
HAL Id: hal-02316644
https://hal.inria.fr/hal-02316644v2

Submitted on 7 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transparent and Service-Agnostic Monitoring of
Encrypted Web Traffic

Pierre-Olivier Brissaud, Jérôme François, Isabelle Chrisment, Thibault
Cholez, Olivier Bettan

To cite this version:
Pierre-Olivier Brissaud, Jérôme François, Isabelle Chrisment, Thibault Cholez, Olivier Bettan. Trans-
parent and Service-Agnostic Monitoring of Encrypted Web Traffic. IEEE Transactions on Network
and Service Management, IEEE, 2019, 16 (3), pp.842-856. �10.1109/TNSM.2019.2933155�. �hal-
02316644v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/266910773?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02316644v2
https://hal.archives-ouvertes.fr

1

Transparent and Service-Agnostic
Monitoring of Encrypted Web Traffic

Pierre-Olivier Brissaud, Jérôme François, Isabelle Chrisment, Thibault Cholez and Olivier Bettan

Abstract—Nowadays, most of web services are accessed
through HTTPS. While preserving user privacy is important, it
is also mandatory to monitor and detect specific users’ actions,
for instance, according to a security policy. This paper presents
a solution to monitor HTTP/2 traffic over TLS. It highly differs
from HTTP/1.1 over TLS traffic what makes existing monitoring
techniques obsolete. Our solution, H2Classifier, aims at detecting
if a user performs an action that has been previously defined over
a monitored web service, but without using any decryption. It is
thus only based on passive traffic analysis and relies on random
forest classifier. A challenge is to extract representative values of
the loaded content associated to a web page, which is actually
customized based on the user action. Extensive evaluations with
five top used web services demonstrate the viability of our
technique with an accuracy between 94% and 99%.

Index Terms—Encrypted Traffic, HTTP2, HTTPS monitoring,
Privacy, TLS, Traffic analysis

I. INTRODUCTION

NOWADAYS, the Web provides access to a lot of online
services while users expect privacy protection when

accessing them. Indeed, recent public scandals about mass
surveillance1 have raised people awareness and expectation
regarding privacy concerns. As a result, the number of web
services protected by encryption with HTTPS [1] has hugely
increased in the last years, as proven by the percentage of
pages loaded through HTTPS (in the USA) for Chrome2 and
Firefox3, with respectively an increase of 38% and 26% to
reach the current proportion of 88% and 84%.

Although preserving and improving user privacy is nec-
essary, monitoring, detecting and mitigating forbidden user
actions4 are also legitimate, such as tracking illegal activities
undergone through the Internet for legal reasons. However,
defending user privacy while assuring an efficient monitoring
of the traffic are quite antagonist tasks. Usual monitoring
techniques based on filtering such as port-based rules or deep
packet inspection have become obsolete given the generaliza-
tion of encrypted web applications. To provide accurate traffic
monitoring within an enterprise network, decryption proxies
are usually deployed but they break user privacy. The objective

Pierre-Olivier Brissaud is with Universite de Lorraine, CNRS, In-
ria, LORIA, F-54000 Nancy, France and Thales, Palaiseau, France
{firstname.lastname@inria.fr}. Jérôme François, Isabelle Chrisment and
Thibault Cholez are with Universite de Lorraine, CNRS, Inria, LORIA, F-
54000 Nancy, France {firstname.lastname@inria.fr}. Olivier Bettan is with
Thales, Palaiseau, France {firstname.lastname@thalesgroup.com}.

1https://en.wikipedia.org/wiki/Golden Shield Project,
https://en.wikipedia.org/wiki/PRISM (surveillance program)

2https://transparencyreport.google.com/https/overview?hl=en
3https://letsencrypt.org/stats/#percent-pageloads, accessed on 06/28/2019
4a user action is here a particular request performed on a web service

of a privacy-compliant monitoring of user actions, as proposed
in this paper, is not to track every request of every user but
rather to raise an alert, or to block user traffic when it does not
comply with security rules (e.g. forbidden actions) that must
be enforced. In addition, fully blocking the access to a remote
service is not suitable as a given service can be used in both
a legitimate and illegitimate manner.

We thus provide in this paper a solution to detect an
inappropriate use of a HTTPS service based on pre-established
rules without revealing any other user activity because the
encrypted traffic is let untouched, and without entirely denying
access to this service.

The solutions presented in this paper are (1) passive as they
only collect encrypted HTTP (HTTPS) traffic, and (2) totally
transparent as no specific software is supposed to be installed
at the user side.

We will first present our previous work [2] dedicated
to HTTP/1.1 using TLS. Second, we will propose a new
technique for HTTP/2 as it is now widely used by modern
browsers and servers. The huge differences between HTTP/1.1
and HTTP/2 on the encrypted traffic have motivated our new
solution called H2Classifier. To the best of our knowledge, we
are the first to propose a classifier for encrypted HTTP/2 traffic
which is able to identify user actions considering a targeted
service while being agnostic to the service, i.e. our method
does not target specific service.

In this paper we present three main contributions about
HTTP/2 based on our previous work on HTTP/1.1 [2]:
• An explanation of the root causes of the unsuccessful

application of our previous technique with HTTP/2.
• A new method to classify user actions (e.g. searched

keywords) when HTTP/2 is used over TLS.
• An application and evaluation with five major services:

Amazon, Instagram, Google Images, Google Maps and
Google, with the elaboration of a publicly available
dataset containing more than 22,000 distinct requests per
service5.

The paper is organized as follows. Section II presents
related work. We strictly define our classification problem in
Section III followed by necessary technical background about
HTTP and TLS in Section IV. The datasets and metrics for
evaluation are described in Section V. Section VI gives an
overview of our previous work on HTTP/1.1 traffic classi-
fication and Section VII shows its limitation when applied
to HTTP/2 traffic. In Section VIII, our approach to classify
HTTP/2 traffic is introduced and evaluated. Finally, we discuss

5only 1660 distinct requests for Instagram, see Section V.

2

practical implications of our new solution in Section IX before
concluding the paper in Section X.

II. RELATED WORK

Previous studies have shown that privacy is not guaranteed
by encryption especially with HTTPS. In 1996, Wagner et al.
[3] highlighted the vulnerabilities of the SSL protocol against
traffic analysis. Then, Cheng et al. [4] followed by Sun et
al. [5] and Hintz [6] have experimented the feasibility of a
website recognition attack using resources’ size with closed
world assumptions6.

Website fingerprinting over anonymous networks such as
TOR7 or JAP8 have been extensively studied in literature [7]–
[10] following initial work in this area [11]–[13]. All apply
different clustering methods and features, mostly based on
the packet size distribution, for their fingerprints. Website
fingerprinting techniques tend to identify a few pages, from
different websites whereas our goal is to monitor pre-defined
user activities when they are using an online service, i.e.
knowing which keyword has been typed, and so, what specific
information has been searched.

Some particular methods like Blindbox [14] relies on
searchable cryptography. This solution requires the deploy-
ment of non-standard encryption protocols and can suffer from
scaling issues even if some improvement can be brought [15].
Our solution is transparent for users and can be more easily
used at a larger scale.

Analysis of encrypted traffic can be related to different
levels as traffic flow classification, service identification or spe-
cific application/protocol behavior detection for web or mobile
communications. The first level aims to detect the application
generating a flow as surveyed by Velan et al. [16]. At a higher
level of identification, we quote Shbair et al. [17] with a
framework for the detection of web services over HTTPS.
Recently, Montieri et al. [18] achieve the classification of
the different anonymized networks and detect some types
of application traffic. Many research works have analyzed
mobile traffic to identify the services installed on a mobile
device. AppScanner from Taylor [19] can profile 110 mobile
applications with an accuracy between 73% and 96%. In this
area, particular activities or behaviors are detected within the
flow generated by an application as for example Conti [20]
(between 5 and 11 behaviors inside 7 apps), Liu [21] (8
activities for 3 apps) or Saltaformaggio [22] (between 1 and
3 activities for 22 apps for a total of 35 activities). Aceto et
al. [23], [24] can detect more than 45 apps for both Android
and IOS by using different techniques including deep learning.
They provide guidelines and an infrastructure for such a
solution [25]. In Fu et al. [26], encrypted traffic of mobile
messaging applications is analyzed to discover usage patterns.

Application-specific encrypted traffic analysis has also been
proposed, for Netflix [27] or Skype [28], [29]. These ap-

6Closed world is opposed to open world as it only considers a finite
sample for both the training and testing. The open world assumption involves
a finite dataset to monitor and unlimited possibilities (unknown classes/labels)
for the testing phase.

