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Abstract—We consider the problem of velocity estimation
for a control moment gyroscope inverted pendulum. To this
end, we a consider model-free differentiator, a model-based
linear observer and a model-based nonlinear differentiator. The
proposed designs are implemented in hardware and the closed-
loop system performance in the stabilization task is compared.
Moreover, we show that the considered system cannot be
partially linearized via a change of coordinates, and thus is not
suitable for a recently reported class of nonlinear observers.

Index Terms—velocity estimation, differentiator, inverted
pendulum, control moment gyroscope

I. Introduction

The research problem of this paper is motivated by
the walking robot we are currently developing in the
Laboratory of Robotics and Mechatronics of the Kuban
State University (refer to Figure 1, left). This non-
anthropomorphic robot has an auxiliary dynamic sta-
bilization system which consists of two scissored pairs
of control moment gyroscopes (CMG). The scissored
pairs are orthogonal and thus the problem of vertical
stabilization of the robot can be considered for each
axis separately. Therefore, stabilization of the robot for
one axis can be approximated with a simplified one-
dimensional prototype. In this paper we consider such a
prototype, which is a control moment gyroscope inverted
pendulum (Figure 2). Note that the robot has a modular
design: the biped is equipped with four identical CMG
cubes.

Control moment gyroscope is a widely used technolog-
ical device that uses the reaction of a spinning wheel
to external torques. Due to the advantages of a large
ratio of produced torque to control torque and relatively
low power consumption, CMGs have a wide range of
applications, including vessel stabilisation [1], motorcycle
and robot balancing [2], balancing aid for humans and
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bipedal exoskeletons [3], [4], attitude steering system for
the satellites [5] and underwater vehicles [6].

The key element for stabilization of an inverted pen-
dulum is velocity estimation. Note that our robot uses
multiple accelerometers to estimate its tilt angles [7], and
we rely on soft sensors for velocity estimation.

Velocity estimation for a mechanical system is a well-
known problem, see, for example, the recent work by
Aranovskiy et al. [8] and the references therein. In practice,
a common solution is to consider this problem for each
degree of freedom separately rather than to estimate all
velocities with a single observer. From the signal process-
ing point of view, this approach can be considered as nu-
merical differentiation, where velocity estimation is seen as
online differentiation of a measured position signal, e.g., a
first-order difference used in [9]. While differentiator-based
velocity observers can be designed model-free, a better
performance is typically obtained when observers use (at
least partially) available model knowledge: sliding-mode
exact differentiators first proposed by Levant in [10], high-
gain differentiators as described by Vasiljevic and Khalil
in [11], and differentiators proposed by Perruquetti et
al. [12] that ensure finite-time convergence and robustness
with respect to measurement noises and uncertainties. In
this paper, we aim at practical comparison of some of the
discussed observers.

The contribution of this paper is two-fold: first, we show
that, despite its simplicity, the mechanical system under
consideration does not belong to the class of recently
reported systems [8], for which a construction of model-
based nonlinear observers is known. Next, we propose a
comparison of three velocity observers, namely a model-
free differentiator, a model-based linear observer and a
model-based nonlinear differentiator. All three observers
are tested on the hardware we have built for this purpose,
and the experimental results are provided.

The rest of the paper is organized as follows. In section II
we present a model of the considered system. Next, in



Fig. 1: We are developing a biped that uses four control
moment gyroscopes (highlited in red) as an auxiliary
stabilization system.

Fig. 2: 1D pendulum hardware and corresponding nota-
tions. This configuration corresponds to qb = −π/4 and
qc = π/2.

section III we present the state-feedback controller capable
to stabilize the system if all states (including velocities)
are measured. Then, in section IV we discuss three
velocity observers. Hardware experiments and observers
comparison are provided in section V. Finally, possible
further research directions are discussed in the concluding
section VI.

