
fact) that only mentions predicates from Σ. The projection
of an instance I onto Σ, denoted I|Σ, is the set of Σ-facts in
I . When S is a set of instances, we let S|Σ = {I|Σ | I ∈ S}.

A conjunctive query (CQ) is a conjunction of atoms in
which some of the variables may be existentially quantified.
Atomic CQs consists of a single atom, and Boolean conjunc-
tive queries (BCQs) are CQs whose variables are all existen-
tially quantified. We use vars(Q) to denote the set of variables
in a CQQ. We sometimes treat (B)CQs as sets of atoms, e.g.,
using α ∈ Q to say that α occurs as a conjunct of Q.

We recall that an existential rule (sometimes abbreviated
to rule) is a first-order sentence of the form ρ = ∀~xϕ(~x) →
∃~yψ(~x, ~y), where ϕ(~x) and ∃~yψ(~x, ~y) are CQs (called re-
spectively the body and head of ρ), and all variables in ~x
occur in ϕ(~x). An (existential) ruleset (over Σ) is a finite
set of existential rules (whose predicates are drawn from Σ).
For brevity, we omit the initial universal quantifiers in rules,
use commas in place of ∧, and sometimes simplify to just
ϕ → ψ (in which case the variables in vars(ψ) \ vars(ϕ)
are implicitly existentially quantified). As is common, we
shall assume that ruleheads always consist of a single atom.
This is w.l.o.g. since we can simulate conjunctive ruleheads
by means of fresh predicates, obtaining a ruleset that is a con-
servative extension of the original one.

Existential rules are classically interpreted under first-order
logic semantics. An existential rule ϕ → ψ is satisfied in a
first-order structure J with domain D if every variable as-
signment h : vars(ϕ) → D that makes ϕ hold in J can be
extended to an assignment h′ : vars(ϕ) ∪ vars(ψ)→ D such
that ψ holds in J. We can extend the notion of satisfaction
to instances as follows. With every instance I , we associate
a finite first-order structure JI whose domain is adom(I) and
such that every predicate P is interpreted as the set of tuples
~c such that P (~c) ∈ I . We then say that rule ρ is satisfied
in an instance I (or that I satisfies ρ) if ρ is satisfied in JI .
Likewise, a BCQ Q holds in instance I if Q holds in JI .

Datalog rules are existential rules with no existentially
quantified variables, and a Datalog program is a finite set
of Datalog rules. It is typical to partition the signature into
extensional predicates that occur only in rule bodies, and in-
tensional predicates that may occur both in bodies and heads.
Given a Datalog program Π and an instance I over its exten-
sional predicates, we denote by Π(I) the minimal instance
that contains I and satisfies all rules in Π. A Datalog query
takes the form (Π, Goal), where Π a Datalog program and
Goal an intensional predicate. When evaluated on instance I ,
such a query returns those tuples~a such thatGoal(~a) ∈ Π(I).
The preceding notions naturally extend to semi-positive Dat-
alog, which allows negated extensional atoms in rule bodies.

3 Existential Rules with Closed Predicates
and Active-Domain Semantics

This section introduces a framework for reasoning with ex-
istential rules in a setting where some of the predicates are
declared as closed, and for the remaining open predicates, an
active domain semantics is adopted, whereby only facts over
the explicitly named constants are considered.

Formally, we will consider mixed-world signatures Σ =
(Σc,Σo), whose predicates are partitioned into a set Σc of
closed predicates, and a set Σo of open predicates. Often we
will only define Σc, leaving it implicit that all other predicates
in Σ belong to Σo. A mixed-world knowledge base (MWKB)
is a triple (Σ,R, I), where Σ is a mixed-world signature, R
is an existential ruleset over Σ, and I is a Σ-instance. Note
that R and I may use both open and closed predicates. Later
in the paper, we will be especially interested in linear existen-
tial rules, which we define in our setting as existential rules
whose bodies contain at most one Σo-atom (but can contain
any number of Σc-atoms1).

We now define the active-domain (AD) semantics of
MWKBs. A Σ-instance M is an active-domain model of
a MWKB (Σ,R, I) if adom(M) = adom(I), M |Σc

=
I|Σc

, I|Σo
⊆ M , and M satisfies every rule in R.

The set of active-domain models (henceforth abbreviated
to models) of (Σ,R, I) is denoted ModsAD(Σ,R, I). A
MWKB (Σ,R, I) is satisfiable under AD semantics if
ModsAD(Σ,R, I) 6= ∅. There are two natural ways of in-
terpreting queries in our setting:

1Linear existential rules [Calı̀ et al., 2012] are usually restricted
to a single body atom. Our definition is more general and in the
spirit of linear Datalog rules [Abiteboul et al., 1995].