7https://www.torproject.org/
8https://anonymous-proxy-servers.net/index.html

TABLE I: Related work classification
Level
detection description Topics

Web Mobile
Protocol Protocol identification [16]

Service

Website Fingerprinting (from X to
Y monitoring pages over VPN
or TOR open or closed world)

[11] [12] [13]
[7] [8] [9] [10]

Service / Application identification
(from 3 to 110 application)

[17] [18]
[19] [20] [21]
[22] [26] [23]

[24] [25]

User
Action

Video / Audio recognition [27] [28] [29]

User Action detection for services
(Web: up to 2000 distinct requests,
Mobile: up to 11 distinct activities)

[2], this paper [20] [21] [22]

Other specific services [30] [31] [32]

proaches are built on a precise understanding of the encoding
techniques for the video or the audio streams and their
aftereffects in the encrypted domain. In [30], Coull and Dyer
are able to determine the language used in discussions in a
text messaging application. They sort the type of messages
and, based on the text message length, define a signature for
each language. In [31], the authors propose timing attacks
for detecting SSH inputs. Finally, IOACTIVE LABS [32] has
found the location displayed to the client on Google Maps
thanks to a meticulous learning of the size of satellite images
and their contiguity. To identify the keywords searched on
Google Images with HTTP/1.1, we have proposed a similar
technique [2], based on images’ sizes.

Table I summarizes the aforementioned related work and
positions our work accordingly. A notable difference is that our
objective is to detect user actions like filling a search text field
when using a monitored service. From the type of identified
information, it is similar to a mobile user behavior provider but
we focus on HTTPS to track a single user action. Moreover,
our scale is larger as we can detect up to 2000 distinct requests.

Finally, to the best of our knowledge, we are the first to
propose a method to identify user actions in HTTP/2, knowing
that HTTP/1.1 will be obsolete in a near future.

III. PROBLEM STATEMENT

Although ensuring the confidentiality of communications is
primordial from a privacy point of view, encryption is also
powerful to discretely convey malicious or illegal activities.
Our technique is thus designed to detect such illegal uses while
guaranteeing the privacy of normal users. Indeed, all traces that
are not considered as illegal will be grouped into a single class
by our technique and so cannot be differentiated afterwards,
reminding that decryption never occurs.

A user action is atomic by nature, as for example clicking
on a web page element, filling a text-field or toggling a button.
For the rest of our experiment, we consider a user action as
a request of a specific keyword9 in a search text-field. These
actions have a direct impact on the related pages to be loaded
and thus should generate a specific traffic.

In other words, we want to fingerprint dynamic web-pages
which generate content that is user action-dependent. We
consider a range of popular services like Amazon, Instagram,
Google Search Engine, Google Images and Google Maps.

9In the rest of the paper, keyword refers to the fully qualified user search
which is actually a single or a set of keywords

3

Thus, when a user requests a specific keyword by filling
a search field on a given web service, our technique aims
at knowing if the traffic generated by this request and the
associated response matches a signature learned from previous
traces10 produced by a monitored keyword, and possibly to
determine this specific keyword.

Assuming L a dataset for the learning purpose and M the
monitored keyword set, every single element l ∈ L is a flow
corresponding to a single keyword w ∈ M and defined as a
sequence of packets pi:

∀l ∈ L,∃w ∈M : l = 〈w, {p1, . . . , pi, . . . , pn}〉 (1)

Based on that, our model is built as a function f that takes
a new sequence of packets p as input and deduces whether
it has been generated by a monitored keyword w. If not, the
function returns u (i.e. unknown keyword):

∀p = {p1, . . . , pi, . . . , pn},

f(p) =

{
w ∈M
u

(2)

The problem resides in defining f from the learning sam-
ples, i.e. all l ∈ L and the associated keyword w ∈M .

IV. BACKGROUND

Since HTTPS is the combination of HTTP version 1.1 or
2 protected with TLS, this section gives an overview of TLS,
HTTP/1.1 and HTTP/2 but limited to the relevant technical
details for this paper.

A. Transport Layer Security (TLS)

TLS (Transport Layer Security) is carried by a Transport
protocol (e.g. TCP) and is split in two parts: the TLS record
protocol and the TLS handshake protocol. The handshake is
not discriminative in regards of loaded content for a particular
service and is so out-of-interest in our context.

There are four types of records but we only consider the
application data records since the others manage only the
connection itself and are thus not specifically dependent of
the content our technique aims at identifying. The data encap-
sulation process for TLS 1.2 [33] is illustrated in Figure 1. The
content to be sent is fragmented into blocks of 214 bytes. Then,
these blocks, called fragments, are compressed (optional, but
the resulting size must be under 214 + 1024 bytes), authenti-
cated (addition of the HMAC) and finally encrypted. The final
resulting size of the encrypted fragment should be smaller than
214+2048 bytes. However, the compression must be disabled
to be compliant with the HTTP/2 standard, as explained in
Section IV-C .

10In the rest of the paper, a trace refers to a packet-level capture between
the client and the web-server, when requesting a keyword until the full page
with all objects is loaded.

Plaintext data

Fragment 1 Fragment 2

Max block size (214)

Frag. 3

Block size < 214

Fr. 1 compress

Fr. 1 compress
and authenticate M

A
C

Fr. 1 compress, authen-
ticate and encrypted

(Compression optional / disabled by default)

Compression

Authentication

Encryption

Fragmentation

Fig. 1: TLS record layer

B. HTTP/1.1

HTTP/1.1 is the common version of HTTP (Hypertext
Transfer Protocol) from 1997 (validation of the first HTTP/1.1
RFC) to 2015 (adoption of the RFC 7541 for HTTP/2). The
whole protocol is in plain text ASCII (e.g. each request begins
with one of the nine HTTP methods like GET, POST or
DELETE).

The HTTP exchange pattern is simple: over a TCP con-
nection the client sends one request and waits until the full
response arrives before sending a new request. Figure 3(a)
shows an example of this pattern. To improve performance,
the pipelining concept was introduced as an extension of
HTTP/1.1 to decrease the loading time of HTML pages by
allowing the client to send new requests proactively.

However, it is limited by the head-of-line blocking effect11

as the requests are processed in FIFO, like in Figure 3(b).
As a result, due to this limitation and some compatibility
issues, the pipelining feature has been abandoned [34], [35]
and HTTP/1.1 clients usually open multiple connections in
parallel (for example to load all the different objects of a page).

Regarding HTTP/1 without pipelining, it is possible to
reconstruct the encrypted size of the HTTP requests and re-
sponses. In that case, assuming the TCP connection embedding
HTTP traffic, all the response packets between two requests
are related to the same HTTP object. The encrypted size of
this object can be thus extracted. All retrieved encrypted sizes
constitute the features used in our classification engine for
HTTP/1 as explained in Section VI.

C. HTTP/2

HTTP/2 promotes binary headers instead of clear-text ones.
The protocol header structure is described in Figure 2. The
header introduces two mechanisms: the framing layer (with
the header-field Frame Type) and the streams (with the Stream
Identifier). First, the framing layer is binary and defines 10
structures for different types of data such as the message
payload, HTTP headers or the priority system. The frame
data is then placed after the headers in the Frame Payload.
Second, the headers contain a stream identifier that allows
the multiplexing feature. Indeed, this identifier associates a

11If the current processed request is postponed on the server, all remaining
connections are blocked until all responses related to the current request are
processed.

4

frame to a stream, which can be seen as an independent
connection between two hosts. Through the streams, a single
HTTP/2 connection can define multiple virtual connections.
Each request is done in a new stream and all responses are
sent with the stream id related to the request. The streams are
managed with a priority system in order to inform the other
host about the most important streams.

Stream Identifier (31)

Flags (8)

Length (24)

Frame
type (8) R(1)

Frame Payload (?)

H
e
a
d
e
rs

 (
7

2
)

Fig. 2: HTTP/2 binary header structure (size in bits)
encrypted over TLS 1.2

HTTP/2 was designed to be used with or without encryption
and is identified with h2 (HTTP2 over TLS) or h2c (HTTP2
over TCP) respectively. However, modern web browsers only
implement h212. For the rest of the paper we thus only refer
to h2. h2 must use TLS 1.2 or higher and the compression
of TLS must be disabled [36]. During the handshake, TLS
should be used with the Application-Layer Protocol Negotia-
tion (ALPN) [37] extension to successfully begin a h2 session.
This extension allows an HTTP/2 connection to be set in only
one exchange of enriched hello messages.

A major difference with HTTP/1.1 is the HTTP header
compression which has a dedicated algorithm: HPACK [38].
This algorithm is based on static and dynamic dictionaries
and is resilient to the CRIME attack13, which could give
access to authentication cookies in HTTPS by exploiting data
compression. Finally, the Server Push function allows a server
to anticipate a client need. Before a client claims some content,
the server can predict the future need and send data before
the client request is even received (e.g. CSS file after HTML
page request). Those two last features are core features for
HTTP/2 but they have no direct impact on our classification
work contrary to pipelining and multiplexing features.

The multiplexing provided by HTTP/2 is prone to break
the FIFO processing pattern for requests. There is no more
blocking situation because all requests can be processed, and
answered back, in any order. Each HTTP request and the
related response are sent in a separate stream within the same
connection, as shown in Figure 3(c).

As a result, the request and response for an individual
object cannot be distinguished by monitoring the encrypted
traffic because the packets of a single given HTTP object are
no longer sent in an continuous sequence. This makes our
previous approach [2] ineffective (reported in Section VI-C).

