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Design of a distributed finite-time observer using observability decompositions

Haik Silm1,2,3, Rosane Ushirobira2, Denis Efimov2,4, Wim Michiels3 and Jean-Pierre Richard1,2

Abstract— In this paper, a distributed observer is presented to
estimate the state of a linear time-invariant plant in finite-time
in each observer node. The design is based on a decomposition
into locally observable and unobservable substates and on
properties of homogeneous systems. Each observer node can
reconstruct in finite-time its locally observable substate with its
measurements only. Then exploiting the coupling, a finite-time
converging observer is constructed for the remaining states by
adding the consensus terms. A numerical example illustrates
the result.

I. INTRODUCTION

Driven by the fact that numerous collaborative approaches
are proposed to reach efficiency in complex systems like
power networks, traffic systems and robot swarms etc., the
research on distributed observers has gained more attention
in recent years. The idea is to take advantage of the fact that
smart multi-agent systems are deployed almost everywhere
with sensing, processing and communication capabilities.
This leads to new opportunities for the task of state esti-
mation but also to related fields as synchronization, which is
a fundamental problem in interconnected systems, and can
be represented as the problem of designing observers [1].

In this context, distributed state estimation [2] has been
proposed as an elementary problem. In this framework a
general linear plant with multiple measurement outputs is
observed by a sensor network. Each sensor acts as an
observer node, with a complete model of the plant, and the
aim is to reconstruct the state of the plant in each node.
Since the system is not observable from a single output,
the observer nodes exchange information with each other,
subject to a communication graph, to obtain the estimate of
the full plant state, i.e. to achieve state-omniscience [3]),
without falling back to a central fusion framework (as it
has been shown in [4] the distributed solution outperforms
the centralized one when taking into account communication
lags).

In the present note, to tackle this problem we will rely on
the observability decomposition of the state space. This is
inspired by the fact that each observer node has some part
of the state space which is observable by its measurement,
and that an independent observer can be designed (for the
locally observable substate). This has been first exploited in
[5] and also by other authors, for example in [6] to achieve
a guaranteed exponential convergence rate of the observer.
Recently, in [7] a design based on a multi-hop subspace
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decomposition is presented which makes it possible to assign
the poles of the error system at will. A related approach
is suggested in [8], but with a staircase decomposition for
multi-sensors.

For the remaining part, we assume that there exists a
proper communication graph. A widely adopted approach
is to use a consensus mechanism with neighboring agents.
Since initially proposed for Distributed Kalman Filtering [9]
many methods have been presented to design the consensus
gains, for example in [10] using H∞ filter technique.

In contrast to the above works which try to achieve a de-
sired asymptotic convergence rate an alternative approach is
to design distributed observers with respect to the finite-time
stability property [11]. Centralized finite-time observers have
been suggested before in [12]–[14] based on homogeneity,
which have the advantages that compared to asymptotically
converging observers robustness in terms of disturbances is
retained while next to finite-time stability, robustness to time-
delays is achieved [15], which is important in the context of
networked observers. Additionally, in a mobile environment
the communication topology can be changed at some time-
instants, making it more important that time-constraints are
met. Time-varying communication graphs and finite-time
convergence have also been examined in [16], however for
a discrete-time system akin to a dead-beat observer.

In this work, following [11], we propose a distributed
finite-time observer for continuous-time systems, but to in-
clude general linear plant dynamics, we additionally exploit
the decoupling property of the observability decomposition
due to finite-time convergences of some part of the system.

The outline of the paper is as follows. In the preliminaries
the finite-time observer design is presented for the case of
a centralized observer and the observability decomposition
is recapitulated. These results are used in the main part to
introduce the distributed finite-time observer design for the
observable part and later for the unobservable part. For the
unobservable part first an exponentially converging observer
with a guaranteed convergence rate is presented, then under
an assumption the observer is designed to be finite-time
converging with favorable robustness properties. An example
in the last section illustrates the result.

