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Stabilization and Robustness Analysis for a Chain of Saturating
Integrators Arising in the Visual Landing of Aircraft

Laurent Burlion Michael Malisoff Frédéric Mazenc

Abstract— We study a chain of saturating integrators with
imprecise output measurements. Using a recent backstepping
approach that leads to pointwise delays in the control and a
dynamic extension, we provide an input-to-state stability result
using a bounded control of arbitrarily small amplitude. We
apply the result to a problem in the visual landing of aircraft.

I. INTRODUCTION

This paper continues our search for more effective feed-
back stabilization methods for cases where only imprecise
output measurements are available for use in the control.
This led to our novel backstepping approach in [14] and [15]
where pointwise delays are present in the feedback even if
current output values are available, and then our work [11],
[12] that uses the preceding backstepping approach to solve a
feedback control problem for a chain of saturated integrators
with imprecise output measurements using an unbounded
control. In the present work, we use our backstepping ap-
proach to solve a stabilization problem for a chain of saturat-
ing integrators with imprecise measurements using dynamic
output feedback controls of arbitrarily small amplitude; see
Section II for more on the potential advantages of this work
as compared with the method in [11], [12].

The present work is therefore a new development in a long
history of research on stabilization under bounded controls.
Earlier results on bounded feedback controls include the
semi-global state and output feedback stabilization results
[23], which involve linear control laws inside saturations.
Crucial regional [3] stability results for some linear and non-
linear systems (using LMI methods [2], [22]) were presented
in [21]. Other earlier bounded backstepping and forwarding
methods lead to globally asymptotically stabilizing controls
for some nonlinear systems; see [13] for bounded backstep-
ping, and see [17] and [20] for forwarding methods.

The backstepping designs proposed in [14] and [15]
are significantly different from prior backstepping methods,
because they circumvent the problem of determining Lie
derivatives of the fictitious controls by introducing artificial
delays in the control (which are called artificial because
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they are present even if current state values are available
for measurement). The artificial delays approach relaxes the
smoothness requirement on the fictitious control that was
present in previous backstepping approaches.

The advantages of [14] carry over to the present work,
which adapts ideas from [14] to a control problem for a
chain of saturating integrators for dynamics with outputs that
occurs in the vision based [6] landing of aircraft. Since only
imprecise measurements of the two first state variables are
available in this application, we cannot apply the regional or
semi-global results mentioned above, nor [14] or extensions
such as [15]. This motivates our new control, which is
inspired by the forwarding theory from [16]. Our controls
in the present work ensure input-to-state stability with a
saturated input. Moreover, for any positive constant ū, we
can ensure that our control is bounded by ū.

The notation will be simplified whenever no confusion
would arise given the context. Given any constant T > 0, Cin
denotes the set of all continuous functions φ : [−T,0]→Rn,
which we call the set of all initial functions. We define
Ξt ∈Cin by Ξt(s) = Ξ(t + s) for all Ξ, s ≤ 0, and t ≥ 0 for
which the equality is defined. The Euclidean norm is denoted
by | · |, and | · |S (resp., | · |∞) denotes the corresponding
supremum over any set S (resp., essential supremum). For
each constant L > 0, we use the usual saturation function
satL(x) = max{−L,min{L,x}}, and ∂ will denote a bound-
ary. We also use the standard definitions of input-to-state
stability and class K L and K∞ functions, as defined in [7,
Chapter 4], and M denotes the set of all functions of the
form γ + c where γ ∈K∞ and c≥ 0 is a constant.

II. DYNAMICS

We consider the system ẋ1 = satL1(x2)
ẋ2 = satL2(x3)
ẋ3 = satL3(u),

(1)

where x = (x1,x2,x3) is valued in R3, the input u is valued
in R, and Li > 0 is a constant for i = 1,2,3, where we use
the usual saturation function satL(x) = max{−L,min{L,x}}
for each constant L > 0. The outputs are

y1(t) = η(t)x1(t)+δ1(t)
y2(t) = x2(t)+δ2(t)
y3(t) = x3(t),

(2)

where δ1, δ2 and η are unknown but piecewise continuous
functions for which there are known constants η > 1, δ 1≥ 0,



and δ 2 ≥ 0 such that for all t ≥ 0, we have

η(t) ∈ [1,η ] and |δi(t)| ≤ δ i for i = 1,2 (3)

(but see our conclusions section below for remarks in more
general cases with sampling or output delays). Requiring
η(t)≥ 1 for all t ≥ 0 is not restrictive because in practice, η

will have known positive upper and lower bounds, and then
we can divide the formula for the output component y1 in
(2) by inf{η(`) : ` ≥ 0} so the rescaled η and δ1 are such
that the rescaled η is bounded below by 1.

Given any constant u > 0, our goal is to construct an
output feedback u that is bounded by u and that is such
that the closed loop system (1) is input-to-state stable with
respect to δ = (δ1,δ2), under the assumption that δ 2 < L1.
This contrasts with the objectives in [12], which studied
the same system (1) with a sampled version of the same
outputs (2), because in [12], the control was not required to
be bounded, and in addition, [12] required the more stringent
condition δ̄2 < L1(1−e−1)2/(40(1+2e−1+e−2)) as well as
a scaling constant λ > 0 in the control, which are not needed
here. Hence, the present paper provides potential advantages
over [12], which are made possible by our new dynamical
extension in this work which was not present in [12].

Since (1) is not in feedback form, classical backstepping
results (e.g., [20]) do not apply. Since η is unknown and not
necessarily differentiable, bounded backstepping results in
[10] and [13] do not apply. Other approaches (e.g., [5], [9],
and [16]) do not apply here either. Moreover, one cannot
apply [14], which does not allow uncertain measurements.
Thus, we believe the problem solved in this work was open
and worth solving because of its implications for the visual
landing of aircraft that we discuss in Section V below.

