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On local finite-time stabilization of the Viscous Burgers equation via

boundary switched linear feedback

Nicolás Espitia Andrey Polyakov Emilia Fridman

Abstract— This paper considers the problem of local finite-
time stabilization of the viscous Burgers equation. A boundary
switched linear control with state dependent switching law is
designed based on the Backstepping approach. The strategy
builds on discontinuous kernels which render the control
function a piecewise continuous one. It is proved that such a
control stabilizes locally the viscous Burgers equation and that
the settling time depends on initial conditions. A simulation
result is provided to validate the theoretical results.

I. INTRODUCTION

For many dynamical systems, most of the results on

stabilization and estimation are based on asymptotic or

exponential guarantees. However, when the time of control

is strongly restricted and transient process has to be finished

in a finite-time, the need to address a finite-time or fixed

time stabilization (or a very rapid stabilization, otherwise)

becomes a central issue and necessity.

Finite-time concepts have been extensively considered in

the framework of linear and nonlinear ordinary differential

equations (ODES) ([10], [1], [19], [15], [22]). For partial

differential equations (PDEs), finite-time concepts have been

gaining a lot of attention as PDEs may indeed describe many

complex systems (e.g. hydraulic networks, tubular chemical

reactors, etc) for which the convergence while meeting time

constraints or just realizing the well-known separation prin-

ciple are central issues. Synthesis of controllers to achieve

these goals would bring more challenges than exponential

stabilization. For hyperbolic PDEs, for instance, one can

refer to [16], [2] for the stabilization in finite-time with

boundary control. For linear parabolic PDEs, on the other

hand, the scenario is even more demanding. Some works

have addressed some relevant issues on null controllability

and finite-time stabilization (e.g. [3], [18]) by making use of

the backstepping approach to design time-varying feedbacks;

although with discontinuous kernels. It is worth recalling that

the backstepping method has been used as a standard method

to design boundary controllers for stabilization of PDEs [14].

This topic is moved forward for continuous time-varying

feedbacks in [6] and [7] under backstepping approach for
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fixed-time stabilization. The time of convergence can even

be prescribed in the design. Other results on finite-time

for linear parabolic PDEs using in-domain control can be

found in e.g. [17], [19] where the former uses some sliding

mode techniques and the latter uses homogeneity arguments.

Nonlinear parabolic PDEs have been also useful for the

modeling of large scale networks and complex processes

coming from fluid mechanics. In particular, the viscous

Burgers equation has been studied as a simplified model of

the Navier-Stokes equations. The viscous Burgers equation

can be in fact a tractable control-oriented model for which

boundary and in-domain control strategies have been

proposed e.g. [12], [11]. This motivates, from the practical

point of view, to use this model for active flow control

strategies to reduce the drag in aerodynamic applications and

transportation industry. On the other hand, from theoretical

level, this equation posses interesting challenges as sock-like

stationary solutions may be developed (see e.g. [13]) and

that have been useful for formation control problems in

multi-agent systems; see e.g. [9]. Thus, stabilization and

estimation of the viscous Burgers equation is of the great

interest. However, to the best of our knowledge, finite-time

stabilization and estimation for this kind of PDE have

not been widely addressed in the literature. This motivate

to study this topic under a boundary control problem

formulation.

The main contribution of this paper relies on the design

of a boundary switched linear control such that a suitable

switching law is dependent on the state of the system.

Inspired by [5] and [18], we build on the backstepping

approach from which kernels of the transformation are

piecewise-continuous. Under the switching law the control

gain is such that it increases more and more while the

solution of the closed-loop systems goes to zero in a finite-

time. We prove that for sufficiently small initial condition,

it is possible to achieve finite-time stabilization and that

the settling time depends on initial data of the closed-loop

system. We recall here that in this framework, finite-time

convergence differs from the fixed-time one whenever the

settling-time depends on the initial condition of the system

as studied in this paper.

This paper is organized as follows. In Section II, we

introduce the viscous Burgers and some preliminaries on the

backstepping approach. Section III provides our approach

towards fine-time stabilization. Section IV provides a



numerical example to illustrate the main results. Finally,

conclusions and perspectives are given in Section V.

Notations: R
+ will denote the set of nonnegative real

numbers. The set of all functions g : [0, 1] → R such

that
∫ 1

0 g(x)2dx < ∞ is denoted by L2((0, 1),R) and is

equipped with the norm ‖ · ‖L2((0,1),R) . Im(·), Jm(·) with

m ∈ Z, denote the modified Bessel and (nonmodified) Bessel

functions of the first kind, respectively.