Notation:
• For x =

[
x1 . . . xn

]T ∈ Rn, we denote by
diag(x) ∈ Rn×n the diagonal matrix with x1, . . . , xn
on the main diagonal and 0 otherwise. Also we denote
by dxcα =

[
sign(x1)|x1|α1 . . . sign(xn)|xn|αn

]T
the sign preserving element-wise exponentiation, with
α =

[
α1 . . . αn

]T ∈ Rn+.
• 1n ∈ Rn is the vector with all entries equal to 1.



• En ∈ R1×n is the unit row vector En =
[
1 . . . 0

]
.

• For all n ≥ 2, denote In =


0 1 . . . 0

. . . . . .
...

. . . 1
0 . . . 0

.

• A block column matrix formed by matrices
C1, . . . , CN ∈ R1×n is denoted by col{C} ∈ RN×n.

• A block diagonal matrix formed by matrices
P1, . . . , PN ∈ Rn×n is denoted by P̄ ∈ RNn×Nn.

• Ni denotes the set of neighboring nodes of node i

II. PRELIMINARIES

A. Finite-Time observers

First we revise the design of a centralized finite-time
observer for a linear time-invariant system

ẋ = Ax, y = Cx, (1)

with state x ∈ Rn, dynamics matrix A ∈ Rn×n and output
matrix C ∈ R1×n.

It is well-known that if the rank of the observability matrix
O(A,C) is n, then the system is observable and using a
Luenberger observer, its state can be estimated with arbitrary
asymptotic convergence rate. Additionally, there exists a state
transformation x = Tcv, Tc ∈ Rn×n which describes the
system as an integrator chain plus additional output feedback
(the observer canonical form [17])

v̇ = Tc
−1ATcv = Inv − ay, (2)

with y = CTcv = v1 and where a ∈ Rn consists of the
coefficients of the characteristic polynomial of A.

Following the works of [18] and [14], there exists a
nonlinear observer for the system (1) of the form

˙̃x = Ãx̃− ãy − L̃d1n (Cx̃− y)cγ (3)

with Ã = TcInT
−1
c , ã = Tca, L̃ = Tc diag(L) and entries

of γ ∈ Rn as γs = 1 + sν, s = 1, . . . , n where the gains
L ∈ Rn and 1/n < ν < 0 can be designed in a way that the
estimate x̃ converges to x in a finite time.

Theorem 1 ([11]): Consider the system (1) with
rankO(A,C) = n and the observer (3). If

1) there exists L ∈ Rn and positive definite matrices
Q,P ∈ Rn×n satisfying the Lyapunov equation

(In − LEn)TP + P (In − LEn) +Q = 0,

2) − η
n(
√
n+η)

< ν < 0 with η =

exp(1)

2

λmin(Q)

λmax(P )‖P diag(L)‖
,

where λmin(Q), λmax(P ) are the smallest and largest eigen-
value of Q and P , respectively, then the dynamics of the
error e = x̃− x is globally finite-time stable.

It is worth stressing that despite the estimation problem
(1) has been posed without state disturbances, measurement
noises and delays, due to homogeneity of the estimation error
dynamics, the proposed observer (3) is ubiquitously robust
with respect to all these perturbations [15], [19].

B. Observability decomposition and problem statement

Consider a system with N > 1 outputs

ẋ = Ax+ d1, yi = Cix+ d2, i = 1, . . . , N (4)

with dynamics matrix A ∈ Rn×n and output matrices Ci ∈
R1×n and where d = [ dT1 dT2,1 ... d

T
2,N ]

T is the vector rep-
resenting the external disturbance and measurement noises,
which are assumed to be essentially bounded functions of
time. For each output yi, the observable subspace has di-
mension ri = rankO(A,Ci) and the unobservable subspace
may be unstable, hence the system is not detectable from
any single output yi.