III. MAIN THEOREM

Our main result is as follows, in which we can always
satisfy our conditions (12) by choosing the positive constants
α1, β 1, and L4 small enough and then choosing the pi’s large
enough (because of our assumption δ 2 < L1), and then for
any constant ū > 0 we can choose these constants such that
the control u is bounded by L4 +α3 +β 2 < ū to satisfy any
amplitude restriction on the control u:

Theorem 1: Consider the model (1) with the outputs (2),
and assume that δ 2 < L1. Choose the control

u(t) =
{

0, t ∈ [0,2T )
G (t,yt ,zt), t ≥ 2T where (4)

G (t,yt ,zt) = −satL4

(
x3(t)− v1(zt)−β (t)

)
+v2(yt ,zt)+ v3(yt ,zt),

(5)

v1(zt) = k
(1−e−kT )2

(
z1(t)− z2(t)−2e−kT z1(t−T )

+e−kT z2(t−T )+ e−2kT z1(t−2T )
)
,

(6)

v2(yt ,zt) = k2

(1−e−kT )2

(
−2z1(t)+ z2(t)

+4e−kT z1(t−T )

−e−kT z2(t−T )−2e−2kT z1(t−2T )

+φ(t)−2e−kT φ(t−T )

+e−2kT φ(t−2T )
)
, and

(7)

v3(yt ,zt) = k
1−e−kT

(
− z3(t)+ e−kT z3(t−T )

+ω(t)− e−kT ω(t−T )
) (8)

where the zi’s are the states of the dynamic extension
ż1(t) = k[−z1(t)+φ(t)]
ż2(t) = k[−z2(t)+ z1(t)− e−kT z1(t−T )]
ż3(t) = k[−z3(t)+ω(t)]

(9)

with the initial condition z(`) = 0 for all ` ∈ [−2T,0] and

φ(t) =−α1
p1

satp1

(
y1(t)

)
and

ω(t) =−β 1
p2

satp2

(
y2(t)−α(t)

) (10)

and

α(t) = z2(t)−e−kT z2(t−T )
(1−e−kT )2 and β (t) = z3(t)−e−kT z3(t−T )

1−e−kT (11)

and where the positive constants pi, T , k, L4, α1, and β 1 are
chosen such that

β 1 +α2 < L2 (12a)

2α1 +δ 2 < L1 (12b)

L4 +α3 +β 2 < L3 (12c)

ηT α1 +δ 1 < p1 (12d)

2α1η
2T < p1 (12e)

T β 1 +δ 2 < p2 (12f)

2β 1T < p2 (12g)
2T α1η

p1

(
α1 +ξ?+

α1
p1

δ 1

)
+ξ?+

α1
p1

δ 1 <
α1
η

(12h)

where
ξ? =

δ̄2β̄1(β 1T+p2)
p2

2

√
1− 2

p2
β 1T

, α2 =
2kα1

1−e−kT ,

α3 =
4k2α1

(1−e−kT )2 , and β 2 =
2kβ 1

1−e−kT .

(13)

Then the control u in (4) is bounded by L4 +α3 +β 2, and
(1) in closed loop with the control (4) is input-to-state stable
with respect to δ = (δ1,δ2).

IV. PROOF OF THEOREM

Simple calculations show that the functions vi from (6)-(8)
satisfy v1(zt) = α̇(t), v2(yt ,zt) = α̈(t), and v3(yt ,zt) = β̇ (t)
for all t ≥ 0. This allows us to rewrite the control u from (4)
as

u(t) =−satL4

(
x3(t)− α̇(t)−β (t)

)
+ α̈(t)+ β̇ (t) (14)

for all t ≥ 2T . Hence, the bound for u follows from the fact
that α and β in (11) satisfy

|α(t)| ≤ α1, |α̇(t)| ≤ α2, |α̈(t)| ≤ α3,

|β (t)| ≤ β 1, and |β̇ (t)| ≤ β 2
(15)

for all t ≥ 2T . Our proof of the formulas (15) (in Ap-
pendix 1 below) use the fact that we can apply variation
of parameters (to the system q̇ = k(−q+b) with the choice
(q(t),b(t)) = (z3(t),ω(t)), then with the choice (q(t),b(t)) =
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(z2(t),z1(t)− e−kT z1(t − T )), and finally with the choice
(q(t),b(t)) = (z1(t),φ(t))) to prove that

α(t) = k2

(1−e−kT )2

∫ t

t−T

∫ m

m−T
ek(`−t)

φ(`)d`dm and

β (t) = k
1−e−kT

∫ t

t−T
ek(`−t)

ω(`)d`
(16)

for all t ≥ 2T . We also use the formulas (16) in the rest of
the proof as well.

The remainder of the proof is organized as follows. In
the first step, we use a change of variables that produces
a useful cascaded system with a globally asymptotically
stable subsystem. In the second step, we perform a Lyapunov
function analysis using states of this new system. In the third
step, we use results from the first two steps to find useful
bounds on the states of the original system. In the final step,
we use linear growth properties of the closed loop system to
transform the preceding estimates into the required input-to-
state stability estimate.

First step. We use the new variables

ξ2(t) = x2(t)−α(t)
ξ3(t) = x3(t)− α̇(t)−β (t). (17)

Direct calculations give
ẋ1(t) = satL1(α(t)+ξ2(t))
ξ̇2(t) = satL2(β (t)+ξ3(t)+ α̇(t))− α̇(t)
ξ̇3(t) = satL3(u)− α̈(t)− β̇ (t).