II. PROBLEM STATEMENT, PRELIMINARIES AND BASIC

ASSUMPTIONS

Let us consider the following viscous Burgers equation

with Dirichlet boundary conditions:

ut(t, x) = θuxx(t, x)− ux(t, x)u(t, x) (1)

u(t, 0) = 0 (2)

u(t, 1) = U(t) (3)

and initial condition:

u(0, x) = u0(x) (4)

where u : [0, T )× [0, 1] → R is the system state and θ > 0 is

the viscous term. In addition, U(t) ∈ R is the control input

having the functional form

U(t) = Kσ(t)[u(t, ·)](1) (5)

with

Kσ(t)[u(t, ·)](1) =
∫ 1

0

k(1, y, λσ(t))u(t, y)dy (6)

which is the linear switching feedback law. Here, k will be

a time-varying kernel gain (piecewise-continuous function)

and σ : [0, T ) → Z is going to be a state dependent

switching signal (piecewise-constant function), both to be

characterized later on .

In open loop (e.g. U(t) = 0), the system (1)-(4) is globally

exponentially stable. The control aim is to steer the state of

the system (1)-(4) to zero in a finite-time. As it is going to

be stated later, the time of convergence depends on initial

conditions of the system.

A. Backstepping transformation and switching kernel equa-

tions

In this work we aim at providing a boundary linear

switched control which is going to be designed based on

the backstepping approach (inspired by [14], [11], [5] and

[18]). The backstepping method has been typically applied

to linear PDE systems. However, in this work the method

may be applicable as soon as one considers the nonlinear

term uxu in (1) as a small force (as typically done for the

Kortewegde Vries equation, e.g. [23]). A characterization for

the backstepping transformation as well as target system by

taking into account the nonlinearity after transformation, is

going to be discussed in the sequel. To that end, let us first

bring back the following integral Volterra transformation as

follows:

w(t, x) = u(t, x)−
∫ x

0

k(x, y, λσ(t))u(t, y)dy

= Kσ(t)(t)[u(t, ·)](x)
(7)

whose inverse is given by

u(t, x) = w(t, x) +

∫ x

0

l(x, y, λσ(t))w(t, y)dy

= Lσ(t)(t)[w(t, ·)](x)
(8)

where k and l are the time-varying kernels of the direct and

inverse backstepping Volterra transformations, respectively.

Similar to [11], the aim is to transform the system (1)-(4)

into the following target system:

wt(t, x) = θwxx(t, x) − θλσ(t)w(t, x)

−F [w(t, ·), wx(t, ·)](x) (9)

w(t, 0) = 0 (10)

w(t, 1) = 0 (11)

with initial condition:

w0(x) = u0(x) −
∫ x

0

k(x, y, λσ(0))u0(y)dy (12)

where w : [0, T )×[0, 1] → R is the state of the target system.

In our approach, the reaction term will be changing thanks to

λσ(t) > 0 and according to some switching law that needs

to be designed to achieve finite-time stability property. In

addition, the functional F [w,wx] is given as follows:

F [w,wx](x) = Kσ(t)

[

Lσ(t)[w]wx + Lσ(t)[w]L1
σ(t)[w]

]

(x)

(13)

where the functional L1
σ(t)(t)[w(t, ·)](x) is as follows:

L1
σ(t)(t)[w(t, ·)](x) = l(x, x, λσ(t))w(t, x)

+

∫ x

0

lx(x, y, λσ(t))w(t, y)dy
(14)

A suitable estimate of the functional F [w,wx] given by

(13) can be deduced from [11, Lemma 2].

Following the standard methodology to find kernel equa-

tions and since σ is a piecewise-constant function, it can

be proved that the kernel of (7) satisfies the following PDE

system:

kxx(x, y, λσ(t))− kyy(x, y, λσ(t)) = λσ(t)k(x, y, λσ(t))
(15)

k(x, 0, λσ(t)) = 0 (16)

k(x, x, λσ(t)) = − 1
2xλσ(t) (17)

where k is defined on the domain T = {(x, y) ∈ R
2 : 0 ≤

y ≤ x ≤ 1}×R
+, whose solution is well-known to admit a

closed form as follows [14]:

k(x, y, λσ(t)) = −yλσ(t)

I1
(√

λσ(t)(x2 − y2)
)