II. Model Description
The considered inverted pendulum is shown in Figure 2.

In this paper we follow the notations from the manual of
the model 750 control moment gyroscope commercialized
by Educational Control Products company [13]. The
notations and the corresponding hardware parameters
are summarized in the Table I. The pendulum consists
of three bodies: the main body B, the gimbal C, and
the wheel D. We associate a frame with each of the
bodies: {O,~b1,~b2,~b3}, {O,~c1,~c2,~c3}, and {O, ~d1, ~d2, ~d3},

respectively. We assume that all the bodies are symmetric,
and the centers of mass of all the bodies coincide at
the point O. Due to the symmetry, the inertia matrices
are diagonal. We denote the principal moments of inertia
(w.r.t. the center of mass) of the bodies B, C and D
as diag(Ib, Jb,Kb), diag(Ic, Jc,Kc) and diag(Id, Jd,Kd),
respectively.

The angle of the body B with respect to the vertical is
denoted as qb, the angle of the body C with respect to the
body B is denoted as qc, and the angle of the body D with
respect to the body C is denoted as qd. The configuration
shown in Figure 2 corresponds to the angles qb = −π/4
and qc = π/2. Note that the equilibrium position of an
actual robot depends on the configuration of the legs and
may be subject to external disturbances; therefore, for our
cube we model the equilibrium point as qb = −π/4 − e,
where e is the unknown (small) bias.

The corresponding time derivatives are denoted as
ωb(t) := q̇b(t), ωc(t) := q̇c(t), ωd(t) := q̇d(t). If we ap-
ply torques τc and τd to the bodies C and D, respectively,
we can find the Euler–Lagrange equations:

0 =
(
J1 + J2 cos2 qc

)
ω̇b − J2 sin(2qc)ωcωb

+ Jdω̇d cos qc − Jd sin(qc)ωcωd

−mlg sin
(
qb +

π

4
+ e
)
,

τc = (Ic + Id)ω̇c + Jdωbωd sin qc +
1

2
J2 sin(2qc)ω

2
b ,

τd = Jdω̇d + Jd cos(qc)ω̇b − Jd sin(qc)ωcωb,

(1)

where J1 = Id +Jb +Kc +ml2, J2 = Jc− Id +Jd−Kc. In
this expression we use the rotational symmetry Kd = Id
of the disk D. For control moment gyroscope systems, the
nominal operation mode assumes |ωd| � max(|ωb|, |ωc|),
and regulation of the velocity ωd is performed by the
means of a local motor controller. Assuming that this
controller provides fast and accurate velocity regulation
ensuring ω̇d ≈ 0, we will further assume that ωd is constant
and equals to the nominal velocity, see Table I.

Moreover, in our hardware the gimbal C is controlled by
the means of a servo drive that ensures velocity tracking.
In this case, the velocity ωc can be considered as an input
signal. Under these assumptions the above system can be
rewritten as

q̇b = ωb,

ω̇b =
ωc(Jdωd sin qc + J2ωb sin(2qc))

J1 + J2 cos2 qc

+
mlg sin

(
qb + π

4 + e
)

J1 + J2 cos2 qc
,

(2)

III. Linearization-based stabilization

For the system (2), the desired equilibrium is defined
as

Ω0 :=
{
qb = −π

4
− e, ωb = 0, qc =

π

2

}
.



TABLE I: Hardware parameters

Description Symbol Value
Total mass, kg m 2.62
Center of mass to pivot distance, m l 0.13
Moments of inertia, kg·m2:

of the body B [Ib, Jb, Kb] [10 13 13] · 10−3

of the body C [Ic, Jc, Kc] [10 2.6 9.9] · 10−4

of the body D [Id, Jd, Kd] [5.6 11 5.6] · 10−4

Disk D velocity, rad/s ωd 314
Equilibrium position bias, rad e unknown

In what follows we say that a control law (locally)
stabilizes the system (2) if under this control law the point
Ω0 is (locally) attractive.

To proceed, it is convenient to define a new state
variable as a deviation of the actual position from the
desired equilibrium, x :=

[
qb ωb qc

]> − Ω0. Then the
system (2) can be rewritten as

ẋ = f(x, u) =

 x2

f2(x, u)
u

 , (3)

where u = ωc and

f2(x, u) =
u(Jdωd cosx3 − J2x2 sin(2x3)) +mgl sinx1

J1 + J2 sin2 x3

.