We decompose now the system into observable and un-
observable substates. Choosing a coordinate transformation
x = Ti

[ xo,i
xu,i

]
, where Ti = [ To,i Tu,i ] and Tu,i is a submatrix

whose columns form a basis of kerO(A,Ci) ∈ Rn×(n−ri),
gives

TT
i ATi =

[
Ao,i 0
Ar,i Au,i

]
, CiTi =

[
Co,i 0

]
. (5)

In the new representation, the observable subsystem

ẋo,i = Ao,ixo,i + do,i, yi = Co,ixo,i + d2,i (6)

is independent from xu,i, while the unobservable subsystem

ẋu,i = Ar,ixo,i +Au,ixu,i + du,i (7)

does not affect the output yi; here do,i and du,i are
transformed disturbances d1 = Ti

[
do,i
du,i

]
. The goal of the

distributed observer design is to have estimates x̃o,i and
x̃u,i which converge towards the real state of the plant
with non-asymptotic rates in the disturbance-free case, and
have bounded errors (e.g. in the input-to-state stability (ISS)
sense) in the presence of d. To this end we will use the
measurement output for the observable subspaces, while
for the unobservable subspaces we will have to rely on
information exchange between the nodes.

III. DISTRIBUTED OBSERVER

By design, an observable subsystem (6) can be trans-
formed with a transformation matrix Tc,i ∈ Rri×ri into
observer canonical form and consequently as in Theorem 1
the observable substate xo,i can be estimated in finite-time
with the observer

˙̃xo,i = Ão,ix̃o,i− ão,iyi−L̃o,id1n (Co,ix̃o,i,1 − yi)cγo,i , (8)

where Ão,i = Tc,iInT
−1
c,i , ãi = Tc,iai, L̃o,i =

Tc,i diag(Lo,i), ai ∈ Rri consists of the coefficients of
the characteristic polynomial of Ao,i, γo,i ∈ Rri , γo,i,s =
1 + sνo,i, s = 1, . . . , ri, and tuning parameters Lo,i ∈ Rri ,
νo,i ∈ (−r−1i , 0).

Corollary 2: Consider the system (4) with state trans-
formations for the observability decomposition (5) and ob-
servers (8) for the observable substate of each observer node,
i = 1, . . . , N . If



1) Lo,i is such that there exists positive definite matrices
Qi, Pi ∈ Rri×ri satisfying the Lyapunov equation

(Iri − Lo,iEri)TPi + Pi(Iri − Lo,iEri) +Qi = 0,

2) − ηi
ri(
√
ri+ηi)

< νo,i < 0 with ηi =

exp(1)

2

λmin(Qi)

λmax(Pi)‖Pi diag(Lo,i)‖
,

then the dynamics of the errors eo,i = x̃o,i−xo,i are globally
finite-time stable for the case d = 0 and finite-time ISS with
respect to the input d otherwise.

Proof: The claim about finite-time stability is a direct
consequence of Theorem 1. The finite-time ISS property with
respect to d follows from homogeneity of the estimation error
dynamics with negative degree [19].

A. Asymptotic observer for the unobservable subspace

For simplicity it is assumed that d = 0 and that there is
no delay in the communication of the nodes (they will be
included in the next subsection). With

[ xo,j
xu,j

]
as the state in

the observability decomposed form of some node j, there
always exist Fi,j and Gi,j for which

xu,i = Fi,jxo,j +Gi,jxu,j . (9)

Then the linear observers

˙̃xu,i = Ar,ix̃o,i +Au,ix̃u,i −KiΦi (10)

with the consensus term

Φi =
∑
j∈Ni

x̃u,i − Fi,j x̃o,j −Gi,j x̃u,j , (11)

will lead to exponential convergence of the estimation error
eu,i = x̃u,i−xu,i with convergence rate α in the perturbation
free case if Ki are selected as follows:

Theorem 3: Consider the system (4) with detectable pair
(A, col{Ci}Ni=1) and state-transformation (5). Assume that
there exist matrices Pi > 0, Yi, i = 1, . . . , N for which the
LMI Ψ ≤ 0 with diagonal blocks

Ψii = PiAu,i +AT
u,iPi + piYi + piY

T
i +αPi

and off-diagonal blocks

Ψij = ΨT
ij = Yi + Y T

j , Yi = 0 if j /∈ Ni

is satisfied for α > 0. Then the distributed observers (10)
with (11) can be designed for the unobservable subspaces
with Ki = (Y T

i )−1Pi such that the dynamics of the errors
eu,i = x̃u,i−xu,i are globally exponentially stable with rate
α if eo,i → 0 and d̄i = 0, τi,j = 0 for all j ∈ Ni and
i = 1, . . . , N .

