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Abstract. We show how the Tamarin tool can be used to model and
reason about security protocols using identity-based cryptography, in-
cluding identity-based encryption and signatures. Although such proto-
cols involve rather different primitives than conventional public-key cryp-
tography, we illustrate how suitable abstractions and Tamarin’s support
for equational theories can be used to model and analyze realistic indus-
try protocols, either finding flaws or gaining confidence in their security
with respect to different classes of adversaries.
Technically, we propose two models of identity-based cryptography. First,
we formalize an abstract model, based on simple equations, in which
verification of realistic protocols is feasible. Second, we formalize a more
precise model, leveraging Tamarin’s support for bilinear pairing and
exclusive-or. This model is much closer to practical realizations of identity-
based cryptography, but deduction is substantially more complex. Along
the way, we point out the limits of precise modeling and highlight chal-
lenges in providing support for equational reasoning. We evaluate our
models on an industrial protocol case study, where we find and fix flaws.

1 Introduction

Context and Problem Statement. Networked information systems are deeply em-
bedded in modern society. Communication, finance, energy distribution, trans-
port, and even our social lives all critically depend on their correct and secure
operation. In such domains, the use of cryptographic protocols is essential, but
such protocols require predistributed secrets and this in turn necessitates key dis-
tribution and management. In general, security does not come for free: you need
pre-established secrets to create new secrets, needed to protect communication.

For application domains where not all parties know each other and may
not have pre-established relationships, a starting point is to use cryptographic
protocols based on asymmetric cryptography to bootstrap security associations.
This requires the use of public keys, which are authentically distributed using a
public key infrastructure (PKI). This approach underpins the modern web. Web-
site owners generate private/public key pairs and Certificate Authorities (CAs)
sign certificates stating that the public key belongs to the entity controlling the
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website. The certificates are then used by web clients in security protocols like
TLS to authenticate servers and setup the additional keys used to secure client-
server communication. Although theoretically pleasing, this approach is prone
to problems in practice, as amply documented in the literature.

An intriguing alternative is identity-based cryptography [25], where each par-
ticipant is assigned a public key based on her public identity. The corresponding
private key is generated by an entity running a private key generator (PKG).
Identity-based cryptography therefore has a different setup, with different prim-
itives and different assumptions than traditional public-key cryptography. For
example, the PKG (not the participant) computes the private keys, which en-
ables private key escrow, and the PKG must therefore be trusted not to reveal
these keys.

Formal methods, in particular those based on a symbolic model of cryptogra-
phy, have been shown to be effective for reasoning about cryptographic protocols
built from standard primitives like symmetric and asymmetric encryption and
the PKI setup explained before. Our focus in this paper is to explore their use
in the context of identity-based cryptography. We present a case study on for-
malizing and analyzing identity-based cryptographic primitives and protocols
based on them. Our emphasis is on how, with the right modeling language and
deduction support, one can easily formalize such primitives and explore associ-
ated protocols. In this way, one can quickly identify design issues, clarify trust
assumptions, and produce security proofs.

Contribution. We present the first symbolic models of identity-based cryptog-
raphy. We present an abstract model that captures the basic functionality of
identity-based signatures and encryption. This model is parametric and can be
used for signatures, encryption, and their combination. Afterwards, we present a
second, more precise, model based on a symbolic model of bilinear pairings (BP).
Pairings are often used to realize identity-based cryptography and thus this
model captures more of the cryptographic details found in implementations,
which can be potentially exploited by an adversary.

We exemplify the use of both models with a simple protocol, and show the
limitations of the precise model in terms of efficient deduction. Afterwards,
we use the abstract model for a case study analyzing different versions of an
industry-proposed protocol for identity-based Authentication and Key Agree-
ment (AKA). The protocol combines key agreement based on bilinear pairing
supporting key escrow, and identity-based signatures. Using Tamarin, we find
numerous weaknesses. After fixing these weaknesses, we prove the security of the
resulting protocol in our abstract model.

Related Work. We will discuss identity-based cryptography in detail in Section 2.
Here we focus on symbolic analysis and provide some historical background.

The use of tools for the symbolic analysis of security protocols has a long his-
tory starting with Millen’s Interrogator [22], the Longley–Rigby search tool [18],
and Meadow’s NRL Protocol Analyzer (NRLPA) [19]. These tools were based on
a symbolic model of cryptography going back to the seminal work of Dolev and



Yao [13], which represents cryptographic operations within a term algebra that is
amenable to efficient mechanized proof. The early tools constituted proto-model
checkers. Indeed the NRLPA offered many features of a modern model checker,
including an automated means of proving that exhaustive search of a finite state
space implied exhaustive search of the infinite state space, and later, a temporal
logic language, NPATRL [26], for describing protocol security properties. A good
overview of symbolic security protocol analysis is available in an article in the
Handbook of Model Checking by Basin, Cremers, and Meadows [5].

The current generation of tools includes the spiritual successor to the NRLPA
tool, Maude-NPA [16], which follows the same basic ideas but is built on back-
wards narrowing within Maude [11]. Our tool of choice is Tamarin [23,20],
which uses a combination of constraint solving, as introduced by Millen and
Shmatikov [21], as well as backwards search as in Maude-NPA. We will provide
further details in Section 3, in particular for Tamarin.

Outline. We introduce identity-based cryptography in Section 2. Afterwards
we provide background on security protocol analysis in the symbolic model in
Section 3. We present our symbolic model for identity-based cryptography in
Section 4 and our case study in Section 5. We draw conclusions in Section 6.

2 Identity-Based Cryptography

Identity-based cryptography was proposed by Shamir [25] in the early 1980s.
Realizations of an identity-based signature scheme quickly followed [17], whereas
a realization of an encryption scheme took longer and was first proposed by
Boneh and Franklin [9] in 2001. The basic idea, found in all realizations, has a
feature that makes the use of identity-based cryptography less attractive than
public-key cryptography in many settings: intrinsic key escrow.3 In identity-
based cryptography, the private key generation center stores a master secret that
it uses to create the private keys for all participants. This is deeply embedded
into identity-based cryptography although there have been proposals to split the
master secret, using secret sharing schemes, so that there are multiple private
key generators instead of one. However no such trust-reduction mechanisms have
found wide-spread use. The public key of any participant can be generated using
the public master key and the participant’s name. Thus, only the public master
key needs to be authentically distributed, not individual public keys.

