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Abstract

Why living forms develop in a relatively robust manner, despite various sources of internal
or external variability, is a fundamental question in developmental biology. Part of the answer
relies on the notion of developmental constraints: at any stage of ontogenenesis, morphogenetic
processes are constrained to operate within the context of the current organism being built,
which is thought to bias or to limit phenotype variability. One universal aspect of this context
is the shape of the organism itself that progressively channels the development of the organism
toward its final shape. Here, we illustrate this notion with plants, where conspicuous patterns are
formed by the lateral organs produced by apical meristems. These patterns, called phyllotaxis,
traditionally fall into two broad categories, spiral or whorled that present striking symmetries
and regularities. These properties suggest that plant development is strongly canalized and
cannot escape specific attraction patterns. Since the early 19th century, researchers have looked
for biological or physical explanations for such amazing and specific form ”attractors”. Thanks
to this collective and sustained effort, we now have gained much insight on this self-organizing
process, and uncovered important parts of the mystery. This paper aims to provide an easy-
to-read overview of the main concepts that have been developed to explain phyllotaxis and to
make clear their connections in a step-by-step progression, while keeping the mathematics light.
We suggest that altogether a view emerges where phyllotaxis appears as a remarkable example
of how shapes may be canalized during development.

1 Introduction

In developmental biology, the notion of developmental constraints refers to the idea that at
every stage of ontogenesis, morphogenetic processes are constrained by the current chemical, and
physical, state of the organism (Alberch 1982, 1991), which biases or limits phenotype variability
(Maynard Smith et al. 1985). At each stage of the development, these constraints progressively
restrict the set of possible shapes that can be achieved by the organism. In this way, during
ontogenesis, developmental constraints may canalize the development of an organism in a very
narrow region of the morphospace. Such canalization of shapes is believed to be one major source
of shape reproducibility in both animals and plants, by making shape development insensitive
to external or internal variations of moderate amplitudes (Maynard Smith et al. 1985, Félix &
Barkoulas 2015, Debat & Le Rouzic 2019).

The spiral arrangement of organs on plant stems, called spiral phyllotaxis, is a striking
example of phenotypic bias in development. A vast majority of these spiral patterns tend to
show numbers of spirals that are numbers in the sequence:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, · · ·
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known as Fibonacci’s sequence. This phenomenon is sometimes referred to as numerical canal-
ization (Huether 1968, Vlot & Bachmann 1991, Battjes et al. 1993).

In this paper, we show in a step by step manner how the robust and conspicuous spi-
ral phyllotaxis patterns, are actually channeled by purely geometric developmental constraints
throughout plant development. We provide a detailed account of the origin of these constraints,
appearing in models assuming only purely local interaction rules, and discuss the consequences
of such a mechanism of plant patterning.

For this, we first briefly recall concepts that have been developed about phyllotaxis. We start
with the fascinating mathematical properties associated with the Fibonacci sequence (section
2). We then explain in a geometrically intuitive manner the main origin of these mathematical
properties (section 3) and analyze the dynamical mechanisms that have been proposed in the
literature, based on local interaction rules between organs (Section 5). In this view, the com-
petition for space in the shoot apical meristem (SAM), spanning the plant’s entire life, imposes
simple, local and robust geometric rules on the shape of the evolving morphogenetic front of
newly formed organs around the SAM. These rules can explain both the universal presence
of Fibonacci phyllotaxis in plant patterns and its exceptions, depending on the variation of
the growth rate parameters. This suggests that phyllotaxis patterns are actually continuously
canalized during plant development (section 6).

2 Regular phyllotaxis patterns and their mathemat-

ics

Phyllotaxis patterns are usually classified into either spiral or whorled motifs according to
the number of lateral organs attached at each node (Fig. 1.A-B). In the large class of spiral
phyllotaxis on which we focus in this paper, the patterns can usually be described by two
families of visual spirals, turning in opposite directions: the parastichies (Fig. 1.C). As early
as at the beginning of the 19th century (Braun 1831), it was recognized that, surprisingly,
the numbers of spirals of these clockwise and anticlockwise families are in general exactly two
consecutive numbers of the Fibonacci sequence where each term, beyond the first two 1’s at the
beginning, results from the sum of the two preceding ones (see Box 1). This pair of numbers
is called the phyllotaxis mode. For some genus, like certain Dipsacus, the mode comes as a
multiple of Fibonacci numbers. Quite unusual for a biological system, these numbers of spirals
show only marginal deviation from this rule (around few percents) (Fierz 2015, Swinton et al.
2016), suggesting the existence of a strong and relatively universal developmental constraint
(Maynard Smith et al. 1985).

The organs are initiated in a small structure at the tip of plant axes, called the shoot apical
meristem (SAM) (Fig. 2.A) that produces organs at a regular pace at the rim of a central zone
(CZ) where no organ can form. The organs then grow and extend to reach their final size and
shape. During this process they essentially keep their relative positions. The angle between
two consecutive organ primordia is called the divergence angle (Fig. 2.B-C) (Schimper 1835).
In most plants this angle does not change as the primordia develop and become mature organs.
Divergence angles may be relatively constant during some growth phase of the stem or to the
contrary show gradual variations. The imaginary curve linking the organs at consecutive nodes
of a given stem (in the order of their initiation) is called the generative spiral (Fig. 2.B-C). It
can be seen as the most horizontal possible spiral winding around the stem and which traverses
each organ in their chronological order. This spiral winds either to the left or to the right
(chirality).

When no twist occurs on the stem, the divergence angle can easily be observed on elongated
stems. Using microscopes, it can as well be observed directly in the SAM with some additional
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Figure 1: Phyllotaxis patterns in a nutshell.(A) Examples of spiral phyllotaxis (1 organ per node)
on different plant parts. (B) Whorled phyllotaxis (more than one organ per node). (C) Individual
spirals making up a spiral pattern are called parastichies. (D) Parastichies come generally in two (or
three) families of spirals: clockwise and counter-clockwise. These pairs of parastichy numbers are
most of the time consecutive numbers in the Fibonacci sequence (E) A third more vertical family
sometimes clearly appears (orthostichy) like in pine apple or on the fruit of Encephalortos horribus
for example.
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efforts. On elongated stems, its average value can easily be estimated from the count of the
leaves between two leaves overlaying in their azimuthal orientation and the number of turns
to get from one to the other following the generative spiral (Fig. 2.C) (Schimper 1835). In
contrast, a similar strategy is not possible in compact structures such as flowers as one cannot
count as easily the number of turns between two overlaying organs and the number of organs
between them. Rather, one observes a certain number of conspicuous spirals connecting organs
in contact, turning in one or the other direction. These conspicuous spirals (or parastichies)
that one sees on many plants must not be confused with the generative spiral. They stem from
the spatial adjacency between organs when the structure remains compact, such as in cones or
inflorescences (Fig. 2.D)(Braun 1831, Bravais & Bravais 1837): in general, organs do not exactly
overlay (Fig. 2.C) and if the structure remains compact, one can observe the corresponding
slight shift on one side (Fig. 2.D left). Through development, this shift always occurs in the
same direction, which creates the different visual spirals (Fig. 2.D right, Fig.1.E). For spiral
phyllotaxis, the average divergence angle (when it can be measured) is most of the time close to
the golden angle (137.5◦) (Fig 2.B) while other angles such as 99.5◦ (Lucas angle) can be found
but are much less frequent (Fierz 2015, Swinton et al. 2016). Remarkably, both the golden angle
and Lucas angle are tightly connected with the Fibonacci sequence (Box 1), which adds to the
intuition that something profound must connect these botanical patterns, and their resilience
to internal, environmental, and genetic variations, to mathematics.

Both numbers of parastichies and divergence angles thus seem to be constrained to take their
values within very restricted ranges. Where do these developmental constraints come from? Do
they reflect a single underlying mechanism, acting on the parastichy numbers, or the divergence
angle? or are two different mechanisms at play?

3 The geometric link between divergence angle and

spirals

To better understand the intricate relationship between divergence angle and parastichies, let
us consider a very simple geometric model of organ initiation (Fig. 3.A). In the model, organs
(orange dots) form, one at a time, at the rim of the meristem central zone (green disk of radius
R). The laps of time between two consecutive organ initiation, T , is called a plastochrone and
the azimuthal angle, α, between these organs defines the divergence angle. As soon as they
are produced, the organs move radially away from the center with a constant velocity V . We
make the simplifying assumption that apex growth is regular (stationary growth), so that V , T ,
and α, are considered as independent and constant parameters. For sake of notation simplicity,
we will measure angles as fractions of a circle: any angle will be represented by a real number
between 0 and 1 (the angle unit is a turn, e.g. 1/2 = 180◦, 1/3 = 120◦, 1/4 = 90◦. . . ).