(18)

Notice that the system (18) in closed-loop with (4) is forward
complete, by the forward completeness of our dynamic
extension (9) (which follows from the boundedness of the
nonlinear terms in (9)). Also, (15) and (12c) imply that
|u(t)| = | − satL4(ξ3(t))+ α̈(t)+ β̇ (t)| ≤ L4 +α3 +β 2 < L3
holds for all t ≥ 2T . As an immediate consequence, the
system (18) in closed loop with the feedback defined in (4)
admits the representation

ẋ1(t) = satL1(α(t)+ξ2(t))
ξ̇2(t) = satL2(β (t)+ξ3(t)+ α̇(t))− α̇(t)
ξ̇3(t) = −satL4(ξ3(t))

(19)

for all t ≥ 2T . Thus ξ3(t) converges asymptotically to 0. We
deduce from (12a) and the bounds (15) that there is a class
M function Tb : [0,+∞)→ [2T,+∞) (depending on β̄1 and
ᾱ2) such that for all t ≥ Tb(|ξ (0)|), we have |β (t)+ξ3(t)+
α̇(t)| ≤ β 1 +α2 + |ξ3(t)|< L2. Hence,{

ẋ1(t) = satL1(α(t)+ξ2(t))
ξ̇2(t) = β (t)+ξ3(t)

(20)

for all t ≥ Tb(|ξ (0)|).
Using the formulas y1(t) = η(t)x1(t)+ δ1(t) and y2(t)−

α(t) = x2(t) + δ2(t)− α(t) = ξ2(t) + δ2(t) for our output
components from (2) (which follow from (17)), and also
using our formulas for φ and ω from (10) and (16), we
can then rewrite (20) as

ẋ1(t) =

satL1

(
− k2α1

(1−e−kT )2 p1

∫ t

t−T

∫ m

m−T
ek(`−t)satp1

(
η(`)x1(`)

+δ1(`)
)
d`dm+ξ2(t)

) (21)

and

ξ̇2(t) = − β 1k
p2(1−e−kT )

∫ t

t−T
ek(`−t)satp2

(
ξ2(`)

+δ2(`)
)
d`+ξ3(t)

(22)

for all t ≥ Tb(|ξ (0)|).
We also rewrite the ξ2-subsystem as

ξ̇2(t) =

− β 1k
p2(1−e−kT )

∫ t

t−T
ek(`−t)satp2 (ξ2(`))d`+J2(t),

(23)

where

J2(t) =
β 1k

p2(1−e−kT )

∫ t

t−T
ek(`−t) [satp2 (ξ2(`))

−satp2

(
ξ2(`)+δ2(`)

)]
d`+ξ3(t) .

(24)

We rewrite the x1 subsystem as

ẋ1(t) = J1(t)+

satL1

(
− k2α1

(1−e−kT )2 p1

∫ t

t−T

∫ m

m−T
ek(`−t)P1(`)d`dm

)
,

(25)

where P1(`) = satp1

(
η(`)x1(`)

)
and

J1(t) =

satL1

(
− k2α1

(1−e−kT )2 p1

∫ t

t−T

∫ m

m−T
ek(`−t)satp1

(
η(`)x1(`)

+δ1(`)
)
d`dm+ξ2(t)

)
−satL1

(
− k2α1

(1−e−kT )2 p1

∫ t

t−T

∫ m

m−T
ek(`−t)P1(`)d`dm

)
.

(26)

By (12b), we have α1 < L1, and
∫ t

t−T
∫ m

m−T ek(`−t)d`dm =
1
k2 (1−e−kT )2 holds for all t ≥ 0 and satp1 is bounded by p1,
so (25) gives

ẋ1(t) = J1(t)

− k2α1
(1−e−kT )2 p1

∫ t

t−T

∫ m

m−T
ek(`−t)satp1

(
η(`)x1(`)

)
d`dm

(27)

for all t ≥ Tb(|ξ (0)|). Finally, since saturations have the
global Lipschitz constant 1, we can check that

|J2(t)| ≤ |ξ3(t)|+ β 1
p2

δ 2 and

|J1(t)| ≤ |ξ2(t)|+ α1
p1

δ 1 for all t ≥ Tb(|ξ (0)|),
(28)

by the formula
∫ t

t−T ek(`−t)d`= 1
k (1−e−kT ). We next analyze

the stability properties of the system (23).
Using (23), it follows that, for all t ≥ Tb(|ξ (0)|)+T ,

ξ̇2(t) =−β 1
p2

satp2 (ξ2(t))+R1(t)+J2(t), where (29a)

R1(t) =
β 1k

p2(1−e−kT )

∫ t

t−T
ek(`−t) [satp2 (ξ2(t))

−satp2

(
ξ2(t)−

∫ t
` ξ̇2(s)ds

)]
d`.

(29b)

From (22), we deduce that |ξ̇2(t)| ≤ |ξ3(t)|+ β 1. As a
consequence, for all t ≥ Tb(|ξ (0)|)+T , we have

|R1(t)|

≤ β 1k
p2(1−e−kT )

∫ t
t−T ek(`−t)(t− `)d`

(
|ξ3|[t−T,t]+β 1

)
≤ β 1T

p2

(
|ξ3|[t−T,t]+β 1

)
.

(30)
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This inequality and the first inequality in (28) yield

|R1(t)|+ |J2(t)| ≤
β 1
p2

[
T
(
|ξ3|[t−T,t]+β 1

)
+δ 2

]
+ |ξ3(t)|

(31)

for all t ≥ Tb(|ξ (0)|)+T . Since the ξ3 subsystem is globally
asymptotically stable to 0, we deduce from (12f) that there
is a class M function Tc : [0,+∞)→ [0,+∞) and a constant
δ0 > 0 such that

sup`≥Tc(|ξ (0)|)
(
|R1(`)|+ |J (`)|

)
≤ β 1

p2

[
T β 1 +δ 2

]
+δ0 < β 1.