• a BCQ Q is certain w.r.t. (Σ,R, I) (under AD seman-
tics) if Q holds in every M ∈ModsAD(Σ,R, I);
• a BCQ Q is possible w.r.t. (Σ,R, I) (under AD seman-

tics) if Q holds in some M ∈ModsAD(Σ,R, I).
We extend these notions to arbitrary CQs in the obvious way:
a tuple ~a of constants from adom(I) is a certain (resp. possi-
ble) answer to a CQ Q(~x) with free variables ~x iff the BCQ
Q(~a) obtained by replacing ~x by ~a is certain (resp. possible).
Observe that a BCQ Q is not possible just in the case that its
negation ¬Q holds in every model, so the reasoning task of
determining whether a BCQ is possible can be rephrased as
determining whether a BCQ is certainly false. Note that be-
cause open predicates can be constrained by the closed pred-
icates, not all open facts are possible (hence, some queries
involving open predicates may be certainly false).

We will also consider a more general form of existential
rule that allows for the following useful features: (in)equality
atoms (t = t′, t 6= t′) in rule bodies and heads, negated Σc-
atoms in rule bodies, and rule heads that take the form of a
(possibly empty) disjunction of existentially quantified atoms.
We will call these extended (existential) rules. An extended
linear rule is an extended rule with at most one Σo-atom in its
body, where (in)equality atoms are viewed as Σc-atoms. The
notion of an extended rule holding in an instance is defined in
the obvious way, following first-order logic semantics.

We conclude this section by an example that illustrates the
use of our logic to reconstruct trajectories of users whose po-
sitions are recorded by different sensors in an area.
Example 1. The goal is to reconstruct paths of people cir-
culating in a circumscribed area based upon sensor events.
Every such event has an identifier e and provides the posi-
tion p of a (possibly unidentified) user u at a certain time t.
Nominative events are stored as facts N(e, p, t, u), and all
events (both nominative and anonymous) are stored as facts
E(e, p, t) in a generic event relation E. For the purposes of
the example, we assume events occur at regular intervals (ev-
ery ∆t time units), and every user participates in some event
(e.g., is detected by some sensor) at each timepoint (if this
event identifies the user, then it is nominative, else anony-
mous). We further assume that Next contains all pairs of
events (e, e′) that can feasibly occur in sequence i.e., the
timepoint of e′ directly follows that of e, and it is physically
possible to move between their respective positions in ∆t.
Finally, we assume special nominative events containing the
starting and ending positions of a user in the considered area,
which can be found in relations S and F . Based upon the
preceding information (stored in closed predicates), we con-
struct possible trajectories by means of an open predicate Tr,
where Tr(u, e, e′) means that user u transitions from event e
to event e′; a second open predicate Loc(u, p, t) states that u
is at position p at time t. Our first two rules guess a subse-
quent event for every event up to the final event (note that the
variable e′′ with the guessed event is existentially quantified):

S(u, e, p, t), F (u, e′, p′, t′), t < t′→Tr(u, e, e′′)

Tr(u, e0, e), E(e, p, t), F (u, e′, p′, t′), t < t′→Tr(u, e, e′′)

We use Next to constrain the pairs of events in Tr,
Tr(u, e, e′)→ Next(e, e′)

and enforce that if the true position of a user is known at a
given timepoint t (via a nominative event), then any selected
event for that user at time t gives the same position:

Tr(u, e0, e), E(e, p, t), N(e′, p′, t, u)→ p = p′

Loc-facts record the times and position of events in the
guessed trajectories given by relation Tr:

Tr(u, e, e′), E(e′, p, t)→ Loc(u, p, t)

and the final two rules forbid a user from being in more than
one position at a time, and for distinct users being associated
to the same position at the same time:

Loc(u, p, t), Loc(u, p′, t)→ p = p′

Loc(u, p, t), Loc(u′, p, t)→ u = u′

The first five rules are linear, while the last two are not.
The certain (resp. possible) Loc-facts provide us with the
sure (resp. potential) location of users at different timepoints,
which could be used for visualizing and analyzing user tra-
jectories. For example, displaying (or aggregating) the cer-
tain and possible locations of users (given by Loc) could help
with understanding which sectors are the most frequented.