First connection between divergence angle and spiral motifs. Using this model1.
we can simulate the growth of an apex during a given number of plastochrones (at least 50 in
our pictures). Let us first observe what happens when we vary the divergence angle (α stays
constant during each simulation but is distinct between two simulations, while R = 1 and V = 1
in arbitrary units (a.u.) are fixed and common to all simulations). For α = 1/2, the model
generates two opposite straight arms at 180◦ of one another. The primordia are generated
alternatively on each side, left and right, and move away from the center, thus leaving room for
the next primordium on the same side every two plastochrones. The two arms are thus composed
respectively of even and odd primordia. This disposition is observed commonly in plants and is

1The interested reader might want to manipulate the model using our interactive online geogebra app Archimedean
spirals
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Figure 2: Where do spirals come from ? (A) The meristem: the organ factory (here floral
meristem of Arabidopsis thaliana, photo courtesy of Jan Traas). Organ are generated in sequence at
precise positions on the flank of the meristem separated by a relatively constant divergence angle.
(B) In general, the divergence angle remains unchanged after internode elongation (here Inflorescence
of Arabidopsis thaliana). (C) The spiral made by the imaginary curve joining the consecutive organs
is called the generative spiral. If one considers a pair of leaves with similar orientation on the stem
(colored in blue), it is easy to estimate the average divergence angle separating these two leaves:
mean divergence angle = #turns / #organs = 5/13 = 0.385 turn = 138.5◦. (D) If we (virtually)
contract this structure, the leaves that are in the same direction get visually close to each other.
In many cases they do not exactly overlay and present actually a small angular deviation. This
deviation spreads along the contracted structure and generates visually spirals. (E) Similar spirals
can be observed on leaf scars on plant stems.
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Figure 3: Testing the relation between divergence angle and emerging phyllotaxis motifs
using a simple kinematic model. (A) Simple kinematic model: Organs (orange dots) are initiated
at the periphery of the central zone (green disk). Primordia are initiated with a constant period T
during the simulation and move radially away from the center at a constant velocity V = 1.0 arbitrary
length unit / arbitrary time unit. The value of the radius is fixed to 1 arbitrary length units. (B)
Intuition: the arms look straight for rational values and their number depends on the divergence
angle. (C) However, slowly changing the divergence from an initial rational value (here 2/5) shows
that arms can bend and even change in number.
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called opposite phyllotaxis. Setting then α = 1/3, yields three emerging straight arms. Likewise,
for α = 1/4, α = 1/5, respectively 4 and 5 straight arms emerge as expected (Fig. 3.B). For
α = 2/5, the pattern seems to be identical to α = 1/5. However, looking carefully, one can
easily observe that the order in which the arms are visited is different (Schimper 1835). Let us
identify the different straight arms for α = 1/5 by their counter-clockwise azimuthal ordering,
starting from the horizontal arm 1 to the right on Fig. 3.B. The arms are visited in the order
1, 2, 3, 4, 5 for α = 1/5 and 1, 3, 5, 2, 4 for α = 2/5. The numerator indicates the number of
turns that are made before the organ initiation occurs again in the initial orientation (i.e. on
arm 1). Equivalently, it also indicates the number of arms that are skipped from one initiation
to the next initiation during the simulated growth process. α = 3/7 then yields a motif with 7
straight arms that are all visited every 3 turns before the simulation comes back to the original
azimuth for initiating an organ.

Shall we then conclude that if the divergence angle is defined by a fraction p/q of a turn,
then the motif always exhibits q straight arms? Not quite so. Let us consider what occurs if
one slightly changes the value of a divergence angle in the previous simulations. For example,
instead of α = 2/5 = 0.40, let us consider α = 0.401. Note that this new divergence angle is
also a rational as 0.401 = 401/1000. Shall we expect a motif with 1000 straight arms ? When
we run the simulation for this value of the divergence angle, we observe that this is not the case
(Fig. 3.C). Instead, the previous 5 arms for α = 2/5 are now slightly bending. If we increase
the divergence angle, α = 0.405, then α = 0.41, the 5 arms can still be observed, but they bend
even more. However, for α = 0.4286 = 2/7, the 5 bending arms have disappeared and have now
been replaced by 7 straight arms as previously observed. Then for α = 0.43 = 2/7, the 7 arms
bend again. However, both 0.41 = 41/100 and 0.43 = 43/100 are rationals. Why don’t we see
100 straight arms instead respectively of the 5 and 7 observed arms?

A different way to bend arms. To solve this problem, let us consider a different way
to bend the arms of our phyllotaxis motifs with our simple model. Instead of changing the
divergence angle, let us keep it constant, say at α = 0.41, as well as V = 1 = R, and change,
between simulations, the time T between the initiation of two organs, Fig. 4.A. For T = 0.1, we
observe 5 spiraling arms, coiling counterclockwise away from the center. For a 2-fold decrease to
T = 0.05, the bending of the 5 arms increases. Indeed decreasing T progressively coils the arms
tighter around the center: the angular positions of the points do not change, but their distance
to the origin decreases. This also brings points in the different spirals closer together, so much
so that the eye wants to connect newly neighboring points into new spirals. For T = 0.05,
for instance, one can perceive, aside from the 5 original spirals, a new set of 17 spirals coiling
clockwise from the origin. We say that the pattern is in a (5, 17) mode, or that its number of
parastichies (the botanists’ name for these spirals) are (5, 17), Fig. 4.B. At T = 0.01, in a figure
reminiscent of a sunflower head, one can still perceive the 5 clockwise and 17 counterclockwise
spirals close to the center, in much tighter coils than before. But on the outside, two more
sets of spirals have emerged, one with 22 counterclockwise spirals, the other with 39 clockwise
spirals. So the picture presents a transition of modes, something that commonly happens in
asteracea’s flower heads. Tracing the outer spirals from the outside in, one eventually hits a
point where they cannot be naturally continued, as the spirals by 17 and 5 take over. Note that,
the more spirals in one of these sets, the straighter the spirals: the 5-spirals are most coiled,
the 39 are less so. For T = 0.001, all these spirals have coiled so much that the only pattern
visible is that of 100 equally spaced straight arms shooting radially from the center. These are
the 100 arms we long expected for our α = 41/100!

It is important to note that, in these simulations, we have kept the parameters R and V
constant, and varied only the plastochrone T and divergence angle α. We could have obtained
the same result by keeping constant the plastochrone T = 1 arbitrary unit, and vary the speed
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V of primordia drift instead. What actually matters for the patterns is not each individual
parameter but rather their product V T that corresponds to the distance crossed by one pri-
mordium during one plastochrone. This defines a typical scale that must be compared with the
size of the apex, i.e. the radius of the meristematic zone R. The patterning is thus governed by
the ratio G = V T/R between these two spatial quantities that characterizes the apex growth.
This growth index can be measured directly from cuts or EM pictures, even without scale, from
the respective distance of the organs (Richards 1951). From now on we will thus use more
generally the two variables α,G (instead of α, T ), where G can be varied by changing the value
of either T , V or R.

For a given divergence angle, the number of arms thus more generally depends on the growth
index G, Fig4.A. As we have seen, decreasing G increases the number of arms. But why do we
eventually see 100 straight arms for α = 41

100 ? and how can we explain the numbers 5, 17, 22,
39 of spirals that we saw on our way to the 100?

The numbers of spiral arms correspond to views of the divergence angle at
different resolutions. To understand this, let us consider with more attention the structure
of our divergence angle α = 0.41. We will make use of the fact that each real number can be
increasingly well approximated by a unique series of fractional (rational) numbers called its
convergents. For instance, 41/100 can be increasingly well approximated by the sequence of
rational numbers: [

1

2
,
2

5
,

7

17
,

9

22
,
16

39
,

41

100

]
Each fraction p/q in this list is the best rational approximation of 0.41 that one can make with
pieces of size 1/q or larger in a strong sense (see Box 2 and Supplementary information Section 2,
as well as e.g. (Karpenkov 2013)). For example, 7/17 is the strong best rational approximation
that one can make of 0.41 with pieces of size 1/17 or larger (i.e. it is a convergent of 41/100).

So, how do these convergents appear in the geometry of our spirals? We have seen before
that, for some range of growth index, when the divergence α is close to a rational p/q, the
pattern displayed will have q arms, and these arms become straighter as α moves closer to p/q.
So seeing the successions of 5, 17, 22, 39 and finally 100 arms at different growth indexes is just
the expression of the fact that 41/100 is close to its convergents 1

2 ,
2
5 ,

7
17 ,

9
22 ,

16
39 . For different

growth indexes, as the spirals coil onto themselves, those that were the least tightly wound,
corresponding to the convergents with higher denominators, and whose points are farther apart,
become progressively visible. This story generalizes for any real divergence angle2 α.

When the divergence angle is the Golden angle, the number of visible spirals
are consecutive numbers of the Fibonacci sequence. In the previous sections, we
considered exclusively rational divergence angle. However, all the previous conclusions remain
valid for irrational numbers. Indeed, for irrational numbers as well, a unique list of convergents
can be defined that give a multiresolution approximation of this number (see Supplementary
information Section 2).

What about the Golden angle? In the 1830, a pair of young German scientists, Schimper
and Braun (Schimper 1835, Braun 1831) made the first observations of Fibonacci phyllotaxis.
They defined the divergence angle and hypothesized, given their observations that most often,
it must belong to the sequence of rationals

1

2
,
1

3
,
2

5
,
3

8
, . . .