Proof: If eo,i is zero, then the dynamics for the
unobservable substate is

ėu,i = Au,ieu,i − piKieu,i +Ki

∑
j∈Ni

Gi,jeu,j . (12)

Let V = ET
u,iP̄Eu,i, E

T
u,i =

[
eu,1 . . . eu,N

]T
be a

Lyapunov-function, then its derivative is

V̇ = ET
u,i

(
P̄ (Āu −K) + (Āu −K)TP̄

)
Eu,i, (13)

where K = piK1 −K1G1,2 . . . −K1G1,N

. . .
−KNGN,1 . . . −KNGN,N−1 piKN

 ,
with the off-diagonal blocks Kij = 0 if j /∈ Ni. With the
substitution Yi = PiKi the inequality V̇ + αV ≤ 0 leads to
the above LMI. For non-zero but vanishing eo,i the global
asymptotic stability is then retained due to ISS arguments
for the linear dynamics (12).

In the case of perturbations the standard linear system re-
sults apply: boundedness of the estimation errors for bounded
d̄i(t), asymptotic stability for small delays τi,j , otherwise
instability.

B. Finite-time observer for the unobservable subspace

After presenting an observer with exponential convergence
of the unobservable part, in this section we will design a
complete finite-time distributed observer under the following
assumption:

Assumption 1: For each observer node, the unobservable
substates can be expressed as

xu,i =
∑
j∈Ni

Fi,jxo,j (14)

for some Fi,j ∈ R(n−ri)×rj .
For a complete communication graph this is always true
if the observability matrix of the pair (A, col{Ci}Ni=1) has
full rank. The validity in other cases depends on the graph
topology and the output matrices for each node.

Let x̃u,i denote the estimate for the unobservable substate
xu,i. According to Corollary 1, the estimates x̃o,i converge
to xo,i subject to a bounded error originated by the presence
of d, then from Assumption 1 a direct way to obtain the
remaining substate is by

x̃u,i(t) =
∑
j∈Ni

Fi,j x̃o,j(t− τi,j) + d̄i(t),

where τi,j ≥ 0 and d̄i denote communication delays and
unknown noise, respectively.

The noise d̄i represents a cumulative effect of d through
the corresponding observable variables on the estimate x̃u,i;
it is absent in the disturbance-free case (i.e. when d =
0) and in the presence of d it is an essentially bounded
function of time, with the maximal amplitude related with the
corresponding value of do,i and d2,i in (6). The delays τi,j
are originated by the distributed nature of (6) and networked
communications between the nodes. For the observable part,
it has been assumed that the observer is implemented locally
at the sensor level, and a possible delay may be neglected
since there is no long-distance communication (which is a
reasonable assumption we make for simplicity, but due to
the aforementioned robustness it is actually not necessary).

Therefore, for communicating nodes in the context of
distributed observers for large-scale systems, these delays
and noises are technically inevitable, which means that the



error eu,i(t) = x̃u,i(t) − xu,i(t) =
∑
j∈Ni

Fi,j(x̃o,j(t −
τi,j)− xo,j(t)) + d̄i(t) will never be zero in their presence.
Consequently, since xu,i(t) is a dynamic variable, with a
known (up to disturbance du,i) dynamics, it is a common
approach in such a case to fuse the indirect measurements
from other nodes using a filter [20], [21], which in our case
will be designed first as a finite-time observer.