We shall first describe abstract signature and encryption schemes, and then
present some realizations. Our account here closely follows [2].

2.1 Signature Scheme

An Identity-based Signature (IBS) scheme relies on a trusted party, called the
private key generator (PKG), for generating users’ private signature keys. Users

3 There are settings where key escrow may be desirable or even required, for example
due to legal reasons. In such cases, identity-based cryptography fits perfectly.



skAlice, pkM , Bob
Alice

skBob, pkM , Alice
Bob

new random c

σ, c← 〈SignatureGeneration(skAlice, 〈Alice, Bob, c〉), c〉

check SignatureVerification(σ, 〈Alice, Bob, c〉, Alice, pkM )

σ′ ← SignatureGeneration(skBob, c)

check SignatureVerification(σ′, c, Bob, pkM )

Fig. 1. Protocol flow of our running example.

are identified by their id, which can be their name, an email address, or other
uniquely identifying information. The PKG is also in charge of assigning private
keys, which are bound to the identities id of the appropriate users, while the
master public key can be freely distributed. The PKG must therefore adopt ap-
propriate authentication methods to verify that a user can claim a given identity
id.

In terms of functionality, an IBS scheme should offer the following functions:

– Setup() 7→ skM , pkM : The PKG creates its master private and public keys
skM and pkM , where pkM can be made public to all users.

– KeyRequest(id) 7→ skid: A user with the identity id requests a private signa-
ture key from the PKG. Upon authenticating the user, the PKG creates a
signing key skid associated to id and sends it to the user.

– SignatureGeneration(skid,m) 7→ σm,id: A user with the signing key skid pro-
duces a signature σm,id for the message m.

– SignatureVerification(σ,m, id, pkM ) 7→ yes/no: Anyone possessing a signature
σ supposedly signed by a user with the identity id for the message m can
verify the signature using id (and pkM ).

Note that users can verify signatures without prior knowledge of any user-
specific verification keys; only the master public key pkM and the supposed
signer’s id are required.

Example 1 (Running example). We shall use a simple, signed, challenge response
protocol as a running example throughout the paper. We illustrate how an IBS
scheme can be used to implement such a protocol in Figure 1. In this protocol,
Alice challenges Bob with a random nonce c and a signature on (Alice,Bob,c),
and then expects to receive from Bob a valid signature on the nonce c.

2.2 Encryption Scheme

Just like IBS schemes, Identity-based Encryption (IBE) schemes rely on a PKG
for generating private decryption keys. IBE schemes offer the following functions:



– Setup() 7→ skM , pkM : The PKG creates its master private and public keys
skM and pkM , where pkM can be made public to all users.

– KeyRequest(id) 7→ skid: A user with identity id requests a private decryp-
tion key from the PKG. Upon authenticating the user, the PKG creates a
decryption key skid associated to id and sends it to the user.

– Encryption(id,m, pkM ) 7→ {m}id: Anyone possessing id (and pkM ) produces
a ciphertext {m}id that can be decrypted only with skid.

– Decryption({m}id, skid) 7→ m: A user with the decryption key skid decrypts a
ciphertext {m}id that has been encrypted with identity id (and pkM ).

Note that users can encrypt messages for other users without prior knowledge
of any encryption keys; only pkM and id are required. The intention is that
decryption can only be performed by the user whose identity is id, as she is the
only one to receive the associated private key. In contrast, conventional PKIs
require users to request, and authentically receive, public keys of the intended
recipients before encryption.

Example 2 (Continuing Example 1). One can use an IBE scheme to implement a
challenge response mechanism as follows: Alice sends a random nonce encrypted
with Bob’s public key and then expects to receive the nonce c in plaintext.

2.3 Realization using Bilinear Pairing

Many recent IBE and IBS schemes are implemented using bilinear pairing [2]. We
briefly recall bilinear pairing and explain its use in two identity-based schemes.

Bilinear Pairing. Let e : G×G 7→ G′ be a symmetric bilinear mapping for G,
an additive cyclic group4 of prime order q, and G′ a multiplicative cyclic group
of order q. For e to be bilinear, it must satisfy the following algebraic property:

∀a, b ∈ F∗q.∀Q1, Q2 ∈ G. e(aQ1, bQ2) = e(Q1, Q2)ab. (1)

It is often required that e is non-degenerate (i.e., different from the constant
1G′) and computable. In the following, we use P as the generator.

The cryptographic assumption under which BP cryptographic schemes can
be proven secure is called the Bilinear Diffie-Hellman (BDH) assumption and is
defined as follows:

BDH: Given (G, q, e, P, aP, bP, cP ) where G, q, and e are as specified
above and where P ∈ G and a, b, c are chosen at random from F∗q, it is

infeasible to compute e(P, P )abc.

4 In general, bilinear pairings can take values in two different groups, provided that
they are of the same order. For simplicity and because our formal model will even-
tually require it, we only present bilinear pairing taking values in the same group.



Note that the BDH assumption is relevant for computational proofs, which
manipulate bitstrings, probabilities, and probabilistic-polynomial time compu-
tations. Working in such a computational model typically necessitates manual
proofs. In contrast we work in the symbolic model using a term representa-
tion and that is amenable to automated proofs. The guarantees one gets from
the computational model are generally considered more fine-grained. However,
given that they require time-consuming manual proof construction, computa-
tional proofs do not in practice cover entire protocols with all their modes and
options. Compare, for example, the computational proofs for TLS 1.3 (e.g., [14]),
which cover single modes only, to the symbolic proofs using Tamarin that cover
the interaction of all modes and the protocol’s entire internal state machine [12].