(32)

Hence, by (29a), there is a class M function Td : [0,+∞)→
[0,+∞) such that Td(s)≥ Tb(s)+T for all s≥ 0 and such that
|ξ2(t)|< p2 for all t ≥ Td(|ξ (0)|), because ξ̇2 > 0 (resp., < 0)
when ξ2(t)≤−p2 (resp., ≥ p2). Then for all t ≥ Td(|ξ (0)|),
we have satp2(ξ3(t)) = ξ3(t) and therefore also

ξ̇2(t) =−β 1
p2

ξ2(t)+R1(t)+J2(t). (33)

Second step. This step will use the candidate Lyapunov
function ϒ(ξ2) =

1
2 ξ 2

2 . By (29b), we get

|R1(t)| ≤ β 1k
p2(1−e−kT )

∫ t
t−T ek(`−t) ∫ t

` |ξ̇2(s)|dsd`

≤ β 1
p2

∫ t
t−T |ξ̇2(s)|ds

(34)

for all t ≥ Td(|ξ (0)|). By using (23) to upper bound |ξ̇2(s)|
in (34), we deduce from the second inequality in (34) that
for all t ≥ Td(|ξ (0)|), we have

|R1(t)| ≤ β
2
1k

p2
2(1−e−kT )

∫ t
t−T

∫ s
s−T ek(`−s)d`ds

× sup
m∈[t−2T,t]

|ξ2(m)|+ β 1
p2

∫ t
t−T |J2(s)|ds

≤ β
2
1T
p2

2
sup

m∈[t−2T,t]
|ξ2(m)|

+
β 1T
p2

(
β 1
p2

δ 2 + |ξ3|[t−T,t]

)
,

(35)

where the last inequality is a consequence of the first
inequality in (28). By using the first inequality in (28) and
(35) to bound R1 and J2 from (33), we easily deduce that
for any constant ω0 > 0, we have

ϒ̇(t) ≤ β 1
p2

(
−ξ 2

2 (t)+
β 1T
p2

sup
m∈[t−2T,t]

ξ
2
2 (m)

+ |ξ2(t)|
[(

β 1T
p2

+1
)

β 1
p2

δ 2 +µ(|ξ (0)|, t)
])

≤ β 1
p2

(
−ϒ(ξ2(t))+

2β 1T
p2

sup
m∈[t−2T,t]

ϒ(ξ2(m))

+ B∗(t)
2

)
,

(36)

along all solutions of (33) for all t ≥ Td(|ξ (0|)+T , where

B∗(t) = (1+ω0)
(

β 1T
p2

+1
)2

β
2
1

p2
2

δ
2
2

+
[(

1+ 1
ω0

)
µ2(|ξ (0)|, t)

]
,

(37)

and where the last inequality in (36) used the triangle
inequality ab ≤ 1

2 a2 + 1
2 b2 with a = |ξ2(t)| and b being the

quantity in squared brackets in (36) (followed by a use
of the relation (r + s)2 ≤ (1 + ω0)r2 + (1 + (1/ω0))s2 for
suitable r and s), and where µ is a class K L function.
Since µ ∈ K L , we can then find a class M function
T ]

d : [0,+∞)→ [0,+∞) such that T ]

d(s)≥ Td(s) for all s≥ 0
and such that µ(|ξ (0)|, t) ≤ ω2

0 for all t ≥ T ]

d(|ξ (0)|), and
therefore such that the quantity in squared brackets in (37) is
bounded above by ω0+ω2

0 for all t ≥ T ]

d(|ξ (0)|). Therefore,
for any ε > 0, we can choose ω0 > 0 small enough such that√

B∗(t)β 1/(p2(c1− c2))< ξ?(1+ ε) (38)

for all t ≥ T ]

d(|ξ (0)|), where ξ? was defined in (13),
c1 = β̄1/p2, and c2 = 2β̄ 2

1 T/p2
2. Since (12g) ensures that

1 > 2β̄1T/p2, it follows from Lemma A.1 in Appendix
2 (applied to v(t) = ϒ(ξ2(t + T ]

d(|ξ (0)|) + T )), and with
the preceding choices of c1 and c2 and the choice ∆1 =
1
2 (β̄1/p2)sup{B∗(t) : t ≥ T ]

d(|ξ (0)|}) that

|ξ2(t)| ≤ ξ?(1+ ε)+µ0(|x(0)|+ |δ |∞, t) (39)

holds for all t ≥ T ]

d(|ξ (0)|); this is done by using the formulas
(16)-(17) to find a function γ ∈ K∞ such that |ξ (0)| ≤
γ(|x(0)|+ |δ |∞) for all initial states, in order to find µ0.

The next part of the proof is devoted to the x1-subsystem
(27). First, we deduce from (27) that |ẋ1(t)| ≤α1+ |J1(t)| ≤
α1 + |ξ2(t)|+ α1

p1
δ 1, using the second inequality in (28), so

(39) gives

|ẋ1(t)| ≤ α1 +ξ?(1+ ε)+ α1
p1

δ 1 +µ0(|x(0)|+ |δ |∞, t) (40)

for all t ≥ T ]
d (|ξ (0)|). From (27), it follows that for all t ≥

T ]
d (|ξ (0)|), we have

ẋ1(t) = R2(t)+J1(t)

− k2α1
(1−e−kT )2 p1

∫ t

t−T

∫ m

m−T
ek(`−t)satp1 (η(`)x1(t))d`dm,

(41a)

where R2(t) =

− k2α1
(1−e−kT )2 p1

∫ t

t−T

∫ m

m−T
ek(`−t) [satp1 (η(`)x1(`))

−satp1 (η(`)x1(t))]d`dm.

(41b)

As an immediate consequence, for all t ≥ T ]
d (|ξ (0)|), we

have

|R2(t)| ≤
k2α1

(1−e−kT )2 p1
η

∫ t

t−T

∫ m

m−T
ek(`−t) |x1(t)− x1(`)|d`dm

≤ α1η

p1

∫ t

t−2T
|ẋ1(s)|ds,

(42)

since the Fundamental Theorem of Calculus gives |x1(t)−
x1(`)| ≤

∫ t
t−2T |ẋ1(s)|ds for all ` ∈ [t−2T, t].