Introducing the consensus term

Ψi(t) =
∑
j∈Ni

1

pi
x̃u,i(t)− Fi,j x̃o,j(t− τi,j)− d̄i(t), (15)

where pi is the cardinality of Ni, the observer is chosen as

˙̃xu,i(t) = Ar,ix̃o,i(t) +Au,ix̃u,i(t) +KiΨi(t)

− diag(Lu,i)d1n−riΨi,1(t)cγu,i , (16)

with Ki ∈ R(n−ri)×(n−ri),Lu,i ∈ Rn−ri , γu,i ∈ Rn−ri ,
γu,i,s = 1 + sνu,i, s = 1, . . . , n− ri, and νu,i ∈ (− 1

n−ri , 0)
be selected as follows:

Corollary 4: Consider the system (4) with state trans-
formations for the observability decomposition (5) and ob-
servers (16) with (15) for the unobservable substate of each
observer node. Let Assumption 1 be satisfied, x̃o,i(t) =
xo,i(t) for all t ≥ 0 and d̄i = 0, τi,j = 0 for all j ∈ Ni
and i = 1, . . . , N . If

1) Ki = In−ri −Au,i
2) Lu,i are selected such there exists positive matrices

Qi, Pi ∈ R(n−ri)×(n−ri) satisfying the Lyapunov
equation

(I(n−ri)−Lu,iEn−ri)
TPi+Pi(Iri−Lu,iEn−ri)+Qi = 0,

3) − ηi

(n−ri)(
√

(n−ri)+ηi)
< νu,i < 0 with ηi =

exp(1)

2

λmin(Qi)

λmax(Pi)‖Pi diag(Lu,i)‖
,

then the dynamics of the errors eu,i = x̃u,i−xu,i are globally
finite-time stable.

Proof: With (7) and (16) the error dynamics of the
unobservable parts are

ėu,i = Ar,ieo,i+Au,ieu,i+KiΨi−diag(Lu,i)d1n−riΨi,1cγu,i ,
(17)

where by adding and subtracting (14) the consensus term
(15) can be rewritten as

Ψi = eu,i +
∑
j∈Ni

Fi,jeo,j .

The choice of Ki and eo,j = x̃o,i−xo,i = 0 for i = 1, . . . , N
leads to

ėu,i = Irieu,i + diag(Lu,i)d1n−rieu,i,1cγu,i , (18)

which is homogeneous with degree νu,i with respect to the
weights rs = 1 + (s − 1)νu,i. The choice of Lu,i and νu,i
makes the systems (18) globally finite-time stable as shown
in Theorem 1.
Theorem 4 considers the ideal case: When d(t) = 0 for
all t ≥ 0 (hence the same holds for d̄i(t)), there is no
delay, and the observers for the observable states have

Plant
ẋ = Ax

1
y1

2

y2

3

y3

case 1 & case 2
case 2

Fig. 1. Distributed observer using 3 observer nodes with 1) undirected and
2) directed communication graph

converged already exactly to their ideal values in a finite-
time. By taking into account the robustness properties of
homogeneous systems we can now formulate a distributed
finite time-observer for the complete state x of the system
(4).

Theorem 5: Consider the system (4) with a bounded state
x(t) for all t ≥ 0, an observable pair (A, col{Ci}Ni=1),
state transformations for the observability decomposition (5)
as well as observers (8) and (16) for the observable and
unobservable substates, i = 1, . . . , N , respectively. Under
Assumption 1 and d̄i = 0 and τi,j = 0 for all j ∈ Ni and
i = 1, . . . , N the estimates x̃i= Ti

[
x̃o,i

x̃u,i

]
will converge in

finite-time to x. Moreover, for any bounded disturbance d(t)
and delay τi,j the error ei = x̃i − x will remain bounded.

Proof: In the noise and delay-free case, from Theorem 2
follows that there exist a convergence time t1 > 0 for which
eo,i(t) → 0 for t < t1 and x̃o,i = xo,i for t ≥ t1, i =
1, . . . , N . Then from Theorem 4 directly follows x̃u,i = xu,i
for t ≥ t2 > t1 (the solutions of (16) do not explode on the
interval [0, t1] due to its ISS property, see below).