Since we work in the symbolic model, we are only interested in capturing
algebraic properties of cryptographic primitives; i.e., Equation 1 for bilinear
pairing. As we later see, this equation can be directly modelled in Tamarin.

BP-based IBE Scheme by Boneh and Franklin [9]. Let the following
be given: a plaintext length l ∈ N, a set of identities identities, and two hash
functions h1 : identities 7→ G∗ and h2 : G′ 7→ {0, 1}l. Using the pairing function
e, the IBE functionalities are then implemented as follows:

– Setup() 7→ skM , pkM : The PKG picks s at random in F∗q and computes
skM := s and pkM := sP , where P is a generator in G.

– KeyRequest(id) 7→ skid: Upon reception of id, the PKG creates a private
decryption key skid := skMQid, where Qid := h1(id).

– Encryption(id, pkM ,m) 7→ {m}id: To encrypt a message m ∈ {0, 1}l using id
and pkM , a user picks r at random from F∗q, computes U = rP and V =
h2(e(Qid, pkM )r) ⊕m, where ⊕ denotes the eXclusive-OR (XOR) operator.
The ciphertext is {m}id := (U, V ).

– Decryption({m}id, skid) 7→ m: A user possessing skid = skMQid can decrypt
{m}id := (U, V ) by computing V ⊕ h2(e(skid, U)) = (h2(e(Qid, skMP )r) ⊕
m)⊕ h2(e(skMQid, rP )) = m.

We show in Section 4.2 how this scheme can be modelled in Tamarin.

BP-based IBS scheme by Cha and Cheon [10]. This IBS scheme uses the
hash function h1 described above and an additional hash function h3 : {0, 1}∗ ×
G 7→ F∗q. The IBS functionalities are then implemented as follows, also using e:

– Setup() 7→ skM , pkM : The PKG picks s at random in F∗q and computes
skM := s and pkM := sP , where P is a generator in G.

– KeyRequest(id) 7→ skid: Upon reception of id, the PKG creates a private
signing key skid := skMQid, where Qid := h1(id).

– SignatureGeneration(skid,m) 7→ σm,id: A user with the signing key skid can
sign a message m ∈ {0, 1}∗ by picking an r ∈ F∗q at random and computing:
U = rQid, V = (r + h3(m,U))skid, and, σm,id = (U, V ), where + is addition
in F∗q.



– SignatureVerification(σm,id,m, id, pkM ) 7→ yes/no: Anyone having the signa-
ture σm,id := (U, V ) supposedly signed by the user with the identity id
can verify the signature using pkM and id by checking whether e(P, V ) =?

e(pkM , U + h3(m,U) ·Qid). Indeed if σm,id is a genuine signature, then:

e(P, V ) = e(P, (r + h3(m,U))skid)
= e(P, skM · (r + h3(m,U)) ·Qid)
= e(pkM , r ·Qid + h3(m,U) ·Qid)
= e(pkM , U + h3(m,U) ·Qid).

We shall see in Section 4.2 that the algebraic properties involved in this
scheme are too complex to automate reasoning about using state-of-the art ver-
ification tools. This is the main reason why we also explore in Section 4.1 a less
precise abstraction of IBS schemes that we can more efficiently reason about.

We summarize next the symbolic model of protocol analysis in Section 3,
before applying it to identity-based cryptography in Section 4.

3 Symbolic Analysis of Protocols

In this section, we briefly introduce the symbolic model for security protocols and
the tool Tamarin which automates reasoning in this model. We also describe
how security properties are modeled using Tamarin.

3.1 The Tamarin Prover

Tamarin is a state-of-the-art protocol verification tool that automates reason-
ing in the symbolic model of cryptographic protocols. Tamarin supports stateful
protocols specified using a large collection of equationally defined operators, in-
cluding bilinear pairing. It has previously been applied to numerous real-world
protocols with complex state machines, numerous messages, and complex secu-
rity properties such as TLS 1.3 [12] and 5G-AKA [6].

In the symbolic model, messages are described as terms. For example,
enc(m, k) represents the message m encrypted using the key k. The algebraic
properties of the cryptographic functions are then specified using equations over
terms. For example, the equation dec(enc(m, k), k) = m specifies the expected
property of symmetric encryption: decryption with the encryption key k yields
the plaintext m. As is common in the symbolic model, cryptographic messages do
not satisfy other properties than those specified by explicit algebraic properties.
This reflects the so-called black box cryptography assumption: one cannot exploit
potential weaknesses in the cryptographic primitives themselves. Tamarin also
supports further algebraic properties, including hashing, XOR, Diffie-Hellman,
and bilinear pairing.

In Tamarin, a protocol is described using multiset rewrite rules. These rules
manipulate multisets of facts, with terms as arguments, which model the sys-
tem’s state.



Example 3. The following rules describe a simple protocol that sends a MACed
message. The first rule creates a new long-term shared key k (the fact !Ltk is
persistent: it can be used as a premise multiple times). The second rule describes
the agent A who sends a fresh message m together with its MAC with the shared
key k to B. Finally, the third rule describes B, who is expecting as input a
message and a corresponding MAC with k. Note that the third rule can only be
triggered if the input matches the premise, i.e., if the input message is correctly
MACed with k.

Create Ltk : [Fr(k)]−−[ ]→[!Ltk(k)],
Send A : [!Ltk(k),Fr(m)]−−[ Sent(m) ]→[Out(〈m,mac(m, k)〉)],
Receive B : [!Ltk(k), In(〈m,mac(m, k)〉)]−−[ Received(m) ]→[ ]

These rules (written [l]−−[ a ]→[r] with a the actions) yield a labeled transi-
tion system describing the possible protocol executions (see [1,23] for details on
Tamarin’s syntax and semantics), where the traces are sequences of the action
labels. Tamarin combines the rules formalizing the protocol with rules formaliz-
ing a Dolev-Yao [13] style adversary. This adversary controls the entire network
and can thereby intercept, delete, modify, delay, inject, and build new messages.
However, the adversary is limited by the cryptography: he cannot forge signa-
tures or decrypt messages without knowing the key due to the black box cryptog-
raphy assumption. He can nevertheless apply any function, e.g., hashing, XOR,
encryption, pairing, etc., to messages he knows and thus compute new messages.