The state variable x3 can be computed through the
measurements of the signal qc; however, since the offset e
is not known, the signal x1 can not be computed. Thus,
we define the vector of measurements as

y =

[
qb + π

4
qc − π

2

]
=

[
x1 − e
x3

]
. (4)

Then the control goal is to find a control law that
stabilizes (3) at the origin using the measurements y.

A common practice to stabilize a (sufficiently well-
behaved) nonlinear system is to linearize the system
around the desired equilibrium. For the system (3) such
equilibrium is given by x = 0, u = 0. Let us define

A :=
∂f

∂x
(0, 0) =

 0 1 0
mgl
J1

0 0

0 0 0

 ,
B :=

∂f

∂u
(0, 0) =

 0
Jdωd

J1
1

 (5)

Then the linearization of (3) around the origin is given
by ẋ = Ax+Bu.

It is tempting to use the state-feedback static control

u := −K
[
y1 x2 y2

]
= −Kx− k1e, (6)

where K :=
[
k1 k2 k3

]
is the gain vector. The prob-

lem, however, is that the equilibrium point would be

(A−BK)
−1
Bk1e =

[
0 0 −k1k3

]>
e.

Therefore, the stabilization goal |x| → 0 is not achieved
under the control law (6). In order to overcome the nonzero

steady-state body C angle problem, we add an integral
action. To this end, we introduce an auxiliary variable xe
defined as ẋe := 0− x3, where zero stays as the reference
for x3. Then the extended state-space model is[

ẋ
ẋe

]
=

[
A 03×1

0 0 −1 0

]
︸ ︷︷ ︸

Ae

[
x
xe

]
+

[
B
0

]
︸︷︷︸
Be

u.

The pair Ae, Be is controllable and we can design the
extended control law

u :=−Ke

[
y1 x2 y2 xe

]>
=−Ke

[
x> xe

]> − ke,1e, (7)

where Ke ∈ R1×4. Then the closed-loop dynamics is[
ẋ
ẋe

]
= (Ae −BeKe)

[
x
xe

]
−Beke,1e,

and the equilibrium is

(Ae −BeKe)
−1
Beke,1e =

[
0 0 0 −ke,1ke,4

]>
e.

Thus, the state x converges to zero, while the integral
action xe ensures the equilibrium offset compensation.

However, to implement the control law (7), it is required
to estimate the velocity ωb. In the next section we discuss
possible velocity observers for the considered system.

IV. Observers design

A model-based nonlinear observer has been recently
proposed in [8] for a class of mechanical systems that
are partially linearizable via coordinate changes (PLvCC).
The observer can be applied to the mechanical system
(1) if it admits a change of coordinates allowing to
rewrite the system in such a form that the dynamics is
linear in momenta. Then a globally converging exponential
momenta observer can be constructed that yields veloc-
ity estimation. Unfortunately, despite its simplicity, the
considered system does not belong to this class.

A mechanical system with inertia matrix M and n
degrees of freedom is partially linearizable via a change of
coordinates (PLvCC) if there exists [14] a full-rank matrix
Ψ : Rn → Rn×n such that for all i = 1, . . . , n the matrices
B(i) are skew-symmetric, where

B(i):=
∑n

j=1

{
[Ψi,Ψj ]Ψ>j (MΨΨ>)

−1
+ 1

2 ΨjiΨ
∂

∂qj
(Ψ>MΨ)

−1
Ψ>

}
.

Here Ψi is the i-th column of Ψ, Ψij is the element of Ψ

with the indices i and j, and [Ψi, Ψj ] =
∂Ψj

∂q Ψi − ∂Ψi

∂q Ψj

is the Lie bracket.
Assuming that regulation of the velocity ωd is per-

formed by the means of a local motor controller and
ω̇d ≈ 0, the system (1) can be written in the standard
mechanical system form as M(q)q̈ + C(q, q̇)q̇ +G(q) = τ ,

where the inertia matrix is M(q) =

[
m1(q2) 0

0 1

]
, with

m1(q2) := 1
Ic+Id

(J1 + J2 cos2(q2)). Since the PLvCC



property depends on the inertia matrix only, we are not
writing down other terms.