From (40), it follows that for all t ≥ T ]

d(|ξ (0)|)+2T , we
have

|R2(t)| ≤ 2T α1η

p1

(
α1 +ξ?(1+ε)+µ[

0(|x(0)|+|δ |∞, t)
+α1

p1
δ 1

)
,

(43)
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where µ[
0(s, t) = µ0(s, t − 2T ). Combining (43) and the

second inequality in (28) with (39), we obtain a class M
function T ]]

d : [0,+∞)→ [0,+∞) such that

supt≥T ]]
d (|ξ (0)|)(|R2(t)|+ |J1(t)|)< α1

η
, (44)

where the last inequality is a consequence of (12h) and by
choosing ε ∈ (0,1) to be small enough. Next observe that
when x1(t) ≥ p1/η , then, bearing in mind that η is lower
bounded by 1, we deduce from (41a) that

ẋ1(t) ≤ − k2α1
(1−e−kT )2 p1

∫ t
t−T

∫ m
m−T ek(`−t) p1

η
d`dm

+R2(t)+J1(t)
= −α1

η
+R2(t)+J1(t) < 0

(45)

for all t ≥ T ]]
d (|ξ (0)|), where the second inequality is a

consequence of (44). Similarly, one can prove that when
x1(t) ≤ −p1/η then ẋ1(t) > 0. Hence, there is class M
function Te : [0,+∞)→ [0,+∞) such that |η(`)x1(t)| < p1
for all t ≥ Te(|ξ (0)|) and `≥ 0. It follows from (41a) that

ẋ1(t) = − k2α1
(1−e−kT )2 p1

∫ t

t−T

∫ m

m−T
ek(`−t)

η(`)x1(t)d`dm

+R2(t)+J1(t)
(46)

for all t ≥ Te(|ξ (0)|). We can assume that Te(s)≥ T ]
d (s)+2T

for all s≥ 0.
Let us consider the candidate Lyapunov function ν(x1) =

1
2 x2

1. Since η is lower bounded by 1, we deduce from the
second inequality in (28) and (42) that

ν̇(t) ≤ −α1
p1

x2
1(t)+ x1(t)

[
R2(t)+J1(t)

]
≤ −α1

p1
x2

1(t)+ |x1(t)|α1η

p1

∫ t
t−2T |ẋ1(s)|ds

+ |x1(t)|
(
|ξ2(t)|+ α1

p1
δ 1

) (47)

holds along all solutions of (46) for all t ≥ Te(|ξ (0)|). From
(27), we deduce that

|ẋ1(t)| ≤ k2α1
(1−e−kT )2 p1

∫ t
t−T

∫ m
m−T ek(`−t)η |x1(`)|d`dm

+ |J1(t)|
≤ α1η

p1
sup

m∈[t−2T,t]
|x1(m)|+ |ξ2(t)|+ α1

p1
δ 1

(48)

for all t ≥ Te(|ξ (0)|), by our bound η̄ on η , and where the
second inequality is by (28), so (47) and the choice

H (s) = α1η

p1
sup

m∈[s−2T,s]
|x1(m)|+ |ξ2(s)| (49)

give

ν̇(t) ≤ −α1
p1

x2
1(t)+ |x1(t)|α1η

p1

∫ t
t−2T H (s)ds

+|x1(t)|
(

2T α1η

p1

α1
p1

δ 1 + |ξ2(t)|+ α1
p1

δ 1

)
≤ −α1

p1
x2

1(t)+
2T α

2
1η

2

p2
1

sup
m∈[t−4T,t]

|x1(m)|2

+|x1(t)|
[

α1η

p1

∫ t
t−2T |ξ2(s)|ds+ 2T α

2
1η

p2
1

δ 1

+ |ξ2(t)|+ α1
p1

δ 1

]
(50)

for all t ≥ Te(|ξ (0)|)+2T . Setting ξ
]
? = ξ?(1+ε), it follows

from (39) that, for all t ≥ Te(|ξ (0)|)+2T ,

ν̇(t) ≤ −α1
p1

x2
1(t)+

2T α
2
1η

2

p2
1

sup
m∈[t−4T,t]

|x1(m)|2

+{|x1(t)|}
{

2T α1η

p1
(ξ ]

? +µ0(|x(0)|+|δ |∞, t))

+
2T α

2
1ηδ 1

p2
1

+ξ
]
? +µ0(|x(0)|+|δ |∞, t)+ α1δ 1

p1

}
≤ − 2(1−ω0)α1

p1
ν(x1(t))

+
4T α

2
1η

2

p2
1

sup
m∈[t−4T,t]

ν(x1(m))

+ p1
4ω0α1

[
2T α1η

p1
(ξ ]

? +µ0(|x(0)|+ |δ |∞, t))

+
2T α

2
1ηδ 1

p2
1

+ξ
]
? +µ0(|x(0)|+|δ |∞, t)+ α1

p1
δ 1

]2

(51)

where the last inequality applied Young’s inequality ab ≤
α1ω0

p1
a2 + p1

4α1ω0
b2 to the terms in curly braces.

Third step. By (12e), we can assume that ω0 ∈ (0,1) is
small enough so that

(1−ω0)α1
p1

>
2T α

2
1η

2

p2
1

.

From Lemma A.1 below and the second inequality in (51),
there is a µ1 ∈K L and a class M function T ]

e : [0,+∞)→
[0,+∞) such that for all t ≥ T ]

e (|ξ (0)|), we have

ν(x1(t))≤
{

p3
1(1+ω0)

8α
2
1ω0(p1(1−ω0)−2T α1η

2)

[
2T α1ηξ

]
?

p1

+
2T α

2
1ηδ 1

p2
1

+ξ
]
? +

α1δ 1
p1

]2
}
+µ1(|x(0)|+|δ |∞, t),

(52)

by the argument that led to (39). Consequently, with the
choice µ2 =

√
2µ1, we get

|x1(t)| ≤ γa +µ2(|x(0)|+ |δ |∞, t), (53)

where γa =
√

2Ba and Ba is the quantity in curly braces in
(52), by the subadditivity of the square root. We next find
analogous bounds for x2 and x3.