4 Complexity Analysis
We study the complexity of the three main reasoning tasks in
our setting: satisfiability, certainty, and possibility. We focus
on data complexity, which is measured in terms of the size of
the instance. Our results are formulated for BCQs, but they
apply equally well to the decision problem of testing whether
a given tuple is a certain / possible answer.

Our first result shows that reasoning in the full language is
intractable in data complexity, which is not surprising in light
of prior negative results for mixed-world reasoning.

Theorem 1. For (possibly extended) MWKBs with AD se-
mantics, deciding if a BCQ is certain is coNP-complete in
data complexity, while KB satisfiability and BCQ possibility
are NP-complete in data complexity. The lower bounds hold
for binary signatures and when the BCQ is a fact.

Proof sketch. We focus on certainty, but the proofs are easily
adapted for satisfiability and possibility. To show q is not
certain w.r.t. (Σ,R, I), it suffices to guess an instance J with
adom(J) = adom(I), and verify that I|Σo

⊆ J , J coincides
with I on Σc, all rules in R are satisfied in J , and q does
not hold in J . As J is of polynomial size in |I|, and we
can verify rule satisfaction in PTIME w.r.t. |J |, we get an NP
upper bound (data complexity) for non-certainty.

For the lower bound, we adapt a reduction from 2+2UN-
SAT sketched in [Lutz et al., 2013]. LetR2+2 consist of:

• for i ∈ {1, 2}: Pi(x, y)→ ∃zR(y, z),
Pi(x, y), R(y, z), F (z)→ Ui(x)

• for i ∈ {3, 4}: Ni(x, y)→ ∃zR(y, z),
Ni(x, y), R(y, z), T (z)→ Ui(x)

• R(y, x)→ B(x)

•
(
S(w, x),

∧
1≤i≤4 Ui(x)

)
→ Q(w)



Given a CNF ϕ = λ1, . . . , λn with λi = vi1∨vi2∨¬vi3∨¬vi4,
we construct the following instance I2+2:

{P (ci, v
i
1), P (ci, v

i
2), N(ci, v

i
3), N(ci, v

i
4) | 1 ≤ i ≤ n}

∪ {B(t), T (t), B(f), F (f)} ∪ {S(a, ci) | 1 ≤ i ≤ n}

It is easily verified that, letting Σc = {B}, the fact Q(a) is
certain for (Σ,R2+2, I2+2) iff ϕ is unsatisfiable.

We next turn to linear rulesets. A straightforward adapta-
tion of Theorem 1 shows that linearity does not always yield
tractability, even for normally well-behaved classes of BCQs:

Theorem 2. For linear MWKBs with AD semantics, deciding
if an acyclic2 BCQ is certain is coNP-hard in data complexity.

Proof sketch. We adapt the reduction from Theorem 1 by (i)
using the acyclic BCQ obtained by ‘unfolding’Q(a) w.r.t. the
rules with head predicates Q and Ui, and then (ii) removing
all non-linear rules from the rulesetR2+2.

Nevertheless, we can show several positive results for lin-
ear rules, exploiting the following maximal model property:

Lemma 1. Consider a signature Σ = (Σc,Σo), an ex-
tended linear ruleset R over Σ, and Σ-instances I,N with
adom(N) ⊆ adom(I). If {M ∈ ModsAD(Σ,R, I) |
M ∩ N = ∅} is non-empty, then it has a maximal element
w.r.t. set inclusion, called the maximal model of (Σ,R, I)
that omits N . Moreover, computing this model (or determin-
ing its non-existence) can be done in polynomial time in |I|.

Proof. We outline a procedure for testing whether there is a
model of (Σ,R, I) that omits N , and constructing the maxi-
mal such model when it exists. IfN∩I 6= ∅, then we immedi-
ately fail. Otherwise, we set J equal to the (unique) maximal
Σ-instance with adom(J) = adom(I) and J ∩ N = ∅ that
coincides with I on Σc. If J satisfies R, then we have found
the desired maximal model. Otherwise, repeat the following
while J does not satisfyR:

1. Pick a rule γ → ψ that is not satisfied in J , together with
a variable assignment h : vars(γ) → adom(J) such that
h(γ) is satisfied in J but there is no extension h′ of h to
vars(γ) ∪ vars(ψ) such that h′(ψ) holds in J .

2. If γ contains an atom P (~x) with P ∈ Σo and P (h(~x)) 6∈
I , then remove P (h(~x)) from J .

3. Else, halt and return ‘no such model’.

If at some point J satisfiesR, halt and return J .
Correctness of this procedure can be established by an in-

ductive argument, which shows that the current set J is al-
ways a superset of the desired maximal model if it exists (in-
tuitively because every fact removal is ‘forced’). Note that
the initial J can be constructed in polynomial time in |I|, and
there at most polynomially many iterations of the above steps,
so the procedure runs in PTIME w.r.t. data complexity.