To complete the proof, it is necessary to consider the
boundedness of the trajectories x̃i(t) in the presence of
disturbances, noises and delays. The boundedness of eo,i(t)
for t ≥ 0 follows from the ISS property of homogeneous
systems [19]. This in turn guarantees boundedness of eu,i,
since due to Theorem 4 the system (17) is homogeneous with
negative degree for eo,j = 0, j ∈ Ni, which implies that in
the case of eo,j 6= 0 and

Ψi(t) = eu,j(t) +
∑
j∈Ni

Fi,j(x̃o,i(t− τi,j)− xo,i(t))− d̄i(t).

(19)
it is also ISS with respect to bounded eo,j(t) (if τi,j = 0),
bounded x̃o,i(t)− Fi,j x̃o,j(t− τi,j) (due to boundedness of
x(t)) and bounded d.
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Fig. 2. Error of the observable substate for each observer node in
logarithmic scaling

IV. EXAMPLE

Let us consider an example with N = 3 observer nodes,
see Fig. 1. The plant dynamics is

A =


−1 0 0 0 0 0
−1 1 1 0 0 0
1 −2 −1 −1 1 1
0 0 0 1 0 0
−8 1 1 −1 −2 0
4 −0 0 0 0 −4

 (20)

and the output matrices for each observer node are

C1 =
[
2 0 0 1 0 0

]
, (21)

C2 =
[
0 0 0 2 0 0

]
, (22)

C3 =
[
2 0 5 0 0 0

]
; (23)

it is not observable from any single output (r1 = 2, r2 =
1, r3 = 5).

Each observer node can estimate its observable subspace
in finite-time and to this end the gains are chosen as

Lo,1 =

[
2
1

]
, Lo,2 = 1, Lo,3 =


5
10
10
5
1


and νo,1 = νo,2 = νo,3 = −0.05. Fig. 2 shows a simulation
of the error of the observable substate with observers ac-
cording to Theorem 2. The logarithmic scaling of the y-axis
make the finite-time conference property clearly visible.

For the remaining substates the observer nodes will have
to rely on the other estimates using the consensus term.
In the first case the observer nodes are connected in an
undirected cyclic graph, which means it is complete and thus
Assumption 1 holds. The gains are chosen as in Theorem 4
with

Lu,1 =


4
6
4
1

 , Lu,2 =


5
10
10
5
1

 , Lu,3 = 1
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Fig. 3. Error of the unobservable substate for each observer node in
logarithmic scaling
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Fig. 4. Error of the unobservable substate for each observer node in
logarithmic scaling: asymptotic observer

and νu,1 = νu,2 = νu,3 = −0.05. Fig. 3 shows that also the
errors in the remaining substates are finite-time stable.

Let us take a look in the case where the graph is cyclic but
directed, for example node 1 can send to node 2, node 2 to
node 3 and node 3 to node 1. In that case Assumption 1
is not fulfilled for the second node (case 2 in Fig. 1).
Following Theorem 5 we can still design an asymptotical
stable observer. Using YALMIP [22], the gains

K1 =


1.63 −3.17 −0.48 −2.35
−0.74 0.58 0.25 1.09
−0.01 −1.28 −3.34 −0.01
1.48 0.84 −0.39 −1.58



K2 =


−1.38 −0.06 −4.01 −0.02 0.20
−0.04 −0.72 8.00 −0.35 1.14
0.00 0.00 −0.40 0.00 −0.00
0.44 0.71 −0.99 1.05 −1.59
−0.19 −0.40 1.00 −1.28 1.83


K3 = 2.61

were obtained for the unobservable part of the observers.
Fig. 4 shows the corresponding error when simulated.



V. CONCLUSION

A distributed finite-time observer design was presented,
provided that the plant is observable from the combination
of all outputs under a connectivity assumption. When dealing
with disturbances, noises and delays, the proposed observer
acts as a filter and robustness is guaranteed due to the
ISS property of homogeneous systems. For the design the
decoupling property of finite-time stability was exploited.