V. DATASETS AND METRICS

A. Data collection overview

We have developed our own crawler to collect traces for
both the training and testing stages of our classification model.
It opens a page at a specific URL on the web-browser and

12https://bugzilla.mozilla.org/show bug.cgi?id=1418832,
https://caniuse.com/#feat=http2, accessed on 06/28/19

13http://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2012-4929

(a) HTTP/1.1
No Pipelining

ti
m
e

C
lie
n
t

S
e
rv
e
r

1

2

3

1

2

3

(b) HTTP/1.1
Pipelining

C
lie
n
t

S
e
rv
e
r

1

2

3

1
2
3

(c) HTTP/2
Multiplexing

C
lie
n
t

S
e
rv
e
r

1
2
3

1
2

3

Fig. 3: Compare HTTP request and response with
different configuration

collects all the packets from the generated traffic in a pcap
file, from which all input and output TLS records sizes are
extracted. The crawler is implemented in Python and use the
Selenium14 library coupled with geckodriver15 in order to
control the Firefox web browser; tcpdump16 is used for the
packet capture.

We assume that only one request, for instance related to
a given searched keyword, is captured at a time on a given
service. Although one could consider that as an ideal and
unrealistic scenario, distinguishing the use of a particular
service is doable. Indeed, HTTPS traffic can be easily detected
based on port number and headers [16]. Then to reconstruct a
flow, Groleat et al. [39] or Xiong et al. [40] propose TCP
reassembling method for HTTPS. Finally, it is possible to
extract a pre-defined service based on IP addresses or domain
names. However, it is known to have a limited applicability
and better techniques exist such as using the TLS SNI field like
in [17] or those already described for website fingerprinting
in Section II.

A first dataset contains exclusively HTTP/1.1 (over TLS
1.2) traces of the Google Images search engine and was used
in our prior work [2]. We remind that the pipelining option of
HTTP/1.1 is not used. Our second dataset includes HTTP/2
(over TLS 1.2) traces for five services: Amazon, Instagram,
Google search engine, Google Images and Google Maps.

To support reproducible research, a sample and a de-
scription of the datasets are available at http://betternet.lhs.
inria.fr/datasets/googleimg/ and at http://betternet.lhs.inria.
fr/datasets/h2classifier/ for HTTP/1.1 and HTTP/2 datasets
respectively. Full access can be provided on demand.

B. HTTP/1 Dataset

For HTTP/1.1, the crawler was configured as follows:
• Client web-browser: Firefox 54.0.1 (64-bit) on Debian 8

(1 dedicated host),
• Browser settings: full screen display with a resolution of

1920×1080, cache disabled and HTTP/2 disabled to force
HTTP/1.1 (TLS version 1.2),

• English version of Google Images (google.com17).

14https://www.seleniumhq.org/
15https://github.com/mozilla/geckodriver
16https://www.tcpdump.org/
17https://www.google.com/ncr for disabling regional redirection

5

TABLE II: HTTP/1.1 datasets

ID Origin of
keywords

Number of
keywords

Captures per
keyword

Average packets
number by trace

Average duration
by trace

data1 Dictionary (en) 10,500 5
1155 pkt/trace 2.94 s/trace

data2
Wikipedia (en)

titles pages 105,000 1

For a realistic evaluation, i.e. in the case of an open world
situation, the objective is to determine whether a new trace is
significantly representative of a monitored keyword (from M)
or not. Hence, some of the testing traces correspond to the
monitored keywords (∈ M), while others represent unknown
user actions (6∈M).

Table II describes the composition of two sets of traces.
A first set of experiments will be exclusively based on a
restricted dataset data1 of 10,500 keywords from the English
Oxford dictionary. It will allow us to assess our technique
in various conditions. A second dataset, made from a larger
scale experiment, extends the first one with 105,000 other
words/expressions from Wikipedia pages titles18 composing
data2. Five traces of each keyword are automatically cap-
tured for data1, four are reserved for training, i.e. to build
meaningful signatures, and one for validation (testing). The
data2 traces will be used to verify whether our signatures are
robust against new unknown keywords (6∈M), i.e. to consider
a large-scale open world case. Thus, it only contains a single
trace per keyword. HTTP/1.1 traffic has been captured during
June and July 2017.

C. HTTP/2 Dataset

Below is the configuration of the crawler for the HTTP/2
dataset:
• Client web-browser: Firefox v.63.0 (64-bit) on Ubuntu

16.04 (different virtual machine with 2 CPU and 4GB of
memory),

• Browser settings: full screen display with a resolution of
1920×1080, cache disabled.

• English version of the different services listed below
We consider the following widely used web services:
• Amazon (https://www.amazon.com): the web market of

the largest retailer in the world.
• Instagram (https://www.instagram.com/): a photo and

video-sharing social network.
• Google Search (https://www.google.com/): the most used

web search engine.
• Google Images (https://images.google.com): a web search

engine for images.
• Google Maps (https://maps.google.com): an advanced

web mapping service.
We built two sets of traces as shown in Table III.

data h2 2000 is composed of 12 traces for each of the 2000
monitored keywords (depending on the service) while a single
trace is captured for each of the 20,000 legitimate keywords to
constitute test traces for the open world scenario. data h2 500
is built from less keywords (500) but with more traces for each
keyword (60 traces), these keywords are a subset of the 2000
monitored keywords. It is a complementary dataset to verify
that our technique does not suffer from over-fitting in Section

18dumps.wikimedia.org/enwiki/latest/enwiki-latest-all-titles-in-ns0.gz

VIII-B1. The traffic was captured on September 17-25 2018
and March 22-28 2019 for data h2 2000 and data h2 500
respectively.

The keywords used for Google and Google Images are the
ones used to create the data2 HTTP/1 dataset from Wikipedia
title pages (en). We searched the different keywords on both
services independently. For Google Maps, a list of French
cities19 and of some big cities in the world20 have been
considered. The city names were selected in a random order
and used in the search field to load the map of the city. Our
Amazon keyword list is built from the dataset of J. McAuley
[41] and specially the metadata file. This file contains a list of
exact product names. Because we want to use the main search
text field as a normal user, we mimic her behavior by selecting
the most frequently 3-grams of words in the mentioned list.
For Instagram, profile names were used. Some of them can be
extracted from the Instagram profile section21. However, many
of them cannot be publicly accessed and have been discarded
or deleted during the capture. Thus, the Instagram dataset is
only based on 1662 profiles and building an extensive dataset
for the open world scenario was not possible in that particular
case. For the sake of clarity, Instagram profiles will be also
referred as keywords in the rest of the paper.

D. Classification metrics

In addition to usual metrics as TPs (True Positives), FPs
(False Positives) and FNs (False Negatives), we introduce the
Wrong Classification (WC) as illustrated in Figure 4.

A Wrong Classification happens when a trace related to the
monitored keyword list is detected as such but the keyword
predicted by our system is wrong. We make the distinction
between TP and WC because our technique can be tested with
two different granularities: to detect a monitored keyword has
been searched without distinguishing that particular keyword
(TP +WC) or to identify exactly the keyword that has been
used (only TP). In the testing dataset, the number of traces
related to a monitored or unknown keyword is denoted as |m|
and |u| respectively. The following relative metrics are thus
computed:

TN

FNTP

FP

Classified as
Monitored keywords

Classified as
Legitimate keywords

TP + FN + WC = |m| TN + FP = |u|

WCMonitored
keywords
(Positive)

Legitimate
keywords
(Negative)

Fig. 4: Metric definition

TPR (True Positive Rate) The probability that a trace from a
monitored keyword is classified as the correct monitored
keyword.

19http://www.nosdonnees.fr/wiki/images/b/b5/EUCircos Regions
departements circonscriptions communes gps.csv.gz

20https://datahub.io/core/world-cities, accessed on June 28 2019
21https://www.instagram.com/directory/profiles/

6

TABLE III: HTTP/2 datasets
data h2 2000 data h2 500

Service Origin Number of monitored /
legitimage keywords

Captures per monitored /
legitimate keyword

Number of
monitored keywords

Captures per
monitored keyword

Amazon J. McAuley [41]

2000 / 20,000 12 / 1 500 60Google
Google Images Wikipedia titles pages (data2)

Google Maps French or international cities
Instagram Social media profiles 1662 / n.a. 12 / n.a. n.a. n.a.

FPR (False Positive Rate) The probability that a trace from
a non-monitored keyword is incorrectly classified as a
monitored keyword.

FNR (False Negative Rate) The probability that a trace from
a monitored keyword is incorrectly classified as a non-
monitored keyword.

WCR (Wrong Classification Rate) The probability that a trace
related to a monitored keyword is classified as another
monitored keyword.

Acc (Accuracy) The ratio of traces that have been correctly
classified independently of their nature (monitored or
unknown keyword).

VI. H1CLASSIFIER: CLASSIFICATION OF HTTP/1 FLOW

A. Rationale
In most web services that deliver a set of images as a result,

like Google Images [2], several thumbnails are returned for a
keyword. The number of thumbnails is not constant for all
requests, but we can reasonably assume several dozens for
each. Also, according to our experiment on Google Images,
the results are indifferent to user profile but might be affected
by some option like safe search (see IX-B). Each thumbnail
is generated from a single image. Due to image compression
techniques with formats like jpeg, the size (in bytes) of the
images highly varies and is independent of the rendered size
(in pixels). As a result, the encrypted size of the thumbnails
differs from one image to another. A keyword is thus as-
sociated with multiple sizes of encrypted images that span
over thousands of bytes. Having two keywords sharing the
same set of image sizes is highly improbable as it is a high
combinatorial problem.