Proposition 1. The inertia matrix M(q) does not belong
to the PLvCC class, i.e. there exists no Ψ such that B(1)

and B(2) are skew-symmetric.

The proof of the proposition is not presented here for
the sake of brevity. Since we can not build a model-based
nonlinear observer for the system (1), we are considering
the reduced system (2). In this section, we present three
designs that are suitable for the considered system, namely
a linear model-free differentiator, a linear Luenberger’s
observer, and a nonlinear model-based differentiator.

A. A linear differentiator
The simplest way to get the velocity estimation is to

use a linear differentiation; however, it is well known
that differentiation can be noisy at high frequencies. To
this end, a common engineering practice for the velocity
estimation is to use a low pass filter together with the
differentiator. This can be used to reduce the consequences
of noise in the signal but care is needed to ensure that
the phase lag does not distort the results. For a 2nd
order filter with a time constant τ , the continuous-time
transfer function of the model-free differentiator can be
written as G(s) = s

(τs+1)2 , yielding the following state-
space realization

ż1 = z2,

ż2 = − 1

τ2
z1 −

2

τ
z2 +

1

τ2
y1,

x̂ld2 = z2,

(8)

where x̂ld2 is the estimate of x2 provided by the differen-
tiator.

B. A full-order linear state observer
A full-state model-based linear observer is constructed

as a Luenberger’s observer for the linearization of the
model dynamics at the desired equilibrium:

˙̂x = Ax̂+Bu+ L(y − Cx̂), x̂lo2 = x̂2, (9)

where x̂lo2 is the estimate of x2 provided by the linear
observer, the vector of measurements y is defined in (4),
matrices A and B are defined in (5), and

C =

[
1 0 0
0 0 1

]
.

Define the estimation error as x̃ := x− x̂. Then in the
absence of the bias, i.e., when e = 0, the error dynamics
becomes ˙̃x = (A− LC) x̃. The gain matrix L is chosen
such that the matrix A − LC is Hurwitz. For example,
it can be done by pole placement, or as a solution of an
optimal estimation problem, e.g., Kalman filter. Then, the
asymptotic convergence of x̃ to zero is ensured.

For the case e 6= 0 we have y = Cx+

[
1
0

]
e = Cx+Cee

and ˙̃x = (A− LC) x̃−LCee. Thus, the steady state value

TABLE II: Controller parameters used in experiments.

Description Symbol Value
LQR gains in (7) Ke [35, 4, -1, 0.3]
Time constant in (8) τ 0.02
Observer gains in (9) L [[20,0],[150,0],[0,20]]
Parameters in (10) [k1, k2, α] [20, 150, 0.85]

of the velocity estimation will differ from zero due to the
bias e. However, it does not compromise the closed-loop
stabilization. Indeed, with the observer, the control action
(7) becomes u = −Ke

[
x̂> xe

]>
= −Ke

[
x> xe

]>
+

Ke

[
x̃> 0

]>
.

Define x̄ :=
[
x> xe

]>. The closed-loop dynamics obeys[
˙̄x
˙̃x

]
=

Ae −BeKe BeKe

[
I3×3

01×3

]
03×4 A− LC

[x̄
x̃

]
+

[
04×1

LCe

]
e.

Then is straightforward to verify that the equilibrium of
the closed-loop system satisfies x = 0, i.e., the integral
action compensates the offset being used in the loop with
the state observer even if the observer has a steady-state
estimation error.

