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Abstract. Cerebrovascular diseases have been associated with a vari-
ety of heart diseases like heart failure or atrial fibrillation, however the
mechanistic relationship between these pathologies is largely unknown.
Until now, the study of the underlying heart-brain link has been chal-
lenging due to the lack of databases containing data from both organs.
Current large data collection initiatives such as the UK Biobank provide
us with joint cardiac and brain imaging information for thousands of
individuals, and represent a unique opportunity to gain insights about
the heart and brain pathophysiology from a systems medicine point of
view. Research has focused on standard statistical studies finding corre-
lations in a phenomenological way. We propose a mechanistic analysis of
the heart and brain interactions through the personalisation of the pa-
rameters of a lumped cardiovascular model under constraints provided
by brain-volumetric parameters extracted from imaging, i.e: ventricles
or white matter hyperintensities volumes, and clinical information such
as age or body surface area. We applied this framework in a cohort of
more than 3000 subjects and in a pathological subgroup of 53 subjects
diagnosed with atrial fibrillation. Our results show that the use of brain
feature constraints helps in improving the parameter estimation in order
to identify significant differences associated to specific clinical conditions.

Keywords: 0D model · Cardiovascular modelling · Personalisation · White mat-
ter damage · Brain damage · Atrial fibrillation

1 Introduction

Cerebrovascular diseases are related to a variety of heart diseases such as heart
failure [1] or atrial fibrillation (AF) [2], sharing several risk factors such as choles-
terol, diabetes or high blood pressure. In parallel, it has been shown that stroke
doubles the risk of dementia [3]. All these connections suggest a common un-
derlying pathological process that links cardiac function with brain atrophy.
Large scale analysis on databases combining cardiovascular and brain data from
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the same individuals are thus required to demonstrate and better understand
the interaction between brain and heart. To this end, studies such as the UK
Biobank aim at the acquisition of multi-modal databases containing both heart
and brain imaging information [4]. Thanks to these databases ongoing stud-
ies have focused on the study of the relationships between cardiovascular risk
factors and image-derived features, such as subcortical volumes [5]. However, a
number of fundamental descriptors of the cardiac function are not possible to
obtain in-vivo, i.e: heart contractility or fibers stiffness. Personalised modelling
approaches allow us to estimate these descriptors and gain insight of the cardiac
function, allowing us to obtain more reliable results and relate them to brain
damage information.

Personalizing a cardiovascular model for a given subject is an ill-posed prob-
lem that implies estimating the model parameters so that the simulation behaves
as close as possible to the available clinical data. In this work we will focus on a
0D model of the whole cardiovascular system. Previous studies have used multi-
scale models to describe the whole-body circulation and study the venous blood
flow in the brain [6]. However, their modeling of the heart chambers does not
take into account the contractile and elastic properties of the heart. While other
models of the whole-body circulation are available [7,8], to our knowledge, no ex-
plicit modelling study relating neurodegeneration and cardiovascular parameters
has been done.

In this paper we aim to study the relationship between cardiovascular indica-
tors and brain volumetric features extracted from the imaging data available in
UK Biobank, through the personalisation of a cardiovascular lumped model us-
ing the approach presented in [9]. The use of this approach allows us to tackle the
ill-posedness nature of the personalisation and identify plausible and coherent
solutions across the population. To achieve that, we define a regularisation term
that can be extended to take into account features not present in the lumped
model, allowing to explore the effect of including brain features as additional
constraint. We apply this framework to a large cohort composed by more than 3
000 subjects for which cardiac and brain information was jointly available in the
UK Biobank. To illustrate how to exploit the framework to identify meaningful
clinical relationships, we applied it in a subset of subjects diagnosed with AF,
which is considered as an independent risk factor for stroke and dementia [2,10].
We identified statistically significant associations between the personalised model
parameters and brain volumetric features that match findings reported in pre-
vious clinical studies.

The paper is structured as follows: in section 2.1 we detail the data pre-
processing and inclusion criterion for the whole-population analysis. Following,
in section 2.2 we present the lumped model and how to take into account the sub-
ject’s information to constrain the solution space in the personalisation. Next,
in section 2.3 we assess the impact of our model in determining significant re-
lationships between the estimated cardiac parameters and brain damage using
the AF subset. Finally, in section 3 we present the obtained results.
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2 Methods

2.1 Data pre-processing and inclusion criterion

Our analysis includes data from UK Biobank participants for which all brain
image modalities and all cardiac-image derived indicators were available, for a
total of 3783 subjects. In the available cardiac images it was possible to quan-
tify the cardiac function using indicators such as stroke volume (SV), cardiac
output (CO) or ejection fraction (EF). Multi-modal brain MRI images allowed
the extraction of image-derived features such as brain tissue volumes and white
matter hyperintensities (WMHs), one of the most common indicators used to
assess neurological damage.

