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Abstract
The parallel finite-element solution of large-scale
time-harmonic scattering problems is addressed
with a non-overlapping domain decomposition
method (DDM). It is well known that the effi-
ciency of this method strongly depends on the
transmission condition enforced on the inter-
faces between the subdomains. Local conditions
based on high-order absorbing boundary conditions
(HABCs) are well suited for configurations with-
out cross points (where more than two subdo-
mains meet). In this work, we extend this ap-
proach to efficiently deal with cross points. Two-
dimensional finite-element results are presented.
Keywords: Helmholtz solvers, finite elements,
domain decomposition, fast comput. technique

1 Introduction
Optimized Schwarz DDMs are currently a very
promising approach for the parallel solution of
high-frequency time-harmonic problems. With
these methods, subproblems of smaller sizes are
solved in parallel using direct solvers, and are
combined in an iterative procedure [1, 2, 4].

The convergence rate of the DDM procedure
depends on the transmission condition enforced
on the interfaces between the subdomains. Lo-
cal conditions based on HABCs represent a good
compromise between basic impedance conditions
(which lead to suboptimal convergence) and the
exact Dirichlet-to-Neumann (DtN) map related
to the complementary of the subdomain (which
is expensive to compute). They are well suited
for configurations without cross points [1], but
a direct application of this approach with cross
points does not provide satisfactory results.

Noting that cross points actually are corners
for the subdomains, we propose a novel strategy
which consists in incorporating a corner treat-
ment developed for HABCs [3] into the DDM
procedure for configurations with cross points
and right angles.

2 DDM method
We consider a 2D Helmholtz problem defined
on a rectangular computational domain Ω:{

∆u+ k2u = s, in Ω,
∂nf

u− ıku = 0, on each Γf ,

where k is the wavenumber, s is a source term,
Γf is an edge of the domain, and ∂nf

is the
exterior normal derivative, with f = 1 . . . 4.

The domain Ω is partitioned into a struc-
tured grid of non-overlapping rectangular sub-
domains ΩI , with I = 1 . . . Ndom. Each edge
ΓI,f can be either a boundary edge (if ⊂ ∂Ω)
or an interface edge (if ̸⊂ ∂Ω). In the standard
DDM procedure, the solution uI of each subdo-
main ΩI is obtained by solving the subproblem

∆uI + k2uI = s, in ΩI ,

∂nI,f
uI − ıkuI = 0, on each ΓI,f ⊂ ∂Ω,

∂nI,f
uI + BuI = gI,f , on each ΓI,f ̸⊂ ∂Ω,

where B is an impedance operator and gI,f is
a transmission variable. For any interface edge,
the transmission variable is computed using

gI,f = ∂nI,f
uJ + BuJ = −gJ,g + 2BuJ , (1)

where gJ,g and uJ belong to the neighboring
subdomain ΩJ with the shared edge ΓI,f = ΓJ,g.
Each iteration of the DDM procedure then con-
sists in solving concurrently the subproblems
and updating the transmission variables using
equation (1). See [1] for further details.

With our approach, the transmission opera-
tor B is an approximation of an exact half-space
DtN operator, where a rational approximation
of the square root is used in the symbol. The
application of B on uI is written as

BuI = −ıkα

[
uI +

2

M

N∑
i=1

ci (uI + φI,f,i)

]
,

where α = eıϕ/2, ci = tan2(iπ/M), M = 2N+1,
N and ϕ are parameters, and {φI,f,i}i=1...N are
1D auxiliary fields living on the edge ΓI,f .
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∂τI,f τI,fφI,f,i + k2

(
(α2ci + 1)φI,f,i + α2(ci + 1)uI

)
= 0, on ΓI,f ,

∂nI,f ′φI,f,i − ikφI,f,i = 0, on each PI,ff ′ ⊂ ∂Ω,

∂nI,f ′φI,f,i + C
(
φI,f,i, φI,f ′,1, . . . , φI,f ′,N

)
= gI,f,i, on each PI,ff ′ ̸⊂ ∂Ω.

(2)

For each interface edge ΓI,f , each auxiliary
field φI,f,i is governed by a 1D Helmholtz equa-
tion (first equation in system (2), where ∂τi is
the tangent derivative). Because of the second-
order partial derivative, a boundary condition is
required at each extremity of the edge [3], which
are corners of the subdomain. In the DDM pro-
cedure, that condition becomes a transmission
condition if the adjacent edge is an interface.

The corner shared by ΓI,f and any adjacent
edge ΓI,f ′ is denoted PI,ff ′ = ΓI,f ∩ ΓI,f ′ . De-
pending on the type of ΓI,f ′ , the auxiliary field
φI,f,i verifies one of the two last equations of
system (2). In the last one, C is a linear function
taking φI,f,i and all the auxiliary fields living on
ΓI,f ′ (the expression is easily obtained from [3]).
The transmission variable gI,f,i verifies

gI,f,i = −gJ,f,i + 2C
(
φJ,f,i, φJ,g′,1, . . . , φJ,g′,N

)
,

where ΓI,f and ΓJ,f have the same position in
ΩI and ΩJ , and ΓI,f ′ = ΓJ,g′ is the shared edge.

3 Preliminary finite element results
To analyse the efficiency of the method, we con-
sider the scattering of a plane wave by the unit
disk in a squared domain partitioned into 6 sub-
domains (figure 1). A Neumann BC is used on
the boundary of the disk, and the basic ABC is
prescribed on the exterior border. Simulations
are performed with P1 elements and a Galerkin
method adapted from [1] using GetDDM [4]. The
GMRES is used on the top of the procedure.

The convergence is faster when the HABC
transmission condition is used with the cross-
point treatment (figure 2). If the number of
auxiliary fields N is large enough, the number
of iteration does not vary when increasing the

Figure 1: Configuration and reference solution.

Figure 2: Number of iterations to reach relative
residual 10−6 vs wavenumber k (with nλ = 15)
and mesh density nλ (with k = 2π), without
(dot. lines) or with (cont. lines) c.-p. treatment.

frequency or the mesh density. The procedure
always converges towards the correct solution,
even without the treatment (results not shown).

Our approach can be used with other exte-
rior boundary conditions. In future works, we
will consider other physical waves and combina-
tion with preconditioning techniques.
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