2Note that strictly speaking, for a general α, it is guaranteed that at least one of the two mode numbers is the
denominator of a convergent. One can show that the second mode number is either also the denominator of another
convergent (≈ 40% of the cases), or the denominator of a best approximation close to the first convergent.
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Figure 4: Browsing convergents: exploring the structure of a number through scales.
(A) Decreasing the value of the plastochrone while keeping the divergence angle constant, here
α = 41/100, also induces bending of spiral arms. After some point, the spirals merge and a new set
of arms appears – here 5 original bending arms (left) are progressively replaced by 100 straight arms
(right, close-up). (B) For each pattern (here for T = 0.1), one can observe the spiraling arms in
two families of parastichies, turning in opposite directions, as in plants, and whose number are often
consecutive denominators in the list of convergents of the divergence angle, here 1

2
, 2
5
, 7
17
, 9
22
, 16
39
, 41
100

.
The number of spirals in these two families define the mode. Here the mode is (5, 17). In A, the
modes are successively (5, 17), (22, 17), (22, 39) until we reach the 100 straight arms configuration,
where the other 39 spirals are less visible.
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quotients of numbers that are two apart in the Fibonacci sequence. Independently, the equally
young French brothers Bravais (Bravais & Bravais 1837) made the same kind of observations,
except that they always saw, in their hundreds of observations, bending arms (or, on a stem,
skewed vertical rows of organs). They computed the continued fractions of the quotients above,
and noticed that they were all truncations - that is, the convergents - of the same infinite
continued fraction:

1

2 +
1

1 +
1

1 +
1

1 +
1

· · ·
the limit of which “Algebra teaches to compute”, as they say, is:

3−
√

5

2
,

which we recognize as γ = 1
φ2

(see Box 1). Thus was born what we now call the golden angle!
Note that while the Bravais note that γ is irrational - explaining the bending of arms - they
make no mention of its relation to the golden ratio, whose relation to the Fibonacci numbers
was not as widely known as today, see Box 1 and Supplementary Information Section 3 for more
on the relationship between φ and γ = 1/φ2 and their convergents.

According to what we discussed above, the number of spirals that are observed in motifs
corresponding to an angle of divergence γ are consecutive denominators of its sequence of
convergents, that is the fractions 1

2 ,
1
3 ,

2
5 ,

3
8 ,

5
13 . . . whose limit is γ. That is to say, the number

of parastichies must be pairs of consecutive Fibonacci numbers. See Fig. 5.A. 3

So is that it then? Must all plants with Fibonacci phyllotaxis have constant divergence angle
γ? This is the hypothesis that the Bravais made. After all, here was one number that could
explain the vast majority of the many plant patterns they observed, and whose divergence angle
they measured (by taking averages over several turns) to be very close to γ. This hypothesis
has stuck to many as a diktat for close to 200 years. Yet, wise beyond their years, the Bravais
((Bravais & Bravais 1837), p.73) warn us that this might only be a guiding hypothesis (our
translation):

“Let us note once more that we are not pretending to prove in a rigorous manner that the
divergence angle is constant, but we deem it as the most likely hypothesis in our present state of
knowledge; were it only a theoretical idea to verify, it would still be a useful guide in the study
of plant symmetry, or Phyllotaxis, as Mr. Schimper calls it.”

Summary. Altogether, this section shows that, via a simple regular spiral model, there is
a strong but subtle mathematical link between divergence angles and parastichies. In short,
spiral patterns are simply geometric representations of the fixed divergence angle with varying
precision levels that are determined by the growth index. Straight arms indicate that the organs
move sufficiently slowly away from the center so that their positions provides an exact estimation
of the divergence angle. In contrast, bending arms (spirals) reveal that the growth index is too
coarse to represent exactly the divergence angle. Depending on divergence angle and growth
index values, either one or two families of spirals can be observed (e.g. Fig. 4). Reciprocally,

3We will see that, since γ = 1/φ2 its convergents are also easily derived from the sequence of convergents of
φ, 0

1 ,
1
2 ,

1
3 ,

2
5 ,

3
8 ,

5
13 ,

8
21 ,

13
34 . . . ., which are quotients of successive Fibonacci numbers, see Supplementary Information

Section 3)
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Figure 5: Divergence angle corresponding to the Golden angle. (A) Variation of the spiral
pattern for decreasing growth index G for a divergence angle = golden angle (B) Drastic change of
spiral patterns in the neighborhood of the golden angle (the growth index is fixed to G = 0.1).
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the numbers of clockwise and anti-clockwise spirals inform us on the possible underlying (non-
observed) divergence angle (assumed to be constant in this idealized situation). This result is
sometimes referred to as the fundamental theorem of phyllotaxis (after Adler in the 1970s and
Jean in the 1980s in particular, who generalized somewhat what the relation that the Bravais
discovered) (see Box 4).

The above geometric model assumes that i) growth index, and divergence angle are indepen-
dent variables and ii) divergence angle and growth index have constant values. If the divergence
angle is set to the golden angle, classical families of Fibonacci spirals become visible. However,
many other phyllotaxis modes, different from the Fibonacci ones, can be observed for other
values of the divergence angle, whether it be in nature (where they are rare) or in simulations.

The fact that Fibonacci modes are so largely predominant in plants with spiral phyllotaxis
thus suggests that something else is probably constraining the system to keep it in this Fibonacci
regime. In principle, either the divergence angle or the parastichies could actually be constrained
by the growth processes to take precise values, consequently restricting the range of values
taken by the other through the above geometrical link. However, both cases raise interpretation
difficulties: If developmental constraints act directly on spirals, selecting specific numbers of
arms, how can these numbers be consecutive numbers of the Fibonacci sequence ? On the
other hand, if developmental constraints directly regulate the value of the divergence angles,
how can one explain that this value is most of the time close enough to the golden angle ?
Even for divergence angles deviating only little from the golden angle (e.g. α = 136, 137, 138,
. . . ), we observed spiral patterns showing large gaps between spiral arms (parastichies) and
modes that are not observed in plants (Fig. 5.B), e.g. (Prusinkiewicz & Lindenmayer 1990). If
the divergence angle were indeed constant and equal to the golden angle, how could the plant
maintain a precision such that only Fibonacci spirals are observed at a macroscopic level? And
why could other divergence angles be seen some of the time, while often showing parastichy
numbers related to the Fibonacci type of sequence (Lucas, Bijugate) in those cases?

The solution to these paradoxes lies partly in the fact that the divergence angle and the
growth index are not independent variables in real plants.

4 The coupling between growth index and divergence

angle in plants

Taking into account organ primordia contacts. In the previous simple geometric
model, we were interested in the positions of primordia without considering their actual size nor
their physical or chemical interaction. However, in meristems, young primordia may encompass
a tissue region of several cells of diameter and inhibit the initiation of other organs in their
immediate neighborhood. As a whole, each primordium defines a zone of exclusion around it,
where no other organ can form. The exact origin of the underlying bio-physical mechanism
seems to be mainly of molecular nature (Reinhardt et al. 2003, Barbier de Reuille et al. 2006,
Besnard et al. 2014), although a physical (mechanical) contribution cannot be excluded (Galvan-
Ampudia et al. 2016). In the sequel, we identify the primordium region and the inhibition zone
around it as the ”primordium” as a whole, without paying attention to distinction between the
primordium proper and its lateral inhibition nor to the exact nature of the inhibition, which
are not essential to this discussion.

Toward a more mechanistic model. Mechanistic models taking into account such in-
hibitory action between organs at the meristem abound. The most common view is that pri-
mordia are initiated at the rim of the central zone (CZ) that is crowded by young primordia
(Figs. 1.A-left, 2.A, 7.A). By their local inhibitory action, these primordia altogether inhibit
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the formation of new primordia as long as they keep close enough to the CZ. However, due to
growth, the CZ drifts away from the existing primordia and new primordia can form as soon as
sufficient space is available at the CZ rim. This process results in contacts between primordia
at the edge of their individual inhibitory zones (Hofmeister 1868). With growth, this pattern
of contacts is often preserved in compact structures (Fig. 7.B) and is still visible in elongated
stems with the vasculature (Plantefol 1948). Altogether, the classical hypotheses governing local
interactions between organs at the tip of growing meristems can be summarized as follows:

i. Circular symmetry : The meristem can be approximated by a surface of revolution (disk,
cone, cylinder...);

ii. Center inhibition: no organ can form in the central zone of the circularly symmetric
meristem;

iii. Primordia inhibition: young primordia inhibit the formation of new organs around them;

iv. Tissue growth: due to the tissue growth, previously formed primordia are left behind the
growing tip, or equivalently they are seen moving radially away from the initiation zone at
the tip of the SAM. The primordia themselves grow in size keeping their original contacts;

v. Deterministic initiation: primordia form at the edge of the CZ when and where overall
inhibition is sufficiently low, thus establishing initial contacts with the closest primordia.