Using FLAIR MR images, WMHs were segmented by the lesion prediction
algorithm (LPA), available in the lesion segmentation toolbox (LST) [11] for
SPM 3. FLAIR MR images were pre-processed following the protocol described in
[12], in which gradient distortion correction and defacing were performed. After
discard subjects for which pre-processing (449) or segmentation of WMHs (250)
failed, the final number of available subjects was 3 084. From the segmentations
we extracted the total volume of WMHs and the number of lesions. All brain-
related volumes were normalized by head size.

2.2 Cardiovascular lumped model

The cardiovascular personalisation of the subjects was performed by using the
0D model shown in Figure 1 which is a simplification of a 3D cardiac electrome-
chanical model [13] derived in [14]. In the 0D version, which assumes spherical
symmetry, the myocardial forces and motion can be described by the inner ra-
dius (R0) of the ventricle. Deformation and stress tensors are also reduced to 0D
forms, which allow us to characterise the heart contractile (σ0) and elastic (C1)
properties of the heart.

The model M consists in a set of ordinary differential equations with PM

parameters, e.g. maximum contraction of the heart fibers or its stiffness. The
state variables of the model are denoted by OM , e.g. arterial or venous pressures,
and they describe the state of the system. During the personalisation we are
interested in a subset of n state variables, such that O = (O1, O2, ..., On), and
we vary a subset θ of the PM model parameters. We consider O(θ) the set of
state variables generated by the model for a given set of θ. The goal is to find
θ∗ such that O(θ∗) best approximates the target features Ô.

Due to the high dimensionality and non-convexity of this inverse problem,
we solve it with the CMA-ES optimization algorithm based on evolution strate-
gies [15]. CMA-ES minimizes a given error function by combining maximum
likelihood principles with natural gradient descent on the ranks of the point
scores (i.e: the score of each individual at every generation). The error function
S(θ, Ô) is defined as the L2 distance between O(θ) and Ô. Since each target fea-
ture has different range of values we defined a tolerance interval, Tol, for each

3 https://www.fil.ion.ucl.ac.uk/spm
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Scheme of the used lumped model

Fig. 1. Simplified schematic representation of the lumped model showing the param-
eters used in the personalisation. The 0D representation of the myocardial forces has
been omitted for the sake of clarification. τ characterizes the contractility of the aorta,
Rp the peripheral resistance and Pven the venous pressure.

feature i to be able to compare the different outputs. This can be formalized as
shown in Equation 1:

S(θ, Ô) =

n∑
i=1

(Oi(θ) − Ôi)
2

Toli
(1)

Based on the available clinical data, we selected the following target features
for the personalisation; stroke volume (SV), ejection fraction (EF), diastolic
blood pressure (DBP), mean blood pressure (MBP) and end-diastolic volume
(EDV). Considering the uncertainty of the measured data, the tolerance interval
for each feature was set to 10 ml for the SV and the EDV, 200 Pa for the DBP
and the MP, and 5% for the EF. Finally, the personalized parameters of the
cardiovascular model were maximum contraction of the heart fibers σ0, stiffness
of the heart fibers C1, peripheral resistance Rp, venous pressure Pven, and the
characteristic time τ of the aorta, which defines the time that takes for blood
pressure to decrease from systolic to the systemic, or ”asymptotic” value. We
selected these parameters based on a sensitivity analysis in which we assessed
the influence of each parameter over the selected target features.

Since the solution of equation 1 is non-unique, there is an observability diffi-
culty in this personalisation problem. To tackle this issue, we used the iterative-
update prior (IUP) approach presented in [9] to introduce constraints in the
fitting process. In the IUP method a regularization term, R(θ, µ,Σ), is used to
reduce the variability in the estimation of the parameters. The regularization
constrains the directions in which we explore the parameter-space by using the
relationships among the model parameters. Formally, the regularization term is
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parameterized by an expected value µ and by a covariance matrix Σ encoding
the relationships across parameters.

R(θ, µ,Σ) = (θ − µ)TΣ−1(θ − µ). (2)

Therefore, the fitting score becomes:

S(θ, Ô, µ,Σ) = S(θ, Ô) + γR(θ, µ,Σ), (3)

where γ defines the relative importance of the regularization term. This term
is updated at each IUP iteration, using the obtained mean value of the fitted
parameters and the estimated covariance in the previous iteration.