√

λσ(t)(x2 − y2)
(18)



and similarly, for the inverse transformation (7), the kernel

satisfies:

lxx(x, y, λσ(t))− lyy(x, y, λσ(t)) = −λσ(t)l(x, y, λσ(t))
(19)

l(x, 0, λσ(t)) = 0 (20)

l(x, x, λσ(t)) = − 1
2xλσ(t) (21)

where k is defined on the domain T = {(x, y) ∈ R
2 : 0 ≤

y ≤ x ≤ 1}×R
+, whose closed-form solution is as follows:

l(x, y, λσ(t)) = −yλσ(t)

J1
(√

λσ(t)(x2 − y2)
)

√

λσ(t)(x2 − y2)
(22)

In addition, from (7) and (8), one has the following relations:

‖w(t, ·)‖L2((0,1),R) ≤ Ψ(λσ(t))‖u(t, ·)‖L2((0,1),R) (23)

and

‖u(t, ·)‖L2((0,1),R) ≤ Φ(λσ(t))‖w(t, ·)‖L2((0,1),R) (24)

where estimates Ψ(λσ(t)) and Φ(λσ(t)) are given by:

Ψ(λσ(t)) := 1 +

(
∫ 1

0

(
∫ x

0

|k(x, y, λσ(t))|2dy
)

dx

)1/2

(25)

with k given by (18), and

Φ(λσ(t)) := 1 +

(
∫ 1

0

(
∫ x

0

|l(x, y, λσ(t))|2dy
)

dx

)1/2

(26)

with k given by (22).

Finally, let us point out the following result [5] that is

going to be used in the proof of local finite-time stability

property.

Lemma 1: For the target system (9)-(11), (13), there

exists c such that the following estimate holds true:

2
∣

∣

∣

∫ 1

0

w(t, x)F [w(t, ·), wx(t, ·)](x)dx
∣

∣

∣

≤ ec
√

λσ(t) (‖w(t, ·)‖4L2((0,1),R) + ‖w(t, ·)‖6L2((0,1),R))

+ ‖wx(t, ·)‖2L2((0,1),R)

(27)

Proof: See [5, Section 4].

Remark 1: A precise characterization of c in (27) is not

provided here; however, it can be done by analyzing the

growth-in-time of the functional F and kernels equations

involved there. The analysis may follow similar ideas of [11]

which in turn follows [4].

III. STATE DEPENDENT SWITCHING LAW AND

FINITE-TIME STABILIZATION

A. On the state dependent switching law

Let us choose λσ(t) = 2σ(t) where the switching function

σ(t) is governed by the following state dependent rule1:

σ(t) = G(σ(t−), u(t−, ·)) (28)

with G : Z×L2((0, 1),R) → Z, t− = t+0− and σ(0) ∈ Z.

G(σ(t), u(t, ·))

=











i + 1 if σ(t) = i and ‖u(t, ·)‖L2 ≤ ri+1

i if σ(t) = i and ri+1 < ‖u(t, ·)‖L2 < ri−1

i − 1 if σ(t) = i and ‖u(t, ·)‖L2 ≥ ri−1

(29)

where ri is a suitable sequence defined iteratively:

r0 =
e−

c

2

Ψ(20)
, ri = e−qiri−1, i ∈ Z (30)

with qi defined as follows:

qi = lnΨ(2i) + lnΦ(2i) + c
2

√
2i (31)

and Ψ and Φ are defined in (25) and (26), respectively.

Proposition 1: Let qi be defined by (31). Then for qi > 0,

it holds that ri → 0 as i → ∞ and

lim
i→∞

qi+1

qi
=

√
2 (32)

Proof: It follows the same lines of [18, Proposition 2].

B. On finite-time stabilization

We perform Lyapunov-based analysis on the target system

and we use the bounded invertibility of the backstepping

transformation in order to prove local finite-time stabiliza-

tion. An estimate of the settling time is also derived.

Lemma 2: Let us consider the target system (9)-(12)

with λσ(t) = 2σ(t). Assume that σ(t) = ik for all

t ∈ [tk, tk+1) where the switching time instants of

σ are denoted by (tk)k∈N. If ‖w(tk, ·)‖L2((0,1),R) <

e−
c

2

√
2σ(t)

and θ2ik > 1, then there exists a

unique solution w ∈ C0
(

[tk, tk+1);L
2((0, 1),R)

)

∩
L2
loc

(

[tk, tk+1);H
1
0 ((0, 1),R))

)

such that

‖w(t, ·)‖L2((0,1),R) ≤ e−(θ2σ(t)−1)(t−tk)‖w(tk, ·)‖L2((0,1),R)

(33)

for all t ∈ [tk, tk+1).