3.2 Formalizing Security Properties in Tamarin

In Tamarin, security properties are specified in two ways. First, trace proper-
ties, such as secrecy or variants of authentication, are specified using formulas in
a first-order logic with timepoints. Second, equivalence properties, e.g., for un-
linkability, can be given as diff-terms [7]; these are not considered in this paper.

Example 4. Consider the multiset rewrite rules given in Example 3. The follow-
ing property specifies a form of non-injective agreement on the message m, i.e.,
that any message received by B was previously sent by A:

∀i,m.Received(m)@i⇒ (∃j.Sent(m)@j ∧ j l i).

For each specified property, Tamarin checks that the property holds for all
possible protocol executions and all possible adversary behaviors. To achieve
this, Tamarin explores all possible executions in a backward manner, searching
for reachable attack states, which are counterexamples to the security properties.

In fully automatic mode, Tamarin either returns a proof that the property
holds, or a counterexample representing an attack if the property is violated.
It may also fail to terminate, which is unsurprising given that the underlying
problem is undecidable. Tamarin can also be used in an interactive mode where
the user can guide the proof search. Moreover, the user can supply heuristics
called oracles to guide the proof search in a sound way.



1functions: IBPriv/2, IBPub/2, IBMasterPubK/1,

2idsign/2, idverify/3, true/0

3equations: idverify(idsign(m,IBPriv(A, IBMasterPrivK)),

4m,

5IBPub(A, IBMasterPubK(IBMasterPrivK))) = true

Fig. 2. Function symbols and equation declaration for IBS. Undeclared identifiers rep-
resent variables.

4 Modeling Identity-Based Cryptography

We now show how identity-based cryptography can be modeled symbolically and
how protocols that use the associated cryptographic primitives can be analyzed.

We first present an abstract model in Section 4.1 that captures, at a high-
level, the intended algebraic properties of identity-based schemes as described in
Sections 2.1 and 2.2. Although abstract, this model suffices to identify nontrivial
logical attacks, as illustrated by our case study in Section 5.

In practice, many identity-based schemes are based on bilinear pairings and
thus have additional algebraic properties (see Section 2.3) that can be exploited
by the adversary. We therefore provide a second, more concrete model in Sec-
tion 4.2, inspired by the state-of-the-art, bilinear pairing-based, identity-based
schemes described in Section 2.3. Unsurprisingly, protocols formalized in this
second model are harder to reason about. As we shall see, we reach Tamarin’s
limits, which suggests that our abstract model is a good compromise.

Note that for each of our two identity-based cryptography models, we provide
a Tamarin model [8] that illustrates its use on our running example (Example 1
for IBS and Example 2 for IBE).

4.1 Abstract Model of Identity-Based Schemes

We now present a parametric model of Identity-Based Schemes, formalized in
Tamarin. Most of this model is parametric in the type of scheme (IBE or IBS).
We first describe our model of IBS and afterwards explain the main differences
with our model of IBE.

Modeling IBS schemes. Our abstract model of the private key generator ’s
(PKG) capabilities consists of a user-defined equational theory together with
setup and initialization rules that generate the identity-based signing private
master key and sets up users with their private keys.

The equational theory of Sign-PKG with its signature and equation is de-
picted in Figure 2. Here, idsign models identity-based signing, idverify mod-
els signature verification, and IBMasterPubK is the operator deriving the master
public key from the master private key. The signature also includes the func-
tion IBPriv used by the PKG to provision a user with a private key (as this



1// Create the trusted entity holding the id-based master private key

2rule create_IB_PrivateKeyGenerator: // Setup()

3[ Fr(~IBMasterPrivK) ]

4-->

5[ !IB_MasterPrivateKey(’PKG’, ~IBMasterPrivK)

6, Out(<’PKG’, IBMasterPubK(~IBMasterPrivK)>) ] //adversary gets pkM

7// Setup rules for identities

8rule create_IB_identity: // KeyRequest($A)

9let Master_pk = IBMasterPubK(IBMasterPrivK)

10User_sk = IBPriv($A, IBMasterPrivK) in

11[ !IB_MasterPrivateKey(’PKG’, IBMasterPrivK)

12, Fr(~id) ]

13--[ CreateId($A, <Master_pk, User_sk>), User() ]->

14[ !IB_Identity(~id, $A, Master_pk, User_sk) ]

Fig. 3. Modeling PKG. Variables prefixed with ˜are fresh.

provisioning requires the private master key) and the function IBPub that de-
rives public keys from identities. The single equation guarantees that a properly
created signature can be successfully validated by anyone holding the signer’s
name and the PKG’s public signature verification key, while no other signature
is accepted for this message m by this participant A.

In Figure 3, we depict the two rules that comprise our theory. The setup
rule create_IB_PrivateKeyGenerator generates the signing master key and
the associated public key, which is constructed by applying IBMasterPubK to
the secret. The public key is published by sending it out on the network while
the private key is, of course, stored by the PKG. The rule create_IB_identity

models the setup of a new participant with identity $A5 (KeyRequest($A)), ini-
tialized with (i) the master public key Master_pk that will be used to compute
signature verification keys, and (ii) the user’s private signing key, which is pro-
vided by the PKG. The user’s private key is derived from the signing master key
and the user’s identity, IBPriv($A, IBMasterPrivK).

Finally, we model the adversary’s compromise capabilities in Figure 4. We
model a strong adversary who can completely compromise the system by reveal-
ing the PKG’s master private key (rule Reveal_IB_MasterPrivateKey) as well
as compromising individual agents by revealing their private signing key (rule
Reveal_IB_privkey). Security properties would then typically be conditioned
by the absence of specific compromises.