As an immediate consequence of Lemma 1, we have:

2We recall that a BCQ Q is acyclic if the undirected graph
(VQ, EQ) is acyclic, where VQ contains the terms of Q, and EQ

contains (t, t′) iff there is an atom of Q containing t and t′.

Theorem 3. Satisfiability of extended linear MWKBs with
AD semantics is in PTIME for data complexity.

We can also use Lemma 1 to identify classes of queries for
which the certainty problem is tractable.

Theorem 4. For extended linear MWKBs with AD semantics,
deciding if a fact is certain is in PTIME for data complexity.
The same holds for ground CQs and for disjunctions of facts.

Proof sketch. To test whether fact α is not certain, it suffices
to determine the existence of a model that omits N = {α}, a
PTIME-checkable condition by Lemma 1. For a ground CQ
α1∧ . . .∧αn, we just perform this test for each αi separately.
Finally, note that a disjunction of facts α1∨ . . .∨αn is certain
iff there is no model that omits {α1, . . . , αn}.

We now provide matching PTIME lower bounds for satis-
fiability and fact certainty. Recall that the latter problem is
in AC0 ( PTIME for linear existential rules under classical
semantics without closed predicates [Calı̀ et al., 2012].

Theorem 5. For linear MWKBs with AD semantics, satisfia-
bility and fact certainty are PTIME-hard in data complexity.

Proof sketch. The proof is by reduction from the PTIME-
complete Path Systems Accessibility (PSA) problem [Garey
and Johnson, 1979]. A path system is a tuple (U,E, S, t)
where U is a set of nodes, E ⊆ U × U × U is an accessibil-
ity relation, S ⊆ U is the set of source nodes, and t ∈ U is
the distinguished terminal node. The problem is then to de-
termine whether t ∈ access(S), where access(S) is the least
subset of U such that (i) S ⊆ access(S), and (ii) if u1, u2 ∈
access(S) and (u1, u2, u3) ∈ E, then u3 ∈ access(S).

Observe that u ∈ access(S) iff there is a labelled binary
tree such that (i) the root is labelled u, (ii) every leaf is la-
belled by some u′ ∈ S, and (iii) for every non-leaf node with
label u3, there is (u1, u2, u3) ∈ E such that the node’s chil-
dren are labelled u1 and u2. We remark that if such a witness
tree exists, then there is one with depth is at most |E|. The
idea for the reduction is to try to build such a witness tree.

Given a path system PS = (U,E, S, t) with |E| = m, we
construct (by a logspace transducer) the instance IPS with:

• Init(t, 0), with t the unique terminal node

• R(u, u′, u′′, k, k + 1), for (u, u′, u′′) ∈ E, 0 ≤ k < m

• R(u, u, u, k, k + 1), for each u ∈ S and 0 ≤ k < m

• R(u, u, u,m,m), for each u ∈ S
We set Σc = {Init, R}, and letRPS consist of the rules:

• Init(x, z)→ ∃y1, y2, z
′ T (y1, y2, x, z, z

′)

• T (y1, y2, x, z, z
′)→ R(y1, y2, x, z, z

′)

• T (y1, y2, x, z, z
′)→ ∃v1, v2, z

′′T (v1, v2, y1, z
′, z′′)

• T (y1, y2, x, z, z
′)→ ∃v1, v2, z

′′T (v1, v2, y2, z
′, z′′)

The rough idea is that we guess a witness tree topdown, from
the root t to the leaves, using the T -facts to record which
triples from E were used. Correctness follows from the fact
that every model of (Σ,RPS , IPS) gives rise to a witness
tree for t ∈ access(S) (constructed from the T -facts), and
conversely, every such tree can be used to build a model. The



numbers occurring in the last two positions of T play a crucial
role, by ordering the T -facts (allowing them to be assembled
into a witness tree) and forcing each ‘branch’ to eventually
stabilize in S (as once value m has been reached, we can
only use T -facts of the form T (u, u, u,m,m) with u ∈ S).
It follows that (Σ,RPS , IPS) is satisfiable iff t ∈ access(S).
For certainty, we pick a fact α = Init(u, v) 6∈ IPS and note
that α is certain iff (Σ,RPS , IPS) is unsatisfiable.

For possibility, we obtain tractability for arbitrary BCQs:
Theorem 6. For (extended) linear MWKBs with AD seman-
tics, BCQ possibility is PTIME-complete for data complexity.
The lower bound holds when the BCQ is a fact.