Many of the models of phyllotaxis morphogenesis imply, more or less explicitly, these five
major assumptions ((Schwendener 1878, Snow & Snow 1952, Veen 1973, Adler 1974, Mitchison
1977, Douady & Couder 1996a,b, Atela et al. 2003, Smith & Prusinkiewicz 2006, Pennybacker
et al. 2015) among others.). In the simplest (and oldest) instance of these models (Schwendener
1878), the geometry of meristems (Fig. 6.A) is abstracted as a packing of circular organs,
for which parastichies can be identified by joining each primordium to the two preceding ones
in contact with it (Fig. 6.C). Such parastichies are sometimes called contact parastichies for
this reason. Depending on whether one concentrates on the top, so-called “centric” view of the
meristem (Fig. 6.A & C) or on a side “cylindrical” view (Fig. 6B & D) the underlining geometry
is either approximated by a planar annulus or a cylinder. It turns out that these views can be
put into a one-to-one mathematical correspondence (see Supplementary Information Section 1).
In fact Figure 6.C was obtained from 6.D using that very correspondence. For now, it suffices
to say that, given this correspondence, the geometric assumptions that follow are not overly
simplistic.

We thus represent the region around the meristem of diameter D by a cylinder which,
unrolled, turns into a rectangle of width C = πD, the circumference of the CZ. The upper
boundary corresponds to the rim of the CZ and the primordia are represented as disks with
identical (for now) diameter d on the surface of the cylinder (Fig. 7D). As the geometry of this
system is preserved for identical ratios d/D up to a scaling factor, we conveniently set the CZ
diameterD to 1 in our model, meaning that d should be thought of as the ratio of the primordium
diameter over the diameter of the CZ. In this cylindrical representation, angles between two
primordia are represented by the horizontal distance between their centers and are comprised
between 0 and 1: as before, we choose the unit of angle to be a turn. Likewise, assuming as
before that the displacement velocity V is 1, the vertical distances between primordia centers,
corresponding as before to the growth index G, can be thought also as the time lag that separates
their initiation. Divergence angles α are thus represented by the horizontal component of the
vector between pairs of consecutively initiated primordia, while growth indices G correspond to
their vertical components.

Using this cylindrical representation, we can now go beyond descriptive models and propose
a mechanism of pattern formation. In this cylindrical setting, our five preceding rules come
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Figure 6: Spiral and cylinder lattices. (A) Top (centric) view of a picea meristem (micrograph courtesy of Rolf

Rutishauser). The primordia shown here were to form pine needles. There are 8 green contact parastichies and 13

red ones. The divergence angle is not far from the Golden angle. (B) A sideview of the same meristem (micrograph

courtesy of Rolf Rutishauser) showing the different geometries of the same configuration. (C) Logarithm spiral lattice

structure with (8, 13) phyllotaxis mimicking the picea in (A). The (almost circular) virtual primordia are expending

away from the CZ at a speed proportional to their distance from the center. (D) Cylindrical lattice of mode (8, 13)

mimicking the unrolled, side-view of the pattern. Primordia are modeled as disks arranged in straight, criss-crossing

parastichies joining disks in contact. The figures in C and D are related in a very specific mathematical sense here, see

Supplementary Information Section 1. Note that there is no contact between the organs in their order of apparition

(along the generative spiral), as 0, 1 and 2 are far apart, but there are contact with the one forming the contact

parastichies, here 0 is in contact with 8 and 13.
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down to a very simple rule (initially introduced in (Schwendener 1878), ten years after its de-
scription by Hofmeister).

Disk stacking model: Stack disks one by one in the lowest possible place on the previous disks
without overlap, on the surface of a cylinder of circumference 1

As a consequence of the model’s assumptions, each primordium (represented as a disk) is
tangent to two (or more rarely three) “parent” primordia below. By construction, its parents
are its closest older neighbors. Contrary to the initial simple geometric model in Section 3, this
model enforces contact between every new primordium and at least two previous ones. This
contact constraint drastically reduces the space of possible observable pairs (α,G) as we will
see.

Coupling of growth index and divergence: the van Iterson diagram. Assume
for now that the pattern generated by this mechanism has constant α and G between each
initiation. Joining nearest neighbors in such a pattern gives rise to two sets of straight parallel
lines, the parastichies, which crisscross the rectangle into a lattice motif, reminiscent of the
wooden lattice structures, used to support climbing plants along walls. For that reason, these
regular disk patterns are called cylindrical lattices, or lattices for short (see an example in Figure
6D). Note that, rolled back on the cylinder, these straight parastichies become helices.

The number of parastichies in each family (also called the mode of the lattice as for the
previous spiral model) can be nicely read off the index of the two disks closest to the reference
Disk 0 (Braun 1831): if the closest disks are Disks 8 and 13 for instance, as in Figure 6D, there
must be 8 parastichies parallel to the one through Disks 0 and 8 (red in the figure)- namely the
ones through Disks 1 and 9, through Disks 2 and 10, on up to the one through Disks 7 and 15.
Likewise there are 13 parastichies parallel to the (green) one through Disks 0 and 13. So the
parastichy numbers are (8, 13) here. They are also easily counted in the corresponding centric
view (Figure 6C).

Not all lattices can be obtained by the stacking process. For instance, the lattice of Figure
7A cannot be the result of stacking: Disk 0 would have to be tangent to its closest neighbor, 2
and 3. For this double tangency to happen, since all the disks have same diameter d, the centers
of Disks 2 and 3 should be equidistant to 0, which they’re not in this case. In contrast, the
lattice of Figure 7B is compatible with our contact model: Disk 0 rests tangentially on Disks
3 and 5. This means that the tiling created by the crisscrossing of the parastichies is made of
rhombic tiles, with 4 equal sides, and this type of lattice is called a rhombic lattice.

In general, each value of (α,G) thus gives rise to a lattice, rhombic or not, with disk diameter
d that is equal to the distance between Disk 0 and the disk closest to it. This pair (α,G) thus
corresponds to a specific mode (i, j) (indices of the closest neighbors of a reference Disk 0)
characterizing its lattice geometry. If we color, using a computer program, the points of the
plane (α,G) that bear identical mode (i, j), we obtain regions depicted on Fig. 7. Each region
is a “quadrilateral” deformed into an asymmetric kite bounded by four arcs of circles, where
each of these circles is centered on the α axis.

Requiring that the lattice be rhombic imposes a subtle relationship between α and G. In
1907, van Iterson (Van Iterson 1907), inspired by the work of Schwendener (Schwendener 1878)
described the set of all possible pairs (α,G) that would generate rhombic lattices, where contact
is maintained between parastichies of the disk-like organs. This set, now called the van Iterson
diagram, forms in the (α,G) plane a characteristic upside down tree, whose branches are made
of arcs of semi-circles centered on the α axis and shown in black on Fig. 7, with infinitely
many branching points (see also Box 5). Each branch of the van Iterson diagram constitutes a
“diagonal” of one of the previous quadrilaterals, joining 2 opposite vertices. Hence every lattices
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Figure 7: The (α,G) plane with the regions of constant mode and the van Iterson
diagram. The top picture is the (α,G) plane, where each point corresponds to one lattice with
a close up (dashed square). The colored “quadrilaterals” represent regions where all corresponding
lattices have the same mode, or parastichy numbers. The figures A, B, C, D show the lattices whose
values of (α,G) is marked by points of the same name above. Point F corresponds to the lattice
of Figure 6. Each lattice is topped by the spiral configuration that corresponds to it, in centric
view. B, C, D (and F) are all rhombic: the two closest points to 0 are in each case equidistant to
it. Accordingly the points B, C, D and F are all on the van Iterson diagram, drawn in black. As
one travels down the main branch of the van Iterson diagram, starting in Region (1,1) and making a
left at (2,1), one crosses the different region with successive Fibonacci numbers, with the divergence
α oscillating between the convergents {1/2, 1/3, 2/5, 3/8 . . .} of γ. At the branching point C, there
are 3 disks tangent to Disk 0, and accordingly 3 sets of parastichies. Decreasing G, the only choice
compatible with the stacking model is the mode (5, 8): Disks 8, and 3 are on the same side of 0, and
can’t be its parents. Making a right on the the branch (1, 2) instead would yield the same Fibonacci
pattern but with opposite chirality.
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on a branch have the same parastichy numbers (or mode). At a vertex, 3 quadrilateral regions
meet. This is because the vertex corresponds to a lattice with three sets of contact parastichies:
each disk has 3 parents in this case.

Below these transition points, there are two arcs of circle corresponding to two new possible
modes, choosing one pair or the other among the three possible contacts. However, one possi-
bility does not correspond to a growing pattern, as the two parastichies, or parents, would wind
in the same direction, which is not possible (Fig. 7 C). Accordingly, in Figure 7 the parts of the
arc of circles these lattices correspond to were removed from the original van Iterson tree. This
“pruning” of the van Iterson tree isolates two branches of the diagram stemming from mode
(1, 1) and α = 1/2, and through modes (2, 1) or (1,2), to increasing Fibonacci modes and α
tending to γ or 1− γ.

The pattern being rhombic can be seen as some kind of compactness condition for a lat-
tice which reproduces what is usually seen in plants: parallel parastichies in a family are not
separated, but rather their primordia are tangent. And the same holds for the contact spiral
parastichies in the corresponding centric view. For example, to better mimic the picea of Figure
6A and B, the lattice we chose in 6D is a rhombic lattice, of parastichy numbers (or mode) (8,
13). On the other hand, the lattice of Figure 7A, with its isolated parastichies, is not what a
nascent plant pattern looks like.