Accounting for brain information in the 0D model. R(θ, µ,Σ) can be
extended to incorporate relationships with features not present in the cardiovas-
cular model. In our setting, we included in the regularization term the extended
feature space corresponding to the concatenation of the model parameters, θ,
with the brain and clinical information, here denoted by φ. We used the total
brain volume, the ventricles volume, the obtained WMHs features, age, sex and
body surface area (BSA). Therefore, the problem in equation 3 becomes:

S(θ, Ô, µ,Σ, φ) = S(θ, Ô) + γR(θ, φ, µ,Σ). (4)

Equation 4 now accounts for a covariance term constraining the parameters
according to the extended set of information. We have used 10 IUP iterations
and assessed the results at different γ levels (0.1, 0.5, 2 and 10). The optimisation
is performed over the logarithm of the parameter values.

2.3 Atrial fibrillation analysis.

Considering the dataset obtained after the pre-processing described in section 2.1
we had access to 53 subjects diagnosed with AF. Using bootstrapping we sampled
100 control groups of the same sample size of the AF group and without any
significant difference in age, sex and BSA. The sampled controls came from the
subset of subjects without any diagnosed cardiovascular disease (n = 2022). We
applied the framework described in the previous section to each bootstrap subset
composed by the AF group and sampled control group, to obtain the bootstrap
distributions of the correlations between cardiac and external parameters. This
approach allowed us to exploit the dataset variability for assessing the difference
between cardiac and brain associations.

3 Results

Whole-population analysis. As expected, we observed that as the value of
γ is increased (i.e. more regularisation), the fitting error increases and at the
same time the number of outliers is reduced and the estimated distributions
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Fig. 2. a) Estimated density distributions of the fitted parameters at different regu-
larization levels. Initial and final distributions after 10 iterations in brown and blue
respectively. The variability among the initial distributions is due to the variability
in the sampling that CMA-ES performs during the optimization.Error b) Evolution of
Spearman’s rank correlation coefficient between the model parameters and the external
parameters as the regularization level increases when external features are considered in
the regularization and c) when external features are not considered. Model parameters
being: maximum heart fibers contractility σ0, heart fibers stiffness, C1, left ventricle
size R0, peripheral resistance Rp, aorta characteristic time τ , and venous pressure Pven.
d) Error percentages with respect to the target features. Stroke volume (SV), ejection
fraction (EF), diastolic blood pressure (DBP) and mean blood pressure (MBP). While
end-diastolic volume (EDV) is not shown due to space issues, its error pattern was
similar to the one observed in the SV

have lower variability, as can be seen in Figure 2a. We can observe that strong
regularisation even shrinks some parameters close to a constant value, implying
that those parameters cannot be observed from the available data. Looking at
the correlation of the model parameters with the external features we note the
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strong correlation between the left ventricle size, R0, and the BSA, even for low
γ values. Moreover, there is a positive correlation between peripheral resistance,
the WMHs volume, and brain ventricles volume, which are at the same time
negatively correlated to the aorta characteristic time, τ . The number of WMHs
lesions and age followed the same correlations pattern, but due to space issues
they have been omitted. On the other hand, brain volume is positively correlated
with τ and peripheral resistance. An increase in peripheral resistance can be as-
sociated to higher DBP, while a decrease in contractility, τ , can be interpreted as
an increase in arterial stiffness leading to high SBP. Both, DBP and SBP, have
been previously associated to WMHs [16]. In figure 2b we note that the sig-
nificant correlations present when no regularization is applied become stronger
as regularization increases, while the non-significant correlations stay close to
zero. This behavior is expected since regularization is constraining the space
of feasible solutions. Therefore, as we increase γ we further limit the feasible
parameter-space towards the set of solutions that satisfy the existing relation-
ships between the parameters. In figure 2c we observe the obtained correlations
when the external features are not taken into account. In this case, the solu-
tions are constrained into a different parameter-space in which the relationships
between the model parameters and the external features are lost. Limiting the
interpretability when assessing the parameters estimations with respect external
factors not present in the mechanistic model.

Bootstrap distribution of correlation between cardiac parameters and brain information

Fig. 3. Comparison of the Spearman’s rank correlation coefficient bootstrap distribu-
tions obtained at γ = 0.5 between the personalised model parameters and the external
features. Blue boxplots correspond to control groups and brown to AF subjects. ∗ de-
notes that the correlations are significantly different according to the Wilcoxon rank-
sum test, and that in the AF group correlations are significantly greater or smaller
than 0 (5% significance level).