Proof sketch. To decide if q is possible, it suffices to check
whether q holds in the unique maximal model, which can be
done in PTIME w.r.t. data complexity by Theorem 1.

The lower bound is by reduction from the PSA problem
introduced earlier. The ruleset will consist of the following
four linear rules, with Σc = {NR0, B, In,Out}:
NR(x)→ NR0(x) NR(x), Out(y, x)→ ∃zNRIn(y, z)

NRIn(y, z)→ B(z) In(y, z, x), NRIn(y, z)→ NR(x)

The input (U,E, S, t) is encoded by the following instance:
• B(0), B(1), and NR0(u) for every u ∈ U \ S
• for every ei = (ui,0, ui,1, ui,2) ∈ E, the facts
In(ei, 0, ui,0), In(ei, 1, ui,1), and Out(ei, ui,2)

It can be verified that u ∈ access(S) iff NR(u) is not possi-
ble for every u ∈ U , and in particular, when u = t, yielding
a reduction from PSA to non-possibility.

5 Expressive Power of Linear Fragment
We now study mixed-world linear existential rules under AD
semantics from the perspective of query expressivity.

We recall that from an abstract perspective, a k-ary query
Q over a signature Σ is a function that maps every Σ-
instance I to a finite k-ary relationQ(I) (containing the query
answers). A query is called generic if it is invariant un-
der renaming of constants3, which implies in particular that
adom(Q(I)) ⊆ adom(I). With every k-ary query Q over Σ,
we can associate the following recognition problem: given a
Σ-instance I and k-tuple ~a of constants from adom(I), de-
cide whether ~a ∈ Q(I). The class QPTIME consists of all
generic queries whose recognition problem is computable in
polynomial time w.r.t. data complexity.

Finding a logical language that precisely captures QPTIME
is a major open problem in descriptive complexity. The
following well-known result shows that the class of semi-
positive Datalog queries captures QPTIME over so-called or-
dered instances with min andmax, i.e., instances I with a bi-
nary predicate Succ providing a successor relation among all
constants in adom(I), and unary predicates Min and Max
containing the smallest and largest constants.
Theorem 7 ([Papadimitriou, 1985]). Over ordered instances
with min and max, semi-positive Datalog captures QPTIME.

3Queries that mention constants are not generic, but can be sim-
ulated using generic queries, see [Abiteboul et al., 1995] for details.

Interestingly, we can show that our linear fragment, ex-
tended with either closed negated atoms or disjunctive rule-
heads and interpreted with either certain or possible seman-
tics, captures QPTIME over ordered instances. Formally, the
next theorem concerns the classes of queries obtained by as-
sociating with every constant-free atomic query A(~x) and
extended linear existential ruleset R over Σ the (generic)
queries QA,R,c and QA,R,p that map I respectively to the
certain and possible answers of A(~x) w.r.t. (Σ,R, I).
Theorem 8. Over ordered instances, atomic queries coupled
with mixed-world linear rulesets extended with either closed
negated atoms or disjunctive ruleheads and interpreted under
either the certain or possible AD semantics capture QPTIME.

In the remainder of this section, we outline the key steps
in the proof of Theorem 8. We start by noting that differently
from Theorem 7, our result does not require the instance to
provide the values min and max. This is because we can
show how to compute these values from Succ using our rules.

Suppose we are given a semi-positive Datalog program Π
with extensional predicates ΣΠ ⊇ {Succ,Min,Max} and
k-ary output relation Goal. The core of the proof will be
concerned with constructing a set of extended linear existen-
tial rulesRΠ over Σ with Σc = ΣΠ \{Min,Max} such that
for every ordered Σc-instance I and k-tuple of constants ~a,
the following statements are equivalent:

1. Goal(~a) ∈ Π(I∪{Min(min),Max(max)}, withmin
and max the smallest and largest constants in I

2. Ans(~a) is certain w.r.t. (Σ,RΠ, I)

3. Ans(~a) is possible w.r.t. (Σ,RΠ, I)

To simplify the construction, we initially let RΠ consist of
linear rules extended with both negated closed predicates and
disjunctive ruleheads. Then in a final step, we show how we
can get rid either of negated atoms or disjunctions.