Does this explain canalization toward Fibonacci phyllotaxis? In front of this
remarkable mathematical structure that seems to encapsulate the universe of all possible regular
phyllotactic structures, one is tempted to conclude that the singling out of the Fibonacci paths
of the van Iterson diagram is the explanation of the canalization of plants toward Fibonacci
phyllotaxis. Indeed, in the embryo of a dicotyledon, the two first leaves are opposed and the
initial divergence angle is 180◦ = 1/2 turn. This corresponds to (1,1) phyllotaxis. During plant
growth, the meristem scales up in size, presumably together with its central zone while primordia
essentially are initiated with the same size and keep the same growing rate. This results in a
progressive decrease of the ratio parameter G = d/D between primordia diameter and stem
diameter. Due to the contact constraint, the divergence angle and the growth index of the
pattern evolves accordingly to stay along the main branch of the Van Iterson tree, inevitably
leading to Fibonacci phyllotaxis, with the divergence tending to γ (Douady & Couder 1992,
Atela et al. 2003).

But, what do we really mean by “the pattern evolves”? The van Iterson diagram corresponds
to perfectly regular figures, the rhombic lattices, where each primordium has the same diameter
d, and everything looks the same from any point of the pattern (Fig. 6 and 7). When the pattern
changes with decreasing G however, we must accommodate the ideal of rhombic lattices to the
fact that the disks do not all have same diameter d, and that the pattern has potentially different
parastichy number pairs at different spatial positions. At any rate, it certainly is not a rhombic
lattice any more. One way out of that quandary is to argue by approximations: assuming
that d, and therefore G = d/D, varies sufficiently slowly, and in stages, the pattern would
stabilize to successive portions of rhombic lattices. This is essentially the approach explicitly
or implicitly taken in (Douady & Couder 1996b, Atela et al. 2003), the first numerically, the
second analytically.

Unresolved issues remain however: the numerical experiments in these papers show that
the patterns may not always converge to rhombic lattices (although, for the model it studies,
not one of disk stacking, (Atela et al. 2003) does show that steady states rhombic lattices
are locally attracting). Indeed, sometimes the stabilized pattern, although still lattice-like,
exhibits seemingly erratic divergence angles corresponding to permutations in the primordia
order (Douady & Couder 1992, 1996b, Atela & Golé 2007). While a similar phenomenon has
also been observed in plants (Couder 1998, Besnard et al. 2014, Refahi et al. 2016), whether it
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takes its origin in such an erratic convergence is still unclear. Moreover, the time necessary for
a reasonable convergence may well be beyond the number of generations of organs produced
by plants. And what does happen during the transitions between these periods of stabilization
anyway? How fast can G decrease? How can one account for the inevitable noise occurring in
the process? Not to mention that, for the disk stacking process, rhombic lattices are actually not
attracting: A perturbation of a rhombic lattice, will usually not converge back to the original
(Atela & Golé 2007, Golé & Douady 2019). Are all these models irremediably inadequate then,
or are we asking them to answer misconceived questions?

To reduce the gap between these theoretical aspects of phyllotaxis and observations, we
need to focus on a more local level, somewhere between the individual primordia and the whole
pattern, on the part of the configuration that is more immediately in charge of its evolution. In
the process, we might loose, at least temporarily, the elegance of the viewpoint of a plant pattern
as represented by just one pair of parameters (α,G) and the underlining mathematical beauty
of the mode landscape and its associated van Iterson tree. But the hope is to gain flexibility to
actually understand pattern transitions, and canalization in a less idealized fashion. One may
note that even if we stick to our ideal of a plant structure as a regular lattice with constant
(α,G) exhibiting Fibonacci phyllotaxis, our discussion has shown that its divergence α need not
be exactly the Golden Angle γ, although it will be comprised between its convergents. So the
myth, initiated by the Bravais (Bravais & Bravais 1837) of the divergence being equal to γ is
already shattered! Or has it been enriched?

5 Canalization of Fibonacci phyllotaxis via fronts

As suggested in the previous section, we need to concentrate on the portion of a phyllotactic
pattern that is most immediately responsible for the future of the pattern. In plants it would
be the most recent layer of primordia, directly encircling the meristem. In the disk stacking
model, this corresponds to the top layer of disks encircling the cylinder. We call this layer
a (primordia) front (Hotton et al. 2006, Golé et al. 2016). To capture the idea that a front
represents a snapshot of the latest primordia at a given time, we require that the next disk
added to the structure be tangent to disks of the front, and higher than any disk in the front.
The history of a pattern can be traced via its successive fronts.

Fronts can be represented by a zigzagging curve joining centers of adjacent primordia in
the front, see Fig. 8. The front parastichy numbers are the numbers of line segments joining
adjacent primordia of the front, going up or down as we move along the front (red and green
in our figure). In regular patterns (such as lattices), these front parastichy numbers correspond
to the numbers of parastichies of the whole pattern.

Even if the disks remain of constant size, the evolution of the pattern can be surprisingly
subtle (Golé & Douady 2019). But the true power of the model arises as one changes the size of
the disks with respect to that of the cylinder, that is, if we change the parameter G = d/D. This
change of parameter occurs when the meristem’s diameter D grows as the stem matures, while
the primordia’ diameters remain of roughly equal size d. In our simulation we left D constant
and decreased d instead, which has the same overall effect. See (Atela 2011) for simulations
with increasing D.

Let us start with a front that is regular enough, i.e. with similar up and similar down seg-
ments and stack disks on it, in the lowest possible place without overlap, while slowly decreasing
the size d of the disks as they move up. The evolution of the front automatically generates a
recursive ”Fibonacci machine”, where a front with parastichy numbers (i, j) with, say, i < j
eventually begets another with parastichy numbers (i+j, j), see Fig. 8.C and D. When starting
with i = 1, j = 1 - which monocotyledon plants do, with the cotyledon serving as initial leaf -
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Figure 8: Fronts as Fibonacci machines. (A) The picea meristem of Fig. 6 with its latest front
underlined in solid red and green. The front determines the placement of the next primordium,
numbered 0 here. One can count 13 green segments and 8 red ones joining adjacent primordia in
the front, which correspond to the number of spiral parastichies (B) Digitally rolled out pineapple.
The white vertical lines represent the same vertical line on the pineapple, and points P and P ′ are
also identical on the pineapple. The pattern is 5, 8 here, as shown by the counting the segments
in the front joining P and P ′, or by counting the green and red (dashed) parastichies. (C) A
Triangle transition increases the parastichy number by one. (C’) a quadrilateral transition keeps the
parastichy numbers unchanged. (C”) A pentagon transition decreases a parastichy number by 1.
(D-D”) Fibonacci transition from 5, 3 to 5, 8: the starting front in (D) has 5 up, 3 down segments.
The up segments are roughly parallel, as are the down segments. (D’) At first the transitions are
all quadrilateral. But as the disks decrease in size, and the front angles open up, it forces triangle
transitions (D”). These occur on the flatter segments (the green, up segments here, as there are
more of them). Each triangle adds an extra (red) down segment, for a total of 5 new down segments,
which added to the 3 old ones gives 8 of them. On the other hand, there are no extra up segments,
but the existing ones have become more slanted again, with roughly equal angles, setting the stage
for the next round.
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this recursive mechanism yields the Fibonacci sequence4. To check the prevalence of the sce-
nario systematic simulations that sweep the parameter plane of possible angle of (1, 1) fronts
and rates of decrease of d, consistently detect Fibonacci pattern formation when the angle of
the original front is not too large, and d (or G) decreases slowly enough, see (Golé et al. 2016,
Figure 15)5.

As some plants reach inflorescence, the parameter G may revert to increasing instead, as
the meristem ceases to grow and primordia fill it in, see (Douady & Couder 1996b, Douady &
Golé 2017, Figures 2 and 3). In this case pentagon transitions provoke a decrease in parastichy
numbers, often along the Fibonacci sequence as well. Regular patterns in this latter phase are
better represented by the Archemedian spirals of our first model from Section 3 (Fig. 9.C).

The golden angle as an emergent phenomenon. The fact that we did not have to
invoke the angle of divergence in the front-based explanation of Fibonacci pattern formation in
Fig. 8 should make it clear that it is not the driving concept behind phyllotaxis morphogenesis.
Is it a by-product then? Even this appears in doubt when looking at the graph of the divergence
angle along simulated Fibonacci growth Fig. 10.B. Indeed the divergence angle oscillates closer
and closer to the golden angle at first. But then it breaks up in large oscillations, even though
the pattern itself (Fig. 9B) seems relatively regular. A closer inspection reveals that the angles
between which the divergence oscillates are all close to multiples of the golden angle (Douady
& Couder 1996b, Golé et al. 2016). And the explanation becomes clearer when one inspects the
order in which the disks appear on the front: as the disks become smaller, small irregularities
of the front may induce permutations in the stacking order of these new disks on the front (Fig.
11.A and E). This permutation phenomenon is not only an artifact of the simulation: it has
been observed in arabidopsis and Birch catkins (Besnard et al. 2014, Douady & Golé 2017) and
studied in the framework of stochastic (random) processes (Refahi et al. 2016).