From (39) and the fact that ξ2 = x2−α , and also using
(16), we deduce that∣∣∣∣x2(t)+ k2

(1−e−kT )2

∫ t

t−T

∫ m

m−T
ek(`−t) α1

p1
satp1(η(`)x1(`)

+δ1(`))d`dm
∣∣ ≤ ξ

]
? +µ0(|x(0)|+ |δ |∞, t)

(54)

and so also

|x2(t)| ≤ ξ
]
? +µ0(|x(0)|+ |δ |∞, t)

+ k2

(1−e−kT )2
α1
p1

∫ t
t−T

∫ m
m−T ek(`−t)[η |x1(`)+δ1]d`dm

(55)

for all t ≥ T ]
d (|ξ (0)|). From this inequality and (53), we

deduce that for all t ≥ T ]
e (|ξ (0)|)+2T , we have

|x2(t)| ≤ ξ
]
? +µ

]
0(|x(0)|+ |δ |∞, t)+

α1
p1

[
ηγa +δ1

]
(56)
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where µ
]
0 = µ0 + (ᾱ1/p1)η̄µ2 ∈ K L . Moreover, since

x3(t) = α̇(t)+β (t)+ξ3(t), we have

|x3(t)| ≤ k3

(1−e−kT )2

∫ t
t−T

∫ m
m−T ek(`−t)|φ(`)|d`dm

+ k2

(1−e−kT )2

∫ t
t−T ek(`−t)|φ(`)|d`

+ k2

(1−e−kT )2

∫ t−T
t−2T ek(`−t)|φ(`)|d`

+ k
1−e−kT

∫ t
t−T ek(`−t)|ω(`)|d`+ |ξ3(t)|,

(57)

by (16). Next observe that our choices of y1 and y2 from (2)
give

|φ(t)| ≤ α1
p1
|η(t)x1(t)+δ1(t)|

and |ω(t)| ≤ β 1
p2
|x2(t)+δ2(t)

+ k2

(1−e−kT )2

∫ t

t−T

∫ m

m−T
ek(`−t)

φ(`)d`dm
∣∣∣∣

(58)

for all t ≥ 2T . It follows from (53) and (56) that we can find
a function µ3 ∈K L such that

|φ(t)| ≤ φ?+µ3(|x(0)|+ |δ |∞, t),
where φ? =

α1
p1

(
ηγa +δ 1

) (59)

and |ω(t)| ≤ β 1
p2

[
ξ
]
? +

α1
p1

[
ηγa +δ1

]]
+

β 1
p2

(
s

∫ t

t−T

∫ m

m−T
ek(`−t)d`dmφ?+δ 2

+µ3(|x(0)|+ |δ |∞, t)) ≤ ω?+
β 1
p2

µ3(|x(0)|+ |δ |∞, t),

(60)

by enlarging T ]
e as needed without relabeling, where s =

k2/(1− e−kT )2 and where

ω? =
β 1
p2

[
ξ
]
? +

α1

p1
(ηγa +δ1)+φ?+δ 2

]
. (61)

Since (16) also gives |α̇(t)| ≤ 2k|φ |[t−2T,t]

1−e−kT for all t ≥ 2T , we
deduce from the formula x3(t) = α̇(t)+β (t)+ξ3(t) and our
bounds on φ and ω from (59) and (60) that we can find
a class M function Tf : [0,+∞)→ [0,+∞) and a function
µ4 ∈K L such that

|x3(t)| ≤ 2k
1−e−kT φ?+ω?+µ4(|x(0)|+ |δ |∞, t) (62)

for all t ≥ Tf (|ξ (0)|), using the formula for β from (16).
Fourth step. By combining the upper bounds (53), (56),

and (62) for the |xi(t)|’s and recalling the formulas for the
components of ξ , we can construct functions β0 ∈K L and
γ0 ∈K∞ and a class M function Tg : [0,+∞)→ [0,+∞) such
that

|x(t)| ≤ β0(|x(0)|, t)+ γ(|δ |∞) (63)

for all t ≥ Tg(|x(0)|), where the construction of Tg used the
fact that our formulas (17) imply that there is a class M
function Θ : [0,+∞)→ [0,+∞) such that |ξ (0)| ≤ Θ(|x(0)|)
holds for all initial states ξ (0) and x(0), so we can choose
Tg(s) = Tf (Θ(s)). Also, the linear growth of the x dynamics
provides a constant L > 0 such that

|x(t)| ≤ L̄eL̄Tg(|x(0)|)−t |x(0)|+L|δ |4∞
for all t ∈ [0,Tg(|x(0)|)].

(64)

In fact, (9)-(11) provide a constant c̄ > 0 such that |ż(t)| ≤
c̄(|z|[t−T,t]+ |x(t)|+ |δ |∞) and therefore also

|z|[t−T,t] ≤ c̄
∫ t

0
(
|z|[`−T,`]+ |x(`)|

)
d`+ c̄t|δ |∞, (65)

for all t ≥ 0 (since we assumed that the initial functions for
the z dynamics are 0). Therefore, we can apply Gronwall’s
inequality (e.g., from [7, Lemma A.1, p.651]) to the function
F (t) = |z|[t−T,t] to find a constant c̄] > 0 such that

|z(t)| ≤ c̄]ec̄Tg(|x(0)|)(|x|[0,t]+Tg(|x(0)|)|δ |∞) (66)

for all t ∈ [0,Tg(|x(0)|)], which we can use to find pos-
itive constants c̃ > 0 and c̄∗ such that the right side of
(1) is bounded by c̃(ec̄∗Tg(|x(0)|)|x|[0,t] + |δ |2∞) for all t ∈
[0,Tg(|x(0)|)] (by applying the triangle inequality to upper
bound the term in (66) containing the |δ |∞ and using the
class M structure of Tg), and then we can apply Gronwall’s
inequality to the x system (as we did for the z system) to get
the required constant L̄ > 0. The final input-to-state stability
estimate now follows by adding the bounds for (63)-(64) for
|x(t)| to find a bound that holds for all t ≥ 0.