Let us describe at a high level the ruleset RΠ. We include
rules that populate an open predicate Tuple with all k-ary
tuples of constants from the active domain and then guess for
each tuple, whether it is an answer to the Datalog query:

Tuple(~x)→ Ans(~x) ∨NotAns(~x)

To verify that these guesses are correct, we rely upon the fact
that α ∈ Π(J) iff there is a proof tree for α [Abiteboul et
al., 1995], i.e., a tree whose root is labelled α, whose every
leaf node is labelled with either an extensional fact β with
β ∈ J or a negated extensional fact ¬β with β 6∈ J , and
such that for each non-leaf node with label β and whose chil-
dren have labels γ1, . . . , γk, the ground rule γ1, . . . , γk → β
can be obtained from a rule in Π by instantiating its variables
with constants from adom(J). It is known that the depth of a
minimal proof tree is bounded by p(|I|) for some polynomial
function p. To verify Ans(~a), we follow a similar approach
to the proof of Theorem 5 and guess a proof tree for Goal(~a)
by working from root to leaves (failing if no such proof tree
exists). To verify a fact NotAns(~a), we use a second set
of rules to enforce that there is no proof tree for Goal(~a) of
depth at most p(n). Essentially, we guess topdown a ‘no-
proof’ tree whose root is labelled Ans(~a), whose leaves are
labelled by extensional facts not in J (here we used closed



negated atoms) or negations of extensional facts from J , and
such that for every non-leaf node ν with label β and every
ground instantiation γ1, . . . , γk → β of a rule in Π, there
is a child of ν that is labelled with some γi. We implement
counters that keep track of the depth of the guessed trees and
fail if we exceed p(n). By construction, (Σ,RΠ, I) is sat-
isfiable. Moreover, while the models may differ on which
trees are guessed, they always coincide on Ans and NotAns
facts. It follows that Ans(~a) is certain iff it is possible iff
Goal(~a) ∈ Π(I ∪ {Min(min),Max(max)}.

The rules implementing the preceding construction pre-
sume the existence of at least two values (min 6= max),
which are used to implement binary counters. Thus, we must
identify instances containing a single constant (min = max)
and create a separate set of rules to compute the answers in
this limit case. Briefly, the idea is to create a dedicated rule
for each single-constant instance, using negated closed atoms
to identify the contents of the input single-constant instance.

To complete the proof, we show how to simulate negated
closed atoms using disjunction in ruleheads, and conversely,
how to simulate disjunctive ruleheads using negated closed
atoms. The latter translation only works for instances with at
least two constants, but this is sufficient for our purposes, as
disjunction only occurs in the rules that fire on instances with
multiple constants. We point out that if we were to restrict to
the class of instances with at least two constants, then both
transformations are applicable and yield (plain) linear rules.

6 Fixpoint Extension of Linear Fragment
While the (extended) linear fragment has desirable compu-
tational properties, it cannot express some useful constructs,
such as functionality (cf. final rule from Example 1). In this
section we show how arbitrary rulesets can be approximated
via a fixpoint-style extension of the linear fragment.

The idea is as follows. Given an arbitrary ruleset R over
Σ = (Σc,Σo), we can first compute the certain and possible
facts using only the linear rules in R, which yields a subset
of the ‘true’ certain facts and a superset of the possible ones.
We store these facts in new closed predicates Rlb and Rub,
use rules to link them to the original open predicates, cre-
ate new linear rules from the non-linear rules by replacing all
open atoms but one with closed Rlb-atoms, then recompute
the certain and possible facts. Iterating this process until fix-
point allows us to obtain more refined approximations of the
certain and possible facts of the original ruleset.

Formally, an (extended) linearfp ruleset over Σ = (Σc,Σo)
is an (extended) linear ruleset over Σ+ = (Σ+

c ,Σo) where

Σ+
c = Σc ∪ {Rub, Rlb | R ∈ Σo}

and Rlb-atoms (resp. Rub-atoms) may only occur positively
and in rule bodies (resp. ruleheads). Given such a ruleset R,
we denote byR+ the ruleset

R∪ {Rlb(~x)→ R(~x), R(~x)→ Rub(~x) | R ∈ Σo}

(with ~x a tuple of distinct variables of the same arity as R).
These rules formalize that Rlb (resp. Rub) places a lower
(resp. upper) bound on the set of R-facts.