Proof:

We consider the target system (9)-(12), associated with

each constant mode ik on [tk, tk+1) (i.e. σ(t) = ik) where

w(t, x) = wik (t, x) for all t ∈ [tk, tk+1). That is,

1For hyperbolic PDEs, switching law based on Lyapunov techniques can
be found for instance in [20].



wik
t (t, x) = θwik

xx(t, x)− θ2ikwik(t, x)

−F [wik(t, ·), wik
x (t, ·)](x)(34)

wik (t, 0) = 0 (35)

wik (t, 1) = 0 (36)

The local existence and uniqueness of the

solution w ∈ C0
(

[tk, tk+1);L
2((0, 1),R)

)

∩
L2
loc

(

[tk, tk+1);H
1
0 ((0, 1),R))

)

of target system (34)-

(36) follow by considering the nonlinear term F [w,wx](x)
as a force term and using Banach fixed point theorem as

proved in [5].

Let us prove now that the solution decreases exponentially

on that interval. Consider the following Lyapunov function

V : L2((0, 1),R) → R, V (w) =
∫ 1

0
w(x)2dx. Computing

the time derivative along the solutions of (34)-(36), perform-

ing integration by parts and using the boundary conditions,

yield, for all t ∈ [tk, tk+1),

V̇ (t) ≤ −2θ2ikV (t)− 2θ

∫ 1

0

wx(x)dx

+ 2
∣

∣

∣

∫ 1

0

wik (t, x)F [wik (t, ·), wik
x (t, ·)](x)dx

∣

∣

∣

(37)

with F is as in (13).

By Lemma 1, it holds:

2
∣

∣

∣

∫ 1

0

wik (t, x)F [wik (t, ·), wik
x (t, ·)](x)dx

∣

∣

∣

≤ ec
√
2ik (V 2(t) + V 3(t)) + ‖wx(t, ·)‖2L2((0,1),R)

(38)

for all t ∈ [tk, tk+1). Thus,

V̇ (t) ≤ −2θ2ikV (t) + ec
√
2ik (V 2(t) + V 3(t)) (39)

Now, if ‖wik (tk, ·)‖L2((0,1),R) < e−
c

2

√
2ik , we have on the

one hand, V (t) < e−c
√
2ik . Then,

V 2(t) < e−c
√
2ikV (t) (40)

On the other hand, since V (t) < 1, then V 3(t) < V 2(t).
Hence, from (39) and using (40), we get,

V̇ (t) ≤ −2(θ2ik − 1)V (t) (41)

with θ2ik > 1. Therefore, by the Comparison principle, it

holds for all t ∈ [tk, tk+1), that:

‖w(t, ·)‖L2((0,1),R) ≤ e−(θ2ik−1)(t−tk)‖wik (tk, ·)‖L2((0,1),R)

(42)

It concludes the proof.

Let us state the main result of the paper.

Theorem 1: For any initial condition u0 ∈ L2((0, 1),R)
such that

σ(0) = i0 ∈ Z with ‖u0‖L2((0,1),R) ∈ (ri0+1, ri0 ] (43)

and θ2σ(0) > 1, then the closed-loop system (1)-(4) with

linear switched controller

U(t) =

∫ 1

0

k(1, y, 2σ(t))u(t, y)dy (44)

with k(1, y, 2σ(t)) given in (18), and σ(t) given in (28)

according to (29)-(30); has a unique solution u ∈
C0

(

[0, T );L2((0, 1),R)
)

∩L2
loc

(

[0, T );H1
0 ((0, 1),R))

)

and

is locally finite-time stable, i.e

‖u(t, ·)‖L2((0,1),R) → 0, as t → T (45)

with a bounded settling time depending on initial data given

by

T (u0) ≤
+∞
∑

i=i0

qi + qi+1

θ2i
+

∞
∑

i=i0

− c
2

√
2i

θ2i
< +∞ (46)

Proof:

I. On the well-posedeness of the closed-loop solution. If

‖u(ti, ·)‖L2((0,1),R) ∈ (ri+1, ri] and σ(t) = i then there

always exists an instance of time t∗ separated from ti such

that ‖u(t∗, ·)‖L2((0,1),R) = ri+1 or ‖u(t∗, ·)‖L2((0,1),R) =
ri−1. It means that σ is switched either to i + 1 or i − 1
according to (29) and the switching instant t∗ will be always

isolated (this prevents the Zeno phenomena). Then, due

to local existence and uniqueness of the solution of the

target system and due to the bounded invertibility of the

backstepping transformation, it can be proved that for any

initial condition u0 ∈ L2((0, 1),R) with (43), the closed-

loop system (1)-(4), (44) has a unique solution such that

u ∈ C0
(

[0, T );L2((0, 1),R)
)

∩L2
loc

(

[0, T );H1
0 ((0, 1),R))

)

,

T = sup tk, where tk > 0 are the sequence of switching

instants.