Assuming n the average number of returned thumbnails,
s the number of distinct sizes, sn is the number of possible
sets of thumbnail sizes leading to few collisions among two
distinct keywords. Given a specific keyword and a uniform
distribution of image sizes, a second keyword has a probability

of
1

sn
to be associated with the same image sizes and thus to

generate an identification error. This problem is equivalent to
the birthday problem or paradox [42]. Thus, by considering a
list of k keywords, the probability of a collision between at
least two keywords is:

P (k) = 1− sn !

(sn)k × (sn − k)!

or P (k) ≈ 1− e−
k(k−1)
2×sn

(3)

While this statement needs to be moderated because the
uniformity of the size distribution is not guaranteed, our prac-
tical experiments have proven the viability of using encrypted
thumbnails’ sizes to build a keyword signature.

Using Google Images and 115,500 traces (cf. Table II), each
of them generated from a different keyword, we have evaluated

5000 10000 15000 20000 25000 30000 35000 40000
encrypted thumbnails size (bytes)

0

20

40

60

80

100

%
 o

f t
he

 th
um

bn
ai

ls

Services (60% of possible sizes)
Google Image (6.008)
Instagram (11.285)
Amazon (6.952)

Fig. 5: Cumulative number of thumbnails depending on the size

the average number of thumbnails and the distribution of their
sizes (in bytes). First, around 50 thumbnails per keyword are
loaded (the exact average is 50.58 with a standard deviation
of 12.72). Second, the cumulative distribution in Figure 5
(computed from more than 5,800,000 thumbnails from Google
Images) highlights that 60% of sizes are almost uniformly
distributed (linear portion of the curve). They count for almost
s = 6000 possible sizes. In the worst case, the probability
of having at least one collision with 115,500 keywords is
8.25 × 10−180 using Equation (3). This ultra low probability
demonstrates the validity of using the sizes of thumbnails as
a signature for a given keyword. Assuming a whole English
dictionary of k = 230, 000 words22 and only 10 thumbnails
loaded (n = 10), this probability has a magnitude order of
10−28.

Regarding other web services like Amazon or Instagram,
we observe a similar distribution as shown in the Figure 5.
11,000 and 7,000 possible sizes are linearly distributed for
Instagram and Amazon respectively. This proves the validity of
our method on other services since the Google Images service
is the worst case by having the smallest span in thumbnail
sizes, which leads to a higher probability of collisions by
nature.

B. Refined Model

Like the aforementioned image search services, the page
content of any web-based application depends on user actions
and requests. Therefore, the signature of a service use can be
expressed through the observable characteristics of the HTTP
objects despite the encryption, especially the different sizes.
Indeed, the encrypted size of an object is highly related to
its original size. Thus, we have refined our model based on

22https://en.wikipedia.org/wiki/List of dictionaries by number of
words, accessed on 06/28/19

7

Le
a
rn

in
g

M
o
n
it

o
ri

n
g

Logs

Administrator

Monitored
keywords

Crawler
Internet

H
T
T
P
S

 s
e
rv

ic
e

Users

Traffic capture
signatures

Database of

Classifier

Signature Generator

(a)(a')

(b)

(1)

(2')

(2)

Fig. 6: Global architecture to track HTTPS (HTTP/1.1)
application use

Equation (2), with si the size of each encrypted object from
a trace, as follows:

∀l ∈ L,∃w ∈M : l = 〈w, {s1, . . . , si, . . . , sn}〉
∀s ={s1, . . . , si, . . . , sn},

f(s) =

{
w ∈M
u

(4)

In online shopping websites, products are usually repre-
sented by thumbnails while social networks also use many
images to illustrate text content. Hence, images are often
present in web pages and we thus select images as significant
objects to build signatures for H1Classifier.

C. Methodology

1) Overview: As highlighted in Figure 6, a learning phase
is required so that the administrator can monitor user traffic.
A database of signatures related to the keywords of the
monitored list M is built by the learning module. The list M
is provided by the administrator (1), the crawler then requests
each keyword, a given determined number of times (5 times
per monitored keyword for data1), on a service (an image
search engine in our case) (2) while the traffic is captured (2’).
A profile from the traces related to a unique keyword (details
in Section VI-C2) is then derived by the signature generator.

When a user accesses the search engine (a), the traffic (a’)
is captured and the part related to the loading of web objects
is extracted. Data are then sent to the classifier (b) which is
in charge of determining if a match exists with a signature
from the database built during the learning stage (details in
Section VI-C3). Then, the results of the classification engine
can be used to raise alerts to the administrator in case of policy
violation.

2) Signature generation: As discussed in Section VI-A the
thumbnails’ sizes are representative of a searched keyword.
However, the HTTP answer containing the thumbnails also
includes the HTTP response header whose size can slightly
vary. Hence, relying on exact sizes is irrelevant. Thus, the
designed method, H1Classifier, has to catch the variable sizes
of the thumbnails and to automatically learn this variation
when multiple samples are collected.

In this paper, we leverage the Kernel Density Estimation
(KDE) technique [43]. Assuming a distribution for the thumb-
nail sizes of a keyword, KDE estimates the density function.
Unlike Gaussian mixture models, KDE is non-parametric in
the sense that it does not assume any specific type of the

underlying probability function. Hence, the derived density
function represents a signature of a keyword and any set of
thumbnail sizes can be tested against to verify whether it
matches. Let X = (x1, ..., xn) be a random distribution, K a
kernel function and h the bandwidth parameter of the kernel,
the density function is estimated as follows:{

R → [0, 1]
y 7→ 1

nh

∑n
i=1K(y−xi

h)
(5)

The bandwidth parameter sets the span of the smoothing of
the density function around the provided sample points.

The smoothing shape is determined by the kernel function,
which must fulfil some requirements:

Definition K : R→ R+

Normalization
∫ +∞
−∞ K(y) dy = 1

Symmetry ∀y ∈ R : K(−y) = K(y)

In our context, a distribution is composed of all the n
thumbnail sizes si for a searched keyword k. As we have no
prior assumption on data, we use an uniform kernel function
defined in Equation (6):

K(y) =
1

2
if | y |≤ 1 else 0 (6)

Assuming Equations (5) and (6), the signature function,
denoted σw, is thus defined regarding the distribution of
encrypted objects’ sizes (i.e. the encrypted thumbnails’ sizes:
si):

σw(y) =
1

nh

n∑
i=1

(
1

2
if | y − si |≤ h else 0) (7)

Our database of signatures D is thus composed of all
estimated density functions: D = {σw, w ∈M}

3) Classification engine: According to Equation (4),
H1Classifier processes a list of object sizes and should return
a searched keyword w from the list M or u (for “unknown”)
in case the keyword was not in the monitored keyword list.
The whole process is split into three parts: the extraction of
thumbnail sizes, the signature scoring and the result filtering.

Considering the full packet capture of a single requested
keyword, extracting the HTTP object size requires first to
delimit the HTTP object in the encrypted payload. As no
pipelining is available by default on modern web browser
with HTTP/1.1 version23, we know that, between two client
requests sharing the same TCP connection, there are only
packets corresponding to the HTTP response (header + pay-
load) of the server [44], hence referring to a single HTTP
object.

Therefore, by analysing the TCP and TLS headers, a list of
sizes for all the encrypted HTTP requests and the correspond-
ing responses can be determined.

By building the distribution of the request sizes we can
empirically determine the request sizes related to thumbnails
as they are the most frequent ones and so filter the returned
objects’ sizes to keep only the ones related to thumbnails.

23https://developer.mozilla.org/fr/docs/Web/HTTP/Connection
management in HTTP 1.x, accessed on 06/28/19

8

0.000 0.005 0.010 0.015 0.020 0.025 0.030
False Positive Rate

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00
Tr

ue
 P

os
iti

ve
 R

at
e

bandwidth : 16

Monitored keywords / Total testing traces
 1050 / 10500 (10%)
 1050 / 105000 (1%)
 10500 / 105000 (10%)

Fig. 7: ROC curve with different datasets assuming α varies

Actually, such an analysis has to be done for each monitored
service. The classifier has thus as input a list of thumbnail
sizes 24 for the trace subsequent to a queried keyword. This
list is denoted as s = {s1, . . . , si, . . . , sn}.

The scoring consists in computing a single score for each
signature (density function) of the database D. For each σw ∈
D, the score is calculated by evaluating the density of each
size si with the function σw and summing over all results:

scw(s) =

n∑
i=1

σw(si) (8)

A naive classifier would select the keyword associated with
the maximum score. However, the classifier may decide that a
keyword is unknown as highlighted by u in the classification
function in Equation (4). The main issue is that there is no
signature for u and so a maximum score can not be calculated
for an unknown keyword. H1Classifier avoids as much as
possible false positives and prefers to raise an unknown value
if the confidence in the score is too low. Assuming the full
list of calculated scores Ls, for a given capture, s, of image
sizes, the maximum score is considered as relevant only if it
reaches a threshold calculated from the mean, mean(Ls), and
the standard deviation, std(Ls):

wmax =argmax
w∈M

scw(s)

f(s) =

{
wmax if scw(s) > mean(Ls) + α× std(Ls)
u otherwise

(9)

The filtering parameter α multiplied by the standard devia-
tion defines the minimum deviation from the mean.