We build on this representation of identity-based signatures to model different
versions of a protocol that combines bilinear pairing-based authentication and
key agreement, with key escrow and identity-based signatures (see Section 5).
We also develop a complete Tamarin model for Example 1 (see [8]) including
this representation of IBS; we depict the rule corresponding to Alice’s first action
in Figure 5.

5 $A denotes a variable that can be instantiated by any public constant.



1// Reveals the id-based master private key of the PKG

2rule Reveal_IB_MasterPrivateKey:

3[ !IB_MasterPrivateKey(PKG, IBMasterPrivK) ]

4--[ Reveal(’PKG’,PKG) ]->

5[ Out(IBMasterPrivK) ]

6// Reveals the id-based private key of an agent A

7rule Reveal_IB_privkey:

8[ !IB_Identity(~id, A, Master_pk, User_sk) ]

9--[ Reveal(’USER’,A) ]->

10[ Out(User_sk) ]

Fig. 4. Adversary compromise rules.

1rule Alice_send:

2let m = <’Alice’, ’Bob’, ~c>

3mOut = <idsign(m, User_sk),~c> in // SignatureGeneration(...)

4[ !IB_Identity(~id, ’Alice’, Master_pk, User_sk)

5, Fr(~) ]

6--[ Running(’Alice’, ’Bob’, <’Initiator’, ’Responder’, ~c>) ]->

7[ Out(mOut)

8, St_Alice_0(~id, Master_pk, User_sk, ~c) ]

Fig. 5. Example usage of our abstract IBS model for our running example.

Modeling IBE schemes. Our IBS representation can be simply modified to
model IBE schemes by making minor changes to the function symbols and equa-
tions as shown in Figure 6.

1functions: IBPriv/2, IBPub/2, GetIBMasterPublicKey/1,

2idenc/2, iddec/2

3equations: iddec(idenc(plaintext,

4IBPub(A,

5GetIBMasterPublicKey(IBMasterPrivateKey))),

6IBPriv(A, IBMasterPrivateKey)) = plaintext

Fig. 6. Function symbols and equation declaration for IBE.

The rules for modeling the PKG and the reveals are identical. A complete
Tamarin model of Example 2 is given in [8].



4.2 More Precise Modeling of Bilinear Pairing-based ID-based
Schemes.

By leveraging Tamarin’s built-in theory for bilinear pairing, it is possible to
model concrete IBE or IBS schemes much more precisely than in Section 4.1. Our
next theory features four function symbols: pmult, em, ˆ, and, ∗. The function
symbol pmult is of arity 2 and models the multiplication of a group element
(e.g., P ∈ G) by a scalar (e.g., s ∈ F∗q), em models the bilinear pairing e and is
modulo AC, ˆ models the exponentiation of group elements (e.g., g ∈ G′) by a
scalar, and ∗ of arity 2 models the multiplication between scalars.

The function symbols ˆ and ∗ are subject to the equations of the built-in
Diffie-Hellman theory, while pmult and em are subject to the equational theory
for bilinear pairing, also built-in [24], which is summarized as:

pmult(x,(pmult(y,p)) = pmult(x*y,p)

pmult(1,p) = p

em(p,q) = em(q,p)

em(pmult(x,p),q) = pmult(x,em(q,p)).

Modeling IBE Scheme Using Bilinear Pairing. One can leverage the built-
in theories for bilinear pairing and XOR, recently added to Tamarin [15], which
can be combined, to model the Boneh and Franklin IBE scheme.

Using this more precise representation, we have developed a full model of
Example 2 (see [8]). Our model introduces two function symbols h1 and h2
for modeling the two independent hash functions. The setup rules are now a bit
different as the master private key and the user’s private keys are computed with
pmult, as depicted in Figure 7. We also show in Figure 8 an example of a protocol
rule using encryption, which corresponds to Alice’s first output in our example.

Our model of Example 2 loads in ca. 1 hour of (pre-computation) CPU time.
However, due to the heavy branching required to explore all possible variants,
proofs or counterexamples cannot be automatically computed in reasonable time.
However, when simplifying the protocol by removing Bob’s response (hence with
only one encryption and decryption), the pre-computation and the proof of se-
crecy of the plaintext could be computed in minutes, with both BP and XOR.

We thus conclude that, thanks to recent advances in the scope of the equa-
tional theories that Tamarin handles, Tamarin supports such a precise model
of IBE schemes. However, the real limitation is now the efficiency of the proof
search, which is negatively impacted by the numerous variants introduced by the
combination of the built-in theories for bilinear pairing and XOR. Therefore, we
do not use this precise model for our case study in Section 5.

Modeling IBS Scheme using Bilinear Pairing. The Cha and Cheon IBS
scheme described in Section 2.3 relies on F∗q being a field, and a fortiori, a ring
with an associative and commutative +, where · distributes over +. Unfortu-
nately, Tamarin, and all other symbolic tools, are currently unable to deal with
such equational theories.



1// Create the trusted entity holding the master private key

2rule create_IB_PrivateKeyGenerator: // Setup()

3let Master_pk = pmult(~IBMasterPrivateKey, ’P’) in // pkM

4[ Fr(~IBMasterPrivateKey) ]

5--[ Once(’PKG’) ]->

6[ !IB_MasterPrivateKey(’PKG’, ~IBMasterPrivateKey)

7, Out(<’PKG’, Master_pk>) ] // adversary gets pkM

8// Setup rules for identities

9rule create_IB_identity: // KeyRequest($A)

10let Master_pk = pmult(~IBMasterPrivateKey, ’P’)

11Qid = h1($A)

12User_sk = pmult(~IBMasterPrivateKey, Qid) in // ’skM.Qid’

13[ !IB_MasterPrivateKey(’PKG’, ~IBMasterPrivateKey)

14, Fr(~id) ]

15--[ CreateId($A, <Master_pk, User_sk>) ]->

16[ !IB_Identity(~id, $A, Master_pk, User_sk) ]

Fig. 7. PKG model for our precise IBE scheme.