C. Homogeneous finite-time differentiator

Following Perruquetti et al. [15], the model-based homo-
geneous differentiator for the states x1, x2 of the system
(3) is constructed as

˙̂x1 = x̂2 − k1debcα,
˙̂x2 = u(Jdωd cos y2−J2x̂2 sin(2y2))+mgl sin y1

J1+J2 sin2 y2
− k2debc2α−1,

x̂hd2 = x̂2,
(10)

where x̂hd2 is the estimate of x2 provided by the homoge-
neous observer, eb = x̂1 − y1 and debcα = |eb|α sign(eb).
In [15] it is shown that if k1 and k2 are such that the
polynomial s2 + k2s + k1 is Hurwitz and α ∈ ( 1

2 , 1], then
the estimation error x̂ − x converges to a vicinity of the
origin. More precisely, convergence to the vicinity instead
of the finite-time convergence to the origin follows from
the replacement of x2 and sin(x1) in f2(x, u) in (3) with
x̂2 and sin(y1) = sin(x1 +e), respectively. A more detailed
analysis of the size of this vicinity can be performed by
the means of Lyapunov function analysis in a similar way
as in [16]; however, such a result is rather technical and
is not presented here for brevity.

V. Experiments and comparison

The hardware for the tests1 (shown in Figure 2) is
assembled from off-the-shelf components. The hardware
parameters are summarized in the Table I. A STM32F746
discovery board was chosen as the main computing unit.
We have chosen a small brushless motor to drive the wheel

1We have filmed all the experiments, the video is available here:
https://youtu.be/0xFanQ0QaEk.

https://youtu.be/0xFanQ0QaEk
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Fig. 3: Observers tuning using ground truth measurements
of x2.

D, the frame C is actuated by a Dynamixel MX106-
R servo motor. The robot we are currently developing
(Figure 1) uses multiple accelerometers to estimate its tilt
angles as was proposed in [7], and we rely on soft sensors
for velocities estimation. In the case of the 1D pendulum,
we use two accelerometers to measure y1, and we have
installed a fiber optic gyroscope to have the ground truth
while comparing the soft sensors.

First of all, since the additional hardware is available, we
have implemented the control law (7). Figure 3(a) provides
the angle measurements y1 and the corresponding control
signal u. Note that after one second of the experiment
an external force was applied for a short period of time.
Then we have tuned all three soft sensors to fit the best
the measured signal x2. Estimated velocities are provided
in Figure 3(b). Table II summarizes the control gains as
well as the parameters of the soft sensors.

Then we have performed three experiments, replacing
the signal x2 in the control law (7) by each of the soft
sensors we have implemented. The results provided in Fig-
ures 4, 5 and 6 correspond to the velocity estimators (8),
(9) and (10), respectively.

It is easy to see that the non-linear differentiator (10)
offers the best behavior. The finite differences introduce an
inherent lag into the estimation process, and the system
enters into sustained oscillations (Figure 4). A similar
behavior can be witnessed (Figure 5) for the observer (9).
In this case, the oscillations are due to the fact that the
linearization does not reflect well the behavior of the
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(c) Estimation error

Fig. 4: Closed-loop stabilization using observer (8).

system. In particular, this observer ignores completely
the signal y2; and thus it is not robust w.r.t external
disturbances. An illustration is available in Figure 3(b),
where at time step t ≈ 1s the linear observer fails
completely to estimate the signal x2 under a sudden
application of an external force.

VI. Conclusion

We have considered the velocity estimation problem
for the control moment gyroscope inverted pendulum
case study. Three different velocity observers, namely
the linear model-free differentiator, the linear model-
based observer, and the nonlinear model-based differ-
entiator, have been implemented in the hardware and
experimentally compared in the pendulum stabilization
task. The experimental studies illustrate that the designs
that utilize model knowledge outperform the model-free
differentiator. Moreover, the nonlinear model-based design
provides smaller error than the linear one.

At a further research direction, we intend to apply
the designed nonlinear differentiator for the biped system
described in Introduction, Fig. 2. At this step, we also
intend to incorporate a friction model into the dynamics of
the model-based velocity estimator to reduce the modeling
errors in the system.
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Fig. 5: Closed-loop stabilization using observer (9).
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