So, do these wide fluctuations of the divergence angle entirely invalidate the hypothesis of
the golden angle being central to phyllotaxis? Not quite yet... Interestingly, taking the mean
of the divergence angle over each front, even in this disordered case, restores the regularity of
the divergence angle, which then closely follows the oscillating convergence to the golden angle,
along the van Iterson tree branches, seen in patterns with slowly decreasing G (Fig. 10.D).
In this precise sense then, while it is not its mechanistic principle, the golden angle divergence
is an emergent byproduct of Fibonacci patterning. The geometry of fronts, with its finite
number of combinations of up and down segments offer some privileged slots for the next disks
to be stacked. These slots remain essentially the same under perturbation, and while the order
in which they are filled may vary, causing the wide variations in the divergence angle, these
variations are averaged out to a value close to the unperturbed lattice case. Interestingly, the
Bravais brothers (Bravais & Bravais 1837) who, as we have seen, cautiously heralded the golden
angle as the organizing principle of Fibonacci phyllotaxis, detail their data gathering method for
the calculation of the divergence angles of many specimens: for a plant with an (i, j) phyllotaxis,
it consists of averaging the divergence over i+ j consecutive nodes, i.e. s many nodes as there
are in a front!

If the mean oscillates closer and closer toward the golden angle, it is worth noting that in
the fronts simulations, there is always some irregularity, and each transition induces additional
irregularity (the triangle bifurcations cannot all happen at the same level and at the same time).

4In dicotyledons, a break of symmetry, where the pattern transitions from (2,2) to (2,3) is frequent, and also leads to
subsequent Fibonacci front parastichy numbers (Couder 1998). Note that we assumed nothing about α being constant,
or near the golden angle here. Alternatively, the pattern evolves into bijugate modes, with parastichy numbers that
are (2i, 2j), where i, j are successive Fibonacci numbers, or to (1, 3) and subsequent Lucas numbers. These two are
next most frequently recorded non Fibonacci patterns

5The simulations show a region of consistent Fibonacci transitions such as depicted in Figures 9 and 11 for a
rectangle in the parameter region with .58 < d < .5 and the rate of decrease of d vs. height less than .1.
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Figure 9: Fibonacci transitions in vivo and in silico. (A) Unrolled ornamental cabbage with re-
moved leaves. The pattern of line segments joining adjacent leaf scars, shows a sequence of Fibonacci
transitions from (1, 1) to (5, 8) via a succession of clusters of triangle transitions that alternate sides.
(B) Although no attempt was made to exactly match the cabbage pattern, this computer simulation,
where the diameter d of the disks decreases linearly with their height, shows the same alternating
pattern of triangle transitions between (1, 1) and (5, 8). (B’) Graph of front parastichy numbers as
function of the number of iterations, from the simulation in (B), showing the red and green parastichy
numbers monotonically increase one by one to the sum of the previous two. This is a signature of
a regular Fibonacci transitions, easily detectable in computer simulations. (C) Filled in meristem of
an artichoke meristem (SEM courtesy J. Dumais). Three concentric fronts are shown on the right,
with parastichy numbers (34, 55), (34, 21), and (13, 21) transitioning via pentagons as one moves
closer to the center.
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Figure 10: Fronts and angle of divergence.(A & A’) (3,2) and (8, 5) fronts (blue), and their child
disks (dashed) show the emergence of the golden angle, as their parastichy numbers increase through the
Fibonacci sequence. These fronts, extracted from rhombic lattices, have each identical up and identical
down segments. (A”) A slight perturbation of the front in A’ results in a change in the order of initiation
of primordia: whereas the divergence for the first and second new disk was roughly γ in A’, it is close to γ
and 2γ in this case (B) Angle of divergence at each iteration of the simulation of Figure 9.B. While at first
the angle seems to converge towards the golden angle α, it then starts oscillating widely. However the values
it hits are all close to multiples of α. This is explained by permutations of the vertical order of the disks, as
in A”. (D) Simulation with disks of decreasing size showing an instance of a permutation, where the angle
between disks 38 and 39, 39 and 40 are very close to α, but disks 41 and 42 are switched as compared to the
order of regular fronts. (E) These permutations are averaged out when taking the mean of the divergence
angle over a front: in the right coordinate frame, the red curve in this graph espouses closely the Fibonacci
branch of the van Iterson diagram of Fig. 7. The blue dashed lines correspond to triangle transitions.
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Fortunately, this noise appears to be smoothed out during further decrease of the growth index,
while staying in the same mode, leading to global stability. This mechanism is thus robust to
extrinsic noise as much as it is robust even to the noise it spontaneously generates itself.

When the patterns is not Fibonacci. What happens when the conditions (regularity
of fronts, slow decrease of G) for Fibonacci phyllotaxis morphogenesis fail? As seen in Fig. 8,
one of the important consequences of regularity and slow decrease of d is that in a (i, j) front
with i > j, the j down segments are all steeper than each of the i up segments.

As a consequence, when the triangle transitions occur, as they must, they do so exclusively
on the up segments - and the roles are reversed for the next set of transitions. This uniform
difference of steepness between up and down segments is lost whenG = d/D is rapidly decreased.
In this case triangle transitions happen often on the up and down segments one after the other.
The net effect of this type of growth is that the parastichy numbers will keep close to one
another.

If G is kept constant, a pattern starting with an irregular front will have the tendency, via
pairs of triangle and pentagon transitions, to regularize and its parastichy numbers will tend to
get closer to one another. Both these phenomena, are on display in the simulation of Fig. 11
A, B and C. The latter phenomenon of convergence is shown in the male cone of a Cedar of
Lebanon for example (Figs. 1.A right and 11 A). Because the parastichy numbers are close in
these patterns, and their parastichy (when visible) have symmetric slopes, we call these patterns
quasi-symmetric(Golé et al. 2016, Douady & Golé 2017). Aside from the Cedar of Lebanon,
we have found them in many samples of inflorescence that undergo a rapid expansion from the
stem: corn, strawberries, peace Lily. Work in progress shows that these inflorescences have
statistically different phyllotaxis than Fibonacci or any Fibonacci-like pattern (e.g. Lucas or
multijugate). They are also statistically distinguishable from whorled patterns.

Note that the evolution of the parastichy numbers in the development of a quasi-symmetric
pattern is structurally different from the Fibonacci-like case, and the attempt of classifying a
(4, 5) pattern, for instance, as part of a sequence 1, 4, 5, 9, 14... is futile, and misleading: the
quasi-symmetric pattern will most likely not evolve in these higher modes, nor will it necessarily
converge to a (4, 4) or (5,5) whorled-pattern.

6 Discussion

Phyllotaxis as a conspicuous example of developmental canalization. Organ
initiation rules in SAM and fronts provide a simple explanation of the nature of developmental
constraints at the origin of phyllotaxis process in plants. Contrary to what was believed in
the first place (for instance by the Bravais brothers), developmental constraints apply locally
to parastichies, which in turn determine the mean divergence angle (and not the other way
around!). This is due to the fact that all lateral organs in plant stems, be they part of com-
pressed or elongated structures, are initiated in a tiny region at the SAM where competition
for space is the rule. There, the patterning is dominated by the opportunistic initiation of
organs as the initiation zone progressively moves away from the already initiated organs. This
process itself is governed by the geometric arrangement of recently initiated organs (the fronts)
and by the plant growth (the parameter G = d/D). During stem growth, phyllotaxis is thus
progressively canalized from a (1, 1) front with divergence angle of 180o, or a 1/2 turn to higher
order Fibonacci fronts with average divergence angles that converge to the golden angle. These
features emerge from the inhibition- and growth- based iterative process of primordia forma-
tion, as it is canalized from a Fibonacci front to the next, at least as the growth parameter
G decreases slowly. The system starting with an angle of 1/2 a turn between the first two
primordia, progressively imposes the coarser convergent of the divergence angle: 1/2 then 1/3.
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Figure 11: Quasi symmetry in vivo and in silico. (A) 200 iteration of the stacking process
starting from a (1,1) front. The parameter d was rapidly decreased, linearly with height, until
iteration 36, where the pattern reaches a (9, 10)-front. After that d was kept constant. Note the
erratic occurrences of both red and green triangle transitions with no real separation between them.
After iteration 36, the pattern converges erratically to 13, 14 fronts, somewhat stabilized by pentagon
transitions, paired with triangles. (B) The parastichy number graphs show the almost simultaneous
increase of the two parastichy numbers up to iteration 36, and their convergence to 13,14 after that.
(C) The divergence angle, similarly irregular, has nothing to do with the golden angle anymore.
(D) Cedrus libani male cone, exhibiting a transition from an irregular Fibonacci (13,21) front to the
quasi symmetric (14,16), via a combination of triangle and pentagon transitions.
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Any divergence angle that would have both 1/2 and 1/3 as its first convergents would then
be consistent with the pattern. The precise angle is determined by the rate of increase of the
central zone, i.e. D (or equivalently the rate of decrease of the organ size relative to the center
size, i.e. G) and by intrinsic biological variability. Then, as growth continues and the size of
the disks decreases, Fibonacci modes augment due to the fronts’ Fibonacci adding property and
new convergents are imposed to the divergence angle that have average values close to 2/5, then
3/8, 5/13, etc., thus imposing progressively and more and more precisely a range of divergence
angles that converges on average towards the theoretical Golden angle, while never exactly
reaching it. For high order modes, this process traps the divergence angle, keeping it close to
a multiple of the golden angle with an amazing precision, but only in average. This multiscale
canalization process is particularly robust as the fronts can produce many values of divergence
angles at the microscopic level without modifying the macroscopic patterns (the parastichies).