The importance of the connectivity assumption was high-
lighted by presenting a counterexample with an asymptot-
ically converging observer. Note that in fact it suffices if
the assumption is fulfilled by a single node, since if one
node is able to estimate its unobservable substate in a finite
time, then the neighboring observer nodes can also make
use of that estimate. The conditions on the graph for an
improvement of this result is a direction of current research.
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[7] Á. R. del Nozal, P. Millán, L. Orihuela, A. Seuret, and
L. Zaccarian, “Distributed estimation based on multi-
hop subspace decomposition,” Automatica, vol. 99,
pp. 213–220, Jan. 1, 2019.

[8] A. Mitra and S. Sundaram, “Distributed Observers
for LTI Systems,” IEEE Transactions on Automatic
Control, vol. 63, no. 11, pp. 3689–3704, Nov. 2018.

[9] R. Olfati-Saber, “Distributed Kalman filtering for sen-
sor networks,” in 2007 46th IEEE Conference on
Decision and Control, LA, Dec. 2007, pp. 5492–5498.

[10] V. Ugrinovskii, “Distributed robust filtering with H∞
consensus of estimates,” Automatica, vol. 47, no. 1,
pp. 1–13, Jan. 1, 2011.

[11] H. Silm, R. Ushirobira, D. Efimov, J. Richard, and
W. Michiels, “A Note on Distributed Finite-Time
Observers,” IEEE Transactions on Automatic Control,
vol. 64, no. 2, pp. 759–766, Feb. 2019.

[12] V. Andrieu, L. Praly, and A. Astolfi, “Homogeneous
Approximation, Recursive Observer Design, and Out-
put Feedback,” SIAM Journal on Control and Opti-
mization, vol. 47, no. 4, pp. 1814–1850, Jan. 1, 2008.

[13] A. Levant, “Homogeneity approach to high-order slid-
ing mode design,” Automatica, vol. 41, no. 5, pp. 823–
830, May 1, 2005.

[14] W. Perruquetti, T. Floquet, and E. Moulay, “Finite-
Time Observers: Application to Secure Communi-
cation,” IEEE Transactions on Automatic Control,
vol. 53, no. 1, pp. 356–360, Feb. 2008.

[15] K. Zimenko, D. Efimov, A. Polyakov, and W. Perru-
quetti, “A note on delay robustness for homogeneous
systems with negative degree,” Automatica, 2017.

[16] A. Mitra, J. A. Richards, S. Bagchi, and S. Sundaram,
“Finite-Time Distributed State Estimation over Time-
Varying Graphs: Exploiting the Age-of-Information,”
Oct. 14, 2018. [Online]. Available: http://arxiv.
org/abs/1810.06151.

[17] T. Kailath, Linear Systems. Prentice-Hall, 1980.
[18] S. P. Bhat and D. S. Bernstein, “Geometric homogene-

ity with applications to finite-time stability,” Mathe-
matics of Control, Signals and Systems, vol. 17, no. 2,
pp. 101–127, Jun. 1, 2005.

[19] E. Bernuau, A. Polyakov, D. Efimov, and W. Perru-
quetti, “Verification of ISS, iISS and IOSS properties
applying weighted homogeneity,” Systems & Control
Letters, vol. 62, no. 12, pp. 1159–1167, Dec. 1, 2013.

[20] R. Olfati-Saber and J. S. Shamma, “Consensus Filters
for Sensor Networks and Distributed Sensor Fusion,”
in Proceedings of the 44th IEEE Conference on De-
cision and Control, Dec. 2005, pp. 6698–6703.

[21] D. Spanos and R. M. Murray, “Distributed Sensor
Fusion Using Dynamic Consensus,” 2005.

[22] J. Lofberg, “YALMIP : A toolbox for modeling
and optimization in MATLAB,” in 2004 IEEE In-
ternational Conference on Robotics and Automation,
Taipei, Sep. 2004, pp. 284–289.

http://arxiv.org/abs/1810.06151
http://arxiv.org/abs/1810.06151

	Introduction
	Preliminaries
	Finite-Time observers
	Observability decomposition and problem statement

	Distributed Observer
	Asymptotic observer for the unobservable subspace
	Finite-time observer for the unobservable subspace

	Example
	Conclusion