At first sight, the random scalar r in V = (r+h3(m,U))skid seems to be only
useful for randomizing the signature σ = 〈rQid, V 〉. Therefore, we modeled a sim-
plified scheme that does not rely on + over F∗q for which σ = 〈Qid, h3(m,U))skid〉
and SignatureVerification() is modified straightforwardly. Interestingly, when us-
ing this model, Tamarin automatically finds an attack on a supposedly secure
protocol (namely, our fixed variant of the case study we describe in Section 5).
After inspection, we found that this attack actually reveals a flaw in our sim-
plified scheme where we omit r. Indeed, an adversary obtaining a signature
σ = 〈Qid, h3(m,U)skid〉 =: 〈U, V 〉 over a message m can forge a new signature
over any other message m′ as follows: σ′ := 〈U, h3(m′, U) · (h3(m,U))−1 · V 〉 =
〈Qid, h3(m′, U)skid〉. We have not found another simplification of the original
scheme that would still be secure in the symbolic model.

All IBS realizations in the literature rely on the same kind of problematic
equational theories. Hence, to the best of our knowledge, it is currently out of
the scope of existing verification tools to reason about such a BP-based model
of IBS schemes. This limitation could be tackled by developing new built-in
theories with dedicated automated reasoning algorithms. We leave this task for
future work.

5 Case Study

As a case study, we formalize and analyze an identity-based Authentication and
Key Agreement (AKA) protocol, provided by an industry partner. The key agree-
ment is based on identity-based signing and on bilinear pairing (see [1,24]) for
key derivation, which also supports key escrow. We refer to this protocol as
BP-IBS and depict it in Figure 9.



1rule Alice_send:

2let plaintext = <’Alice’, ’Bob’, ~c>

3Qbob = h1(’Bob’)

4U = pmult(~r, ’P’)

5V = h2(em(Qbob, Master_pk)^(~r)) XOR plaintext

6mOut = <U,V> in // Encryption(...)

7[ !IB_Identity(~id, ’Alice’, Master_pk, User_sk)

8, Fr(~c)

9, Fr(~r) ]

10-->

11[ Out(mOut)

12, St_Alice_0(~id, Master_pk, User_sk, ~c) ]

Fig. 8. Example usage of our precise IBE model for Example 2.

BP-IBS is a 2-party AKA protocol that relies on a trusted PKG. It aims to
achieve the following properties:

1. mutual authentication and agreement on the session key;

2. session key escrow : the master secret held by the PKG can be combined
with a session transcript to compute the associated session key;

3. weak forward secrecy : session keys remain secret even after the long-term
keys of one of the two involved agents are revealed; and

4. strong forward secrecy : session keys remain secret even after the long-term
keys of both involved agents are revealed.

Note that the properties of weak and strong forward secrecy are necessarily
violated once one of the authentication properties is violated. Note too that
strong forward secrecy implies weak forward secrecy, which itself implies secrecy.

5.1 Specification

Starting from the informal presentation provided by our industrial partner, we
developed a more formal specification, which we describe in this section.

Setting. BP-IBS relies on two infrastructures that can be provided by one or
two separate PKGs. For generality, we describe the protocol where these two
infrastructures are provided by two distinct PKGs, called respectively Sign-PKG
and Auth-PKG.

– Sign-PKG. A PKI infrastructure that provides identity-based signatures. It
provides, for any user of identity IDi , a signing key ski. Any other user can
verify that a message has been signed by a user IDi using the master public
key of Sign-PKG and IDi . We model this PKG using our abstract model
from Section 4.1.



IDi, ski, S

Initiator

IDr, skr, S

Responder

new random a ∈ F∗q

aP, IDi

new random b ∈ F∗q

IDr, bP, sign(〈aP, bP 〉, skr)

check signature against IDr

K ← KDF(e(bP, S)a)

sign(bP, ski)

check signature against IDi

K ← KDF(e(aP, S)b)

Fig. 9. Alice & Bob Specification of BP-IBS.

– Auth-PKG. A key escrow setup that is used in the protocol to allow the
corresponding PKG to learn session keys, i.e., session escrow. This PKG
initially generates a master private key s ∈ F∗q and publicly discloses to its
users the corresponding master public escrow share S = sP . We model this
PKG using our precise model based on bilinear pairing (see Section 4.2)
without including user encryption and decryption. Indeed, we do not need
this PKG to provide users with id-based encryption keys.

Note that we could have modeled a single PKG providing both requirements.
Our presentation, however, supports a more fine-grained analysis, e.g., in terms
of compromise scenarios.

BP-IBS. The protocol flow is depicted in Figure 9. When a condition fails to
hold, the corresponding agent aborts the protocol. Here, KDF models a key
derivation function, abstracting away any implementation choices. The protocol
shown is a 2-party authenticated key exchange protocol that uses identity-based
signatures to authenticate key shares and allows session key escrow. Note that
the session key established by the initiator and the responder satisfies:

K = KDF(e(bP, S)a) = KDF(e(aP, S)b) = KDF(e(P, P )abs) = KDF(e(aP, bP )s).

The last term in this equality chain shows that the protocol provides Auth-PKG
with the ability to escrow all sessions.

5.2 Modeling BP-IBS

Figure 10 shows the setup of the key generation center, with key escrow func-
tionality. In the rule create_IB_AUTH_PrivateKeyGenerator, the PKG’s pri-



1// Create the trusted entity holding the master private key for

authentication escrow

2rule create_IB_AUTH_PrivateKeyGenerator:

3let pk_master_secret = pmult(~IBMasterPrivK, ’P’) in

4[ Fr(~IBMasterPrivK) ]

5--[ Once(’AUTH’) ]->

6[ !IB_MasterPrivateKey(’AUTH’, ~IBMasterPrivK)

7, !IB_MasterPublicEscrowShare(pk_master_secret)

8, Out(<’AUTH’, pk_master_secret>) ] // adversary gets pkM

Fig. 10. Modeling the PKG for Authentication Escrow.

vate key is generated randomly as ~IBMasterPrivK. The associated public key,
pmult(~IBMasterPrivK, ’P’), is constructed by multiplying the generator ’P’
with the secret. It is output to the adversary and stored and made available to
all agents in !IB_MasterPublicEscrowShare(...).