V. APPLICATION TO VISUAL LANDING OF AIRCRAFT

To illustrate our results, we consider the lateral dynamics
of an Airbus airliner in a glide phase which must align with
a runway using a body fixed monocular camera [1]. This
problem is a challenge of strong relevance in cases where
the runway is unequipped or in the case of GPS loss. More
precisely, the position, size and heading of the runway are
unknown, so that the relative position (∆X ,∆Y ) and heading
∆ψ of the aircraft with respect to it are unmeasured. See
Figure 1, and see [8] for valuable research on vision based
aircraft control, which does not provide the input-to-state
stability to uncertainty that we provide in this work.

Fig. 1. Notation used in the alignment part of the glide phase

As noted in [11], this research was motivated by this
simplified lateral guidance model provided by Airbus:

∆̇Y = V satLψ
(∆ψ)

∆̇ψ = g
V satLϕ

(ϕ)
ϕ̇ = satLu(ulat),

(67)
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where ulat is the input, V = 72m.s−1 is constant all along
the final approach, g = 9.81m.s−2, and ϕ (resp., ulat) is
the aircraft roll angle (resp., the guidance/outer loop control
action). Then (67) can be transformed into the system (1)
by applying the change of coordinates x1 = ∆Y , x2 = V ∆ψ ,
x3 = gϕ while changing the saturation limits accordingly. In
[11], the time varying parameter η(t) is chosen to satisfy
η(t) ∈ [0.3,1], and in our simulations to follow, we scale it
so that the new η is bounded below by 1 (as explained in
Section II above). Note that η is minimum when the aircraft
is close to the runway and starts its flare.

The saturation limits are

L1 = 25m.s−1, L2 = 7m.s−2, and L3 = 6m.s−3 (68)

For comparison purposes, the controller studied in this paper
is called ‘controller 1’ in our simulations, and we compare
its performance with the control from [11] which we refer to
as ‘controller 2’. We use the folloing parameters the satisfy
the assumptions of Theorem 1 when δ̄1 ≤ 0.9 and δ̄2 ≤ 0.3:

k = 0.1, T = 2, L4 = 1, ᾱ = 2,
p1 = 10, β̄ = 0.2, and p2 = 2.5.

(69)

It is assumed that the runway suddenly appears in the
image at instant t = 5s and will remain in the camera
field of view throughout the descent. As such, the xi’s are
reinitialized at time t = 5s. Doing so, our controller can be
fairly compared to any another one (possibly reacting from
t = 0). Indeed, according to (4), controller 1 is 0 for t ∈ (0,4)
seconds. Figure 2 shows that controller 1 succeeds to lower a
lateral deviation of 30m for several initial heading deviations
∆ψ ∈ {−5,0,5}deg. Figure 3 shows the responses when the
outputs are noisy.

On the other hand, our figures also show the performance
of the ‘controller 2’ from [11]. We made these choices of
the parameters in ’controller 2’ in our simulations:

k1 = 0.3, k2 = 0.59, k3 = 0.8, τ = 2.5,
L4 = 1, and v̄ = 1.4, and φ(x) = 0.15tanh(0.4x). (70)

Using these parameters, the assumptions of [11] are satis-
fied when δ̄1 = δ̄2 = 0. Moreover, looking at Figures 2 and 3
below, we observe the settling times are almost similar when
one uses controllers 1 and 2. However, the assumptions of
[11] seem to be far more conservative when the outputs are
noisy. Indeed, the assumptions of [11] would not be satisfied
with δ̄1 = 0.9 and δ̄2 = 0.3, and in order to satisfy them it
would be necessary to multiply these bounds by 4.10−3.

VI. CONCLUSIONS

We used a recent backstepping approach to construct
a useful new class of bounded controls for a chain of
saturated integrators that arises in the visual landing of
aircraft. This overcame the challenge of having imprecise
output measurements by proving an input-to-state stability
estimate. In future work, we plan to generalize this work to
allow sampling (as described in [18], [19]) or delays in the
outputs, which would be useful for modeling the effects of
image processing.

0 10 20 30 40 50 60 70 80

time(s)

-10

0

10

20
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40
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x 1
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reference
using controller 1
using controller 2

Fig. 2. Evolution of x1(t) when δ̄1 = 0, δ̄2 = 0.
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Fig. 3. Evolution of x1(t) when δ̄1 = 0.9, δ̄2 = 0.3.

APPENDIX 1: PROOF OF BOUNDS (15)

We use the formulas (16) to prove the bounds on the
derivatives of α and β in (15); the bounds on α and β

in (15) follow from the definition of the saturation and (16).
We use the common notation s = k2/(1− e−kT )2 and the
equalities and inequalities to follow should be understood to
hold for all t ≥ 2T . We have

α̇(t) =−kα(t)

+s
[∫ t

t−T ek(`−t)φ(`)d`−
∫ t−T

t−2T ek(`−t)φ(`)d`
]
,

(A.1)

and therefore also

|α̇|∞ ≤ kα1+sα1
[ 1

k

(
1−e−kT

)
+ 1

k

(
e−kT−e−2kT

)]
= kα1+sα1

1
k

(
1− e−kT

)(
1+ e−kT

)
= α2,

(A.2)

by our choice of α2 in (13). Also, since

α̈(t) =−kα̇(t)+ s(−k)
[∫ t

t−T ek(`−t)φ(`)d`

−
∫ t−T

t−2T ek(`−t)φ(`)d`
]

+s[φ(t)−2e−kT φ(t−T )+ e−2kT φ(t−2T )],

(A.3)
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our formula for α3 from (13) gives

|α̈|∞ ≤ 2k2ᾱ1
1−e−kT +

[
s
(
1− e−kT

)
+ s
(
e−kT−e−2kT

)]
ᾱ1

+s
(
1+2e−kT +e−2kT

)
ᾱ1 ≤ 4α1s = α3.

(A.4)

Finally, since

β̇ (t) = −kβ (t)+ k
1−e−kT

(
ω(t)−ω(t−T )e−kT

)
, (A.5)

we have

|β̇ |∞ ≤ kβ 1 +
k

1−e−kT

(
1+ e−kT

)
β 1 = β 2, (A.6)

by our choice of β 2 in (13). which completes our proof of
the bounds (15).