Is the golden angle a trait of high fitness value for natural selection ? We showed
in the section 3 that a divergence angle equal to the golden angle would automatically give rise
to Fibonacci spirals. This is essentially what the Bravais brothers discovered early on in 1835
(Bravais & Bravais 1837). More precisely, the Bravais brothers showed that if the divergence
angle is the golden angle, then we always see two system of parastichies, no straight arms, and
the parastichy numbers will be always two consecutive numbers of the Fibonacci sequence. For
large growth index G, one would see only few spirals, but for smaller and smaller ones, one
observes larger and larger numbers of spirals, always two consecutive Fibonacci numbers.

This striking property motivated them to propose that the divergence angle would be selected
to be equal to this golden angle in plants, and that it would be the explanation of the observation
of these consecutive Fibonacci numbers of parastichies. This view is still largely prevalent
nowadays. One reason for that is its simplicity, were everything depends only on one parameter,
the divergence, being fixed at a very particular value. Moreover, the fact that this value possesses
many mathematical properties is commonly viewed as a reason for its natural selection, despite
the weaknesses of the arguments explaining why such properties should provide plants with
higher fitness values. For instance the fact that it is an irrational value the furthest away
from the rationals is still often quoted as ensuring that two leaves never superpose exactly, so
they do not shadow each other, which would be favourably selected. However this argument
has some weaknesses: although some simulations show that in some ideal (unrealistic) cases the
golden angle may provide optimum insolation to the leaves, many other angles provide the same
maximal amount, and this preference can be undone by varying the shape of the leaves, (Strauss
et al. 2019). And this does not take into account the fact that the leaves orient themselves after
being initiated, turning toward the light, independently of their insertion on the stem, nor the
fact that there are many plants with perfectly superposed leaves such as in many whorled plants,
e.g Hebe in 1.B, and that have however managed to make it through in the struggle for life.

Divergence, an ill-defined concept. Since the beginning of the quantitative research
on phyllotaxis, divergence has been a convenient concept to think about phyllotaxis and its
models. However, in the recent years, it has increasingly appeared as a ill-defined concept.
First, divergence is difficult to measure if not impossible. Most of the time, based on the
assumption that it represents a real factor in pattern formation and that a clear order between
primordia initiation exists, it is estimated as the average over indirect measurements (either
at macroscopic or at microscopic levels). However, it has been observed in various recent
works, either in real plants or in simulations that the angle between successive primordia (i.e.
the divergence angle) is rather a multiple of a specific angle. The divergence is therefore not
constant in these systems. Rather, at every moment, this angle is imposed by the existing
primordia fronts and by the size of the initiated organs. The divergence corresponds in this
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viewpoint to a spatial (angular) period in the initiation of the organs, for which the order
(and thus plastochrone) can markedly vary. The divergence would then more consistently be
defined as a mean angle between two consecutively initiated organs over a period of the pattern,
consistently with the fact that the spatial patterns mainly remain unaffected even if the timing
of initiation markedly fluctuates. It is this mean divergence angle, visible in the spatial period
of the lattice, that is progressively canalized during growth, by reduction of the growth index,
towards the Golden angle.

Justification of canalization. The scientific history of phyllotaxis shows how difficult it
is to explore morphogenesis. The first difficulty is to characterise the shape of the prototypical
patterns whose formation one studies (i.e. lattices in our case). Even in the relatively simple
and striking case of phyllotaxis, it took mankind till the turn of the 19th century to recognize
these patterns. Then, once the necessarily simplistic description is obtained, it is tempting
to reverse cause and effect, and to think that what is observed is the result of our abstract
description. In phyllotaxis, the selection of a particular divergence angle was instituted as the
cause for Fibonacci phyllotaxis, rather than as an emerging effect of a localized morphogenetic
mechanism. This common inversion of cause and effect may become irresistible if the description
we discover has some profound and rich mathematical properties (e.g. the van Iterson diagram
and its beautiful number theory based symmetry). The temptation is great to think that these
deep, unifying properties are the reason behind the observations.

One has to make a real effort then to go back to the actual biological and physical constraints
that participate in building the shape, and to figure out how they play out in the geometry of
the morphogenetic mechanism6. In phyllotaxis, the constraints come from the local conditions
of growth of a new organ (e.g., local accumulation of auxin, inhibition of growth in surrounding
areas). Even in realistic noisy situations, these conditions are still surprisingly capable of
producing results that are close to the perfect abstract case (e.g. lattice). But when the
noise is too large, and variation too abrupt, they produce cases (e.g. quasi-symmetry) which
are indeed observed in plants, but were overlooked because not neatly fitting in the polished
descriptive framework.

Restating the central question of phyllotaxis. To proceed further in the direction
pointed to here, it seems important to scrutinize the precise dynamics of organ growth, as it is
probably one of the key components to the selection of phyllotaxis patterns. For instance, is it
true that the future pattern is determined by the configuration of the latest front of primordia,
and the variations of the growth index through time? And if so, is it possible to measure
precisely the history of fronts in different cases of transitions, leading to both Fibonacci or quasi-
symmetric patterns, and compare this data with results from the models? Are the observed
growth dynamics comparable? Once this quantitative connection between model and reality is
secured, the central question of the predominance of Fibonacci phyllotaxis would then be: why
do plants select a history of variation of growth rate slow enough to give rise to these patterns?

Coda. In conclusion, the Bravais brothers were right about at least one thing: the hypothesis
of the divergence angle being constant (and usually equal to the golden angle) did serve as a
useful guide to the study of phyllotaxis. A canalization, as it were, of the scientific discourse
through time, oscillating between partial rejection and partial acceptance of this hypothesis,
between its role as cause or as effect.

6This point of view was already expressed by Schwendener in 1868, when he contrasted his approach to that of
Schimper and Braun, whose work, he contended, “is founded on an idealistic view of nature in which forms of organs
follow ever-existing patterns and structures. Consequently, their [spiral] theory doesn’t rely on dynamic principles to
explain the design mechanisms of plants.”
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Box 1 - Fibonacci maths: a (minimal) digest

Fibonacci sequence. In mathematics,
the celebrated Fibonacci sequence is de-
fined as the sequence of integers:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . . ,

where the first two terms, 1 and 1, are given
and any term of rank greater than 2 is de-
fined as the sum of the two preceding ones,
e.g. 89 = 34 + 55. If Fn denotes the nth
term, the sequence can be compactly de-
fined as:

F1 = 1, F2 = 1,

Fn+1 = Fn + Fn−1.
(1)

Related sequences can be constructed
based on the same rule by changing the two
initial terms. For example, by changing the
first two terms to 1 and 3, one gets the Lu-
cas sequence:

1, 3, 4, 7, 11, 18, 29, 47, 76, 123, . . . .

The Fibonacci sequence has a number of re-
markable mathematical properties. A key
property related to phyllotaxis stems from
the sequence of ratios of consecutive terms
of the Fibonacci sequence:

1

1
,
2

1
,
3

2
,
5

3
,
8

5
,
13

8
,
21

13
,
34

21
,
55

34
,
89

55
,
144

89
, . . . .

(2)
In decimal notation, this writes as (num-
bers given with a 10−4 precision):

1.0,2.0, 1.5, 1.6667, 1.6, 1.625, 1.6154,

1.6191, 1.6178, 1.6182, 1.6180, . . . ,

showing that the consecutive values get
closer and closer and seem to converge to-
ward a particular real number. It can be
easily shown using eq. 1 that this is in-
deed the case and that this number is the
golden number φ = 1.61803 . . .. Even start-
ing with different initial numbers, the Lu-
cas sequence shows the same property, i.e.
that the ratio of two consecutive numbers
tends toward the golden number.
The Golden number. The golden
number is defined as:

φ =
1 +
√

5

2
= 1.61803 . . . .

This celebrated irrational number has a
simple geometric interpretation. Let us
consider a straight segment of unit length.
We wonder how to divide this segment into
two parts of length x for the largest seg-
ment and 1 − x for the smallest such that
relative length proportions remain constant
from one segment to the next (i.e. from
1 − x to x and from x to 1), Fig A. This
can be expressed as:

1

x
=

x

1− x
. (3)
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... Box 1 - Fibonacci maths: a (minimal) digest

This thus leads us to solve a quadratic
equation whose unique positive solution is:

x =

√
5− 1

2
= 0.618 . . . .

Simple algebra shows that proportion 1
x be-

tween the 3 consecutive segments defined
by eq. (3) is just φ:

1

x
=

2√
5− 1

=
1 +
√

5

2
= φ.

Due to its ability to preserve proportions
while scaling, φ has been called the golden
ratio and can be found in various human
creations (e.g. (Livio 2008)). Interestingly,
φ verifies a number of remarkable identities
that can be derived from 3. For example its
inverse is φ− 1:

φ(φ− 1) = 1. (4)

The length of the two segments can then
be expressed in term of φ:

x =
1

φ
, (5)

1− x =1− 1

φ
=
φ− 1

φ
=

1

φ2
, (6)

leading to approximated values x = 0.618
and 1− x = 0.382.