To initialize an agent for a run, we combine the look-up of both its pri-
vate signing key and the key escrow share. The private signing key look-up
works as described in the previous section, using the fact !IB_Identity(...).
Access to the key escrow share x is available in the argument of the
!IB_MasterPublicEscrowShare(x) fact. Using the key escrow share, as des-
ignated by the protocol, allows the key escrow holder subsequent access to all
agreed-upon keys between all users, without being involved in the key exchange.

Modeling the Core Protocol. Based on the aforementioned infrastructures, the
core protocol of BP-IBS can be straightforwardly modeled in Tamarin. We
provide the full model in [8] (file BP-IBS 0.spthy).

Easing Reasoning with an Oracle. Tamarin’s default proof strategy is non-
terminating, due to our model’s complexity. We therefore implemented a dedi-
cated oracle (see [1]). Oracles are lightweight tactics that can be used to guide
proof search in Tamarin. Our oracle is available at [8] (file oracle BP-IBS).

5.3 Security Properties

We now describe the different security properties BP-IBS should meet, as stated
earlier in Section 5, which we verify in Tamarin.

Threat Model. We model a setting where the communication channel between
the initiator and responder is assumed to be insecure. We formalize a standard
network adversary (the Dolev-Yao adversary), which is an active adversary that
can eavesdrop on and tamper with all exchanged messages

As is standard, we assume that the two PKGs, Sign-PKG and Auth-PKG,
are honest. However, their long term secrets, including their master private keys,
may be revealed to the adversary. Similarly, the long term secrets ski and skr



may also be revealed. We therefore symbolically model capabilities analogous to
those assumed in computational models where the adversary is equipped with
“reveal queries” [3,4]; we establish our security properties in the presence of an
adversary who can carry out such queries.

Authentication Properties. For each role (i.e., initiator, responder), we analyze
four types of authentication properties: aliveness, weak agreement, and non-
injective agreement on the session key, and injective agreement on the session
key. These authentication properties are only checked when there is no long-
term signing key reveal (i.e., ski, skr) and no reveal of the master private key of
Sign-PKG6.

Secrecy Properties. We first check weak secrecy: session keys remain secret when
there is no reveal at all. Weak Forward Secrecy states a stronger property: the
session key established by IDi and IDr remains secret even when either the key
ski or the key skr is revealed after the session. Strong Forward Secrecy is even
stronger: the session key established by IDi and IDr remains secret even when
both keys ski or skr are revealed after the session.

Session Escrow. This property simply checks that there must be an execution
where the adversary learns the session key between some IDi and IDr, when he
knows the master private key of Auth-PKG but without further reveals. This
represents that the escrow key holder is able to derive session keys as expected.

5.4 Analysis Results

We have automatically analyzed the aforementioned security properties using
Tamarin with our oracle; this analysis is supported by our model of BP-IBS,
which is amenable to automation. Our analyses revealed several attacks in the
original protocol. We have proposed protocol improvements that incorporate
countermeasures, and have automatically verified that the improved protocols
have the desired security properties. We summarize our results in Table 1.

We stress that all attacks were found automatically with Tamarin, as well
as the proofs of the correctness of our improved versions with countermeasures.

Attack 1: Empty shares. This attack violates weak agreement for the initiator as
well as weak secrecy. We first discovered that, in the original protocol (modeled in
the file BP-IBS 0.spthy from [8]), the initiator and responder do not check that
the received shares are different from P , which is the generator. In combination
with other authentication weaknesses that we describe next, the adversary can
trick a responder to accept the share aP = P as coming from an honest initiator.
The adversary can then compute the session key without any further key reveal.

6 We also checked that all authentication properties fail in the presence of signing key
reveals but when the master private key of AUTH-PKG is not revealed. This result
is as expected since one cannot then rely on signatures to authenticate agents.



Protocol Aliveness (I/R) Weak Agr. (I/R) NI-Agr. (I/R) I-Agr. (I/R)

BP-IBS (0) 1/ 1/ 1 1/ 1 1/ 1

BP-IBS + check P (1) 2/ 2/ 2 2/ 2 2/ 2

+ tags (2) / 3/ 3 3/ 3 3/ 3

+ IDr (3) / / 4 / 4 / 4

+ IDi (4) / / / /

Protocol Weak Secrecy Weak FS Strong FS Session Escrow

BP-IBS (0) 1† 1 1

BP-IBS + check P (1) 2† 2 2

+ tags (2) 3 3

+ IDr (3) 4 4

+ IDi (4)

Table 1. Analysis outcomes. “NI-Agr.” stands for “Non-Injective-Agreement”, “I-
Agr.” for “Injective-Agreement” and “FS” for forward secrecy. “(I/R)” means that
we first describe the authentication property from the initiator’s and then from the
responder’s point of view. When there is an attack, we indicate its type (see Sec-
tion 5.4) with a subscript. Results labeled † were not directly obtained with Tamarin,
as the attack found on weak agreement for the respective protocol version immediately
translates to an attack on secrecy.

From the regular participant’s view, the session key is K = KDF(e(P, S)b), and
note that the other share uses a = 1, so aP = P . This key can be computed by
the adversary since K = KDF(e(bP, S)) and he knows the master public key S
of Auth-PKG as well as the responder’s share bP that is sent in the clear.

Suggested countermeasure. We suggest that the initiator and responder should
check that the received shares are different from P . We call the resulting protocol
BP-IBS (1), which is modeled in BP-IBS 1.spthy in [8].