II On the local finite-time stability. The proof for local

finite-time stability is done recursively with the following

induction properties, for k ≥ 0:

• ‖u(tk, ·)‖L2((0,1),R) ∈ (rik+1, rik ];
• ‖u(t, ·)‖L2((0,1),R) < rik−1, ∀t ∈ [tk, tk+1);
• ik + 1 = ik+1.

Let us verify for k = 0, t ∈ [t0, t1). From (23), it holds

‖w0‖L2((0,1),R) ≤ Ψ(2i0)‖u0‖L2((0,1),R) (47)

By initialization hypothesis (43), we get

‖w0‖L2((0,1),R) ≤ Ψ(2i0)ri0 (48)

and using the recurrence relation (30) along with (31), it

holds

‖w0‖L2((0,1),R) ≤ Ψ(2i0)e−qi0 ri0−1

≤ Ψ(2i0)e− ln(Ψ(2i0 )Φ(2i0 ))e−
c

2

√
2i0 ri0−1

≤ e− ln Φ(2i0 )e−
c

2

√
2i0 ri0−1

(49)

Note that e− ln Φ(2i0 )ri0−1 ≤ 1 by virtue of the defi-

nition of the sequence ri in (30). Hence, we have that



‖w0‖L2((0,1),R) ≤ e−
c

2

√
2i0 . Consequently, hypothesis of

Lemma 2 is verified and therefore (33) holds for t ∈ [t0, t1).
Then, combining (33) and (24) we have, for all t ∈ [t0, t1),

‖u(t, ·)‖L2 ≤ Ψ(2i0)Φ(2i0)e−(θ2i0−1)(t−t0)‖u0‖L2 (50)

From (31), we have that (50) is rewritten as follows:

‖u(t, ·)‖L2 ≤ eqi0 e−
c

2

√
2i0 e−(θ2i0−1)(t−t0)‖u0‖L2 (51)

Furthermore, by initialization hypothesis (43), we get

‖u(t, ·)‖L2((0,1),R) ≤ eqi0 e−
c

2

√
2i0 e−(θ2i0−1)(t−t0)ri0 (52)

Hence, using the recurrence relation (30), we get

‖u(t, ·)‖L2((0,1),R) ≤ e−
c

2

√
2i0 e−(θ2i0−1)(t−t0)ri0−1 (53)

from which it can be deduced that ‖u(t, ·)‖L2((0,1),R) <

ri0−1. It means that norm does not reach the upper level of

the threshold (preventing overshoot). In addition, it is clear,

due to (53), that the norm decreases exponentially. This

implies that at some time t = t1 the norm will reach the

lower level of threshold, i.e. ‖u(t1, ·)‖L2((0,1),R) = ri0+1.

Therefore, by (29), the switch is done so as σ(t1) = i0 + 1
with i0 + 1 = i0+1 = i1. Hence, we can repeat the

reasoning for [t1, t2) provided the initial data σ(t1) = i1
with ‖u(t1, ·)‖L2((0,1),R) ∈ (ri1+1, ri1 ].

By continuing the reasoning recursively, we assume

that induction properties hold for k > 0 and we

verify for k + 1. For that purpose it is sufficient

to take as initial conditions σ(tk+1) = ik+1 with

‖u(tk+1, ·)‖L2((0,1),R) ∈ (rik+1+1, rik+1
] and to apply

the same arguments and steps as above.

It remains to prove that the settling time is bounded.