Given a linearfp ruleset R over Σ = (Σc,Σo) and a Σ-
instance I , we define inductively the set Modsk(Σ,R, I) of
models of (Σ,R, I) at each stage k ≥ 1:
• Mods1(Σ,R, I) = ModsAD(Σ+,R+, I0)|Σ, where

I0 = I ∪ {Rub(~a) | R ∈ Σo of arity n,~a ∈adom(I)n}

• Modsk+1(Σ,R, I) = ModsAD(Σ+,R+, Ik)|Σ where

Ik = I ∪ {Rlb(~a) | R(~a) ∈ Certk(Σ,R, I)}
∪ {Rub(~a) | R(~a) ∈ Possk(Σ,R, I)}

where, for every k ≥ 1, the set Certk(Σ,R, I) (resp.
Possk(Σ,R, I)) contains the Σ-facts over adom(I) that ap-
pear in every (resp. some) M ∈ Modsk(Σ,R, I). The next
lemma shows that these sets eventually converge to a fixpoint.
Lemma 2. For every linearfp ruleset R over Σ and Σ-
instance I , Modsj+1(Σ,R, I) ⊆ Modsj(Σ,R, I) for every
j ≥ 1, and there exists k∗ ≥ 1 such that Modsj(Σ,R, I) =
Modsk

∗
(Σ,R, I) for every j ≥ k∗.

Proof Sketch. We can show by simultaneous induc-
tion that (i) Certj−1(Σ,R, I) ⊆ Certj(Σ,R, I),
(ii) Possj(Σ,R, I) ⊆ Possj−1(Σ,R, I), and (iii)
Modsj+1(Σ,R, I) ⊆Modsj(Σ,R, I) for every j ≥ 1.

In what follows, we’ll use Mods∞(Σ,R, I) to refer to the
fixpoint Modsk

∗
(Σ,R, I) from Lemma 2, and similarly for

Cert∞(Σ,R, I) and Poss∞(Σ,R, I). We observe that the
stage k∗ where the fixpoint is reached is bounded polyno-
mially in |I|. When combined with Theorems 4 and 6, this
yields the following tractability result:
Theorem 9. The problems of deciding whether a fact belongs
toCert∞(Σ,R, I) or to Poss∞(Σ,R, I) are both in PTIME
for data complexity.

Next consider an extended existential ruleset R over Σ =
(Σc,Σo). The linearization of R, denoted Rlin, is obtained
by replacing each rule ε ∧ β1 ∧ . . . ∧ βm → γ ∈ R, whose
body Σo-atoms are β1, . . . , βm, with the set of rules:

ε ∧
∧

1≤j≤m,j 6=i∗
βlbj ∧ βi∗ → γ (1 ≤ i∗ ≤ m)

where βlbi = Rlb(~t) when βi = R(~t).
The following theorem shows that Rlin, under the above

fixpoint semantics, provides an under-approximation of the
certain facts and an over-approximation of the possible facts.
Theorem 10. Let R be an extended existential ruleset over
Σ, and let Rlin be its linearization. For every Σ-instance I:
ModsAD(Σ,R, I) ⊆ Mods∞(Σ,Rlin, I). In particular,
this implies that for every fact α:

• α ∈ Cert∞(Σ,Rlin, I)⇒ α is certain w.r.t. (Σ,R, I);

• α is possible w.r.t. (Σ,R, I)⇒α ∈ Poss∞(Σ,Rlin, I).

The next result shows that linearization provides a non-
trivial approximation in the sense that in general there is
no instance-independent bound on the number of iterations
needed to reach the fixpoint.



Lemma 3. There exists a Σ-ruleset R such for every j ≥
0, there is a Σ-instance I such that Modsj+1(Σ,R, I) 6=
Modsj(Σ,R, I).

Proof. Consider the following ruleset4 Rsat:
• Clause(u)→ SatLit(u, x, y)

• SatLit(u, x, y)→ ClauseLit(u, x, y)

• SatLit(u, x, y)→ PickV al(x, y)

• PickV al(x, y)→ B(y)

• PickV al(x, y) ∧ PickV al(x, y′)→ y = y′

With every CNF ϕ = c1 ∧ . . .∧ cn over v1, . . . , vm, we asso-
ciate the instance Iϕ consisting of the following facts:
• B(0), B(1)

• Clause(ci) for 1 ≤ i ≤ n
• ClauseLit(ci, vj , 1) if ci contains vj
• ClauseLit(ci, vj , 0) if ci contains ¬vj

We let Σsat contain all of the preceding predicates, where
Clause, ClauseLit, B are the only closed predicates. It can
be verified that (Σsat,Rsat, Iϕ) iff ϕ is satisfiable. More-
over, PickV al(pi, 1) (resp. PickV al(pi, 0)) is certain iff ev-
ery satisfying valuation of ϕ sets pi to true (resp. false).