D. Large-scale Open World experiment HTTP/1.1

This section summarizes the results obtained by our
HTTP/1.1 identification framework [2]. This prior work no-
tably includes a full evaluation of parameter settings. In this
paper, we consider the best bandwidth parameter h = 16
(determined in [2]).

Figure 7 reports the results depending on the number of
monitored keywords and the ratio of the latter over the total
number of keywords used for testing. The ROC curve is

24for the rest of the paper we note the thumbnails’ or images’ sizes refer
to the encrypted HTTP responses’ sizes related to the thumbnails

calculated varying the filtering threshold α that determines if
a trace belongs to a monitored keyword or not based on the
obtained classification score.

With 10% of monitored keywords (1050 from data1
dataset), we observe that it is possible to achieve TPR =
0.968 and FPR = 0.001. By considering more non-monitored
keywords from the data2 dataset and decreasing the ratio
of monitored keywords to 1%, no major difference can be
observed (curve 1050/105,000). Hence, our classification ap-
proach to profile user actions is robust against the noise
induced by the traces of non-monitored keywords, so the
signatures remain valid even when many legitimate requests
occur (using allowed keywords). An update of the signature
database is actually necessary when the list M is updated (new
keywords added) or for trending keywords which results may
change over time.

However, when the amount of monitored keywords
increases, in our case with 10,500 keywords (curve
10,500/105,000 that represents both the full data1 and data2),
a degradation of the classification performance is observed due
to more collisions between signatures. Because the similarities
between signatures from different keywords is very low, the
degradation is highly limited. Figure 7 shows that the number
of TPs decreases by around 2%. Meantime, the number of
FPs slightly increase by 0.5%. Actually, as reported in Table
IV, the maximum accuracy is 0.9918 with TPR = 0.966 and
FPR = 0.0056.

VII. CLASSIFYING HTTP/2 FLOW WITH H1CLASSIFIER

This section presents the limitation of the previous method
when applied to HTTP/2 traffic. We will first present features
for the encrypted object sizes. Then, H1Classifier will be tested
and discussed with real HTTP/2 traffic.

A. Finding equivalent features

The first problem is to find equivalent features to the image
sizes. Applying the HTTP/1 classifier with all the TLS record
sizes is impossible because the loading of individual objects
cannot be distinguished anymore as noticed in Section IV-C.
In order to adapt our prior HTTP/1.1 method to HTTP/2, new
equivalent features must be thus defined.

The TLS fragmentation still leaks information about the
size of objects. Considering a large object (e.g. an image)
in the TLS input buffer (at the server side), it is first split
into n + 1 fragments, with the first n ones having the same
size MAX RECORD SIZE (MAX RECORD SIZE is lower
or equal to 214 and depends on the web server configuration).
However, the last block contains the remaining bytes with a
very low probability to be equal to MAX RECORD SIZE.

As no compression is performed at the TLS layer, the size
of this last block depends directly on the content in the input
buffer. Therefore, records’ sizes with low frequency can be
considered as relevant, i.e. representing objects sizes, by their
remaining bytes, that are quite distinct from others. We remind
the reader here that all objects can be mixed and so received
successive MAX RECORD SIZE bytes blocks can be from
different objects.

9

TABLE IV: Results: KDE-based method, HTTP/1.1, large dataset (data1 & data2 with 10,500 monitored / 105,000 unknown)
1 4 16 50 1 4 16 50 1 4 16 50 1 4 16 50

α
h

TPR FPR Accuracy WCR
3.5 0.820 0.979 0.986 0.927 0.1042 0.0908 0.0811 0.0739 0.8889 0.9207 0.9250 0.9262 0.017 0.001 0.001 0.001
3.9 0.814 0.973 0.980 0.790 0.0219 0.0201 0.0162 0.013 0.9631 0.9788 0.9834 0.9691 0.004 0 0 0
4.1 0.805 0.965 0.966 0.557 0.0052 0.0069 0.0056 0.0026 0.9775 0.9884 0.9918 0.9574 0.001 0 0 0
4.25 0.780 0.932 0.871 0.170 0.0009 0.0038 0.0026 0.0003 0.9792 0.9857 0.9858 0.9242 0
4.35 0.448 0.253 0.009 0 0 0.0004 0 0 0.9498 0.8762 0.9099 0.9091 0

Based on Equation (1), we can reconstruct the sequence
of TLS records’ sizes and only keep the relevant val-
ues, i.e. sizes with a frequency lower than a threshold
frequency threshold. It will also exclude very common
sizes due to non discriminative objects that are loaded in many
pages.

The threshold is defined as the product of the average
frequency (count on our full dataset) and a factor, β, to be
empirically determined.

frequency threshold = β ×mean(all sizes frequency)
(10)

B. Closed World experiment HTTP/2

To evaluate KDE-based signatures when applied to HTTP/2,
we assume a best case with a closed world assumption as
all keywords are known and monitored. As expected, the
classification is very less effective than for HTTP/1.1 and
would be even worse in case of an open world evaluation.
This last scenario is thus not considered when using the
KDE approach for HTTP/2 (but will be evaluated with the
H2Classifier in Section VIII-B). Moreover, for a fair compar-
ison with HTTP/1.1, only 5 random traces are kept for each
keyword composing the HTTP/2 dataset (see Section V-C).

In the following evaluation, we are particularly interested
in the impact of the parameter tuning, i.e. h the bandwidth
parameter of KDE, and β the filtering frequency used to
discard non relevant TLS record sizes. Table V summarizes the
results obtained with the best values found for the parameters
based on 5 independent evaluations. As highlighted, the best
value is h = 0.5. Hence, the variability of encrypted sizes for
the same content is lower for HTTP/2. However, the optimal
value of β depends on the service showing also the necessity
to optimize the parameters for each service to be monitored.

As shown in table V, results are only acceptable for Google
Images and Maps.

C. Limitations by design

We describe here the limitations of the HTTP/2 signature
model leading to the poor results obtained in the previous
section. First, the TLS input buffer may not only contain the
data of a single HTTP object. It can contains other HTTP
data frames or other types of frames too. When fragmentation
happens, different frames (and so objects) can also be merged
together in the same record. Figure 8 shows an example

TABLE V: HTTP/2 KDE results closed world (mean 5 evaluation)
Source Amazon Instagram Google Google Images Google Maps
β, h 1, 0.5 0.5, 0.5 0.1, 0.5 1, 0.5 1, 0.5

Accuracy 0.8475 0.5865 0.259 0.9914 0.924
Accuracy std 0.0076 0.0052 0.0071 0.0013 0.0137

Input
Buffer

TLS
Frag.

Object 1

Input
Buffer

TLS
Frag.

Object 1 Object 2

x x x

x x x x y'

y

Fig. 8: Fragmentation with different numbers of
object in the input buffer

when the buffer contains one or two objects. As a result,
the remaining sizes used as features may be representative
of the remaining bytes of an aggregation of several objects.
The sizes of objects are collected with a coarser granularity,
that logically degrades the performance of the classification.
In addition, there is no guarantee that the same objects are
always merged together in a TLS record. That is why more
traces would be necessary to collect the traces representative
of different object aggregations.

Second, the MAX RECORD SIZE value varies from one
web service to another and over the connection time as
explained in [45]. Actually, some services may limit the
MAX RECORD SIZE value during connection setup and
increase it later over time to be aligned with the TCP slow
start. MAX RECORD SIZE values impact on two different
parameters. On the one hand, it defines the range of the
possible sizes and so the number of collisions when building
the KDE signatures as explained in Section VI-A. On the other
hand, the larger the MAX RECORD SIZE value, the higher
the probability to have multiple merged objects in the TLS
buffer.

To summarize, the main problems are the aggregation of
objects due to multiplexing and a lower span in size values,
both leading to more collisions when building signatures with
KDE.

D. Discriminating factor of the signatures

To demonstrate our previous observation in practice, we
evaluated the discriminating factor of the signatures, i.e. quan-
tify how much a single signature is representative of a single
keyword. A pair-wise dissimilarity between the signatures is
so calculated. As the signatures are functions, the dissimilarity
of two signatures can be evaluated by calculating the area
between the curves of these two functions:

φ(w1, w2) =

∫ ∞
0

| σw1(x)− σw2(x) | dx (11)

where σw1
and σw2

are the signature functions of the
keywords w1 and w2 respectively.

The dissimilarity score φ is between 0 and 2 because ∀w :∫∞
0
σw(x) dx ≤ 1 as σw is a density function as described in

10

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Dissimilarity score

different keywords

same keywords

Fig. 9: Dissimilarity of the signature function for HTTP/1.1

Sa
me (

Amazo
n)

Diffe
ren

t (A
mazo

n)

Sa
me (

GG Map
s)

Diffe
ren

t (G
G Map

s)

Sa
me (

GG Im
g.)

Diffe
ren

t (G
G Im

g.)

Sa
me (

Ins
ta.

)

Diffe
ren

t (I
nst

a.)

Sa
me (

GG)

Diffe
ren

t (G
G)

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Di
ss

im
ila

rit
y

Fig. 10: Dissimilarity of the signature function HTTP/2

Section VI-C2. The higher the score, the lower the similarity
between the signatures.