By Lemma 2 we have,

‖wik(t, ·)‖L2((0,1),R) ≤ e−(θ2ik−1)(t−tk)‖wik(tk, ·)‖L2((0,1),R)

(54)

Hence, we derive,

tk+1 − tk ≤ 1

(θ2ik − 1)
ln

( ‖wik(tk, ·)‖L2((0,1),R)

‖wik(tk+1, ·)‖L2((0,1),R)

)

(55)

Using (23) and (24), the previous inequality is rewritten as

follows:

tk+1 − tk ≤ 1

(θ2ik − 1)
ln

(

Ψ(2ik)Φ(2ik)‖u(tk, ·)‖L2

‖u(tk+1, ·)‖L2

)

(56)

Taking into account ‖u(tk, ·)‖L2((0,1),R) = rik and

‖u(tk+1, ·)‖L2((0,1),R) = rik+1
and relation (30) with ik +

1 = ik+1, we get

tk+1 − tk ≤ 1

(θ2ik − 1)
ln
(

eqik+1Ψ(2ik)Φ(2ik)
)

(57)

Moreover, by (31) we obtain that (57) can be bounded as

follows:

tk+1 − tk ≤ 1

(θ2ik − 1)
(qik+1 + qik) +

− c
2

√
2ik

(θ2ik − 1)
(58)

Hence,

T ≤
∞
∑

k=0

tk+1 − tk ≤
∞
∑

k=0

qik+1 + qik
(θ2ik − 1)

−
∞
∑

k=0

c
2

√
2ik

(θ2ik − 1)

(59)

which can further be written as follows:

T ≤
∞
∑

i=i0

qi+1 + qi

(θ2i − 1)
−

∞
∑

i=i0

c
2

√
2i

(θ2i − 1)
(60)

It can be proved that the first sum in (60) can be rewritten

as
∞
∑

i=i0

qi+1 + qi

(θ2i − 1)
=

∞
∑

i=i0

qi

(θ2i − 1)

(

3θ2i − 4

(θ2i − 2)

)

− qi0
(θ2i0 − 1)

2(θ2i0 − 1)

(θ2i0 − 2)

Applying the ratio test for convergence to the above series,

and due to Proposition 1, we have that

(θ2i − 1)(3θ2i+1 − 4)(θ2i − 2)

(θ2i+1 − 1)(θ2i+1 − 2)(3θ2i − 4)

qi+1

qi
→

√
2

2
< 1 (61)

and qi
(θ2i−1)

(

3θ2i−4
(θ2i−2)

)

→ 0 as i → ∞. For the second sum,

the ratio test guarantees its convergence since we have

(θ2i − 1)

(θ2i+1 − 1)

√
2i+1

√
2i

→
√
2

2
< 1, as i → ∞ (62)

and
√
2i

(θ2i−1) → 0 as i → ∞.

Therefore, T (u0) < ∞ for ‖u0‖L2((0,1),R) ∈
(ri0+1, ri0 ]. Hence, we finally conclude that

‖u(t, ·)‖L2((0,1),R) → 0 as t → T .

IV. SIMULATIONS

We illustrate the results by considering the viscous Burgers

equation (1)-(4) with θ = 1.1. For numerical simulations,

we implement a Crank-Nicholson scheme. We consider two

different initial conditions, u0 = 0.1x(x − 1) and u0 =
x(1−x) satisfying (43) and we select i0 = 0 with threshold

sequence (30) and c = 1. Figure 1 shows the evolution of the

L2-norm of the closed-loop system with boundary switched

linear feedback U(t) given in (44) with kernel gain (18)

as well as the evolution of the L2-norm of the closed-loop

system with a linear control feedback (as in e.g. [21]) for

exponential stabilization. The plots are in logarithmic scale

to illustrate the convergence to zero in finite-time. It can be

observed that settling times are indeed dependent on initial

data.

V. CONCLUSION

In this paper we have addressed the problem of local finite-

time stabilization of the viscous Burgers equation under a

boundary linear switched control provided the norm of initial

condition is small enough. The design has been carried out

based on the backstepping approach for which the switching

law depends on the state of the system and kernels of
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Fig. 1. Evolution of the L
2-norms of the closed-loop system (logarithmic

scale) with the linear switched controller (black lines) and with linear
continuous controller (red dashed lines) for exponential stabilization.

the backstepping transformation turn out to be time-varying

but discontinuous (i.e. piecewise-continuous). In addition, a

rigorous characterization of c involved in (27) still has to be

done. This issue is then left for a future work.

Future work also includes local fixed-time stabilization

of the viscous Burgers equation by means of continuous

time-varying feedbacks. For that, we expect to apply our

recent results [7], [8] and [6] on fixed-time stabilization

of reaction-diffusion PDEs where closed-form time-varying

kernels are obtained and a qualitative analysis of the fixed-

time convergence is carried out. We expect also to address

finite/fixed-time estimation for the viscous Burgers equation.
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