Attack 2: Reflection attack. Other properties of the protocol BP-IBS (1) are
still violated. We have found that a reflection attack violates aliveness for the
initiator. This attack is caused by a possible confusion between the signed mes-
sage sent by the responder and the signed message sent by the initiator. As a
direct consequence, one can use the signature produced by an initiator that has
received a dishonest share (essentially a type-flaw) to forge a message that is ac-
cepted by another initiator as coming from a legitimate responder. One can use
this weakness to mount attacks against the aliveness property for the initiator
(meaning the supposed partner of the initiator did not take part in the protocol)
as well as secrecy of session keys and weak agreement properties for both sides.
We show in Figure 11 the attack flow violating aliveness for the initiator.

Suggested countermeasure. We suggest adding tags (i.e., R for the responder and
I for the initiator) in the signed message expressing message origin. We call
the resulting protocol BP-IBS (2), which is modeled in the file BP-IBS 2.spthy

in [8]. We proved that this model ensures aliveness for the initiator and weak
secrecy of session keys, hence our fix address the aforementioned attack.
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Believes respon-
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ID2
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Believes respon-
der ID2

i is alive

Fig. 11. Attack 2 on BP-IBS (1). Note that X can be chosen by the adversary.

IDi, ski, S

Initiator

IDa, ska, S

Attacker

IDr, skr, S

Responder

aP, IDi
X, IDi

IDr, bP, sign(〈R, X, bP 〉, skr)
IDa, bP, sign(〈R, aP, bP 〉, ska)

sign(bP, ski) sign(bP, ski)

Weakly agree with
responder IDa

Weakly agree
with initiator IDi

Fig. 12. Attack 3 on BP-IBS (2). The responder IDr believes it has established a
session with IDi as initiator. But this view does not match with IDi’s view.

Attacks 3 and 4: Lack of identity-binding. The protocol BP-IBS (2) does not
provide weak agreement for either of the two roles. This is because neither role
includes the other role’s identity in the signed part of their messages. One of
these attacks is shown in Figure 12. There is a similar attack that violates weak
agreement for the responder.
Suggested countermeasure. We suggest adding the responder’s (respectively ini-
tiator’s) identity in the message signed by the initiator (respectively respon-
der). We call BP-IBS (3) the protocol one obtains from BP-IBS (2) by adding
the responder’s identity and BP-IBS (4) the protocol where both identities are
added. These protocols are respectively modeled in the files BP-IBS 3.spthy

and BP-IBS 4.spthy in [8]. We depict BP-IBS (4) in Figure 13.

5.5 Summary

Due to numerous problems, the original protocol does not meet its security
requirements. Fortunately, the discovered attacks are easy to repair as shown by



IDi, ski, S

Initiator

IDr, skr, S

Responder

new random a ∈ F∗q

aP, IDi

check aP 6= P
new random b ∈ F∗q

IDr, bP, sign(〈R, aP, bP, IDi〉, skr)

check bP 6= P
check signature against IDr

check tag R and identity IDi

K ← KDF(e(bP, S)a)

sign(〈I, bP, IDr〉, ski)

check signature against IDi

check tag I and identity IDr

K ← KDF(e(aP, S)b)

Fig. 13. Description of BP-IBS (4).

BP-IBS (4) in Figure 13. We were able to prove automatically with Tamarin
that our model of the resulting protocol fulfills all its security requirements.
We provide the full Tamarin model of BP-IBS equipped with all our fixes as
BP-IBS 4.spthy in [8]. Our industrial partner acknowledged the problems.

As expected, we have established that a compromise of AUTH-PKG breaks
all secrecy properties of the session keys, and a compromise of SIGN-PKG vio-
lates all authentication properties.

6 Conclusion

Our case studies support the thesis that symbolic methods are very useful for
improving the security of cryptographic protocols. A prerequisite, of course, is
that the methods can handle the protocol’s cryptographic primitives and com-
plexity. We showed that current state-of-the-art tools can be used for a larger
set of protocols than those previously considered and with reasonable effort.
At the same time, our work highlights limitations of the state-of-the-art when
faced with realistic protocols involving equational theories, like bilinear pairing
in combination with exclusive-or, which lead to combinatorial explosions due
to branching during proof search. Another limitation is with respect to equa-
tional theories that currently cannot be handled by any state-of-the-art tools,



e.g., Diffie-Hellman exponentiation combined with addition in the exponent that
distributes over multiplication.

We see two directions for future work. The first is to expand the set of
equational theories that can be handled by tools like Tamarin. This requires
progress in unification theory. The second is for tool-builders to improve their
tools’ efficiency so that higher levels of branching can be handled. Clearly there
are limits in both cases due to the undecidability of the underlying problems,
but determining the boundaries of what is possible, and feasible, is important.

Finally, we would like to close by encouraging designers of identity-based
protocols to consider applying security protocol verification tools. In this paper,
we have illustrated how this can be done. As we have shown, it is straightforward
to analyze abstract versions of identity-based protocols and thereby identify and
eliminate many kinds of mistakes. Moreover, more precise modeling abstractions
can be used, provided the protocol itself is of limited complexity.
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Vincent Stettler. A formal analysis of 5G authentication. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security, CCS
’18, pages 1383–1396, New York, NY, USA, 2018. ACM.

7. David Basin, Jannik Dreier, and Ralf Sasse. Automated symbolic proofs of obser-
vational equivalence. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors,
Proceedings of the 2015 ACM SIGSAC Conference on Computer and Communica-
tions Security, pages 1144–1155. ACM, 2015.

8. David Basin, Lucca Hirschi, and Ralf Sasse. Case study Tamarin
models. https://github.com/tamarin-prover/tamarin-prover/tree/develop/
examples/idbased, 2019. Accessed: 2019-03-05.

9. Dan Boneh and Matt Franklin. Identity-based encryption from the weil pairing.
In Annual international cryptology conference, pages 213–229. Springer, 2001.

10. Jae Cha Choon and Jung Hee Cheon. An identity-based signature from gap diffie-
hellman groups. In International workshop on public key cryptography, pages 18–30.
Springer, 2003.

https://tamarin-prover.github.io/manual/
https://github.com/tamarin-prover/tamarin-prover/tree/develop/examples/idbased
https://github.com/tamarin-prover/tamarin-prover/tree/develop/examples/idbased


11. Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-
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