The Golden angle. The golden angle
is simply derived from the golden number
by subdividing a circle of perimeter 1 unit
into two circular segments of length x and
1 − x verifying the same geometrical con-
straints as expressed in eq. 3, Fig. B. By a

similar reasoning, we find that x =
1

φ
and

1 − x =
1

φ2
. The golden angle, denoted γ,

is then simply the angle that intercepts the
smaller perimeter segment (of length 1−x).
Its value is thus:

γ =
1

φ2
= 2− φ =

3−
√

5

2
(7)

In radians, the golden angle value is thus:

γ = 2πφ−2 = 2π 0.382 = 2.4 rad. (8)

Converted in degrees it yields:

γ = 360◦φ−2 ≈ 137.51◦.
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Box 2: Best rational approximation of a real number with pieces of size 1/q

Imagine that we cut a pie into 8 pieces (sec-
tors) of equal size (Fig. A) and that a guest
wishes to get 1/3 of the pie. We assume
that we have no other means than offering

him a number of the already cut pieces of
size 1/8 (we cannot cut the initial pieces
into smaller pieces).

To best fit our guest wish, it is obvious that
we must give her either 2 or 3 pieces. To
make the decision between these two op-
tions, we compare them more precisely to
the actual guest demand of 1/3. 2 pieces,
i.e. 2/8, is 0.25 while 3 pieces, i.e. 3/8,
is 0.375. As 0.375 is closer to 1/3 = 0.333
than 0.25, we finally find it more reasonable
to give her 3 sectors. We can say that 3/8 is
the best way to approximate our given tar-
get number (here 1/3), with pieces of size
1/8, (Fig. B).
Likewise, it is possible for each positive real
number α ≤ 1 to find the best approxima-
tion of this number with pieces of size 1/q,
q being an integer (q = 8 in the previous
example). Note that p ≤ q as, by trying
different values p = 0, 1, 2, ..., all the pos-
sibilities of approaching α ≤ 1 have been

explored, as soon as p = q . The higher q,
the smaller the piece. For each value of q,
there exists a number of pieces p such that
p.1q best approximates our target number
α (p = 3 in the previous example). The
fraction p

q is called the best rational ap-
proximation of α with pieces of size
1
q . Among the best rational approxima-
tions of a number, some are best rational
approximations in a stronger sense: they
are called the strong best rational approx-
imations of this number (See Supplemen-
tary Information section 2 for mathemati-
cal details about best rational approxima-
tions of reals and for the companion no-
tion of strong best approximations). These
strong best rational approximations are the
convergents of this number.
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Box 3: Convergents from continued fractions

One classical way to obtain the convergents
of a real number α is by expressing α as a
continued fraction. In our example:

α =
41

100
=

1

2 +
1

2 +
1

3 +
1

1 +
1

1 +
1

2

(see Supplementary information Section 3
on how to derive the continuous fraction
of a real). The convergents are then just
the successive truncations of that contin-

ued fraction. For instance,

2

5
=

1

2 +
1

2

,
7

17
=

1

2 +
1

2 +
1

3

,

9

22
=

1

2 +
1

2 +
1

3 +
1

1

, etc.

If α is rational, it has a finite continued
fraction expansion, and therefore a finite
number of convergents (the last convergent
being α itself). But if α is irrational, the
continued fraction continues for ever and
α has consequently an infinite number of
convergents.

Box 4: Guessing divergence angles from spirals: the fundamental theorem of
phyllotaxis

If we assume that a spiral motif was created
with a constant divergence angle (as with
our simple geometric model), the previous
analysis makes it possible to derive infor-
mation about the divergence angle from the

observation of spiral motifs.
Let us illustrate how this works on an ex-
ample. Imagine that we have a pinecone
with (8,13) phyllotaxis as in the following
figure.
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... Box 4: Guessing divergence angles from spirals: the fundamental theorem
of phyllotaxis

According to the previous analysis, here is
what can be deduced from this spiral orga-
nization:

1. Spirals are the traces of fractional ap-
proximations of the divergence angle
(assumed constant in time).

2. The accuracy of this approximation
relies on the size of organs: the
smaller the organs the more precise
the approximation.

3. 8 and 13 being two consecutive num-
bers in the Fibonacci sequence, the
divergence angle is comprised be-
tween two convergents of the Golden
angle.

4. More precisely, the divergence an-
gle is comprised between 3/8 and
5/13. Indeed we know that 8 and
13 are necessarily denominators of
a pair of consecutive convergents
of the divergence angle (fractions
that best approximate the diver-
gence angle at a precision imposed
by organ size). One of these frac-
tions approaches the divergence an-
gle from below while the other ap-
proaches it from above (the conver-
gents are alternating around their
target). These convergents are of
the form Fn−2/Fn, leading to the
two angles: 3/8 = 0.375 (135◦) and
5/13 = 0.385 (138.6◦).

5. For a chosen initial organ, the next
organ is approximately at 3 × 1/8

turns from the initial organ. This
means that this organ lies somewhere
on the 3rd spiral arm of 8-arms fam-
ily, starting from the arm the ini-
tial organ belongs to and going either
clockwise or counter-clockwise. Sim-
ilarly the next organ is also approxi-
mately at 5×1/13 turns from the ini-
tial organ modulo 1 turn in the same
direction. This determinates the po-
sition of 2 potential next organs (de-
pending on whether we counted spi-
rals clockwise or counter-clockwise).
The next initiated organ is the one
is then at the intersection of the two
spirals, and that is farthest away
from the center (heree at the inter-
section of the two dashed spirals).
One can observe that the angle is as
expected close to 137◦.

Another way to find the organ succeeding
a given one is to notice that in a regular
pattern, the initiation number of a primor-
dia increase by the number of spirals along
a parastichy this give the property that
the element in the diagonal (orthostichy)
has a number sum of the number of spi-
rals. Using this property all the elements
can be numbered one by one by local spiral
connections, and then eventually the whole
pattern can be numbered. Then the diver-
gence angle can be measured. The spirals
thus create a reference system when one
can recover the exact ordering and position
of every organ.
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Box 5: The Fibonacci rule along the diagram

+
+

(i, j)
(i<j) 

(i+j, j)
(i, i+j)

u v
j i

u v
ji v j - u i = 1

α

In the diagram of Fig 7, it turns out that,
immediately under each quadrilateral re-
gion of mode (i, j), there are two regions
of modes (i+j, j) and (i, i+j) (Atela et al.
2003), see figure above. This makes intu-
itive sense: if in the lattice points i and j
are closest to the reference point 0, then by
symmetry, point i + j is closest to both of
them. Traveling down in the (α, T ) plane
along the branch of the van Iterson diagram
in region (i, j) (dashed line in the figure
above), as one crosses the vertex at the bot-
tom of the branch, the point i+ j becomes
one of the closest two to point 0. One of
the sets of i or j contact parastichies is then
replaced by the new one, i+ j. But which
of the two? Remarkably, the choice com-
patible with the stacking process is always
so that one goes from mode (i, j) to mode
(i, i+j) (if i > j) or (i+j, j) (if i < j). But
this is the Fibonacci rule! Take for exam-
ple (i, j) = (3, 5). Then 3 = i < j = 5, so
the next mode compatible with the stack-
ing process is (i + j, j) = (8, 5). In gen-
eral a mode of two consecutive Fibonacci
numbers gives rise to a mode with the next
two consecutive numbers. The rejected
choice yields lattices with the two sets of
parastichies winding in the same direction,

which is incompatible with the stacking
process, as parents are always on the op-
posite sides of the child disk. This explains
the “pruned” branches of the van Iterson
diagram in Figure 8.
Traveling down the van Iterson diagram
from its top (1, 1) branch, one has to first
make a choice of going left in the (2,1) re-
gion or right in the (1,2) region - this choice
will determine the chirality of the pattern.
Say we go left, decreasing of T while vary-
ing α to keep the lattice rhombic will lead
us down through region of successive Fi-
bonacci modes. While α has to oscillate
back and forth to keep the lattice rhombic,
it does so with less and less amplitude as it
converges to the point (γ, 0) on the α-axis.
Convergents, revisited. The figure
above also shows visually the correspon-
dence between rational approximations of
a divergence angle and the parastichy num-
bers in this cylindrical model. Indeed one
can show that the two “foot” points on the
α axis of region of mode (i, j) are u

j and v
i

where u, v are such that vj − ui = ±1 and
0 < v ≤ i, 0 < u ≤ j (see the figure above).
As a result, if a lattice of divergence angle
α is in mode (i, j), u

j and v
i are the best

approximation using pieces of size i and j
respectively of α (As we know, these best
approximation fractions include in particu-
lar all the convergents of α). Conversely, if
an angle α is between two rationals u

j and
v
i where ui−vj = ±1, 0 < v ≤ i, 0 < u ≤ j,
the lattice given by (α, T ) must have paras-
tichy numbers (i, j) for some range of T :
the vertical line for that value of α neces-
sarily crosses the quadrilateral (i, j). This
is a geometric view of the fundamental the-
orem of phyllotaxis...
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