Due to the intensive pair-wise comparison, 1000 keywords
were randomly selected before applying Equation (11). We
compare the dissimilarity computed between two signatures
from the same keyword (built from different traces) and
between two signatures from different keywords. Figure 9
reports the result for HTTP/1.1. As shown, signatures are
highly discriminative among two different keywords because
there is no overlap between the dissimilarity scores of the
signatures from the same and from different keywords, even
for the extreme scores. In addition, the dissimilarity for a
same keyword is a bit more scattered. This is because the
object responses do not have always the exact same size in
the encrypted domain as explained in Section VI-C2, even for
the exactly same request. Using multiple traces allows us to
smooth the variations in our signature generation thanks to
KDE.

For the HTTP/2 in Figure 10, some services, such as Google
Images and even Google Maps, exhibit disjointed dissimilarity
scores when assuming the same or different keywords while
other services show a high overlapped in computed scores.
This is fully aligned with the previous results given in Section
VII-B.

E. A need for another classification technique

Our KDE-based technique introduced with our previous
work for HTTP/1.1 [2] is not so appropriate for HTTP/2
for the following reasons. First, the bandwidth h set to 0.5
shows that TLS record sizes do not vary (for a same keyword)
as much as for HTTP/1.1. One reason of using KDE, was
indeed to smooth these variations. Second, a new parameter
(β) has been introduced and depends on the monitored service,
reducing so the practicability of the approach. Third, because
the HTTP/2 multiplexing avoids to distinguish individual
requests and loaded objects, we cannot reconstruct the entire
size of these objects. More values are thus used to build the
KDE signatures reducing its computational efficiency for both

learning and testing (as the resulting calculation in Equation
5 always depends on all original samples used for learning).
Finally, the TLS records’ sizes we rely on have been filtered
a priori despite they could contain relevant information for
classification purposes. However, taking all of them, including
high frequency sizes, leads to degrade results as well.

VIII. H2CLASSIFIER: HTTP/2 CLASSIFICATION
REFINEMENT

Due to the aforementioned limitations, the model was
extended by including additional features. Because the KDE
method does not fit with multivariate models, we rely on
a multi-class classification machine learning algorithm for
HTTP/2. Although there are multiple candidates (neural net-
works, naive bayes, support vector machines, decision trees,
etc.), we leveraged random forest as it has been proved to
provide good results in many traffic analysis problems even
in earlier works on HTTPS classification [17]. Furthermore,
as demonstrated in the following section, results are very
satisfactory.

The random forest learning technique [46] builds an ensem-
ble (call ’forest’) of decision trees, each one based on a random
part of the training data. For classifying a new data sample,
each tree gives the resulting label and the most selected label
(among all decision trees) will be returned by the algorithm.

As five services are considered, five independent sets of
decision trees (i.e. five forests) are learned. Each of them is a
classifier predicting the following classes:
• one class for each monitored keyword;
• one unknown class for the other keywords. It corresponds

to legitimate traffic that should not raise any alert. This
class mixes traces from different keywords and could
be assimilated to noise. Such a methodology has been
successfully leveraged in [10] to analyse anonymized
network traffic.

The H2Classifier25 prototype is based on Python scikit-
learn, which implements the CART (Classification And Re-
gression Tree) decision tree algorithm.

A. Features extraction

As input of the random forest algorithm, a trace is repre-
sented as a vector of values. We voluntary exclude all time-
based features to reduce the impact of the network environ-
ment (connection stability and latency) on the classification.
We consider features usually described in related work about
(encrypted) traffic classification, but also new features to fit
with HTTP/2 protocol. The final vector of features is presented
in Figure 11 and detailed hereafter.

1) Usual features from related work: We have selected
some of the features used for encrypted traffic analysis [7],
[10].

(a) Connection statistics (3 features): Number of incoming
and outgoing TLS records, total number of bytes exchanged
at the TLS layer.

25https://gitlab.inria.fr/pbrissau/h2classifier.git

11

incoming records
outgoing records

sum all records size
min burst
max burst
std burst
mean burst
median burst

...

1th less frequent size (in)
2nd less frequent size (in)

20th less frequent size (in)

...

record of size 1

...

...

different record sizes (in)
different record sizes (out)

record of size 2

record of size 18,432

...

Outgoing size
frequency

Incomming size
frequency

1

2

3

4

5

6

7

8

9

13

14

15

16

17

...

35

36

55

56

57

...

18,487

36,919

18,488

20 less used
records sizes (in)

20 less used
records sizes (out)

Count of
different sizes

Burst method 2

Burst method 1

Connection
statistics

(a)

(b)

(c)

(d)

(e)

Fig. 11: H2Classifier features

(b) Burst statistics (10 features): Two methods have been
defined to measure the burst of incoming packets (from the
server). First, we collect the amount of data sent by the
server between two consecutive packets sent by the client.
The different observed values are stored in a list from which
we extract the minimum, maximum, standard deviation, mean
and median. The second method to evaluate the burst of data
sent by the server counts every 20 TLS records the number of
records sent by the server. The same statistical properties are
then derived.

(c) Number of different sizes (2 features): For the
incoming and outgoing data, this feature is the number of
different TLS records’ sizes encountered.

2) Other features: In order to fit with the particularity of
HTTP/2, we extend the previous feature set with the following
ones:

(d) Top 20 most representative sizes of TLS records
(2×20): based on the rationale presented in Section VII-A,
the 20 TLS record sizes with the lowest frequencies, from
input and output packets, are extracted as features. They thus
compose a set of 40 individual values (size in bytes) in our
vector-based representation of the trace.

(e) Size distribution (up to 2×18,432): it corresponds to all
TLS record size frequencies for both the request and response.
To have fixed-size vector for all traces, one could consider all
potential TLS record sizes. As explained in Section VII-A
the largest possible size is 214 = 16, 384 + 2048 bytes for a
record. While it is a theoretically highly dimensional vector, in
practice, most values are never observed and so not considered
as a feature. Finally, the number of effectively used sizes (for
both directions) is for example 28,699 for Amazon, 5073 for
Instagram, 2165 for Google, 14,769 for Google Images and
17,710 for Google Maps.

B. Evaluation
To perform the evaluation we first fit the model by tuning

both the hyperparameters and the model parameters. Then we
test the H2Classifier with the selected parameters and assess
the classification performance.

1) Hyperparameters tuning: model fitting is based on a
5-cross validation. To avoid over-fitting, we need to have a
large number of samples for the learning. data h2 500 is thus
adequate with 60 traces per keyword. For this first step we only
use 52 traces, the other 8 traces are reserved for model param-
eters tuning (4/8) and testing phases (4/8). As data h2 500
only provides monitored keyword traces, data h2 2000 is
also used for providing legitimate keyword traces. We note
that unknown keywords form a single class. Individual traces
of such keywords must be used jointly to build this class
rather than collecting multiple traces of the same unknown
keyword. We thus consider 200 random traces of legitimate
keywords from data h2 2000 to be representative of this class
for learning purpose.

In Figure 12(a), accuracy is the mean of the 5-cross val-
idation. The maximum tree depth and the number of trees
vary between 30 and 70 and between 50 and 500 respectively.
For the sake of clarity, the curve for the maximum depth is
not always reported. However, no noteworthy improvement
can be obtained with a depth higher than 50. According to
Figure 12(a), using more than 400 trees is not beneficial
whereas it increases the size of the model by design, and so
leads to a higher runtime. We thus set the number of trees
as 400 and the maximum depth as 50 for the rest of our
evaluation.

2) Model parameters tuning: our goal is to evaluate the
impact of the model parameters on accuracy. These parameters
are the number of legitimate traces and the number of features
to use for training. For learning the monitored keywords, we
use all the 52 traces of data h2 500 (for each keyword) from
the previous step. Legitimate traces (from unknown keywords)
are selected from data h2 2000. The evaluation traces for the
monitored keywords are composed of four unused traces (4 of
the 8 traces remaining for each of the 500 monitored keywords,
so 2000 traces in total) from data h2 500. The evaluation
traces for the legitimate keywords are 5000 unused traces
of legitimate keywords (each trace is related to a different
keyword) captured in data h2 2000.

The results highlighted in Figure 12(b) correspond to the ac-
curacy calculated over the evaluation traces when the number
of legitimate traces used for the training vary between 50 and
200. In the figure, accuracy is stable for Google Maps, Amazon
and Google. Hence, identifying user actions for these services
do not require a huge number of traces for learning. However,
we observe a strong growth when increasing this number
up to 80 and a slight improvement between 80 and 130 for
Google images. To keep our technique as generic as possible,
we consider 130 as the appropriate number of traces from
legitimate keywords to be used for learning independently of
the targeted services.

Another important aspect of H2Classifier is the number of
useful features to be used. While a full set has been defined,
it is possible to reduce this set and thus the complexity of

12

TABLE VI: Final results for H2Classifier
(The values are the mean of 5 evaluations, Standard deviation is not specified because always under 0.3%)

Dataset data h2 500 + partial data h2 2000 Full data h2 2000
Source Amazon Google Google Images Google Maps Amazon Google Google Images Google Maps Instagram

TPR 0.949 0.896 0.975 0.964 0.838 0.645 0.987 0.927 0.938
TNR 0.986 0.999 0.998 1 0.995 0.999 0.999 1 n.a.
FPR 0.066 3.8.10−3 0.011 0 0.053 3.10−3 5.10−3 0 n.a.
FNR 0 0 0 0 3.10−5 1.10−4 1.10−4 0 n.a.
WCR 0.050 0.103 0.024 0.036 0.161 0.354 0.011 0.073 n.a.