Atrial fibrillation. In Figure 3 we observe a statistical description of the em-
pirical distribution of correlations obtained from the bootstrap analysis done
in the AF subset. The results are obtained with trade-off γ = 0.5, which in
the whole-population analysis provided a good a balance between data-fit and
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regularization. We assessed the difference between the controls and AF groups
correlations distributions using the Wilcoxon rank-sum test with a significance
level of α = 0.05. Moreover, to consider the obtained results as significant we
assessed if in the AF group the obtained correlations were statistically greater
or smaller than 0 with a 5% significance level.

In the brain volume we observe the same correlations found in the whole-
population analysis, but it can be seen that for the AF group these correlations
are stronger, which suggests that in the AF subjects brain is more susceptible
to cardiovascular factors. For the BSA we found the positive correlation with
the left ventricle size observed in section 3 and a negative correlation with the
maximum heart contractility σ0. In the number of WMHs lesions we can observe
a positive correlation with the left ventricle size. The associations of BSA with
σ0 and WMHs with R0 could be related to cardiac dilation due to an increased
impairment of the functioning heart in AF. Interestingly, in the AF control
subjects the correlation between WMHs and left ventricle size is negative. These
findings suggest an association between AF and WMHs. Moreover, they agree
with previous studies reporting an association between left ventricle remodelling
and AF [17]. No significant associations were found for brain ventricles volume,
WMHs volume and age.

4 Conclusions

We have modeled 3 084 subjects with a 0D cardiovascular model and we con-
strained the available parameter-space during personalisation by incorporating
external features in the regularization term, allowing us to study their influence
in the estimated model parameters. The use of this approach gives access to a
generative model that allows to analyze the relationships between external fea-
tures and non-observable parameters such as the characteristic time of aorta,
τ , which we found to be related with brain-volumetric features. Using the same
framework we assessed a clinical subgroup in which we have found meaningful
clinical relationships, linking AF with WMHs and heart remodelling. Our model
does not currently simulate the cerebral blood flow, while previous studies [6]
suggest that WMHs are due to more localize vascular impairments. This high-
lights the need to obtain a local flow characterization to estimate more relevant
parameters. Moreover, the presented approach can be seen as a parameter se-
lection approach. It allows to identify which parameters cannot be estimated
from the available data and find a parameter subspace of solutions in which the
non-observable parameters get close to constant values. The identification of the
non-observable parameters coupled with human modelling expertise can help in
the selection of a reduced subset of observable cardiovascular parameters for per-
sonalisation. Future work will go towards the local blood flow characterization
in the brain, as well as towards the assessment of its spatial patterns, and the
modelling of more brain atrophy indicators.



Mechanistic analysis of Heart & Brain interactions 9

Acknowledgements. This work was supported by the Inria Sophia Antipolis
- Méditerranée, ”NEF” computation cluster. This research has been conducted
using the UK Biobank Resource undder Application Number 20576 (PI Nicholas
Ayache). Additional information can be found at: https://www.ukbiobank.ac.uk

References

1. A. Ois et al. Heart failure in acute ischemic stroke. Journal of Neurology,
255(3):385–389, 2008.

2. E. J. Benjamin et al. Heart disease and stroke statistics—2018 update: A report
from the american heart association. Circulation, 137(12), 2018.

3. M. R. Azarpazhooh et al. Concomitant vascular and neurodegenerative pathologies
double the risk of dementia. Alzheimer’s and Dementia, 14(2):148–156, 2018.

4. C. Sudlow et al. Ukbiobank an open access resource for identifying the causes of a
wide range of complex diseases of middle and old age. PLoS Med., 12:1–10, 2015.

5. Simon R Cox et al. Associations between vascular risk factors and brain MRI
indices in UK Biobank. bioRxiv, 2019.

6. L. O. Müller and E. F. Toro. Enhanced global mathematical model for studying
cerebral venous blood flow. Journal of Biomechanics, 47(13):3361–3372, 2014.

7. S. Safaei et al. Bond graph model of cerebral circulation: Toward clinically feasible
systemic blood flow simulations. Frontiers in Physiology, 9:1–15, 2018.

8. P. Blanco et al. An anatomically detailed arterial network model for one-
dimensional computational hemodynamics. IEEE Transactions on Biomedical En-
gineering, 62(2):736–753, 2015.
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