The linearization (Rlinsat)+ retains the first four rules of
Rsat and adds new rules, the most relevant being:
• PickV allb(x, y) ∧ PickV al(x, y′)→ y = y′

• PickV allb(x, y)→ PickV al(x, y),
• PickV al(x, y)→ PickV alub(x, y)

Consider the sequence of propositional CNF ξi (i ≥ 1),
where ξi = c1 ∧ . . . ∧ ci, c1 = p1, and c`+1 = ¬p` ∨ p`+1

for 1 ≤ ` < i. As every ξi is satisfiable, we know that
(Σsat,Rsat, Iϕ) is satisfiable. By Theorem 10, the same
is true of (Σsat,Rlinsat, Iξi). Moreover, ξi |= p` for every
1 ≤ ` ≤ i, so by the above, we have PickV al(p`, 1) ∈
Cert∞(Σsat,Rlinsat, Iξi) for all 1 ≤ ` ≤ i. A simple induc-
tive argument shows that for every i ≥ 1 and 1 ≤ k ≤ i:

PickV al(p`, 1) ∈ Certk(Σsat,Rlinsat, Iξi) iff 1 ≤ ` ≤ k

Hence, ifCertk(Σ+
sat,Rlinsat, Iξi) = Cert∞(Σ+

sat,Rlinsat, Iξi),
then k ≥ i. Thus, by considering ξi for increasing values of
i, we can delay the achievement of the fixpoint, meaning it
cannot be bounded independently of the instance.

A relevant question for future work is to analyze, either
formally or experimentally, the quality of our approximation.

7 Concluding Remarks
In this paper, we investigated the problem of reasoning with
existential rules under a hybrid mixed-world active-domain
semantics. While querying in our setting is intractable in the
general case, we identified an interesting and non-trivial frag-
ment based upon linear rules that is PTIME-complete in data
complexity, and in fact, captures all of QPTIME over ordered

4We have used an equality atom for convenience, but it is possi-
ble to modify the proof so that it works in the basic formalism.

instances. To obtain a more widely applicable PTIME result,
we provided a method of approximating non-linear rules by
means of linear rules equipped with a fixpoint semantics.

We point out that a PTIME upper bound for possible BCQs
with mixed-world semantics has been shown in [Benedikt et
al., 2016; Benedikt et al., 2018] for a more restricted notion
of linear rule (and without PTIME-hardness and QPTIME re-
sults). The key difference with [Benedikt et al., 2018] and
other works on mixed-world reasoning [Lutz et al., 2013;
Lutz et al., 2015; Ahmetaj et al., 2016; Ngo et al., 2016] is
that we adopt active-domain semantics, whereas these other
works use classical semantics under which new values can
appear in the open predicates. This has a very significant im-
pact on the decidability and complexity of reasoning. For
example, certainty of BCQs is decidable in our setting even
for arbitrary existential rules, while it is undecidable under
classical semantics; for frontier-guarded rules, certainty of
BCQs was shown to be EXPTIME-complete in data com-
plexity [Benedikt et al., 2016], while it is coNP-complete
in data complexity for our setting. A notable similarity is
that our PTIME membership results employ a greatest fix-
point construction, which is in the same spirit as techniques
used in [Benedikt et al., 2018; Benedikt et al., 2016]. Other
non-trivial data tractability results have been obtained for fact
certainty in the presence of linear disjunctive Datalog rules
[Kaminski et al., 2016], and for exact views given as LAV
source-to-target rules [Benedikt et al., 2018].

The present work can be continued in several directions.
First, we can study the combined complexity of reasoning in
our setting for different classes of existential rules, and the
impact of using a fixed but succinctly represented domain, in
the spirit of [Rudolph and Schweizer, 2017]. There are also
many interesting questions related to expressive power and
the (non)existence of translations to various Datalog exten-
sions (e.g, disjunctive Datalog [Eiter et al., 1997], or Datalog
with non-deterministic choice [Abiteboul and Vianu, 1991]).
We note that polynomial translations to disjunctive Datalog
with negation have been proposed to compute certain facts
w.r.t. mixed-world KBs in expressive description logics [Ah-
metaj et al., 2016], and a similar approach may be worth
exploring in our setting. On the practical side, we have al-
ready begun applying our framework to integrating geolocal-
ization data as illustrated by our example. Here the main chal-
lenge is to develop more efficient PTIME algorithms that do
not require the construction of full maximal models, which
although polynomial may be impractical for large domains.
We would also like to allow for closed relations that are im-
plicitly defined by PTIME-computable functions (e.g., Next
from Example 1 that could be defined using distances be-
tween locations) that are not computed and stored in advance
but rather produced as needed.
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