Accuracy 0.981 0.982 0.994 0.994 0.981 0.967 0.998 0.993 0.938

the classifier and the risk of over-fitting. To achieve that,
we compute the importance of each feature for the classifier
(based on the Gini criterion). Each feature has a score between
0 and 1; the higher the score, the more important the feature.
Figure 12(c) is based on varying the number of the most
important features that are kept. While there are some subtle
differences between services, there is no major observable
improvement for any of them with more than 300 features.

3) Testing: through the previous experiments, H2Classifier
can be properly tuned (number of trees, maximum depth,
features and number of legitimate traces). Although accuracy
is a synthetic metric to assess the impact when parameters
vary, Table VI shows more detailed results considering the
parameters inferred previously (130 traces to model the legit-
imate traffic, 400 trees, a maximum depth of 50 and limiting
the number of features to 300).

The results presented in this section were obtained consider-
ing an open world situation (except for Instagram as explained
in Section V-C). As a reminder, the problem to address is
to detect whether a trace has been generated by a monitored
keyword or not, and to possibly identify this keyword. All
the traces were collected with a real web-browser and we did
not apply any filtering on traces before the classification. Thus,
these traces are representative of real applications, and so may
be erroneous because of connection issues for example.

The first experiment reported in the left part of the Table VI
relies on the training set derived from data h2 500 and
data h2 2000 (see model parameters tuning). The testing
set is composed of the last four traces of data h2 500 per
keyword (i.e. 2000 traces) as well as 10,000 traces from
legitimate keywords of data h2 2000, which have not been
used yet. The second experiment (right part of Table VI) is
performed with the full dataset (data h2 2000) always with
the previously tuned parameters. In this experiment a single
random trace of each monitored keyword is used for the

testing. Additionally 20,000 traces for the legitimate traffic
except the 130 traces randomly selected for the training are
added to the testing set.

On the one hand, a major difference between the two
experiments is about the TPR. Except for Google Images,
which has a slightly better result with the large dataset, the
results are better for the smallest one. It is due to the number
of traces available in each dataset (12 vs 52) and the number of
different classes (500 vs 2000), that make thus the prediction
problem more difficult with the large dataset. It is confirmed
by the WCR values showing the same trend.

On the other hand, our model is really efficient in order to
detect a monitored keyword. Indeed the FNR is often null or
at least very low for every service while the TPR is quite high
even with the large dataset. The major exception is for Google.
It is explained by a rather limited variability in objects loaded
as the requests mostly return text and hyperlinks only. FPR
is also very low in most of cases. However, for the Amazon
service, the FPR is not negligible as it is between 5.3 and
6.6% contrary to the other services (0-1.1%).

The Instagram service has been evaluated in a closed world
situation. With a TPR of 93.8%, the results are aligned with
the other observations.

Finally, the high scores achieved by our solution for both
datasets regarding our accuracy metrics prove the efficiency
of H2Classifier for its envisioned application.

IX. DISCUSSION

A. Temporal evaluation

Because web content evolves over time, models learned
by Random Forest would be obsoleted after a certain period
of time. Moreover, the service itself might be updated (e.g.
how the content is loaded and pre-fetched). As a result, the
traces produced by the same page might differ. In our case,
the HTTP2 datasets have been collected with a 6 months

(a) Results of the 5-cross-validation
(eval. number tree and max. depth)

50 100 150 200 250 300 350 400 450 500
number of trees

0.75

0.80

0.85

0.90

0.95

1.00

ac
cu

ra
cy

Services
Amazon
Google
Google Images
Google Maps

Max tree depth
30
50
70

(b) Evaluation of the number of traces need
for the training of the legitimate class

60 80 100 120 140 160 180 200
number of legitimate traces (training)

0.95

0.96

0.97

0.98

0.99

1.00

ac
cu

ra
cy

Service
Amazon
Google
Google Images
Google Maps

(c) Evaluation of the number of feature
based on the accuracy

100 200 300 400 500
number of features used

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

Service
Amazon
Google
Google Images
Google Maps

Fig. 12: Parameters evaluation

13

TABLE VII: Environment Impact Results
(5 experiments mean)

Options Default F1A F1B F2 F3 G1
Acc. 1 0.62 0.58 0.63 0.04 0.46
Std. 0 0.02 0.09 0.03 0 0.04

Options G2A G2B G3A G3B G4A G4B
Acc. 0.13 0.07 0.49 0.09 0.07 0.64
Std 0.03 0.02 0.02 0.01 0.01 0.03

difference. Leaning the model with data h2 500 to detect
monitored keywords present in data h2 2000 leads to poor
results that are out of any practical application. While it
confirms our expectation, the learning is very efficient as only
5 minutes are necessary to build the model for 500 keywords.
Crawling services and updating frequently the models can be
thus easily automated. In our future work, we will investigate
the period of time a model remains valid.

B. Configuration Impact

The configuration of the service or the web browser impacts
on the loaded content and so probably on the H2Classifier
accuracy. We consider the following possibilities:
• Firefox options:

– User Agent26 Firefox (default), Android (F1A) or Sa-
fari (F1B).

– Firefox languages: French (default) or German (F2).
– Screen resolution: FullHD (default), HD (F3).

• Google Images options:
– Safe search: deactivate (default), activate (G1).
– Image size criterion: all images (default), filtering large

images (G2A) or small images(G2B).
– Image colours criterion: all images (default), images

with colour (G3A) or black and white images (G3B).
– Date criterion: no date filtering (default), last week

(G4A) or last year (G4B) filtering.
For this experimentation, we captured traces of 25 keywords

on Google Images (50 times) for each of the configurations
above. Those 25 keywords have been randomly selected from
the set of keywords used in data h2 500. This dataset is
leveraged for learning purposes while our objective is to
evaluate the ability of our technique to classify the new traces
generated by the different configurations. The results shown in
Table VII highlight different cases. Traces produced by some
configurations (like F1A, F2 or G4B) can be classified to some
extent but with a significant decrease of the accuracy. However,
in other cases, the classification becomes totally ineffective
(like F3, G3B or G4A) exhibiting an accuracy below 0.1.
This drawback can be mitigated by using a mix of different
configurations as learning traces or by creating a class for
each couple keyword-configuration (and so learn the model
accordingly). The impact of the environment can also depend
on the keywords. For example the safe-search option only
impacts very specific keywords.

26Mozilla/5.0 (X11; Ubuntu; Linux x86 64; rv:63.0) Gecko/20100101
Firefox/63.0 ; Mozilla/5.0 (Linux; Android 7.0; PLUS Build/NRD90M)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/61.0.3163.98 Mobile
Safari/537.36 ; Mozilla/5.0 (Macintosh; Intel Mac OS X 10 14 4) AppleWe-
bKit/605.1.15 (KHTML, like Gecko) Version/12.1 Safari/605.1.15

During the crawling, we deactivated the cache to avoid
altering page content based on historic activities. However, if
a user visits a cached page of a monitored keyword, the latter
has been already detected on the first load. Furthermore, the
cache induced by another page is limited because the content
generated by two different requests are often very different.

Finally, although our experimentation relies on traffic pro-
tected by TLS 1.2, the solution is compatible with TLS 1.3
because the record layer, which is leveraged by our method,
did not evolve from 1.2 to 1.3.

C. Resources consumption

Assuming the dataset with 500 keywords, data h2 500,
we consider in this section the resources consumption of
H2Classifier. There are two important metrics. First, the
size of the learned model needs to be kept in memory.
It corresponds to the trees, which have been constructed.
Second, the time to test a trace that measures the ability to
analyze a new trace, assuming in our case a 3.2GHz CPU.

TABLE VIII: Memory and time consumption of the algorithm
Service Google Google Images Google Maps Amazon

Memory used for
learning (in GB) 21.5 3.2 5.4 8.5

Time for testing (per
trace in ms on 1 CPU) 15.1 110 18.9 18.9

The results are presented in Table VIII. We notice that
the amount of memory used for the different services highly
differs especially for google search engine. It is due to a
lower heterogeneity in content sizes returned by google search
compared to a page full of images (for example with Google
Images). Therefore, to make distinction between pages, every
single feature is subject to numerous conditional tests, know-
ing that our implementation with scikit-learn allows creating
multi-variable conditions at each node of the decision trees.

X. CONCLUSION

This paper proposes a solution to classify different user
actions when using a web service over TLS. In this paper,
user actions mainly refer to, but are not limited to, key-
word searches with a particular engine. Based on our prior
work on HTTP/1.1 over TLS [2], we introduced the main
differences introduced with HTTP/2 that particularly impact
the classification methodology. We thus described our new
solution H2Classifier, which addresses the HTTPS protocol
when referring to HTTP/2 over TLS. The core idea resides in
combining well-known features from related work and a new
set of features reflecting the content that is downloaded when
accessing a web page, i.e. the significant objects that compose
the latter. Our results highlight the viability and the practicabil-
ity of our technique with five widely used web services using
large realistic datasets, which are made publicly available to
support reproducible research. The achieved overall accuracy
is between 94% and 99% depending on the monitored services.