APPENDIX 2: TECHNICAL RESULT

In this appendix, we provide the variant of the version of
Halanay’s inequality from [4, Section 4.1.2] that we used in
the proof of our theorem. This variant agrees with [4, Lemma
4.2] in the special case where ∆1 = 0.

Lemma A.1: Consider a continuous function
v : [−h,+∞) → [0,+∞). Assume that there are constants
∆1 ≥ 0, c1, and c2 satisfying c1 > c2 > 0 such that the
inequality

v̇(t)≤−c1v(t)+ c2 sup
m∈[t−h,t]

v(m)+∆1 (A.7)

is satisfied for all t ≥ 0. Let cs > 0 be the unique positive
value such that cs = c1− c2ecsh, and let lv > 0 be a constant
such that lve−cst > v(t)−∆1/(c1−c2) for all t ∈ [−h,0]. Then

v(t)≤ lve−cst + ∆1
c1−c2

(A.8)

holds for all t ≥ 0.
Proof: First, observe that ∆1

c1−c2
is well-defined because

c1 > c2. Let ṽ(t) = v(t)− ∆1
c1−c2

. Then

˙̃v(t)≤−c1ṽ(t)+ c2 sup
m∈[t−h,t]

ṽ(m) (A.9)

for all t ≥ 0. Since c1 > c2, the required constant cs exists.
Also, the function p(t) = e−cst satisfies

ṗ(t) = −c1 p(t)+ c2 sup
m∈[t−h,t]

p(m) (A.10)

for all t ≥ 0. It now suffices to prove that lv p(t)≥ ṽ(t) for all
t ≥ −h. To this end, suppose that there is a constant tc > 0
such that lv p(t)> ṽ(t) for all t ∈ [−h, tc) and lv p(tc) = ṽ(tc),
for the sake of obtaining a contradiction. Let w(t) = ṽ(t)−
lv p(t). Then, using lv p(tc) = ṽ(tc), we deduce from (A.9) and
(A.10) that

ẇ(tc)≤ c2

[
sup

m∈[tc−h,tc]
ṽ(m)− sup

m∈[tc−h,tc]
lv p(m)

]
< 0, (A.11)

where the last inequality in (A.11) follows because if we
choose a t∗ ∈ [tc− h, tc] such that supm∈[tc−h,tc] ṽ(m) = ṽ(t∗),
then the quantity in squared brackets in (A.11) is ṽ(t∗)−
lv p(tc− h), which is negative if t∗ = tc− h (by our choice
of tc) and is also negative if t∗ ∈ (tc− h, tc] because in that
case it is bounded above by lv(p(t∗)− p(tc−h))< 0. From

ẇ(tc) < 0 and w(t) < 0 when t ∈ [−h, tc), we deduce that
w(tc)< 0, which is a contradiction. Hence, w(t)< 0 for all
t ≥ −h. Thus ṽ(t) ≤ lv p(t) for all t ≥ −h, which gives the
conclusion.

REFERENCES

[1] L. Burlion and H. de Plinval, “Vision based anti-windup design with
application to the landing of an airliner,” IFAC-PapersOnLine, vol. 50,
no. 1, pp. 10482-10487, 2017.

[2] G. Chesi and R. Middleton, “LMI-based fixed order output feed-
back synthesis for two-dimensional mixed continuous-discrete-time
systems,” IEEE Trans. Autom. Control, vol. 63, no. 4, pp. 960-972,
2018.

[3] J. Gomes da Silva Jr., I. Queinnec, A. Seuret, and S. Tarbouriech,
“Regional stability analysis of discrete-time dynamic output feedback
under aperiodic sampling and input saturation,” IEEE Trans. Autom.
Control, vol. 61, no. 12, pp. 4176-4182, 2016.

[4] E. Fridman, Introduction to Time-Delay Systems: Analysis and Con-
trol. New York, NY: Springer, 2014.

[5] T. Hu and Z. Lin, Control Systems with Actuator Saturation. Boston,
MA: Birkhauser, 2001.

[6] D. Karagiannis and A. Astolfi, “A new solution to the problem of
range identification in perspective vision systems,” IEEE Trans. Autom.
Control, vol. 50, no. 12, pp. 2074-2077, 2005.

[7] H. Khalil, Nonlinear Systems, Third Edition. Englewood Cliffs, NJ:
Prentice Hall, 2002.

[8] F. Le Bras, T. Hamel, R. Mahony, C. Barat, and J. Thadasack,
“Approach maneuvers for autonomous landing using visual servo
control,” IEEE Trans. Aerospace and Electronic Systems, vol 50, no.
2, pp. 1051-1065, 2014.

[9] Y. Li and Z. Lin, Stability and Performance of Control Systems with
Actuator Saturation. Boston, MA: Birkhauser, 2018.

[10] M. Malisoff and F. Mazenc, Constructions of Strict Lyapunov Func-
tions. London, UK: Springer-Verlag, 2009.

[11] F. Mazenc, L. Burlion, and V. Gibert, “Stabilization with imprecise
measurements: application to a vision based landing problem,” in Proc.
American Control Conf. (IEEE), 2018, pp. 2978-2983.

[12] F. Mazenc, L. Burlion, and M. Malisoff, “Stabilization and robustness
analysis for a chain of saturating integrators with imprecise measure-
ments,” IEEE Control Systems Letters, vol. 3, no. 2, pp. 428-433,
2019.

[13] F. Mazenc and A. Iggidr, “Backstepping with bounded feedbacks,”
Systems and Control Letters, vol. 51, no. 3-4, pp. 235-245, 2004.

[14] F. Mazenc and M. Malisoff, “New control design for bounded back-
stepping under input delay,” Automatica, vol. 66, pp. 48-55, 2016.

[15] F. Mazenc, M. Malisoff, L. Burlion, and J. Weston, “Bounded
backstepping control and robustness analysis for time-varying sys-
tems under converging-input-converging-state conditions,” European
J. Control, vol. 42, pp. 15-24, 2018.
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