To summarize, H2Classsifier is a service-agnostic method,
which is able to efficiently analyze HTTP2 traffic to identify
predefined user actions.

14

Although user actions are atomic operations, they can
support a behavioral (i.e. multi-steps) modeling to provide
advanced security policy verification. For example, denying
an access to a service could be envisioned if a user repeats
inappropriate actions. It will thus reduce the effect of false
positives. Therefore, our future work will be focused on user
behavior modeling over HTTP/2, supporting the different user
configurations and automating the update of the classifier to
maintain its efficiency over time.

ACKNOWLEDGEMENT

This project has received funding from the European Unions
Horizon 2020 research and innovation programme under
grant agreements No 830927 (project CONCORDIA) and No
830892 (project SPARTA). We thank the High Security Lab
(https://lhs.loria.fr) for hosting our dataset an J. McAuley
providing valuable metadata for building our experimenta-
tion [41].

REFERENCES

[1] E. Rescorla, “Http over tls,” RFC 2818, 2000.
[2] P.-O. Brissaud, J. François, I. Chrisment, T. Cholez, and O. Bettan, “Pas-

sive monitoring of https service use,” in 14th International Conference
on Network and Service Management (CNSM). IEEE, 2018.

[3] D. Wagner, B. Schneier et al., “Analysis of the ssl 3.0 protocol,” in The
Second USENIX Workshop on Electronic Commerce Proceedings, 1996.

[4] H. Cheng and R. Avnur, “Traffic analysis of ssl encrypted web brows-
ing,” 1998.

[5] Q. Sun, D. R. Simon, Y.-M. Wang, W. Russell, V. N. Padmanabhan, and
L. Qiu, “Statistical identification of encrypted web browsing traffic,” in
Security and Privacy. IEEE, 2002.

[6] A. Hintz, “Fingerprinting websites using traffic analysis,” in Interna-
tional Workshop on Privacy Enhancing Technologies. Springer, 2002.

[7] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, “Website finger-
printing in onion routing based anonymization networks,” in Proceedings
of the 10th annual ACM workshop on Privacy in the electronic society.
ACM, 2011.

[8] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching from a
distance: Website fingerprinting attacks and defenses,” in Proceedings of
the 2012 ACM conference on Computer and communications security.
ACM, 2012.

[9] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg, “Effective
attacks and provable defenses for website fingerprinting.” in USENIX
Security Symposium, 2014.

[10] J. Hayes and G. Danezis, “k-fingerprinting: A robust scalable website
fingerprinting technique.” in USENIX Security Symposium, 2016.

[11] M. Liberatore and B. N. Levine, “Inferring the source of encrypted http
connections,” in Proceedings of the 13th ACM Conference on Computer
and Communications Security. ACM, 2006.

[12] D. Herrmann, R. Wendolsky, and H. Federrath, “Website fingerprinting:
attacking popular privacy enhancing technologies with the multinomial
naı̈ve-bayes classifier,” in Proceedings of the 2009 ACM workshop on
Cloud computing security. ACM, 2009.

[13] L. Lu, E.-C. Chang, and M. C. Chan, “Website fingerprinting and
identification using ordered feature sequences,” in Computer Security
– ESORICS 2010, D. Gritzalis, B. Preneel, and M. Theoharidou, Eds.
Springer Berlin Heidelberg, 2010.

[14] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy, “Blindbox: Deep
packet inspection over encrypted traffic,” in ACM SIGCOMM Computer
Communication Review. ACM, 2015.

[15] Y.-H. Lin, S.-H. Shen, M.-H. Yang, D.-N. Yang, and W.-T. Chen,
“Privacy-preserving deep packet filtering over encrypted traffic in
software-defined networks,” in Communications (ICC). IEEE, 2016.

[16] P. Velan, M. Čermák, P. Čeleda, and M. Drašar, “A survey of methods
for encrypted traffic classification and analysis,” International Journal
of Network Management, 2015.

[17] W. M. Shbair, T. Cholez, J. Francois, and I. Chrisment, “A multi-
level framework to identify https services,” in Network Operations and
Management Symposium (NOMS). IEEE, 2016.

[18] A. Pescape, A. Montieri, G. Aceto, and D. Ciuonzo, “Anonymity
services tor, i2p, jondonym: Classifying in the dark (web),” IEEE
Transactions on Dependable and Secure Computing, 2018.

[19] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic, “Robust smart-
phone app identification via encrypted network traffic analysis,” IEEE
Transactions on Information Forensics and Security, Jan 2018.

[20] M. Conti, L. V. Mancini, R. Spolaor, and N. V. Verde, “Analyzing
android encrypted network traffic to identify user actions,” IEEE Trans-
actions on Information Forensics and Security, Jan 2016.

[21] J. Liu, Y. Fu, J. Ming, Y. Ren, L. Sun, and H. Xiong, “Effective and
real-time in-app activity analysis in encrypted internet traffic streams,”
in Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 2017.

[22] B. Saltaformaggio, H. Choi, K. Johnson, Y. Kwon, Q. Zhang, X. Zhang,
D. Xu, and J. Qian, “Eavesdropping on fine-grained user activities
within smartphone apps over encrypted network traffic,” in 10th USENIX
Workshop on Offensive Technologies. USENIX Association, 2016.

[23] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescap, “Multi-classification
approaches for classifying mobile app traffic,” J. Netw. Comput. Appl.,
2018.

[24] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescap, “Mobile en-
crypted traffic classification using deep learning: Experimental evalu-
ation, lessons learned, and challenges,” IEEE Transactions on Network
and Service Management, 2019.

[25] G. Aceto, D. Ciuonzo, A. Montieri, V. Persico, and A. Pescap, “Know
your big data trade-offs when classifying encrypted mobile traffic with
deep learning,” 05 2019.

[26] Y. Fu, H. Xiong, X. Lu, J. Yang, and C. Chen, “Service usage
classification with encrypted internet traffic in mobile messaging apps,”
IEEE Transactions on Mobile Computing, Nov 2016.

[27] A. Reed and M. Kranch, “Identifying https-protected netflix videos in
real-time,” in Proceedings of the Seventh ACM on Conference on Data
and Application Security and Privacy. ACM, 2017.

[28] C. V. Wright, L. Ballard, S. E. Coull, F. Monrose, and G. M. Masson,
“Spot me if you can: Uncovering spoken phrases in encrypted voip
conversations,” in Security and Privacy. IEEE, 2008.

[29] C. V. Wright, L. Ballard, F. Monrose, and G. M. Masson, “Language
identification of encrypted voip traffic: Alejandra y roberto or alice and
bob?” in USENIX Security Symposium, 2007.

[30] S. E. Coull and K. P. Dyer, “Traffic analysis of encrypted messaging
services: Apple imessage and beyond,” ACM SIGCOMM Computer
Communication Review, 2014.

[31] D. X. Song, D. Wagner, and X. Tian, “Timing analysis of keystrokes
and timing attacks on ssh.” in USENIX Security Symposium, 2001.

[32] “Traffic analysis on google maps with gmaps-trafficker,” white
paper, 2012. [Online]. Available: http://blog.ioactive.com/2012/02/
ssl-traffic-analysis-on-google-maps.html

[33] T. Dierks and E. Rescorla, “The transport layer security (tls) protocol
version 1.2,” RFC 5246, 2008.

[34] “Remove h1 pipeline support,” bugzilla, 02-2017. [Online]. Available:
https://bugzilla.mozilla.org/show bug.cgi?id=1340655

[35] “Http pipelining,” documentation, 2015. [Online].
Available: https://www.chromium.org/developers/design-documents/
network-stack/http-pipelining

[36] R. Peon and M. Thomson, “Hypertext transfer protocol version 2
(http/2),” RFC 7540, 2015.

[37] S. Friedl, A. Popov, A. Langley, and S. Emile, “Transport layer security
(tls) application-layer protocol negotiation extension,” RFC 7301, 2014.

[38] R. Peon, “Hpack: Header compression for http/2,” RFC 7541, 2015.
[39] T. Groleat, S. Vaton, and M. Arzel, “High-speed flow-based classification

on fpga,” International journal of network management, 2014.
[40] B. Xiong, C. Xiao-su, and C. Ning, “A real-time tcp stream reassembly

mechanism in high-speed network,” South West Jiaotong University,
2009.

[41] J. McAuley, C. Targett, Q. Shi, and A. Van Den Hengel, “Image-based
recommendations on styles and substitutes,” in Proceedings of the 38th
International ACM SIGIR Conference on Research and Development in
Information Retrieval. ACM, 2015.

[42] F. Mosteller, “Understanding the birthday problem,” in Selected Papers
of Frederick Mosteller. Springer, 2006.

[43] E. Parzen, “On estimation of a probability density function and mode,”
The annals of mathematical statistics, 1962.

[44] IETF, “Hypertext transfer protocol – http/1.1,” RFC 7230-7237, 2014.
[45] I. Grigorik, “Optimizing tls record size & buffering latency,”

Blog, 2013. [Online]. Available: https://www.igvita.com/2013/10/24/
optimizing-tls-record-size-and-buffering-latency

[46] L. Breiman, “Random forests,” Machine learning, 2001.

